UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM COMPUTACAO

LEONARDO GARCIA FISCHER

3DS-BVP: A Path Planner
for Arbitrary Surfaces

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Profa. Dra. Luciana Nedel
Advisor

Porto Alegre, November 2011

CIP - CATALOGING-IN-PUBLICATION

Fischer, Leonardo Garcia

3DS-BVP: A Path Planner
for Arbitrary Surfaces / Leonardo Garcia Fischer. — Porto Alegre:
PPGC da UFRGS, 2011.

117 p.: il.

Thesis (Master) — Universidade Federal do Rio Grande do Sul.
Programa de P6s-Graduagdo em Computacao, Porto Alegre, BR—
RS, 2011. Advisor: Luciana Nedel.

1. 3D path planning. 2. Motion planning. 3. Potential fields.
4. Laplace’s equation. I. Nedel, Luciana. II. Titulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pro-Reitor de Pés-Graduagado: Prof. Aldo Bolten Lucion

Diretor do Instituto de Informatica: Prof. Flavio Rech Wagner

Coordenador do PPGC: Prof. Alvaro Freitas Moreira

Bibliotecaria-Chefe do Instituto de Informatica: Beatriz Regina Bastos Haro

“If you wanna make the world a better place
Take a look at yourself and then make a change”
Man In The Mirror

— MICHAEL JACKSON

AGRADECIMENTOS

Antes de tudo, preciso agradecer a minha familia pelo suporte dado. Sem o suporte
deles, ndo teria chegado até este ponto. Obrigado ao Vilson e Regina, meus pais, € ao
Victor e Beatriz, meus irmaos. Em particular, preciso agradecer ao Victor por ter supor-
tado dividir o quarto comigo enquanto ele precisava dormir cedo para acordar as 5h da
madrugada, enquanto eu dormia depois da 1h para concluir algum trabalho.

Um obrigado muito especial a Francele, minha namorada, por ter dividido comigo
grandes momentos € me dado forcas quando eu mais precisava. Nestes 6 anos de namoro,
ela foi mais do que uma namorada, foi a amiga e companheira que me confortava e ale-
grava.

A todos os amigos e companheiros que fiz nos laboratérios do grupo de Computacdo
Grifica da UFRGS. O grupo € grande, entdo vou citar apenas os nomes (em ordem al-
fabética) que fizeram uma contribui¢ao significativa neste trabalho: Leandro Augusto
Frata Fernandes (Tocha), Marilena Maule (Lenna) e Vitor Fernando Pamplona. Se eu
fosse citar os nomes do grupo de quem contribuiu na minha vida e desenvolvimento pes-
soal, esta lista com certeza seria muito maior.

Mas dois nomes do grupo de Computagdo Gréfica precisam ser agradecidos com es-
pecial destaque: (i) Luciana Nedel, minha orientadora, que me ajudou muito durante esta
jornada; (ii) Renato Silveira, cujas ideias foram os principais motivadores que levaram ao
desenvolvimento deste trabalho.

E, finalmente, ao Instituto de Informatica da UFRGS e o CNPq pela bolsa de mestrado,
auxilios nas viagens para apresentacOes de artigos e a visita ao Indian Institute of Tech-
nology Delhi — II'T-Delhi. Todos estes recursos foram essenciais para que eu chegasse até
aqui.

A todos, muito obrigado,

Leonardo Garcia Fischer

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 7
LISTOFFIGURES. e e e e e e e e e 8
LISTOFTABLES it e et e e e 10
ABSTRACT i i e e e e e e e e e e e 11
RESUMO e e e e e s e 12
1 INTRODUCTION i it e e e e e e 13
2 RELATEDWORK i it e et e et e e e ns 17
2.1 Graph based pathplanning 17
2.2 Triangulation based path planning 21
2.3 Path planning based on potential fields 22
3 BVPPATHPLANNER 26
3.1 Potential fields for path planning 26
3.2 Globalpathplanner, 28
33 Localpathplanner 28
4 PATH PLANNING IN 3D TRIANGLEMESHES 31
4.1 Potential fields in open triangle meshes 32
4.1.1 Environment discretization L. 32
4.1.2 Computing the potential field 33
4.2 Computing the gradient of the potential field 36
4.3 Potential fieldsin3D surfaces 37
44 Implementation 39
44.1 Thedatastructure e 39
442 Algorithm 41
5 RESULTS i et e e e e et e ee e 44
5.1 Comparing our method with the BVP Path Planner 44
5.2 Path planning evaluation in arbitrary meshes 47
5.3 Local Minima Avoidance, 49

5.4 Performance evaluation, 49

6 LIMITATIONS AND DEGENERATEDCASES 52

6.1 Degeneratedcases 52
6.2 Limitations with low quality triangle meshes 53
6.3 The Flatness Problem 54
7 CONCLUSIONS ANDFUTUREWORK 56
71 Conclusions L 56
72 Futurework 57
7.3 Additional contributionso 0oL L 58
8 RESUMOEXPANDIDOttt it enen 60
8.1 Trabalhos relacionados 61
8.2 O Planejador de Caminhos BVP 62
8.3 Planejamento de caminhos em malhas de tridngulos 62
8.3.1 Discretizacdo do ambiente 63
8.3.2 Calculando o campo potencial 63
8.3.3 Calculando o gradiente do campo potencial 64
8.4 Campos potenciais em superficies3D 64
85 Resultados. 65
8.5.1 Comparagdo do método com o Planejador de Caminhos BVP 65
8.5.2 Avaliagdo dos caminhos gerados em superficies arbitrarias 66
8.5.3 Avaliagdo de performance 66
8.5.4 LimitacOes e casos degenerados 66
8.6 Conclusoes e trabalhos futuros 67
REFERENCES e e e e e e e e e e 68
APPENDIX A - PROOFOF EQUATION4.13 73
APPENDIXB-TESTCASESt 74

APPENDIX C - ARTICLES PUBLISHED DURING THIS WORK 77

LIST OF ABBREVIATIONS AND ACRONYMS

BVP Boundary Value Problem

CAD Computer-aided Design

CDT Constrained Delaunay Triangulation
DCEL Doubly-Connected Edge List

DOF Degree-of-freedom

GPU Graphical Processing Unit

PRM Probabilistic RoadMap

RRT Rapidly-Exploring Random Tree

1.1
1.2

2.1
2.2

23

24
2.5
2.6
2.7

2.8
2.9

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
53
54

5.5

6.1
6.2

LIST OF FIGURES

A snapshot of the video-game Super Mario Galaxy
A snapshot of a CAD software called Moment of Inspiration 3D . . .

Example of an environment and a roadmap representing it
Method proposed by Lengyel et al. using Minkowski sums and regu-

largrids L
Path planner proposed by Kavraki et al. applied to robotic arms with

many DOFs
Adaptative approach for path planning based on user input
Geodesic distance fieldofamodel
Minimum clearance path planner proposed by Kallmann
Ilustration of a case where a local minima must be handled, in order

to avoid that the agent get lost in the environment.
Examples of paths generated with Connolly’s path planner
Groups crossing using Treuille’s model for crowd simulation

Cells of a grid, when Equation 3.2 is evaluated for the cell p..
Globalmapandalocalmap
The zonesofalocalmap

A triangle divided in regions to buildacell
A triangle mesh and its corresponding cell division
The Voronoi diagram of the triangle vertices
The values D,,;, and D, of the cell Cell(v)
A triangle t, its vertices and edge normals
Views of the north and south pole of a sphere, and three paths on it . .
DCEL data structure

Comparison between the BVP Path Planner and the 3DS-BVP using
regular and noisy triangle meshes
Paths produced over the model ofacar
Paths produced over the Costa Minimal Surface
Several paths produced over the Mother and Child statue, which has
several genus L.
Local minima avoidance in a 2D environment with the 3DS-BVP
Path Planner.

Paths generated on a low quality triangle mesh.
Environment where the flatness problem occurs

7.1

7.2

8.1

8.2

8.3

8.4

8.5

8.6

8.7

Collision between an agent a walking over a surface s and the surface
itself. . . .
A picture of a scene with 500 autonomous agents walking using the
GPU approach developed in Fischeretal.

The triangle ¢, its vertices and associated edge normals, used in Equa-
tion4.14. e

Comparison between the BVP Path Planner and the 3DS-BVP, test
case 1. (a) BVP Path Planner. (b) 3DS-BVP.
Comparison between the BVP Path Planner and the 3DS-BVP, test
case 2. (a) BVP Path Planner. (b) 3DS-BVP.
Comparison between the BVP Path Planner and the 3DS-BVP, test
case 3. (a) BVP Path Planner. (b) 3DS-BVP.
Comparison between the BVP Path Planner and the 3DS-BVP, test
case 5. (a) BVP Path Planner. (b) 3DS-BVP, with noisy mesh.
Comparison between the BVP Path Planner and the 3DS-BVP, test
case 6. (a) BVP Path Planner. (b) 3DS-BVP, with noisy mesh.
Comparison between the BVP Path Planner and the 3DS-BVP, test
case 7. (a) BVP Path Planner. (b) 3DS-BVP, with noisy mesh.

59

75

76

76

5.1

5.2

LIST OF TABLES

Comparison between the potential values generated with our tech-
nique and the BVP Path Planner
Performance evaluation on three testcases.

ABSTRACT

Efficient path planning methods are being explored along the years to allow the move-
ment of autonomous robots or virtual agents. Basically these algorithms search the envi-
ronment for a path with low probability of collision with obstacles that conduces the agent
from an initial to a goal position. Although the first path planning algorithms to compute
routes in graphs were presented more than 50 years ago, there is still a lot of effort into
improving the current approaches.

The current path planning algorithms usually assume that the environment can be
easily projected on a plane. There are also other algorithms that can easily deal with
higher dimensional spaces. But a class of environments that cannot be easily treated by
current algorithms is the one composed by arbitrary surfaces. These surfaces, with holes
and bends for instance, cannot be directly projected on a plane. Because the path must be
on the surface, it has only 2 degrees of freedom in any point of the surface, which is not
trivial to map for a higher dimensional path planning algorithm.

This work presents a new technique for path planning on 3D surfaces called 3DS-BVP.
This new path planner is based on a previous path planning algorithm for 2D environ-
ments. The former algorithm, called BVP-Path-Planner, uses Boundary Value Problems
(BVP) and harmonic functions to generate potential fields. By following the gradient
descent of these potential fields, it is possible to produce smooth paths free from local
minima from any point of the environment to a given goal position.

Our algorithm generates a potential field directly on the 3D surface using a numerical
method inspired on the one used by the BVP-Path-Planner. The 3DS-BVP works over
complex surfaces of arbitrary genus or curvature, represented by a triangle mesh, without
the need of 2D parametrizations.

Our results demonstrate that our technique can generate paths with similar quality as
those generated by the BVP-Path-Planner in planar environments. The same algorithm is
also able to generate paths in arbitrary surfaces at interactive frame rates.

Keywords: 3D path planning, motion planning, potential fields, Laplace’s equation.

3DS-BVP: Um Planejador de Caminhos para Superficies Arbitrarias

RESUMO

Meétodos eficientes para planejamento de caminhos tém sido explorados ao longo dos
anos para permitir movimento de robds autdbnomos ou agentes virtuais. Basicamente,
estes algoritmos buscam pelo ambiente por um caminho com pouca probabilidade de
colisdo com obstaculos, e que conduza o agente de uma posicao inicial para uma posi¢ao
objetivo. Apesar de os primeiros algoritmos para planejamento de caminhos para calcular
rotas em grafos foram apresentados a mais de 50 anos atrds, ainda existe muito trabalho
sendo realizado para melhorar as técnicas existentes hoje em dia.

Os algoritmos de planejamento de caminhos atuais normalmente assumem que o0 am-
biente pode ser facilmente projetado em um plano. Também existem diversos algoritmos
que podem trabalhar facilmente com mais dimensdes. Porém, uma classe de ambientes
que ndo podem ser facilmente tratadas pelos algoritmos atuais € composta por superficies
arbitrarias. Estas superficies, com buracos e tor¢des, por exemplo, ndo podem ser facil-
mente projetadas em um plano. O fato de o caminho ser restrito a superficie faz com que,
em um dado ponto o algoritmo precise calcular um caminho 2D em uma superficie 3D,
o que ndo ¢ trivial de mapear em um algoritmo de planejamento de caminhos para vérias
dimensdes.

Este trabalho apresenta uma nova técnica de planejamento de caminhos em superficies
3D, chamada 3DS-BVP. Este novo planejador de caminhos € baseado em um algoritmo
de planejamento de caminhos para ambientes 2D. O algoritmo anterior, chamado BVP-
Path-Planner, utiliza problemas de valor de contorno (Boundary Value Problems, BVP) e
fungdes harmonicas para gerar campos potenciais. Ao seguir o gradiente descente destes
campos potenciais, € possivel produzir caminhos suaves livres de minimos locais, par-
tindo de qualquer posi¢ao do ambiente para um dado objetivo.

Nosso algoritmo gera um campo potencial diretamente na superficie 3D utilizando
um método numérico que foi inspirado por aquele utilizado no BVP-Path-Planner. O
3DS-BVP trabalha sobre superficies complexas com buracos ou curvaturas, representa-
das por malhas de tridngulos, sem a necessidade de parametrizar a superficie em uma
representacao 2D.

Nossos resultados demonstram que a técnica pode gerar caminhos com qualidade si-
milar aqueles gerados pelo BVP-Path-Planner em ambientes planos. O mesmo algoritmo
¢ capaz de gerar caminhos em superficies arbitrarias a taxas de atualizacao interativas.

Palavras-chave: Planejamento de caminhos em 3D, planejamento de movimentos, cam-
pos potenciais, Equagdo de Laplace.

13

1 INTRODUCTION

A problem faced in our everyday life’s is how to go from a given known location to a
new one that we never had before. If these places are very far one from one another (in
a city scale, for example) we may ask for directions or consult a map of the region. If
we know that they are close one from the other (in the same building, for example), we
simply walk around to learn the environment until we find were the new location is.

No matter the scale of the problem or what strategy we use to solve it, we say that we
need to plan how to navigate from one initial place to another. This problem is also faced
very often within computational systems. For example, this happens when a robot needs
to move inside an environment or the artificial intelligence inside a video game needs to
control an enemy during a match.

Navigation is a complex interactive task. According to Bowman (BOWMAN et al.,
2004), it is divided into two subtasks: wayfinding and travel. Wayfinding precedes the
travel by being the cognitive component of the navigation. It includes the high-level
thinking, planning and decision making by the individual who is making the navigation.
Wayfinding also requires knowledge about the localization of obstacles and what are the
limits of the navigable regions, which constitute the spatial understanding of the environ-
ment. By thinking and taking decisions over the understanding of the environment, the
individual determines a path from its current location to the goal location.

Using the path determined during the wayfinding task, the individual starts the travel
task, which is the motor component of navigation. It includes the low-level actions that
one takes to control its position and gaze in order to follow the defined path. It also
includes the handling of changes in the environment, such as avoid collision with dynamic
obstacles.

Although navigation is an everyday task that human beings solve quite naturally, map-
ping it to a computational problem is not a trivial task. Path planning algorithms are being
explored for years. Several solutions were effectively applied into robotics and virtual en-
vironments. Most of these solutions focuses on providing a high performance path find-
ing, by including a preprocessing phase on the algorithm (CALOMENI; CELES, 2006).
There are also solutions that focuses on solving the problem with better paths, providing
ways to minimize the probability of collision with obstacles (KALLMANN, 2010) or im-
proving the credibility of the generated paths within a simulation (KANG; KIM; KIM,
2010).

Navigation on three-dimensional surfaces is a relevant problem for many application
areas, such as: scientific visualization, where a user needs to inspect different objects,
such as organs in a medical application or engines in a CAD system; robotics, with the au-
tomatic definition of paths and motions for autonomous robots; and entertainment, more
specifically on the video games domain, where the exploration of complex 3D worlds are

14

Figure 1.1: A snapshot of the video-game Super Mario Galaxy® (NINTENDO, 2007).
This picture shows a level composed of a very small planet, with several holes in it. The
character, as well as the enemies, can walk freely over the surface of the planet.

much more challenging for the player than planar ones.

Most of the current path planning algorithms make efforts to solve the problem on
a 2D representation of the environment. These solutions usually project the obstacles on
the Euclidean plane, and assume that the areas uncovered by projected obstacles represent
the navigable space. Then the navigable space is discretized (usually into a graph, grid, or
triangulation). Finally, a dedicated algorithm searches in this discretization for a sequence
of free positions that connects the initial and the goal positions.

Some of the current path planning algorithms are robust enough to handle systems
with more than two degrees of freedom — DOFs — by supporting representations of the en-
vironment with higher dimensionality. For example the work of Carsten et al. (CARSTEN;
FERGUSON; STENTZ, 2006) uses 3D regular grids to discretize the environment, and
a graph search algorithm (STENTZ, 1995) is used to find a set of contiguous cells to
draw the 3D path. Other algorithms support several DOFs by using some probabilistic
approach to sample the free space. This is usually done to compute paths for robotic arms
with several joints (BELGHITH et al., 2006).

However, path planning methods restricted to arbitrary surfaces are not well explored
in the literature. This problem consists in finding a path connecting two points on a
surface, where the path does not interpenetrate neither jumps from one point of the surface
to another. One example of this problem would be the control of virtual cameras in a CAD
or modeling application (Figure 1.2), in order to help the evaluation and visualization
of the 3D models. Another example would be in virtual environments, where virtual
agents would navigate over those kind of surfaces. One example of these kind of virtual
environment is in a video-game called Prey® (3D Realms, 2006), where the player and
the enemies can walk freely over several walls, ceilings and footbridges, as well as on
the floor. Figure 1.1 illustrates another of these video-games where the player and his
enemies walk over arbitrary surfaces.

Methods that focus specifically on 2D path planning cannot be trivially modified to

15

rrrrrr

::::::::::::

Figure 1.2: A snapshot of a CAD software called Moment of Inspiration 3D (MOI3D,
2011). Such software could benefit from new tools that, for example, control the camera
over the surfaces that the designer is working on.

handle arbitrary surface cases. For these, one possible approach would be the use of so-
phisticated projection techniques from the 3D surface to the Euclidean plane, adapting the
2D path planner to work on this projection. But this is not a trivial task, due to the nature
of the projection. Depending on the complexity of the surface, it would be necessary to
“break” the surface in several pieces. This may introduce gaps on the projection of these
pieces on the 2D plane that must be correctly handled by the algorithm.

Algorithms that handle 3D environments depend on their nature to be adapted to 3D
surfaces, as in a given point of the surface the algorithm should have only 2 degrees
of freedom. Graph-based approaches are fast enough for real-time applications, but the
generated paths are not as smooth as the ones produced by other approaches. Techniques
that use grid representations of the volumetric environment would require a very high
number of cells to represent the surface, thus jeopardizing the algorithm performance and
memory consumption. In all these cases, the required work for porting is not negligible,
and it is not clear how these algorithms will behave in this kind of environments.

In this work we developed a solution for the first part of the navigation task, the
wayfinding. We present a path planning algorithm that handles the arbitrary 3D surface
case, so called 3DS-BVP, an acronym for 3D Surface Path Planner using Boundary Value
Problems system. By using a triangle mesh discretization of the surface, the proposed
algorithm develops a boundary value problem (BVP) system that produces a potential
field on this mesh. Using the gradient of the potential field, a path on this surface can be
easily computed from any point to a given goal. Thus, the main contributions of this work
are:

* An approximation to the Laplace’s Equation using a triangular discretization;

* A numerical method that generates potential fields with similar characteristics to
those generated by the Laplace’s Equation in arbitrary surfaces;

* A strategy to apply the numerical method to compute paths on 3D triangular surface
meshes with holes and bends.

16

We developed this method based on the method proposed by Silveira et al. (SIL-
VEIRA et al., 2009), which is based on harmonic functions. The path planner by Silveira
et al. uses the solution of a modification of the Laplace’s equation in a regular planar
grid to generate the potential field, which generates the paths through its gradient descent.
Our algorithm was based on it in the sense that we also developed a numeric method
that mimics the results produced by the Laplace’s equation, but using a triangle mesh
discretization.

For planar cases our algorithm was able to reproduce the paths generated by the algo-
rithm developed by Silveira et al., despite its dependency on the quality of the generated
paths. Concerning surfaces of arbitrary genus or curvature, our algorithm is also able
to generate smooth paths. Performance tests show that our algorithm is able to run at
interactive frame rates.

The remainder of this Thesis is organized as follows. Chapter 2 presents the related
work on path planning for interactive applications and robotics. Chapter 3 presents the
main concepts behind the path planner presented by Silveira et al. Chapter 4 explains the
3DS-BVP formulation and algorithm. Chapter 5 shows the results achieved in this work
and some discussion about it, while Chapter 6 presents the degenerated cases and other
limitations found in our algorithm. Finally, in Chapter 7 conclusions and future works are
discussed.

17

2 RELATED WORK

In this work we will assume that path planning refers to an algorithm that finds a
collision-free path (or check that no one exists) between a start and a goal positions in an
environment, based on its geometry and obstacles (HSU; LATOMBE; MOTWANI, 1997).
The generated path will be followed by an agent, which will represent the virtual entity (an
avatar or a virtual camera) or an autonomous robot in the real world. The set of possible
positions that an agent can assume is usually called the configuration space. Although
there are algorithms that deal with exploratory path planning (BROCK; GRUPEN, 2003)
and dynamic environments (BELGHITH et al., 2006) (TREUILLE; COOPER; POPOVI¢,
2006), in this work we assume that the environment is static and already known when the
path planning algorithm is required.

Path planning algorithms are being actively explored for at least the last 20 years.
Many different approaches have been proposed to solve this problem, and each one has
its particular advantages and disadvantages.

Our technique uses potential fields computed over a triangle mesh to produce paths
over arbitrary surfaces. Based on this perspective, in this chapter we will review the most
relevant work on path planning algorithms, classifying them according to the different
approaches used to solve the problem.

2.1 Graph based path planning

Due to its performance and low memory requirements, graph-based approaches are the
most common kind of path planning algorithms found in the game industry. Popular game
engines, such as the Unreal Engine® and CryEngine®, made use of it. The characteristics
of graph based path planning made these algorithms useful in other areas than robotics and
agent simulations, like the routing of data packages in network systems (TANENBAUM,
2002).

In these methods, the environment is discretized into a graph. In this graph, the nodes
are associated with sites in the environment, and an edge represents a free path connecting
these sites. Figure 2.1 illustrates these concepts. To produce a path, the agent needs to
specify the start and goal sites of the environment, and then make a search for a sequence
of nodes of the graph that connect both sites. The Dijkstra algorithm (DIJKSTRA, 1959;
CORMEN et al., 2001) is used to find a path between two nodes of this graph. Heuristic
based approaches, like the A* algorithm (HART; NILSSON; RAPHAEL, 1968), are also
used in order to improve the performance of the algorithm. While classical work on path
planning usually call these graphs as roadmaps, game engines usually call it as navigation
meshes (VALVE, 2006). In this work we will refer to them as roadmaps.

There are several graph-based approaches for path planning, and most of the differ-

18

Environment
limits

Free area

O Node

= = Edge

Figure 2.1: Example of an environment and a roadmap representing it. The nodes rep-
resents relevant free positions of the environment, while the edges represent valid paths
between these positions.

ences between them are the methods used to sample the free areas of the environment
into a graph. All of them try to reach an optimal relation between the number of nodes
in the graph and the coverage of the environment. The graph representation implicitly re-
quires that, to increase the coverage of the environment, the number of nodes also needs
to increase. This has a direct impact on the performance of the search algorithm.

One of the simpler approaches to sample the free space of the environment is to use
a grid approach (DELOURA, 2000). The environment is discretized into a regular grid,
where each cell of the grid is classified as free or occupied. Each free cell is mapped to a
node of the graph, and the connectivity between the nodes comes from the adjacency of
the cells in the grid. Engines for Real Time Strategy (RTS) games, like the Spring RTS
(SPRING, 2011) engine make use of this approach. This is a very simple approach, which
can lead systems that handle large environments to have the performance affected due to
the great number of nodes that this method can produce. Approaches such as quadtree
and convex polygons seek to reduce the number of cells and improve the representation
of the free space by adjusting the size and format of cells according to the location that
they represent of the environment.

Lengyel et al. (LENGYEL et al., 1990) developed a grid-based approach for path
planning. It uses the standard graphics hardware and algorithms to rasterize the config-
uration space in a set of bitmaps. The obstacles are rasterized in the bitmaps using the
Minkowski sum (BERG et al., 2008). These bitmaps are then used to compute a grid,
which is used to find a collision-free path on the environment. Figure 2.2 illustrates this
method.

Other approach used in some games for path planning is the construction of the
roadmap manually by the game-developer (NIEUWENHUISEN; KAMPHUIS; OVER-
MARS, 2007). This approach has the advantage that the developer can explicitly control
the coverage of relevant areas of the game while keeping the number of nodes of the
roadmap the smallest possible. On the other hand, this approach is very time-consuming
during game development, and explicitly requires that the environment is known before
the construction of the roadmap. It frequently leads to repetitive behavior, which can be
very unnatural. This approach is not applicable to systems that dynamically generate the
environments.

19

f Start Position
P > b

- i 7 6 I 8 L 10 \ 12 13 14
Robot - o 4 N

6|5 |4 N 12 N:: 15
t’ \\\
y <L
y

Goal Path

(a) b)

Figure 2.2: Method proposed by Lengyel et al. (LENGYEL et al., 1990) using Minkowski
sums and regular grids. (a) The Minkowski sum applied to the obstacles, which increases
the obstacle dimensions to reduce the collision probability with the autonomous robot.
(b) Obstacle expanded by the Minkowski sum rasterized on a grid and a path found on the
remaining free space. Figures from (LENGYEL et al., 1990).

Probabilistic approaches also have been very popular due to several successful ap-
plications in high-dimensional configuration spaces (i.e. robots with many degrees of
freedom — DOFs) (LINDEMANN; LAVALLE, 2005). The graphs within these methods
are usually called Probabilistic-Road-Maps (PRM), and are generated during a sampling
step (the learning phase) of the algorithm. The sampling step used by these methods is
what differentiates one method from the other.

Kavraki et al. (KAVRAKI et al., 1996) introduced the PRM approach by randomly
selecting positions of the possible configuration space and then testing if it was a valid
configuration or not. Every time a valid configuration is found, it is added to the roadmap.
Also, links to the nearest nodes are added when they represent a valid path between the
related nodes. Several tests where made with articulated robots, as illustrated in the Fig-
ure 2.3.

Inspired by the PRM approach, LaValle (LAVALLE, 1998) developed the Rapidly-
Exploring-Random-Tree — RRT — approach. LaValle developed a tree structure that,
during the learning phase of the algorithm, grows from an initial point through the en-
vironment. This is done by randomly choosing valid configurations of the environment,
and then expanding the tree in that direction.

Recently, Kang et al. (KANG; KIM; KIM, 2010) presented an adaptative method that
improves the roadmap based on user input. Kang et al. focused on interactive virtual
environments with non-playable-characters (NPCs) and playable-characters (PCs), like
in video-games. The work uses the paths generated by the PCs to identify regions of
interest and improve the roadmap in these areas. This method is illustrated in the Figure
24.

While graph-based approaches for path planning appear to be well developed, espe-
cially for robots with many DOFs, they still lack on the quality of the generated paths
for some cases. After the learning phase and construction of the roadmap, a search for
a path results in a list of nodes of the graph that must be followed to reach the goal po-

20

(b)

Figure 2.3: Path planner proposed by Kavraki et al. applied to robotic arms with many
DOFs. In (a) and (b) the robots have a fixed point in the environment. Articulated arms
need to move from one position to another, while avoiding collision with the obstacles.
Each figure illustrates a sequence of valid poses that the robot assumes. (a) Robot with 4
joints. (b) Robot with 5 joints. Figure from (KAVRAKI et al., 1996).

Figure 2.4: Adaptative approach for path planning based on user input. (a) Original
roadmap generated by traditional methods. (b) Updated roadmap, with improved areas
based on playable characters highlighted. Figures from (KANG; KIM; KIM, 2010).

21

sition. The most common approach to move the agent between two nodes is to use a
linear path. This results in paths with little smoothness !, which is acceptable for robots
with many DOFs. Some applications use some kind of parametric interpolation (like
Splines (PIEGL; TILLER, 1996)), but these methods do not guarantee that the resulting
path will be collision-free.

Moreover, graph-based approaches are not explored for surface-restricted path plan-
ning. These methods were highly developed for use with many DOFs robots, as they
efficiently solve search queries on multi-dimensional search spaces. Virtual environments
that require path planning solutions (like games and interactive virtual environments) usu-
ally are easily projectable onto a plane or have complete freedom to navigate in a 3D en-
vironment. The current graph based approaches do not explore problems that may arise
(such as the path quality or interpenetration of the path in the surface) when they are
applied to compute paths on arbitrary surfaces.

2.2 Triangulation based path planning

Algorithms based on triangulations in general assume a discretization of the environ-
ment into a triangle mesh, executing searches in this mesh to produce paths. Although a
triangle mesh could be used to generate a roadmap (and then use techniques like the ones
presented in Section 2.1), the techniques presented in this section focus on extracting
special features from the triangle mesh to compute the resulting path.

A path planner based on geodesic distances over triangular 3D meshes was recently
proposed by Torchelsen et al. (TORCHELSEN et al., 2010). Based on a previous work
(TORCHELSEN et al., 2009), Torchelsen et al. divide the input mesh (that represents the
environment) into Quasi-developable meshes, which can be parametrized into a planar
representation with minimal distortion. Based on this parametrization of the surface,
Torchelsen et al. also parametrizes the goal position of navigation into the plane, and uses
this point as the origin to compute a distance field for the surface. The idea is that the
Euclidean distance from any point on the parametrization to the origin point is equal to the
geodesic distance on the surface to the goal position. Torchelsen et al. uses the gradient
descent of this distance field to compute the shortest path on the surface. Figure 2.5
illustrates the distance field of a triangular mesh.

The work of Torchelsen et al. focuses on multi-agent systems, and uses an occupancy
grid approach to handle the collision avoidance between agents. The main advantage of
this method is the high performance achieved by using an efficient CPU/GPU architecture.
On the other side, the paths generated are close to the shortest ones (except by some
minimal distortion, which can be controlled by the system). By using this approach, the
generated paths can get very close to obstacles or generate very sharply curves, which
reduce significantly the path suavity. Our potential field approach produces smooth paths
that whenever is possible avoid getting very close to obstacles.

Kallmann (KALLMANN, 2005) also developed a path planner based on a triangle
mesh representation of the environment. In his method, Kallmann projects the environ-
ment into a plane. The projected obstacles are used as constraints to generate a trian-
gulation of the free areas of the environment. Kallmann used the Constrained Delaunay
Trianguation — CDT (CHEW, 1987) to compute such triangulations. Based on this trian-

I'The path is considered smooth if it doesn’t have sharp corners. If the path is described by a parametrical
function, it should have at least C'! continuity. In robotics, a smooth path is important to alleviate odometric
errors. In animated scenes, a smooth path usually increases the scene credibility.

22

0.9
0.8
0.7
£ 0.6
£405
Ldo4

£403

0.2

0.1

Figure 2.5: Geodesic distance field of a model. The scale represents the geodesic distance
from any point of the mesh to a point in the red region. Distances are normalized to the
interval [0, 1]. Figure from (TORCHELSEN et al., 2010).

gulation, Kallmann generates a roadmap, which can be queried for paths. Yan et al. (YAN
et al., 2008) developed a similar method that improves the construction of the roadmap,
thus increasing the quality of the solution for some queries. The main advantage of associ-
ating the roadmap with a triangulation is that some advanced queries can be easily solved,
such as guarantee a minimum clearance on the path (KALLMANN, 2010). Figure 2.6
illustrates this kind of query.

Despite the fact that the methods developed by Kallmann or Yan et al. uses triangle
meshes as the main data structure, they are developed exclusively for planar environments.
Our method does not make any difference between planar and 3D surfaces.

2.3 Path planning based on potential fields

Path planning algorithms based on potential fields have in common the fact that they
define a function, which is evaluated for the whole environment. The parameters of these
functions are the obstacles and goal of the navigation. The result of the function is a field
of values (usually refereed as potential values). The directions to reach the goal position
can be extracted from this field.

The main difference among these techniques is the function used to compute the po-
tential field and how directions are extracted from the field. The choice for a particular
function is motivated mainly by the kind of behavior that a technique produces through
the generated paths.

The work of Khatib (KHATIB, 1986) introduced the use of potential fields to imple-
ment a real-time collision avoidance system for robots with several joints. Khatib divided
his work into a high level system, where the goal position of the robot is defined, and
a low level system, where the potential field is used to produce commands that lead the
robot to the position defined in the high level system. A set of gravitational forces was
used to produce the potential field, where the goal position produces attractive forces and
the obstacles produce repulsive forces.

23

Figure 2.6: Minimum clearance path planner proposed by Kallmann. In this figure,
three different paths were computed with different minimum clearance. The red lines
define the environment limits, while the blue lines illustrates the resulting paths. Figure
from (KALLMANN, 2010).

Fj Start Position
j ? Goal Position

Q Local Minima

Navigable area

_—
Local minima path

>
Local minima free path

Figure 2.7: Illustration of a case where a local minima must be handled, in order to avoid
that the agent get lost in the environment.

The main drawback in Khatib’s approach is the occurrence of local minimum in clut-
tered environments, which can lead to a stable positioning of the robot before it reaches
his goal. Basically, this problem happens in local approaches, where the agent does not
have a global view of the environment. The algorithm makes the agent move inside the
environment and, eventually, leads to a dead end. Figure 2.7 illustrates a case that, if not
dealt correctly by the algorithm, can lead to a local minima.

To solve the local minima problem, Connolly et al. (CONNOLLY; BURNS; WEISS,
1990) developed a path planner based on harmonic functions. Using the Laplace’s Equa-
tion to generate the potential field, Connolly demonstrated that his path planner generates
smooth and free of collisions paths. As Connolly presented, Laplace’s Equation does not
produces local minima. In Figure 2.8 Connolly et al. illustrated some of their results in
2D and 3D environments.

Several path planners based on harmonic functions have been proposed after the
one proposed by Connolly. Iiigues and Rosell (INIGUEZ; ROSELLY, 2003; ROSELL;
INIGUEZ, 2005) presented the Probabilistic Harmonic-function-based Method - PHM,

24

=

Figure 2.8: Examples of paths generated with Connolly’s path planner. (a) a 2D envi-
ronment with 3 obstacles, 3 start positions and 1 goal. (b) view of a 3D environment
with 2 starting points and one goal. Images from Connolly et al. (CONNOLLY; BURNS;
WEISS, 1990).

(a) b)

where the path planner is based on a combination of harmonic functions and a random
sampling scheme. This was done to overcome the fact that path planning algorithms based
on potential fields require full knowledge of the environment before the potential field can
be computed, while keeping the advantages of the algorithms based on potential fields.

Trevisan et al. (TREVISAN et al., 2006) presented a framework for path planning
and exploration based on harmonic functions. Based on a previous work (PRESTES
et al., 2001), Trevisan exploited the use of harmonic functions in order to generate paths
inside an environment, favoring an exploratory behavior of the agent. This behavior was
achieved through the solution of the Laplace’s Equation, using a set of rules to control the
boundary conditions of the system.

Although Connolly’s work presents an example of application in a full 3D environ-
ment, the most part of his work assumes that the environment can be projected on a 2D
plane. Other works improved Connolly’s work to deal with robots with several joints
or in full 3D environments (ZHAO; FAROOQ; BAYOUMI, 1996). Recent work based
on harmonic functions like the ones of Iiiigues and Rosell (IRIGUEZ; ROSELLY, 2003;
ROSELL; INIGUEZ, 2005) and Trevisan et al. (TREVISAN et al., 2006) also assume that
the environment can be discretized in that way. None of these works raised the problem
of path planning constrained to arbitrary surfaces.

In the same way as the works based on harmonic functions, Hussein and Elnagar
(HUSSEIN; ELNAGAR, 2002) developed a path planner based on Maxwell’s Equations.
These equations, which are commonly used for magnetic field problems, also do not
present local minima. Although Hussein and Elnagar raised the problem of path planning
in 3D environments, this work also does not presents a solution focusing only on surfaces.

To deal with several agents at the same time (which is usually called in the literature
as crowd simulation), Treuille et al. (TREUILLE; COOPER; POPOVI¢, 2006) developed
a path planner based on dynamic potential fields, which integrates global navigation and
local collision avoidance between the agents in the same set of equations. The Treuille
et al. work is based on a particle simulation system, where the velocity of each particle
and the distance between them is controlled within his equations. These equations are
computed within a regular grid, representing the environment. One of the advantages of
the method is the performance, which is able to simulate up to 10,000 agents in a standard

25

Figure 2.9: Groups crossing using Treuille’s model for crowd simulation. Note the traces
left by the agents while walking. Figure from Treuille et al. (TREUILLE; COOPER;
POPOVIE, 2006).

personal computer at the time of his work. Figure 2.9 presents a case where several groups
of agents cross each other is illustrated.

Also within the crowd simulation field, Park (PARK, 2010) developed a path planner
based on particle simulation. His work uses a potential field approach to control the par-
ticles associated with agents. These potential fields are generated by harmonic functions.
The main advantage of his method is the possibility to control the behavior of agents. By
using some control particles, the potential field is affected in a way that it can control how
the whole crowd moves.

There are also approaches that focus on crowd simulation for 3D environments. The
work of Reynolds (REYNOLDS, 1987) is focused on the simulation of flock of birds and
school of fish, also by simulating a particle system. In his work, the agents can move
freely within the environment while keeping the flocking behavior and avoiding obsta-
cles. Recently, Hartman and Benes (HARTMAN; BENES, 2006) developed a technique
introducing the concept of leadership in these kind of simulation.

As in the other path planning algorithms, systems that simulate crowds of agents only
developed solutions for 2D or 3D navigation. Methods like the ones presented by Park
or Treuille et al. assume that the environment can be projected on a 2D plane. Other
methods, such as the one of Hartman and Benes make efforts to improve the flocking
behavior, and so do not present any solution for path planning constrained to 3D arbitrary
surfaces.

26

3 BVP PATH PLANNER

In this chapter, we will present the BVP Path Planner. It is a technique used to gen-
erate smooth paths to control both real robots and virtual agents. It was proposed by
Trevisan et al. (TREVISAN et al., 2006), and several other extensions were developed
after that. Among these extensions, Silveira et al. (SILVEIRA et al., 2009) developed it
for simulating human behaviors within virtual environments. The 3DS-BVP proposed in
Chapter 4 was based on the work developed by Dapper, which is presented in this chapter.

The BVP Path Planner is a 2D Path Planner based on boundary value problems to
solve a variation of the Laplace’s equation. It is able to find paths by mapping the envi-
ronment to a 2D plane and solving the equation on that surface. The Laplace’s equation
guarantees that the algorithm is free of local minima. The gradient descent of the gener-
ated potential field is used to guide the agent through the environment.

Intuitively, it will assign values to some points of the environment (normally, the ob-
stacles and the goal position of the navigation). Then, a function will use the previous
assigned values to compute new values to other points (normally, the free area of the en-
vironment). At the end of this process, the values on these points can be used to guide
an agent from one point to another of the environment, by always look for points with
lower values than the one on its current position. This is repeated until the target position
is reached.

In the reasoning above, the potential value is the one assigned or evaluated on each
point of the environment. So, the potential field is the set of points on the environment
and its associated potential values. The boundary conditions are the set of values defined
to some points of the environment, like obstacles, limits of the environment and goals.
Finally, the gradient descent is the direction that an agent needs to take on a given position
in order to go to a position on the environment where the potential value is lower than the
one on that position. Following the gradient descent, the agent will reach its goal, if a
path exists.

3.1 Potential fields for path planning

The BVP path planner is a 2D path planner that generates paths using the potential
information computed from the numeric solution of the partial differential equation

V2p(r) = ev-Vp(r), (3.1

with Dirichlet boundary conditions. In this equation, v € %2 and |v| = 1 corresponds
to a vector that inserts a perturbation in the potential field; ¢ € R corresponds to the
intensity of the perturbation produced by v; and p(r) is the potential at position r € R2.

27

The gradient descent on these potentials represents navigational routes from any point of
the environment to the goal position. Trevisan et al. (TREVISAN et al., 2006) show that
this equation does not produce local minima and generates smooth paths.

To numerically solve a BVP, we can consider that the solution space is discretized in
aregular grid. The grid has m x n cells, each one identified by its coordinates (7, j). Each
cell (7, j) is associated to a squared region of the environment and stores a potential value
p(i, 7). Each cell is distant from its neighbors by 1 unit. Each region is classified as:

* Occupied, if the region contains any obstacle that may block the agent navigation;

* Goual, if the region contains the position that the agent wants to reach at the end of
the navigation. We assume that there is only one goal region on the environment,
once an agent can go to only one position at a time;

* Free, if the agent can freely navigate over it.

After each region is classified, the associated cells of the grid receive an initial po-
tential value. We must define the high potential and the low potential values, which are
usually defined as 1 and 0, respectively. Then, each cell receives a potential value as
follows:

* Cells associated with occupied regions receive the high potential. Also, they are
tagged as occupied;

* The cell associated with the goal region receives the low potential. Also, the cell is
tagged as goal,

The Dirichlet boundary conditions will be defined by the cells with the occupied and
goal cells. The cells with the occupied tag (and, thus, the higher potential value) will pre-
vent the agent from running into obstacles, while the goal cells (with the lower potential
values) will generate an attraction basin that pulls the agent. This attraction to the goal
and repulsion from the obstacles comes from the interpretation of the gradient descent of
the potential field. Applying the occupied tag and the high potential value to the cells
at the border of the grid will also make these cells repulse the resulting paths. This will
avoid that the agents get out of the area covered by the grid.

After the boundary conditions being defined, the Gauss-Seidel method is employed
to compute the potentials of the free cells. In this method, the potential of the free cells
are improved at each iteration, getting closer to the correct solution of the Equation 3.1.
From Equation 3.1, the Gauss-Seidel method updates the potential of a cell ¢ through

_ptptpetp (= p)ve + (= p)vy)

2
De 1 3 (3.2)

where p. = p(i,7)" pp = p(i,j — D% pe = pli, g + 1) o= p(i — 1,5)% pr =
p(i+1,7)" and v = (v,,v,). tis a reference to a value in the current iteration, while
t — 1 refers to a value in the previous iteration. Figure 3.1 illustrates these cells in a grid.

The GS method allows the use of partial results as an approximation of the potential
field (PRESTES et al., 2001). Since the exact solution is not necessary, we can stop
the iterative process when the accumulated error is below a tolerance threshold e,,,;.
Depending on whether the accumulated error is below or not e,,,,, it is said that the

28

o 1[(i,j+1)
e & & (L)) (L)
¢ (i71)

Figure 3.1: Cells of a grid, when Equation 3.2 is evaluated for the cell p..

potential field has converged or not, respectively. The accumulated error e in a given
iteration ¢ is computed by

e(t) => Y Ip(i, 5) — pli,)", (3.3)

i=1 j=1

where p(i, j)! is the potential of the cell (4, j) at the iteration ¢, p(i, 7)*~! is the potential
of the same cell in the previous iteration and m and n are the grid dimensions. When
e(t) < emaz, the GS method stops its execution and the agent can start to walk on the
environment.

After the computation of the potential field, the agent moves following the direction
of the gradient descent at its current position r,,. This is computed through the cell (i,)
associated with the position r,, with the Equation

Pi—Dr Db — Dt
— Vp. = , , 3.4
j% (5 5) (3.4)

where p., pi, pr, pp and p; uses the same notation used in Equation 3.2.

3.2 Global path planner

The global path planner is composed of several global maps. Each possible goal
position required by at least one agent requires one global map associated in the global
path planner. A global map is composed by a goal position and a potential field. The
grid of cells used by the potential field is obtained from the discretization of the entire
environment. The potential field is built and computed as described in Section 3.1.

For any position in the environment, if is possible to define a path that leads to a
given goal position, the global map is able to find that path. This can be guaranteed
by the properties of Equation 3.1, if the discretization represents the connectivity of the
environment and if the potential field has converged after the GS method. This way, any
set of agents that needs to reach the same goal position can share the same global map,
even if they are in different locations of the environment. This is useful to avoid the
computation of several global maps for the same goal.

3.3 Local path planner

Every agent in the environment is associated with one local map, which is used for
local navigation. As the global map, the local map is composed of one potential field and

29

Obstacle
mappedon
the local map

Figure 3.2: Global map and local map. Part of the local map of the agent is over an
obstacle (not shown in the figure). From the global map, only the obstacle cells are
shown, to avoid visual pollution.

one goal position. Differently from the global map, it cannot be shared between different
agents.

The local map is associated with a small area of the entire environment, centered at
the current position of the agent. Every time the agent moves through the environment
the local map moves in the same way. Thus, the local map is overlaid on the global map.
This way, at a given time ¢, each cell of the local map is associated with a region r on
the environment, which is also associated with a cell on the global map. So, through the
region r, each cell of the local map is associated with a cell on the global map. Figure 3.2
illustrates this.

Usually, the distance between the cells in the local map is smaller than the distance in
the global map. As the resolution of the grid impacts on the quality of the generated paths
the global map uses bigger cells to assist the agents in the whole environment, while the
smaller cells of the local map improve the quality of the motion of the agents.

The local map is divided into three zones: the border zone (b-zone), the free zone
(f-zone) and the update zone (u-zone). The b-zone comprises the cells on the border of the
local map, the f-zone comprises the cells adjacent to the b-zone that are not on the b-zone,
and the u-zone comprises the cells adjacent to the f-zone, which are not on the b-zone or
f-zone. Figure 3.3 illustrates these zones in the potential field grid.

While the agent moves through the environment, each cell of the local map is updated
according to the zone that it belongs to and the associated cell on the global map. The
cells of the local map are classified in the following way:

* The cells on the b-zone are classified either as occupied or goal. If the goal position
is on the f-zone or the u-zone, all of these cells are classified as occupied. Otherwise,
the direction of the gradient descent given by Equation 3.4 on the global map is
projected on the border of the local map to choose the cells that will be tagged as
goal, and the remaining are classified as occupied,

* The cells on the f-zone are classified either as free or goal. The cells in the f-zone
associated with a goal cell on the global map are classified as goal. All other cell
are classified as free, no matter if the associated cell on the global map is a free or
occupied cell;

30

XXX XXX XXX XK

X Y | obstacle

X X[x| X

X view cone X| intermediate

X > goal

X)2 |

X ™

X[XX X|

X X|X X‘ globZI gradient

X X| =
ocal gradient

XXX XXX XXX XX

: u-zone E f-zone |X| b-zone

Figure 3.3: The zones of a local map. The b-zone refers to the cells on the border of the
local map, and its cells are classified as occupied or goal. In the f-zone the cells can be
classified as free or goal. Finally, the cells at the b-zone can be classified as occupied, free
or goal. As the local map has only local knowledge about the environment, the gradient
from the global map is used to set the goal on the border, thus avoiding that the agent get
trapped in local minima.

* The cells on the u-zone are classified in the same way as the associated cells on the
global map are. This way, the cells on the local map associated with free cells on
the global map are classified as free, the cells associated with occupied cells on the
global map are classified as occupied, and the cells associated with goal cells on
the global map are classified as goal.

The cells of the local map are classified this way to avoid local minima. Because the
local map covers only a small fraction of the environment, the agent can get stuck in a
local minima if no global information is used. The usage of the gradient from the global
map inserts the global information into the local map, avoiding the local minima problem.

The main advantage in the use of the local map approach is that it is smaller than the
global map, reducing the computation needed to update its potential field. Because the
global map discretizes the entire environment, it tends to have a large number of cells.
Potential fields with a big number of cells are slower to update, making it a not so good
option for use in dynamic environments. The local map approach reduces the problem to
a small region around the virtual agent, with a small number of cells. Assuming that a
dynamic obstacle will influence the motion of an agent only when one is near the other,
the local map approach produces good results without spending much processing time.
This way, an agent can use the gradient (Equation 3.4) of the local map instead of the one
from the global map to move within the environment while avoiding dynamic obstacles.

31

4 PATH PLANNING IN 3D TRIANGLE MESHES

In this chapter, we will introduce our contributions by explaining the 3DS-BVP Path
Planner. This is a new technique for path planning in triangle meshes with holes and
bends. This technique is inspired on the BVP Path Planner, presented in Chapter 3. This
way, it computes a potential field on the mesh, and uses its gradient descent to draw the
paths on the surface.

The environment considered in this technique is a 3D surface, discretized in a mesh of
triangles. Although any set of polygons could be used, the choice for a triangle mesh has
a set of advantages. Arbitrary surfaces can be defined using just triangles, and computing
the area and normal of 3D triangles are very cheap tasks in terms of processing. Also,
triangle meshes are widely used in computer graphics industry to model objects and vir-
tual environments. Many modeling software like Maya® (AUTODESK, 2011a) and 3D
Studio Max® (AUTODESK, 2011b) natively handle triangle meshes. Most commercial
game engines (like CryEngine® (CRYTEK, 2011), Unreal Engine® (EPICGAMES, 2011)
and Unity3D® (UNITYTECHNOLOGIES, 2011)) also use triangle meshes as their main
data structure for the virtual environments. All this means that our technique can be easily
applied to existing 3D models and surfaces.

Concerning the potential field, the same aspects defined for the BVP Path Planner
are used. The cells of the potential field are associated with the triangle vertices, and
each cell is associated to a potential value and a tag. Also, there is the relaxation step,
that evaluates the potential for some cells until a maximum accumulated error threshold
emaz 18 achieved. At the end, the gradient is computed at the triangle level, based on the
potential from the cells associated with its vertices. The main difference of the methods
used in the 3DS-BVP from the methods employed in the BVP Path Planner is how the
potential value and gradient is computed, as the distance between the cells in a triangle
mesh is not constant in a regular grid.

This chapter is organized as follows. Initially, we present the method to compute the
potential field in Section 4.1, which can be divided in terms of the way that the environ-
ment is discretized (Subsection 4.1.1) and the numerical method itself (Subsection 4.1.2).
Then, we present the equations used to compute the gradient of the potential field in
Section 4.2, which is used by the agent to guide itself on the surface. Next, we present
some considerations about the potential fields on 3D surfaces in Section 4.3. Finally, we
present the approach used to implement the BVP Path Planner in Section 4.4, presenting
algorithms and data structures.

32

1
—— Edge
® \Vertex

— — - Division

Figure 4.1: A triangle divided in regions to build a cell. In highlight, the area returned by
the function Region(vy,t).

4.1 Potential fields in open triangle meshes

The path planner is inspired by the solution of the Equation 3.1 with the inner param-
eters € = 0 and v = (0, 0). In a two dimensional environment it is easy to understand how
the parameters € and v are used and how these parameters affect the generated paths. But
in a path restricted to a three dimensional surface it is not clear how these parameters will
affect these paths. Also, the use of € = 0 allows the simplification of Equation 3.1 to the
Laplace’s equation, which is

Vip(r) = 0. 4.1)

The word inspired emphasizes that our equation does not directly derives from the
Equation 4.1. It is based on a heuristic function that mimics the potential fields generated
by the Laplace’s Equation.

In order to present the heuristic function used to approximate the potential fields gen-
erated by Equation 4.1, we first present the way that a triangle mesh representation of
an environment is discretized into cells. Then, we present how the potential of each cell
influences each other, resulting in a numerical method that computes the potential field.

4.1.1 Environment discretization

We assume that the environment is represented by a triangle mesh. The set of vertices
of the triangle mesh induces the set of cells of the potential field. Each cell is a small
fraction of the surface, composed by a fraction of each triangle sharing the same vertex.
As each triangle has three vertices, each triangle is divided in three regions, being each
region part of a different cell. The triangle is divided in regions by connecting each
median of the triangle edges to the triangle centroid. Each triangle region is associated to
the vertex in its limits and, for a given vertex v of the triangle ¢, the function Region(v,t)
returns that associated region. This is illustrated in the Figure 4.1.

In order to define a cell, we need to know the regions that are part of it. The set of
triangles that share the same vertex v is returned by the function T'riangles(v). Then, we
say that the cell associated to a given vertex v is defined by Cell(v) = { Region(v,t)|t €
Triangles(v)}. The function Vertez(c) returns the vertex associated to a given cell c.
Figure 4.2 illustrates these concepts by showing an example, where the cell associated to
the vertex v; is highlighted, as well as the triangle regions around that vertex.

Finally, the concept of neighbor cell is derived from the connections between the ver-
tices in the triangle mesh. Two cells are neighbors if the associated vertices are shared by

33

V3 — Edge
v ® \ertex
2
--- Cell limit
Cell
Vy
Vg
Vs

Figure 4.2: A triangle mesh and its corresponding cell division. The five highlighted
triangles ({v1, ve,v3}, {v1,vs,v4}, {v1,v4, 05}, {v1,v5,06} and {vy,vq,v6}) share the
same vertex v; and, therefore, they are in the set Triangles(vy). Applying the func-
tion Region(vy,t) for each triangle ¢ in T'riangles(v;) results in the cell associated to the
vertex vy, which is highlighted with the dotted red line around v .

the same triangle. This way, two cells ¢; and ¢, are neighbors if {Triangles(Vertex(c;)N
Triangles(Vertex(ca)} # {0}. This way, the set of neighbors of a cell ¢ is defined by
Neighbors(c) = {Cell(v)|Vt € Triangles(c),Yv € Vertices(t),v # Vertex(c)}.

Note that, although Figure 4.2 looks like a Voronoi diagram (BERG et al., 2008), it
is a different concept. In this work, Voronoi diagrams are not used to avoid certain cases
where a Voronoi cell may cover a triangle that does not share the vertex associated to the
cell. For example, consider the case depicted in Figure 4.3. The Section 4.2 explains
how a moving agent uses the gradient of the cells associated to the vertices of the triangle
where the agent is on. Consider a 3 dimensional environment with an agent moving on
the triangle t = {wvs, v3, v4}. If the vertex vy is not on the plane defined by ¢, the gradient
between the cells will not be parallel to that plane. As it would be desirable that the
gradient follows the surface, we choose to not use Voronoi diagrams.

4.1.2 Computing the potential field

In order to compute the potential field on the set of cells, the boundary conditions
must be set according to the environment discretization. These boundary conditions are
set according to the positions of obstacles and the goal in the environment. We assume that
obstacles and goal positions are constrained to the surface. As in the BVP path planner,
each cell receives a tag and an initial potential value, as follows:

* Cells associated with occupied areas of the surface are tagged as occupied and
receive the high potential value. Cells associated with limits on the triangle mesh
are tagged as well;

34

Figure 4.3: The Voronoi diagram of the triangle vertices. Note that the Voronoi cell
associated to the vertex v, overlaps the triangle {vs, v3,v4}. In this case, an agent over
the point p can be associated to the vertex v;.

* The cell associated with the goal position receives the goal tag and the low potential
value;

* Cells associated with free navigable areas of the environment are tagged as free and
receive a mean value between the low and high potential values, as in the BVP path
planner.

In the classification above, we assume that a limit on the triangle mesh is an edge that
belongs to only one triangle. In this text, these edges will be called as limiting edges. This
way, if a triangle mesh has limits, it will be called open mesh. If it has no limiting edge
(like a sphere is, for example), it will be called closed mesh. The cells associated with
limits are those associated with any vertex in one of the ends of a limiting edge.

In order to update the potential value of the free cells, a set of functions need to be
defined. Assuming that the function Dist(v,, v9) returns the Geodesic distance between
the vertices v, and v, (which is equal to the Euclidean distance if the vertices are adjacent
in the triangle mesh), equations

Diin(c;) = min({Dist(Vertex(c;), Vertex(c;)),Ve; € Neighbors(c;)}) 4.2)
and
Dinaz(ci) = maz({Dist(Vertex(c;), Vertex(c;)),Ve; € Neighbors(c;)}) — (4.3)

return the minimum and maximum values, respectively, in a set constituted by the dis-
tances between the vertex of a cell ¢; and the vertices in its neighborhood.

Based on Equations 4.2 and 4.3, the influence of a cell c; over the cell ¢;, relative to
the neighborhood of ¢; is

I(¢iy¢j) = Duin(ci) + Dimaz(ci) — Dist (Vertex(c;), Vertex(c;)) 4.4)

Equation 4.4 is a heuristical measure of how much influence the potential of one cell
c; has over its neighbor ¢;. As Equations 4.2 and 4.3 are computed from the same input

35

Figure 4.4: The values D,,;, and D, of the cell Cell(v). D,,;, can be though as the
maximum radius of a circle centered in v that keeps the neighbor vertices of v outside of
the circle. D,,,, can be though as the minimum radius of a circle centered in v that keeps
the neighbor vertices of v inside of it.

set and they return, respectively, the minimum and maximum values of it, it is guaranteed
that D,in(¢;) < Dinaa(c;). The closer the cell ¢; is to ¢;, the closer the value of I(c;, ¢;)
is to D,yq,. The farther a cell ¢; is from the cell ¢;, the closer the value of I(c;, ¢;) is to
D, Then, the result of I(c;, ¢;) can be interpreted as how close a cell ¢; is to ¢;, in a
scale between D,,;,,(c;) and D,,q.(c;). Figure 4.4 illustrates the values D,,;, and D,
of Cell(v).

Based on Equation 4.4, the function

#Neighbors(c;)

Low(c) = Y Ilcic)) 4.5)

=1

computes the sum of the influences that a cell receives from its neighbors. This function
is then used in the equation

#Neighbors(c;)

I(ci, ¢))
) =), 4.6
p(c) ; p(c)Itotal(ci) ()

which is used to update the potential p(c;) of a free cell ¢;. It is a heuristic method to
estimate the value of free cells in the potential mesh.

The potential values of the free cells are updated using Equation 4.6 until the conver-
gence sets in, as in the BVP path planner. A threshold error e,,,, is used to verify if the
potential field has converged. Based on Equation 3.3, the accumulated error at a given
iteration ¢ on the set of cells C'is

e(t) =) Ip'(c) —p" ()] 4.7)

36

As said in the Section 3.1, the exact solution of the potential field is not required as an
approximate solution is able to provide directions to the defined goal position. Although
this is true, a path can only be found if at least some minimal error is achieved, which is
represented by the threshold we compare to the result of Equation 4.7. Ideally the error
threshold should be equal to 0, but this could lead to a high number of iterations until the
convergence sets. In our experiments, we choose the threshold by experimentation.

4.2 Computing the gradient of the potential field

After the computation of the potential field, an agent should be able to follow its
gradient descent in order to reach the goal position. Equation 4.6 is able to mimic the
results produced by the Laplace’s Equation. We can then calculate the gradient of the
potential field produced with Equation 4.6, as we use to do with the Laplace’s Equation.

One possible solution from the calculus to compute the gradient of the Laplace’s Equa-
tion in an unstructured triangular discretization involves the use of the integral form of that
equation. This can be obtained by integrating the equation over some volume (2, and then
applying the Gauss Divergence Theorem. The integral form of the Laplace’s Equation
and its equivalent after applying the Gauss Divergence Theorem is

/ V2p(r)dS) = f Vp(r) - ndA = 0. (4.8)
Q

o0N

The relation between the gradient of the function p(r) over a volume and the integral
over the surface of the volume of the function times the normal area vector is

/Vp(r)dﬂ =]{p(r)ndA. 4.9)

o0N

The relation above, when computed in sufficiently small volumes, can be used to
compute an approximation of the gradient. This result in

1

Vp(r) ~) %p(r)ndA. (4.10)

o

Assume that we want to compute the approximation of the gradient in the triangle
t = {vg, v1, s}, illustrated in Figure 4.5. For this, we need to compute the edge normals
ng, N1 and ny, which are vectors associated to the edges of . These vectors are in the
same plane defined by the triangle ¢, in the orthogonal direction of the associated edge,
and have the same length of the edge. We also need the area of the triangle ¢, given by
Area(t). Finally, we assume that the function p(r) is already computed in each vertex,
and the value of p(r) in the vertex v can be retrieved by p(v).

The approximation of the Equation 4.10 over the triangle ¢ yelds the equation

Vi)~ et | (5000 + plews) + (G000 + pton)ne

- (3000 + ena)| @1

37

Figure 4.5: A triangle ¢, its vertices and edge normals. These normals are required to
compute the gradient of the triangle ¢ = {vg, v1,v2}. Note that Dist(vy,v1) = ||no|,
Dist(vy,vq9) = ||n1|| and Dist(ve, vg) = ||n2]]-

The Equation 4.11 can be simplified to

1

vpll) ~ 2Area(t)

[p(vo)(n2 — no) 4+ p(v1)(n1 — no) + p(v2)(m1 +n2)] . (4.12)

As the vectors ng, n; and ns are in the same plane and have the same lengths of the
edges of the triangle (being orthogonal to each edge), the Appendix A - Proof of Equation
4.13 allows the following equality:

ny +ng —ng = 0. (4.13)

This leads a simplification in the Equation 4.12 to

Vp(t) 1 0 [— p(vo)ny — p(v1)na + plva)no) (4.14)

~ 2Area
which is then used to approximate the gradient of the potential field at the centroid of the
triangle ¢, which is then followed by the agent to reach the goal position.

4.3 Potential fields in 3D surfaces

In a completely planar environment discretization, the path planner presented until
Section 4.2 behaves in a similar way to the BVP Path Planner (Chapter 3). The goal posi-
tion must be checked with a goal tag in the respective cell, while the obstacles are tagged
as occupied in their cells. Any limits in the environment are also tagged as occupied and
all the remaining cells are tagged as free. All cells receive some potential value, according
to what was specified in Sub-Section 4.1.2. Then, the relaxation step evaluates adequate
values for free cells. And finally, the agent can use the gradient of the potential field to
draw a path to follow.

In such kind of environment, the path planner can take advantage of a simpler math,
since all the vertex positions and normals can be manipulated in 2D. Naturally, a 3D
discretization will require a third coordinate for the position of vertices and normals.

For 3D open meshes (as defined in Sub-Section 4.1.2) the path planner works with
minimal modification, and the addition of a coordinate axis does not introduce significant
changes in any of the methods presented in the previous section. During the relaxation,

38

(a) (b)

Figure 4.6: Views of the north and south pole of a sphere, and three paths on it. (a) North
pole, with an artificial obstacle. (b) South pole, with the goal position. According to the
initial position inside the artificial obstacle in (a) the agent takes a very different path to
reach the goal position in (b).

only the function Dist(v,vy) changes and must compute the Geodesic distance in 3D
(note that for two adjacent vertices in the mesh, this is equal to the Euclidean distance).
In addition, the normals used to compute the gradient also must be stored in 3D, being
parallel to the plane defined by the triangle which they belong.

The most relevant modification in the algorithm to deal with 3D meshes is the han-
dling of boundary conditions. Our algorithm requires that at least two different boundary
conditions must be set: one goal cell and one occupied cell. We assume that the goal is
always defined, so for some 3D meshes we should take a special care with the occupied
cells.

If the 3D mesh is open, the cells associated with the limits of the mesh will force the
existence of occupied cells. Closed meshes with obstacles on its surface will also force
the existence of occupied cells. This will generate a gradient that prevents the agent from
leaving the surface limits or colliding with obstacles, and guides to the goal position.

However, if the mesh is closed and have no obstacle on its surface, then our algorithm
will generate only goal cells. If the boundary conditions comprises only one distinct
potential value, the solution of the potential field will comprises cells with this same
value. This raises the problem of null gradient in the potential field (the result of Equation
4.14 will be (0,0)). As the agent needs a valid gradient as a guide to the goal position,
the null gradient gives no clue about which direction it should follow, and the agent will
be stuck in the current position.

To avoid the occurrence of null gradients, the cell containing the initial position of the
agent is tagged as occupied and receives the high potential value. Although the cell does
not contain any obstacle, this will force the potential field to have a gradient capable of
guiding the agent from its initial position to the goal. Also, as the agent is leaving that
position away, the obstacle added will not modify the existence of a path from the initial
to the goal position.

39

Meanwhile, this approach has a drawback. The path taken by the agent may change
significantly according to the initial position of the agent inside the modified cell. Because
the cell that corresponds to the initial position is modified to receive the occupied tag
and high potential value, the gradient on the cell borders will be significantly different
according to the triangle where the position is. The fact that the mesh is closed and do
not have other boundary conditions allows the situation where many different paths can
be taken to reach the same goal position. This drawback is illustrated on the Figure 4.6.

4.4 Implementation

Based on the considerations of the previous sections, we will present our approach to
implement the 3DS-BVP Path Planner. Although the data structure itself is not a contri-
bution of this work, our algorithm description is based on it. So, initially we present the
data structure used, and then the algorithms developed.

4.4.1 The data structure

The main operation needed from a data structure to store the potential field is the
query for cells and their neighborhood. As in the BVP Path Planner, the environment is
discretized in a set of cells. Each cell has an associated potential value and a tag. During
the relaxation step of the algorithm, the potential value of a cell will be updated with a
value computed from its neighbors. Also, a navigating agent will use the gradient of the
potential value of the cells associated with the triangle where it is on. Finally, when the
agent moves around the environment, eventually the agent must update the current cells
from where the gradient is computed. As the agent does not walk with big jumps, these
new cells are just neighbors of the current ones. All these operations will be detailed in
the next sections.

The most appropriate solution for these queries is the use of a data structure that repre-
sents the topological division of cells in the environment. The topological representation
of the environment and its cells allows us to see it as a graph, where a given cell and its
neighbors are easily retrieved from the data structure. Viewing the set of cells as a graph
allows us to easily associate the cell properties (the potential value, tag and position, for
example) to the nodes and edges of the graph.

There are some already well defined data structures for topological divisions. The
Winged Edge (BAUMGART, 1975), the Quad-Edge (GUIBAS; STOLFI, 1983) and the
Doubly-Linked Face List (AKLEMAN; CHEN, 1999) are examples of data structures that
explicitly store the connectivity of a subdivision in an efficient way. All these data struc-
tures differ in how they represent and store the objects of the division, being more suitable
for one algorithm or another. For this work the Doubly-Connected Edge List (DCEL) data
structure (MULLER, 1978; BERG et al., 2008) was chosen due to its simplicity and ca-
pacity to address the neighbors of a vertex, face or edge in constant time.

The DCEL data structure was initially proposed to manipulate 3D polyhedra in algo-
rithms to compute their intersections. The DCEL is composed of three types of records:
the vertex, the face and half-edge. These records are used to define the vertices, faces and
edges of the surface being manipulated. The way that it is defined allows several queries
about one record and how it relates to its neighbors. Also, it is possible to add additional
attributes to these records without interference in the main data structure.

Figure 4.7 illustrates several of the DCEL concepts. The vertex record is used to
define a point of the polyhedron that creates a corner in its geometry. An edge in the

40

Half-Edge
Face
Vertex

Next
Half-Edge face

Figure 4.7: DCEL data structure. Edges are represented by pairs of parallel blue arrows,
vertices by red circles, and faces by green polygons.

DCEL connects two vertices and is actually defined by a pair of half-edges, being each
half-edge associated with one of these vertices. The vertex associated to one half-edge h
is the origin of it, and is accessible through the function Origin(h). About this pair of
half-edges, it is said that one is the rwin of the other. The twin of a half-edge is returned
by the function Twin(h). An edge is not explicitly stored in the data structure, but can be
recovered given one of the half-edges and its twin. Finally, a face is defined by a sequence
of half-edges, usually in a counter-clockwise order. Each half-edge is associated with only
one face. The fact that one edge is defined by two twin half-edges allows an edge to be
associated to the two faces that it divides. The half-edges are connected among themselves
through the next and previous pointers, which can be retrieved by the functions Next(h)
and Previous(h).

Several different half-edges can have its origin at a vertex v. Explicitly, the vertex v
is associated with only one half-edge, returned by the function Incident(v). As the set
of half-edges that have their origin at v can be sorted in clockwise or counter-clockwise
order, the next half-edge starting at v from the half-edge h in clockwise order is returned
by Next(Twin(h)) and in the counter-clockwise order is T'win(Previous(h)).

A face f in the DCEL data structure is associated with only one half-edge, that can
be retrieved by the function Boundary(f). The sequence of half-edges that limits a face
can be obtained by following the next or previous pointers of the half-edge returned by
Boundary(f). The data structure does not restrict the format of a face, but in this work
only triangles are considered.

Each half-edge h can also be associated with one face, through the function Face(h).
As this work will consider only triangular faces, in a closed mesh each half-edge is asso-
ciated with a triangle. For open meshes, some half-edges will not be associated with any
specific face, and the function F'ace(h) will return the constant null for these half-edges.

Finally, an auxiliary function was added to the DCEL data structure. For any two

41

vertices v, and vy, the function Link(v;, vy) returns the half-edge which has its origin at
vy and the origin of its twin half-edge at vo. The function Link(vy, v,) returns the constant
value null if the vertices v; and v, cannot be connected by a single pair of twin half-edges.

Figure 4.7 is useful as an example of the DCEL structure. In it, the half-edges, vertices
and faces records are illustrated. Each pair of parallel arrows represents the twin half-
edges. The next pointer of the half-edges are also depicted in Figure 4.7. The previous
pointers are not, as they would be equals to the next pointers in the opposite direction of
the arrows. Also, the associated faces of the half-edges are indicated. The origin of each
half-edge is the vertex that they are connected to.

4.4.2 Algorithm

In this section we present the algorithm for the 3DS-BVP Path Planner. It assumes
that the environment is already discretized in a triangle mesh stored in a DCEL. These
algorithms are exactly the same for 2D environments and 3D surfaces.

The Algorithm 1 resumes the basic steps needed to execute the 3DS-BVP Path Plan-
ner. In it, the lines 2 up to 10 initializes all cells, by tagging it as free, except those cells
associated with the limits of the mesh. From the lines 11 up to 16, it sets the tag occupied
in all cells that have an obstacle in it. Finally, the lines 17 up to 20 sets the goal position
in the respective cell, using the tag goal. In the lines 2 up to 20, the cells also receive a
potential value, according to the Sub-Section 4.1.2.

After the initialization of the cells, the potential field can be computed (lines 21 and 22
of Algorithm 1). The relaxation is detailed in Algorithm 2, which receives as parameters
the error threshold e,,,4,., as well as the DCEL previously initialized. The lines 4 up to 12
keep in loop until the accumulated error in one single iteration is bellow e,,,,.. When this
happens, the algorithm finishes. Line 5 serves to restart the sum of the accumulated error
in one iteration. Lines 6 up to 11 update the potential values of the free cells, as well as
compute the error of one iteration. The line 8 solves the Equation 4.6. Line 9 computes
the error between the current and the previous potential value of the cell ¢, adding it to the
accumulator e.,,ren¢. Finally, line 10 updates the potential value of the cell c.

When the Algorithm 2 returns to Algorithm 1 with the potential field computed in the
DCEL T, the Algorithm 3 starts to move all agents over the surface of the triangle mesh.
Basically, the lines 4 up to 14 stays in loop until all the agents reach the goal position, and
at each iteration it picks up one agent a to move. The line 5 retrieves the current triangle
t where the agent a is on the surface. Lines 6 up to 8 retrieve the cells associated with
each vertex of the triangle ¢. Lines 9 up to 11 computes the edge normals of t. As said
in Sub-Section 4.2, these normals are in the same plane of ¢. The functions Vertex0(t),
Vertexl(t) and Vertex2(t) retrieves each vertex of the triangle ¢. Finally, the line 12
computes the gradient descent vector (Equation 4.14), used to move the position of the
agent a, in line 12.

Finally, Algorithm 4 updates the position of an agent a, according to the current gra-
dient descent grad. It tests on the line 5 if the agent is already on a goal cell. If not,
the lines 4 up to 13 update the current agent position and, eventually, the current face
where the agent is on. Line 4 computes the new position, based on the current position
of the agent, the normalized direction grad and the agent speed. The test at the line 6
check if the new position is inside or outside the triangle associated to the agent. If in-
side, line 7 updates the current position of the agent. If not, 9 up to 12 compute a new
position on the limits of the current triangle, finds the neighbor triangle that shares the
crossed edge, and updates the position and current face of the agent. The auxiliary func-

42

tion CrossedEdge(t, Position(a),p) returns the edge of ¢ crossed by the agent when
going from Position(a) to p. The function Intersection(e, Position(a),p) computes
the intersection between the edge e and the segment starting at Position(a) and ending
at p.

Algorithm 1 Path planning using triangular surfaces
1: T < the triangle mesh representing the environment, in DCEL format
: for all v € Vertices(T') do
if v is a limiting vertex then
Tag(Cell(v)) < OCCUPIED
p(Cell(v)) < high potential value
else
Tag(Cell(v)) < FREE
p(Cell(v)) < intermediate value between low and high potential value
end if
end for
: O < the set of obstacles in the environment
: forallo € O do
v <— Region(Position(o),T)
Tag(Cell(v)) + OCCUPIED
p(Cell(v)) < high potential value
: end for
: g < the goal position of the navigation
: v < Region(g,T)
: Tag(Cell(v)) + GOAL
: p(Cell(v)) < low potential value
. emaz < the max allowable accumulated error in the potential field
. Relaxation(T, emay)
: A < the set of agents that must reach the goal g
: MoveAgents(T, A, g)

D A AN

[NS TN NS T NG I NG I NS e e e e e e

43

Algorithm 2 Relaxation(T, €,4.)

1: {T': the triangle mesh representing the environment, in DCEL format}

2: {€mae: the max allowable accumulated error in the potential field, e,,,, > 0}
3: Ecurrent $— OO

4: while e..rent > €maz dO

5 Ccurrent < 0

6: forall v € Vertices(T), where T'ag(Cell(v)) = FREE do
7: ¢+ Cell(v)

8: P Z#Nezghbars(c [p(c) Ifo:;]] {Equation 4.6}

9: €current $ Ecurrent T |p p()‘

10: p(c) < p

11: end for

12: end while

Algorithm 3 MoveAgents(T, A, g)

1: {T': the triangle mesh, after the Algorithm 2}
2: {A: the set of agents that wants to walk over the surface defined by 7'}

3: {g: the goal position of the navigation }
4: while 3a € A where Tag(Cell(Position(a))) # GOAL do

5.t < Face(T, Position(a))

6: co < Cell(VertexO(t))

7. ¢ < Cell(Vertexl(t))

8: g < Cell(Vertex2(t))

9: ng < EdgeNormal(t,VertexO(t), Vertexl(t))
(Z,

1 ng EdgeNormal(t VertexO(t), Vertex2(t))

12: grad < Tea(t) [— p(co) * nqy — p(c1) * ng + p(e2) * no| {Equation 4.14}
13: UpdatePosition(a, grad)

14: end while

),V)

10: ny < EdgeNormal(t, Vertex2(t), Vertexl(t))
),V)
p(

Algorithm 4 Update Position(a, grad)

1: {a: the agent that should be moved}
2: {grad: the gradient that will guide the agent a}
3: if T'ag(Cell(Position(a))) # GOAL then

4: p <« Position(a) + ”Z:ZZ”Speed(a)
50t < Face(a)

6: if Inside(p,t) then

7: Position(a) < p

8: else

9: e < CrossedEdge(t, Position(a), p)
10: p < Intersection(e, Position(a), p)
11 Position(a) < p/

12: Face(a) < Face(Twin(e))

13: endif

14: end if

44

5 RESULTS

In order to evaluate the presented algorithm, we developed a set of tests. Initially, we
compared the potential fields generated with our technique with the ones generated with
the BVP Path Planner. By showing the similarity between these techniques, we show that
our technique is able to produce smooth paths with low collision probability. We also
present the paths obtained with some non-planar surfaces. We also present some tests that
show that the 3DS-BVP maintains the local minima avoidance behavior of the BVP Path
Planner. Finally, we present some performance tests.

Note that this chapter presents current capabilities of our approach. Chapter 6 will
focus on the limitations of our approach in extreme cases, as well as the degenerated
cases not covered in this work.

5.1 Comparing our method with the BVP Path Planner

One of the motivations to develop the proposed solution is to develop a path planner
capable of generate smooth paths on arbitrary surfaces. The BVP Path Planner produces
paths with this property due to Equation 3.1. This equation is an extension to the Laplace’s
Equation (Equation 4.1), which is able to produce smooth paths without local minima.
The use of parameters € and v adds a control to the potential fields without affecting the
smoothness of the generated paths or let local minima occur. This way, we will use ¢ = 0
through the tests in order to compare our approach with the undistorted potential fields
generated by the BVP Path Planner.

To demonstrate the similarities between the proposed technique and the BVP Path
Planner, a set of test cases were developed comparing the paths produced by both tech-
niques. We also made a comparison between the potential values of our technique and the
ones generated by the BVP Path Planner.

We designed a set of planar environments, where the BVP Path Planner and our tech-
nique were applied. Each environment has a set of obstacles and a goal. To use the
BVP Path Planner, each environment was discretized into a regular grid, as explained in
Section 3.1. To compare with our technique, the environments were discretized in two
different ways:

* Regular triangle grid: the test environments were discretized into a set of equilat-
eral triangles;

* Noisy triangle mesh: the regular triangle grid generated in the previous case was
deformed by adding a random displacement to each vertex of the mesh. As the
previous case used equilateral triangles, limiting the displacement of vertices to

45

less than the 50% of the triangle edge size guarantees that the triangle mesh will
continue valid. In our tests, we limited the random displacement to 40% of the size
of triangle edges.

As the BVP Path Planner uses regular grids to discretize the environment, the tests us-
ing regular triangle grids were conducted in order to better compare our approach with the
BVP Path Planner. From these tests, an optimal result should be an exactly replication of
the potential fields produced by the BVP Path Planner. As the environment discretization
is different, it is expected that, numerically, the potential values of each potential field be
slightly different. Then, we assume that the closest the values of potential generated by
our technique are to the ones generated by the BVP Path Planner, the better are the results.

The second set of tests, using noisy triangle meshes were conducted in order to better
represent the shape of the triangles found in common non-planar triangle meshes. As the
average triangle shape is not as regular as in the previous case, we should expect worse
results from this test. Even so, as a result we assume that the closest are the values of
potential generated by our technique to the ones generated by the BVP Path Planner, the
better are the results.

Figure 5.1 illustrates two of these test cases. The test case 4 is represented by Figures
5.1(a) and (b), while the test case 8 is represented by Figures 5.1(a) and (d). As said, test
4 and 8 differs by the triangle mesh that it uses, so the result produced by the BVP Path
Planner in 5.1(a) is the same for test cases 4 and 8. The green region on the left border of
each image represents the goal of the environment. The yellow lines delimit the free cells
from the occupied and goal cells. Figure 5.1(a) represents the environment discretized
into a regular grid, and the white lines on it illustrate paths generated by the BVP Path
Planner, starting at several positions of the environment. Figure 5.1(b) presents the same
environment, but discretized into a regular triangle grid. The blue lines on Figure 5.1(b)
and (d) represents paths generated with our technique. Figure 5.1(c) exposes both paths
from Figure 5.1(a) and (b) overlaid in a single image, in order to visually compare then.
Finally, Figure 5.1(d) exposes the same environment, discretized into a noisy triangle
mesh. The test cases 1, 2, 3, 5, 6, and 7 are presented in Appendix 8.6.

Observing the paths produced by the 3DS-BVP in Figure 5.1, they are quite similar to
the paths produced by the BVP Path Planner. By using the noisy triangle mesh, the path
loses some smoothness due to the presence of low quality triangles, but they still mimics
the results produced by the BVP Path Planner and by 3DS-BVP over a regular triangular
grid.

We have also compared the potential value in each cell of the potential field produced
by the 3DS-BVP with the potential field generated by the BVP Path Planner in the same
position of the environment. Table 5.1 presents a summary of the differences found be-
tween these values in each test case.

We can see that our method generated potential fields very similar to those produced
by the BVP Path Planner. In average, for the regular triangle grid, the difference was of
0.7%, with a standard deviation of nearly 0.7%. For the noisy triangle mesh, the differ-
ences were bigger, being nearly 1% on average and 1.1% of standard deviation.

Concerning the maximum differences, the regular triangle grids presented relatively
small differences. The average maximum error was about 7%, while the greatest maxi-
mum difference was found in the test case 3 (8.957%). When looking at the noisy triangle
meshes, the highest difference was 49.989%, found in the test case 7. Although this is
a considerable big difference between the 3DS-BVP and the BVP path planner, it oc-
curred in an environment that had an average difference of 1.867% and standard deviation

46

(b)

(© (d)

Figure 5.1: Comparison between the BVP Path Planner and the 3DS-BVP using regular
and noisy triangle meshes. The gradual color transition from green to red represents the
value of the potential in each point of the environment, from O to 1, respectively. (a) The
environment discretized in a regular grid, with the paths computed with the BVP Path
Planner; (b) the environment discretized in a regular triangle mesh, with paths computed
with the 3DS-BVP; (¢) comparison between the paths generated with the BVP Path Plan-
ner and the 3DS-BVP; (d) a discretization of the environment using a triangle mesh with
noise, and respective paths generated with 3DS-BVP.

47

Test Case | Average Error | Std. Deviation | Max. Error| #Cells |

_ 1 0.00394 0.00606 0.06224 | 2,500
z 2 0.00303 0.00417 0.05802 | 10,000
g 3 0.01844 0.01283 0.08957 | 10,000
4 0.00604 0.00817 0.08911 | 10,000
Average | 0.00786 0.00781 0.07473
5 0.00903 0.01042 0.15687 | 2,500
Z 6 0.00469 0.00631 0.30755 | 10,000
2 7 0.01867 0.01717 0.49989 | 10,000
8 0.00792 0.01332 0.49913 | 10,000
| Average | 0.01008 | 0.01180 | 0.36586 |

Table 5.1: Comparison between the potential values generated with our technique and the
BVP Path Planner. As the potential values from the potential fields were normalized, the
average error for the regular case was about 0.7%, while in the noisy case it was about
1%. The average deviation was of 0.7% and 1.1%, respectivelly.

of 1.717%. This difference occurred due to the existence of highly deformed triangles
resulting from the noise. The test case 8 produced very similar potential values, and
generated the paths illustrated in Figure 5.1(d).

5.2 Path planning evaluation in arbitrary meshes

We also applied our algorithm on 3D models to analyze how paths are generated on
these surfaces. In Figure 5.2, we used our algorithm to find paths on a car model. Despite
being simple, this model helps to visualize the kind of paths generated by our algorithm.
As in Figure 5.1, the green area on the surface of the model represent goal cells, and the
yellow lines represents division between free, occupied and goal cells.

Particularly, Figure 5.2 is interesting because it clearly illustrates the drawback men-
tioned in Section 4.3. As one can see, the path significantly changes according to the
initial position around the obstacle in Figure 5.2(d).

In another test, illustrated in Figure 5.3, we applied our algorithm on the Costa Mini-
mal Surface (COSTA, 1984). This surface, which can be parametrically represented, is a
complete minimal embedded surface with a genus with three punctures. It does not inter-
sect itself and has no boundary (though we used a discrete version of it, with boundaries.)
We generated several paths over this surface, from several distinct initial positions to a
predefined goal position. In all cases with this surface the algorithm found a smooth path
to reach the goal position, despite its complexity.

In another experiment, we used a model of the Mother and Child statue (see Figure
5.4) to generate paths over this surface. The model has several genus, which also makes it
a good example of the kind of environment that our technique deals with. In Figures 5.4(a)
and (c), our planner has generated quality and smooth paths to reach the goal position. In
Figures 5.4(b) and (d) we used the same initial and goal positions of (a) and (c), respec-
tively, but we also defined some regions where the path could not crossover, simulating
obstacles over the surface. The algorithm demonstrated to be able to find quality and
smooth paths.

48

(a) (b)

(©) (d)

Figure 5.2: Paths produced over the model of a car. (a), (b), (c) and (d) are different views
of the same paths produced with the same set of obstacles and goal. Note in (d) how
different the paths are according to the initial position around the obstacles.

49

Figure 5.3: Paths produced over the Costa Minimal Surface (COSTA, 1984). Note how
lines starting at different points on the surface smoothly reach the goal position (green).

5.3 Local Minima Avoidance

As explained in Section 2.2, a local minima is a region on the environment where
the agent reached a stable configuration without reaching the goal position. Connolly et
al. (CONNOLLY; BURNS; WEISS, 1990) showed that the Laplace’s Equation does not
present local minima. As said before, our technique is local minima free. This is due to
the behavior of the 3DS-BVP, which mimics the potential fields generated by the BVP
Path Planner.

This property can be easily perceived in Figure 5.5. In it, the same environment was
presented in a regular and a noisy triangle mesh, built in the same way as the meshes in
Section 5.1 was. In both cases the generated paths could avoid the local minima in the
center of the environment.

An example of local minima avoidance in a 3D surface is already presented in Figure
5.4. In (a), the path planner found that the best path to follow is through the “arm” of the
statue. But in (b), the 3DS-BVP was able to avoid local minima in that position of the
statue, by following a different trajectory through the top of the statue. A similar behavior
can be noted between (c) and (d).

5.4 Performance evaluation

We measured the performance of our algorithm with the models presented in Sec-
tion 5.2. For our tests, we measured the time spent to compute the potential field, and
the number of iterations needed to converge with different threshold errors. Each model
was executed with a given threshold error for 5 times. The average times and number of

50

(a) (b)

(© (d)

Figure 5.4: Several paths produced over the Mother and Child statue, which has several
genus. Note that in (b) the initial and goal positions are the same as (a), but some obstacles
resulted in a different path. The same occurs in (c) and (d).

() (b)

Figure 5.5: Local minima avoidance in a 2D environment with the 3DS-BVP Path Plan-
ner.

51

Model Faces IVertices/CeIIsIErrorThresh. Iterationsl Time (s)
0.010 1,090 0.0473

Car 1,292 665 0.005 1,286 0.0551
0.001 1,739 0.0743

0.010 781 0.0587

Costa Surface | 2,320 1,259 0.005 938 0.0670
0.001 1,304 0.0928

0.010 16,195 5.8936

Statue 10,000 4,994 0.005 19,267 7.0064
0.001 26,401 9.6050

Table 5.2: Performance evaluation on three test cases.

iterations are presented in Table 5.2. The tests were executed in an Intel® Core(TM) i7
CPU 960 @ 3.20GHz, with 8GB of RAM memory, a graphics card NVidia GeForce GTX
470, running Windows® 7 Professional 64 Bits.

Despite the quality and smoothness of paths generated in the previous tests, our per-
formance evaluation shows that there is still room for improvements. For smaller and
simple models (the Car model, for example) or more complex but still small models (like
the Costa Surface), our algorithm is able to solve the potential field and produce a quality
path for iterative applications. Based on the times presented on Table 5.2, for these cases
our algorithm could achieve an update rate of up to 21 updates per second using an error
threshold equals to 0.01. For the Costa Surface model, using an error threshold of 0.001,
the update rates are of about 10 updates per second.

Although these rates are sufficiently good for iterative applications, they also show
that our algorithm is not yet able to answer queries for real time applications (i.e. that
require update rates of 30 frames per second or more). Moreover, for use with more
detailed models (like the Statue model) our algorithm still requires improvements in its
performance, even for minimally interactive update rates.

Note that the measured times presented in Table 5.2 refers to the relaxation step only.
Drawing the path from a given initial position to the goal does not impact on the algorithm
performance, since the potential field is computed. This is because: (i) the computation
of the gradient of a triangle (Equation 4.14) is very simple; (ii) the Equation 4.14 must be
solved only once for each triangle in the path; (ii1) the DCEL has the capability to answer
the neighbor of a triangle in one simple query. This way, if the target position does not
need to be updated frequently, once the relaxation step is complete, the path planner can
be used in real time to draw paths.

52

6 LIMITATIONS AND DEGENERATED CASES

In Chapter 5 we presented a series of tests made to evaluate some aspects of our
algorithm and validated it. However, we do not effectively exploit the limitations of our
algorithm. In this chapter we will present the known degenerated cases (cases not handled
by our algorithm due to anomalous geometry on the triangle mesh), as well as some cases
where the algorithm presents some unexpected behavior (such as triangle meshes with
acute triangles). Finally, we show that the 3DS-BVP presented the flatness problem,
which is already presented in the BVP Path Planner.

6.1 Degenerated cases

The first degenerated case can be inferred from the Equation 4.4. This case will hap-
pen if at least two neighbor vertices of the triangle mesh have eventually the same coordi-
nates. Suppose that a vertex vy has neighbors v, and vj,. vy and v, are in the same position,
while v, is the farthest neighbor of vg. From this, vy will have the following properties:

* Dyin(v9) = 0, since vy and v, have the same position;

* Dipaz(vo) = Dist(vg, vp), since vy, is the farthest vertex from vy.
From this, if we solve the Equation 4.4 for v, and v, related to vy, we get:

* I(vy,vs) = 0+ Dist(vy,v) — 0 = Dist(vy, vp)
* I(vg,vp) = 0+ Dist(vg,vy) — Dist(vg,vp) =0

This way, if two neighbor vertices vy and v, have the same position, the influence of
the vertex v, at a distance equals to D, (vo) will be equals to 0. If v, has other neighbors
at a distance D, (v9), these vertices will also have an influence equals to 0. This results
that any potential from these vertices will not be propagated to the vertex v, inflicting
undetermined behaviors to the final generated paths, since low quality paths to existing
paths will not be found. The influence of any vertex v,, with D,,;,(vo) < Dist(vo, v,) <
Doz (vp) is not canceled.

A second degenerated case would happen if the input triangle mesh has an indepen-
dent vertex, not connected with any real triangle in the mesh. Suppose that a vertex v
is not connected to the rest of the triangle mesh. Then, the Equation 4.5 will result in
Liotar(Cell(v)) = 0. This will lead to an undetermined value result to of Equation 4.6.
In fact, if a vertex is disconnected from the triangle mesh, it should be ignored in the
algorithm, as it will not affect any produced path.

53

Figure 6.1: Paths generated on a low quality triangle mesh.

The last degenerated case occurs with degenerated triangles (with collinear vertices,
for example.) If a triangle has its area equals to 0, the result of the Equation 4.14 is
undefined, which results in a triangle with undefined gradient. As said in Section 4.2, the
gradient of a triangle is what guides an agent to its goal. Thus, if the mesh has degenerated
triangles, some paths may not be found due to the missing gradient. In order to avoid these
problems, we suggest a regularization of the triangle mesh before the application of the
path planning algorithm.

6.2 Limitations with low quality triangle meshes

As said when evaluating the quality of the paths on noisy meshes (see Section 5.1),
the smoothness of the generated paths is affected by the quality of the triangle mesh. For
this text, a good quality mesh is understood as a triangle mesh composed with a very
small number of poorly shaped or degenerated triangles. Pébay (PEBAY; BAKER, 2001)
developed a study on several different metrics to compute the quality of a triangle mesh.

In order to spot some of the cases where our algorithm could fail, either by not pro-
ducing good paths or by not being able to find any path at all, we developed a set of tests.
These tests where composed by triangle meshes with very specific characteristics, like
very poorly shaped triangles for example. Although may exist other cases not covered by
us that may lead our algorithm to an incorrect result, the cases presented here constitute a
comprehensive set of cases that can be used for further development and expansion of the
algorithm limitations.

On the first test, we developed an artificial planar mesh with several acute triangles.
This was intended to analyze the behavior of the algorithm when this kind of triangle
appears on a triangle mesh. In our test, only one cell at one border was tagged as goal,
and several paths were generated on this mesh. The mesh and the generated paths are
illustrated on Figure 6.1.

In this scenario our algorithm was still able to find paths on this triangle mesh. How-
ever, a transition between two triangles with high differences between their gradients
generates abrupt changes in the path. One possible solution to this is to use better dis-

54

Figure 6.2: Environment where the flatness problem occurs. The black lines represent the
not-null gradient.

cretizations for the environment, with more regular triangles. Another solution would be
the addition of a smoothing phase after the production of the paths.

6.3 The Flatness Problem

As the BVP Path Planner, the 3DS-BVP presents the flatness problem. Presented by
Silveira et al. (SILVEIRA et al., 2009), it arises from the finite numeric precision of
current numeric floating point types. The Laplace’s Equation and Equation 3.1 do not
present local minima. But for some configurations of the boundary conditions, the exact
result of Equation 3.1 for some cells require arbitrary precision in order to generate a non-
null gradient. This happens due to the distribution of potential values generated by the
equation itself, not by the scale used between different boundary conditions. Our method
presented a similar problem in the kind of 2D environment that the BVP Path Planner
presented this problem.

Figure 6.2 illustrates a case where the gradient of the potential field becomes null
in some part of the environment. In this figure, the small black lines represent the valid
gradient and its direction. It is possible to see that at some point of the hallway the gradient
becomes null (i.e. the areas with no black lines).

Silveira et al. (SILVEIRA et al., 2009) proposed a palliative solution to this problem
by placing intermediary goals on the hallway, in the points where the gradient starts to
became null. Although we did not explored this approach, it seems to be easy to adapt his
solution to the 3DS-BVP.

We cannot reproduce this problem in our available surfaces, such as the car model,
the Costa Surface or the Statue. The way that the triangles of these meshes relate to each
other in these models should be the factor that minimized the flatness problem. We believe

55

that in other cases (possibly with more triangles and occupied cells) this problem should
emerge more Vvisibly.

56

7 CONCLUSIONS AND FUTURE WORK

In this chapter, we will present a summary of the path planner developed here, its
main advantages and drawbacks. We will present also a set of possible future paths that
can be followed to improve our work. Finally, we present other contributions related to
this Master Thesis.

7.1 Conclusions

In this work, we presented the 3DS-BVP, an algorithm based on potential fields for
path planning in arbitrary surfaces. This technique is inspired by the solution of the BVP
Path Planner, developed by Silveira et al. (SILVEIRA et al., 2009). Our algorithm out-
performs previous potential field based algorithms, as these techniques do not present a
solution for the arbitrary 3D surface case. Moreover, it is an alternative to graph based al-
gorithms, as well as geodesic distance fields based algorithms, by generating smooth paths
that minimize collision with obstacles on the surface. This work was published in the
XXI1V SIBGRAPI — Conference on Graphics, Patterns and Images (FISCHER; NEDEL,
2011).

This algorithm is based on a numerical method developed in this work that approx-
imates the results of the Laplace’s Equation. The main advantage of this method is the
use of a triangular discretization, which could easily be adapted to work in 3D arbitrary
surfaces. The gradient descent of the resulting potential fields is used to guide agents on
the surface, from an initial position to a specific goal position.

By mimicking the potential fields produced by the BVP Path Planner, our algorithm
generates smooth paths free of local minima. The potential field approach also gives our
algorithm the ability to find any existing path to a given goal position without the need to
execute the query for each initial position. Finally, it is based on a simple representation
of the 3D surface (a triangle mesh), and does not require any kind of preprocessing phase,
which can lead to future development of techniques that support dynamic surfaces.

Comparing our approach to the BVP Path Planner, it showed that the paths were quite
similar, presenting suavity while avoiding obstacles. When the potential fields are com-
pared, the noisy meshes presented only an average difference of 1% and a standard de-
viation of 1.1%. The regular triangulation, as expected, presented better results, with
an average difference of 0.786% and a standard deviation of 0.781%. The maximum
differences found were of 7.4% and 36.5% on the regular and noisy cases, respectively.
Although these differences were quite large, they do not appear to significantly influence
the paths generated. In other words, these comparisons show the potential of our tech-
nique to reproduce the quality of the paths generated by the BVP Planner in a triangular
representation of the environment.

57

As this method is applicable to both 2D and 3D meshes with minor modifications,
this work also presented results of path generation over surfaces with different levels of
complexity. The simplest surface was the model of a car. The second surface, with a
significant complexity but a small number of triangles, was the Costa Minimal surface.
The third surface, with a high complexity structure and a high number of triangles was
the Mother and Child Statue. In all cases, our algorithm was able to find smooth paths.

Concerning the performance, our algorithm still has room for improvements. For the
smaller models (the car, with 665 cells, and the Costa Minimal Surface, with 1, 259 cells)
our algorithm was able to compute the potential field in less than 0.1 seconds, which is
sufficiently good for interactive applications. However, it was not good enough for real
time applications. Our algorithm took on average more than 0.04 seconds. A real time
application running at 30 frames per second would require a potential field computational
time of up to 0.033 seconds. When looking at surfaces with higher number of cells, our
algorithm still requires a lot of improvement. In our tests, a surface with 4,994 cells
required at least 5.89 seconds to compute a potential field. As said in Section 5.4, these
times are only related to the potential field computation. If the goal position do not need
to be frequently updated, the algorithm can be used in real time as soon as the potential
field is computed.

7.2 Future work

Although this work was successful on the development of a path planner for arbitrary
surfaces, there are several improvements that could be developed in order to increase the
capabilities of the 3DS-BVP.

One limitation of the 3DS-BVP is that it assumes that the agent has its height equals
to 0 (i.e. it resides strictly on the surface). While in this case our algorithm will generate
valid paths, it may not be true if the agent has height greater than 0. In this case, an agent
that walks on the surface could collide with other points of the surface. For example,
suppose the agent a walking over a surface s in the direction d, as illustrated in the Fig-
ure 7.1. As the agent has a height i, which is greater than h,, the agent could not travel
through that region of the surface, since a collision would happen there. If not solved,
this problem could also happen in future multi-agent implementations of our algorithm.
A possible solution for this problem was presented by Torchelsen et al. (TORCHELSEN
et al., 2010), which requires an additional 3D grid.

Another addition that could be added to the algorithm would be the development of a
local path planner approach, similar to the one introduced by Dapper (DAPPER; NEDEL,;
JUNIOR, 2007) in the BVP Path Planner (Section 3.3). As occurred in the BVP Path
Planner, this could add a great increase on the performance for multi-agent environments,
as well as allow dynamic obstacles on the environment. So far, the biggest problem to
develop the local maps approach is the development of an algorithm that dynamically
selects and keeps the part of the triangle mesh around a given point, while the point is
moving over the triangle mesh. More research should be done to known if such algorithm
already exists or must be developed.

There could be developed a method to define the most adequate error threshold to
compare against the result of Equation 4.7. Although the exact solution is not required,
at least a minimal error needs to be achieved during the relaxation process. If this error is
larger than this, the potential may not be able to properly guide the agent towards its goal.
If this threshold is smaller than the needed, the relaxation process may take unnecessary

58

Figure 7.1: Collision between an agent a walking over a surface s and the surface itself.

iterations before achieving convergence.

Also, a third addition to the algorithm would be the improvement of the set of equa-
tions used in this work. This should be done in order to reduce the number of iterations
needed to reach the convergence of the potential field. This will add and implementation
independent increase of performance to the algorithm. One possible way to improve our
equations could start by a study on the influence between two cells. A suggestion would
be to add «, # and y parameters to the terms of the Equation 4.4 and check how the mod-
ification of these parameters impact on the number of iterations. Another way to improve
our algorithm would be conducted by an study on the initial value of free cells, as did
Silveira et al. (SILVEIRA; PRESTES; NEDEL, 2008).

There are also implementation dependent optimizations that could be done. It seems
that our algorithm is highly parallelizable, which would benefit greatly by a GPU imple-
mentation. Due to the distinct discretization methods (grid versus triangle meshes), the
adaptation of optimizations from the BVP Path Planner to the 3DS-BVP is not simple.
Besides the implementation of our equations in a GPU system, it will be required also
efficient GPU data structures to hold the triangle mesh for the relaxation step.

Finally, the order that cells are evaluated reflects in the speed that the potential values
from the obstacles and goals are propagated to the free cells. So, there should be an ideal
order that makes the relaxation process faster.

7.3 Additional contributions

During the development of this work, several other contributions were made, through
several published work. Although these contributions do not relate directly to the algo-
rithm presented here, it was highly important to understand the BVP-Path-Planner and,
thus, develop the 3DS-BVP.

In Fischer et al. (FISCHER; SILVEIRA; NEDEL, 2009), the processing power of
current graphic processors (GPUs) was used to compute the potential fields for the local
maps in the BVP Path Planner. There are two main contributions in this work: (i) a
parallel version of the BVP-Path-Planner, implemented on the GPU utilizing NVIDIA
CUDA (Compute Unified Device Architecture) (NVIDIA, 2008), and (ii) a strategy to
reduce the number of memory transactions between the CPU and GPU. With the GPU
strategy we achieve a speedup up to 56 times comparing with the previous technique. This

59

Figure 7.2: A picture of a scene with 500 autonomous agents walking using the GPU
approach developed in Fischer et al. (FISCHER; SILVEIRA; NEDEL, 2009).

performance speedup allowed its use in situations with a large number of autonomous
characters, which is a common situation found in games. Figure 7.2 shows a scene with
500 agents walking using the BVP-Path-Planner.

In Silveira et al. (SILVEIRA et al., 2010) the BVP Path Planner is presented in details,
focusing on the behavior of the agents acting on the scene. The techniques developed
during this work were implemented and evaluated within a RTS game engine.

In Fischer et al. (FISCHER et al., 2011) the solution for an complex interactive task
is presented. In it, three techniques were combined: (i) a point-and-click approach for
navigation in virtual environments, (ii) a ray cast selection approach to select objects,
and (ii1) a device-based approach to control the orientation of objects in a virtual scene.
The transition between the techniques was developed in such a way that the user naturally
changes between the techniques, without menus or buttons explicitly changing the current
interaction technique. These techniques were applied in a virtual market, and the users
were asked to find specific products between the ones available in the market shelves.
Several user experiments were made to evaluate the developed techniques. The work was
selected between the best eight articles, and was invited to submit a new version to the
Elsevier Computers & Graphics Journal. The new version was submitted, and is currently
in process of evaluation.

60

8 RESUMO EXPANDIDO

Navegacao em superficies tri-dimensionais € um problema relevante para muitas areas
como: visualizacdo cientifica, onde um usudrio precisa inspecionar diferentes tipos de
objetos, como 6rgdos em uma aplicagdo médica, ou motores em um sistema CAD; em
robética, com a definicdo de caminhos e movimentos; e entretenimento, mais especifica-
mente na 4rea de jogos de video-game, onde a exploracdo de ambientes 3D complexos é
muito mais desafiadora para o jogador do que simples ambientes planares.

Navegacdo € uma tarefa interativa complexa e € usualmente dividida em duas partes
(BOWMAN et al., 2004): planejamento de caminho e movimentacdo. Enquanto a movi-
mentacdo ¢ o componente motor da navegacao, as acdes de baixo nivel que fazem o
usudrio controlar a posicdo e orientacdo de seu ponto de vista, o planejamento de cami-
nhos é a componente cognitivo, e inclui raciocinio de alto nivel, planejamento e tomada
de decisdo. Ela inclui o entendimento do espaco e o planejamento de tarefas, como deter-
minar o caminho a partir da posi¢do atual para a posi¢do objetivo.

Os algoritmos de planejamento de caminhos t€m sido explorados por anos. Muitas
solugdes foram aplicadas na robdtica e em ambientes virtuais, sendo que algumas de-
las focam na performance do algoritmo — normalmente, incluindo uma fase de pré-pro-
cessamento (CALOMENI; CELES, 2006) —, e outras em prover caminhos de melhor
qualidade. Apesar de que a maioria destes algoritmos resolverem o problema no plano
Euclideano, alguns destes sdo robustos o suficiente para tratar sistemas com mais de dois
graus de liberdade (como o planejamento de caminhos em 3D (CARSTEN; FERGUSON;
STENTZ, 2006) ou planejamento de caminhos para robds articulados com muitas juntas
(BELGHITH et al., 2006)). Porém, planejamento de caminhos restritos a superficies ar-
bitrarias ndo sdo muito exploradas na literatura.

Métodos que focam especificamente no planejamento de caminhos 2D nao podem ser
trivialmente modificados para tratar superficies arbitrarias. Uma abordagem possivel € o
uso de técnicas de projecdo sofisticadas da superficie 3D no plano Euclideano, e entdao
modificar o algoritmo de planejamento de caminhos 2D para trabalhar nesta projecao,
0 que nao é uma tarefa trivial (devido a natureza da projecdo). Algoritmos que tratam
superficies 3D dependem da sua natureza para serem adaptados a superficies 3D, ja que
em um determinado ponto da superficie o algoritmo deve se comportar como se fosse um
planejador de caminhos 2D. Abordagens baseadas em grafos sdo rdpidas o suficiente para
o uso em aplicacdes de tempo real, mas os caminhos gerados nio sdo suaves como as
outras abordagens. Em todos estes casos, o trabalho requerido para portar o algoritmo €
relevante, e ndo € claro como estes algoritmos irdo se comportar neste tipo de ambiente.

Neste trabalho foi desenvolvida uma solucdo para a segunda parte da navegacao em
superficies arbitrdrias, o planejamento de caminhos. Iremos apresentar uma nova téc-
nica para planejamento de caminhos que trata o caso em superficies arbitrarias, chamada

61

3DS-BVP, um acronimo para 3D Surface Path Planner using Boundary Value Problems
System —Sistema Planejador de Caminhos em Superficies 3D usando Problemas de Valor
de Contorno. A técnica usa problemas de valor de contorno (PVC) para gerar campos
potenciais usando uma discretizacdo em malhas de tridngulos. Utilizando o gradiente do
campo potencial, o agente pode se guiar pelo ambiente. Sumariamente, as contribuicdes
deste trabalho sdo:

* Um método numérico que gera campos potenciais utilizando uma discretizagdo em
malhas de tridngulos;

* Um planejador de caminhos baseado em campos potenciais que calcula caminhos
suaves em malhas de tridngulos 3D.

Esta técnica € baseada em um planejador de caminhos que € capaz de gerar caminhos
suaves com pouca probabilidade de colisdo com obstdculos a partir de campos potenciais.

8.1 Trabalhos relacionados

Algoritmos planejadores de caminho tem sido utilizados para calcular o caminho a ser
percorrido até uma posi¢ao objetivo em um ambiente virtual. Muitos algoritmos tem sido
propostos para resolver este problema, e grande parte deles assume que o ambiente pode
ser projetado em uma superficie 2D.

Kallmann (KALLMANN, 2005) usou triangula¢des de Delaunay com restri¢des para
discretizar o espaco livre do ambiente em uma malha de triangulos e uma abordagem em
grafo para buscar o caminho. Ele ainda prop6s um método para o planejamento de ca-
minhos em ambientes com largura minima (KALLMANN, 2010). Apesar do fato destes
métodos usarem malhas de triangulos como estrutura de dados, eles foram desenvolvidos
apenas para uso em ambientes planares. Nosso método trata com indiferenca a diferenca
entre superficies planares e 3D.

Tecnicas baseadas em campos potenciais para navegacao incluem o trabalho de Rosell
e Iniguez (IRIGUEZ; ROSELLY, 2003), Trevisan et al. (TREVISAN et al., 2006), Treuille
et al. (TREUILLE; COOPER; POPOVI¢, 2006), e Park (PARK, 2010). Estas técnicas
usam a posi¢do dos obstaculos e dos agentes para calcular uma funcdo. O resultado é
um campo de onde as dire¢Oes para uma determinada posi¢do sdo derivadas. Estas técni-
cas diferem entre si pela fun¢do utilizada para calcular o campo e como as dire¢des sdao
derivadas, resultando em diferentes comportamentos para cada técnica. Por exemplo, o
trabalho de Trevisan et al. Favorece o comportamento exploratério do agente, enquanto
que o trabalho de Treuille et al. Favorece seu uso em simula¢des de multiddes. Todas
estas técnicas foram desenvolvidas para ambientes 2D. Algumas delas podem ser apli-
cadas para ambientes 3D ao adicionar uma dimensao as suas equagOes, mas isto degrada
significativamente sua performance.

Um planejador de caminhos baseado em distancias geodésicas em malhas de triangu-
los 3D foi recentemente proposto por Torchelsen et al. (TORCHELSEN et al., 2010). Este
trabalho foca em sistemas multi-agente, e usa uma arquitetura CPU/GPU para tratar do
desvio de colisdes entre os agentes. A maior vantagem deste método € a alto desempenho
alcancado. Por outro lado, os caminhos gerados sdo préximos aos menores caminhos,
o que pode levar a uma alta probabilidade de colisdo dos agentes com os obstaculos. O
nosso planejador de caminhos produz caminhos suaves que, sempre que possivel evita
aproximar-se muito dos obstdculos.

62

Devido a performance e baixas necessidades de memoria, as abordagens baseadas em
grafos s@o as mais utilizadas na industria de video games. Motores de jogos populares,
como o Unreal Engine® e CryEngine® utilizam a abordagem. Nestes métodos, um grafo
representa o ambiente e o algoritmo de Dijkstra (DIJKSTRA, 1959) (ou uma de suas
derivacdes) € utilizada para encontrar o caminho entre dois nodos. A diferenga entre estas
abordagens (como a proposta por Kavraki et al. (KAVRAKI et al., 1996), Barraquand
et al. (BARRAQUAND et al., 1997), Lavalle (LAVALLE, 1998), e Kang et al. (KANG;
KIM; KIM, 2010)) € o algoritmo utilizado para amostrar o ambiente em um grafo e como
este grafo € atualizado. Todos estes métodos parecem ser adaptaveis ao planejamento de
caminhos em superficies 2D e 3D, mas eles ndo tem sido explorados para planejamento
de caminhos em superficies arbitrérias.

8.2 O Planejador de Caminhos BVP

O planejador de caminhos BVP (TREVISAN et al., 2006) € um planejador 2D que
gera caminhos utilizando a informacdo de potencial calculada a partir da solugdo numérica
da Equagdo 3.1 com condig¢des de contorno de Dirichlet, onde v € R? e |v| = 1 corre-
sponde a um vetor que insere uma perturbacdo no campo potencial; ¢ € R corresponde
a intensidade da perturbacdo produzida por v; e p(r) é o potencial na posi¢do r € R?,
respectivamente. Ambos v e ¢ devem ser definidos antes de resolver esta equagdo. O gra-
diente descente destes potenciais representam rotas navegaveis a partir de qualquer ponto
do ambiente até a posi¢do objetivo. Trevisan et al. (TREVISAN et al., 2006) demonstra
que esta equacio nao produz minimos locais e gera caminhos suaves.

Para resolver numericamente um PVC, considera-se que a solugdo € discretizada em
um grid regular (TREVISAN et al., 2006; SILVEIRA et al., 2009)). Cada célula (i, j) é
associada a uma regido quadrada do ambiente e armazena um valor de potencial p(i, j).
Utilizando as condi¢des de contorno de Dirichlet, as células associadas aos obstaculos no
ambiente armazenam um valor de potencial igual a 1 (alto potencial) enquanto que as
células contendo a posi¢do objetivo armazenam um valor de potencial igual a 0 (baixo
potencial).

Um alto valor de potencial previne que o agente avance em dire¢do aos obstdculos,
enquanto que o baixo valor de potencial gera uma atragdo ao agente. O método de re-
laxamento utilizado para calcular os campos potenciais nas dreas livres do ambiente € o
Gauss-Seidel (GS). O método GS atualiza o potencial em uma célula c a partir da equagdo
3.2, onde v = (v, vy), € D¢, Db, D1» Pr and p; sdo células do grid, conforme ilustrado na
Figura 3.1.

O método GS permite o uso de resultados parciais como uma aproximag¢ao do campo
potencial (PRESTES et al., 2001). Como o resultado exato ndo é necessario, € possivel
controlar o erro acumulado e(¢) em cada iteragdo através de um limiar e,,,,, de acordo com
a Equagdo 3.3, onde p(i, j)! é o potencial em uma célula (7, j) na itera¢do ¢, p(, j)' ™' é o
potencial na mesma célula na iteracio anterior, e m e n sdo as dimensdes da grade regular.

Ap0s o calculo do campo potencial, o agente se move na dire¢do do gradiente descente
na sua posi¢do atual (7, 7).

8.3 Planejamento de caminhos em malhas de triangulos

Nesta proposta, o 3DS-BVP gera campos potenciais em malhas de triangulos. O
método funciona de acordo com os seguintes passos: (1) discretizar o ambiente em um

63

conjunto de células; (2) calcular o campo potencial; (3) calcular o gradiente deste campo
potencial.

8.3.1 Discretizacio do ambiente

O primeiro passo do algoritmo 3DS-BVP funciona da seguinte forma. A cada vér-
tice da malha de triangulos € associado um valor de potencial — da mesma forma que €
feito no Planejador de Caminhos BVP. Entdo, cada triangulo € dividido em trés regides,
conectando as medianas das arestas ao centroide do triangulo. Cada regido do triangulo é
associada ao vértice mais préoximo e, para um dado vértice v de um triangulo ¢, a funcao
Region(v,t) retorna aquela regido associada. Além disso, o algoritmo assume que cada
vértice v na malha de triangulos é associada a um conjunto de triangulos Triangles(v),
onde cada triangulo em T'riangles(v) possui um vértice igual a v (ou seja, eles com-
partilham o mesmo vértice). A célula associada a um vértice v € definida pela funcdo
Cell(v) = {Region(v,t)|Vt € Triangles(v)}. A fung¢do Vertex(c) retorna o vertice
associado a célula c. A Figura 4.2 ilustra estes conceitos.

O conceito de célula vizinha é definida por duas células cujos vértices associados sdo
conectados por uma Unica aresta. Isto significa que duas células c; e ¢, sdo vizinhas se
a fungdo Link(Vertex(cy), Vertex(ce)) # null satisfaz. Assumindo que o conjunto C
contem todas as células derivadas da malha de triangulos, a fungdo Neighbors(c;) =
{¢j|Ve; € Ci # j, Link(c;, ¢j) # null} retorna o conjunto de células vizinhas para uma
dada célula c;.

8.3.2 Calculando o campo potencial

Para executar o relaxamento no conjunto de células, as condi¢des de contorno pre-
cisam ser definidas. Estas condi¢des de contorno sdo definidas de acordo com as posicoes
dos obstaculos e o objetivo no ambiente. Assume-se que os obstidculos e a posi¢ao ob-
jetivos estdo restritos a superficie. No Planejador de Caminhos BVP, cada célula recebe
uma etiqueta em valor de potencial inicial, da seguinte forma:

* células associadas as regides ocupadas do ambiente e as células associadas com as
bordas da superficie recebem a marca ocupada e recebem um alto valor de poten-
cial;

* a célula associada a posi¢c@o objetivo recebe uma marca objetivo e um baixo valor
de potencial,

* as células associadas as regidoes navegaveis do ambiente recebem uma marca livre
e recebem um valor intermedidrio entre baixo e alto valores de potencial, como no
Planejador de Caminhos BVP.

Para atualizar o valor de potencial nas células livres, um conjunto de fungdes foi
definido. Assumindo que a fungdo Dist(vq,vy) retorna a distancia geodésica entre os
vértices v1 € vy, Dpin(¢i) € Dz (c;) retorna a menor e maior distancia, respectivamente,
entre o vértice de uma célula c; e as células vizinhas.

A influencia de uma célula c¢; sobre uma célula c;, relativa a vizinhanga de c; € definida
pela fungdo 4.4. Baseada na Equacdo 4.4, a Equacdo 4.5 calcula a soma das influéncias
que uma célula recebe das células vizinhas. Esta equagdo é entdo utilizada na Equacao
4.6, que é entdo utilizada para atualizar o potencial p(c;) de uma célula ¢; livre.

64

O valor de potencial das células livres sdo atualizados utilizando Equacido 4.6 até que
a convergéncia seja alcancada, como no Planejador de Caminhos BVP. Um limiar e,
¢ utilizado para verificar se o potencial ja convergiu. A Equacdo 3.3 € utilizada com o
conjunto de células C' para calcular o erro em uma dada iteragao.

8.3.3 Calculando o gradiente do campo potencial

Com o campo potencial calculado, um agente deve ser capaz de seguir o gradiente
descente de forma a alcancgar a posicdo objetivo. A Equacdo 4.6 € capaz de reproduzir
os resultados produzidos pela Equagdo de Laplace. E possivel calcular o gradiente da
Equacdo 4.6 de forma semelhante a realizada com a Equacao de Laplace.

Uma possivel solucdo do calculo numérico para o gradiente da Equacao de Laplace
em malhas de triangulos irregulares envolve o uso da sua forma integral, apresentada
na Equacdo 4.8. Apds uma série de manipulacdes algébricas, é possivel descrever uma
aproximacao para o gradiente em uma regidao pequena com a Equacdo 4.10. Esta equacio,
ao ser calculada de forma discreta em um triangulo ¢ resulta na Equagdo 4.14, que € uti-
lizada para aproximar o gradiente descente do campo potencial no centroide do triangulo
t.

Para mover em direcdo a posi¢ao objetivo do ambiente, o agente a precisa seguir o gra-
diente descente do triangulo onde ele estd. Um ponteiro para este tridngulo ¢ armazenado
com o agente, para acesso rapido. Quando o agente caminha para fora do triangulo, é
verificado qual das bordas do triangulo o agente atravessou, e o ponteiro € atualizado com
o triangulo vizinho.

8.4 Campos potenciais em superficies 3D

Em uma discretizacdo de ambiente completamente planar, o planejador de caminhos
apresentado até a Secdo 8.3 comporta-se de forma bastante similar ao Planejador de Ca-
minhos BVP. A posi¢do objetivo deve ser definida com uma marca objetivo enquanto os
obstéaculos sao definidos com uma marca ocupado. Os limites do ambientes também sao
marcados com uma marca ocupado e todas as células restantes sdo marcadas como livres.
Todas as células recebem um valor de potencial de acordo com a sua marcagao. Entdo, o
método numérico avalia valores mais precisos para as células /ivres. Finalmente, o agente
utiliza o gradiente do campo potencial para caminhar pelo ambiente.

Neste tipo de ambiente, o planejador de caminhos tem a vantagem de se utilizar de
calculos mais simples, ja que todas as posi¢des de vértices e normais podem ser manipu-
ladas em 2D. Naturalmente, uma discretizacdo 3D vai requerer a terceira coordenada para
a posicao dos vértices e para as normais.

Para malhas 3D abertas o planejador também funciona com mudang¢as minimas, e
a adi¢do de um eixo coordenado ndo introduz mudangas significativas em nenhum dos
métodos apresentados. Durante a relaxagdo, apenas a fungdo Dist(v, v9) é modificada
para retornar a distancia geodésica em 3D. Adicionalmente, as normais usadas no cél-
culo do gradiente precisam ser armazenadas em 3D. Ainda assim, as normais mantém-se
paralelas ao plano definido pelo triangulo a qual elas pertencem.

A mudanga mais significativa no algoritmo para tratar malhas 3D € o tratamento das
condicdes de contorno. Nosso algoritmo requer que ao menos duas condi¢des de contorno
distintas sejam definidas: uma célula objetivo e uma célula ocupada. Assume-se que a
célula objetivo sempre pode ser definida, entdao em malhas 3D devemos tomar um cuidado
especial com as células ocupadas.

65

Se a malha 3D tiver bordas, os vértices das bordas irdo forcar a existéncia de célu-
las ocupadas. Malhas de tridngulos fechadas com obstaculos na superficie também irao
forgar a existéncia destas células. Isto ird gerar um gradiente valido que previne que
o agente saia dos limites da superficie, colida com obstdculos, e o guie para a posi¢ao
objetivo.

Porém, se a malha for fechada e ndo tiver nenhum obstdculo na sua superficie, este
algoritmo vai gerar apenas células objetivo. Se isto ocorrer, a relaxacao vai parar de ser
executada apenas quando todas as células tiverem seu valor de potencial equal ao baixo
valor de potencial. Isto ird resultar em um gradiente nulo (o resultado da Equacgao 4.14
serd (0,0)), e o agente ndo terd como decidir a direcdo a ser seguida.

Para evitar a ocorréncia de gradiente nulo nestes casos, a célula contendo a posi¢cdo
inicial de navega¢do do agente ¢ marcada como ocupada e recebe um alto valor de po-
tencial. Apesar de a célula ndo conter nenhum obstaculo, isto ird forcar com que o campo
potencial tenha um gradiente capaz de guiar o agente até a posi¢ao objetivo. Além disso,
como o agente estard deixando aquela posi¢do, o obstdculo adicionado ndo ird modificar
a existéncia de um caminho partindo da posicao inicial até a posicao objetivo.

Note que o caminho tomado pelo agente pode mudar significativamente de acordo
com a posicao inicial do agente dentro da célula modificada. Como a célula correspon-
dente a posicao inicial € modificada para receber a marcagao ocupada e o alto valor de
potencial, o gradiente na borda da célula vai ser significativamente diferente de acordo
com o triangulo onde € avaliado. O fato de a malha ser fechada e ndo possuir outras bor-
das permite que ocorra a situagdo onde diversos caminhos diferentes possam ser tomados
para alcancgar o objetivo.

8.5 Resultados

Para avaliar este trabalho, foi desenvolvida uma série de testes. Primeiro, foi realizado
uma comparagdo entre este método em uma malha de tridngulos plana, demonstrando
que esta técnica é capaz de produzir caminhos com pouca probabilidade de colisdo, da
mesma forma que o Planejador de Caminhos BVP faz. Entdo, serdo apresentados alguns
resultados obtidos com superficies 3D arbitrarias.

8.5.1 Comparaciao do método com o Planejador de Caminhos BVP

Foram desenvolvidos um conjunto de casos de teste, onde cada teste € composto por
um ambiente retangular com alguns obstdculos e objetivo. Nos testes 1 a 4 o ambiente
foi discretizado em uma malha de tridngulos regular. Nos testes 5 a 8 foram utilizados
0os mesmos ambientes dos primeiros 4 testes, mas com a adicdo de ruido modificando
posicdo de cada vértice (representando melhor os tridngulos encontrados em superficies
3D). A Figura 5.1 ilustra estes casos.

Nestes casos, foi possivel perceber que os caminhos gerados pelo 3DS-BVP sao bas-
tante similares aos caminhos produzidos pelo Planejador de Caminhos BVP. Ao adicionar
ruido, estes caminhos perderam um pouco de sua suavidade devido a presenca dos trian-
gulos de baixa qualidade, mas ainda assim replicam os resultados produzidos pelo Plane-
jador de Caminhos BVP e 0 3DS-BVP em malhas de triangulos regulares.

Também foi realizada uma comparacgdo de valor de potencial em cada célula do campo
potencial produzido pelo 3DS-BVP com os valores nas células do campo potencial pro-
duzido pelo Planejador de Caminhos BVP. A Tabela 5.1 apresenta um sumadrio destas
diferencas. E possivel perceber que, em média, o campo potencial gerado pelo nosso

66

método € praticamente o mesmo do gerado pelo Planejador de Caminhos BVP, com uma
diferenca média abaixo de 0, 8% nos casos regulares, e de 1% nos casos com ruido.

A maior diferenga encontrada foi de 49, 989%, encontrada no caso de teste 7. Ape-
sar de esta ser uma diferenca relevante entre o 3DS-BVP e o Planejador de Caminhos
BVP, ela ocorreu em um ambiente cuja diferenca média foi de 1,867% e desvio padrdo
de 1,717%. Esta diferenca ocorreu devido a existéncia de tridngulos muito deformados
devido ao ruido adicionado. O caso de teste 8 produziu resultados similares.

8.5.2 Avaliacao dos caminhos gerados em superficies arbitrarias

O algoritmo foi aplicado a algumas superficies 3D para analizar como os caminhos
sdo gerados nestas superficies. Na Figura 5.3, foi aplicado o algoritmo na Costa Minimal
Surface (COSTA, 1984), uma superficie paramétrica bastante complexa. Foram gerados
diversos caminhos nesta superficie partindo de diversos caminhos distintos até um deter-
minado objetivo. Em todos os casos nesta superficie, o algoritmo foi capaz de gerar um
caminho suave.

Em outro experiment, foi utilizado o modelo da estatua Mde e Filho (Figure 5.4) para
gerar caminhos na sua superficie. A estdtua possui diversas aberturas, o que a faz um bom
exemplo do tipo de ambiente que a técnica é capaz de lidar. Conforme pode ser percebido,
o planejador gerou caminhos suaves para alcancgar a posicao objetivo. Também foram
realizados testes com algumas regides onde o caminho nao poderia cruzar, simulando
obstaculos na superficie. O algoritmo demonstrou ser capaz de encontrar caminhos suaves
na superficie.

8.5.3 Avaliacao de performance

Foram realizadas medidas de performance no algoritmo em diversos casos, incluindo
as superficies apresentadas no Item 8.5.2. Foram medidos o tempo gasto para calcular o
campo potencial e o nimero de iteracdes necessdrias para convergir, Utilizando diversos
limiares de erro. Os resultados estdo apresentados na Tabela 5.2.

Apesar de a suavidade dos caminhos gerados nos testes anteriores, as medidas de de-
sempenho demonstram que ainda existe espagco para melhorias. Para modelos complexos,
mas pequenos, como a Costa Minimal Surface, o algoritmo € capaz de calcular o campo
potencial e produzir caminhos de qualidade para aplica¢gdes como, por exemplo, 0 movi-
mento de cameras em ambientes virtuais. Para modelos maiores, como a estitua Mde e
Filho, o algoritmo ainda precisa de melhorias de performance.

8.5.4 Limitacoes e casos degenerados

Ao analizar a Equagdo 4.4 € possivel concluir que se, eventualmente, dois vértices
estiverem na mesma posicao, D,,;,(c;) serd igual a 0, e quaisquer dois vértices com dis-
tancia D4, (c;) terdo nenhuma influéncia sobre o vértice ¢;. Isto pode resultar na inter-
rupc¢do da propagacao do potencial de uma regido para outra. Além disso, se a malha tiver
um triangulo invélido (com os vértices colineares, por exemplo), o resultado da Equacao
4.14 € indefinido.

Foram realizados diversos testes com malhas diferentes. Em um experimento com
uma malha contendo vérios tridngulos, os caminhos tinham pouca suavidade. Isto ocorreu
devido ao gradiente dos tridngulos adjacentes apresentarem grandes diferencas entre eles.

67

8.6 Conclusoes e trabalhos futuros

Neste trabalho foi apresentado o 3DS-BVP, uma técnica baseada em campos poten-
ciais para planejamento de caminhos em superficies arbitrdrias. A principal vantagem
desta técnica € a geracdo de caminhos livres de minimos locais em superficies 3D, sem a
necessidade de uma parametrizacao 2D ou outro tipo de representacao da superficie.

O campo potencial produzido pelo 3DS-BVP é capaz de gerar todos os caminhos
possiveis até uma determinada posicdo objetivo em um ambiente, seguindo o gradiente
descente. Os caminhos gerados em ambientes 2D demonstram ser bastante similares
em qualidade aos gerados pelo Planejador de Caminhos BVP, com diferenca média no
campo potencial em torno de 0, 8%. Esta é uma boa caracteristica, demonstrando que o
3DS-BVP utiliza como base um campo potencial com caracteristicas semelhantes aquelas
produzidas pelo Planejador de Caminhos BVP.

A performance do algoritmo € a sua principal limitagcdo, por ndo ser suficiente rapido
para uso em aplica¢cdes de tempo real, como ambientes com diversos agentes em movi-
mento. Acredita-se que esta limitagdo possa ser minimizada ao se melhorar as equagdes
utilizadas pelo método e ao se desenvolver uma implementacdo paralela baseada em GPU
dos métodos utilizados para calcular os campos potenciais.

Outras possibilicades de melhorar o algoritmo estdo sendo analizadas. Uma possibil-
idade é melhorar o conjunto de equacdes que foram utilizadas, de forma a obter o campo
potencial em menos iteragdes. Além disso, a ordem em que as células sdo avaliadas pode
refletir na velocidade com que os valores de potencial das células ocupadas sdao propa-
gadas para as células livres. Assim, deve haver uma ordem ideal que torna o processo
de relaxac@o mais rdpido. Outra possibilidade de melhorar o desempenho do algoritmo €
a sua implementacdo em GPU. O método parece ser bastante paralelizdvel, assim como
aquele realizado no trabalho de Fischer et al. (FISCHER; SILVEIRA; NEDEL, 2009).

Pretende-se aplicar este algoritmo principalmente em ambientes virtuais. Novas fer-
ramentas para o controle de cameras virtuais e aplicacdes de modelagem podem ser de-
senvolvidas, de forma a ajudar a visualizagdo e avaliagdo de modelos 3D. Além disso,
muitos jogos de video game, como Prey® e Super Mario Galaxy® o jogador e os inimigos
caminham por superficies arbitrérias para alcancar seus objetivos. Futuros jogos de video
game utilizando este tipo de ambiente podem também se beneficiar deste algoritmo.

68

REFERENCES

3D Realms. Prey. Available at <http://en.wikipedia.org/wiki/Prey_(video_game)>. Ac-
cess in April 26, 2011.

AKLEMAN, E.; CHEN, J. Guaranteeing 2-manifold property for meshes. Proceedings
Shape Modeling International ’99. International Conference on Shape Modeling and
Applications, [S.1.], p.18-25, 1999.

AUTODESK. Maya. Available at <http://usa.autodesk.com/maya/>. Access in March 29,
2011.

AUTODESK. 3D Studio Max. Available at <http://usa.autodesk.com/3ds-max/>. Access
in March 29, 2011.

BARRAQUAND, J. et al. A Random Sampling Scheme for Path Planning. The Interna-
tional Journal of Robotics Research, [S.1.], v.16, n.6, p.759-774, 1997.

BAUMGART, B. G. A polyhedron representation for computer vision. Proceedings of
the May 19-22, 1975, national computer conference and exposition on - AFIPS ’75,
New York, New York, USA, p.589, 1975.

BELGHITH, K. et al. Anytime dynamic path-planning with flexible probabilistic
roadmaps. Proceedings 2006 IEEE International Conference on Robotics and Au-
tomation, 2006. ICRA 2006., [S.1.], p.2372-2377, 2006.

BERG, M. D. et al. Computational Geometry: algorithms and applications. 3rd.ed.
[S.L1.]: Springer-Verlag, 2008. 386p.

BOWMAN, D. A. et al. 3D User Interfaces: theory and practice. Redwood City, CA,
USA: Addison Wesley Longman Publishing Co., Inc., 2004.

BROCK, O.; GRUPEN, R. Exploiting redundancy to implement multiobjective behavior.
2003 IEEE International Conference on Robotics and Automation, [S.1.], p.3385-
3390, 2003.

CALOMENI, A.; CELES, W. Assisted and automatic navigation in black oil reservoir
models based on probabilistic roadmaps. Proceedings of the 2006 symposium on Inter-
active 3D graphics and games - SI3D ’06, New York, New York, USA, p.175, 2006.

CARSTEN, J.; FERGUSON, D.; STENTZ, A. 3D Field D: improved path planning and
replanning in three dimensions. 2006 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, [S.1.], p.3381-3386, Oct. 2006.

http://en.wikipedia.org/wiki/Prey_(video_game)
http://usa.autodesk.com/maya/
http://usa.autodesk.com/3ds-max/

69

CHEW, L. P. Constrained Delaunay triangulations. Proceedings of the third annual
symposium on Computational geometry - SCG ’87, New York, New York, USA,
p.215-222, 1987.

CONNOLLY, C.; BURNS, J.; WEISS, R. Path planning using Laplace’s equation.
Proceedings., IEEE International Conference on Robotics and Automation, [S.1.],
p-2102-2106, 1990.

CORMEN, T. H. et al. Introduction to Algorithms. 2.ed. [S.1.]: McGraw-Hill Higher
Education, 2001. 1202p.

COSTA, C. J. Example of a complete minimal immersion in IR3 of genus one and three-
embedded ends. Bulletin of the Brazilian Mathematical Society, [S.1.], v.15, n.1-2,
p.47-54, Mar. 1984. 10.1007/BF02584707.

CRYTEK. CryENGINE 3. Available at <http://www.crytek.com/cryengine>. Access in
March 29, 2011.

DAPPER, F.; NEDEL, L. P.; JUNIOR, E. P. e. S. Planejamento de movimento para
pedestres utilizando campos potenciais. 2007. Dissertacdo — Universidade Federal do
Rio Grande do Sul.

DELOURA, M. Game Programming Gems. [S.l.]: Charles River Media, 2000.

DIJKSTRA, E. W. A note on two problems in connexion with graphs. Numerische Math-
ematik, [S.1.], v.1, n.1, p.269-271, Dec. 1959.

EPICGAMES. Unreal Engine. Available at <http://www.unrealengine.com/>. Access in
March 29, 2011.

FISCHER, L. et al. Finding Hidden Objects in Large 3D Environments: the supermarket
problem. 2011 XIII Symposium on Virtual Reality, [S.1.], p.79-88, May 2011.

FISCHER, L. G.; SILVEIRA, R.; NEDEL, L. GPU Accelerated Path-Planning for Multi-
agents in Virtual Environments. 2009 VIII Brazilian Symposium on Games and Digital
Entertainment, [S.1.], p.101-110, 2009.

FISCHER, L.; NEDEL, L. Semi-automatic navigation on 3D triangle meshes using BVP
based path-planning. XXIV SIBGRAPI - Conference on Graphics, Patterns and Im-
ages, Los Alamitos, 2011.

GUIBAS, L. J.; STOLFI, J. Primitives for the manipulation of general subdivisions
and the computation of Voronoi diagrams. New York, New York, USA: ACM Press,
1983. 221-234p.

HART, P.; NILSSON, N.; RAPHAEL, B. A Formal Basis for the Heuristic Determination
of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics,
[S.1.], v.4, n.2, p.100-107, 1968.

HARTMAN, C.; BENES, B. Autonomous boids. Computer Animation and Virtual
Worlds, [S.1.], v.17, n.3-4, p.199-206, July 2006.

http://www.crytek.com/cryengine
http://www.unrealengine.com/

70

HSU, D.; LATOMBE, J.-C.; MOTWANI, R. Path planning in expansive configuration
spaces. Proceedings of International Conference on Robotics and Automation, [S.1.],
v.3, p.2719-2726, 1997.

HUSSEIN, A.; ELNAGAR, A. Motion planning using Maxwell’s equations. IEEE/RSJ
International Conference on Intelligent Robots and System, [S.1.], p.2347-2352,
2002.

IRIGUEZ, P.; ROSELLY, J. Probabilistic Harmonic-function-based Method for Robot
Motion Planning. Proceedings of the 2003 IEEE/RSJ Intl. Conference on Intelligent
Robots and Systems, [S.1.], p.382-387, 2003.

KALLMANN, M. Path Planning in Triangulations. Proceedings of the IJCAI Work-
shop on Reasoning, Representation, and Learning in Computer Games, Edinburgh,
Scotland, p.49-54, 2005.

KALLMANN, M. Shortest paths with arbitrary clearance from navigation meshes. Pro-
ceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer An-
imation, Madrid, Spain, p.159—-168, 2010.

KANG, S.-J.; KIM, Y.; KIM, C.-H. Live path: adaptive agent navigation in the interactive
virtual world. The Visual Computer, [S.1.], v.26, n.6, p.467-476, Apr. 2010.

KAVRAKI, L. et al. Probabilistic roadmaps for path planning in high-dimensional con-
figuration spaces. IEEE Transactions on Robotics and Automation, [S.1.], v.12, n.4,
p.566-580, 1996.

KHATIB, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. The
International Journal of Robotics Research, Thousand Oaks, CA, USA, v.5, n.1, p.90-
98, Mar. 1986.

LAVALLE, S. M. Rapidly-Exploring Random Trees: a new tool for path planning.
1998.

LENGYEL, J. et al. Real-time robot motion planning using rasterizing computer graph-
ics hardware. ACM SIGGRAPH Computer Graphics, [S.1.], v.24, n.4, p.327-335,
Sept. 1990.

LINDEMANN, S. R.; LAVALLE, S. M. Current Issues in Sampling-Based Motion Plan-
ning. In: DARIO, P.; CHATILA, R. (Ed.). Robotics Research. [S.I1.]: Springer Berlin /
Heidelberg, 2005. p.36-54. (Springer Tracts in Advanced Robotics, v.15).

MOI3D. Moment of Inspiration 3D. Available at <http://moi3d.com/>. Access in
September 14, 2011.

MULLER, D. Finding the intersection of two convex polyhedra. Theoretical Computer
Science, [S.1.], v.7, n.2, p.217-236, 1978.

NIEUWENHUISEN, D.; KAMPHUIS, A.; OVERMARS, M. H. High quality navigation
in computer games. Science of Computer Programming, [S.1.], v.67, n.1, p.91-104,
June 2007.

http://moi3d.com/

71

NINTENDO. Super Mario Galaxy. Available at <http://pt.wikipedia.org/wiki/Super_
Mario_Galaxy>. Access in March 30, 2011.

NVIDIA. NVIDIA CUDA Programming Guide 2.0. [S.1.]: NVidia, 2008. Available at
<http://www.nvidia.com/cuda>. Access in October 5, 2011.

PARK, M. J. Guiding flows for controlling crowds. The Visual Computer, [S.1.], v.26,
n.11, p.1383-1391, Jan. 2010.

PEéBAY, P. P.; BAKER, T. J. A Comparison Of Triangle Quality Measures. 10th Interna-
tional Meshing Roundtable, [S.1.], p.327-340, 2001.

PIEGL, L. A.; TILLER, W. The NURBS Book (Monographs in Visual Communica-
tion). [S.1.]: Springer, 1996.

PRESTES, E. et al. Exploration technique using potential fields calculated from relax-
ation methods. Proceedings 2001 IEEE/RS]J International Conference on Intelligent
Robots and Systems. Expanding the Societal Role of Robotics in the the Next Mil-
lennium, [S.1.], v.4, p.2012-2017, 2001.

REYNOLDS, C. W. Flocks, herds and schools: a distributed behavioral model. ACM
SIGGRAPH Computer Graphics, [S.1.], v.21, n.4, p.25-34, Aug. 1987.

ROSELL, J.; INIGUEZ, P. Path planning using Harmonic Functions and Probabilis-
tic Cell Decomposition. Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, [S.1.], p.1803-1808, 2005.

SILVEIRA, R. et al. Natural steering behaviors for virtual pedestrians. The Visual Com-
puter, [S.1.], v.26, n.9, p.1183-1199, Nov. 2009.

SILVEIRA, R. et al. Path-Planning for RTS Games Based on Potential Fields. In:
BOULIC, R.; CHRYSANTHOU, Y.; KOMURA, T. (Ed.). Motion in Games. [S.L]:

Springer Berlin / Heidelberg, 2010. p.410-421. (Lecture Notes in Computer Science,
v.6459).

SILVEIRA, R.; PRESTES, E.; NEDEL, L. P. Managing coherent groups. Computer
Animation and Virtual Worlds, [S.1.], v.19, n.3-4, p.295-305, 2008.

SPRING. Spring Engine. Available at <http://springrts.com/>. Access in June 26, 2011.

STENTZ, A. The focussed D* algorithm for real-time replanning. Proceedings of the
14th international joint conference on Artificial intelligence - Volume 2, San Fran-
cisco, CA, USA, p.1652—-1659, 1995.

TANENBAUM, A. S. Computer Networks (4th Edition). [S.1.]: Prentice Hall, 2002.

TORCHELSEN, R. P. et al. Approximate on-Surface Distance Computation using
Quasi-Developable Charts. Computer Graphics Forum, [S.1.], v.28, n.7, p.1781-1789,
Oct. 2009.

TORCHELSEN, R. P. et al. Real-time multi-agent path planning on arbitrary surfaces.
I3D ’10: Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive 3D
Graphics and Games, Washington, D.C., p.47-54, 2010.

http://pt.wikipedia.org/wiki/Super_Mario_Galaxy
http://pt.wikipedia.org/wiki/Super_Mario_Galaxy
http://www.nvidia.com/cuda
http://springrts.com/

72

TREUILLE, A.; COOPER, S.; POPOVI¢, Z. Continuum crowds. ACM SIGGRAPH
2006 Papers, Boston, Massachusetts, v.25, n.3, p.1160-1168, July 2006.

TREVISAN, M. et al. Exploratory Navigation Based on Dynamical Boundary Value
Problems. Journal of Intelligent and Robotic Systems, [S.1.], v.45, n.2, p.101-114,
May 2006.

UNITYTECHNOLOGIES. Unity: game development tool. Available at
<http://unity3d.com/>. Access in March 29, 2011.

VALVE. Source Engine. Available at <http://developer.valvesoftware.com/wiki/Naviga
tion_Meshes>. Access in June 28, 2011.

YAN, H. et al. Path planning based on Constrained Delaunay Triangulation. Intelligent
Control and Automation, 2008. WCICA 2008. 7th World Congress on, [S.1.], p.5168—
5173, 2008.

ZHAO, C.; FAROOQ, M.; BAYOUMI, M. Collision-free path planning for a robot with
two arms cooperating in the 3-D work space. Proceedings of IEEE International Con-
ference on Robotics and Automation, [S.1.], v.3, p.2835-2840, 1996.

http://unity3d.com/
http://developer.valvesoftware.com/wiki/Navigation_Meshes
http://developer.valvesoftware.com/wiki/Navigation_Meshes

73

APPENDIX A - PROOF OF EQUATION 4.13

In Section 4.2 we said that if the vectors ng, n; and n, lie in the same plane defined by
a triangle ¢ and have the same lenghts of the associated edges of ¢, it is possible to write

n 4 ns — ng = (0,0,0). (8.1)

In order to prove this, we will define the vectors ng, n; and n, assuming the triangle
t, depicted in Figure 8.1. This triangle is defined by its vertices vg = (o, Yo, 20), V1 =
(21,91, 21) and v = (Z3, Yo, 22). The normal of ¢ is

(v1 —vg) X (v2 — vg)
[(v1 — o) X (v2 — o)l

It is possible to write the vectors ng, n; and ns as

8.2)

n =

Ng = R(’Ul — Uo),
n = R(v1 — va),
ny = R(vy — o) (8.3)

where R is a rotation matrix around the vector n with angle 7. Combining the equations
8.1 and 8.3 we can write:

ny+ng —Ng = R(Ul — ’U2) -+ R('U2 — UQ) — R(Ul — 'Uo) = (O, O, 0) (84)
As R is a linear transformation, 8.4 can be written as
R [(Ul - 112) + (1)2 - U()) — (’U1 - Uo)] = (0, 0, 0) (85)

As the terms of Equation 8.5 cancels each other, the rotation matrix 2 is multiplied
by the vector (0, 0, 0), which results in the same vector (0, 0, 0), completing the proof:

R(0,0,0) = (0,0,0). 8.6)
A 7
v~ o\ eV, LTy

Figure 8.1: The triangle ¢, its vertices and associated edge normals, used in Equation 4.14.

74

APPENDIX B - TEST CASES

On the Section 5.1 we presented a study comparing the 3DS-BVP and the BVP Path
Planner. In Figure 5.1, we presented the test cases 4 and 8. Test case 4 presented an
environment and paths computed using the BVP Path Planner and the 3DS-BVP. The test
case 8 presented the same environment as the test case 4, but using a noisy triangle mesh
to compute the paths on the 3DS-BVP. This section presents all the other test cases used
during this test (except the test cases 4 and 8, which are already presented in Section 5.1).

As in Figure 5.1, figures 8.2, 8.3, 8.4, 8.5, 8.6 and 8.7 use a gradual color transition
from green to red to represent the value of the potential in each point of the environment,
from O to 1, respectively. In all figures, the white lines represent the path generated by
the BVP Path Planner, and the blue lines represent the path generated by the 3DS-BVP.
Yellow lines represent separation between occupied, goal and free cells.

L
e

() (b)

Figure 8.2: Comparison between the BVP Path Planner and the 3DS-BVP, test case 1. (a)
BVP Path Planner. (b) 3DS-BVP.

75

(b)

Figure 8.3: Comparison between the BVP Path Planner and the 3DS-BVP, test case 2. (a)
BVP Path Planner. (b) 3DS-BVP.

(b)

Figure 8.4: Comparison between the BVP Path Planner and the 3DS-BVP, test case 3. (a)
BVP Path Planner. (b) 3DS-BVP.

N N T AN
.
(a) (b)

Figure 8.5: Comparison between the BVP Path Planner and the 3DS-BVP, test case 5. (a)
BVP Path Planner. (b) 3DS-BVP, with noisy mesh.

76

Figure 8.6: Comparison between the BVP Path Planner and the 3DS-BVP, test case 6. (a)
BVP Path Planner. (b) 3DS-BVP, with noisy mesh.

(a)

Figure 8.7: Comparison between the BVP Path Planner and the 3DS-BVP, test case 7. (a)
BVP Path Planner. (b) 3DS-BVP, with noisy mesh.

77

APPENDIX C - ARTICLES PUBLISHED DURING THIS WORK

During the development of this work, several articles were published. The following
pages contains the full text of these articles.

Semi-Automatic Navigation on 3D Triangle
Meshes Using BVP Based Path-Planning

Leonardo Fischer, Luciana Nedel
Institute of Informatics
Federal University of Rio Grande do Sul — UFRGS
Porto Alegre, Brazil
{1gfischer, nedel} @inf.ufrgs.br

*2owe

Fig. 1.

Abstract—Efficient path-planning methods are being explored
along the years to allow the movement of robots or virtual
agents in planar environments. However, there is a lot of space to
improve the quality of paths restricted to 3D surfaces, with holes
and bends for instance. This work presents a new technique
for path-planning on 3D surfaces called 3DS-BVP. This path
planner is based on Boundary Value Problem (BVP), which
generates potential fields whose gradient descent represents
navigation routes from any point on the surface to a goal position.
Resulting paths are smooth and free from local minima. The
3DS-BVP works on complex surfaces of arbitrary genus or
curvature, represented by a triangle mesh, without the need of
2D parametrizations. Our results demonstrate that our technique
can generate paths in arbitrary surfaces with similar quality as
those generated by BVP-based methods in planar environments.
Our approach can be applied in the development of new tools to
automate the navigation on 3D surfaces, like the camera control
in the exploratory visualization of 3D models.

Keywords-3D path-planning; navigation; surfaces exploration.

I. INTRODUCTION

Navigation on three-dimensional surfaces is a relevant prob-
lem for many application areas, such as: scientific visual-
ization, where a user needs to inspect different objects, as
organs in a medical application or engines in a CAD system;
robotics, with the automatic definition of paths and motions
for robots; and entertainment, more specifically on the video
games domain, where the exploration of complex 3D worlds
are much more challenging for the player than planar ones.

Navigation is a complex interactive task and is usually
divided in two parts [2]: travel, and wayfinding. While the
travel is the motor component of navigation, the low-level
actions that a user makes to control the position and orientation

Paths produced on the Costa Minimal Surface [1]. Note how lines starting in different points of the surface smoothly reach the target point (green).

of his/her viewpoint, the wayfinding is the cognitive compo-
nent, and includes high-level thinking, planning, and decision
making. It includes spatial understanding and planning tasks,
such as determining a path from the current location to a goal
location.

Path-planning algorithms are being explored for years. Sev-
eral solutions were applied into robotics and virtual environ-
ments, with some of them focusing on a high performance
path finding — normally including a pre-processing phase [3]
—, and others on providing better paths. Although most of
these solutions focus on the problem on the Euclidean plane,
some of them are robust enough to handle systems with more
than two degrees of freedom (as 3D path-planning [4] or path-
planning for robotic arms with several joints [5]). However,
path-planning methods restricted to arbitrary surfaces is not
well explored in the literature.

Methods that focus specifically on 2D path-planning cannot
be trivially modified to handle arbitrary surfaces. One possible
approach is to use a sophisticated projection technique from
the 3D surface to the Euclidean plane, and then modify the
2D path-planning algorithm to work on this projection, which
is not a trivial task (due to the nature of this projection).
Algorithms that handle 3D environments depend on their
nature to be adapted to 3D surfaces, as in a given point
of the surface the algorithm should behave as a 2D path
planner. Graph based approaches are fast enough for real-time
applications, but the generated paths are not as smooth as other
approaches. In all these cases, the required work for porting
is not negligible, and it is not clear how these algorithms will
behave in this kind of environments.

In this work we developed a solution for the second part of
the navigation problem on arbitrary surfaces, the wayfinding.

We present a new path-planning technique that handles the
arbitrary 3D surface case, so called 3DS-BVP, an acronym
to 3D Surface Path Planner using Boundary Value Problems
system. The technique uses boundary value problem (BVP)
systems to generate potential fields using a triangle mesh
discretization. Using the gradient of the potential field, the
agent can be guided through the environment. Briefly, the main
contributions of this paper are:

o A numerical method that generates potential fields using

a triangle mesh discretization;

e A path planner based on potential fields that draws

smooth paths on 3D triangular surface meshes.

Our technique is based on a path-planning algorithm that is
able to generate smooth paths with low probability of collision
with obstacles, using potential fields.

The remainder of this papers is organized as follows.
Section II presents the related work on path-planning for
interactive applications and robotics. Sections III and IV
describe the technique, while Section VI presents the results
achieved and some discussion about it. Finally, in Section VII
our conclusions and future works are discussed.

II. RELATED WORK

Path-planning algorithms are being used to find a path to
be followed from a given position to a goal one on a virtual
environment. Many algorithms have been proposed to solve
this problem, and the most part of them assume that the free
space can be projected on a 2D surface.

Kallmann [6] used constrained Delaunay triangulations to
discretize the free space of the environment in a triangle mesh,
and a graph approach to search for free paths. Afterwards,
he has also proposed a method that search for paths in an
environment with specific clearance [7]. Despite the fact that
these methods use triangle meshes as main data structure, they
are developed only for planar environments. Our method do
not make any difference between planar and 3D surfaces.

Techniques based on potential fields for navigation include
the work of Rosell and Iniguez [8], Trevisan et al. [9], Treuille
et al. [10], and Park [11]. These techniques use positions of
obstacles and agents to compute a function. The result is a
field from where the directions to a target position are derived.
These techniques differ from each other in the function that
is used to compute the field and how directions are derived,
resulting in different behaviors for each technique. For exam-
ple, the work of Trevisan et al. favors the exploratory behavior
of an agent, while the work of Treuille et al. favors its use
with crowds of autonomous agents. All these techniques were
developed for 2D environments. Some of them can also be
applied for 3D environments by adding one dimension to their
equations, but this will significantly degrade its performance.

A path planner based on geodesic distances on triangular 3D
meshes was recently proposed by Torchelsen et al. [12]. This
work focuses on multi-agent systems, an uses a CPU/GPU
architecture to handle the collision avoidance between the
agents. The main advantage of this method is the high per-
formance achieved. On the other side, the paths generated are

close to the shortest ones, which can lead to a high probability
of collision paths with static obstacles. Our potential field
approach produces smooth paths that whenever is possible
avoids getting very close to the obstacles.

Due to its performance and low memory requirements,
graph-based approaches are the most common in the game
industry. Popular game engines as Unreal Engine® and
CryEngine® made use of it. In these methods, a graph repre-
sents the environment and the Dijkstra algorithm [13] (or one
of its derivations) is used to find a path between two nodes.
The difference between the approaches (as the ones proposed
by Kavraki et al. [14], Barraquand et al. [15], Lavalle [16],
and Kang et al. [17]) is the algorithm used to sample the graph
from the environment and how it is updated. All these methods
seem to be easily adaptable for 2D and 3D path-planning, but
they are not being explored for arbitrary surface path-planning.

III. BVP PATH PLANNER

The BVP Path Planner [9] is a 2D Path Planner that
generates paths using the potential information computed from
the numeric solution of

Vip(r) = ev Vp(r), M
with Dirichlet boundary conditions, where v & R2 and
|v|] = 1 corresponds to a vector that inserts a perturbation
in the potential field; ¢ € R corresponds to the intensity of
the perturbation produced by v; and p(r) is the potential at
position r € R?, respectively. Both v and ¢ must be defined
before computing this equation. The gradient descent on these
potentials represents navigational routes from any point of the
environment to the goal position. Trevisan et al. [9] shows that
this equation does not produce local minima and generates
smooth paths.

To solve numerically a BVP, we consider that the solution
space is discretized in a regular grid ([9], [18]). Each cell
(i, 4) is associated to a squared region of the environment and
stores a potential value p(7,j). Using the Dirichlet boundary
conditions, the cells associated to obstacles in the environment
store a potential value of 1 (high potential) whereas cells
containing the goal position store a potential value of 0 (low
potential).

A high potential value prevents the agent from running into
obstacles whereas a low value generates an attraction basin that
pulls the agent. The relaxation methods employed to compute
the potentials of free space cells is the Gauss-Seidel (GS). The
GS method updates the potential of a cell ¢ through:

o Fpet+oe o €((pr— p1)ve + (Do — Di)Vy)
c 4 + 8

where v = (vy,vy), and p¢, py, pi. pr and p; are cells of a
grid, as illustrated in Figure 2.

The GS method allows the use of partial results as an
approximation of the potential field [19]. Since the exact
solution is not necessary, we can control the accumulated
error e(t) at each iteration through a tolerance threshold €,

€3]

8 1[(i,i+1)
8 & & (-Li) @) (i+1,)
& (i,j-1)

Fig. 2. Cells of a grid, when Equation 2 is evaluated for the cell p..

according to:

m n

e(t) =Y > Ip(i,)" = p(i,)" = ema- (3)

i=1 j=1

where p(i, j)! is the potential of the cell (4, j) at the iteration
t, p(i,)t~ is the potential of the same cell in the previous
iteration and m and n are the grid dimensions.

After the potential computation, the agent moves following
the direction of the gradient descent of this potential at its
current position (i,).

IV. PATH-PLANNING ON TRIANGLE MESHES

In our proposal, the 3DS-BVP generates potential fields that
produce smooth paths in triangle meshes. The method works
accordingly to the steps: (1) discretize the environment in a
set of cells; (2) calculate the potential field; (3) compute the
gradient of the potential field.

A. Discretizing the environment

Triangle meshes are widely used in computer graphics
industry to model objects and virtual environments, what
means that our technique can be easily applied to existing 3D
models and surfaces. Then, we assume that the environment
is represented by a triangle mesh that is used as a triangular
grid to compute the potential field.

The triangular grid is represented by a Doubly-Connected
Edge List (DCEL) data structure [20] due to its simplicity,
capability to find the neighbors of a vertex, face or edge in
constant time, and ability to handle closed and open triangle
meshes. For the scope of this work, an open mesh is a mesh of
triangles that is topologically equivalent to a 2D plane. Meshes
with holes in its surface are also considered open meshes. A
closed mesh is not topologically equivalent to a plane, in such
a way that it should be broken into two or more open meshes
to build a mapping function from the mesh to a plane. Closed
meshes also don’t have holes in its surface.

As shown in Figure 3, an edge in the DCEL connects two
vertices and is actually defined by a pair of half-edges, each
one being a rwin of the other. A face is then defined by a
sequence of half-edges starting at the boundary half-edge of
the face, usually in a counter-clockwise order. The half-edges

——> Half-Edge
Face

O Vertex

Next

Half-Edgeface

Fig. 3. DCEL data structure. Edges are represented by pairs of parallel blue
arrows, vertices by red circles, and faces by green polygons.

are connected among themselves through the next and previous
pointers.

The first step of the 3DS-BVP algorithm works as follows.
To each vertex of the DCEL data structure, a potential value
is assigned — in the same way of the BVP path planner cell in
Section III. Then, each triangle of the grid is divided into three
regions by connecting the medians of the edges of the triangle
to its centroid (see Figure 4). Each triangle region is associated
to the near vertex and, for a given vertex v of a triangle ¢, the
function Region(v,t) returns that associated region. Also, the
algorithm assumes that each vertex v in the triangle mesh is
associated with a set of triangles Triangles(v), where each
triangle in T'riangles(v) has one vertex equals to v (i.e. they
share the same vertex). The cell associated to a given vertex
v is then defined by function Cell(v) = {Region(v,t)|Vt €
Triangles(v)}. The function Vertex(c) returns the vertex
associated to the cell c. Figure 5 illustrates these concepts.

We also define the concept of neighbor cell as two cells
that have their associated vertices connected through a single
pair of half-edges. This means that two cells ¢; and cy are
neighbors if the function Link(Vertex(ci), Vertex(ca))! =
null satisfies. Assuming that the set C' contains all the cells
derived from the triangle mesh, the function Neighbors(c;) =
{¢j|Ve; € C,il = j, Link(c;, ¢j)! = null} returns the set of
neighbor cells for a given cell ¢;.

B. Calculating the potential field

In order to execute the relaxation over the set of cells,
the boundary conditions must be defined. These boundary
conditions are set according to the positions of obstacles and
the goal in the environment. We assume that obstacles and
goal positions are constrained to the surface. As in the BVP
Path Planner, each cell receives a tag and an initial potential
value, as follows:

« cells associated with occupied areas of the environment
and cells associated with limiting vertices (vertices in the

Vy
—— Edge

® Vertex

— — - Division

Vy

Fig. 4. Triangles are divided in order to build the cell mesh. In highlight,
the area returned by the function Region(v1,t).

— Edge
® \Vertex

v, = = Celllimit

Fig. 5. A triangle mesh and its corresponding cell division. The five
highlighted triangles ({v1,v2,v3}, {v1,v3,va}, {v1,v4,v5}, {v1,v5,v6}
and {v1,v2,v6}) share the same vertex vi and, therefore, they are in the
set T'riangles(v1). Applying the function Region(v1,t) for each triangle
t in TTiangles(vl) results in the cell associated to the vertex vi, which is
highlighted with the dotted line around vy.

border of the mesh or in the limit of a hole in the mesh)
are tagged as occupied and receive the high potential
value;

« the cell associated with the goal position receives the goal
tag and the low potential value;

« cells associated with free navigable areas of the environ-
ment are tagged as free and receive a mean value between
the low and high potential values, as in the BVP Path
Planner.

In order to update the potential value of the free cells,
a set of functions need to be defined. Assuming that the
function Dist(vq,ve) returns the Euclidean distance between
the vertices vy and vy, Dpin(c;) and Dyee(c;) return the
minimum and maximum distance, respectively, between the
vertex of a cell ¢; and the vertices in its neighborhood.

The influence of a cell c; over the cell ¢;, relative to the
neighborhood of ¢; is given by

I(Ciacj) = szn(c1) +Dmam(ci)

— Dist(Vertex(c;), Vertex(cj) (4)

Equation 4 is an heuristical measure of how much the
potential of one cell ¢; has over its neighbor ¢;. As D,yin(c;i)
and D,,q.(c;) are computed from the same input set, it is
guaranteed that D, (¢;) <= Dmaz(c;). The closer the cell
¢; is to ¢;, closer the value of I(c;, ¢;) is to Diy,q,. The farther
a cell ¢; is from the cell ¢;, closer the value of I(c;,c;) is
to Dypnin. Then, the result of I(c;,c;) can be interpreted as
how close a cell ¢; is to ¢;, in a scale between D, (c;) and
Dmax(ci)-

Based on Equation 4, the function

#Neighbors(c;)

>

j=1

Liotai(ci) = I(c;, ¢))

computes the sum of the influences that a cell receives from
its neighbors. This function is then used in the equation

#Neighbors(c;)

>

=1

I(Ci,Cj)

—_— 6
Itotal (CL) ’ ()

plei) = p(cy)

which is used to update the potential p(c;) of a free cell ¢;.
The potential values of the free cells are updated using
Equation 6 until the convergence sets in, as in the BVP
Path Planner. A threshold error e,,q, is used to verify if the
potential field has converged. Equation 3 is used over the
whole set of cells C' to compute the error at a given iteration.

C. Computing the gradient of the potential field

Calculating the potential field, an agent should be able to
follow the gradient descent in order to reach the goal position.
Equation 6 is able to mimics the results produced by the
Laplace’s Equation. We can then calculate the gradient of
Equation 6, as we use to do with the Laplace’s Equation.

One possible solution for the calculus of the gradient of
the Laplace’s Equation in an unstructured triangular mesh
involves the use of the integral form of that equation, which
can be obtained by integrating the equation over some volume
Q, and then applying the Gauss Divergence Theorem. The
integral form of the Laplace’s Equation and its equivalent after
applying the Gauss Divergence Theorem is

/ V2p(r)dQ = f Vp(r) - adA = 0. (7
Q

o

The relation between the gradient of the function p(r) over
a volume and the integral on the surface of the volume of the
function times the normal area vector is

/ Vp(r)dQ = ?{ p(r)idA. @)

Q o

The relation above, when computed in sufficiently small
volumes can be used to compute an approximation of the
gradient. This results in

1
Vp(r) = a fp(r)fsz. ©)]
o0

Assume that we want to compute the approximation of the
gradient in the triangle ¢t = {vg, v, v2 }. For this, we calculate
the normal vector of each edge of each triangle and multiply
each one by the length of the respective edge. The area of the
triangle ¢ is calculated by the function Area(t). Function p(r)
is already computed in each vertex.

The approximation of Equation 9 on the triangle ¢ yelds the
equation

1

Vp(t) ~ 2Area(t) [

= p(vo)in — p(v1)nz + p(va)ho] . (10)
that is then used to approximate the gradient of the potential
field at the centroid of the triangle ¢.

To move towards the target position in the environment, an
agent a must follow the gradient descent of the triangle where
he is on. This triangle is kept as a pointer to the current face in
the DCEL strucutre. When the agent walks out of the current
face, the functions provided by the DCEL data structure can
be used to check which one of the edges was crossed. The
crossed edge will be represented by a half-edge h, and the
function Face(Twin(h)) will be set as the current face of the
agent. The function UpdatePosition(a, g) is used to update
the agent position and the current face based on the gradient

g.
V. POTENTIAL FIELDS IN 3D SURFACES

In a completely planar environment discretization, the path
planner presented in Section IV behaves in a similar way to the
BVP Path Planner (see Section III). The goal position must
be checked with a goal tag while the obstacles are tagged
as occupied. The limits of the environment are also tagged
as occupied and all the remaining cells are tagged as free.
All cells receive some potential value, according to what was
specified in the Sub-section IV-B. Then, the relaxation step
evaluates adequate values for free cells. And finally, the agent
can use the gradient of the potential field to build a path to
follow.

In this kind of environment, the path planner can take
advantage of a simpler math, since all the vertex positions
and normals can be manipulated in 2D. Naturally, a 3D
discretization will require a third coordinate for the position
of vertices and normals.

For 3D open meshes the path planner works with minimal
modification, and the addition of a coordinate axis does not
introduce significant changes in any of the methods presented
in the previous section. During the relaxation, only the func-
tion Dist(vy,v2) changes and must compute the Euclidean
distance in 3D. In addition, the normals used to compute the

gradient must also be stored in 3D. But the normals keep
parallel to the plane defined by the triangle which they belong.

The most relevant modification in the algorithm to deal
with 3D meshes is the handling of boundary conditions.
Our algorithm requires that at least two different boundary
conditions must be set: one goal cell and one occupied cell.
We assume that the goal is always defined, so for 3D meshes
we should take a special care with the occupied cells.

If the 3D mesh is open (as defined in Section IV-A), the
limiting vertices will force the existence of occupied cells, as
explained in Section IV-B. Closed meshes with obstacles on
its surface will also force the existence of occupied cells. This
will generate a gradient that prevents the agent from leaving
the surface limits, collides with obstacles, and guides to the
goal position.

However, if the mesh is closed and do not have any obstacle
on its surface, then our algorithm will generate only goal cells.
If this occurs, the relaxation step will stop only when all cells
have their potential value equal to low potential. This will
lead to a null gradient on the mesh (the result of Equation 10
will be (0,0)), and the agent will have no clue about which
direction it should follow.

To avoid the occurrence of null gradients, the cell containing
the initial position of the agent is tagged as occupied and
receives the high potential value. Although the cell does not
contain any obstacle, this will force the potential field to have
a gradient capable of guiding the agent from its initial position
to the goal. Also, as the agent is leaving that position away,
the obstacle added will not modify the existence of a path
from the initial to the goal position.

Meanwhile, this approach has a drawback. The path taken
by the agent may change significantly according to the initial
position of the agent inside the modified cell. Because the cell
that corresponds to the initial position is modified to receive
the occupied tag and high potential value, the gradient on
the cell borders will be significantly different according to
the triangle where the position is. The fact that the mesh is
closed and do not have other boundary conditions allows the
situation where many different paths can be taken to reach the
same goal position.

VI. RESULTS

In order to evaluate our work, we produced a set of tests.
First, we present a comparison of our method in a planar
triangular mesh, showing that our technique is able to produce
smooth paths with low collision probability, in the same way
that the BVP Path Planner does. Then, we present some of
the results that we obtained with 3D arbitrary surfaces.

A. Comparing our method with the BVP Path Planner

We designed a set of test cases, where each test case is
composed of a squared environment with some obstacles and
goals in it. In the test cases 1 up to 4 the environment were
discretized in a regular triangle grid. The test cases 5 up to
8 used the same environments as the first cases, but with
addiction of noise to disturb each vertex position in the triangle

(b)

(©))

Fig. 6. Planar environment. The gradual color transition from green to red represents the value of the potential in each point of the environment, from 0 to
1, respectively. (a) The environment discretized in a regular grid, with the paths computed with the BVP Path Planner; (b) the environment discretized in a
regular triangle mesh, with paths computed with the 3DS-BVP; (c) comparison between the paths generated with the BVP Path Planner and the 3DS-BVP;

(d) a discretization of the environment using a triangle mesh with noise.

‘Test Case | Average Error | Std. Deviation | Max. Error | #Cells
1 0.00394 0.00606 0.06224 2,500
2 0.00303 0.00417 0.05802 10,000
3 0.01844 0.01283 0.08957 10,000
4 0.00604 0.00817 0.08911 10,000
5 0.00903 0.01042 0.15687 2,500
6 0.00469 0.00631 0.30755 10,000
7 0.01867 0.01717 0.49989 10,000
8 0.00792 0.01332 0.49913 10,000
Average 0.00897 0.00981 0.22030
TABLE 1

COMPARISON BETWEEN THE POTENTIAL FIELD GENERATED WITH OUR
TECHNIQUE AND THE BVP PATH PLANNER. AS THE POTENTIAL FIELDS
GENERATED WAS NORMALIZED, THE AVERAGE ERROR IN ALL CASES WAS
ABOUT 0.8%, WITH A STANDARD DEVIATION OF ABOUT 0.9% OF THE
RESULT PRODUCED BY THE BVP PATH PLANNER.

grid (better representing the triangles found in 3D surfaces).
Figure 6 illustrates these test cases. The green region on the
border represents the goal and the yellow lines delimit the
obstacles. The white lines are the path generated by the BVP
Path Planner, starting at random positions on the environment,
while the blue lines are the path generated by our technique.
Figure 6(a) illustrates our test cases using the regular grid,
while Figure 6(b) and (d) used a triangle grid. Figure 6(c)
combines the paths produced by the BVP Path Planner and
the 3DS-BVP in a single image.

We can see that the paths produced by the 3DS-BVP
in Figure 6 are quite similar to the paths produced by the
BVP Path Planner. By adding noise, these paths loses some
smoothness due to the presence of low quality triangles, but
still mimics the results produced by the BVP Path Planner and
by 3DS-BVP on regular triangle grid.

We have also compared the potential value in each cell of
the potential field produced by the 3DS-BVP with the potential
field generated by the BVP Path Planner. Table I presents a
summary of the differences found between these values. We
can see that, in average, the potential field generated by our
method is almost the same potential field produced by the BVP

Path Planner, with a difference of only 0.8% on average.

The highest difference was 49.989%, found in the test
case 7. Although this is a considerable difference between
the 3DS-BVP and the BVP Path Planner, it occurred in an
environment that had an average difference of 1.867% and
standard deviation of 1.717%. This difference occurred due to
the existence of highly deformed triangles resulting from the
noise. The test case 8 produced very similar potential values,
and generated the paths illustrated in Figure 6(d).

B. Path-planning evaluation in arbitrary meshes

We applied our algorithm on some 3D models to analyze
how paths are generated on these surfaces. In Figure 1 we
applied our algorithm on the Costa Minimal Surface [1], a
complete minimal embedded surface with a genus with three
punctures. We generated several paths on this surface, from
several distinct initial positions to a predefined goal position.
In all cases within this surface, the algorithm found a smooth
path to reach the goal position.

In another experiment, we used a model of the Fertility
statue (Figure 7) to generate paths on its surface. The Fertility
has several genus, which also makes it a good example of
the kind of environment that our technique deals with. In
Figures 7(a) and (c), our planner has generated quality and
smooth paths to reach the goal position. In Figures 7(b) and
(d) we used the same initial and goal positions as (a) and (c),
respectively, but we also defined some regions where the path
could not crossover, simulating obstacles on the surface. The
algorithm demonstrated to be able to find quality and smooth
paths.

C. Performance evaluation

We measured the performance of our algorithm in several
cases, including the surfaces presented in Section VI-B. We
measured the time spent to compute the potential field, and
the number of iterations needed to the convergence with
a threshold error e, = 0.001. Results are presented in
Table II. The tests were executed in a Intel® Core i7 870,
2.93GHz, 4GB Ram and NVidia ® GeForce GTX 470.

() (b)

Fig. 7.

Model | Faces ‘Vertices/CeIIs Time (s) | Iterations ‘
Car 1,292 665 0.2953 1,006
Costa 2,320 1,259 0.3948 854
Statue | 10,000 4,994 41.2660 19,434
TABLE II

PERFORMANCE EVALUATION ON THREE TEST CASES.

Although the quality and smoothness of paths generated
in the previous tests, our performance evaluation shows that
there is still room for improvement. For smaller but complex
models, like the Costa Minimal Surface, our algorithm is able
to solve the potential field and produce a quality path for ap-
plications, like the motion of cameras in virtual environments.
For more detailed models, like the Fertility, our algorithm still
needs some improvements in its performance.

D. Limitations and degenerated cases

Analysing Equation 4 one can conclude that if, eventually,
two vertices are in the same position, D, (c;) will be equal
to 0, and any vertex with a distance of D4, (c;) will have no
influence over the vertex c;. This may result in an interruption
of the propagation of the potential from one region to another.
Also, it is clear that if the mesh has an invalid triangle (with
collinear vertices, for instance), the result of the Equation 10
is undefined.

We tested our method with many different meshes. In an
experiment with several very long non-equilateral triangles, the
paths lost its smoothness. This happens because the gradient of
the adjacent triangles presented big differences between them.

VII. CONCLUSIONS AND FUTURE WORK

We presented the 3DS-BVP, a technique based on potential
fields for path-planning in arbitrary surfaces. As the main
advantage of our technique, it generates smooth paths free
from local minima on 3D surfaces, without the need of a 2D
parametrization, or some other surface representation.

The potential field produced by the 3DS-BVP generates all
the possible paths from a point in the environment to a goal
position following the descent gradient. Paths generated on 3D
surfaces shows to be quite similar to the quality of BVP Path
Planner, with a potential field with a difference of only 0.8%

(©) (Y]

Several paths produced on a complex model (Fertility mesh), with several genus. Note that in (b) the initial and goal positions are the same as (a),
but some obstacles resulted in a different path. The same occurs in (c) and (d).

to it on average. This is a good feature, because the 3DS-BVP
uses as core a potential field with similar characteristics of the
ones produced by the BVP Path Planner.

As its main drawback, its performance is not sufficiently
good for real-time applications, as environments with several
moving agents. We believe that this drawback can be mini-
mized by improving our solution method and by developing
GPU based methods to compute the potential field.

Some possibilities to improve the algorithm performance
are being analyzed. One possible way is to improve the set of
equations that we used, in order to obtain the potential field
using less iterations. Also, the order that cells are evaluated
reflects in the speed that the potential values from the obstacles
and goals are propagated to the free cells. So, there should
be an ideal order that makes the relaxation process faster.
Another possible performance optimization is to implement
our algorithm using GPU. Our method appears to been highly
parallelizable, as the one shown in a previous work [21].

We intend to apply this algorithm mainly in virtual environ-
ments. New tools to control the virtual camera in CAD and
modeling applications can be developed, in order to help the
evaluation and visualization of 3D models. In video games like
Prey® and Super Mario Galaxy® the player and its enemies
walk on arbitrary surfaces to reach their objectives. Future
video games using this kind of environment can also have
benefits from our algorithm.

ACKNOWLEDGMENT

The authors would like to thank Renato Silveira for his ideas
and help with the text, as well as CNPq-Brazil through projects
483947/2010-5, 580156/2008-7, 309092/2008-6 and Microsoft
Brazil Interop Labs. for partially supporting this work.

REFERENCES

[1] C.]J. Costa, “Example of a complete minimal immersion in IR3 of genus
one and three-embedded ends,” Bulletin of the Brazilian Mathematical
Society, vol. 15, no. 1-2, pp. 47-54, Mar. 1984.

[2] D. A. Bowman, E. Kruijff, J. J. LaViola, and I. Poupyrev, 3D User
Interfaces: Theory and Practice. Redwood City, CA, USA: Addison
Wesley Longman Publishing Co., Inc., 2004.

[3] A. Calomeni and W. Celes, “Assisted and automatic navigation in black
oil reservoir models based on probabilistic roadmaps,” in Proceedings
of the 2006 symposium on Interactive 3D graphics and games - SI3D
"06, ser. 13D *06. New York, New York, USA: ACM Press, 2006, pp.
175-182.

(4]

[5]

[6]

(71

(8l

[9]

[10]
(1]

[12]

J. Carsten, D. Ferguson, and A. Stentz, “3D Field D: Improved Path
Planning and Replanning in Three Dimensions,” in Proceedings of
the 2006 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS ’06), 2006, pp. 3381-3386.

K. Belghith, F. Kabanza, L. Hartman, and R. Nkambou, “Anytime Dy-
namic Path-planning with Flexible Probabilistic Roadmaps.” in I[CRA’06,
2006, pp. 2372-2377.

M. Kallmann, “Path Planning in Triangulations,” in Proceedings of
the IJCAI Workshop on Reasoning, Representation, and Learning in
Computer Games, Edinburgh, Scotland, 2005.

, “Shortest paths with arbitrary clearance from navigation meshes,”
in Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. — Madrid, Spain: Eurographics Association,
2010, pp. 159-168.

J. Rosell and P. Iniguez, “Path planning using Harmonic Functions and
Probabilistic Cell Decomposition,” in Proceedings of the 2005 IEEE
International Conference on Robotics and Automation. IEEE, 2005,
pp. 1803-1808.

M. Trevisan, M. A. P. Idiart, E. Prestes, and P. M. Engel, “Exploratory
Navigation Based on Dynamical Boundary Value Problems,” Journal of
Intelligent and Robotic Systems, vol. 45, no. 2, pp. 101-114, May 2006.
A. Treuille, S. Cooper, and Z. Popovi¢, “Continuum crowds,” ACM
SIGGRAPH 2006 Papers, vol. 25, no. 3, pp. 1160-1168, Jul. 2006.

M. J. Park, “Guiding flows for controlling crowds,” The Visual Com-
puter, vol. 26, no. 11, pp. 1383-1391, Jan. 2010.

R. P. Torchelsen, L. F. Scheidegger, G. N. Oliveira, R. Bastos, and
J. a. L. D. Comba, “Real-time multi-agent path planning on arbitrary
surfaces,” in I3D ’10: Proceedings of the 2010 ACM SIGGRAPH
symposium on Interactive 3D Graphics and Games. Washington, D.C.:
ACM, 2010, pp. 47-54.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269-271, Dec. 1959.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, ‘“Proba-
bilistic Roadmaps for Path Planning in High-Dimensional Configuration
Spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566-580, 1996.

J. Barraquand, L. Kavraki, J.-C. Latombe, R. Motwani, T.-Y. Li, and
P. Raghavan, “A Random Sampling Scheme for Path Planning,” The
International Journal of Robotics Research, vol. 16, no. 6, pp. 759—
774, 1997.

S. M. Lavalle, “Rapidly-Exploring Random Trees: A New Tool for Path
Planning,” 1998. [Online]. Available: http://msl.cs.uiuc.edu/~lavalle/
papers/Lav98c.pdf

S.-J. Kang, Y. Kim, and C.-H. Kim, “Live path: adaptive agent navi-
gation in the interactive virtual world,” The Visual Computer, vol. 26,
no. 6, pp. 467-476, Apr. 2010.

R. Silveira, F. Dapper, E. Prestes, and L. Nedel, “Natural steering
behaviors for virtual pedestrians,” The Visual Computer, vol. 26, no. 9,
pp. 1183-1199, Nov. 2009.

E. Prestes, M. A. Idiart, P. M. Engel, and M. Trevisan, “Exploration
technique using potential field calculated from relaxation methods,”
Intelligent Robots and Systems, vol. 4, pp. 2012-2017, 2001.

M. D. Berg, O. Cheong, M. V. Kreveld, and M. Overmars, Computa-
tional Geometry: Algorithms and Applications, 3rd ed. Springer-Verlag,
2008.

L. G. Fischer, R. Silveira, and L. Nedel, “Gpu accelerated path-planning
for multi-agents in virtual environments,” in 2009 VIII Brazilian Sympo-
sium on Games and Digital Entertainment. 1EEE, 2009, pp. 101-110.

Finding hidden objects in large 3D environments: the supermarket problem

Leonardo Fischer, Guilherme Oliveira, Daniel Osmari, Luciana Nedel
Institute of Informatics
Federal University of Rio Grande do Sul — UFRGS
Porto Alegre, Brazil
{lgfischer, gnoliveira, dkosmari, nedel}@inf.ufrgs.br

-

M5 5
(a) Objects to be found

(b) Searching

Figure 1.

(c) Selecting (d) Manipulating

Four snapshots of the supermarket: (a) copies of the target objects on the purple table; (b) and (c) target objects being selected; (d) a selected

object being reoriented to match the same orientation of the copy in the table. Notice, in the top-left corner of images (c) and (d), the list of products that

the user is carrying with him.

Abstract—Many everyday tasks involve searching for some-
thing, selecting, and manipulating it with some cognitive
purpose. Even if it is done in a quite automatic manner, due to
our experience to deal with real objects, the mapping of these
actions to a virtual world is not trivial.

In this paper we present a solution for this problem,
which is composed of three parts: a semi-automatic navigation
technique based on path-planning; a selection technique com-
prising the overexposure of nearby objects; and a manipulation
technique based on natural gestures. These three techniques
were combined in a smooth way to solve the searching, selecting
and manipulating problem. A certain degree of parallelism
between them was accepted and is handled by the system.
We evaluate our results by user testing in a supermarket
scenario. Subjects were invited to walk the hallways of a virtual
supermarket looking in the shelves for specific products —
sometimes hidden by other objects — that they need to pick up
and put over a table in a pre-defined position and orientation.
Results showed that our solution fulfill the needs of this kind
of complex task, in a natural, funny and attractive way.

Keywords-3D interaction; virtual worlds;

I. INTRODUCTION

In the last decade, the popularization of graphics pro-
cessing units (GPUs) and the emergence of high qual-
ity and low cost commodity devices (e.g. Nintendo Wii
Remote®, PlayStation Move®, Microsoft Kinect®, and
Apple iPhone®) that enable 3D interaction for everyone,
motivated the implementation of fully interactive 3D appli-
cations.

Examples of this kind of applications may be found in
different domains [1], as medicine, for instance. A mini-

mally invasive virtual surgery involves the navigation inside
the body, the identification of the target organ, and the
manipulation of the tissues (e.g. for suture). In the public
safety and military field, the user is invited to walk in a
virtual environment, find a bomb and defuse it, precisely
manipulating small pieces. Regarding entertainment, thanks
to the release of modern video games consoles, many game
titles involving natural interaction can be found in the shops
shelves.

Although the great part of interactive applications require
complete and integrated solutions, research projects usually
handle only one interaction technique such as selection,
manipulation, or navigation, neglecting the integration with
other techniques [2]. The composition of different interaction
techniques in a single application is almost as difficult as to
propose a new one. An application that require more than
one interactive task certainly have dozens of possible solu-
tions. But which technique is really effective to accomplish
the task? Combining the best choices for each task that need
to be supported may not result in the best solution, because
the transition and coupling between the techniques may not
be as smooth or natural as expected.

In this paper we propose a solution for a complete
interactive 3D application that mimics problems people use
to face in real life and that is being explored in industry for
simulation software. The user should search for a specific
object — sometimes total or partially hidden — in a virtual
environment, get it, and put it in a specific position and
orientation. We present the interaction techniques we chose

for navigation, selection and manipulation and how we
combine them into a unique solution that allows smooth
transition between them.

The remainder of this paper is structured as follows.
Section II reviews some works on 3D interaction and the
best solutions for every kind of task. In Section III we detail
the problem that motivates this work. The four following
sections present an overview of the proposed solution (Sec-
tion IV), the semi-automatic navigation technique adopted
(Section V), the selection technique with the overexposure
of objects (Section VI), and the manipulation technique
(Section VII). Section VIII describes the user tests and
Section IX the results. Section X discusses the lessons
learned and Section XI presents our conclusions and future
works.

II. RELATED WORK

Users of immersive virtual environments usually intend
to manipulate objects that are part of the scene. Reaching
objects may also require navigation through the virtual
environment since they might not be close to the user.
Manipulation requires a previous selection of an object of
interest, and navigation is also frequently based on selecting
a target point to indicate the path that the user wants to
follow.

Developing simple and comfortable selection and manip-
ulation techniques for 3D environments has been a research
issue for many years, and there are several possibilities
depending on the application-specific tasks, different devices
and interaction metaphors. At a high level, these techniques
can be classified in two categories according to the inter-
action metaphor used: the exocentric and the egocentric
metaphors [3]. In the exocentric metaphor, the proportions
between the user and the objects are not maintained, as-
suming that the user interacts with the environment from
outside of its reference system. This is known as god’s eye
viewpoint. In the egocentric metaphor, the user is part of
the virtual world, maintaining the dimensional coherence
between him/her and the objects being manipulated. This
class is further subdivided into two metaphors: virtual hand,
where the user reaches and grabs the object of interest with
a virtual hand, and virtual pointer, where the user interacts
with the target object by pointing at it.

With virtual hand techniques, the users can select and
directly manipulate virtual objects by fouching them with
their own hands. These techniques are mainly implemented
in two different ways: classical virtual hand technique [3],
and Go-Go technique [4] that improves the simple virtual
hand by allowing the user to interactively change the length
of the virtual arm.

The interaction by pointing allows the selection and
manipulation of objects located far from the user reach-
ing area. One of the first pointing-based implementations
where developed in the 80s by Bolt [5]. Then, many others

were proposed, differing in the shape of the pointer, the
definition of the virtual pointer direction and the methods
of disambiguating the object the user wants to select. The
most common example of virtual pointer is the ray-casting
technique [6] and its variations, like ray-casting with fishing
reel [7], spotlight [8], and aperture selection [9].

Due to the difficulty of conceiving a single best technique
for all possible scenarios, some hybrid techniques were
proposed. Some of them are very popular as: HOMER (Hand
Centered Object Manipulation Extending Ray casting) [7],
scaled-world grab [8] and Voodoo Dolls [10].

Navigation in three-dimensional environments is a recur-
ring problem and includes both travel and wayfinding. Travel
corresponds to the motor component of navigation, or the
control of the user’s position and orientation in the virtual
world. Wayfinding involves thinking, planning and choosing
a path to follow from one point to another. In other words,
represents the high-level part of the navigation task.

A large number of applications require some form of
egocentric navigation through a simulated three-dimensional
environment, either restricted to the ground — degenerating to
an effectively planar situation — or involving free movement
in the three-dimensional space.

Several devices and techniques have been tried to solve
this problem, most of them presenting limitations. Some
techniques require the combination of two or more devices
to allow the number of degrees of freedom (DOF) needed
for effective navigation, as in the use of the traditional
mouse usually coupled with a keyboard for additional DOFs.
Others techniques impose adaptation problems to potential
users, like the three-dimensional mice, spaceballs, etc. Less
common techniques, like the ones based on gesture and body
motion, suffer from their own drawbacks, often requiring
large and/or expensive setups [11], sometimes limiting the
user’s natural movements not associated with navigation, or
being prone to cause user fatigue in long sessions [12].

Other navigation techniques require that the user phys-
ically walks through a real environment [13], [14]. These
systems achieve a high sense of immersion by tracking
the user position and orientation. A restriction is that they
require a large available space so the user can walk freely.

A common solution for travel tasks relies on the con-
tinuous control of the orientation of the viewpoint and
motion by the user. For example, the user may wear a head
mounted display (HMD) where the orientation of his head
is tracked [13]. In these cases, the user has the hands free
to interact with the virtual environment, but the motion of
the viewpoint is highly coupled to view direction in cases
where the path is not pre-computed.

In automatic techniques, the user indicates where he/she
wants to go. The system is responsible to find a path and
moves the viewpoint automatically [15], [16]. Mackinlay
et al. [15] proposed an interaction technique where the
viewpoint position and speed is controlled based on the

user selected point of interest. Hachet et al. [16] proposed
improvements by adding some widgets to the technique.
In techniques based on sketches, the user draw a path on
the environment, and the system controls the motion over
that path. Hagedorn and Dollner [17] used a sketch based
navigation approach in a touch sensitive display to explore
a 3D model of a city.

In this section we addressed the main 3D interaction tech-
niques. However, it is difficult to determine which technique
is the best one. In the last few years, many experimental
evaluations have been published and some guidelines are
accepted nowadays [18]: the interaction technique and the
device used should match; one may use pointing techniques
for selection and virtual hand for manipulation tasks; when
possible, reduce the number of DOFs; consider the use
of both natural and magic techniques; use an appropriate
combination of technique, display, and input devices; for
navigation tasks, avoid teleportation; and consider using
multimodal input.

Despite these recommendations, that certainly help the
user choose the interactive technique and devices, the
achievement of a good interface is not assured. Everytime
a new technique, a new device or a new application is
proposed, an empirical evaluation should be done to validate
the choice.

ITII. THE SUPERMARKET PROBLEM

A supermarket intuitively illustrates the problem presented
in Section I and is explored in this work. A person who goes
to the supermarket for shopping is exposed to a large and
complex environment full of objects (e.g. shelves, products,
and so on). Her tasks involves: walk along corridors, with
or without a specific destination, but always looking for
something; reach products on shelves, putting it inside the
shopping cart; and take the products off the shopping cart
and pay for it, where shopping ends. Sometimes, people
manipulate a specific product to evaluate if it will be bought
or not. This sequence of actions is done repeatedly, for
many different products, arranged in very different ways into
distinct containers.

To guide the development of this work, we use the same
specifications given by the organizers of the IEEE 3DUI
(Symposium on 3D User Interfaces) interaction contest of
2010 [2]. The task is to find a set of three objects in a
supermarket and move them to a table. Copies of the target
objects were put on a purple table (see Figure 1(a)), and the
objects itself were hidden behind other objects in the aisles
marked with a pane with red dots (red dots can be seen in
the Figures 1(b) and 1(c)). Users should be able to move
along the corridors, find the object similar to the one on
the table, and place it beside its copy in roughly the same
orientation (Figure 1(d)).

The supermarket scene model comprises hundreds of
distinct products, including milk bottles, soap packages,

Figure 2. Using the Nintendo Wii Remote® and Nunchuck® to interact
with the supermarket scenario. In this stage the Nunchuck® is being used
to rotate the selected object so its orientation can match the one of the fixed
copy on the table.

pizzas, cereal boxes, and so on. The products that should be
found by users are like others in the shelves, but highlighted
with a different color.

IV. OVERVIEW OF THE SOLUTION

The kind of action to be accomplished in a virtual
environment like a supermarket involves three main tasks:
navigation, selection, and manipulation. Since the environ-
ment is complex and full of objects, we decided to conceive
a solution as simple as possible, that minimizes the use
of buttons, and avoids any kind of menu to minimize the
cognitive overload to the user.

Since some shelves of the virtual supermarket are full of
products and the one we are looking for can be partially
occluded by others, we decided to avoid techniques that
introduce more visual elements to the scene, as the virtual
hand. Likewise, the use of ray-casting-based selection of a
volume, if not very well calibrated, can allow the selection
of several objects at a time by mistake while trying to select
the right object.

In a supermarket, it is common to walk through a corridor
looking to the products on the shelves. Then, the user should
be capable of navigate in one direction while looking to
another one.

Finally, we also considered two additional points: (i)
magic solutions are better than the ones that mimic real-
ity [19], (ii) for the sake of efficiency and simplicity, the
same input device should be used for navigation, selection
and manipulation.

Therefore, our solution is based on the use of the Nintendo
Wii Remote® and the Nunchuck®, a spatially convenient
device for 3D interaction [20]. The Wii Remote® is used
as a pointing device — through the infrared (IR) sensors
— to indicate objects or positions, allowing navigation and
selection. Actions are performed when the Wii Remote®
buttons are pressed. The manipulation task requires the
use of the analog stick of the Nunchuck®, as well as the

obstacle

~9

ground

()

Figure 3. Computation of the target point for automatic navigation: calculus of the target point (a), and an example of a user pointing to a shelf and the

resulting navigation target as a green arrow pointing to the ground (b).

accelerometers of the Wii Remote®. We implement versions
of these interaction techniques based on keyboard and mouse
input. Figure 2 shows a user in action with the Wii Remote®
and Nunchuck®.

We tried to avoid differentiating between the usage of the
two main buttons — A and B — of the Wii Remote®. Some
users tend to hold the controller as a TV remote (favoring
the A button) while others handle it like a gun (favoring the
B button). Both buttons perform the same action whenever
possible. To confirm and cancel actions we chose the buttons
A and B, respectively, as usually assigned in official Wii
games. We believe the differentiation on these contexts is
more efficient than relying on a menu-based interaction.

The intuition of the solution follows an egocentric
metaphor and uses a first person approach, where the camera
represents the user eyes. The user takes the Wii Remote® in
hands and use it to point in the screen where he/she intend
to move, confirming that position by pressing the A or B
button. The camera is then smooth and automatically moved
to the selected position. During the travel, the user has full
control on the gaze.

If, instead of pointing to a new position, the user points
to a product and press button A or B, this product will
be selected, disappearing of its current position and being
shown in the left side of the screen, in a kind of virtual
shopping cart. If, however, the user is too far from the
product he/she is pointing, it is not selected. Instead, the
camera moves to a position near the product. In such a way,
we are combining navigation and selection tasks in a single
command that is sensitive to the context. This behavior
avoids errors due to the small size of far objects.

When the user is near a shelf, some products move a little
bit from its current place in a magic way. This movement,
that we called explosion of products, helps the user to see
products that are behind others.

Finally, to place a product over the table, the user must
point to the table and press button A or B. The product

orientation is changed with the help of the Nunchuck® stick
and rolling the Wii Remote®.

Our solution was implemented in C++, using OGRE
(Open Source 3D Graphics Engine) renderer [21]. We used
Blender [22] for modeling.

V. NAVIGATION: SMOOTHLY MOVING THE VIEWER TO
THE POINTING OBJECT

In this section, we will detail our proposal for navigation.
Also we will overview the traditional FPS (First-Person-
Shooter) navigation technique — used in many video games
— which we will compare against our own technique.

We propose a point-and-click solution where the user
controls a virtual pointer to show where he/she intends to
go on the virtual environment. When the desired position
is under the virtual pointer, the user must press a button
confirming that target position. Then, the system uses an
automatic navigation technique to move the camera to the
new position.

We use the IR sensor of the Wii Remote® to know
the screen position where the user is pointing to. The user
controls a pointer that moves freely on the screen. When
the pointer goes near the edges of the screen, the user is
able to control the orientation of the camera. For example,
if the cursor is next to the upper edge, the camera looks
up, and if the cursor is next to the left edge, the camera
turns to the left. Orientating the camera does not change its
position in the virtual environment. In the case of using the
mouse for pointing (instead of the Wii Remote®), the cursor
remains always fixed on the center of the screen. Moving
the mouse reorients the camera as in a First-Person-Shooter
(FPS) game.

With the screen position of the pointer, the camera po-
sition and its orientation, the ray-cast pointing technique is
used to compute the position p on the surface of the first 3D
model in the scene behind the pointer, assuming perspective
projection. We also calculate the normal n of that surface.
With the position p and the direction n, a point ¢ is computed

by creating an intermediate point p’ at a certain distance
d from the point p in the direction n, and then projecting
ortogonally the point p’ on the ground. The point ¢ will serve
as the target point for the navigation. Figure 3 shows how
the target point ¢ is computed and presents an example in
our application.

We compute the target point this way to avoid that the user
stops its navigation on the exact point where he is pointing
to. In real life, when a person is in the supermarket and
wants to buy a product,she goes to a position where the
object is reachable within a distance of her arm. If the point
p is directly projected on the ground to compute the target
point ¢, the user gets so close to the point p that he will need
to turn around and walk back some steps to see clearly the
desired point. If the user points directly to the ground, the
resulting target position ¢ will be the same as the point p.
In this case, the user can control the exact position where
he wants to go.

The computation of the target point is done every time
the cursor or the camera changes its position or orientation.
As a feedback clue for the user, we draw a green arrow on
the scene over the target point ¢. The Figure 3(b) shows a
picture of this case, with the cursor controlled by the user
and the final target point indicated by the green arrow.

Every time the user press the button A or B on the Wii
Remote®, the current target point ¢ is used as a new target
position to guide the camera movement. We use the potential
field algorithm proposed by [23] to calculate a path from the
current position to the target one, since it generates smooth
motions for the camera.

Once a path is computed, the system starts moving the
camera over it. The system does not control directly the
speed of the camera. Instead, the system controls the ac-
celeration, deceleration and maximum speed, so the camera
does not start or stop its movement abruptly. During the
camera movement, the system automatically controls the
camera position over the computed path. The camera motion
is constrained to the ground and its gaze remains free, so
the user can look around.

In order to evaluate our approach, we implemented a
second camera control system, similar to the ones found
in FPS games. In this implementation, the analog stick
of the Nunchuck® controls the camera position on the
virtual environment. Push the analog stick forward makes
the camera move forward, parallel to the ground, and pull
back it makes the camera do the inverse movement. Push the
analog stick to the left or right makes the camera strafe (i.e.
walk sideways) to the left or to the right, respectively. Letting
the analog stick go back to its original position makes the
camera stop its motion.

Like in our technique, the orientation of the camera is
controlled with the IR sensor of the Wii Remote®. A cursor
moves freely on the screen, and when it is near one of the
screen edges, the camera turns in that direction.

It is also possible to control the camera with a standard
keyboard and mouse. In this case the camera is controlled
the same way as it is in most FPS games. The W and S
keys make the camera move forward or backwards, and the
A and D keys make the camera strafe to the left or to the
right, respectively. The arrow keys can be used in the same
way, with the up, left, down and right arrow keys acting as
the W, A, S and D keys, respectively. The virtual pointer
is fixed in the center of the screen, and any motion in the
mouse changes the orientation of the camera, i.e., moving
the mouse to the right makes the camera also turn right.

VI. SELECTION

The same cursor used to navigate is also used for selec-
tion. A product of the supermarket can be selected by just
pointing the cursor to it and pressing the A or B button on
the Wii Remote®. The selected product is removed from the
shelf and added to the selected products list, that appears at
the left side of the screen. The first product selected is placed
at the top-left corner of the screen. The second is placed right
below the first one, and so on. Figure 1(d) shows a list of
products already selected by the user.

The system lets the user pick a product only if it is close
enough. We used a limit distance of 1.2 meters in our tests.
This limitation is perceived by the user because we change
the color of the products that are in this range slightly.
This restriction in the selection range is used to avoid two
problems: (i) the first one is to pick products that are too far
from the current user position, increasing selection mistakes.
In this case the product appears so small that is hard to the
user to point exactly to it. (ii) the second problem does not
concern the selection itself, but a conflict with navigation.
At long distances, it is easy for a user to click in a product
instead of a wall or shelf when trying to navigate through
the market. So, when the user clicks a product at a distance
greater than the threshold, the system interprets this action
as a navigation request, instead of selection of that product.

There is another problem inherent of the supermarket
scenario that rises in the selection stage. Products vary in
shape and size, are placed over shelves of different designs
and orientations, and are organized in layers. Thus, several
items are occluded by the front most layer of products of the
shelf. A customer may want to freely browse the products,
even the ones in the back of the shelf, even if it has only
the same kind of product. A simple example is to check the
product’s expiration date. It is a problem to select the desired
item if it is in the back layer, or if it has a thin shape, like
a pizza box.

To enhance the search for hidden products we defined
a behavior for the items based on the idea of explosion
diagrams. These diagrams are very common in manuals of
assembling instructions. They depict the assembling of a
complex object by representing the whole object as a set of

products
a88
—
(1]
| m— |

shelf ... """" =l

—
| e |

ground

(a)

camera

products

camera

ground

(b)

Figure 4. Diagram of the explosion of products. (a) Camera far from the products and nothing happens. (b) Camera closer to the products, activating the
spreading of products. Observe in the image (b) how the products are moved from its original position (in the figure (a)) to a new position, related to the

sphere s.

its minor components, which are slightly moved subcompo-
nents from their original position in the opposite direction
from the one that they are attached. This way, the diagram
exposes hidden components and make easier for the user
to understand how the whole system is composed. Recent
works [24], [25] have addressed the automatic creation of
such diagrams.

Like an explosion diagram, we move the products from
the shelves to expose the hidden items, making the searching
process easier. While several different schemes could be
used to modify the layout of the items, our choice was
to move them along the opposite direction from the one
they would normally be placed in the shelf. This drawer-
like behavior is quite intuitive and shows good results even
when a high amount of items are moved.

First, we construct a sphere s centered in front of the
camera, at a distance ds;. We put all products that are inside
s in a set ps. Then, for each product in p; we compute a
direction of displacement. This direction is related to the
shelf where the product is placed, so it must be defined to
each shelf from the start. That also implies that the items
must be logically associated to their shelves. We move the
products of p,, in the displacement direction, with an offset
proportional to the distance of the product to the center of
s (see Figure 4).

The animation of the position of the products of p, results
in a better distribution of the products on the screen: products
that are in front of the shelves still can be easily selected, and
products that were hidden by others are now partially visible
and selectable. Since the modified layout of the products
takes an explosion shape we named this process explosion
of products. Figure 5 shows how some hidden products can
be discovered with the explosion of products feature enabled.

VII. MANIPULATION

The user needs to point to the purple table and hold
down the button A or B on the Wii Remote® to start the
manipulation task. If the user points to a product that is

MM

(a) Explosion of products disabled. Some
products are hidden behind the front one.

(b) Explosion of products allows occluded
products to be seen.

Figure 5. The effect of the explosion of products feature on the products
position, improving the selection of the hidden ones.

already over the table, the manipulation is activated on that
product. Otherwise, if the user points to an empty space
over the table and a product has already been selected from
the shelves, the first product from the selected products list
(in the upper left side of the screen on the Figure 1(c)) is
removed from that list and placed over the table, exactly on
the position pointed by the user when the button has been
pressed. Then, the manipulation is activated on this product.
However, if the user presses the button pointing to an empty
space over the table, and there is no products selected, the

Figure 6. Gestures used to manipulate a product using the Wii Remote®
and Nunchuck®.

action is ignored.

Note that the manipulation is enabled only while the user
is pressing a button on the Wii Remote®. If the button is
released, the system automatically goes back to the navi-
gation/selection mode. In this case, if the user has released
the button and is not yet satisfied with the orientation of the
product, he/she can again point to the object, select it by
pressing the button and manipulate it as he/she want, while
the button holds down.

Keeping the button pressed, the orientation of the product
can be modified using the Nunchuck® stick and the Wii
Remote® accelerometers. The axes of the camera reference
system were used as a basis for the product rotation: the
camera up vector defines the Y axis of rotation, the direction
of view is used as the Z axis, and the cross product
between Y and Z is used as the X axis. When the user
moves the analog stick of the Nunchuck® to the left-right,
or up-down, the product rotates around its ¥ or X axis
respectively. Rolling the Wii Remote® results in a rotation
of the product around the Z axis. Figure 6 illustrates the
gestures associated.

VIII. USER TESTS

An experiment was designed with the purpose of un-
derstanding the possible advantages of our complete so-
Iution. More specifically, we were interested in testing
the efficiency, acceptance, comfort and adaptability of the
proposed technique for applications that involve the selection
of objects spread — sometimes partially occluded by others
— in large environments. We also wanted to verify if the
Wii Remote® really fits to the techniques proposed and to
measure how efficient is its use if compared with the mouse.

A. Tasks and subjects

We designed three tasks with the objective of evaluate
navigation and selection separately and then both together.
The manipulation was not taken into account in these tests.

TASK 1 was conceived to evaluate the navigation system.
The user was invited to navigate through the supermarket
aisles to reach a series of waypoints (shown as rotating blue
stars) positioned over the scene. Only a single waypoint is
visible at each time. When the user reaches a waypoint it dis-
appears, and the next waypoint appears. The new waypoint
is visible from the position of the previous waypoint, but
requires the user to turn around to find it. Users are aware of
this fact. The positions of the waypoints are fixed for all tests
and users. This test was executed once for each combination
of input devices (Wii Remote® or mouse) and interaction
technique (point-and-click or FPS). Each user repeated the
test four times.

TASK 2 was proposed to test the impact of the use of
the explosion of products in the selection and how it works
with the Wii Remote® and mouse. The user starts the test
in front of a shelf and has to select one specific product. The
product distinguishes of the others by its color and is out of
the user reach. The user needs first to orient himself to face
the product, and then to walk a very small distance. Our
reasoning is that, when selecting a product the user might
also need to walk to achieve a better angle. So the ability
to move while trying to select a product is relevant. When
the user selects the first product he/she is moved to another
shelf for another instance of the test. The test finishes when
the user completes three selections. This task was executed
twice for each input device (Wii Remote® or mouse), with
and without the explosion of products feature, totalizing four
tests.

TASK 3 is the full task and consists of navigating through
the supermarkets shelves, finding and selecting three specific
products, navigating back to the purple table, and placing
the objects over the table. The test finishes when the three
products are placed on the table (the user is aware of the
locations of the products). This test was executed twice, once
for each input device (Wii Remote® or mouse), with the use
of the explosion animation.

The experiment was performed by a group of 38 subjects,
33 male and 5 female, aging from 19 to 37 years old (average
= 22.8; standard deviation = 3.9), all of them undergraduate
students in Computer Science. Each of them has done the
three tasks with the different conditions previewed, resulting
in 10 tests per user, and a total of 380 tests.

In a pre-test form, we made a set of questions to the users,
asking them to characterize themselves in a scale from 1 to
5, meaning very little experience and highly experienced,
respectively. Each question asked about the user experience
with computer games, 3D environments, FPS games, and
use of the Wii Remote®. We summarized these answers in
the Table I, presenting the average and standard deviation.

B. Procedure and variables

Before the experiment starts, users were invited to fill
a self characterization questionnaire, instructed on how to

Table I
CHARACTERIZATION OF THE SUBJECTS, ACCORDING TO THE ANSWERS
IN THE PRE-TEST QUESTIONAIRE.

Question Average Std. dev.
Experience with computer games 4.10 0.83
Experience with 3D virtual environments 3.42 1.00
Experience with FPS games 3.78 1.04
Experience with Wii Remote® 2.02 1.26

operate the devices, and encouraged to perform as many
practice trials as wished so that they could feel confident
during the tests. Then the three sets of tasks are performed,
in order.

For each task, the execution of its tests was randomized in
order to try to prevent bias. From each one of the twelve runs
we collected the execution times in a log file. The users also
filled post-experiment surveys for qualitative analysis includ-
ing the following data: which technique is more efficient for
navigation (point-and-click with the Wii Remote®, point-
and-click with the mouse, FPS with mouse and keyboard),
which technique is more intuitive and easiest to learn for
navigation (point-and-click with the Wii Remote®, point-
and-click with the mouse, FPS with mouse and keyboard),
which technique is more fun to navigate (point-and-click
with the Wii Remote®, point-and-click with the mouse, FPS
with mouse and keyboard), which technique is more efficient
for selection (point-and-click with Wii Remote® or mouse),
which technique is more intuitive and easiest to learn for
selection (point-and-click with the Wii Remote®, point-
and-click with the mouse, FPS with mouse and keyboard),
and which selection technique is more fun (point-and-click
with the Wii Remote®, point-and-click with the mouse, FPS
with mouse and keyboard). We also offered a space for free
comments and opinions.

IX. RESULTS

The tasks described in Section VIII-A and tested with the
38 subjects allowed the capture of objective and subjective
data that are presented below. Completion times for the tasks
were recorded in log files and used as input for ANOVA
(Analysis of Variance) test.

Regarding navigation, we tested four different configura-
tions and measured times for completion. Mean times and
standard deviation for the four configurations tested were
calculated and can be seen in Figure 7. The use of the
mouse is always more efficient than the Wii Remote®,
presenting a mean time significantly smaller (/' = 12.4140;
p < 0.0005). Comparing the performance with the two nav-
igation techniques tested, we can see that the FPS technique
is more efficient than the point-and-click, with a mean time
significantly smaller (F' = 25.0174; p < 0.0000016).

From the subjective data, that represents the opinion of
the subjects, we can observe that 76% of the users found
the use of mouse and keyboard is more intuitive than the

160 45.49
140
120
100 ‘)E.Ezlr
» —|— 3237 23.33
T 80
c
8
o 60 -
w
40 -
20 -
0 68.81 102.46 53.49
T T
Click with Click with FPS with FPS with
mouse wiimote mouse wiimote

Navigation Results

Figure 7. Navigation task performance in four different conditions: point-
and-click technique with mouse; point-and-click with Wii Remote®; FPS
with mouse and keyboard; and FPS with Wii Remote®. The numbers at
the bottom of the bars represents the mean time, while the numbers at the
top of the bars means the standard deviation.

100
90 ==
80
70 2746
60
50 21.93 19.77
40
30

20 +
10
0 36.45 27.56
L T T

Explosion Explosion No explosion No explosion
and mouse andWiimote and mouse andWiimote

Seconds

Selection Results

Figure 8. Selection task performance in four different conditions: using the
explosion of products associated to the mouse or Wii Remote®; without
the explosion effect and using the mouse or Wii Remote®. The numbers
at the bottom of the bars represents the mean time, while the numbers at
the top of the bars means the standard deviation.

Wii Remote®. For the other hand, 86% of these same users
declared that the Wii Remote® is more fun than the mouse.

With respect of selection tests, mean times and standard
deviation for the four configurations tested can be seen in
Figure 8. The use of the explosion of products presents the
best mean times when associated with the use of a mouse or
Wii Remote®. However, these mean times have no statistic
significance (F' = 1.6421; p < 0.202).

In the last set of tests, subjects where asked to accomplish
the TASK 3, as described in Section VIII-A. The mean times
and standard deviation are shown in Figure 9. As it can be
seen, the mouse and keyboard is more efficient than the
Wii Remote®, presenting a mean time significantly smaller
(F' = 8.7025; p < 0.0042).

250

Seconds

Wiimote

Mouse
The Whole Task

Figure 9. Mean performance achieved in the completion the whole task.
The numbers at the bottom of the bars represents the mean time, while the
numbers at the top of the bars means the standard deviation.

X. DISCUSSION

Some of the results obtained with the user tests were
more or less expected by us. The higher performance of the
users with the mouse, if compared with the Wii Remote®,
is quite obvious. Mouse and keyboard are working tools as
common as pen and paper for computer science students. On
the other hand, 72% of the subjects declared to have no or
few previous experience with the Wii Remote®. Considering
this unfair comparison, we believe that the performance with
the Wii Remote® is sufficiently good to consider the use of
this device in adverse situation where, for example, the user
cannot sit down in front of the computer and use the mouse
and keyboard as comfortably as they use to do.

The best performance achieved with the FPS navigation
technique, instead of the use of the point-and-click technique
was a surprise for us. Observing the subjects during the
tests, we noted that they clicked a lot when using the point-
and-click technique. In fact, much more than expected. This
behavior can be, in such a way, explained by the profile of
the users; 62% of the users declared to be hard users of FPS
games. We also think that the point-and-click technique is
not well suited for the supermarket scenario, because of its
characteristics (small aisles with high shelves). In an open-
air scenario, where greater distances are seen, the user can
take more advantage of the automatic definition of a valid
path to follow.

The performance improvement achieved with the use of
the explosion of products effect for selection were also
expected. We could not reach significance with the ANOVA
test, but we intend to do more tests with users, varying the
position and size of the products to be selected, in order to
understand these results.

As mentioned in Section VIII-A, in this study we did
not evaluate the manipulation task. However, during the
execution of the complete task (TASK 3), the subjects had
also the opportunity of manipulate the products over the

purple table. Many users mentioned in the pos-test ques-
tionnaire that the Wii Remote® and the Nunchuck® were
more comfortable than the mouse (that was considered very
uncomfortable), but they also claimed that the Wii Remote®
was not sufficiently accurate. In fact, the rotation given by
the Wii Remote® accelerometers is not very precise at all,
what probably motivated Nintendo to develop another device
— the MotionPlus — based on gyroscopes. Unfortunately, we
could not use it during the development of this work.

XI. CONCLUSION

In this paper we presented a complete and integrated
solution to solve everyday interactive 3D tasks that involves
navigation, selection and manipulation of objects that are,
frequently, hidden by others. In our proposal, we tried to
keep almost the same interactive devices and techniques for
all the tasks, avoiding the exchange of devices and reducing
the cognitive overload inherent to the interaction.

The results demonstrate that our approach is promising,
but more work should be done in order to have a robust
solution. As future work, we intend to reimplement the
manipulation technique using more robust sensors, as the
gyroscopes present in new commodity devices (e.g. iPhone,
and Nintendo Motion Plus). New tests should also be done
including manipulation and considering subjects with little
experience in 3D games and less trained in the interactive
techniques commonly used in this kind of application.

ACKNOWLEDGMENT

The authors would like to thank CNPq-Brazil through
projects 483947/2010-5, 309092/2008-6 and 580156/2008-
7 for partially supporting this work, as well as all the
volunteers for their kind participation in the experiments.
A special thanks to Leandro Tibola, Leonardo Santagada
and Rafael Kovaleski for their help in the design and
implementation of the first version of the software, and Vitor
Pamplona and Marilena Maule for their comments on this
text.

REFERENCES

[1] A. Craig, W. R. Sherman, and J. D. Will, Developing Virtual
Reality Applications: Foundations of Effective Design. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2009.

[2] P. Figueroa, Y. Kitamura, S. Kuntz, L. Vanacken, S. Maesen,
T. D. Weyer, S. Notelaers, J. R. Octavia, A. Beznosyk,
K. Coninx, F. Bacim, R. Kopper, A. Leal, T. Ni, and D. A.
Bowman, “3dui 2010 contest grand prize winners,” [EEE
Computer Graphics and Applications, vol. 30, pp. 86-96, c3,
2010.

[3] L. Poupyrev, S. Weghorst, M. Billinghurst, and T. Ichikawa,
“Egocentric object manipulation in virtual environments: Em-
pirical evaluation of interaction techniques,” in Proceedings
of the EUROGRAPHICS 98 Conference. Eurographics and
Blackwell Publishing Ltd., 1998, pp. 41-52.

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

I. Poupyrev, M. Billinghurst, S. Weghorst, and T. Ichikawa,
“The go-go interaction technique: non-linear mapping for
direct manipulation in vr,” in UIST ’96: Proceedings of the
9th annual ACM symposium on User interface software and
technology. New York, NY, USA: ACM, 1996, pp. 79-80.

R. A. Bolt, ““put-that-there”: Voice and gesture at the
graphics interface,” in Proceedings of the 7th annual
conference on Computer graphics and interactive techniques,
ser. SIGGRAPH ’80. New York, NY, USA: ACM, 1980,
pp. 262-270. [Online]. Available: http://doi.acm.org/10.1145/
800250.807503

M. R. Mine, “Virtual environment interaction techniques,”
Chapel Hill, NC, USA, Tech. Rep., 1995.

D. A. Bowman and L. F. Hodges, “An evaluation of tech-
niques for grabbing and manipulating remote objects in
immersive virtual environments,” in SI3D ’97: Proceedings
of the 1997 symposium on Interactive 3D graphics. New
York, NY, USA: ACM, 1997, pp. 35-38.

M. R. Mine, F. P. B. Jr,, and C. H. Séquin, “Moving objects
in space: exploiting proprioception in virtual-environment
interaction,” in SIGGRAPH, 1997, pp. 19-26.

A. Forsberg, K. Herndon, and R. Zeleznik, “Aperture based
selection for immersive virtual environments,” in UIST ’96:
Proceedings of the 9th annual ACM symposium on User
interface software and technology. New York, NY, USA:
ACM, 1996, pp. 95-96.

J. S. Pierce, B. C. Stearns, and R. Pausch, “Voodoo dolls:
seamless interaction at multiple scales in virtual environ-
ments,” in 13D ’99: Proceedings of the 1999 symposium on
Interactive 3D graphics. New York, NY, USA: ACM, 1999,
pp. 141-145.

R. P. Darken, W. R. Cockayne, and D. Carmein, “The omni-
directional treadmill: a locomotion device for virtual worlds,”
in UIST ’97: Proceedings of the 10th annual ACM symposium
on User interface software and technology. New York, NY,
USA: ACM, 1997, pp. 213-221.

F. Sparacino, C. Wren, A. Azarbayejani, and A. Pentland,
“Browsing 3-d spaces with 3-d vision: body-driven navigation
through the internet city,” in International Symposium on
3D Data Processing Visualization and Transmission. Los
Alamitos, CA, USA: IEEE Computer Society, 2002, pp. 224—
233.

G. Bruder, F. Steinicke, and K. H. Hinrichs, “Arch-explore:
A natural user interface for immersive architectural walk-
throughs,” 3D User Interfaces, vol. 0, pp. 75-82, 2009.

E. Foxlin, “Pedestrian tracking with shoe-mounted inertial
sensors,” IEEE Computer Graphics and Applications, vol. 25,
pp. 3846, 2005.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

J. D. Mackinlay, S. K. Card, and G. G. Robertson, “Rapid
controlled movement through a virtual 3d workspace,” in
SIGGRAPH ’90: Proceedings of the 17th annual conference
on Computer graphics and interactive techniques. New York,
NY, USA: ACM, 1990, pp. 171-176.

M. Hachet, F. Decle, S. Knodel, and P. Guitton, “Navidget
for easy 3d camera positioning from 2d inputs,” in
Proceedings of IEEE 3DUI - Symposium on 3D User
Interfaces, 2008, best paper award. [Online]. Available:
http://iparla.labri.fr/publications/2008/HDK GOS8

B. Hagedorn and J. Déllner, “Sketch-based navigation in
3d virtual environments,” in Smart Graphics, ser. Lecture
Notes in Computer Science, A. Butz, B. Fisher, A. Kriiger,
P. Olivier, and M. Christie, Eds., vol. 5166. Springer
Berlin / Heidelberg, 2008, pp. 239-246. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-85412-8_23

D. A. Bowman, E. Kruijff, J. J. Laviola, and 1. Poupyreyv,
“An introduction to 3-d user interface design,” in Presence:
Teleoperators and Virtual Environments, 2001, pp. 96-108.

D. A. Bowman, E. Kruijff, J. J. LaViola, and I. Poupyrev, 3D
User Interfaces: Theory and Practice. Redwood City, CA,
USA: Addison Wesley Longman Publishing Co., Inc., 2004.

C. A. Wingrave, B. Williamson, P. D. Varcholik, J. Rose,
A. Miller, E. Charbonneau, J. Bott, and J. J. L. Jr.,, “The
wiimote and beyond: Spatially convenient devices for 3d
user interfaces,” IEEE Computer Graphics and Applications,
vol. 30, pp. 71-85, 2010.

G. Junker, Pro OGRE 3D Programming (Pro). Berkely, CA,
USA: Apress, 2006.

R. Hess, The Essential Blender: Guide to 3D Creation with
the Open Source Suite Blender. San Francisco, CA, USA:
No Starch Press, 2007.

R. Silveira, F. Dapper, E. Prestes, and L. Nedel, “Natural
steering behaviors for virtual pedestrians,” Visual Comput.,
2009.

M. Tatzgern, D. Kalkofen, and D. Schmalstieg, “Compact
explosion diagrams,” in NPAR ’10: Proceedings of the Sth
International Symposium on Non-Photorealistic Animation
and Rendering. New York, NY, USA: ACM, 2010, pp. 17—
26.

D. Kalkofen, M. Tatzgern, and D. Schmalstieg, “Explosion
diagrams for augmented reality,” in Proceedings of the IEEE
Virtual Reality Conference (VR 09). 1EEE Computer Society,
2009, pp. 71-78.

Path-Planning for RTS Games Based on
Potential Fields

Renato Silveira, Leonardo Fischer, José Antonio Salini Ferreira, Edson Prestes,
and Luciana Nedel

Universidade Federal do Rio Grande do Sul, Brazil,
{rsilveira, lgfischer, jasferreira, prestes, nedel}@inf.ufrgs.br,
Home page: http://www.inf .ufrgs.br

Abstract. Many games, in particular RTS games, are populated by
synthetic humanoid actors that act as autonomous agents. The naviga-
tion of these agents is yet a challenge if the problem involves finding a
precise route in a virtual world (path-planning), and moving realistically
according to its own personality, intentions and mood (motion planning).
In this paper we present several complementary approaches recently de-
veloped by our group to produce quality paths, and to guide and interact
with the navigation of autonomous agents. Our approach is based on a
BVP Path Planner that generates potential fields through a differential
equation whose gradient descent represents navigation routes. Resulting
paths can deal with moving obstacles, are smooth, and free from local
minima. In order to evaluate the algorithms, we implemented our path
planner in a RTS game engine.

Keywords: Path-planning, navigation, autonomous agent

1 Introduction

Recent advances in computer graphics algorithms, especially on realistic render-
ing, allow the use of synthetic actors visually indistinguishable from real actors.
These improvements benefit both the movie and game industry which make ex-
tensive use of virtual characters that should act as autonomous agents with the
ability of playing a role into the environment with life-like and improvisational
behavior. Despite a realistic appearance, they should present convincing indi-
vidual behaviors based on their personality, moods and desires. To behave in
such way, agents must act in the virtual world, perceive, react and remember
their perceptions about this world, think about the effects of possible actions,
and finally, learn from their experience [7].

In this complex and suitable context, navigation plays an important role [12].
To move agents in a synthetic world, a semantic representation of the environ-
ment is needed, as well as the definition of the agent initial and goal position.
Once these parameters were set, a path-planning algorithm must be used to find
a trajectory to be followed.

However, in the real world, if we consider different persons — all of them in the
same initial position — looking for achieving the same goal position, each path fol-
lowed will be unique. Even for the same task, the strategy used for each person to
reach his/her goal depends on his/her physical constitution, personality, mood,
reasoning, urgency, and so on. From this point of view, a high quality algorithm
to move characters across virtual environments should generate expressive, nat-
ural, and occasionally unexpected steering behaviors. In contrast, especially in
the game industry, the high performance required for real-time graphics appli-
cations compels developers to look for most efficient and less expensive methods
that produce good and almost natural movements.

In this paper, we present several complementary approaches recently devel-
oped by our group [4,6,14,15,18] to produce high quality paths and to control
the navigation of autonomous agents. Our approach is based on the BVP Path
Planner [14], that is a method based on the numeric solution of the boundary
value problem (BVP) to control the movement of agents, while allowing the
individuality of each one.

The topics presented in this article are: (i) a robust and elegant algorithm
to control the steering behavior of agents in dynamic environments; (i) the
production of interesting and complex human-like behaviors while building a
navigational route; (74) a strategy to handle the path-planning for group of
agents and the group formation-keeping problem, enabling the user to sketch
any desirable formation shape; (iv) a sketch based global planner to control the
agent navigation; (v) a strategy to deal with the BVP Path Planner in GPU;
(vi) a RTS game implementation using our technique.

The remaining of this paper is structured as follows. Section 2 reviews some
related works on path-planning techniques that generate quality paths and be-
haviors. Section 3 explains the concepts of our planner and how we deal with
agents and group of agents. Section 4 proposes an alternative to our global path
planner, enabling the user interaction. Improvements in the performance are dis-
cussed in Section 5. Some results, including a RTS game implementation using
our technique, is shown in Section 6. Section 7 presents our conclusions and some
proposals for future works.

2 Related Work

The research on path-planning has been extensively explored on the games do-
main where the programmer should frequently deal with many autonomous char-
acters, ideally presenting convincing behavior. It is very difficult to produce nat-
ural behavior by using a strategy focusing on the global control of characters.
On the other hand, taking into account the individuality of each character may
be a costly task. As a consequence, most of the approaches proposed in com-
puter graphics literature do not take into account the individual behavior of each
agent, compromising the planner quality.

Kuffner [8] proposed a technique where the scenario is mapped onto a 2D
mesh and the path is computed using a dynamic programming algorithm like

Dijkstra. He argues that his technique is fast enough to be used in dynamic
environments. Another example is the work developed by Metoyer and Hodg-
ings [11], that proposes a technique where the user defines the path that should
be followed by each agent. During the motion, the path is smoothed and slightly
changed to avoid collisions using force fields that act on the agent.

The development of randomized path-finding algorithms — specially the PRM
(Probabilistic Roadmaps) [10] — allowed the use of large and more complex con-
figuration spaces to efficiently generate paths. There are several works in this
direction [3,13]. In most of these techniques, the challenge becomes more the
generation of realistic movements than finding a valid path. Differently, Burgess
and Darken [2] proposed a method based on the principle of least action which
describes the tendency of elements in nature to seek the minimal effort solu-
tion. The method produces human-like movements through realistic paths using
properties of fluid dynamics.

Tecchia et al. [16] proposed a platform that aims to accelerate the develop-
ment of behaviors for agents through local rules that control these behaviors.
These rules are governed by four different control levels, each one reflecting a
different aspect of the behavior of the agent. Results show that, for a fairly
simple behavioral model, the system performance can achieve interactive time.
Treuille et al. [17] proposed a crowd simulator driven by dynamic potential fields
which integrates global navigation and local collision avoidance. Basically, this
technique uses the crowd as a density field and constructs, for each group, a unit
cost field which is used to control people displacement. The method produces
smooth behavior for a large amount of agents at interactive frame rates. Based
on local control, van den Berg [1] proposed a technique that handles the naviga-
tion of multiple agents in the presence of dynamic obstacles. He uses a concept,
called wvelocity obstacles, to locally control the agents with few oscillation.

As mentioned above, most of the approaches do not take into account the
individual behavior of each agent, his internal state or mood. Assuming that re-
alistic paths derive from human personal characteristics and internal state, thus
varying from one person to another, we [14] recently proposed a technique that
generates individual paths. These paths are smooth and dynamically generated
while the agent walks. In the following sections, we will explain the concepts of
our technique and the extensions implemented to handle several problems found
in RTS games.

3 BVP Path Planner

The BVP Path Planner, originally proposed by Trevisan et al. [18], generates
paths using the potential information computed from the numeric solution of

Vip(r) = ev-Vp(r), (1)

with Dirichlet boundary conditions. In Equation 1, v € %2 and |v| = 1 cor-
responds to a vector that inserts a perturbation in the potential field; ¢ € R
corresponds to the intensity of the perturbation produced by v; and p(r) is the

potential at position r € R2. Both v and ¢ must be defined before computing
this equation. The gradient descent on these potentials represents navigational
routes from any point of the environment to the goal position. Trevisan et al. [18]
showed that this equation does not produce local minima and generates smooth
paths.

To solve numerically a BVP, we can consider that the solution space is dis-
cretized in a regular grid. Each cell (4,) is associated to a squared region of the
environment and stores a potential value p(i, j). Using Dirichlet boundary condi-
tions, the cells associated to obstacles in the real environment store a potential
value of 1 (high potential) whereas cells containing the goal store a potential
value of 0 (low potential).

A high potential value prevents the agent from running into obstacles whereas
a low value generates an attraction basin that pulls the agent. The relaxation
method usually employed to compute the potentials of free space cells is the
Gauss-Seidel (GS) method. The GS method updates the potential of a cell ¢
through:

P jlrpr o (o —pz)vx; (P — pt)vy))

where v = (vz,vy), and pe = p(i j), Po = P(ij—1)> Pt = D(i,j+1)s Pr = D(i+1,5) and
Pt = P(i—1,5)- The potential at each cell is updated until the convergence sets in.

After the potential computation, the agent moves following the direction of

the gradient descent of this potential at its current position (3, j),
Pt —Pr Pb— Pt
o= (52 2.

In order to implement the BVP Path Planner, we used global environment
maps (one for each goal) and local maps (one for each agent). The global map
is the Global Path Planner which ensures a path free of local minima, while the
local map is used to control the steering behavior of each agent, also handling
dynamic obstacles.

The entire environment is represented by a set of homogeneous meshes { My},
where each mesh My, has L, x L, cells, denoted by {Cf ;1 Each cell Cgfj cor-
responds to a squared region centered in environment coordinates r = (7;,7;)
and stores a particular potential value Pik,j. The potential associated to each
cell is computed by GS iterations (Equation 2) and then used by the agents to
reach the goal. In order to delimit the navigation space, we consider that the
environment is surrounded by static obstacles.

3.1 Dealing with Individuals

Each agent a; has one local map my that stores the current local information
about the environment obtained by its own sensors. This map is centered in the
current agent position and represents a small fraction of the global map. The
size of the local map influences the agent behavior. A detailed analysis of the
influence of the size of the local map on the behavior of the agent can be found
in [14].

The local map is divided in three regions: the update zone (u-zone); the free
zone (f-zone); and the border zone (b-zone), as shown in Figure 1. Each cell
corresponds to a squared region, similar to the global map. For each agent, a
goal, a particular vector v that controls its behavior, and a € should be stated.
If vi or €4 is dynamic, then the function that controls it must also be specified.

XXX XXX XX XX

X obstacle

X XIXF | X

X veweone | ACINNEY
X &\V e
X =

X

X| |IX|[X X

X[[X[X X | enatgradiont
X B o ient
XXX XXX XX XX

Du-znne Df—mne X |b-zone

Fig. 1. Agent Local Map. White, green and red cells comprise the update, free and
border zones, respectively. Blue, red and light blue cells correspond to the intermediate
goal, obstacles and the agent position, respectively.

To navigate into the environment, an agent aj uses its sensors to perceive the
world and to update its local map with information about obstacles and other
agents. The agent sensor sets a view cone with aperture . Figure 1 sketches a
particular instance of the agent local map. The u-zone cells that are inside the
view cone and correspond to obstacles or other agents have their potential value
set to 1. Dynamic or static obstacles behind the agent do not interfere in its
future motion.

For each agent aj, we calculate the global descent gradient on the cell of
the global map containing its current position. The gradient direction is then
used to generate an intermediate goal in the border of the local map, setting the
potential values to 0 of a couple of b-zone cells, while the other b-zone cells are
considered as obstacles, with their potential values set to 1. The intermediate
goal helps the agent aj to reach its goal while allowing it to produce a particular
motion.

F-zone cells are always considered free of obstacles, even when there are
obstacles inside. The absence of this zone may close the connection between
the current agent cell and the intermediate goal due to the possible mapping of
obstacles in front of the intermediate goal. When this occurs, the agent gets lost
because there is no information coming from the intermediate goal to produce a
path to reach. F-zone cells handle the situation, always allowing the propagation
of the information about the goal to the cells associated to the agent position.

After the sensing and mapping steps, the agent k& updates the potential value
of its map cells using Equation 2 with its pair v¥ and €. Hereinafter, it updates
its position according to:

Ad = v (cos(¢"),sin(¢")) T (| " = ¢)) 3)

with
=ne' T +(1-n) (4)
where v defines the maximum agent speed, n € [0,1), ¢ is the agent orientation

and (is the orientation of the gradient descent computed from the potential
field stored on its local map in the central position. Function ¥ : ® — R is

0 ife>mn/2
() = {cos(m) , otherw/ise

If ['~' — ¢*| is higher than 7, then there is a high hitting probability and
this function returns the value 0, making the agent stops. Otherwise, the agent
speed will change proportionally to the collision risk.

In order to demonstrate that the proposed technique produces realistic be-
haviors for humanoid agents, we compared the paths generated by our method
with real human paths [14] . Associating specific values to the parameters e and
v in the agent local map, the path produced by the BVP Path Planner almost
mimics the human path. Figure 2 shows a path generated by dynamically chang-
ing € and v. Up to the half of the path, the parameters ¢ = 0.1 and v= (0, —1)
were used. Half the path forward, the parameters were changed to € = 0.7 and
v=(1,0). These values were empirically obtained. We can visually compare and
observe that the calculated path is very close to the real one.

Fig. 2. Natural path generated by the BVP Path Planner: (a) the environment with
the real person path (yellow); (b) the environment representation discretized by our
planner; (c) the agent path (in black) calculated by our planner after adjusting the
parameters.

3.2 Dealing with Groups

The organization of agents in groups has two main goals: to allow the control of
groups or armies by the user, and to decrease the computational cost through the

management of groups instead of handling individuals. In a previous work [15], an
approach to integrate group control in the BVP Path Planner was proposed. This
approach also support the group formation-keeping while agents move following a
given path. Kallmann [9] recently proposed a path planner to efficiently produce
quality paths that could also be used for moving groups of agents. Our technique,
illustrated in Figure 3, focus on the group cohesion and behavior while enabling
the user to interact with the group.

In this approach, each group is associated to a specific formation and a map,
called group map. The user should provide — or dynamically sketch — any desired
shape for the group formation. This formation is then discretized into a set of
points that can be seen as attraction points associated to agents — one point
attracting each agent towards him. Analogous to an agent local map, the group
map is then projected into the environment and its center is aligned with the
center of the group of agents in the environment. The center of the formation
shape is also aligned with the center of the group map.

Obstacles and goals are mapped to this map in the same way that we have
done for the local maps. However, in the group map there is no view cone.
Each agent in a group is mapped to its respective position on the group map
as an obstacle. In order to obtain the information about the proximity of an
agent in relation to the obstacles, we divide the group map into several regions
surrounding the obstacles. Each cell in a region has a scalar value that is used
to weight the distance between an agent and an obstacle. When the agent is in
a cell associated to any of these regions, it will be influenced not only by the
force exerted by the formation, but also by the gradient descent computed at
its position in the group map. After that, the vector field is extracted and the
agent motion is then influenced by two forces: formation force, and the group
map vector field. As both forces influence in the path definition, they should be
properly established, in order to avoid undesired or non realistic behaviors (for
more details on combining these forces, refers to [15].

The motion of the agents which are inside the group map is established using
these forces while the motion of the entire group is produced by moving the group
map along the global map. For this, we consider the group map center point as
a single agent and any path planner algorithm can be used to obtain a path free
of collisions.

Fig. 3. Group control: agents can keep a formation or move freely; the user can interact
and sketch trajectories to be followed by the groups.

4 User Interaction with RTS Games

As seen in Section 3, our technique uses a global map to make a global path-planning,
and local or group maps to avoid the collision with dynamic elements of a game
(e.g. units, enemies, moving obstacles). This fits very well to most RTS games,
where the player selects some units and click on a desired location in order to
give a “go there” command.

This kind of game-play commonly requires several mouse clicks to give a
specific behavior. RTS players commonly want that a group of units overcome
an obstacle by following a specific path that conforms to his/her own strategy.
Define a strategy in a high level of abstraction is generally hard to be done with
only a few mouse clicks.

Based on the ideas of a previous work from our group [5], we suggested an
interaction technique where the units are controlled by a sketch based navigation
scheme, as an alternative to the global map . The player clicks with the mouse
on the screen and draws the desired path for the currently selected units. The
common technique of just clicking on the goal location is also supported. This
way of sketching the path to be followed is the same one used in paint-like
applications, and can be easily adapted to touch screen displays, like Microsoft
Surface®and Apple iPad®, for instance.

4.1 Basic Implementation

The technique is divided in two steps: an input capture step, where the user
draws the path to be followed; and a path following step, where the army units
run to their goals. In the first step, the path can be drawn by dragging the mouse
with a button pressed, or by dragging his/her finger over a touch screen surface.
When the user releases the mouse button or removes his/her finger from the
screen surface, a list of 2D points is taken and projected against the battlefield,
resulting in a list of 3D points.

In the second step, the points generated on the first step are put in a list and
used as intermediary goals for the units. Following this list, each point is used
as the position goal for all selected units. When the first unit reaches this goal,
it is discarded and the next one in the list is used. This continues until the first
unit of the group reaches the last goal.

4.2 Splitting the Army

Imagine a situation where the player has walking soldiers and tanks available
to attack, and the enemy headquarters is protected by one of these sides by a
swamp. Only walking soldiers can walk through it. Then, the player may choose
to attack the enemy by one side with the tanks, and the protected side with the
walking soldiers.

An extension of the sketching technique may let the player use this strategy
by simply drawing one path to the enemy headquarters, where in a certain
division point the path divides into two parts: one goes through the swamp and

the other avoids it. Then, all units (walking soldiers and tanks) follow the path,
and in the division point, the army divides into two groups, one that can trespass
the swamp and another that goes through mainland.

In order to allow this maneuver, we suggested a structure where the user
sketches are stored in a tree. In this tree, each node represents a division point,
start point or end point of the motion, and the links between nodes store one
section of the path drawn by the player. As in the Section 4.1, each path section
is stored as a list of 3D points.

When the player draws the first path, a node a is created for the 3D point
where the path starts, and a node b where the path ends. A link storing all the
points between a and b is created, with b being child of a. Then, the user draws
a second path, starting nearly the point of division chosen by the player along
the link. Considering a tree composed by the previously drawn paths, we search
for the link [with the path section that contains the closest point to the start
point of the newly drawn path. This link [is broken in two parts, [; and I, and
a new end node p is created between both. Finally, we create a new end node c,
a link between p and ¢, and attach the recently drawn path section to the tree.

5 Improvements and Speedup using GPU

Solving the Laplace equation is the most expensive part of the BVP Path Plan-
ner algorithm. The iterative convergence process of an initial solution to an
acceptable solution demands several iterations. So, if we want to improve the
convergence speed, we must focus our attention in the relaxation process. We
present an approach to improve the convergence on the local maps based on a
GPU implementation.

The technique presented here is highly parallelizable, mainly the update of
local maps and the computation of Laplace’s equation. Each of these steps has
several computations to be done, and it can be accomplished in parallel for
each agent. We proposed an approach to implement it using nVidia CUDA®and
will present it here assuming that the reader knows the CUDA architecture (a
detailed explanation can be found in [6]).

Intuitively, each agent detects its observable obstacles in parallel, and each
one has its own objective. So, the update of each local map can be also done
in parallel. In our algorithm, each agent must seek for obstacles in its own view
cone, setting the corresponding cells in the local map as “blocked”. Note that,
for a given agent, all other agents are seen as obstacles too. We assume that,
in the beginning of this step, all the space occupied by the local map is free of
obstacles. Then, for each agent, we launch one thread for each obstacle that the
agent can potentially see. In each thread, we check if the obstacle is inside the
view cone and inside the local map. If it is, then the thread sets each one of the
cells that contains part of the obstacle with a tag “blocked”.

This scheme of launching one thread for each obstacle of each agent fits very
well in the nVidia CUDA architecture, where the processing must be split into
blocks of threads. Assigning one block for each agent, each thread of the block

(b)

Fig. 4. Two autonomous army fighting (a). The unit local map and the path produced
by the BVP Path Planner, illustrated by green dots (b).

can look for one obstacle. Also, each thread can update the local map without
synchronization, because all the threads will, if needed, update one cell from a
“free” state to a “blocked” state.

After the update of the local maps with the obstacles position, we need to
set the intermediate goal. For this, we simply need one thread per agent, each
one updating the cells with a “goal” tag. This must be done sequentially to the
previous step, to avoid race conditions and the need to synchronize all threads
of each block of threads. When each local map has up-to-date information about
what cells are occupied, free, or goals, we must relax it to get a smooth potential
field. To do this, we assigned one local map to one block of threads in CUDA.
In each block of threads, each thread is responsible for updating a value of
potential to a single cell. Each thread stays in loop, with one synchronization
point between the cells at the end of each iteration. Each thread updates the
potential value of the cell using the Jacoby relaxation method.

Finally, to avoid unnecessary memory copies between the GPU and the main
memory, we store each attribute of all agents in one single structure of contiguous
memory. With this, some parameters that do not change so frequently (e.g. the
local map sizes, and the current goal) can be sent only once to the GPU. When
the new agent position must be computed, we fetch from the GPU only the
current gradient descent on the agent positions.

With our GPU-based strategy we achieved a speed up to 56 times the previ-
ous CPU implementation. For a detailed evaluation of our results, refers to [6].

6 A RTS Game Implementation using the BVP Path
Planner

In order to demonstrate the applicability of the proposed technique, we imple-
mented the BVP Path Planner in the Spring®Engine for RTS games. Spring
is an open source and multi-platform game engine available under the GPLv2
license to develop RTS games. We have chosen this engine since it is well known
in the RTS community and there are several commercial games made with it
and available for use. With our planner, we can populate a RTS game with
hundred of agents at interactive frame rates [6]. Figure 4(a) shows a screen-
shot of the game where two army are fighting using the BVP Path Planner.
Figure 4(b) shows one unit and its local map with 33 x 33 cells. Red dots
represent blocked cells, while the yellow dots represent free cells. The path
followed by the unit is illustrated by green dots. An executable demo using
the BVP Path Planner implemented with the Spring Engine can be found at
http://www.inf .ufrgs.br/~1lgfischer/mig2010, as well as a video including
examples that demonstrate all the techniques presented in this paper. All ani-
mations in the video were generated and captured in real time.

7 Conclusion

This paper presented several complementary approaches recently developed by
us to produce natural steering behaviors for virtual characters and to allow
interaction with the agent navigation. The core of these techniques is the BVP
Path Planner [14], that generates potential fields through a differential equation
whose gradient descent represents navigation routes. Resulting paths are smooth,
free from local minima, and very suitable to be used in RTS games.

Our technique uses a global and a local path planner. The global path planner
ensures a path free of local minima, while the local planner is used to control the
steering behavior of each agent, handling dynamic obstacles. We demonstrated
that our technique can produce natural paths with interesting and complex
human-like behaviors to achieve a navigational task, when compared with real
paths produced by humans. Dealing with groups of agents, we shown a strategy
to handle the path-planning problem while keeping the agent formations. This
strategy enables the user to sketch any desirable formation shape. The user can
also sketch a path to be followed by agents replacing the global path planner.

We also described a parallel version of this algorithm using the GPU to solve
the Laplace’s Equation. Finally, to demonstrate the applicability of the proposed
technique we implemented the BVP Path Planner in a RTS game engine and
released an executable demo available on the Internet.

We are now developing a hierarchical version of the BVP Path Planner that
spends less than 1% of the time needed to generate the potential field using
our original planner in several environments. We are also exploring strategies to
use this planner in very large environments. Finally, we are also working on the
generation of benchmarks for our algorithms.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

van den Berg, J., Patil, S., Sewall, J., Manocha, D., Lin, M.: Interactive naviga-
tion of multiple agents in crowded environments. In: Proc. of the symposium on
Interactive 3D graphics and games. pp. 139-147. ACM (2008)

Burgess, R.G., Darken, C.J.: Realistic human path planning using fluid simulation.
In: Proc. of Behavior Representation in Modeling and Simulation (BRIMS) (2004)
Choi, M.G., Lee, J., Shin, S.Y.: Planning biped locomotion using motion capture
data and probabilistic roadmaps. ACM Trans. Graph. 22(2), 182-203 (2003)
Dapper, F., Prestes, E., Nedel, L.P.: Generating steering behaviors for virtual hu-
manoids using bvp control. Proc. of CGI 1, 105-114 (2007)

Dietrich, C.A., Nedel, L.P., Comba, J.L.D.: A sketch-based interface to real-time
strategy games based on a cellular automaton. In: Game programming gems 7. pp.
59-67. Charles River Media, Bostom (2008)

Fischer, L.G., Silveira, R., Nedel, L.: Gpu accelerated path-planning for multi-
agents in virtual environments. SBGames 0, 101-110 (2009)

Funge, J.D.: Artificial Intelligence For Computer Games: An Introduction. A. K.
Peters, Ltd., Natick, MA, USA (2004)

James J. Kuffner, J.: Goal-directed navigation for animated characters using real-
time path planning and control. In: Int. Workshop on Modeling and Motion Cap-
ture Techniques for Virtual Environments. pp. 171-186. Springer-Verlag (1998)
Kallmann, M.: Shortest paths with arbitrary clearance from navigation meshes.
In: Symposium on Computer Animation (SCA) (2010)

Kavraki, L., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps for
path planning in high-dimensional configuration space. IEEE Trans. on Robotics
and Automation 12(4), 566-580 (1996)

Metoyer, R.A., Hodgins, J.K.: Reactive pedestrian path following from examples.
Visual Comput. 20(10), 635-649 (2004)

Nieuwenhuisen, D., Kamphuis, A., Overmars, M.H.: High quality navigation in
computer games. Sci. Comput. Program. 67(1), 91-104 (2007)

Pettre, J., Simeon, T., Laumond, J.: Planning human walk in virtual environments.
In: Int. Conf. on Intelligent Robots and System. vol. 3, pp. 3048 — 3053 (2002)
Silveira, R., Dapper, F., Prestes, E., Nedel, L.: Natural steering behaviors for
virtual pedestrians. Visual Comput. (2009)

Silveira, R., Prestes, E., Nedel, L.P.: Managing coherent groups. Comput. Animat.
Virtual Worlds 19(3-4), 295-305 (2008)

Tecchia, F., Loscos, C., Conroy, R., Chrysanthou, Y.: Agent behaviour simulator
(abs): A platform for urban behaviour development. In: Proc. Game Technology,
2001 (2001)

Treuille, A., Cooper, S., Popovié¢, Z.: Continuum crowds. In: ACM SIGGRAPH.
pp. 1160-1168. ACM Press, New York, NY, USA (2006)

Trevisan, M., Idiart, M.A.P., Prestes, E., Engel, P.M.: Exploratory navigation
based on dynamic boundary value problems. J. Intell. Robot. Syst. 45(2), 101—
114 (2006)

GPU Accelerated Path-planning for Multi-agents in Virtual Environments

Leonardo G. Fischer, Renato Silveira, Luciana Nedel
Institute of Informatics
Federal University of Rio Grande do Sul
Porto Alegre, Brazil

Figure 1.

Abstract—Many games are populated by synthetic humanoid
actors that act as autonomous agents. The animation of
humanoids in real-time applications is yet a challenge if the
problem involves attaining a precise location in a virtual world
(path-planning), and moving realistically according to its own
personality, intentions and mood (motion planning). In this
paper we present a strategy to implement — using CUDA on
GPU - a path planner that produces natural steering behaviors
for virtual humans using a numerical solution for boundary
value problems. The planner is based on the potential field
formalism that allows synthetic actors to move negotiating
space, avoiding collisions, and attaining goals, while producing
very individual paths. The individuality of each character can
be set by changing its inner field parameters leading to a
broad range of possible behaviors without jeopardizing its
performance. With our GPU-based strategy we achieve a speed
up to 56 times the previous implementation, allowing its use
in situations with a large number of autonomous characters,
which is commonly found in games.

Keywords-Path-planning; GPGPU; NVIDIA CUDA; Agent
Simulation

I. INTRODUCTION

Many types of games, specifically First Person Shoot-
ers (FPS) and Real Time Strategy (RTS) are populated
by synthetic actors that should act as autonomous agents.
Autonomous agents, also called non-player characters, are
characters with the ability of playing a role into the en-
vironment with life-like and improvisational behavior. To
behave in such way, the agents must act in the virtual world,
perceive, react and remember their perceptions about this
world, think about the effects of possible actions and finally,
learn from their experience [1]. In this complex and suitable
context, navigation plays an important role [2]. To move
agents in a synthetic world, a semantic representation of the

{Igfischerrsilveira,nedel} @inf.ufrgs.br

Virtual characters controlled by the BVP Planner in a virtual environment.

environment is needed, as well as the definition of the agent
initial and target position (goal). Once these parameters
were set, any path-planning algorithm can be used to find a
trajectory to be followed.

However, in the real world, if we consider different
persons (all in the same initial position) looking for achiev-
ing the same target position, each path followed will be
unique. Even for the same task, the strategy used for each
person to reach his/her goal depends on his/her physical
constitution, personality, mood, reasoning, urgency, and so
on. From this point of view, a high quality algorithm to
move characters across virtual environments should generate
expressive, natural and unexpected steering behaviors.

In contrast, the high performance required for real-time
graphics applications compels developers to look for most
efficient and less expensive methods that produce yet good
and almost natural movements. To illustrate how perfor-
mance is a crucial problem, it is known that to be playable,
a game must run at least at a rate of 30-100 frames per
second. This implies in 0.02 seconds per frame. Each frame
(or step of an animation) includes the updating of the game
status, handling user inputs, graphics processing, physics
computations, strategic Al, path-planning, among others.
Then, we can easily consider something as one millisecond
per step for path-planning (with multi-core architectures, this
restriction is relaxed).

Many researchers are working on methods to improve the
quality of the steering behavior of synthetic agents with a
minimal cost. One way to improve the performance is taking
advantage of massively parallel architectures, as multi-core
CPUs and GPUs (Graphics Processing Unit). In this work
we propose a GPU implementation of the BVP Planner

recently proposed by us [3]. The BVP Planner is a method
based on the numeric solution of the boundary value problem
(BVP) to control the movement of pedestrians allowing the
individuality of each agent.

Our main contributions in this paper are:

e A parallel version of our previously technique [3], im-
plemented on the GPU using nVIDIA CUDA (Compute
Unified Device Architecture) [4]

o A strategy to reduce the number of memory transactions
between CPU and GPU

o Several tests showing that the GPU implementation
improves up to 56 times the CPU sequential version,
allowing the real-time use of this technique even in
scenarios with a large number of autonomous characters

Despite humanoid, autonomous agent, and behavior are

terms used in many different contexts, in this paper we
limit its use in order to match our goals. For the sake of
simplicity, we consider humanoids as a kind of embodied
autonomous agent with reactive behaviors (driven by stim-
ulus), represented by a computational model, and capable
of producing physical manifestations in a virtual world.
The term behavior will be used mainly as a synonymous
of animation or steering behavior and intend to refer the
improvisational and personalized action of a humanoid.

The remaining of this paper is structured as follows.

Section II reviews some related works on path-planning
techniques applied to virtual agents simulation. Section III
describes the fundamentals of the path-planning method
proposed by us. In Section IV we detail the strategy used
to handle the information about the environment and other
agents. In Section V we present our strategy to implement
this technique on GPU. Section VI shows our results,
including several comparisons between the CPU and GPU
version, and exposes considerations about performance. Fi-
nally, Section VII presents our conclusions and some ideas
for future works.

II. RELATED WORK

The path-planning problem has been deeply explored
in game development. The generation of a path between
two known configurations in a bi-dimensional world is a
well-known problem in robotics, artificial intelligence, and
computer graphics field. However, to find the path is not
enough when we want to endow artificial characters with
natural and realistic movement similar to the ones found
and followed by real human beings. When it comes to
a game with many autonomous characters, for instance,
these characters must also present convincing behavior. It
is very difficult to produce natural behavior by using a
strategy focusing on the global control of characters. On
the other hand, taking into account the individuality of each
character can be a costly task. As a consequence, most of
the approaches proposed in computer graphics literature do
not take into account the individual behavior of each agent.

An example is the technique proposed by Kuffner [5].
Kuffner proposed a technique where the scenario is mapped
onto a 2D mesh and the path is computed using a dynamic
programming technique like Dijkstra. Then, the motion con-
troller is used to animate the agent along the path planned.
Kuffner argue that his technique is fast enough to be used
in dynamic environments. Another example is the work
developed by Metoyer and Hodgings [6]. They proposed
a technique where the user defines the path that should be
followed by each agent. During the motion along this path,
it is smoothed and slightly changed to avoid collisions using
force fields that act on the agent.

The development of randomized path-finding algorithms
— specially the PRM (Probabilistic Roadmaps) [7] and RTT
(Rapidly-exploring Random Tree) [8] — allowed the use of
large and more complex configuration spaces to generate
paths efficiently. Thus, the challenge becomes more the gen-
eration of realistic movements than finding a valid path. For
instance, Choi et al. [9] use a library of captured movements
associated to the PRM to generate realistic movements in a
static environment, that is, live-captured motions are used
insofar the agent tracks the path computed from a roadmap.
Despite the fact the path is computed in a pre-processing
phase, results are very realistic. Pettré et al. [10] improved
this idea adding one more step in this process. This step
consists of smoothing the path computed by the PRM using
Bézier curves. Hereinafter, the already captured motions are
associated to the agent position during the path execution.
As in previous works, the motion is also performed on a 2D
environment.

Differently, Burgess and Darken [11] proposed a method
based on the principle of least action which describes the
tendency of elements in nature to seek the minimal effort
solution. Authors claim that a realistic path for a human
is the one that requires the smallest amount of effort.
The method produces human-like movements, through very
realistic paths, using properties of fluid simulation.

Tecchia et al. [12] proposed a platform that aims to
accelerate the development of behaviors for agents through
local rules that control these behaviors. These rules are
governed by four different control levels, where each one
reflects a different aspect of the behavior of the agent.
Results show that, for a fairly simple behavioral model, the
system performance can achieve interactive time.

Pelechano et al. [13] described a new architecture to
integrate a psychological model into a crowd simulation
system in order to obtain believable emergent behaviors.
The architecture achieves individualistic behaviors through
the modeling of the agent knowledge, as well as the basic
principles of communication between agents.

Treuille et al. [14] proposed a crowd simulator driven
by dynamic potential fields which integrates both global
navigation and local collision avoidance. Basically, this
technique uses the crowd as a density field, and, for each

group, constructs a unit cost field which is used to control
people displacement. The method produces smooth behavior
for a large amount of agents at interactive rates.

Recently, Reynolds [15] implemented a high performance
multi-agent simulation and animation for the Playstation®
3. Basically, his technique uses a spatial partitioning that
divides the simulation into disjoint jobs which are evaluated
in an arbitrary order on any number of Playstation® 3 Syner-
gistic Processor Units (SPUs). A fine-grain partitioning suits
SPU memory size and provides automatic load balancing.
This approach allows a scalable multi-processor implemen-
tation of a large and fast crowd simulation, achieving good
frame rates with thousand of agents.

In 2008, Bleiweiss [16] implemented the Dijkstra and
the A* algorithms using CUDA. Differently from our work,
these algorithms are used in the path finding problem with
pre-computed graphs. After several benchmarks, he observed
that the Dijkstra implementation reached a speed up of
27 times compared to a C++ implementation without SSE
instructions. The A* implementation reached a speed up of
24 times compared to the C++ implementation with SSE
instructions.

Based on local control, van den Berg [17] proposed a
technique that handles the navigation of multiple agents in
the presence of dynamic obstacles. He uses an extended
velocity obstacles concept to locally control the agents with
few oscillation. Kapadia [18] presented a framework that
enables agents to navigate in unknown environments based
on affordance fields that compute all the possible ways an
agent can interact with its environment.

As mentioned above, most of the approaches do not
take into account the individual behavior of each agent,
his internal state or mood. Our assumption is that realistic
paths derive from human personal characteristics and inter-
nal state, thus varying from one person to another. As a
consequence, we [3], [19] recently proposed a technique
that generate individual paths. Our path is smooth and
is dynamically generated while the agent walks. In the
following sections, we will explain the concepts of our
technique and our strategy to implement it on the GPU.

III. PATH PLANNER BASED ON BOUNDARY VALUE
PROBLEMS

Recently, we [3], [19] developed a technique that produces
natural and individual behaviors for virtual humanoids. This
technique is based on an extension of the Laplace’s Equation
that produces a family of potential field functions that do
not have local minima. This family is generated through
the numeric solution of a convenient partial differential
equation with Dirichlet boundary conditions, i.e., a boundary
value problem (BVP). Boundary conditions are central to
the method indicating which regions in the environment are
obstacles and which ones are targets. Our method uses the
following equation

V2 p(r) + ev.Vp(r) = 0 (1

where v is a bias unity vector and € is a scalar value.

The use of terms € and v distort the potential field pro-
viding a preferred direction to be followed. This distortion
allows the production of individual behaviors for humanoids
illustrated through the path followed by each one during
navigation tasks.

To generate realistic steering behaviors, we need to conve-
niently adjust both parameters € and v. The vector v, called
behavior vector, can be thought as an external force that
pulls the agent to its direction always as possible whereas the
parameter ¢ can be understood as the strength or influence
of this vector in the agent behavior. The allowed values
of parameters ¢ and v permit to generate an expressive
amount of action sequences — displacement sequences — that
virtual humanoids can use to reach a specific target position.
Figure 2 shows three different paths followed by an agent
using the Equation 1 and changing the parameters € and v.

() (b) (©)

Figure 2. Different paths followed by an agent using Equation 1: (a) path
produced by harmonic potential, i.e., with € = 0; (b) with ¢ = —1.0 and
v = (1,0); (c) with e = —1.0 and v = (1, sin(0.6t))

Two action sequences are not statically defined for a same
pair € and v, i.e., the path generated vary according to the
information gathered by the agent to allow it to dynamically
react against unexpected events (e.g. dynamic obstacles).
In other words, the configuration of the obstacles has an
important role in the generation of the path.

Besides, this pair is not constrained to keep constant
during the execution of tasks. They can vary insofar the
agent displaces in the environment to obtain the desired
behavior. Figure 2(c) shows a situation where the behavior
vector varies according to a sin function. It is not natural
for human beings to walk based on a sin function. However,
the path based on a sin function illustrates the flexibility of
Equation 1. Any function can be associated to v and € to
generate a behavior.

When ¢ = 0, Equation 1 reduces to V2 p(r) = 0 which
corresponds to Laplace’s Equation. This equation is used as
core of the path planner based on harmonic function devel-
oped by Connolly and Grupen [20] on Robotics context. This
planner produces paths that minimize the hitting probability
of the agent with obstacles, i.e., in an indoor environment the
agent will tend to follows a path equidistant to the walls, as
shown in Figure 2(a). This behavior is not always adequate
to simulate humanoid motion since it looks very stereotyped
because humans do not always walk equidistant to the walls.
Hence the importance of using these parameters € and v.

The common approach to numerically solve a BVP is to
consider that the solution space is discretized in a regular
grid. Each cell (i,j) is associated to a squared region of
the real environment and stores a potential value pﬁﬁj at
instant £. Each cell is distant from each other 1 unit. The
Dirichlet boundary conditions previously associate a specific
potential value to some cells, before the relaxation process
is performed. That is, cells associated to obstacles in the
real environment store a potential value equal to 1 (high po-
tential) whereas cells containing the target store a potential
value equal to O (low potential). The high potential value
prevents the agent from running into obstacles whereas the
low potential value generates an attraction basin that pulls
the agent. The potentials of the other cells are computed
using the Gauss-Seidel relaxation method, as discussed
in [21]. By considering the Equation 1, the potentials of the
free space cells are updated through the following equation

pe = Dot Ipr o e(pr —pz)vz; (Ps = Pr)vy) o)

o t+1 it o t+1 .t
where p. = Dij > Pb = Pijy1o Pt = Pij—1> Pr = Pit1,5
pi=pi*1, and v = (vs, v,). Figure 3 shows a representa-

tion of these cells.

& 1[(i+1)
8 & & (1) (i) (+1i)
& (i,i-1)

Figure 3. Representation of p¢, pp, pt, pr and p; on the grid.
The parameter v must be a unit vector and € must be
in the interval (—2,2). Values out of this range generate
oscillatory and unstable paths that do not guarantee that
the agent will reach the target or will avoid obstacles. This
happens because the boundary conditions — that assert the

agent is repelled by obstacles and attracted by targets — are
violated.

After the potential computation, the agent moves follow-
ing the direction of the gradient descent of this potential at
its current position (%, j),

2 ’ 2

This process is an intuitive way to control the agent
motion. However, it can easily fail in producing realistic
steering behaviors, as observed in real world. One of the
reasons is that the agent changes its direction based solely
on the gradient descent of its position. For instance, if the
field of view of the agent is small, its reaction time will be
very short to treat dynamic obstacles'. Then, these obstacles
will produce a strong repel force that will change the agent
direction abruptly. As we can see in Figure 4, if the agent
uses only the gradient descent (dgrad) it will change its
direction in nearly /2.

P P P
<Vp>(i,,»)=(z i Pily Pegtl ~Pig)

dgrad's d*'a a"
——

(b)

Figure 4. Defining agent motion. (a) Situation before the agent A enters
in the field of view of A;. (b) If the agent A; follows the direction defined
by the gradient descent (dgrad), it will changes its direction in nearly 7 /2,
what is undesirable. However, if the agent uses the vector d, it will achieve
a smooth curve, what is more natural and realistic.

We handle this problem by adjusting the current agent
position by

A d = v(cos(¢"),sin(¢")) 3)

'We consider that dynamic obstacles (as other agents) are mapped in

the environment only when they are inside the field of view of the agent,
which almost corresponds to reality.

where v defines the maximum agent speed and ? is

l=net+(1-n) “)

where n € [0,1) and ¢ is the orientation of the gradient
descent at current agent position.

When 1 = 0, the agent adjusts its orientation using only
information about the gradient descent. If n = 0.5, the
previous agent direction (p'~!) and the gradient descent
direction influence equally the computation of the new agent
direction. Figure 4(b) shows the vector d’ with orientation
' computed with n = 0.5. The parameter 1 can be viewed
as an inertial factor that tends to keep the agent direction
constant insofar n — 1. When n — 1, the agent reacts
slowly to unexpected events, increasing its hitting probability
with obstacles. 7 is a flexible parameter that the user is able
to control. However, a learning strategy could be used to
specify what is the best 7 to a specific situation.

Despite Equation 3 produces good results and smooth
paths in environments with few obstacles, when the environ-
ment is cluttered with obstacles, the agent behavior is not
realistic and collisions can happen. To solve this problem, a
speed control was incorporated into this equation,

Ad = v (cos(¢"),sin(¢")) U(je"" =) 6))
where function ¥ : R — R is

{0 if > 7/2

U(z) = cos(xz) , otherwise

If |~ —¢?| is higher than 7 /2, then there is a high hitting
probability and this function returns the value 0, making
the agent stops. Otherwise, the agent speed will change
proportionally to the collision risk. In regions cluttered with
obstacles, agents will tend to move slowly. If a given agent is
about to cross the path of another, one of them will stop and
wait until the other get through. Furthermore, speed control
allows the simulation of agents’ mood through the variation
of the speed magnitude, that is, it is possible to simulate
a tired agent making it move slower and an agent that is
anxious about its work making it move faster.

IV. IMPLEMENTATION STRATEGY

As previously explained, our motion planning method
requires the discretization of the environment into a regular
grid. In this section we present the strategy that was used in
our previous work [3], [19] to implement it by using global
environment maps (one for each target) and local maps (one
for each agent), as well as the mechanisms used to control
each agent steering behavior.

A. Environment Global Map

The entire environment is represented by a set of ho-
mogeneous meshes, { My}, in which each mesh M, has
Ly x Ly cells, denoted by {Cf;}. Each cell C}'; corresponds
to a squared region centered in environment coordinates

r = (r;,r;) and stores a particular potential value Pffj. The
potential associated to the mesh Mj is computed by the
harmonic path planner, through the Equation 2, and then
used by agents to reach the target Oy.

In order to delimit the navigation space, we consider that
the environment is surrounded by static obstacles. Global
maps are built before simulation starts, in a pre-processing
phase.

B. Agent Local Map

Each agent a, has one map my that stores the current
local information about the environment obtained by its own
sensors. This map is centered in the current agent position
and represents a small fraction of the global map, usually
about 10% of the total area covered by the global map.

The map my, has 15 x I¥ cells, denoted by {c};} and
divided in three regions: the update zone (u-zone); the
free zone (f-zone) and the border zone (b-zone), as shown
in Figure 5. Each cell corresponds to a squared region
centered in environment coordinates r = (r;,7;) and stores
a particular potential value pf’ jt

—_
local gradient

XXX XX XX XX
u-zone I:lf-zone [Eb-mne

Figure 5. Agent Local Map. The update (u-zone), free (f-zone) and border
zones (b-zone) are shown. Blue and red cells correspond to the intermediate
goal and obstacles, respectively.

XIXIXIXIXIX XX XX
X obstacle

X X|x#& X

X vioweane |/ 1X| |X]

X < b

X

X[IX|X X

X[XX X| obetoradiont
X X

X X

L

The area associated to each agent map cell is smaller than
the area associated to the global map cell. The main reason
is that the agent map is used to produce refined motion,
while the global map is used only to assist the long-term
agent navigation. Hence, the smaller the size of the cell on
the local map, the better the quality of motion.

C. Updating Local Maps from Global Maps

For each agent aj, a goal (’)goal(k)z, a particular vector
v}, that controls its behavior, and a ¢;, should be stated. The
same goal, v, and e can be designated to several agents. If
Vi, or € is dynamic, then the function that controls it must
also be specified.

2Function goal() maps the agent number k into its current target number

To navigate into the environment, an agent aj uses its
sensors to perceive the world and to update its local map
with information about obstacles and other agents. The agent
sensor sets a view cone with aperture a.

Figure 6 exemplifies a particular instance of the agent
local map where we can see the obstacles mapped from the
global map. The u-zone cells ci—f ; which are inside the view
cone and correspond to obstacles or other agents have their
potential value set to 1. In Figure 7, as there is an agent in
the u-zone of the agent local map, inside of his view cone, it
is mapped as an obstacle into his local map. This procedure
assures that dynamic or static obstacles behind the agent (out
of his view cone) do not interfere in his future motion.

Obstacle
mapped onto

Obstacle
mapped onto|
global map

Dynamic
obstacles

Local map
cells with
value of 1

Figure 7. The cells which are inside the agent’s view cone and correspond
to obstacles or other agents have their potential value set to 1.

For each agent ay, the global descent gradient on the cell
in the global map M ,q(1) that contains his current position
is calculated. The gradient direction is used to generate an
intermediate goal in the border of the local map, setting the
potential values of a couple of b-zone cells to 0, while the
other b-zone cells are considered as obstacles, with their
potential values set to 1. In Figure 7, the agent calculates
his global gradient in order to project an intermediate goal
in its own local map. As the agent local map is delimited by
obstacles, the agent is pulled towards the intermediate goal

using the direction of his local gradient. The intermediate
goal helps the agent ay to reach its target Oyoqy(x) While
allowing it to produce a particular motion.

In some cases, the target O g4k is inside both view cone
and u-zone, and consequently local map cells associated are
set to 0. The intermediate goal is always projected, even if
the target is mapped onto the u-zone. Otherwise the agent
can easily get trapped because it would be taking into con-
sideration only the local information about the environment,
in a same way as traditional potential fields [22].

F-zone cells are always considered free of obstacles, even
when there are obstacles inside. The absence of this zone
may close the connection between the current agent cell
and the intermediate goal due to the mapping of obstacles
in front of the intermediate goal. When this occurs, the
agent gets lost because there is no information coming from
the intermediate goal to produce a path to reach it. F-zone
cells handle the situation always allowing the propagation
of the goal’s information to the cells associated to the agent
position.

After the sensing and mapping steps, the agent k updates
the potential value of its map cells using Equation 2 with its
pair v¥ and €*. Hereinafter, it updates its position according
to Equation 5 using the gradient descent computed from
the potential field stored on its local map in the position

pe = [15/2] and p, = [15/2].
V. IMPLEMENTATION ON GPU

In the real world, people walking inside a room react
to what they perceive from the environment based on their
own personality, mood and reasoning, i.e., they think in
parallel. So, a technique that handles several agents should
be parallelized in the same way.

According to Section III, during the update phase of our
technique, each agent must update its local map with the
environment obstacles which are inside this region. Note
that, in this step, we consider that for a given agent a;, each
other agent a;,i # j, is also an obstacle. Then, each cell
in the agent local map inside his view cone is updated as
an obstacle, with the potential value equal to 1. After the
update of these cells, we update the cells which correspond
to the agent goal, with the potential value of 0.

Note that each one of these updates can be made in
parallel between the agents. The only dependency here is
that obstacle cells must be updated before goal cells. It must
be done sequentially, otherwise, if an agent has a goal very
close to an obstacle, both obstacle and goal may be mapped
to the same cell. In this case, if goal cells are updated before
obstacle cells, the agent will become lost, without a goal to

achieve. All other cells are updated as free cells.
Afterwards, the Equation 2 is evaluated for each agent
local map. Since it is difficult and needs to be evalu-
ated independently for each agent, it is a good candidate
for a parallel implementation. The Gauss-Seidel relaxation
method (previously used in Equation 2) is not suitable for

a parallel implementation because it uses values from the
current and previous iterations. In a sequential approach, it
is very simple to implement and fast to execute, but a parallel
implementation will require some kind of synchronization,
which may cause degradation in performance. A better
approach for a parallel implementation is to use values only
from the previous iteration. This is exactly what the Jacobi
method does. The update rule is described below.

b = PtP Zpr o el pz)vz; (2o = povy) o

where p. = pf . py = D} 1o Dt = D15 Pr = Diiy g
b= P§—1,j and v = (vg, vy).

We implemented the parallel version of our technique
using the nVIDIA® Cuda [4] language, which allows us to
use the graphics processor without using shading languages.
In the context of CUDA, the CPU, here called Host, controls
the graphics processor, called Device. It sends data, calls the
Device to execute some functions, and then copies back its
results.

Each graphics processor of a nVIDIA graphics card
is divided into several multiprocessors. Cuda divides the
processing in blocks, where each block is divided in several
threads. Each block of threads is mapped to one multiproces-
sor of the graphics processor. When the Host calls the Device
to execute a function, it needs to inform how the work will
be divided in blocks and threads. Maximum performance is
achieved when we maximize the use of blocks and threads
for a given graphics processor.

Each of the multiprocessors is a group of simple proces-
sors that share a set of registers and some memory (the
shared memory space). The shared memory size is very
small (16KB on graphics cards up to Compute Capability
1.3), but it is as fast as the registers. The communication
between two multiprocessors must be done through the
Device Memory, which is very slow if compared to the
shared memory. There is also the Constant Cache and
Texture Cache memory, which has better access times than
the Device memory, but it is read-only for the Device.

Before the execution of the code in the Device, the Host
must send the data to its Device Memory to be processed
later. The memory copy from the Host Memory to the
Device memory is a slow process, and should be minimized.
Besides, the nVIDIA Cuda Programming Guide [4] says that
one single call to the memory copy function with a lot of
data is much more efficient than several calls to the same
function with a few bytes. We can improve the performance
of our application making good use of these restrictions of
Cuda.

As previously mentioned, each agent aj has several at-
tributes: the scalar €, the vector v, and its current objective
Ogoat(k)- The local map also has some attributes, like its
width I¥ and height I7. All these attributes must be sent
at least once to the Device. The agent goal and the local
map position in the world, for instance, will be frequently

updated. To avoid several memory transactions between
the Host and the Device, we store all these attributes in
contiguous memory areas, and treat it like an array. At the
position k we store an attribute of the agent ay. Proceeding
this way, we avoid several unnecessary copies, improving
the overall performance.

Figure 8 shows our data structure for a set of 3 agents.
The array m with all local map cells is illustrated with its
cell’s index. Each position k& of the array s contains an index
to the first position in the array m in which the agent ay
local map information is stored. Each position k of the array
1, O, ¢, v contains the information of the local map dimension
and goal, as well as the behavioral parameters € and v of
the agent ay, respectively.

array with all
local map cells S |0

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14 ml I s a4
y
15 16 17 18 19
20 21 22 23 24
25 26 27 28
x 10 80 30
29 30 31 32 m2
33 34 35 36 0}' 32 95 60

37 38 39 40
E, 1502 -09
41 42 43 44 45 46
47 48 49 50 51 52 Vy 064 086 -0,3
53 54 55 56 57 58
l{y 0,76 | -0,5 0,94
59 60 61 62 63 64

Figure 8. Data structure used on GPU.

There are situations in which the size of the agent local
map must be changed. Any update on the size of an agent
local map will require the modification of the array m, which
implies in the entire data structure reconstruction. In these
cases, the Host must reallocate the entire array in the Host
Memory, and send it again to the Device Memory. These
attributes should not only be copied once to the Device
memory, but they should be sent to the Constant Memory
or Texture Memory.

As the Environment Global Map is composed only of
static obstacles, it can be copied to the Device Memory only
once. Then, the update step can be done in the following
way. First, each local map is mapped into a block of threads,
in which each thread updates one cell of the local map.
The thread will find the local map cell corresponding to the
Environment Global Map, and will copy the information
from the global map cell to the local map cell. This is

done only to the cells in the f-zone. Figure 6 illustrates this
situation.

Afterwards, each local map is mapped to a block of
threads, and each thread is associated with a dynamic
obstacle. This thread checks whether the obstacle appears
inside the view cone. If yes, the local map cells occupied
by the obstacle update its potential value to 1. Next, each
cell in the b-zone is mapped as an obstacle, also updating
its potential to 1, except for the ones that are goal cells. The
remaining cells are updated as free cells. Then, the Equation
6 can be evaluated, starting one thread to each local map cell.
A synchronization must be made between the iterations in
order to guarantee that all cells are up to date to the next
iteration.

The convergence of the Equation 6 is achieved through
several reads and writes at the Device Memory during
several iterations. In order to avoid the high latency of the
Device Memory, this must be made in the shared memory of
the multiprocessor. An implementation of the Jacobi method
will require two copies of the potential map, where at each
iteration the values are read from one of them and written to
the other. However, the shared memory size is very limited.
Then, we decided to use a combination of the Jacobi method
with the Gauss-Seidel. In our implementation, only one copy
of the potential map is stored in the shared memory. At each
iteration ¢, a cell cf’ ; may be updated with the potential of
the neighborhood cells at the iteration ¢ — 1 or t. We do not
specify whether will be used values from iteration t — 1 or
t. It will depend on how the information will be arranged in
the shaders, i.e., the synchronization between cells update is
not needed.

VI. RESULTS

In order to verify that our parallel implementation can
be executed faster than the sequential one, a couple of
tests were accomplished. All the tests were executed in an
Intel® Core 2 6300 1.86GHz, with 2Gb of RAM memory,
a nVIDIA GeForce 9800 GX2 graphics card (the graphics
processor has 600 MHz of clock) and Microsoft Windows
XP SP3 operating system. We measured how many times per
second the algorithm can be executed, and what is the impact
of the memory copy between the Host and the Device, using
three different sizes for the local maps.

The tests were executed in the following way. Initially,
three sizes of local maps where chosen: 11 x 11, 16 x 16
and 21 x21. We chose these sizes because previous tests [19]
showed that they generate animations with very good quality,
being the most interesting for tests. Then, several scenarios
were executed using the parallel and sequential versions
of the algorithm, changing the number of agents in the
scene. For each test, we recorded the frequency at which
the algorithm can be executed, and the percentage of time
spent in memory copies between the Host and the Device.

68

11311

55 -

58 -

as -

a8 -

a5 -

ECNS

25 -

improvement (times)

20 -

15 -

18 -

8 588 1888 1580 2880 2580 3080 3560 4060
number of agents

Figure 9. Speed up achieved using the parallel implementation over the
sequential version, with three different sizes of local maps.

The graphic in Figure 9 shows the speed up achieved
using the parallel implementation over the sequential version
of the technique. As we can see, in all tests executed the
parallel version was above twice faster than the sequential
one (exactly the lowest point in the graphic is at 2.85 times).
Besides that, the highest point in the graphic occurs at
the point 56.60, meaning that in an optimal configuration
the parallel version was 56 times faster than the sequential
version.

Using bigger local maps means that more threads are
needed for each local map in the several steps of the
technique. The fact that the multiprocessor offers several
running threads at the same time implies in a better use of
the resources and in good improvements in performance.

On the other hand, for several reasons, with smaller local
maps the speed up is not so high. On the side of the parallel
version, a small local map does not make a good use of
the resources of each multiprocessor. And on the side of the
sequential version, a small local map may fit better in the
processor cache. Moreover, the processor clock is three times
higher than the graphics processor clock. If we combine all
these factors in the same test, the speed up in the parallel
version is minimized.

In addition, according to the nVIDIA Cuda Programming
Guide [4], the graphics processor cannot handle all the
data in a parallel way. The division of the work in blocks
of threads lets the graphics processor scheduler run some
blocks of thread while others wait for execution. Because of
this, the computation of 256 local maps in a parallel way
does not give a speed up of 256 times.

To explain what is the cause of the graphics peaks, the
nVIDIA Cuda Programming Guide says that each algorithm
implemented with Cuda has an optimal point, in which
the amount of blocks and threads uses the most possible
number of resources available in the graphics processor
simultaneously. In our technique, this point is the one with

500 agents in the scene, each one with a local map of a size
of 21 x 21.

VII. CONCLUSION

This paper presented a strategy to implement on GPU a
BVP Planner [3] that produces natural steering behaviors
for virtual humans, using a path-planning algorithm based
on the numerical solution of boundary value problems.

The guiding potential of Equation 1 is free of local
minima, what constitutes a great advantage when compared
to the traditional potential fields method. Furthermore, the
method proposed is formally complete [20] and generates
smooth and safe paths that can be directly used in mobile
robots or autonomous characters in games. The local infor-
mation gathered by agent sensors allows treating dynamic
obstacles, such as other agents navigating in the environ-
ment.

We implemented a parallel version of this algorithm using
the nVIDIA® Cuda [4] language, which allows us to use the
graphics processor avoiding the use of shading languages.
The parallelism was explored, reducing the amount of mem-
ory transactions between CPU and GPU.

Our result shown that the GPU implementation improves
up to 56 times the sequential CPU version, allowing the
real-time use of this technique even in scenarios with a
huge number of autonomous characters, which is a common
situation often found in games.

As future work, we suggest the exploration of ADI
Method [23], obtaining a faster convergence of the relax-
ation process. The ADI Method is suitable to be used on
parallel architectures and to explore the use of other shading
languages. It would be interesting to compare the possible
improvements in performance using other languages.

We have also proposed an extension of this technique to
manage the movement of groups of agents in dynamic envi-
ronments [24]. We intend to implement a parallel version of
this extension and release the project over an open source
license.

ACKNOWLEDGEMENTS

The authors would like to thank Edson Prestes and Fabio
Dapper for their valuable work on the CPU version of the
path-planning algorithm, and Francele Carvalho Rodrigues
for helping in the orthographic and grammatical revision of
the text. This work was partially supported by grants from
CNPq to Leonardo Fischer, Renato Silveira and Luciana
Nedel.

REFERENCES

[1] J. D. Funge, Artificial Intelligence For Computer Games: An
Introduction. Natick, MA, USA: A. K. Peters, Ltd., 2004.

[2] D. Nieuwenhuisen, A. Kamphuis, and M. H. Overmars,
“High quality navigation in computer games,” Sci. Comput.
Program., vol. 67, no. 1, pp. 91-104, 2007.

[3] F. Dapper, E. Prestes, and L. P. Nedel, “Generating steering
behaviors for virtual humanoids using bvp control,” Proc. of

CGl, 2007.

[4] NVIDIA., “Nvidia cuda,” http://www.nvidia.com/cuda, last
acces at 07/2009, 2009.

[5] J. James J. Kuffner, “Goal-directed navigation for animated

characters using real-time path planning and control,” in
International Workshop on Modelling and Motion Capture
Techniques for Virtual Environments. London, UK: Springer-
Verlag, 1998, pp. 171-186.

[6] R. A. Metoyer and J. K. Hodgins, “Reactive pedestrian path
following from examples,” The Visual Computer, vol. 20,
no. 10, pp. 635-649, 2004.

[7] L. Kavraki, P. Svestka, J. C. Latombe, and M. Over-
mars, ‘“Probabilistic roadmaps for path planning in high-
dimensional configuration space,” [EEE Transactions on
Robotics and Automation, vol. 12, no. 4, pp. 566-580, 1996.

[8

—_—

S. LaValle, “Rapidly-exploring random trees: A new tool
for path planning,” Computer Science Dept., lowa State
University, Tech. Rep. 98-11, 1998.

[9] M. G. Choi, J. Lee, and S. Y. Shin, “Planning biped locomo-
tion using motion capture data and probabilistic roadmaps,”
ACM Trans. Graph., vol. 22, no. 2, pp. 182-203, 2003.

[10] J. Pettre, T. Simeon, and J. Laumond, “Planning human
walk in virtual environments,” in IEEE/RSJ International
Conference on Intelligent Robots and System, vol. 3, 2002,
pp- 3048 — 3053.

[11] R. G. Burgess and C. J. Darken, “Realistic human path
planning using fluid simulation,” in Proceedings of Behavior
Representation in Modeling and Simulation (BRIMS), 2004.

[12] F. Tecchia, C. Loscos, R. Conroy, and Y. Chrysanthou,
“Agent behaviour simulator (abs): A platform for
urban behaviour development,” 2001. [Online]. Available:
citeseer.ist.psu.edu/tecchia0lagent.html

[13] N. Pelechano, K. Obrien, B. Silverman, and N. Badler,
“Crowd simulation incorporating agent psychological models,
roles and communication,” in Ist Int’l Workshop on Crowd
Simulation, 2005, pp. 21-30.

[14] A. Treuille, S. Cooper, and Z. Popovi¢, “Continuum crowds,”
in SIGGRAPH 06: ACM SIGGRAPH 2006 Papers. New
York, NY, USA: ACM Press, 2006, pp. 1160-1168.

[15] C. Reynolds, “Big fast crowds on ps3,” in sandbox ’'06:
Proceedings of the 2006 ACM SIGGRAPH symposium on
Videogames. New York, NY, USA: ACM Press, 2006, pp.
113-121.

[16] A. Bleiweiss, “Gpu accelerated pathfinding,” in GH ’'08:
Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS
symposium on Graphics hardware. Aire-la-Ville, Switzer-
land, Switzerland: Eurographics Association, 2008, pp. 65—
74.

(17]

[18]

[19]

[20]

(21]

[22]

[23]

[24]

J. van den Berg, S. Patil, J. Sewall, D. Manocha, and M. Lin,
“Interactive navigation of multiple agents in crowded environ-
ments,” in I3D ’08: Proceedings of the 2008 symposium on
Interactive 3D graphics and games. New York, NY, USA:
ACM, 2008, pp. 139-147.

M. Kapadia, S. Singh, W. Hewlett, and P. Faloutsos, “Egocen-
tric affordance fields in pedestrian steering,” in /13D ’09: Pro-
ceedings of the 2009 symposium on Interactive 3D graphics
and games. New York, NY, USA: ACM, 2009, pp. 215-223.

F. Dapper, E. Prestes, M. A. P. Idiart, and L. P. Nedel,
“Simulating pedestrian behavior with potential fields,” in Ad-
vances in Computer Graphics, ser. Lecture Notes in Computer
Science, vol. 4035. Springer Verlag, 2006, pp. 324-335.

C. Connolly and R. Grupen, “On the applications of harmonic
functions to robotics,” International Journal of Robotic Sys-
tems, vol. 10, pp. 931-946, 1993.

E. Prestes, P. M. Engel, M. Trevisan, and M. A. Idiart,
“Exploration method using harmonic functions,” Robotics and
Autonomous Systems, vol. 40, no. 1, pp. 25-42, 2002.

O. Khatib, “Commande dynamique dans 1’espace opérational
des robots manipulaters en présence d’obstacles,” Ph.D. dis-
sertation, Ecole Nationale Supérieure de 1’ Aéronatique et de
I’Espace, France, 1980.

R. J. H. H. Peaceman D. W., “The numerical solution of
parabolic and elliptic differential equations,” Journal of the
Society for Industrial and Applied Mathematics, vol. 3, pp.
28-41, 1995.

R. Silveira, E. Prestes, and L. P. Nedel, “Managing coherent
groups,” Comput. Animat. Virtual Worlds, vol. 19, no. 3-4,
pp. 295-305, 2008.

	Contents
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Abstract
	Resumo
	Introduction
	Related Work
	Graph based path planning
	Triangulation based path planning
	Path planning based on potential fields

	BVP Path Planner
	Potential fields for path planning
	Global path planner
	Local path planner

	Path Planning in 3D Triangle Meshes
	Potential fields in open triangle meshes
	Environment discretization
	Computing the potential field

	Computing the gradient of the potential field
	Potential fields in 3D surfaces
	Implementation
	The data structure
	Algorithm

	Results
	Comparing our method with the BVP Path Planner
	Path planning evaluation in arbitrary meshes
	Local Minima Avoidance
	Performance evaluation

	Limitations and Degenerated Cases
	Degenerated cases
	Limitations with low quality triangle meshes
	The Flatness Problem

	Conclusions and Future Work
	Conclusions
	Future work
	Additional contributions

	Resumo Expandido
	Trabalhos relacionados
	O Planejador de Caminhos BVP
	Planejamento de caminhos em malhas de triângulos
	Discretização do ambiente
	Calculando o campo potencial
	Calculando o gradiente do campo potencial

	Campos potenciais em superfícies 3D
	Resultados
	Comparação do método com o Planejador de Caminhos BVP
	Avaliação dos caminhos gerados em superficies arbitrárias
	Avaliação de performance
	Limitações e casos degenerados

	Conclusões e trabalhos futuros

	References
	Appendix A - Proof of Equation 4.13
	Appendix B - Test cases
	Appendix C - Articles published during this work
	Semi-Automatic Navigation on 3D Triangle Meshes Using BVP Based Path-Planning
	Finding hidden objects in large 3D environments: the supermarket problem
	Path-Planning for RTS Games Based on Potential Fields
	GPU Accelerated Path-planning for Multi-agents in Virtual Environments

