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ABSTRACT

The urban transit routing problem (UTRP) consists of findiags$ying routes for
public transportation within a city or region. Urban sceosiget more complex as time
goes by, making the design of routes an overwhelming taslse/nesults are often un-
satisfactory, with high costs and travel times. We develogxact MIP formulation for
the problem and obtain best solutions, which were prewousknown, for common
benchmarks. We also develop a multi-objective geneticratgo to solve thie problem
with higher quality and more efficiently than with currenthaiques. We benchmark our
solutions on generally available real and artificial tesiesaand achieve better results.

Keywords: Urban Transit Routing Problem, Mixed Integer Programmingtaheuris-
tics.






Algoritmos exatos e metaheudisticos para o Problema de Roteamento de
Transporte Urbano

RESUMO

O problema de roteamento de transporte urbano consiste eomtesr rotas satis-
fatorias para transportelplico em uma cidade ou rég. Cemrios urbanos se tornam
mais complexos com o passar do tempo, tornando o planejardentotas uma tarefa
proibitivamente diicil, cujos resultadosa® frequentemente insatisaibs, com altos cus-
tos e tempos de viagem. O propomos uma formulag MIP exata para o problema e
obtemos resultadadimos, que & enfo riio eram conhecidos, para casos de teste usa-
dos na literatura. Bs tami&m desenvolvemos um algoritmo @®ico multiobjetivo para
resolver o problema com mais qualidade e éficia do que comngétnicas atuais. Testa-
mMos nossas solbes com cearios reais e artificiais publicados anteriormente e obtemo
resultados superiores.

Palavras-chave:Problema de Roteamento Urbano, Prograiodnteira Mista, Metaheisticas.
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1 INTRODUCTION

Public transportation is of vital importance in almost gvptace in the world. It
shrinks distances and allows a population to interact andymre more. In comparison
to private transportation, it utilizes less space, allgvwnore people to benefit from it,
preventing jams, and is less harmful to the environment.

But, traffic is growing substantially, even in places where tlumber of people is
stable. This creates complex scenarios, with lots of dertteatanust be fulfilled, making
an efficient public transport system mostly desirable. &ls& bf designing a public transit
network is commonly performed by traffic engineers and ssts, planners that attempt
to satisfy passengers, or generate profit, while also atigrefake-holders wishes, such
as government, businesses and taxpayers.

This complicated task can surely benefit from computer &sgis. The study of
urban transit network design under the name Urban Transiwdik Design Problem, the
UTNDP, aims at obtaining good knowledge, tools and tectesdar the design of public
transport systems, observing the mentioned restrictiodsde@mands. It is aNP-hard
problem with multiple criteria. Because of its complexitlgjst problem is commonly
divided in two parts: the Urban Transit Routing Problem (UTRRJ the Urban Transit
Scheduling Problem (UTSP) (CHAKROBORTY, 2004).

The UTRP concerns deciding routes where public traffic wilflo such a way that it
can provide good service (short travel times and low numbgaasfers) for passengers,
with an acceptable cost and satisfying stake-holder demdhd of vital importance in
public transport systems since it directly defines the tdaken by city dwellers on their
daily tasks. The UTSP decides the exact schedule of vehitlasgiven set of routes
so that the demand at each time period is satisfied, alsogtakamy restrictions into
consideration. Because the step that requires most plaigiing UTRP, since changes to
routes are normally harder to implement, and of the compl@fithe problem, we focus
only on the UTRP in this work.

Our main goal in this work is to create, implement and desaigorithms to solve the
UTRP. We do not intend to create a tool or a fully ready to uséiegipon for specific traf-
fic scenarios, but rather to develop successful algorithmisechniques for the problem
in general, which can later prove useful for other, more sieed real life applications.

We notice, as is explained in Section 1.1, that thorough @ispn of techniques is
not commonly done, since most works adapt problem defirgtiora scenario, with new
constraints or objective functions. But since problem statets differ, comparison of
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solutions is not possible. Another frequent issue is th& tZficcommon available and
used benchmarks for the problem, necessary for good cosopati

Comparison is but very important. With a well performed eaéibn, specialists and
tool developers will possess better knowledge for the seleof the right algorithms and
techniques, and will thus make better informed decisionshi® UTRP and the UTNDP.

Therefore, we use a simple and generic problem definitionisheompatible with
many previous works. Our definition is based on the definitisad by Lang Faet al.
(2009), and is described in detail in Chapter 2.

After formally defining the problem, we give two solutionstoThe first one is based
on Mixed Integer Programming, and solves the problem cotaiglenithout human aid.
To the best of our knowledge, no full multi-objective lineaodel for UTRP has been
published before. Exact solutions are often used to op#iroie or two parameters in an
existing network, or for small-sized networks. It has eveerbsaid that Mixed Integer
Programming cannot model the UTRP (CHAKROBORTY, 2004). We giibto be pos-
sible, and obtain optimal results for a well known benchmaolbe described in Section
1.1. We also propose two applications for the model whenimgalith larger networks:
using it in adivide-and-conquefashion, handling small groups of nodes at each time,
until the optimization of the whole network is ready, andngsthe linear relaxation of
the model to obtain scores betwegand1 that characterize how important an edge is,
information that can then be used in the generation of rontesother approach. Our
formulation is described in Chapter 3.

The second solution is a genetic algorithm. Heuristics aathheuristics are the com-
mon choice for solving the UTRI?'\(_VAREZ etal., 2010), given the problem complexity
and high number of constrains. We base our solution on a igeslgbrithm since pre-
vious works were able to achieve good results with it. We tadkeantage of key aspects
that were not used before, and attempt to achieve a mordieff@dgorithm by:

e carefully selecting initial solutions from many differesdurces, including MIP re-
laxation, minimum spanning tree, shortest paths and fraady algorithms;

e applyingsimplificationto prevent unnecessary routes;

e using operators such achangeandcrossovey that exchange characteristics be-
tween routes and route sets;

¢ not letting a feasible solution be removed if itisdominatedterm which is defined
in Section 2.2.1 and by allowing different route set sizethensame population.

We present the whole algorithm in detail, allowing a readereproduce our exper-
iments completely. An important step that is sometimes neit documented (FAN;
MUMFORD; EVANS, 2009) is how the initial population is credteln Chapter 4, this
and all other involved procedures are described in detalil.

Finally, to assess the quality of our solutions, we companevmrk with previous
ones that use a common benchmark to be described in Sectiomte results are listed
and analyzed in Chapter 5.

Finally, our conclusions and final remarks are then present€hapter 6.
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1.1 Related Work

Given our goal of developing successful algorithms andriegles for the UTRP, we
are mostly focused on studying generic problem definitions solutions that allow fair
comparison of results and thus make it possible to rate @ algorithms and techniques.
Furthermore, since this work follows two main solution idgaamely mathematical pro-
gramming and metaheuristic (or, more specificatyplutivg, we analyze the literature
in these areas.

One of the first attempts to tackle the UTNDP generically, aith computer aid,
was done by Christoph Mandl| (1980). He modeled the problendasdjned a two-step
solution to solve it: first generating a set of initial fedsilboutes, and then modifying
them heuristically. Most of his techniques were tested wtheveloping the operators
of our genetic algorithm, and they include: adding a node touge if the demand that
gets covered by doing so is high enough, removing a node dé¢neand that stops being
covered by doing so is low enough, and exchanging parts désouWe make use of
similar operators when generating initial solutions for ganetic algorithm, as will be
described in Chapter 4.

In the work of Mandl, a well-known benchmark was publishedcandl’s Swiss road
network. It can be seen in Figure 1.1. Many authors have usedéenchmark to test
their solutions, thus producing a good amount of data andtesthat become very useful
when evaluating new solutions to the UTRP. As an aside, oynhigal representation of
the network is not the same as the original one, even thougty @dge has the correct
length. That happens because we do not have the distangeseinetvery node, and this
Is a possible configuration of the network, even if not plaffdre edge betweemn; and
nq; Crosses two nodes. This may be imagined as a bridge thaesroser two bus stops
on a lower road, and is not physically connected to them. Ogjmout this work, we use
this representation for Mandl’s network.

Figure 1.1: MandlI's Swiss road network.

As an example for real world directed solutions, Israeli &watler (1989) created
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a complex and interactive multi-step approach, where sdepes svere to be computed
with exact methods, and others decided by the traffic plarifer approach was not fully
implemented, having been tested only for the first stepsnBwvaeugh a practical solution
to the problem is the actual goal when solving the UTNDP,gisimore abstract version
of the problem facilitates research and allows better cos@a of intrinsics, such as
algorithms and techniques. This leads to better knowletigatahe problem, which will
then lead to better real word solutions.

K. Wanet al. (2003) proposed a Mixed Integer Formulation for Multi-Rotitansit
Network Design. It attempts to attend all demand while miring total operator costs.
While resembling our formulation, they have a more compldind®n that handles route
frequencies, and their model is non-linear, also becauteeahore detailed definition of
the problem. Therefore, their formulation géiteearized It is also not multi-objective,
only considering total operator costs. If using our probk@efinition, assuming every
node has demand, and only considering total operator dbstsolutions to this hypo-
thetical single-objective version would be trivial andeditly derived from the minimum
spanning tree of the network, as will be discussed in Chapter 4

In the exact approach of Borader et al. (2007), a multi-commodity flow model is
proposed. It generates line routes dynamically, much likeapproach, but it assumes
that aprecomputedmall set of possible routes is available, in order to desa¢fae search
space. Further, it considers the maximization of the dencamdred without transfers as
a main goal, but thus ignoring transfer waiting times in wyitiation. It can be employed
to test bigger instances, and was tested with data of Potsdanedium-sized city in
Germany.

Considering a problem definition equivalent to the one used, lighakrobortyet al.
(2002; 2004) use a genetic algorithm and propose afiteessfunction that measures
how good the genetic pool of potential solutions is. It ubesabsolute difference between
the path a passenger takes and the shortest possible gh#réifvere routes everywhere).
Then it scales this value according to the demand covereddypath. It also takes
unsatisfied demand into consideration.

The algorithm was tested with Mandl’'s Swiss road networld @rachieved better
results than what was known at that time, showing the pateotigenetic algorithms in
solving the UTRP. This work used a very different approacimfiaurs for initial route
set generation and different genetic algorithm operatams, it did not treat the multi-
objectiveness of the UTRP, optimizing only the user satigjac

When experimenting and comparing results with the work of @hiadety et al., we
found some inconsistencies in the published quality factor their obtained route sets.
This will be discussed in more detail in Chapter 5.

When generating and selecting route sets, the user traves ticonsidering transfers,
is the most often used decision factor. In contrast with, timathe genetic algorithm of
Tom (2003)et al., a bigger set of criteria is considered, such as operatds,cbighest
directly covered demand and fleet sizes (given their prolaefimition included frequen-
cies for each route). It is worthy to note that our initiallg@n generating procedure also
selects routes using different criteria, such as operatstscand covered demand. This
leads to higher quality and differentiation in initial rewets.
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Agrawalet al. (2004) focus on parallelizing genetic algorithms for theNIDP. They
use a large benchmark, witl332 nodes andl076 edges to test their techniques. They
achieved a performance improvement of about half times timeber of processors, i.e.
with 2z processors their experiments rartimes faster than with one processor. Our
metaheuristic approach is also theoretically parallblzand could take advantage of
speed-ups in order to process larger networks, althougbraioation system would have
to be implemented in order to distribute work among processbhe largest benchmark
tested in our work has10 nodes an@75 links.

A genetic algorithm was also proposed by Wei leaml. (2006). Their problem def-
inition is more complex, dividing nodes into centroid andvaentroid, and considering
multiple transport modes (e.g. bus and train), each witleidiht and dynamic demands.
Their solution is based on creating an initial set of feasgalutions, given restrictions on
route size, based on the shortest paths of the network. Tieggenetic algorithm is used
to select and optimize a best route set out of the initial $be operators of the genetic
algorithm are the same as in previous works. They shortlyuds the redesign of existing
networks as well, tackling the problem mainly by fixing sonfieh@ existing routes and
only optimizing the others.

Wei Fanet al. (2008) also used Tabu search to solve the more specializemnef
the UTRP discussed in the previous paragraph. They propoee different Tabu search
algorithms and compare them with their previous genetiorétlyn. Sensibility analysis
Is also performed, after which numerical results are obthiThe algorithm is, however,
also based on initially generating all feasible routes ipocating problem constraints.
This would not be (generally) applicable using our problesfirdtion since there would
be too many feasible routes. Furthermore, the used benkkragg not openly available,
which prevents direct comparison of techniques and results

As an example of a relatively new ad-hoc graphical tool dgwedl and used for a
specific city is presented in the work Afvarezet al. (2010). They created an interactive
and attractive tool to design routes and position bus stofmsraatically. They divide their
data, for the city of Burgos, Spain, in four types, one for eyl of day, e.g. school
day and holiday. This corresponds to using four differengi@+Destination demand
matrices. The approach fixes the number of routes, and the&l snd final destination of
each route. The process of generating routes is based atingseodes within existing
routes, and applying local search operators, such as opgthat exchange parts of routes
between each other. It also takes turns optimizing bus stég@nd routing. But, since
it is an ad-hoc solution and it has not been tested on commochibgark instances, its
techniques cannot be directly compared to our algorithms.

An interesting approach to the UTRP, differing from most,hattof Curtinet al.
(2011). Instead of minimizing the cost for user or operatioey maximize the service
level of each edge. This level attempts to take into conatd®mr more factors, such as
the importance of the route for political and geographieasons, and combines user
and operator costs as constraints to the problem, ratherahabjectives. The problem
Is solved using mixed integer programming, and optimizes raute at a time, thus not
calculating the interplay of multiple routes in service lifya The authors also assume
that more potential stops along an edge equates to moretjbteerved demand, even
though demand coverage relates more to where the route tieditisn to the number of
covered stops. To solve the problem formulation in reaslent@ine, certain restrictions
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on route size are taken advantage of in order to limit the rernab nodes that must
be considered simultaneously. Such a divide-and-congueroach is useful to allow
mathematical formulations to be applied to bigger networks

A recent article by Mazloumi (2012) makes a comparison betvtbe ant colony and
genetic algorithm metaheuristics in the context of schedulUTSP). Here one is inter-
ested in an optimal timetable, avoiding too full or emptyngport vehicles. The meta-
heuristics are compared in terms of efficiency and accu@pydvide optimal solutions.
Both had similar accuracy, finding near optimal solutiond, dnt colony achieved the
solution in less iterations, showing it has a more intefitggearch approach. Even though
interesting, this is more strongly connected to the actualblem being treated (UTSP)
and how the operators and evaluation functions were defiradto intrinsic differences
between the metaheuristics. It has therefore no direct@apdns when considering ant
colony and genetic algorithms for the UTRP.

The most closely related work to ours has been by LangegfEah (FAN, 2009; FAN;
MUMFORD; EVANS, 2009; FAN; MUMFORD, 2010). Their main idea s define the
problem more generically to allow comparison of technigaleg algorithms rather than
problem statements and restrictions.

Itis, of course, important to characterize the problem detefy and exactly in order
to achieve good solutions for real world scenarios. But, wd@reloping and testing new
algorithms, the definition should remain the same, and asrgéas possible, so that it
does not stand in the way of evaluating these techniques.

Lang Fanet al. focus on that, and we enforce it, following the same definitizey
use, with exception of making it more general in regard tost@mnts on the number
of routes and on cycle allowance. We also employrthéator operator of the genetic
algorithm of Lang Faret al. Finally, we use this and previous work, based on Mandl’'s
network, to test and compare our techniques
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2 PROBLEM STATEMENT

2.1 Urban Transit Network Design Problem

The Urban Transit Network Design Problem consists in finéind defining adequate
vehicle routes for an urban network that satisfies user ddroaer the region while ful-
filling practical constraints. The user demands includendpable to get to destinations
fast, with the least number of transfers, not having to waitimfor the transport and
avoiding crowded vehicles.

It is important to notice that the first two items are mostligeafed by where the trans-
portation goes through, that is, the routes used. The lash$pects are more related to the
frequency and scheduling of vehicles in a route. When corisigl@ractical constraints,
one normally has to deal with limits in the number of routed treir lengths, possibility
to cross certain regions, and the costs of creating and amaing the public transport
system. Other constraints are due to stake-holders, sugbvasnment, businesses and
taxpayers. Citing Lang Fan (2009), while many parties wilhdf@ from an efficient
public transport service, each one will evaluate its serfiom their own perspective.

As can be seen from the above description, two main partseotUfiNDP may be
pointed out: the routing of vehicles and their schedulindpisTclassification is widely
used, and the name of these parts are: the Urban Transit Bdrilem and the Urban
Transit Scheduling Problem. Often, solutions to the UTNBE&kke each of these two
aspects separately.

Changing transit routes is often more costly, as it may ire@gtually constructing
the route (e.g. with railroads), and because the populdittorg next to the network,
including public transport users, drivers and others, nagffected. Therefore planning
Is a very important and decisive step. On the other handdsting is adapted throughout
the day, and, even though there are also costs involved imgaig scheduling, they are
of lesser magnitude when compared to routing change expense

Therefore, we attempt to focus mainly on the UTRP, consideitithe step that de-
mands highest attention currently. In the next two sectitims UTSP and UTRP are
described in more detail, and then we present the formalitefirused for the UTRP
throughout our work.
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2.1.1 Urban Transit Scheduling Problem

Given a set of routes and a number of available vehiclesdagrithe exact times
and frequencies at which vehicles will pass through evepgsg point and thus make
routes is the concern of the UTSP. The effects of scheduliegrainly the passenger’s
waiting times, the crowdedness and the costs in fulfillingreel timetables, including
fuel, energy, personnel and maintenance associated.

Waiting times may be further divided, since the initial wagt time, i.e. prior to
beginning the public transport part of the trip, can be a@did a user heads to the access
point at the right time and schedules are maintained. Thengdime outside of a vehicle
and before getting to the destination is the transfer tinteignften unavoidable. The last
waiting time, sometimes neglected, but also importantaissed by the time distance
between different vehicles in a route. Even if the schedafesnaintained and the user
plans ahead, it may still have to wait at his destinatiorr a&taving, because every public
transport option is either too late or too early.

Mixed Integer Programming solutions are commonly propdsesdcheduling, mostly
with non-linear objective functions. Nevertheless, siitég also a hard problem with an
unfeasibly high number of possibilities, scheduling iseoftargeted by heuristics and
metaheuristics. These algorithms have to deal with canstrauch as: limited fleet
size, limited vehicle capacity, stopping time bounds (irmaacess point), interdependence
between stopping times in consecutive access points, temdeistic travel times due to
traffic and nonuniform arrival of passengers (CHAKROBORTY0Q2D

2.1.2 Urban Transit Routing Problem

The urban transit routing problem consists of finding a setraffic routes, given
passengers, operator and further constraints, that ashgood average travel times, low
number of transfers, low costs for the operator, or a continnaf these goals. Since
scheduling is unknown in this step, a frequency value isnadigsociated with each route,
or the frequencies are considered equal. Here we assumefegueency per route to
maintain simplicity and compatibility with previous workBassenger cost is proportional
to the time in order to fulfill the demand represented by the i@&irix, while operator
cost is often associated to the length of routes.

To develop algorithms for it, we must precisely define the UTWRP choose a more
general definition in order to allow a comparison with presavork and focus on tech-
niques and algorithms rather than problem fidelity. The wefinition follows the work
of Lang Faret al. (2009).

2.2 UTRP Definition

A graphG(V, E) represents th&ansport networkwhereV = {vy,...,v,} is the
set of nodes representing predefined bus stops, train stopgre broadly, access points
where the transport is able do pick up and drop off passen@edsvhere? = {e;,...,e,} C
V' x V represents the set of direct physical connections betweéas
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A routein the transport networkG:(V, ) is a pathr, = (v;,...,v;,), Wherei; €
{1,...,n}. Asetofroutesk = {r, : 1 <a < N}, whereN is the number of possible
routes, defines a solution to the UTRP problem.

2.2.1 Objective Function

To evaluate the quality of a route set, one must first defineute network which
contains only the edges of the respective route. We defirte, dse set of edges of the
router,. Then, thetransit graphcan be defined as a gragh(V’, E’) in which V! C
R x V. The nodew;, € V' in thetransit graphis a pair that combines the routg and
the nodey; € V from thetransport network Consequently, we define the edgegihin
two parts. £ corresponds to the set of edges within individual routed, fgnrepresents
transfers:

E] = U {(Wig, wja) : (vi,v5) € By}, Ey= U {(Wiq, wip) = v; € T N1y}

Te€ER v; eV

Given thetransit graph one can define two cost functions, one measuring the user
cost and one the operator cost. The operator objectiveibumist defined as:

Co(R) = Z Z cle),

re€ER ecl,

wherec(e) is the cost of operating edge

To define the user cost, we usegthe time required to travel through edgeand the
travel penalty,.,,, which is the time it takes to make a transfer. The vajueis assumed
to be constant since we do not deal with scheduling. The vglyelso includes a time
penalty regarding the inconvenience of having to make atesumstead of staying on the
same route. Given that, the edgegihhave lengtht,.,,, while the edgesw;,, w;,) € E}
have length(,, .,). Now, the minimum journey time in thigansit graph7'G' from v; to
v, a;;(T'G), is defined as the shortest path from a nodéun, : v; € r,} to a node in
{wjp 1 v; € 1}

Let d;; denote the transit demand from noddo nodev; (defined as the number of
passengers wishing to travel framto v;). Assuming the passengers will always choose
to travel on the shortest paths, the user cost functiéfii (Total Travel Time) anddT'T
(Average Travel Time) can be defined as follows:

TTT
TTT = Y dyoy(R),  ATT =

D o dij

(vi,w;)EV XV (vi,v)EV XV 1)

Since there is more than one objective function to be opgdhin this problem, so-
lutions can be classified @®minatedor undominated In a set of solution candidates, a
solution s is undominatedf and only if no other candidate in the set is better thaom
both quality measurements.
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2.2.2 Restrictions

Two main restrictions are the only applied in our definiti@very route must be a
path, and a route set must cover the whole demand (withottslon transfers), i.e. not
leave any passengers unattended or unable to reach thematiesis. In variants of the
problem, further restrictions are often enforced. It is aoon not to allow cycles or
backtracks within routes, or to limit the size of routes, &ns often assumed that routes
are undirected, i.e., that the public transport travelsoith lalirections of a route.

Nevertheless, it is not uncommon there to be different pdgpgnding on the direction
of the route, and cycles are known to occur. Therefore, anddar to obtain greater gen-
erality, we do not assume any of those restrictions as nagessd all of our algorithms
are able to deal with any subset of desired restrictiond)iwithose mentioned above,
and produce solutions that satisfy them. This facilitat@sgarison with algorithms for a
broader class of problem definitions.

Another common characteristic in previous models of the UT&RRing the number
of desired routes. This may or may not be realistic, sinceherone hand having more
routes may result in more costs, but on the other hand, opadirconsiders operator
costs within the operator cost function. Thus, we choosdldwaetting of a lower and
upper bound on the number of routes. We do this since implénteaur solutions for a
variable number of routes is not a burden, and it allows mereegality and thus broader
comparison possibilities.

2.2.3 Bounds on the Number of Routes and on the Objective Funons

Given atransport networkone can extract minimum bounds on both objective func-
tions. These can be used to measure the quality of achiesettsevhen other experi-
ments have not been performed on the same network, or jusidalate the maximum
possible optimality gap.

To obtain the best possible value for the passenger trawel it is enough to assume
that every passenger will travel through the best path intrida@sport network(as op-
posed to theransit grapl). This clearly gives the minimum obtainable travel timecgin
every value in the OD matrix is multiplied by the lowest numpessible. To calculate
minimum paths in a graph, Dijkstra’s or Floyd-Warshall’g@ilithm (DIJKSTRA, 1959;
FLOYD, 1962) can be utilized.

To minimize operator cost, one must find the route set witHehst cost that allows
demand to be fulfilled, i.e. that connects every node on tiwork. This is solved by
calculating the minimum spanning tree of tin@nsport network KRUSKAL, 1956). By
definition, a minimum spanning tree is the subset of edgdscthranects the graph with
the least weight. This is exactly the same structure neemadrtimize operator costs: a
subset of edges that connects the graph with the least castluion with the same cost
as the minimum spanning tree is the solution where every ieddpe minimum spanning
tree is a route. Also, many of these routes may be combinecdigr @o obtain a smaller
number of routes, as is discussed in Section 4.3.

An exception has to be made in the case that not every nodegsessdemand. In
this case, connecting the demand nodes with the least wetgtdésponds to finding a
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minimum Steiner tree (HWANG; RICHARDS, 1992), and not a minimgpanning tree.
Nevertheless, given that the edge lengths intthesport networkare usually metric,
the network satisfies the triangle inequality. Therefone, minimum spanning tree for
the nodes with demands costs no more than double the cost ajptimal Steiner tree
(VAZIRANI, 2001), and is thus a reasonable approximationtifi@ optimal solution.

Finally, we also attempt to obtain upper bounds on the nurobeodes needed to
fulfill all demand without any transfers. This time, the amgech is not exact, and is
based on a greedy algorithm, Algorithm 1. It create routasriaximize instant demand
coverage gain (without transfers). The final route set's san be used as an estimator
of the number of routes to be used on the network. The algoriénds to create routes
that are as long as possible, since they cover more dematiidhamore neighbors that
enhance demand coverage are found, or if the route lengthisimeached. An example
for a route set created using this algorithm on MandlI's néti®shown in Figure 2.1.

Figure 2.1: Route set obtained by applying Algorithm 1 to Man8wiss road network.
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Algorithm 1: Greedy demand coverage.

Data: networkG = (V, E), demand matrix;; € Q" <V, covered matrix
cij € BY*V androuteSetSize

Result route setRS with high directly covered demand

for 1,7 € VdOCi]’ +—0

Il ¢; is 1iff demand between i and j

/'l is satisfied without transfers

repeat

Router +— ()

(4%, j%) = argmax(i,j)eXQ\cijzldij

if d;-;~ = 0then break

fill » with a path betweeii and;j* using DFS

repeat

fori,j erdoc; +— 1

maxDemand <— 0

for i € V do

if - can be added to then

gainedDemand <— 0

for j € r do gainedDemand <— gainedDemand + d;;(1 — ¢;;)

if maxDemand < gained Demand then
maxDemand <— gainedDemand
toAdd =1

endif

endif

endfor

if maxDemand > 0then addtoAdd tor
until mazDemand < 0

addr to RS
until |RS| > routeSetSize
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3 MIXED INTEGER PROGRAMING FORMULATION

In this section we present a formulation that fully solvesitirRP using mixed integer
programming.

3.1 Variables

Our formulation uses the following decision variables: Rebe a set of routes. For
every router € R, s,, indicates if vertex is the initial vertex of route-. Similarly, f,.,
indicates ifv is the final vertex of route. The variabler,. is 1 if and only if the edge
e € E belongs to route.

For every pair of vertices andw, s, indicates if the best path betweerandw
starts on route. Likewise, f* . indicates ifr is the final route of the best path between
v andw. Finally, z* indicates if edge’ € E'is on the best path betweerand

vwel, rnsm

w, whereE' is the setné?edges of theansit graph as explained in Section 2.2.

Additionally, the real variables,, indicate the position, starting frofij of the vertex
v on router.

3.2 Constraints

For every route € R, we have the following constraints:
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Zsmzl

veV

Zfrv: 1

veV

Z xre—i_frv:

e=(v,w)eE

Z l'T(i_'_fT’US]‘

E Tre _'_ Srv

e=(w,)eE

e=(v,w)eEE
V] = 1VI]$rs < Pro
prw — VI + V|re < pro + 1
Pro + V| = V]2e > pro + 1

Additionally, for every pair of vertices, w € V, we have the constraints:

x*

rnrm

< Lre + Tre

vwe!, —

xr =0

/
VWErpsm

ZS’T)U)T - 1

reR

Zf;wr =

reR

1

SER,
meV

SER,
meV

Vr e Re=(n,m)€E
Yn#meVr#seR

(3.1)
(3.2)
YvoeV (3.3)
YoeV (3.4)
YoeV (3.5)
V(v,w) € E (3.6)
Y(v,w) € E (3.7)
(3.8)
(3.9)
(3.10)
(3.11)

o VneV,reR
(3.12)

There are also constraints for improving performance, sschot allowing multiple
transfers on the same node and path, not allowing cyclesibélst paths, and ordering
the routes such that shorter ones have smaller indices.eTdwsstraints only decrease
search space by removing non-optimal solutions or duggcaf solutions, i.e. solutions
that are equal to others except for the route ordering.

3.3 Objective Functions

Given thatc(e) is the cost for operating edget. is the time for traversing edge d;;
is the demand between nodeandj, andt,., is the time penalty for making a transfer
between routes, the following two objective functions agéreed (as explained in Section

2.2.1):
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minimize ) " c(e)ay (operator cost)
reR,
eck

minimize Z eyt + Z tpenGuw T e (user travel time)
reR, r,sER,
v, WEV, v,w,neV

e=(n,m)ek

3.4 Discussion

The formulation begins by fixing the number of routg$(whereR = {1,2,...,|R|})
in the solution route set. This implies in multiple optintibas when a range of number
of routes is acceptable, one for each size.

Each route must then be defined. For each rouwte R there are2|V| + |E| binary
variables that define it completely. Constraint (3.1) and)(§uarantees that there will be
unique start and end nodes for each route. Constraint (8)essthat every node within
a route will have an equal number of outgoing and incomingesdgtive in the route, and
Constraint (3.4) assures that this number shall be smallegual to one, except for the
start and end nodes, which shall have zero incoming or ouggedges, respectively.

To remove closed loops which may be left in the previous stdpsp,, variables
and the constraints (3.5), (3.6) and (3.7) are used. Cons{&b) sets the position of
the first node in a route to 0. Constraint (3.6) and (3.7) septistion of a node that
comes after another node in a route to one plus the positihregirevious node, assuring
sequential positioning. Therefore, the first node will hthve smallest position. Since a
closed loop has no start, no potential position can suaggssle assigned to a node in
it. It should be kept in mind that, if extra closed loop rouées acceptable in a solution
(i.e. if the number of routes can be bigger than the giMef), these constraints can be
removed. These restrictions are similar to the Miller, Terciemlin subtour elimination
constraints in formulations of the traveling salespersmblem and similar problems
(MILLER; TUCKER; ZEMLIN, 1960).

The rest of the formulation find$’|? shortest paths, for each pair origin-destiny, based
on the available routes, following a standard approachHortest paths LP formulations.
Constraint (3.8) assures that best paths will consist ongdgks available in the chosen
routes. Constraint (3.9) disallows moving between routese@ when this movement is
from a node to itself, in which case it would characterizeaasfer (and thus is allowed).

Constraint (3.10) and (3.11) guarantee that there will bguestart and end routes
for each best path. Constraint (3.12) assures that everypb#swill actually be a path,
by balancing the number of ingoing and outgoing edges ofyevede (which is, in this
case, a pair irkR x V, as explained in Section 2.2.1).

The variables;, ., f,, andx’ _ are actually implemented asal variables between
0 and1. If their values end up being non-integer on an optimal sofytthe solution is

still valid and can be interpreted as follows: the best pathlze taken in several different
manners, and each manner is used in proportion to the vathe obrresponding variable.

e.g. ifs* is 0.5, then 50% of the demand fromto w starts on route.. Furthermore,

vwr
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every single path has the same length, since otherwise sheotéhe demand would
also use the shortest path, and this would provide a soluwtioich is better than the
optimal, a contradiction. This also means that there isastlene integer solution which
Is equivalent to any optimal non-integer solution found.

Finally, using mixed integer programming, one can only mpte a single objective
function. To handle this, we use two approaches: either samiyoth functions, each
weighted by an importance factor, or setting one of the gaals constraint, and not
allowing it to be higher than a certain maximum value. Thigegithe traffic planner
the possibility to find the best solution for one of the goe¢specting boundaries on the
other, or to find the best solution given a certaiear trade-offbetween the two objective
functions.

3.5 Modeling the Redesign of an Existing Network

A common problem when designing new routes for an existingiparansport net-
work is to decide whether to change existing routes or nois Tifay incur various costs
such as those of building new routes, changing terminalilmes. and even getting the
population aware of the new possibilites.

It is easy to use our MIP formulation to help solve this prombld-irst, one can define
a cost for adding an edgeto router, A,.. Similarly, the cost to delete edgdrom route
ris D,.. One must also know the previous configuration of the routethe network:
P C R x E contains every paifr, e) containing an edge that is used in route on the
previous configuration. With this, an objective functiom fiee modification costs can be
defined as

minimize > Dye(l—ap0) + > Aneiye. (modification cost)
(r,e)eP (rie)¢P

As with the two previous objective functions, eithelireear trade-off must be found
between user, operator and modification costs, or they caeto®s constraints, limiting
costs to a certain threshold while minimizing other objesgi

3.6 Divide-and-Conquer Approach

Since solving the MIP formulation for a large number of nosggrohibitively slow,
we propose divide-and-conquealgorithm that optimizes the network in multiple steps.
It is heuristic, and is has some open details regarding witiates should be maintained
in each step, and which nodes should be used to connect iindtesse same steps. We
describe it here to present the idea, not to give a detailéditien.

In each step, groups of nodes are selected in the netwotkupito X nodes, where
K is a parameter that influences how much time each mixed infgggram will run.
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These groups must be connected, i.e. there must be a patbdmedvery member of the
group without going through nodes that are outside of thegré&or each group, the best
route set usingR routes is calculated.

Then, in the end of a step, the distance between the groupsdefris calculated as
an average of the distances between the nodes in each grfainerd is no connection
between nodes in two groups, then these groups are not dednec

After doing this, the groups of nodes are collapsed into apde. one group becomes
one node, and the distances and connectedness betweendiasedes are the distances
and connectedness between the groups of nodes, as desoribedast paragraph. With
this, a new step begins. This is done until the total numbeodks is less than or equal
to K.

To extract the solution from the resulting graph, nodes apaeded back into groups
of nodes. The routes between the nodes are now transforn@den to travel through
the uncollapsed graph, going into and out of the correspgnglioups. Inside each group,
the route being transformed is connected to an existingrahiosen randomly. The path
used to connect two routes can be the best path between tbe mothe extremities of
each route, or another arbitrary path. This is guarantebd fmssible because an edge in
the collapsed graph corresponds to connectedness in tb#apsed graph, and because
each group is connected within itself. Some routes mighgebselected to form a route
from a previous step. Some or all of these unselected routgs tme excluded in order
to reduce the total number of routes.

This is performed until the original graph is obtained, noithva set of routes, which
is the solution of the algorithm. Restrictions regardinglegdn routes, minimum and
maximum lengths are not considered.
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4 METAHEURISTIC APPROACH

The metaheuristic used here is a genetic algorithm (HOLLAN®Y5). Its main
structure is presented in Algorithm 2. Each solution in thiplementation corresponds
to a set of routes, where each route is represented as a seqfamdes. To keep track
of solutions, we use three vectors. The vedtostores the population, and has a size of
populationSize (or less if the population is getting built or rebuilt). ThectorU stores
every solution that isndominated (following the concept explained in Section 2.2), and
is not bounded in size. The vectBris created when generating initial solutions and stores
some fundamental route sets related totthesport networkas discussed in Section 4.1.
It is not modified after the end of the initialization routine

Analyzing the structure of the algorithm, we see that the &tsp is the generation
of initial routes, or loading the state from a previous rumhvthe same input data. The
initialization procedure is explained in Section 4.1. Aftzeating the three route set
vectors (B, P,U), the algorithm enters its main loop. In most of the itenasioevery
element in the population, one at a time, is cloned and su#ienutation, callegmall
change Themake small changprocedure is from the work of Lang Fa al. (2009),
and is explained in Section 4.2. This new route set is congit@revery existing route set
in the population and, if it dominates any of the existinguohs, it substitutes the first
dominated route set found, taking its place in the poputatio

Once everyupplyOperatorsInterval, the population is emptied. Before that, every
undominated solution is saved 6 so that high quality solutions do not get lost. Then,
the populationP is rebuilt with random route sets fro andU. This happens until the
population is half full. After this, existing route sets metpopulation are matched up and
a random operator is applied to them. The operators thatvaitable for choice in this
step are discussed in Section 4.4. This generates a newosoliiat is then added to the
population. The process goes on like this until the poputeits full, and the algorithm is
ready to run further.

4.1 Generation of Initial Solutions

For the generation of initial solutions, the first step is tineation of a base list of
solutions, calledB here. This base list of route sets contains fundamentatisofuthat
are characteristic to the network, as explained in Sectipr82
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Algorithm 2 : Genetic algorithm for the UTRP.

Data: networkG = (V, E), demand matrix;; € Q"*V, totalGenerations,
applyOperatorsinterval, populationSize
Result a vector of undominated route séfs
vectokroute set- B, P,U
if previous state availablihen
| B, P,U +— load previous staté{,d)
else
| B, P,U <— generate initial solution&{,d)
endif
iteration <— 0

repeat
iteration <— iteration + 1

if tteration mod applyOperatorsInterval = 0 then
U <— update undominated solutiodsy

P+—10

14— 0

while ¢ < populationSize/2 do
1+—1+1

rs «— select random route set(B,U)

addrsto P
endw

while i < populationSize do

14— i1+1

a,b +— choose two random route sey(
oper <— choose a random operator

rs <— oper(a,b)

addrsto P

endw

endif

for rs € P do
rs’ +— make small changef)

for p € P do

if s’ dominate then
substitutep with rs’ in P

break
endif

endfor

endfor

until ¢teration > totalGenerations

U +— update undominated solutiodsy
save state®,U)
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One of these is the minimum spanning tree of ttasport network The second
source of routes is the subgraph of thensport networkcontaining only shortest paths
given by the Dijkstra or Floyd-Warshall algorithm. All reg contained in one of those
two subgraphs are joined into a route set, and the route semgplified (as described
in Section 4.3).

Another source of viable routes f@t is the solution obtained by Algorithm 1, as ex-
plained in Section 2.2.3. These route sets tend to coverredmgunt of demand directly,
avoiding transfer penalties. Nevertheless, they are lysguaite longer than shortest paths,
so they are not very useful if transfer penalties are low.

Considering that, we developed a second greedy algorithntrtba to maximize de-
mand cover, but now using shortest paths. Algorithm 3 is ésailt of that idea, and its
solution is also added t®. The route set provided by this algorithm is often of high
quality for the passenger.

Finally, the last source of viable solutions fBris the relaxed solution of the MIP
formulation. This is discussed in Section 4.1.1.

Then, the extraction of valid route sets begins. The extmacespects minimum and
maximum number of nodes in route, existence of cycles andoeuif routes per route
set. Itis a random procedure, possibly extracting a diffepart of the route or route set
at each time it is executed. An example of an invalid route st@nario that does not
allow cycles is shown in Figure 4.1, as well as the extracbeutkr;, with cycles removed.

Figure 4.1: Route containing cycles before and after extnact

The extractions are then performed several times for eade iget (since each ex-
traction may have a different outcome), and all of the ra@sgiivalid solutions initialize
the base list. Then, a variable number of exchanges, exalamSection 4.4.1, is exe-
cuted between random valid solutions. At the end, everyerset gets simplified, and the
base list is ready. Meanwhile, the undominateduliss also fed with every undominated
solution in the base lisB.

The next step is actually creating the initial populatiorhisTis done by taking one
third of | P| solutions from the base list, one third |d@f| solutions from the undominated
list, and making exchanges among memberg ointil the remaining third is filled.
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Algorithm 3: Greedy demand coverage using best paths.

Data: networkG = (V, E), demand matrix,;; € Q" >V, covered matrix
cij € BY*V androuteSetSize
Result route setkS with high directly covered demand using best paths
for Z7j € VdOCij — 0
I'l ¢;is 1 iff demand between i and |
/'l is satisfied without transfers
repeat
Router «— ()
maxDemand <— 0

for 7,j € V do
gainedDemand <— 0
for a,b € Best Pat h(i,j) do
| gainedDemand <— gainedDemand + dap(1 — cqp)
endfor

if mazDemand < gainedDemand then
maxDemand <— gainedDemand

best Pair <— (i,7)
endif
endfor

if maxDemand = 0 then
| break

endif
r <— Best Pat h( best Pair)
addr to RS
Sinplify(RS)
update coverage matrix

ntil |RS| > routeSetSize

repeat
changed <— false

for rs € RS do
update coverage matrix

fori,j € V do
if ¢;; = 0 and (- does not contairi) and (r contains jxhen

if one of the extremities ofis neighbor ofi then
add: to r in the corresponding extremity

changed <— true
endif

endif
endfor
endfor

until 'changed

c
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4.1.1 Route Suggestions from MIP Relaxed Solution

The linear relaxation of our MIP formulation can be found @asonable time. It
works by relaxing the constraints of every binary variabig (s,., f,.), allowing them to
assume real values betwegand1. Instead of obtaining routes in the solution, we obtain
sets of edges with a real value, interpreted as the liketlladdhe edge being used within
the route. From this point on, there are two approaches tedbllow: considering each
route separately, as described in Section 4.1.1.1, omjgitiiem, as explained in Section
41.1.2.

4.1.1.1 Separate routes

Here, we choose a route from the MIP formulation, and begiorenof its start nodes,
randomly, with chance proportional tp,. Then, we traverse edges in a similar way, but
with chance proportional to,.. Along the way, we keep th@inimum probabilityp,,,in,
which is the minimum value between, and the used,. variables. When we reach an
end node, the route is complete, unlessn is higher thanf,, for this node, in which
case we keep traversing edges with probability equal t: — f,.,/pnin, and adjust
PN — D — fro.

Route suggestions from this approach are actually routésaéimebe used by the pas-
sengers in the (interpretation of the) MIP formulation, revienot by every passenger,
since the demand from one node to another corresponds to afldwhat travels be-
tween them, and only up to tmeinimum probabilityflows through the extracted route.

An example of an extracted route is shown in Figure 4.2. Ferctiosen route, there
were only one start and one end node with non-zero prolabiliThe start node is blue,
whereas the end node is red. Other nodes are black. The Yalueg variables:,. for
the chosen route are in the edges labels: the first valuespanels to the probability of
traversing the edge in the direction given by the edge, aadd¢icond value corresponds
to traversing it in the opposite direction. In this scenalomps were not allowed, and
routes could be traversed in both directions (the given awkthe opposite direction).
This means that swapping the red and blue colors and ingeatiredges would lead to
the same quality factors.

4.1.1.2 Global importance

Here, we sum, for each edge, all the likelihoods that it nexein every route, and
this value is interpreted as the importance of the edge,iivgrortance, = Y, p Tre.
For the start .,) and end (,.,) nodes, similarly,startImportance, = > _5 s, and
endImportance, =Y g fro-

reR

To create routes based on the importance value of each ea@gsimply perform a
random walk, choosing start node or end node with probgigitibportional to the impor-
tances of each node, and then traversing edges in a simitarengoroportionally to their
importances). We also need to define a desired length footite,ror another stopping
criterion. We choose here to end within a certain lengtheaagd each value of the range
has the same probability of being picked as the desired tentgh.
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Figure 4.2: Route suggestion network for one route.

An example of an extracted route using this approach is shoviigure 4.3. We
can see that there are three different importance lewgl8:5 and 1, values which can
be interpreted as low, medium and high importances. In tkésngle, the number of
routes was 2, the operator cost limit was not applied, andtingber of edges used, as is
explained in Section 4.1.1.3, was seflfy with a resultingATT" of 10.62 minutes.

Figure 4.3: Route suggestion network with global importance

4.1.1.3 Parameter tuning

The first important parameter that should be configured ierta obtain useful sug-
gestions from the MIP relaxation is the sum of total edgessehpi.e. >  p cpTre,
which is related to the operator cost, but is not the samesimthis case the edge lengths
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are not considered.

If this value is too high, the best achievabl@ T’ could be obtained with less edges.
This would mean that the extra edges in the solution areewagit, and can be chosen
randomly, not affecting thel7'T", although changing the importance values. In other
words, the effect would be of random noise on the importaiadges. On the other hand,
if this value is too low, then thelTT" will be too high, and we will thus obtain a route
suggestion from a scenario with travel times that are higine@n desired, rendering the
suggestions less useful.

Besides, the number of routes and operator cost should atset bepropriately. Each
route in the relaxed solution may contain several travéesedutes within it, but they
still need to be balanced according to the constraints ofi@e8.2. To allow a higher
number of routes to be generated, the number of routes sheufitreased. Similarly, the
operator cost limits the number of edges used, but consgledge lengths. Configuring
it is similar to configuring the sum of total edges chosen, escdbed in the previous
paragraph.

4.2 Mutation

The mutation operator is based on ake-Small-Changprocedure, from the work
of Lang Fanet al. (2009). It applies very small changes to routes, and thugjates
through the neighborhood of solutions. This is importanbrider to find local minima,
maximizing the potential of some route set, but must be cemphted so that other areas
of the solution space may also be explored.

The only mutations that are executed are the addition andvanof nodes at the
start or end of a route. Only one node is added or removed atea #\s a last step, the
simplification operator, explained in Section 4.3, is aggbli This guarantees that route
sets do not have unnecessary routes and thus obtain bessemggr and operator costs.

4.3 Route Set Simplification

When finding a shortest path between two nodes, one will trexattly through the
shortest paths between the intermediate nodes. This isverketwaracteristic of problems
to which dynamic programming can be applied, and here itkertaadvantage of in a
different way.

As explained in Section 4.1, some route sets are determmedgaved on a list of base
route sets. This list will be used to build new initial rouetssand candidate solutions.
One of the source of routes for the base route sets is theesh@ath between nodes.
These are all added into the routes sets of the base list. 8diseussed above, there are
many overlaps between these shortest routes.

Besides, when using a random decision based algorithm, ekangoutes can nat-
urally lead to the same situation: some routes cacdgainedin others. Even when
not so, two routes may still binable without any disadvantage to users or to opera-
tors. This is formally defined as follows: the routean bgoined with s if: Jo<j<|s—1 :
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Vi<j<min(rl,|s|—i) : 75 = Sj+i- TWO routes- ands are joinable if either one of them can be
joined with the other.

These ideas lead to the development of an operation that@tteo combine every
pair of routes belonging to a route set. This operation léalgy savings of operator costs
for the initial route list, and improves the route set durthg execution of the genetic
algorithm. An example of a simplification being applied i®win on Figure 4.4.

Figure 4.4: Route set before and after simplification.
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4.4 Operators

4.4.1 Exchange

The route sets consist of many routes. This operator simpianges some of the
routes, chosen randomly, between route sets, and simpiiBesute sets afterwards. This
is useful to explore new solutions, but does not actualbgifyroutes. An example of this
operation can be seen in Figure 4.5.

Figure 4.5: A pair of route sets before an exchange (abowkatar it (below).

4.4.2 Crossover

In order to try to join two routes and perhaps keep qualitiebath of them, a
crossover operation was also defined. The operation worksllag/s: a cut point is
randomly defined in both routes, based on a shared node betive@outes. From the
beginning of the first route until its cut point, all nodes aopied into the result. From
there on, the nodes are copied from the cut point of the seaand until its end. After
that, all the currently applying restrictions are consadgrsuch as prohibition of cycles
and limits on the number of nodes on a route. Nodes are exatliudm or included into
the resulting route until it satisfies all restrictions.

In Figure 4.6, two routes are shown together with the resyiltbute, after a crossover.

45 General Considerations

As discussed in Section 1.1, genetic algorithms have showe successful in solving
the UTRP. In this section we discuss what are the main chaistate and differences of
our approach in comparison to previous ones.

The first different aspect of our approach is the representaf routes and route sets,
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Figure 4.6: Routes before and after a crossox@rig the cut point).

thatis more complex as commonly seen (AGRAWAL; MATHEW, 2004 AKIROBORTY,
2004; FAN; MUMFORD; EVANS, 2009). It consists of dynamic datauctures such as
sets and vectors instead of simple strings. This is justieszhuse representing, moving,
copying and modifying routes is not the bottleneck in thislgpem, but theevaluationof
route sets. This means the structure is made more genesier éaprogram and to adapt
to new restrictions, without significant performance loss.

The next difference are the mutation and the operators. Tutatran, which applies
very small changes to routes, navigating through the neidtdod of solutions, functions
like a local search, and is executed much more frequenttydparators. This is important
in order to find local minima, maximizing the potential of semoute set. Nevertheless,
local search must be complemented so that other areas dfltitea space may also be
explored, and that is where the operators of exchange asdarer come in. This tends
to better explore the solution space, or at least avoid agewee in local minima.

The key aspect of our approach is the set of different sowsed for generating good
initial solutions. Besides using the shortest paths, as bas done very often before,
we use the MIP relaxation, two greedy algorithms and the iMimh Spanning Tree (as
discussed in Sections 2.2.3 and 4.1).

The last important characteristic is the maintenance ofse laand an undominated
solution list, apart from the population. The first one isdif® the initialization proce-
dure, and the second one maintains every undominated@ofotind. Every time a new
solution is created by an operator, it may not dominate ahytisas, but still be undomi-
nated. Since the population size is constant, this new ungded solution would be lost.
Instead, it is kept in the undominated list, whose size isadyic.

Since this is a multi-objective optimization problem, wayoronsiderdominationfor
the classification of solutions. Thus, there is no fitnessllhat rates and orders solutions,
and all are considered equal as long as one does not domimtteea Therefore, when
applying operators, every solution candidate has the saotmpility of being chosen.
Besides that, every element in the population suffers exact mutation per evolution
step.
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4.6 Performance Analysis

To assess the performance of the developed genetic algonitk analyzed the com-
plexity of it, and performed profiling.

Regarding complexity analysis, the evaluation of a routeteetmost expensive step
of the algorithm, is done using Dijkstra’s algorithm. Inghiay, a solution can be
evaluated in timeD (| R|?|V|?log(|R||V|)), since there ar©(|V|) evaluations, one per
node, and each one corresponds to an execution of Dijksiigosithm over a graph with
O(|R||V|) nodes and(|R|*|V|) edges.

The overall running time of the algorithm would be, then, dgpopulation of size”?
andT evolution stepsQ(PT|R|*|V|?log(|R||V])).

Then, to experimentally assess the performance of our mmaation, we used the
open source GNU Profiler. The graphical output can be seergurd-4.7. As shown,
more than 90% of the execution time is spent running DijksTiais confirms that eval-
uation is the bottleneck for this algorithm. When analyzihg profiling results, one
should keep in mind that functions with less thlab% activity are removed, and, besides
that, since the program is compiled with the most agresgtienizations possible, many
functions are joined with others by the compiler and disapfrem the results. An actual
calling tree for the program would be, thus, much more corple

Since the evaluation of different route sets may be donelsamepously, the explo-
ration of the search space may be accelerated arbitragilpng as increasing, through
parallelization. This would require, though, an extengmthe current implementation
to coordinate many concurrent executions of the algoritlymelceiving the current un-
dominated solutions, and generating new populations tamen different processors or
machines. This has not been implemented yet, and will beisissal further in Chapter 6.

Another possibility that is considered in pursue of incregperformance is to only
allow addition of nodes to routes during mutation. This vdbahange the algorithm a
bit, since removal of nodes would have to be done separatiér, a bigger number of
iterations, but could prove effective. When adding a nodertute, thetransit graphgets
only slightly changed.

After such an addition, a single(| R|?|V|?) step (assuming/| > log(|R||V|) that
updates every distance is enough. This step consists ofingdiae distance from the new
node to every other one (by using Dijkstra’s algorithm), #meh trying to use the node
that was just added between every pair of nodes (similar éostep of Floyd-Warshall's
algorithm), updating the distances if appropriate. Thepstould also make use of a
graphical processing unit (GPU), at least when updatinglistance between every pair,
since a step of Floyd-Warshall's algorithm is parallelizsdind can make full use of GPU
processing capabilities (KATZ; KIDER JR, 2008). This ha®aist been implemented
yet, and is discussed in Chapter 6.
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TransitGeneticAlgorithm::evolve TransitGeneticAlgorithm::new_population TransitGeneticAlgorithm::read_u

94.62% 3.43% 1.94%
(0.00%) (0.00%) (0.00%)
94.53% .40% 1.93%
2500% 90x 51x
RouteSet::simplify
99.86%
(0.00%)
2641x%
30.46%
2907x
RouteSet::total_user_cost
30.46%
(0.02%)
2907x
30.44%
2907x
RouteSet::update_min_dist
99.77%
(6.69%)
9528x
93.06%
B01227x
(52.79%)
301227x
35.24% 2.67% 1.27% 0.71%
3486554879x / 225134768x% 223927220% 301227x

RouteSet::mix_up Heap::heapify_down std::_Rb_tree::_M_insert_unique_
35.24% 2.67% 1.27%
(33.98%) (2.67%) (0.70%)
3486554969% 225134768x 223927220% 3722418x%

| 8414155%

1.21%
P25971185x

0.52%
223626098

_insert_unique_ std::_Rb_tree::_M_insert_
1.21% 0.52%

(0.71%) (0.52%)
225971185x 223927220%

Figure 4.7: Profiling results for the implementation of tlemgtic algorithm.
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5 EXPERIMENTAL RESULTS

As discussed in Section 1.1, there is one commonly availabfehmark for the
UTRP, namely Mandl's Swiss road network (MANDL, 1980), whitas15 nodes and
21 links. We use it for our experiments in order to compare osuits with previous
works (BAAJ; MAHMASSANI, 1991; SHIH; MAHMASSANI, 1994; KIDWAI, 1998;
CHAKROBORTY, 2004; ZHAO, 2006; FAN; MUMFORD; EVANS, 2009).

We have used both our MIP formulation, as described in Sed&it, and the meta-
heuristic, as discussed in Section 5.2.1, with MandlI’'s oétwalso obtaining exact an-
swers for small numbers of routes.

Besides using the well known benchmark, we choose to testlgarithm with a
medium sized network as well. This network has also beerddstfore by the authors
whose results are the best known for Mandl's network. Thigdatest case was produced
by Lang Fanet al. (2009), and by using it we expect test our solution’s quadityl
scalability for bigger networks.

All results are evaluated using the following quantitiesijraprevious works:

e d; is the percentage of the demand satisfied vitlansfers.

e ATT isthe average travel time (in minutes per passenger),dirguransfer penal-
ties.

e () is the cost for the operator, i.e., the total route lengthninutes, considering
constant transport speed).

Among these, the only quantity that should be as high as lplessid,, which indi-
cates how much of the demand can be satisfied directly, i#owut transfersAll other
measures should be as small as possible.

When evaluating scenarios on which no tests have been petyimade, we use the
lower bound on thelT'T’, as explained in Section 2.2.3, to obtain reference quaityes.

Finally, results were obtained on a PC with an I®eCore™2 i5-460M 2.53GHz
(3MB L3 cache) processor and 4GB of RAM using Linux Ubuntu 2235.
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5.1 Mixed Integer Programming Approach

The MIP formulation was implemented in GNU MathProg Modgllranguage, and
solved using théBM ILOG CPLEX Optimizer 12.4CPLEX, 2009). The execution times
have been measured in seconds of real time.

We obtained the best possible route sets on Mandl's netwegérding user travel
time for two and three routes, which were, to the best of oomkedge, never published
before. The quality, processing times and the actual raftése solutions are given in
Table 5.1. Figures 5.1 and 5.2 show the best route sets, ftar lvesualization, for two

and three routes, respectively.

Table 5.1: Best possible route sets found using the Mixedjéntiormulation

Number of routes 2 3
dy 84.90 % 93.67 %
dq 14.00 % 5.43 %
do 1.10 % 0.90 %

ATT 11.33 min. 10.50 min.
Co 98 min. 150 min.
Processing time (Ss) 1065 78992

Two Routes 6-14-7-5-2-1-4-3-11-10-9-13-12
0-1-3-5-7-9-6-14-8
Three Routes 4-3-11-10-12-13-9-7-5-2-1-0
4-3-1-2-5-14-6-9-10-11
0-1-4-3-5-7-9-6-14-8

©
)
—@ | .
© @\ -
N
// /
/
@/

Figure 5.1: Global best route set for two routes.

It is clear that completely solving the UTRPN#P-hard problem, using exact meth-
ods is not scalable nor feasible even for relatively smallances of the problem. These
experiments show the problem size to which it can still bdiagmnd validate the cor-
rectness of the formulation. Besides, other applicationshi® MIP formulation can take
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Figure 5.2: Global best route set for three routes.

full advantage of it without bumping into processing timstrietions, such as optimizing
a small part of a network, performing many small optimizasi@n a network in divide-
and-conqueifashion, that end up optimizing the whole network (even giooot in an
exact manner, but heuristic), and finally for suggestingesly obtaining a relaxed (i.e.
real) solution.

Since the2 routes case haki4 binary variables and th& routes scenario haxl6,
and given the processing times given in Table 5.1, one camaist the processing time
required for solving the instance withroutes to be about7 days. These results were
achieved using all available cores (the processing timesedowered by further paral-
lelization).

5.2 Metaheuristic approach

5.2.1 MandlI's Network

The stopping criterion of the genetic algorithm when apgpteMandl’s network was
200, 400 and600 evolution steps when testing with limits of respectivély andS routes.
The population consisted af00 route sets. We chose these values proportional to the
ones used in (FAN; MUMFORD; EVANS, 2009), in order to allow & feomparison,
since the actual processing times were not available. Neless, we decreased the
number of iterations and total reruns in order to compenfeatbardware advances and
possible longer execution times per iteration in our apgnoa

We first compare our results with the multi-objective apptoaroposed by Fagt
al. (2009), which is better suited for the UTRP since there arenar concerns when
developing routes for urban transit: the quality for thesgsgjers and the costs for the op-
erators. The results are present in Table 5.2. We can se@tleamparison to previously
published results, our solutions were always better, we. achieve superior solutions
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with equal or smaller prices and better travel times. Moeepthey dominate the pre-
vious results, being better in all considered measures) only of them, but without

affecting the others. The four route sets whose resultshan@rsin Table 5.2 are listed in
detail in Table 5.3. Besides, Figure 5.3 shows the graphsiproved visualization, in

the same order as in Table 5.3.

Table 5.2: Comparison between best UTRP multi-objectivetisols on Mandl’'s Network

Scenario @),  Melhor valor conhecido Nossos resultados
(Lang Fan)

Melhor para passageiro d, 94.54 % 98.84 %
dy 5.46 % 1.16 %
dy 0.00 % 0.00 %

ATT 10.36 min. 10.10min.
Co 283 min. 259min.
Solugo balanceada  dy 93.19 % 93.61 %
(Co < 148) dy 6.23 % 6.20 %
ds 0.58 % 0.19%
ATT 10.46 min. 10.43min.
Co 148 min. 147 min.
Solu@o balanceada d, 90.88 % 91.23%
(Co < 126) dy 8.35 % 7.84 %
ds 0.77 % 0.93%
ATT 10.65 min. 10.59min.
Co 126 min. 126 min.
Melhor para operador dy 66.09 % 77.78 %
dy 30.38 % 21.32 %
ds 3.53 % 0.90 %
ATT 13.34 min. 12.97min.
Co 63 min. 63 min.

Table 5.3: Route sets found by our metaheuristic for the UTRMamdl's Network

Best route set for passengers Compromise route set witip < 148
0-1-3-11-10-12-13-9-6-14-7-5 0-1-2-5-7-9-10-11-3-4
0-1-2-5-14-6-9-10-12-13 4-3-5-7-9-10-12-13
0-1-4-3-5-7-9-10-12-13 6-14-7-5-2-1-3-4
2-5-3-11-10-9-6-14-8 0-1-3-5-14-6
0-1-2-5-7-9-10-12-13 13-9-6-14-8
4-1-2-5-14-8
4-3-5-14-6
Compromise route set withCo < 126 Best route set for the operator
0-1-2-5-7-9-10-11-3 13-12-10-9-6-14-7-5-2-1-0
4-3-5-7-9-10-12-13 4-3-1
6-14-7-5-2-1-3-4 10-11
13-9-6-14-8 14-8

5-14-6
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Figure 5.3: Route sets corresponding to Table 5.3.

Finally, to perform a broader comparison, the results onymaevious works on
Mandl's network (MANDL, 1980); (BAAJ; MAHMASSANI, 1991); KIDWAI, 1998;
CHAKROBORTY, 2004) were analyzed, and the best results arersio Table 5.4, in
comparison to our results. These best values were adaptectaty to what is described
in Section 5.3.

Here, the objective is only one: decrease passenger tiaglwithout taking transfer
penalties into consideration. This was necessary to alloanaparison between hetero-
geneous penalty values. Not considering penalties faestdts that were achieved using
lower penalty values, given that these are closer to nonigaaipenalty at all. Since we
used five minutes penalty per transfer, and this is the htgimasunt applied in the cited
publications, our results should not be favored.

The average travel time without penalty corresponds to hawhime passengers
would travel if the penalty was reduced from its current ealy,,,, to zero. To calcu-
late this term, the following formula is used (wWhéfg 4 x is the maximum number of
transfers):AT T, = ATT — tpendii.

1<Tvax

Table 5.4: Comparison between best single-objective UTR&isok on Mandl's Net-
work

|R)| Best knownATT,,.,, ATT,,, obtained
(CHAKROBORTY, 2004) by our approach

4 10.33 min. 10.30min.

6 10.43 min. 10.11min.

7 10.53 min. 10.04min.

8 11.22 min. 10.05min.

It is important to keep in mind that the comparison made is $imgle-objective case
is not as fair as in the multi-objective scenario. This is sgduse, when comparing
results from various sources, slight differences in thenitedh of the problems occur,
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e.g. regarding the minimum and maximum number of nodes p#eyallowance of
cycles and others. Besides this, the differences in puhlistiates, and therefore also in
hardware used for running experiments, make it harder tgpaoethe running time of the
approaches. Nevertheless, our approach showed to be stutéeghe single-objective
case as well.

As a final remark for this test case, a possible utility of owetaheuristic, besides
obtaining route sets, is estimating the curve whereutm@ominatedsolutions lay. This
information can be very useful for a planner, since he catebelecide on making a
trade-off between the costs involved. To demonstrate that, we show@hgrin Figure
5.4 with an approximation for the Pareto-optimal curve, tlee curve ofundominated
solutions. There, a roughly adjusted function dictatestwstne best’, given a certain
ATT, and vice-versa. One can also compare the quality achieikdlifferent algorithm
configurations using such a set of Pareto-optimal solutions

Approximation for Pareto-optimal curves

| | | | |
240 |- + GA Solutions with up to 8 routes  +
GA Solutions with up to 6 routes X
220 GA Solutions with up to 4 routes X  _|
m Fitting curve (58.22/(x-9.86) + 44.36)
[}
< 200 -
£
1S
c 180 _
<
2 160 |
o
b 140 -
2
>
2 120 -
8
O
=100 —
X, i
60 | | | | I
10 10.5 11 1.5 12 12.5 13 13.5

Average travel time in minutes

Figure 5.4: Pareto-optimal curves for Mandl’s network.

5.2.2 British City Based Network

To assess the behavior of our metaheuristic approach wraimglevith larger net-
works, we applied it to the network defined and used in the vafrkang Fanet al.
(2009; 2010), which has10 nodes an@®75 links, with 3603360 journeys per day. The
Figure 5.5 is a visualization of the network which respertk izes, but not planarity.
The network’s size and connectivity are based on a majorsBrdity. Two scenarios were
defined on top of this network, each one with its own minimurd araximum number of
nodes per route, and total number of routes.



Figure 5.5: British city based network.
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Since our approach can handle multiple route set sizes aatie time, the biggest
difference in each scenario is the number of nodes per rgine.minimum number i
and the maximum number29 in scenario |, being these limits derived from thensport
network its connectivity and number of nodes, as is stated in th&wbkang Faret al.
(2009). In scenario Il, the minimum numberli@ and the maximum number 2. The
limits in scenario Il are derived from the actual routes usettie major British city upon
which the artificial network was based.

The running time informed in previous works averages betwie3®00 and 19000
seconds of processing, depending on the scenario. We usednmeothar2500 seconds
in each test case.

The full comparison between previous results and our outécton this network is
given in Table 5.5. Two of our route sets on Table 5.5 are shawigures 5.6 and 5.7.
An intermediate route set found by our metaheuristic, wigschndominated and more
balanced between passenger and operator cost, is showguire [5i.8.

It can be noticed that we optimize the major objective of edrsrios better.

The fact that our route sets were superior when not consigl@enalties shows that
most passengers travel through the fastest or almost fastis in theransport network
A reason for this is the frequent use of these fastest patltamdidate routes in our
algorithm.

Since we also utilize routes created using Algorithm 1 anav@,are also able to
obtain routes with high directly covered demand (i.e. high If configured not to make
transfers, we obtained afil"T" of about57 minutes and only5 routes. This shows that
only 45 routes are needed to cover the whole demand directly, buthisealso makes the
average tril20 minutes slower, an increase of more thaf..

Another important remark is that our outcome had much chre@peperate) route
sets in the operator-oriented scenarios. This shows thianetaheuristic approach was
also successful when optimizing prices instead of traveé#. This helps producing a
much wider range of available compromise solutions to besehdoy a public transit
network planner, thus improving overall network quality.

An interesting fact about the network is obtained by analyzhe output of Algorithm
1 with this network as input. Among the solutions providedisy mentioned algorithm
IS one that had5 routes and is able to cover all demand without transfers eNleeless,
it achieves an ATT 061 minutes (this is obtained by setting the penalty value vegi,h
such as 5000 minutes, for example). By allowing transfees ART falls to 40 minutes.
This shows thatl5 routes are enough to cover demand without transfers, andlitieat
routes can often be inferior to paths with transfers.

5.3 Reproducibility and Difficulties with Previous Results

In this section, we discuss problems faced when comparingesults to previous
ones.

By chronological order, the first work used for comparisonhigt tof Chakroborty
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Table 5.5: Comparison between best UTRP multi-objectivetisois on artificial British
city

Our metaheuristic

Scenario Qp Best known value
(FAN; MUMFORD; EVANS, 2009) approach results
[-Passenger  d 72.91 % 61.95 %
dy 20.56 % 37.75%
do 6.54 % 0.30 %
ATT 36.28 min. 36.01min.
ATT o 34.60 min. 34.09min.
Co 2986 min. 8405 min.
lI-Passenger dy 71.21 % 53.22 %
dy 20.71 % 44.92 %
do 8.08 % 1.85 %
ds 0.00 % 0.01%
ATT 37.52 min. 36.66min.
AT T o 35.68 min. 34.23min.
Co 2378 min. 6173 min.
I-Operator dy 48.62 % 9.31%
dy 32.45% 24.77 %
ds 18.93 % 31.22 %
ds 0.00 % 24.39 %
dy 0.00 % 8.66 %
ds 0.00 % 1.58 %
dg 0.00 % 0.07 %
ATT 40.88 min. 55.54 min.
ATTyop 37.36 min. 45.37 min.
Co 1077 min. 319min.
[I-Operator dy 46.97 % 8.47 %
dy 31.84 % 24.03 %
ds 21.19% 32.84 %
ds 0.00 % 20.66 %
dy 0.00 % 10.43 %
ds 0.00 % 3.03%
dg 0.00 % 0.54 %
ATT 41.26 min. 55.96 min.
ATT o 37.655 min. 45.37 min.
Co 1265 min. 319min.
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Figure 5.6: Operator-oriented route set for British citydzhaetwork.



Figure 5.7: Passenger-oriented route set for British cisedanetwork.
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Figure 5.8: Balanced route set for British city based network.
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et al. (2004). In their work, a list of previous results is publidh¢ogether with new
routes, that are evaluated as better than any other reshé aine, and finally the authors
provide quality factors for the given routes. But, when tgyin assess the quality factors
of their published routes with our implementations, boté MIP formulation and the
genetic algorithm gave the same result, as expected, arasitifferent from what was
published.

To try to explain this, differences in problem definitionsrevénvestigated. Never-
theless, we could not find any difference in the definition @iviio evaluate a solution.
We also experimented with making routes be unidirectiongtéad of bidirectional), and
this only generated results that were even farther from titéighed ones. Given that, we
decided to utilize the quality factors given by both our Mti?riiulation and genetic al-
gorithm in our comparisons. Since the implementations aneptetely independent, and
they were able to reproduce every result from other worksaut problems, we consider
them to be reliable.

We also perform comparisons with the work of Lang [eaal. (2009) using two test
cases, MandI's network and a British city based network, paéxed in this chapter. The
results for Mandl's network were checked, since the route were published in detall,
and every result was correctly reproduced. But, when anaiyttie British city based
network results, we perceived an inconsistency. Route sets mot published for this
network, possibly because of space limitations, and ttiiedits validation.

To explain the inconsistency, we first recall the definitibthe Average Travel Time
without penalty A7'7T,,.,), which is how much time passengers would travel if the ggnal
was reduced from its current valug,,,, to zero. To calculate this term, the following
formula is used (wheré), 4 x is the maximum number of transfers)1'7,,,, = ATT —

ZiST]\/IAX tpendil .

Recalling Section 2.2.3, the minimum travel time, if everyteowere available, is
given by taking best paths in theansport networkwhere every edge is available). It
Is impossible to achieve a better result than the minimuwetrame, since it already
considers no penalties and uses the best paths, so no pgssitaity configuration may
result in smaller results than the minimum travel time.

The minimum travel time is known for the British city basedwetk, and equals to
33.8395, as published by Lang Faet al. and confirmed with our implementations. Nev-
ertheless, thel1'T,,,, for the results of Lang Faret al. in passenger-oriented scenarios
are 32.92, 33.36, 33.8365 and33.85 minutes. Three out of four of the givetI7’s,,,,
are better than would be possible given the edge distandhs imetwork, indicating that
the published results do not correspond to legal resulthéogiven instance and problem
statement.

In order to be able to use their results for comparison, werasshat the authors were
not considering penalties when calculating théif"T's, or in other words, they forgot
to apply the penalty. Nevertheless, the other quality iathics also do not have great
resemblance to normally found results with our algorithpresenting combinations of
very cheap route sets with very high covered demand. We mirésese results in detalil
in Section 5.2.2.



64



65

6 CONCLUDING REMARKS AND FUTURE WORK

The chosen problem definition was successful in allowingmanson with many pre-
vious works, as it proved generic and flexible enough to bepatitle with them. We
expect solutions to other, more specific problem statemengs more realistic repre-
sentations of the UTRP, to be able to take advantage of thaitpeks and algorithms
developed in this work, with some adaptation.

We developed and implemented an exact MIP formulation feldfiRP. To the best
of our knowledge, a full exact solution to this problem waseareublished before. With
it, we obtained the best possible solutions for small sizasharios, which were also
never published before. A time estimate for exactly solvangertain instance of the
problem was derived, and with it, limits on the problem sizevhich exact solutions are
feasible can be derived. We also proposelivede-and-conqueheuristic using the MIP
formulation for each step. In addition, from the MIP forntida, we were able to obtain
route suggestions for our metaheuristic approach. Finalflgrmulation for redesigning
an existing network was also given, which may be useful icira to consider the cost
and utility of changing existing routes.

We also proposed and implemented a genetic algorithm te@ sbe&yUTRP. With this
approach, we achieved better results than every other kimws. Most of our solutions
alsodominatedprevious solutions, and thus did not only improve the maial gout all
goals.

This was done with a more flexible implementation in comparito previous ap-
proaches, which is not bound to certain restrictions sudixad number of routes, min-
imum and maximum number of nodes per route, allowance ofesydirectedness of
routes and more. This characteristic is also due to the gnolblefinition, which is more
generic than previous ones.

The proposed approach uses the following ideas to reacérlyetults: it carefully
selects initial solutions from many different sources|udag MIP relaxation, minimum
spanning tree, shortest paths and from greedy algorithirappliessimplificationto pre-
vent unnecessary routes; and it uses operators suekchangeand crossovey that ex-
change characteristics between routes and route sets.

Regarding reliability and correctness, results of previwasks were reproduced and
tested using both the MIP formulation and the genetic allgorimplementation, which
have no relation between them (except of being written bystimme author), and the
results were coherent. We also extended our implement&ti@ilow state saving at
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some point of the computation, so as to enable division ofwtbek in different time
periods and machines. Another extension provides capabilitransferring solutions
from the genetic algorithm to the MIP formulation and viaersa, what is useful for
testing or optimizing parts of the problem. The programsalan export the networks in
the Graphviz format (ELLSON et al., 2002) for easier viszedion and debugging.

To test the proposed algorithm and implementation withhierrtest cases, also con-
sidering real scenarios, we are currently using networgsesenting big capitals such
as Porto Alegre, Brazil and Berlin, Germany in our tests. Offfeedity in doing this is
obtaining the demand data, i.e. the OD matrix. We can rougstiynate demands accord-
ing to common sense, thus obtaining approximate resultghisidoes not allow direct
comparison with the existing route set of the public tramspgstem, since differences in
quality factors may be due to differences in the OD matrix.

We are also integrating our implementation with simulasoftware in order to fur-
ther validate and assess the used techniques and algariffimassimulation package in
use is MATSIm (BALMER et al., 2009). An idea here is to sul@tour quality factors
by the evaluation function of the simulation package. Ireaassuccess, this would prove
the generality of the methods in use here, and how they cant &olaifferent problem
definitions and conditions.

Regarding performance, our genetic algorithm implemeordias room for improve-
ment. By simultaneously evolving different members of th@uydation, the algorithm
may be sped up by a factor equal to the size of the populatibithican be set arbitrarily
high, as long as respecting memory boundaries. This woulcbbeenient in order to
faster explore the search space, and would be essential egadimg with very big in-
stances. Implementing this involves coordinating the dseany cores or machines, but
does not require any significant change to the algorithncsira.

With the work developed here, we expect to improve the olvqradlity of methods
and algorithms available to solve the UTRP, which becomed ag public urban transit
networks grow larger and more complicated.
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