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ABSTRACT 

 

As computer systems are built with aggressively scaled and unreliable technologies, 
some implementations rely on function specialization with reconfigurable computing to 
increase performance by exploiting parallelism, with possible energy gains. However, 
the use of reconfigurable devices in general purpose computing also brings extra 
reliability challenges at the system level. Solutions to cope with that are generally 
accompanied with the addition of excessive area, performance and power overheads to 
the overall system. These overheads could be reduced if a more extensive analysis was 
performed to evaluate the best fault tolerance strategy to balance the tradeoff between 
reliability and the mentioned aspects. In this context, this work present a comprehensive 
analysis of architectural design that includes the use of reliability modeling and takes 
into consideration aspects such as area, performance, and power. The analysis aims to 
assist the design of reliability-aware reconfigurable architectures by giving some 
indications about what kind of redundancy should be used in order to increase 
reliability. In the proposed analysis, we show that communication among functional 
units is critical to the overall reliability of reconfigurable architectures. Therefore, 
where most of the reliability investments should be made.  Moreover, the analysis also 
demonstrate that there is a threshold in the amount of redundancy that can be added in 
order to increase reliability. This limit is determined by the fact that adding redundancy 
increases area overhead. This overhead influences reliability until overcomes the 
reliability gains. Therefore, even disregarding area cost, the gains in reliability will 
cease or even decrease. To provide a more extended evaluation, a fault tolerance 
approach was proposed to cope with permanent faults. The LOwER-FaT strategy is a 
mechanism embedded in a run-time reconfiguration mechanism that automatically 
selects the fault-free resources without adding extra time overhead to the configuration 
generation mechanism. The fault-tolerant strategy takes advantage of the on-line 
transparent configuration generation mechanism to transparently avoid faulty functional 
units and interconnects. Moreover, the strategy does not require the addition of spare 
resources. All the resources are used to accelerate execution, and only in case of fault, a 
resource is replaced by a working one, with a performance penalty caused by the 
reduction in the amount of resources. In spite of that, experimental results showed a 
mean performance degradation of 14% on overall performance under 20% fault rate. 
Moreover, reliability results indicated gains of around six orders of magnitude when the 
fault tolerance strategy was in place.  

 

Keywords: Reconfigurable architectures, Fault tolerance, Reliability analysis, Scaling.  
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1 INTRODUCTION 

Fault tolerance is defined as the ability of a system to continue its correct 
operation even after the occurrence of a fault (AVIZIENIS, LAPRIE, RANDELL, et al., 
2004). How to cope with faults and provide this ability to the system has been topic of 
studies since the 1950’s. Back then, when the existence of personal computer was only 
speculation and computers were used to very specific activities, such as military and 
later on space missions, fault tolerance emerged with the purpose of working in hostile 
and remote environments, where any small damage could jeopardize the mission and 
manual repair was impractical. Nowadays, fault tolerance is still used with this same 
purpose. However, taking into account the fact that computers are now ubiquitous, 
many other areas require fault-tolerant systems capable of operating in spite of the 
occurrence of faults. Examples are avionics; car braking system; banks; etc. These can 
be considered now mission-critical applications that require a highly fault-tolerant 
system to avoid catastrophic consequences.  

Furthermore, the continued scaling of the geometric dimensions of integrated 
circuits (ICs) has also increased, in an alarming speed, the fault rates of integrated 
circuits (CONSTANTINESCU, 2003), (DEHON and NAEIMI, 2005). The IC scaling is 
responsible for the high improvement in our personal computer’s speed and the size 
reduction of our electronic devices. At the same time, scaling has increasing fault rates 
in such a high magnitude that a fault tolerance approach in all devices will be 
mandatory in the near future technologies. 

In this document, the reasons for such increased concern with the effects of faults 
are exposed, some fault tolerance techniques are analyzed, and the research and 
development of a reliability analysis to assist the design of reliable reconfigurable 
architectures is proposed as the thesis work. 

1.1 Technology 
Shrinking feature sizes has been possible due to the evolution of the fabrication 

process techniques. Next Generation Lithography (NGL) and Chemically Assembled 
Electronic Nanotechnology (CAEN) techniques promise to reduce feature sizes to 20nm 
or less. However, the manipulation of such small devices brings many challenges to the 
fabrication process. Firstly, nanometer-scale transistors and wires are more fragile and 
for this reason, more susceptible to break during the fabrication process. Moreover, the 
fabrication process itself is statistical, with a probability of failing during the fabrication 
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of the device (MISHRA and GOLDSTEIN, 2003). All these challenges lead to a high 
defect density, significantly affecting the yield.  

Shrinking feature sizes also increases the occurrence of permanent faults during 
circuit lifetime. Phenomena like time-dependent dielectric breakdown (TDDB); 
electromigration; negative bias temperature instability (NBTI); etc, happen more often 
in scaled technologies (ITRS, 2011b). The consequence of these faults is circuit 
malfunction and/or reduction in circuit lifetime. Since researches about the behavior of 
circuits in deep-submicron technologies are performed by semiconductor manufacturing 
companies, it is difficult to find more precise information about fault rate prediction. 
The Intel Corporation fellow, Borkar in 2004, revealed that in a future 100 billion 
transistor circuit, 20 billion will be unusable due to manufacturing defects and 10 billion 
will fail over time due to wear-out (BORKAR, 2004). This information was widely 
spread in academic community and even nowadays, it is still used as reference.  

Solutions to cope with the aforementioned problems have been proposed in the 
past years (PRADHAN, 1996). The traditional solutions such as Triple Modular 
Redundancy (TMR) are very costly. TMR requires three times the area of the 
component plus the area for the voter. The same overhead is required for power. Other 
solutions found in the literature might present an efficient fault-tolerant strategy. 
However, in most cases, there is no comprehensive study about the most effective 
strategy considering the tradeoff between fault tolerance and area cost and/or in relation 
to other aspects, such as performance and power. For this reason, the solutions range 
between: 1) having an efficient fault-tolerant solution based on a strategy that requires a 
large amount of hardware redundancy and/or performance penalty. 2) having a limited 
fault-tolerant strategy that only covers part of the faults but presents a reduced overhead. 
Therefore, a solution that provides a balanced tradeoff between fault tolerance and area, 
performance and/or power overheads is required to attain the increase demand for 
reliable devices.  

1.2 Reconfigurable Architectures 
Reconfigurable architectures emerged to balance the tradeoff between the high 

performance and low flexibility of application specific integrated circuits (ASICs) and 
the flexibility of general-purpose processors given by their software programming 
(COMPTON and HAUCK, 2002).  

The ability to adapt their behavior according to the application demand has proven 
to be an efficient solution, as one can see in several architectures found in the literature 
(COMPTON and HAUCK, 2002), (HARTENSTEIN, 2001), (VAHID, STITT and 
LYSECKY, 2008) and (BECK and CARRO, 2010). For this reason, in the past years, 
reconfigurable architectures, such as FPGAs (Field Programmable Gate Arrays), are 
becoming more popular with a large amount of commercial devices available (XILINX, 
2012) and (ALTERA, 2012).  

To provide flexibility and high performance, reconfigurable devices have a 
specific design that allows the rearrangement of the architecture to adapt itself 
according to application requirements. This design consists of several identical 
processing elements (PEs) and an interconnection model that provides communication 
among processing elements.  

With this design, reconfigurable architectures are capable of adapting to the 
requirements of each application independently. For example, the same architecture can 
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be configured to perform a multimedia application, which is characterized for intensive 
computation of highly regular operations. On another moment, the architecture can be 
configured to perform a sort algorithm, which is characterized for having many control 
operations (comparisons). 

The large amount of identical PEs is also a very powerful tool to exploit 
application’s parallelism, more specifically instruction level parallelism (ILP). For 
applications with a large amount of ILP, the operations can be distributed along the PEs 
to be executed in parallel. This capability allows the reconfigurable architectures to 
achieve high performance when executing highly parallel applications, which is the 
main characteristic of embedded market applications. This is the case of multimedia, 
telecommunication, cryptography, and other similar application domains (BECK, 
RUTZIG, GAYDADJIEV, et al., 2008b). Recently, Intel announced the first 
configurable Intel Atom-based processor. The processor E600C series contains an Intel 
Atom E600 processor and an Altera FPGA. According to Intel, the Atom E600C 
processor series aims to meet the needs of embedded device market (INTEL, 2010). 

Although reconfigurable architectures may present high performance when 
targeted to computational intensive applications, they do not present well when other 
aspects are considered or other application domains are executed. Power consumption 
and configuration time overhead still are a challenge for reconfigurable architectures 
designers and users (BECK and CARRO, 2010).  

More specifically to this work, reliability is also a concern that must be carefully 
studied. Providing an architecture with reconfiguration capability implies in having a 
large amount of processing elements and a complex interconnection model that allows 
an ample communication among them. Relying on this highly dense architecture might 
be a challenge. With several small elements becoming even smaller due to the scaling, 
the probability that a fault damages the processing elements and interconnects increases. 
Therefore, as devices shrink, fault tolerance solutions that encompass reconfigurable 
architectures become more necessary. 

Therefore, in face of the ever-increasing demand for flexible and high-
performance reconfigurable architectures, the requirement for solutions to cope with 
faults considering the aforementioned aspects of these architectures also increases. This 
requirement becomes even more essential when considering the high fault rates that 
future scaled technologies should introduce. 

Based on this, the focus of this work is in fault-tolerant solutions targeted to 
increase reliability of reconfigurable architectures. Next section describes the main 
contributions of this thesis. 

1.3 Main Contributions 
This work presents three main contributions. The first contribution is finding that 

there is a threshold in the amount of hardware redundancy that can be added to 
reconfigurable architectures in order to increase reliability. Depending on where and 
how much of redundancy is applied to the system, it can negatively impact on 
reliability, and even reduce reliability. This threshold is related to the area overhead that 
is introduced when hardware redundancy is added. For this reason, a comprehensive 
analysis should be performed to find the best strategy to increase reliability.  
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The second main contribution of this work is related to identify in which part of 
the reconfigurable architecture one should invest in order to improve reliability. There is 
a consensus in the reconfigurable architecture research community that the 
interconnection model is critical to the system in many aspects, such as area, power and 
fault tolerance. In some aspects, this general consideration is based on critical analysis 
as a result of several practical studies and many years of research. This is the case of 
area and power aspects. However, in relation to fault tolerance, there is no a 
comprehensive study that takes into consideration all the characteristics of the 
architecture and quantifies exactly how much the interconnection model influences the 
reliability of the underlying architecture. In this sense, this work presents a detailed 
analysis of reconfigurable architectures, estimating the impact of the interconnection 
model on system reliability. In the analysis we show that the interconnects are in fact 
the critical elements to system reliability. We discuss about alternatives to overcome 
this issue and continue improving reliability. 

The third contribution regards the means to achieve the first two contributions. To 
perform a comprehensive reliability, we propose the use of reliability modeling 
combined with the evaluation of other aspects, such as area, performance. To model the 
architecture reliability, we propose the use of a mathematical representation where each 
component of the architecture presents an individual reliability. Additionally, the total 
reliability of the system is a function of the reliabilities of all components that compose 
the system. The analysis is targeted to evaluate the effects of permanent faults in the 
architecture and find the best strategy to mitigate these effects in order to allow device 
usage in spite of the faults. 

Therefore, the analysis aims to assist the design of reliable reconfigurable 
architectures by giving some indications about what kind of investments and where they 
should be made. Consequently finding the best strategy to design a reliable architecture 
and avoid high overheads of area, performance and/or power.  

In the context of this work, we also propose a new fault-tolerant strategy 
implemented in reconfigurable architecture originally proposed in (BECK, RUTZIG, 
GAYDADJIEV, et al., 2008). The fault-tolerant strategy dynamically generates the 
configuration selecting only fault-free resources to perform operations. The strategy 
exploits the regularity of the reconfigurable architecture, avoiding the inclusion of spare 
resources. Therefore, in this approach, all the functional units are used to accelerate 
execution and only when a fault affects a resource, this resource is eliminated. 

1.4 Methodology 

 

The methodology to perform the proposed analysis consists in four main steps: 

1. Modeling reliability: uses mathematical model to represent the architecture. 
2. Analyzing reliability: use the reliability model to assess the system 

reliability. If the reliability analysis considering aspects such as performance, 
area and power is not satisfactory, some modifications in the architecture 
represented by the mathematical model can be performed aiming to enhance 
reliability and/or reduce overheads (area, power and/or performance). In this 
case, it is necessary to return to step 1. 

3. Implementing design: after a comprehensive analysis, the architecture can be 
implemented based on its mathematical representation. 
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4. Injecting faults: to obtain experimental results, some fault injection 
experiments are performed to validate the architecture.  

Figure 1 depicts a flowchart describing the methodology. 

 
Figure 1. Analysis methodology 

 

Considering all the aspects analyzed and the architectural modifications, at the 
end of the analysis, the goal is to have a highly reliable architecture with low overheads 
of area, performance and/or power. 

To contextualize the proposed work, Figure 2 presents a graph where the 
reliability is a function of area (Figure 2.a) and performance (Figure 2.b) overheads. The 
main fault-tolerant solutions found in the literature either present a high reliability with 
a high area and/or performance overhead or a low area and/or performance overhead, 
consequently with low reliability. On the other hand, our proposed analysis aims to 
assist in the architectural designing process to allow the design of highly reliable-aware 
reconfigurable architectures with low overheads. It is important to highlight that Figure 
2 demonstrates only two examples of unbalanced tradeoff. However, in the proposed 
analysis, other costs can also be considered, such as power. 
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Figure 2. Contextualizing the proposed analysis 

 

1.5 Thesis Outline 
Chapter 2 presents the terminology and general concepts used in this work. 

Chapter 3 describes the proposed analysis with the reliability modeling strategy and 
specifies the parameters required to a proper reliability analysis, such as failure rate and 
reliability estimation. Chapter 4 presents a comprehensive analysis of the first case 
study. First, a detailed description of the reconfigurable architecture is presented, 
followed by its reliability model. The following sections present the reliability, 
performance and energy analyses. Chapter 5 presents the second case study, the 
reliability model description and analysis, as well as some comparisons between this 
case study and the former.  Chapter 6 presents the related works, discussing the 
drawbacks of previously proposed fault-tolerant techniques. Chapter 7 concludes this 
thesis with final considerations and some discussions about the future research topics 
that can be investigate. 
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2 TERMINOLOGY AND GENERAL CONCEPTS 

In this chapter, we introduce the main technical terms used in this work and 
discuss the reasons why fault tolerance has gained more attention as technology scales.  

2.1 Fault 
The design of fault tolerant systems consists in including some approach to 

prevent that a physical fault causes an error in the system leading to a system failure. 
Therefore, there is a cause-effect relationship among fault, error and failure as 
demonstrated in Figure 3. The definitions presented next follow the ones presented by 
Avizienis et al in (AVIZIENIS, LAPRIE, RANDELL, et al., 2004), and will be adopted 
in this document: 

Failure: it is the system malfunction. It is commonly expressed in terms of the 
delivered service of a system. The delivered service is considered correct when it is 
according to the system specification. Therefore, a failure occurs when the delivered 
service deviates from the correct service. 

Error: when the system presents an error, it means that some part of it is not 
working as expected or specified. However, the system may or may not work correctly 
(i.e. delivered the correct service) due to the error. 

Fault: it is the event that causes the error and may or may not lead to the system 
failure. It can be a physical defect or imperfection, or flaw that occurs within some 
hardware or software component. 

 

Figure 3. Fault, error and failure relationship 

A fault may never lead to an error and consequently the system may never fail due 
to that fault. In some cases, to a fault manifest itself, it is necessary that some specific 
conditions be achieved. For example, a faulty AND gate, which the result is always 0. 
An error will be only observed when the two inputs are 1, in this case the correct result 
should be 1. However, since in all other cases the correct result is 0, it is not possible to 
know if the 0 in the output is the result of a correct computation or it is an error 
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manifested by a fault. Figure 4 illustrates the example of a fault that manifests only in a 
specific situation.  

 

Figure 4. Faulty AND gate with output stuck at 0 

 

In Figure 4, based on the truth table of the AND gate, the error is manifested only 
when the inputs are 1. For this reason, to detect a faulty component, the testing 
techniques are based on using different combination of inputs to distinguish between the 
correct circuit operation and faulty circuit behavior (ABRAMOVICI, BREUER and 
FRIEDMAN, 1994).  

There are three types of faults: permanent, transient and intermittent: 

Permanent faults, as the name indicates, remain in the system during its whole 
lifetime. They can happen at any moment, since circuit fabrication until the end of the 
circuit usage. Usually, faults that happen during manufacturing phase are called defects.  

Despite being permanent, faults that happen during circuit manufacture are caused 
by different physical phenomena than the ones that happen during usage. During 
manufacturing, the main causes of defects are contaminations on the silicon surface and 
surface roughness causing gate oxide breakdown; incorrect metallization causing short-
circuits and open-circuits in the interconnects (SRINIVASAN, ADVE, PRADIP, et al., 
2005). According to DeHon and Naeimi (DEHON and NAEIMI, 2005), for nanoscale 
technologies, the defect rate is predicted to be 1% to 15% for wires and connections. On 
the other hand, the physical phenomena that can cause permanent faults during system 
usage (wear-out) are responsible for the aging effect. The aging effects appear over time 
and are caused by the device operation under specific conditions. Over time, the device 
becomes more prone to some physical effects that cause permanent faults. Some 
examples of these physical phenomena are: time-dependent dielectric breakdown 
(TDDB), which occurs when the gate dielectric breaks down and become electrically 
shorted with time. Electromigration, when metal ions migrate over time causing voids 
and deposits in the interconnects and creating open and short circuits. Negative bias 
temperature instability (NBTI) that occurs in p-channel MOS devices stressed with 
negative gate voltages at elevated temperature. Stress migration; thermal cycling; etc 
(ITRS, 2011b), (STOTT, SEDCOLE and CHEUNG, 2010). 

The second type of fault is the transient fault and its effect is hazardous only 
during circuit usage. Transient faults occur when radiation particles strike the circuit 
and deposit charges in the silicon. The consequence of this effect is a switch in the 
logical state of the nodes or a flip in the bits of memory. Once the deposited charges 
dissipate, the effects usually disappear (HEIJMEN, 2002). For this reason, this type of 
fault is called transient and the effect that it causes is called single event transients 
(SETs). If the SET is latched by memory storage elements, the incorrect information is 
stored causing a single event upset (SEU). This incorrect information remains in 
memory until new information replaces it. The error caused by this type of fault is 
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The phenomena that cause the faults in reduced feature sizes are the same of 
larger technologies. The main difference is the fact that at nanoscale basis transistors 
have only few atoms, and consequently are more fragile and susceptible to effects. 
Moreover, the fabrication process is more prone to fail due to the statistical nature of the 
process (BORKAR, 2005). The effects that cause permanent faults during device 
lifetime are more intensified in deep-submicron technology (SRINIVASAN, ADVE, 
BOSE, et al., 2004).  

 

2.2 System Dependability 
According to Laprie (1996), computer system dependability is the quality of the 

delivered service such that reliance can justifiably be placed on this service. The 
delivered service consists in the system behavior, as it is perceived by another system 
(or user) that interacts with the former. If the service is delivered correctly (as specified 
in the system function), the dependability is assured. However, a failure occurs when 
the delivered service deviates from the correct service. 

Dependability comprises the following attributes (AVIZIENIS, LAPRIE, 
RANDELL, et al., 2004).  

Availability: consists in the probability, A(t), that a system is available to perform 
its function at an instant of time, t. 

Reliability: is also a function of time, R(t), defined as the probability that the 
system is operating correctly during the interval of time, [t0,t], given that it was 
operational at time t0. 

Safety: is the absence of catastrophic consequences on the user and the 
environment. In other words, it is the probability, S(t), that a system either will perform 
its functions correctly or will discontinue its functions without disrupting the operation 
of other systems or compromise safety of any user associated with it. 

Maintainability: quantifies how easy a system can be repaired once it has failed. 
Therefore, maintainability is the probability, M(t), that a failed system will restore the 
correct operation within a period of time t. 

Reliability is widely used to evaluate fault-tolerant techniques. Highly reliable 
systems present a high probability that the system is operating correctly during a long 
period of time.  

To describe the reliability of a system, firstly it is necessary to model the system 
taking into consideration the relationship among the components, as well as the physical 
characteristics that determine the probability laws that govern the failures (KUO and 
ZUO, 2003).  

Modeling and measuring system reliability is one of the key elements to the 
proposed approach presented in this work. Therefore, more detail explanation 
describing how to model a system and measure its reliability is presented in next 
chapter.  
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3 RELIABILITY MODELING 

Reliability is the probability that a system works correctly during a period of time 
under specified conditions. In other words, reliability is a measure that indicates for how 
long the system can work correctly even when faults affect parts of this system.  

Fault tolerance techniques implemented in computer systems directly impacts on 
reliability. A fault-tolerant system is capable of taking actions to prevent that faults lead 
to errors and consequently to system failures that affect the correct functioning of 
system. Therefore, the system can work properly for a longer time in spite of faults.  

To describe the reliability of a system, it is necessary to model it taking into 
consideration some important aspects related to the system design and the physical 
characteristics that influence the probability of failures. 

In this section, we describe the reliability model and present details about 
reliability analysis, as well as how to use this strategy to improve architecture design 
targeting reliability.  

3.1 Reliability Modeling 
To model the reliability of a computer system, two essential information must be 

included to ensure a correct description of the system. The first information consists in 
the description of the components and the relationship between them.  

In this work, we describe the components and the relationships using the 
reliability block diagram representation (KUO and ZUO, 2003). As the name indicates, 
the components are represented by blocks and the relationship between blocks 
represents the way the components connect to each other into the system.  

Besides that, it is also necessary to specify the probability law that governs the 
failures (KUO and ZUO, 2003). For electronic devices, the probability law is assumed 
to be an exponential failure distribution called exponential failure law, which is a 
function of the failure rate (λ) and time. The failure rate describes the amount of errors 
that will occur in time. It is a constant determined by the device model (which is a 
function of parameters that describe physical and operating conditions of the device), 
and the environmental conditions in which the device operates. 

According to Vigrass (2012), the failure rate is defined as a function of the total 

device hours and an acceleration factor. The total device hours is calculated based on 
the number of units that compose the device and the hours that the device remained 
under stress (during the test of the device). Moreover, the acceleration factor is a 
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function of the temperature, the thermal activation energy and the Boltzmann’s constant 
(k). 

Equation (1) presents the reliability function for an electronic device,  

���� = ��	
 ,																																																																																																																																			�1� 
where t is the time in hours and λ is the failure rate defined by equation (2),  
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where TDH in equation (2) is the total device hours (number of units x hours 
under stress) and AF is the acceleration factor given by equation (3), 

�� = ������� � �
�� ! − �

� #$!  %&,                                                                                       (3) 

 

where Ea is the thermal activation energy, k is the Boltzmann’s constant (8.63x10-

5eV/K), Tuse is the used temperature and Tstress is the life test stress temperature.  

In case of more tests are performed in the device, reliability is the result of the 
accumulation of all tests that have different failure mechanisms. Therefore, a 
comprehensive failure rate is desired. In this case, the failure rate is defined as a 
function of the total device hours, the acceleration factor and other parameters defined 
based on the number of tests and the different failure mechanisms adopted (VIGRASS, 
2012). 

An electronic system consists of several independent electronic devices, each one 
with a different reliability determined by equation (1). The total reliability of the system 
is a function of the reliabilities of all electronic devices that compose the system. 

3.1.1 Block diagram representation 

After defining the individual reliability of the components, it is necessary to 
determine their connection with each other. In the block diagram representation, each 
component is represented as a block and the connections among components are 
represented by edges.  

In a system with no redundancy, all the components are essential to the proper 
functioning of the system. To represent this relationship, the components are connected 
by only one edge, forming a series connection. Systems composed of only series 
connections are called series system. Figure 6 illustrates a series system with two 
identical components.  

 

Figure 6. Series system block diagram 

 

Based on probability properties presented in (KUO and ZUO, 2003), the 
probability that a series system works at time t is the probability that all the components 
that compose this system work. Thus, the series system reliability function is given by: 
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where n is the number of components connected in series. 

When hardware redundancy is added to increase system reliability, two main 
strategies can be used. In the first strategy, the extra components can work in parallel 
and in case one fails, the result of the other component is used. Another alternative of 
exploring redundancy is leaving the extra components in idle state until the original 
component presents a fault and cannot work properly anymore. In this case, some 
control unit (or the user) must replace the faulty component by the extra one. The extra 
components are called spares. In both cases, the redundant components are not essential 
to system operation. To represent this, the components are connected to each other in a 
parallel fashion. Figure 7 illustrates a parallel system with three identical components. 
The parallel system reliability function is defined in equation (5). 

 
Figure 7. Parallel system block diagram 
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where n is the number of components connected in parallel. 

A third representation also used in redundant systems describes a situation when 
from all the components, only few of them need to work so the system can work 
correctly. This is called k-out-of-m system, where m is the total number of components 
and k is the number of components required. For a completely parallel system k=1 and 
for a completely series system k=m. The k-out-of-m reliability function is given by 
equation (6). 
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Usually, the reliability function of complex systems is defined by the combination 
of several subsystems that can be parallel, series and k-out-of-m. There are other ways 
to describe the reliability of a computer system, such as the Fault Tree Analysis 

(ERICSON, 1999). However, because block diagram is a simple, widely used model, 
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we have adopted this representation to reliability modeling and analysis presented in 
this work.  

3.2 Reliability Estimation 
In this section, we discuss how to analyze the system`s reliability in order to 

consider it reliable. The main goal of this discussion is to provide a better understanding 
about how to interpret the reliability results used in the analyses presented in this work, 
and what is considered a high and low reliability. 

We start this section firstly mentioning that in our analyses we always seek 
solutions to prolong the time the system reliability is 1, i.e. the system is 100% reliable. 
However, depending on the application, a lower reliability is also acceptable.  

To define the acceptable reliability used in this work, we used another metric that 
is also employed in reliability measuring, the Mean Time Between Failures (MTBF). 

MTBF is the average time between consecutive failures that happen in a system. 
This metric is used only for repairable systems, where after repairing the failure, the 
system returns to its correct operation. We use this metric because in our analysis we 
consider fault-tolerant system, with the capability of cope with faults in their 
components. For non-repairable systems, the metric used is the Mean Time to Failure 
(MTTF) (PRADHAN, 1996).  

MTBF is often used by manufacturers to indicate the reliability of their electronic 
products. This metric is combined with the product useful (or service) life, and it is 
applied to the aggregate analysis of a large number of products. For example, the 
specification of the Intel SSD 320 Series hard drive (HD) indicates a MTBF of 
1,200,000 hours (INTEL, 2012). Moreover, the minimum useful life is 5 years. This 
means that a product of this type is supposed to last for 5 years, and that a large group of 
HDs operating within this timeframe will accumulate, on average, 1,200,000 operational 
hours before the first failure affects any of the HDs.  

The correlation between reliability R(t) and MTBF is described in equation (7), 

'��� = ���	 #?@AB%.																																																																																																																									�7�	
 

Assuming the statistics used to Intel’s HD MTBF, the reliability would be: 

 	
'��� = ���	D∗FGD∗HIJ,HKK,KKK% = 	0.9642.	

 

This result indicates that after 5 years (43,800 hours) the reliability is 
approximately 0.96, i.e. if one of this hard drives is used 24 hours a day for 5 years, the 
probability of it surviving this time is about 96% (EPSMA, 2005). Based on the 
statistics presented above, in this work, we also assume a reliability of 96% in 5 years as 
acceptable in the analyses.  

Therefore, the analyses presented in this work evaluate reliability in two different 
estimations: the instant in time where reliability decreases from 1 to 0.99999, and the 
instant in time where reliability is 0.96. In the first case, the goal is to evaluate for how 
long the architecture remained 100% reliable (or very close to this). The second case 
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helps to identify if, in spite of the architecture’s reliability decreases, it still presents an 
acceptable reliability. 

3.3 Fault Model and Failure Rate  
The research presented in this work is concentrated in finding the best redundancy 

strategy to increase reliability. For this, we assume that a testing tool detects and 
diagnoses the faulty resources, by using classical testing techniques (LEE, BASOGLU 
and SULLIVAN, 2011).  Therefore, proposing a testing mechanism is out of the scope 
of this work. In spite of that, some observations about the fault model and the failure 
rate used in this work are presented next. 

3.3.1 Fault Model 

The first observation is related to the fault model. In order to differentiate between 
a good resource and a faulty one, a fault model must be designated. The model typifies 
the representation of the physical faults in a higher level of abstraction, and it is used by 
the testing techniques to detect faults (ABRAMOVICI, BREUER and FRIEDMAN, 
1994). 

In this work, two types of permanent faults are considered, the manufacturing 
defects and the permanent faults that happen during useful lifetime of the circuit. For 
manufacturing defects, we consider the single stuck-at fault model (SSAF model), 
which is the most widely used model.  

The SSAF model, first published in (GALEY, NORBY and ROTH, 1961), 
assumes that the effect of the fault is to tie individual lines to either VDD (logical 1) or 
Gnd (logical 0). The model also assumes that there is only one faulty line in the circuit 
at a time. Additionally, the node can be gate or module level, with the most common 
solutions being at gate level. 

The main advantages of the single stuck-at model are: 

• Detects 2n faults, where n is the number of nodes (gates or modules) 
• Requires low computational effort for automatic test pattern generation 

(ATPG) 
• Covers many possible manufacturing defects in CMOS circuits, such as 

source-drain shorts, metallization shorts, diffusion contaminations, etc. 

Additionally, for defects not covered by the SSAF model, (e.g. breaking of a line 
internal to a CMOS gate) other fault models can be mapped into sequences of single 
stuck-at faults. For the aforementioned example, the stuck-open fault model can be used 
(WADSACK, 1978).  

For permanent faults caused by aging effect, several studies indicate that many of 
aging effects cause a performance degradation before the total breakdown of the device. 
Some examples are negative bias temperature instability and soaring leakage power 
(YAN, HAN and XIAOWEI, 2009), (PAUL, KUNHYUK, KUFLUOGLU, et al., 
2005). For these types of faults, some models have been proposed to detect the delay 
and predict the failure before it actually happens. According to (YAN, HAN and 
XIAOWEI, 2009), the aging delay can be modeled as a fault model to estimate the 
performance degradation. In addition, stuck-at fault model can also be applied to detect 
faults that cause the complete breakdown of the circuit. Furthermore, in opposite to 
manufacturing defects that can be tested and detected immediately after manufacturing, 
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for aging effects, the tests should run in periodical intervals, during the useful life of the 
device. 

3.3.2 Failure Rate 

The second observation is related to the failure rate (λ) described in equations (2) 
and (3). The equations demonstrate that the failure rate is calculated based on 
parameters defined during test. The total device hours and the life test stress temperature 
are examples of these parameters. In this work, we have adopted the failure rates 
presented in (SMITH, 2007). According to the authors, one can find many collections of 
failure rate data for different fields, such as defense, telecommunications, process 
industries, etc. However, these data were mainly collected during the 1980s, and after 
this date, the published sources stopped updating these data. For this reason, it became 
very difficult to find information about these failure rates in current technologies. In 
spite of that, the data published by the time are still of great value for research 
community and still used as reference data at the present time (SMITH, 2007). 

For electronic devices, the most used failure rates are the ones published in US 

Military Handbook 217 (MIL-217) (US DEPARTMENT OF DEFENSE, 1986) from 
RADC (Rome Air Data Centre in the USA). Although MIL-217 is widely used as 
reference document in failure rates, there is no detailed description about the tests and 
the conditions that the testes were performed. What it is known is that the tests took into 
consideration faults caused when the devices were exposed to high temperatures and 
voltages. The exposure time and the environment conditions were also considered (US 
DEPARTMENT OF DEFENSE, 1986). 

 



 

 

31 

 

4 RECONFIGURABLE ARCHITECTURE 

The reconfigurable architecture and the configuration mechanism were firstly 
proposed by Beck et al, in 2008 (BECK, RUTZIG, GAYDADJIEV, et al., 2008). From 
the initial architecture to the current one presented in this work, many design 
improvements were made, mainly to improve performance and reduce power 
consumption (LO, BECK, RUTZIG, et al., 2010), (FAJARDO, RUTZIG, BECK, et al., 
2011), (RUTZIG, BECK and CARRO, 2011). In this work, we have modified the 
architecture to include a fault tolerance strategy targeted to tolerate manufacturing 
defects and permanent faults.  

This section starts with a description of the architecture and its reliability model. 
Then, we present the fault-tolerant strategy that we have included in the architecture. 
The reliability model considering the fault tolerance approach is also described. Finally, 
we present the reliability analysis, followed by some possible modification on the 
architecture to improve overall reliability. To conclude the chapter, we present a 
performance degradation analysis and considerations about energy consumption based 
on simulations. 

4.1.1 Architecture Description 

The system consists of a coarse-grained reconfigurable array (RA) tightly coupled 
to a MIPS R3000 processor; a mechanism to generate the configuration; and the 
reconfiguration memory that stores the configuration. Figure 8 presents the block 
diagram of the complete system. 

 
Figure 8. Coarse-grained reconfigurable system block diagram 

 

Reconfigurable Array (RA) 

The RA consists of a combinational circuit that comprises three groups of 
functional units: the arithmetic and logic units group (ALUs), the load/store units group 
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and the multiplier group. Figure 9 presents the RA block diagram and the parallel and 
sequential paths of the array.  

Each group of functional units can have a different execution time, depending on 
the technology and implementation strategy. Based on this, in this work, the ALU group 
can perform up to three operations in one equivalent processor cycle and the other 
groups execute in one equivalent processor cycle. The equivalent processor cycle is 
called level. The different execution times presented by each group of functional units 
allow the execution of more than one operation per level. Therefore, the RA can 
perform up to three arithmetic and logic operations that present data dependence among 
each other in one equivalent processor cycle, consequently accelerating the sequential 
execution. Moreover, the execution time can be improved through modifications in 
functional units and with technology evolution, consequently increasing the acceleration 
of intrinsically sequential parts of a code. Even non-parallel code can have a better 
performance when executed in the architecture illustrated in Figure 9.  

 

 
Figure 9. Reconfigurable architecture block diagram 

 

Although the architecture depicted in Figure 9 is partitioned in levels, it is 
important to highlight that there is no sequential logic among the levels. All the 
architecture from the first row to the last row is combinational. The communication 
among the functional units is provided through buses and multiplexers. The buses are 
called context lines and receive data from the context registers, which store the data 
from the processor’s register file. Figure 10 illustrates the interconnection model. 

As depicted in Figure 10, the reconfigurable architecture design presents a 
bottom-up datapath. All data that is generated by the functional units flow from the 
bottom row to the top row through the interconnection model. Moreover, instructions 
placed in the same row are executed in parallel, since there is no data flowing from one 
unit to the other in the same row. Dependent instructions are executed in different rows 
because data among units flow from bottom to top of the architecture. Therefore, to 
exploit the instruction level parallelism (ILP) the instructions must be allocated in the 
same row. 

There are two groups of multiplexers: the input group and the output group. The 
former selects data used by each functional unit, and the latter selects the context line 
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that receives the result from the operations. Moreover, each output multiplexer also has 
the context registers as input. This input is used when the multiplexer needs only to 
bypass the previous data without the need of any functional unit.  

 

 
Figure 10. Reconfigurable architecture interconnection model 

 

MIPS R3000 Processor 

MIPS R3000 is a 32-bits RISC (Reduced Instruction Set Computer) processor 
developed by MIPS Technologies (former MIPS Computer Systems) (KANE and 
HEINRICH, 1992).  

It consists in a 5-stages pipeline processor with an on-chip cache controller and 
memory management unit, and it supports up to 4Gb direct memory addressing and 
512Kb cache. Figure 11 illustrates the five stages of MIPS R3000 processor.  

Configuration Generator 

The Configuration Generator (CG) implements a mechanism that dynamically 
transforms sequences of instructions to be executed in the array. The transformation 
process is transparent, with no need of instruction modification before execution, 
preserving software compatibility. Furthermore, the CG works in parallel with the 
processor’s pipeline, presenting no extra overhead to the processor. Figure 11 illustrates 
the CG’s steps attached to the MIPS R3000 pipeline. 

To generate the configuration, the first stage of CG’s pipeline (ID) selects the 
instructions that can be executed in the array, and breaks these instructions into 
operations. Next, the dependence verification stage checks data dependence among the 
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current instruction and the previous ones that were already analyzed. Based on data 
dependence, in the resource allocation stage, the CG searches for available functional 
units to perform resource allocation. Both data dependence and resource availability 
verification are performed through the management of tables that are updated in the last 
stage (TU). At the end of CG’s pipeline, a configuration is generated and stored in the 
reconfiguration memory indexed by the program counter (PC) value of the first 
instruction from the sequence.  

 
IF Instruction Fetch ID Instruction Decode 

ID Instruction Decode DV Dependence Verification 

EX Execution RA Resource Allocation 

MEM Memory Access TU Table Update 

WB Write Back  

Figure 11. Configuration Generator’s pipeline coupled to the processor’s pipeline 

 

The tables updated in the last pipeline stage are used to analyze data dependence, 
allocate instructions in the functional units and route the operands inside the array as 
described: 

1. Write bitmap table: to find true data dependences (RAW - read after write), 
this table keeps track of which registers will be written by each functional unit 
of each row.  

2. Resource map: each position of the table corresponds to a functional unit. 
When a FU is allocated, the position is set to 1, indicating that the functional 
unit is busy. 

3. Read table: it informs which operands must be read by each functional unit. 
The operands are initially stored in the context registers. 

4. Write table: it indicates which context line will receive the result of an 
operation performed by the functional unit. It is also possible to bypass data 
through the context line without send it to a functional unit. This is also 
indicated in the write table. 

5. Context table: this table is used to manage the input in the context registers. It 
has two rows. The first row indicates the input context and it will be used 
during the configuration phase to fetch data. The second row keeps track of 
the context used during execution phase and it will be used to inform which 
data will be written in the end of the RA’s execution (write back).  

 

Although all the tables are used to generate configuration, the fault tolerance 
approach proposed in this work only requires modifications on the resource map. For 
this reason, we will present more details about the management of this table by the CG. 

The resource map consists in a table where each position represents one functional 
unit of the array. The positions in the rows of the resource map (X-axis) represent the 
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parallel functional units and the positions in the columns (Y-axis) represent the 
sequential execution. Considering a faulty-free architecture, when CG starts a 
configuration all positions of the resource map are set as free. Every time a functional 
unit is allocated to perform an operation, its relative position in the resource map is set 
as busy. Therefore, to select a functional unit, after checking data dependence, CG 
needs to search in the resource map a free unit and generate the configuration bits for 
that unit and its multiplexers. If there are no more available units, then CG breaks the 
configuration and starts a new one with all units set as free. Figure 12 presents an 
activity diagram describing the configuration generation algorithm. 

 
Figure 12. Configuration generation algorithm - Fault-free approach 

 

According to the activity diagram presented in Figure 12, to allocate resources in 
the RA, the first step is to create a new configuration. This means that, after detecting 
that the instruction can be executed in the RA, the CG starts decoding the instruction. 
Next, the data dependencies are checked using the write bitmap table. Then, based on 
data dependence, the generator keeps searching in the resource map for an available 
resource. If the resource is found, it is set as busy in the resource map and the generator 
goes to the next instruction. Otherwise, if there are no resources available, the generator 
breaks the configuration and starts a new one with the current instruction as the first 
one. 

Figure 13 presents an example to illustrate how the resources are allocated using 
the resource map. Figure 13.a presents the data dependence graph of the instruction 
sequence mapped to the array. Figure 13.b represents the array with 25 identical 
functional units, and Figure 13.c presents the resource map. For clarity’s sake, in this 
example we are considering only arithmetic and logic units. As can be observed, the 
resource map has 25 positions, each one representing one resource of the array.  

As described in last section, the parallel instructions are placed in the same row of 
the array and the dependent instructions, which must be executed sequentially, are 
placed in different rows. To select the functional units to execute the instructions, the 
mechanism starts by allocating the first available unit (bottom-left). The next 
instructions are placed according to data dependence and resource availability.  
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Figure 13. Fault-free resource allocation  

 

Based on Figure 13.a the instructions 1; 2; 3; and 4 do not have data dependence 
among each other, hence they are all placed in the same row of Figure 13.b. On the 
other hand, instruction 5 is dependent on the result of instructions 1 and 2. Hence, 
instruction 5 is placed in the first available unit of the second row. Continuing the 
allocation, the inputs of instruction 6 are the outputs of instructions 3 and 5. Since 
instruction 5 is in second row, instruction 6 must be placed in third row. Instruction 7 
depends on instructions 3 and 4 that are placed in the first row. Thus, it can be placed in 
second row. Moreover, since instruction 8 depends on instructions 6 and 7 that are in 
the third and second rows, respectively, instruction 8 must be placed in fourth row. 
Additionally, as one can observe in Figure 13.c, the positions of the resource map that 
correspond to the allocated functional units are set as busy. In this example, all the 
positions are already set as busy but, in real execution, the positions are filled one per 
time during run-time. 

Reconfiguration Memory 

Two storage components are part of the reconfigurable architecture: address cache 
and reconfiguration memory. The address cache holds the memory address of the first 
instruction of every configuration built by the configuration generator.  

It is used to check the existence of a configuration in the reconfiguration memory: 
an address cache hit indicates that a configuration was found. The address cache is 
implemented as a 4-way set associative table containing 64 entries. The reconfiguration 
memory stores the routing bits and the necessary information to fire a configuration, 
such as the input and output contexts, the immediate values and the operation executed 
by each functional unit. 

Reconfiguration and Execution 

While CG generates and stores the configuration, the processor continues its 
execution. Next time a PC from a configuration is found the processor changes to a halt 
stage, the respective configuration is loaded from the reconfiguration memory and the 
RA’s datapath is reconfigured. Moreover, all input data are fetched. Finally, the 
configuration is executed and the registers and memory positions are written back. 

It is important to highlight that the overhead introduced by the array 
reconfiguration and data access are amortized by the acceleration achieved by ILP 
exploitation. Moreover, as mentioned before, the configuration generation does not 
impose any overhead.  

B

B

B B

B B B B

c) Resource map

I8

I6

I5

I1

I7

I2 I3 I4

b) Resource allocation

I1 I2 I3 I4

I5

I7I6

I8

a) Data dependence graph 



 

 

37 

 

4.1.2 Reliability Model 

In this section, we present the reliability model of the reconfigurable architecture 
described above. This model will be used as reference to evaluate all modifications 
performed in the architecture aiming to increase reliability.  

The reliability modeling starts by finding the atomic component of the system, i.e. 
the component that cannot be divided into smaller components. This component (or 
components) will have the reliability defined by equation (1). The next step consists in 
defining the connection between the components. The connected components form a 
subsystem. Hierarchically, each subsystem connects to each other forming the complete 
system. 

Although the functional units can be divided into smaller components, since we 
are working in a coarse grain level, in this work we assume that the functional units are 
atomic elements, and therefore, the smallest components of the architecture.   

Based on this, the reliability as a function of time of the ALU, Multiplier and 
Load/Store are: 
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The reconfigurable architecture has two types of multiplexers. They differ 
between each other only in the number of inputs. However, each input is 32-bits long. 
To determine the reliability function of the interconnections, we decomposed the 
multiplexers as a subsystem composed of 2:1 1-bit multiplexers. Therefore, each 32-bits 
multiplexer form the first subsystem of the architecture. Assuming that the multiplexers 
have no redundancy targeted to fault tolerance, all the 2:1 1-bit multiplexers must work, 
so the multiplexer subsystem can work correctly. In this case, the multiplexer subsystem 
consists in a series system, whose reliability function is given by equation (12). Since 
the input and output multiplexers have different number of inputs, each one has a 
different reliability function, described in equations (13) and (14). The reliability of the 
2:1 1-bit multiplexer is determined by equation (11). Figure 14 illustrates an 8:1 1-bit 
multiplexer subsystem. 

 

Figure 14. Chain of multiplexers 2:1 1-bit 
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where ip is the number of 2:1 32-bits multiplexers that compose an input 
multiplexer, and op is the number of 2:1 1-bit multiplexers that compose an output 
multiplexer.  

The next subsystem in the hierarchy is the functional units connected to the input 
multiplexers. As illustrated in Figure 10, each functional unit has two input 
multiplexers. The functional unit can only operate properly if the correct data is sent to 
its inputs through the input multiplexer. To represent this restriction in the model, the 
connection among the multiplexers and the functional unit must be in series. Therefore, 
the input multiplexers and the functional unit form a series subsystem with reliability 
function given by equations (15), (16) and (17) for ALU, multipliers and load/store, 
respectively. 
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The next subsystem in the hierarchy is the functional units subsystem. In spite of 
the fact that the functional units in one row work in parallel and independently, the fact 
that there is no fault tolerance strategy included in the architecture implies that a fault 
does not interfere in the proper system functioning if and only if this fault damages a 
unit that is not being used. Given the fact that the architecture presents a large amount 
of identical units and the selection of the units that will be used is dynamically 
determined, there is no way to know a priori if the faulty unit will be used or not.  

Based on this, two assumptions can be made: 1) all units are used and therefore, if 
one fails, it may lead to a system error. 2) only part of the units is used. In this case, 
there is a probability that the fault affects the unit that is not being used.  

The total amount of units and their usage is dependent on the architecture design 
constraints and application execution. For this reason, we are going to discuss more 
about this in the reliability analysis section. Therefore, at this point, it is not possible 
determine which assumption will be used. However, as described in chapter 3, the k-
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out-of-m system, with function given by equation (6), can be used in both cases. In the 
first assumption, all units are used, forming a series system with k=m. In the second 
assumption, k depends on the amount of units used. 

Therefore, a row composed of parallel ALUs forms a k-out-of-m subsystem with 
function given by equation (18), 
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where m_row is the total number of ALUs in a row and k_row is the amount of 
used ALUs.  

As demonstrated in Figure 10, in each row there is a set of output multiplexers. 
Even assuming that only part of the ALUs in one row is necessary, all the multiplexers 
are required. This happens because the multiplexers not only select the output of the 
ALUs, but they also bypass the data from the context registers. In this case, without 
fault tolerance strategy, if a multiplexer fails, it is not possible to send data throughout 
the architecture. For this reason, the output multiplexers in one row form a series 
subsystem, with reliability function given by equation (19). Moreover, ALU and the 
output multiplexers subsystem are also connected in series, with function described in 
equation (20), 
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where or is the number of output multiplexers in one row and 
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Following the same reasoning applied to the ALUs, the multipliers and load/store 
units form k-out-of-m subsystems. However, in this case, it is considered the amount of 
units in one level. Equations (21) and (22) present the reliability function of the 
multipliers and load/store units, respectively.  
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where m_mult is the total number of multipliers and k_mult is the used amount, in 
equation (21), and m_ls is the total amount of load/store units and k_ls is the used 
amount, in equation (22). 

Thus, the ALU_row, Mult_level and LoadStore_level subsystems and the OutMux 
subsystem form a series subsystem, with functions presented in equations (23) and (24). 
Because there are three rows of ALUs in each level, in equation (23), the ALU_row is 
replicated three times. 
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where ROutMuxesLevel is the reliability of the output multiplexers in one level, determined 
by equation (25). 
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To ensure the correct system operation, it is necessary that all levels of the 
reconfigurable architecture remain working. Therefore, the reliability of all levels is a 
series system with reliability function given by equation (26), where l is the number of 
levels, 
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Finally, to complete the reliability model, all levels are connected in series to the 
context registers subsystem, which is also a series subsystem. The context register 
subsystem is described in equations (27) and (28). The reconfigurable architecture is 
described in equation (29), 
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In section 4.5, we present a quantitative analysis taking into consideration the total 
amount and the distribution of resources along the architecture. However, by just 
analyzing the equations described above, it is possible to observe that most of the 
subsystems are composed of series connections, which is a strong indicator that a low 
system reliability should be expected. Therefore, some fault tolerance strategy should be 
introduced as a mean to improve reliability. 

In the next section, we present the model of the LOwER-FaT architecture, which 
presents fault tolerance strategy to cope with faults in functional units and multiplexers. 
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4.2 LOwER-FaT Array 
The main characteristics of the fault tolerance strategy implemented in the 

reconfigurable architecture are: 

• Tolerates manufacturing defects and permanent faults; 
• Introduces low area, performance and power overheads; 
• Does not require the addition of spare resources;  
• Works at run-time. 
 

In this work, we propose to exploit the intrinsic redundancy of the reconfigurable 
architecture by using the working functional units to replace the faulty ones. In this 
approach, it is not necessary to add spare resources, which would increase area. 
Therefore, in a fault-free situation, all the functional units are used to accelerate 
application execution and only in case of fault, a functional or interconnect unit is 
replaced. Furthermore, the reconfiguration capability is exploited to change the 
resources allocation based on the faulty and operational resources. In addition, dynamic 
reconfiguration can be used to avoid faulty resources and generate a new configuration 
at run-time. Thus, there is no performance penalty caused by the allocation process, nor 
extra steps in the manufacture are required to correct each circuit. Finally, the capability 
of adaptation according to the application can be exploited to amortize the performance 
degradation caused by the replacement of faulty resources by working ones, as it will be 
shown in section 4.5.3. 

Since the proposed fault tolerance approach handles only manufacturing defects 
and permanent faults, in this work we assume that the information about the faulty 
resources is generated before the array starts its execution, by some classical testing 
techniques (LEE, BASOGLU and SULLIVAN, 2011). 

To differentiate the fault-free array and the one with our proposed fault tolerance 
approach, we will refer to the fault-tolerant array as LOwER-FaT array (Low Overhead 
without Extra Redundancy Fault-Tolerant array). Next, we present the proposed 
solution to tolerate faulty functional units and interconnects. 

4.2.1 Architecture Description 

4.2.1.1 Functional Units 

To tolerate faulty functional units, the allocation algorithm is exactly like 
described in the example of Figure 13. The only difference is that to allocate only the 
resources that are effectively able to work, before the array starts and after the 
traditional testing steps, all the faulty units are set as permanently busy in the resource 
map, as if they had been previously allocated. With this approach, no modification in 
the configuration generator algorithm itself is necessary. 

To demonstrate the approach to tolerate faulty functional units, Figure 15 presents 
two examples based on the example of Figure 13. 

In Figure 15.a, the configuration mechanism placed the instruction in the first 
available unit, which, in this case, corresponds to the second functional unit of the first 
row. Since the first row still has available resources to place the four instructions, the 
LOwER-FaT array sustains its execution time. In this case, the presence of a faulty 
functional units does not affect the performance. 
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Figure 15. Resource allocation considering faulty functional units  

 
Figure 15.c illustrates an example where faulty functional units affect the 

performance of the LOwER-FaT array. In this example, the first row has only one 
available functional unit. In this case, when there are not enough resources in one row, 
the instructions are placed in the next row, and all the data dependent instructions must 
be moved upwards. In Figure 15.c, instruction 5 is dependent on instruction 4. Hence, 
instruction 5 was placed in the next row, and the same happened with other instructions 
(6 to 8). In this example, because of the faulty units, it was necessary to use one more 
row of the LOwER-FaT array. Since the sequential path of the array flows from the 
bottom row to the top row, the use of one more row leads to the increase of execution 
time, consequently affecting performance. Figure 15.b and Figure 15.d illustrate the 
resource map of both Figure 15.a and Figure 15.c examples, respectively. As one can 
observe, the faulty units have their positions in the resource maps set as busy. 

4.2.1.2 Multiplexers 

To avoid faulty multiplexers from the interconnection model of Figure 10, the 
strategy can be different depending on which group of multiplexers is affected.  

In case of a faulty input multiplexer, one of the inputs of the respective functional 
unit will have invalid data, consequently the result of the operation will be incorrect. 
Therefore, to keep the fault tolerance approach simple and avoid introducing overhead 
to the configuration mechanism, the strategy is to consider the multiplexer and its 
respective functional unit as faulty and place the instruction in the next available unit. 
Figure 16 illustrates the approach to tolerate faulty input multiplexers. 
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Figure 16. Faulty input multiplexer tolerance approach 

 

As in the case of functional units, it is assumed that all faulty multiplexers are 
detected before CG starts. According to Figure 16, the faulty multiplexer invalidates the 
FU input (dashed line) and this invalidates the functional unit execution. Therefore, the 
approach is to avoid this FU and to place the instruction in the next available FU (grey 
resources). 

On the other hand, a faulty output multiplexer invalidates part of the respective 
context line. Figure 17 illustrates a faulty output multiplexer. For clarity’s sake, the 
input multiplexers were omitted. As can be observed in Figure 17, the data remains 
invalid from the faulty output multiplexer until the next valid output. The dashed line 
indicates that this part of the context line has invalid data. The context line will have 
valid data again when an instruction placed in any row, positioned after the faulty 
multiplexer, writes valid data in this context line. 

 
Figure 17. Example of a faulty output multiplexer 

Therefore, if an output multiplexer is faulty, it is necessary to evaluate if the 
functional unit needs to read or write in this multiplexer.  

When a functional unit needs to read data from a context line, and this same 
context line has a faulty output multiplexer in any previous row, the CG must check 
whether the context line is valid or not. Figure 18 presents an example to illustrate this 
situation, called reading case. 
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Figure 18. Faulty output multiplexer - reading case solution 

 

In the example of Figure 18, instruction 2 that reads from the context line must be 
placed in row 3. However, the output multiplexer from row 0 is faulty. Before placing 
the instruction in row 3, the CG must check if any instruction placed in the rows 
between row 3 and row 0 wrote in this context line. From Figure 18, it can be observed 
that instruction 1, placed in row 2, has written in the context line making this line valid 
again. Thus, the instruction 2 can be placed in row 3 because it will use the output data 
from row 2. 

In case there is no FU that writes in the context line, this context line remains 
invalid from the faulty output multiplexer until the last row of the array. Thus, the 
instruction cannot be placed in any functional unit and the configuration must be broken 
in two configurations. One configuration includes all the instructions that can be placed 
before the faulty multiplexer position and the other configuration will have the other 
instructions.  

The second case is used when a functional unit needs to write in a context line and 
the output multiplexer is faulty. This case is called writing case and it is illustrated in 
Figure 19. 

The solution to tolerate faulty output multiplexers in the writing case consists in 
placing the instruction in the next available FU. However, since each row has only one 
output multiplexer for each context line, the strategy in this case is to place the 
instruction in the next available FU of the next available row. Furthermore, it is also 
necessary to check if the output multiplexer from the next row is operational. Thus, the 
instruction can be placed in the next row (as demonstrated in Figure 19) or in any other 
row with fault-free multiplexer. For example, if the multiplexer from row 1 was also 
faulty, the instruction would be placed in the row 2 and all the instructions dependent on 
this instruction would be placed from row 3 upwards.  
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Figure 19. Faulty output multiplexer - writing case solution 

 
Figure 20 presents the activity diagram summarizing the configuration generation 

algorithm including the faulty unit management. The algorithm is the same presented in 
Figure 12 with additional steps (grey boxes). 

 

Figure 20. Configuration generation algorithm considering faulty units 

 

As can be observed in the diagram, the additional steps are responsible for 
managing only the faulty output multiplexers. This is the only case that requires 
modifications in the algorithm. Moreover, the information about faulty functional units 
and input multiplexers is transparent to CG. This information is translated into the 
resource map that indicates which functional unit is available and which one is busy. 
Therefore, the FU that cannot be allocated due to faults is permanently set as busy. 

Although some modifications are required to the faulty output multiplexer 
approach, the new steps included in the CG are part of the same algorithm already 
implemented and do not increase the number of cycles required to generate the 
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configuration. Therefore, the CG continues working in parallel with the processor’s 
pipeline even with the fault tolerance approach. More important, since CG works in 
parallel to the processor’s pipeline, no performance overhead is incurred while 
generating the configuration, since it takes fewer cycles than the processor’s pipeline, 
even when fault tolerance is in place. Experimental results evaluating the performance 
degradation and fault tolerance efficiency were published in (PEREIRA and CARRO, 
2009), (PEREIRA, LO and CARRO, 2009) and (PEREIRA and CARRO, 2011).  

4.2.2 Reliability Model 

Since this is the same architecture but now with fault tolerance strategy included, 
all the resources are the same. The difference is in the way the resources are connected 
to each other in the reliability model. For that reason, the functional units and 
multiplexers present the same reliability functions already described in equations (8) to 
(14).  

The subsystem composed of functional unit and the two input multiplexers forms 
a series connection, which is the same type of connection described when the 
architecture has no fault tolerance. This happens because according to the fault 
tolerance strategy implemented, if an input multiplexer is faulty, the respective 
functional unit is considered as faulty (Figure 16). Thus, equations (15) to (17) are also 
used in the LOwER-FaT array model to represent the reliability function of the ALU, 
multiplier and load/store units with the input multiplexers. 

Up to now, all the equations used to describe the reliability model of the 
reconfigurable architecture were also used to describe the LOwER-FaT array model. 
The difference in the modeling when fault tolerance strategy is included starts with the 
description of next subsystem, the row of ALUs.  

In both systems, with and without fault tolerance, the arithmetic and logic units in 
one row work in parallel and independently. However, in the LOwER-FaT array, when 
an ALU is faulty, the fault tolerance strategy allows to move the operation that should 
be executed in the faulty ALU to a fault-free one. This is not possible in the architecture 
without fault tolerance, because the mechanism that generates the configuration does 
not know which are the faulty and fault-free units. In fact, the configuration generator 
does not even know about the existence of faulty units and that they should not be 
allocated. In this way, now that only the fault-free ALUs in one row are allocated, this is 
translated into a parallel subsystem. Since all the subsystems composed of ALU and 
input multiplexers are identical with reliability equal to RALU+inputMux(t), from equation 
(5) we have: 
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where a is the total number of ALUs in one row. The other functional units follow the 
same reasoning, but considering the level instead of the row. Therefore, the reliability 
functions of the multiplier subsystem and load/store subsystem are identical to equation 
(30). They are presented in equations (31) and (32), respectively, 
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where m is the number of multipliers in one level and, l is the number of load/store units 
in one level.  

The result of an operation executed by the functional units is sent to the next 
functional units or to the registers. Since data can only flow in a bottom-up direction, 
the FUs’ output is sent to the output multiplexers located on top of each row (Figure 
10). Due to the fault tolerance approach, it is possible to avoid a faulty output 
multiplexer and assign the operation to a functional unit in a different row. This strategy 
is described in Figure 19. Although this strategy is possible only in one specific case 
(when the functional unit needs to write in the output multiplexer), it implies that not all 
the output multiplexers need to work to ensure that the system will work properly. This 
characterizes the k-out-of-m system. Therefore, equation (19) is replaced by equation 
(33), where m_outMux is the total amount of output multiplexers in one row, and 
k_outMux is the used amount, 
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Another difference from the reference architecture model and the LOwER-FaT 
array one is to compose the level. Although all ALUs in one row are now connected in 
parallel, as described in equation (30), the output multiplexers in each row need to 
work, so the system can work properly. At the same time, the ALU rows are also 
connected in parallel. This is due to the fact that if one ALU in the level (no matter 
which row) works, the system works properly. Therefore, before connecting the output 
multiplexers to the ALUs, it is necessary to create a new equation to describe the 
connection between all ALU rows in one level. This equation is a new one introduced in 
this model, and does not replace any equation of the reference architecture model. The 
subsystem composed of ALU rows is called ALU block, and its reliability function is 
given by equation (34). Since there are three rows of ALUs in each level, equation (34) 
is a parallel subsystem with three rows, 
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Moreover, with all the functional units working in parallel, the PartialLevel 
subsystem, described in equation (23), is replaced by equation (35) in the LOwER-FaT 
array model,  
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At this point, all output multiplexers from all rows and from the end of the level 
are connected in series to the PartialLevel forming the Level subsystem. Therefore, in 
equation (36), the output multiplexer term is in fact a product of a sequence of output 
multiplexers from the rows. This equation replaces equation (24), 

'O)o)4��� = 'v3*
+34O)o)4����	,'l7
U7_)(m6h[+]
67


+1�
���.																																																																	�36� 

 

To ensure the correct system operation, it is necessary that all levels remain 
working. Therefore, the Levels subsystem is the same series subsystem described in 
equation (26) and reproduced in equation (37), where l is the number of levels, 
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The last part of the reliability model is the connection with the context register 
subsystem. Although it is possible to avoid some of the faulty output multiplexers, all 
the context registers must work, so the architecture can receive the input context from 
the processor. Therefore, the context registers are the same series subsystem described 
in equations (27) and (28). Moreover, the connection between the levels and the context 
register subsystem is also in series. This means that the three last equations of the 
LOwER-FaT array model are the same as the reference architecture model. These 
equations, (27), (28) and (29), are reproduced in equations (38), (39) and (40), 
respectively, 
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4.3 Fault Detection 
Since the focus of this work is in tolerating faults after they are detected, we do 

not specify any fault detection mechanism. Therefore, we assume that, when required, a 
fault detection mechanism is responsible for detecting and diagnosing the faulty 
resources, using some traditional testing technique, like the ones presented in (LEE, 
BASOGLU and SULLIVAN, 2011).  

In case of aging effects, the fault detection mechanism should run in specific 
periods to detect resources that present faults along the device’s lifetime. This is the 
detection mechanism required for the LOwER-FaT array. Although we do not specify 
the fault detection approach, we believe that a software level detection mechanism 
would be satisfactory to our requirements. Therefore, in specific intervals, the 
configuration generator would load a testing configuration that would test all the 
resources. Optimizations aiming at reducing the time spent in testing the resources 
could also be applied. 
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Figure 21. Area analysis considering different technologies
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data, the sequence is checked with the original generated sequence, and if it matches, no 
error was detected. Depending on the algorithm, it is possible not only to detect but also 
correct data (PETERSON and WELDON, 1980).  

The selection or implementation of fault tolerance techniques in memory devices 
is out of the scope of this work. Nevertheless, to protect the configuration memory, we 
assume that some already consolidated techniques can be implemented, such as 
redundancy for manufacture defects and ECC to correct data errors during memory 
usage. 

4.5 Experimental Results 

4.5.1 Methodology 

4.5.1.1 Area  

All analyses considering the area of the architecture were based on the reference 
architecture area presented in Table 1.  

The reference architecture has 17 levels of functional units with 9 ALUs in 
parallel in each row, 2 multipliers per level and 4 load/stores per level. Since there are 
two input multiplexers in each FU, the total number of input multiplexers is twice the 
number of FUs. Moreover, since there is one output multiplexer per context line in each 
row, the amount of output multiplexers is the number of context registers multiplied by 
the number of rows. The reference architecture has 16 context registers and 51 rows (3 
rows per level), so there are 816 output multiplexers. 

Table 1. Number of resources of LOwER-FaT array 

Unit Amount 
ALU 459 
Multiplier 34 
Load/Store 68 
Input Multiplexer 16:1 1122 
Output Multiplexer 16:1 816 

 
The area in number of gates was estimated based on the area of the functional 

units and multiplexers obtained by synthesizing the VHDL description of these 
elements in Mentor Graphics tool, LeonardoSpectrum (MENTOR GRAPHICS, 2012). 
Furthermore, for area estimation in different technologies, we used the transistor density 
predicted for the technologies from (ITRS, 2011). Table 2 presents the total amount of 
gates per resource and the area overhead of each resource in the overall total area. 

Table 2.Total area 

 
Total #gates Ratio (%) 

Input Mux2:1 32bits 3,818,880 54.60 

Output Mux2:1 32bits 2,350,080 33.60 

ALU 555,849 7.95 

Load/Store 38,760 0.55 

Multiplier 228,820 3.27 

Register 2,048 0.03 

Total 6,994,437  
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4.5.1.2 Failure rate 

The failure rate (λ) of each resource was calculated based on the following 
assumption: considering different circuits fabricated in the same technology and 
exposed to the same conditions (temperature, hours under stress, etc), the only variable 
in the failure rate is the area of each component.  

Since we have the total area of the 32-bits MIPS R3000 processor, we used this 
information to have an approximate failure rate of each element based on the number of 
gates. In this estimation, we have calculated the failure rate based on the transistor 
density from ITRS (ITRS, 2011) and the relative failure rate per transistor from 
(SMITH, 2007). Table 3 presents the failure rates for each component. 

Table 3. Failure rates (�) per 106 

 90nm 32nm 18nm 11nm 

Multiplexer 2:1 0.0000050956 0.0000093912 0.0000168620 0.0000261427 

ALU 0.0041138863 0.0075818390 0.0136132238 0.0211058396 

Load/Store 0.0007745385 0.0014274643 0.0025630182 0.0039736841 

Multiplier 0.0228624731 0.0421352409 0.0756540017 0.1172933942 

Register 0.0005435358 0.0010017294 0.0017986093 0.0027885502 

 

4.5.1.3 Reliability 

To evaluate the reliability, we have implemented the reliability models and 
calculated the reliability as a function of time using MATLAB version 7.12.0 
(MATHWORKS, 2012). All reliability results are concentrated in appendix A. 

4.5.1.4 Performance and Energy Results 

The performance of the reconfigurable fabric was evaluated over three different 
architectures. A tool, called ARISE (Automatic Resources Investigation System based 

on application Execution), was used to generate the exact number of functional units 
required in each level of the array (RUTZIG, BECK and CARRO, 2008). The ARISE 
tool shapes a new reconfigurable fabric based on the data-dependence graph (DDG) of 
applications to be performed. This new shape is optimized in resources to these 
applications.  

The first shape was generated only according to the amount of parallelism 
available in the applications. Thus, it has the ideal number of functional units, without 
any area constraints. However, since this shape was generated to achieve the highest 
possible performance, other two more realistic shapes were generated based on the 
available parallelism and area constraints.  ARISE generated these shapes according to 
an allowed performance loss defined at design time. Therefore, shapes with lower area 
cost were defined to have 40% and 80% less performance than the ideal shape. 

Table 4 describes the amount of functional units available in each shape. LAC 
indicates Low Area Cost, and LAC I and LAC II are the shapes generated with 40% and 
80% of performance loss. Furthermore, LAC I corresponds to the LOwER-FaT array 
analyzed in the reliability, performance and energy result.  
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Table 4. Number of resources in three array shapes 

 Ideal shape LAC I LAC II 
ALU 786 459 68 
Load/Store 248 68 49 
Multiplier 31 34 1 
Total 1065 561 118 

 

In LAC II, since there is only one multiplier, in case of this unit presents fault, all 
the multiplications will be performed by the processor. 

To obtain the energy results, VHDL description was synthesized in Synopsys 
Design and Power Compiler tools (SYNOPSYS, 2012), using a CMOS 90nm 
technology. Moreover, the power consumption of the reconfiguration memory and the 
address cache were obtained with the CACTI 6.5 tool (WILTON and JOUPPI, 1996). 
The results of power were used to calibrate the simulator to obtain the overall energy 
consumption. 

4.5.1.5 Fault Injection Simulation 

To evaluate the performance degradation when the number of available resources 
is reduced due to the faults (LOwER-FaT array strategy), we performed some fault 
injection simulations in the reconfigurable architectures described in Table 4.  

To introduce faults in the resources during performance simulations, a tool was 
implemented to randomly select the faulty units in the architecture. The tool receives as 
input the amount of resources (functional units and multiplexers) and the fault rate, and 
randomly selects some of the resources as faulty.  

It is important to highlight that the random selection of faulty resources was based 
on the area of the functional units. To consider the different areas per group we 
associated weights to each group based on the components ratio presented in Table 2. 
This approach correlates the probability of a fault occurrence according to the amount 
of area used by each group (circuits with larger area have higher probability of 
presenting faults). 

This work evaluated the performance degradation based on five different fault 
rates (0.01%; 0.1%; 1%; 10%; and 20% of faults), and the reference design was the 
fault-free ideal shape. The highest fault rates (1%-20%) were chosen based on the deep-
submicron device’s fault rate (BORKAR, 2004) and the lowest fault rates (0.01%-0.1%) 
were chosen to cover technologies with larger feature sizes. 

In order to have an appropriate evaluation on how performance was affected with 
the reduction of available resources, several simulations using the same shape and fault 
rates were performed. The only difference among the simulations was the location of 
the faults, since those were randomly selected. Thus, the performance results of each set 
of application, shape and fault rate are an average of the performance results of all the 
simulations that used the same set. 

4.5.1.6 Benchmarks 

To evaluate the proposed approach several simulations were performed to obtain 
the performance degradation and energy results. The applications used in the 
simulations were selected from the MiBench Benchmark Suite (GUTHAUS, 
RINGENBERG, ERNST, et al., 2001). This benchmark was chosen because it is 
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composed by control flow and data flow applications, representing a heterogeneous 
behavior, which is commonly found nowadays in embedded systems like smartphones 
(RUTZIG, BECK and CARRO, 2011). 

To demonstrate the heterogeneous behavior of the applications, Figure 22 presents 
the selected applications arranged according to the average number of instructions 
executed between two branches, a metric that correlates to the amount of instruction 
level parallelism available without speculation. 

 

Figure 22. Average number of instructions executed per branch 

 

4.5.2 Reliability Analysis 

This section presents the reliability analysis of the reconfigurable architecture 
with and without the fault tolerance approach. The charts depict the reliability as a 
function of time for each case analyzed. For sake of clarity, the time scale (x-axis) 
differs in each chart. Moreover, the reliability results discussed in this work are 
presented in Appendix A. 

4.5.2.1 Reference reconfigurable architecture 

The chart in Figure 23 presents the reliability of the reconfigurable array used as 
reference, in 90nm technology. The first curve (All Levels), presents the system 
reliability when all the units are operating. In this case, a fault in any unit (functional or 
interconnect) prevents the system from working properly. As expected, a system where 
all the resources are required, and without any approach to tolerate the faulty elements 
would present a catastrophic reliability.  

Although this is not an uncommon scenario for electronic circuits in general, in 
reconfigurable architectures, due to the large amount of redundancy, in many cases only 
part of the architecture is actually operating. According to our simulations on the 
underlying reconfigurable architecture, depending on the application, it is possible that 
less than half of the units are operating. When this happens, there is a probability that 
the faulty unit is in idle state and does not interfere in the correct functioning of the 
system. This situation is represented with the dotted curve (60% Levels). To provide this 
scenario, we used the performance simulation results described in section 4.6.3, which 
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indicates that, in most applications execution (using our benchmarks) on average, 60% 
of the architecture is in use and the other 40% is in idle state. 

 

Figure 23. Reconfigurable array reliability - without fault tolerance 

Because there is no fault tolerance mechanism to work around the faulty resources 
and prevent system from failure, the reliability is significantly low. Even when the 
system presents parallelism, if a resource that must be working is faulty, the entire 
system operation is compromised. This is the reason why the reliability curves depicted 
in Figure 23 present a severe decrease.  

When all resources are in use, the reconfigurable architecture reliability is 0.99999 
in 0.008 hour, i.e. after 29 seconds of operation, the probability that the system works 
correctly is less than 100%. For the architecture with 60% of resources in use, this 
reliability (0.99999) is observed after 2.7 hours.  

Although there is an improvement in the overall reliability of approximately 334 
times only considering the fact that some units are not used, this is yet a very low 
reliability. It indicates that after 2.7 hours of useful life, the system is not 100% reliable. 
Moreover, according to Appendix A, after 21,000 hours (around 2.4 years), the 
reliability is 0.96. In an effort to improve these results, next section presents the 
reliability analysis of the fault tolerance strategy described in section 4.2. 

 

4.5.2.2 LOwER-FaT array 

The main difference between this model and the reference architecture model are: 

1. The reliability function of the functional units is a parallel system; 

2. Only part of the multiplexers needs to work so the architecture works properly. 

In Figure 24, we present the system reliability as a function of time for the 
architecture with all resources in use and when only 60% of resources are required. 
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Figure 24. LOwER-FaT array reliability 

 

Comparing the reliability presented in Figure 24 and the one presented in Figure 
23, a significant improvement can be observed. In the reconfigurable architecture 
without fault tolerance, the reliability decreases to 0.99999 in 0.008 hour. On the other 
hand, the LOwER-FaT array reliability decreases to 0.99999 in 860,000 hours (around 
98 years). At the same time, when the fault tolerance strategy is in place, the fact that 
only part of the architecture is in use does not influences the reliability as it does when 
the architecture have no fault tolerance. This happens because in this model, the 
functional units are already connected in parallel, which means that if one unit fails, it 
does not affect the rest of the architecture.  

Based on the analysis presented above, a question arises: if the functional units 
already present the best connection possible in terms of reliability, which part of the 
architecture should we invest in fault tolerance to increase reliability even more? 

To answer this question, we need to identify the components that most influence 
the overall system reliability. These are the critical components to reliability, since they 
are the dominant terms in the reliability function. If these components present low 
reliability, the overall reliability will be low. On the other hand, any improvement in the 
reliability of these components will affect positively the overall reliability.  

Before continuing the reliability analysis, we have to take a step back from the 
reliability analysis curves and open a short parenthesis to present a mathematical 
analysis that helps to identify the critical elements. 

Mathematical Analysis 

We first start this analysis considering the two corner cases in our reliability 
model. The series connection, where all components must work so the system works 
properly, and the parallel connection, where only one component needs to work. The 
reliability function of both cases, already described in equations (4) and (5), are 
repeated next.  
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Assuming that R(t) is defined by the exponential failure law, where '��� = ��	
, 
and considering that there are different components with different failure rates 
(components A, B, C, … Z have failure rates �N, ��, �z, …, ��). Consider that we have 
two subsystems, one in series and one in parallel, each one with two components.  
Solving the equations, we have the following results: 
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Calculating the ratio between each subsystem reliability and the reliability of one 
component, we can identify how much the reliability is affected when the individual 
components are connected. 
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From the results presented above, one can observe that when the components are 
connected in series, the reliability decreases exponentially, when compared to the 
reliability of the individual components. On the other hand, when the individual 
components are connected in parallel, they present an increase in reliability. As the time 
passes, the second term of the function, (��	A
), approaches to zero and the reliability 
increase approaches to 2. Therefore, for a general case, we can conclude that the series 
connection decreases reliability in a much higher rate than the parallel connection 
increases it.  

This conclusion helps to understand why changing the connections of the 
functional units from series to parallel did not result in a significant reliability increase. 
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In fact, there are other components that are contributing to reduce reliability in a much 
more significant amount than the functional units increase.  

According to equation (36), the output multiplexers are connected in series to all 
the other subsystems, which may cause a considerable impact on reliability. Moreover, 
in spite of their reliability function be a k-out-of-m (equation 33), if k is too close to m, 
the reliability function approaches to a series function. 

To evaluate how much the output multiplexers are affecting overall reliability, 
next we present some reliability analysis when redundancy to the output multiplexers is 
introduced.  

Output Multiplexers Analysis 

The strategy consisted in adding extra output multiplexers to be used as spare in 
case of faults affect the working multiplexers. In the LOwER-FaT array, this is done by 
adding more context registers, with their respective context lines, to the architecture. In 
terms of reliability model, this strategy does not make any change in the output 
multiplexers subsystem, which continues to be a k-out-of-m subsystem. The only 
change is in the number of required units (k).  

Figure 25 presents the system reliability when this strategy is applied for different 
numbers of k. Table 5 presents the amount of redundancy added and the impact on 
overall area. We also evaluated the impact on performance when this strategy is 
implemented. These results are presented in section 4.5.3. 

Table 5. Spare output multiplexer strategy - area overhead 

Spare output multiplexers Area overhead (%) 

% Amount  
30 21 25.2 
50 24 33.6 
80 29 47.6 
100 32 56.0 

 

 

Figure 25. Spare output multiplexer strategy 
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In Figure 25, the curve with lowest reliability is the LOwER-FaT array reliability 
without redundancy strategy, already shown in Figure 24. The other curves are the 
reliabilities of the LOwER-FaT array with different amounts of spare multiplexers.  

A comparison among all strategies shows significant improvements in overall 
reliability when the spare multiplexers are added to the architecture. According to 
Figure 25, by adding 50% more multiplexers, the reliability increases 48 times. 
Moreover, by adding 100% more multiplexers, the reliability increases 117 times. 
However, these reliability improvements come with 33.6% and 56% of overall area 
increase. At the same time, as can be visualized in Figure 25, the reliability gains are 
saturating as the amount of spares is increasing. In fact, if we neglect the area costs and 
extrapolate the number of spare multiplexers, we will see that the reliability starts to 
decrease, as shown in Figure 26. 

 

Figure 26. Spare output multiplexer strategy – reliability saturation 

 

Based on the curves presented in Figure 26, the reliability increase is detected 
only up to 300% spares. After that, the reliability starts to decrease drastically. At a first 
moment, this result is contra-intuitive. However, after analyzing the reliability function, 
it becomes clear why this happen.  

Firstly, the increase in the amount of spare output multiplexers does not change 
the reliability model, however, it changes the architecture design by increasing the 
number of inputs that all the input multiplexers will receive. As shown in Figure 10, in 
each row, the multiplexer’s output is sent to the two input multiplexers of each 
functional unit in the next row. This means that, if the number of output multiplexers in 
each row increases, the size of the input multiplexers also increases. Since the reliability 
model is also a function of the input multiplexers (equations 15, 16 and 17), when the 
number of output multiplexers increases, it changes not only the reliability of the output 
multiplexers subsystem itself, but indirectly, it changes the reliability of the input 
multiplexers. 
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At some point, this reliability becomes so low, that it starts to affect the overall 
system reliability. To illustrate that, Figure 27 shows the reliability of the output 
multiplexers in one row and the reliability of the two input multiplexers connected in 
series, considering 300% output multiplexers as spare. The same reliabilities are shown 
when the amount of spare output multiplexers increases to 700%. It can be observed 
that the reliability of the output multiplexers increases when the number of spares 
increases. However, the reliability of the input multiplexers decreases drastically due to 
their area increase. 

 

Figure 27. Spare output multiplexer strategy – justification 

 

The area overhead due to the increase in the amount of inputs of the input 
multiplexers is shown in Table 6.  

Table 6. Spare output multiplexer strategy – input multiplexer’s area overhead 

Spare output multiplexers Area overhead (%) 

% Amount  
30 21 18.2 
50 24 29.1 
80 29 47.3 
100 32 58.2 
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After finding the critical elements by investigating the reliability model and 
proposing a solution to improve reliability, we fall into the same type of problem but 
now in a different part of the architecture design. At this point, the input multiplexers 
are now the critical elements to the architecture.  

In an attempt to increase reliability, in the next analysis we concentrated the 
efforts in the series connection between the input multiplexers and the functional unit 
(equations 15, 16 and 17). 

Input Multiplexers Analysis 

Again, the strategy here is to add spare multiplexers to the architecture. However, 
differently from the output multiplexer strategy, in this approach to replicate one 
multiplexer, it is necessary to add another one to select between the output of the 
original multiplexer and the replicated ones. Figure 28 illustrates this approach. 

 
Figure 28. Replicating a multiplexer 

In Figure 28.a, it is shown two multiplexers, the multiplexer with the number one 
is the original one, and the multiplexer with the number two is the spare. To select 
between the outputs of the two multiplexers, a third multiplexer must be included. The 
original and spare multiplexers have different amounts of inputs than the third one. 
While the multiplexers one and two have as input all the context lines, the third one has 
as input only the output of these two multiplexers. It is important to emphasize that the 
third multiplexer will have as many inputs as the total amount of spares plus the original 
one. 

To evaluate the reliability improvement when input multiplexers are included in 
the architecture, we had to modify the reliability function of the subsystems composed 
of functional unit and input multiplexers. Thus, equations (15), (16) and (17) are 
replaced by equations (41), (42) and (43), respectively. In all three equations, the series 
connection between the two input multiplexers becomes a k-out-of-m connection. In 
addition, there is a third multiplexer connected in series to the first two, as represented 
in Figure 28.a. 
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Figure 29 presents the reliability when the input multiplexers are replicated. For 
these analyses, the output multiplexers are also replicated in the 300% spares strategy. 
The first curve is the system reliability without spare input multiplexers. In the other 
results, each input multiplexer is replicated 1, 3, 7, 15 and 31 times (2, 4, 8, 16 and 32 
input multiplexers, respectively), plus the third multiplexer to select one of the outputs. 
Once again, we extrapolated the area to investigate the potential reliability that the 
architecture can achieve. As one can observe in Figure 29, the reliability starts to 
decrease when the number of input multiplexer spares becomes too numerous. This 
indicates that there is a limit in the amount of spares that can be included due to the 
third multiplexer area.  

 

Figure 29. Spare input multiplexer strategy 
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When comparing the reliability of the LOwER-FaT array in Figure 24 and the 
reliability when the output and input multiplexer redundancy strategies are applied, two 
observations can be made:  

1) The increase in reliability is significantly higher when the redundancy strategy 
is applied in the output multiplexers. One can improve the reliability by approximately 
nine orders of magnitude when comparing the time when reliability achieves 0.99999 in 
the reference architecture and the spare interconnection model architecture with 50% 
spares. Additionally, an improvement of 48 times is achieved when comparing the 50% 
spare output multiplexer strategy and the LOwER-FaT array without spares. This 
strategy also introduced an overall area overhead of 34% due to the inclusion of output 
multiplexers and 29% due to the increase of the input multiplexer area. 

2) Even neglecting the area cost and considering unlimited area, the reliability 
increase saturates and at some point, the redundant resources compromise the system 
reliability. In case of the LOwER-FaT array, the ideal amount of redundancy was found 
when combining the addition of 300% output multiplexer spares and 1500% input 
multiplexer spares. The results showed an increase of 10 orders of magnitude when 
comparing the ideal redundant architecture to the architecture without fault tolerance. 
Moreover, an improvement of 2 orders of magnitude was detected when comparing 
with the LOwER-FaT array without any extra redundancy. Once again, this ideal 
redundancy does not consider area cost, which would be extremely high in this case.  

As demonstrated by the reliability model, this is a consequence of the high 
dependence on the interconnect elements to send the correct data throughout the 
architecture. On the other hand, the functional units have no significant influence to 
increase reliability because they are already in parallel. Thus, if there is only one 
functional unit, it is still possible to execute all the operations in spite of the 
performance degradation. 

It is important to mention that solutions to increase the amount of functional units 
are not considered in this analysis, since for each functional unit added, two input 
multiplexers must be included. Moreover, adding functional units would also increase 
the number of output multiplexers and/or the output multiplexer area that selects among 
the functional units output. 

Technology Analysis 

To conclude this analysis, we have also estimated the architecture reliability 
considering smaller feature size devices. Figure 30 illustrates the system reliability with 
300% of redundant output multiplexers and 1500% of redundant input multiplexers in 
four technologies, 90nm, 32nm, 18nm and 11nm. As can be observed, the reliability 
decreases as the technology shrinks. In this estimation, we have calculated the failure 
rate based on the transistor density from ITRS (ITRS, 2011) and the relative failure rate 
per transistor from (SMITH, 2007).  
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Figure 30. LOwER-FaT array reliability with spare multiplexers strategy – different 
technologies 

From the analyses presented above, it was possible to demonstrate that the 
interconnection model is the critical element to system reliability. In the case study 
presented, the interconnection model consists of buses and multiplexers. Next section 
we present the reliability analysis of the reconfigurable architecture when a multistage 
interconnection model is used. 

4.5.2.3 Multistage Interconnection Network as Interconnection Model 

A multistage interconnection network (MIN) consists of a set of switch columns 
or stages, where each stage is connected to the previous and to the next one. Initially 
used to connect processor and memory modules (WU and FENG, 1980), as an efficient 
model to balance the tradeoff between cost and performance, MINs have become even 
more popular due to the high degree of fault tolerance. For this reason, MINs were (and 
still are) widely used as a reliable interconnection model.  

Figure 31 illustrates a multistage interconnection network composed of switches 
and links connecting the inputs to the outputs. The links between the stages can have 
different routing according to the type of MIN. The one presented in Figure 31 consists 
in an Omega MIN with logb�	stages, where N is the number of inputs. 

 

Figure 31. Omega multistage interconnection network 
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Depending on the routing strategy, a MIN can be non-blocking, rearrangeable or 
blocking. The non-blocking MINs can connect any input to any output, regardless the 
connections already established across the network. An example of this type of MIN is 
the Clos network (CLOS, 1953). On the other hand, if the MIN can perform any 
input/output connection but to do so, it is necessary to reprogram the internal switch, it 
is called rearrangeable MINs. The Benes network is an example of rearrangeable MIN 
(BENES, 1965). A MIN is blocking when at least one input/output path cannot be 
performed. Blocking MINs can be unique-path blocking, where there is only one path to 
connect the input to the output. They can also be multiple-path blocking, with more than 
one path to connect the input to the output. An example of the unique-path blocking 
MIN is the Omega network illustrated in Figure 31 (LAWRIE, 1975). On the other 
hand, an Omega MIN plus extra stages is an example of a multiple-path blocking MIN. 
Figure 32 depicts an example of an extra stages Omega network. The Omega network is 
a sub-set of the banyan networks (GOKE, 1973). 

 
Figure 32. Omega MIN with extra stages 

 

Due to the widespread use of MINs as fault-tolerant cost-effective interconnection 
solutions, many works start to use MINs to connect components inside processors, such 
as functional units and memory elements (registers, latches). This is the context where 
we use MINs in this work. To connect functional units to functional units and to 
registers, we decided to modify the interconnection model from the traditional bus and 
multiplexer to multistage interconnection networks.  

More specifically, we used the multiple-path blocking network Omega with extra 
stages illustrated in Figure 32. We used a blocking MIN because, differently from 
previous solutions, where most works try to ensure that any input connects to any 
output, even in the presence of faults, we use redundancy to send the input to different 
outputs using alternate paths without affecting the correct operation of the system. This 
is done by connecting the inputs to identical functional units and performing a broadcast 
of the input. When the input reaches one of the outputs, i.e. when one of the functional 
units receives the inputs, the functional unit is dynamically reconfigured to perform the 
operation assigned to the inputs. With this strategy, we eliminated the need to use a 
more complex and expensive non-blocking network.  

This work was firstly proposed by (FERREIRA, BUENO, LAURE, et al., 2011). 
In an attempt to increase performance by increasing the number of paths, the authors 
proposed the use of parallel networks. Because the architecture was arranged as a set of 
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functional units in a 1-D array, resembling a traditional VLIW (Very Long Instruction 
Word) architecture, the authors called it SuperVLIW. 

In (FERREIRA, VENDRAMINI, MUCIDA, et al., 2011), the authors proposed 
the implementation of this coarse-grained architecture on top of an off-the-shelf FPGA. 
Since there is a lack of coarse-grained reconfigurable devices, as well as tools and 
compilers, in this work, the authors proposed as alternative implementing a coarse-
grained architecture as a virtual device on top of the FPGA. This approach eliminates 
the need to handle directly with complex fine-grained FPGAs. To reduce 
reconfiguration time, the authors also propose a new algorithm that performs 
scheduling, placement and routing (SPR) in one-step.  

Although it is a fact that multistage interconnection networks present a high fault 
tolerance, as shown in many studies in the past 30 years (ADAMS, AGRAWAL and 
SIEGEL, 1987), a system reliability is a combination of its logical elements and its 
interconnects. For this reason, we have evaluated the reliability of the architecture with 
MIN as interconnection model and compared with the original architecture based on 
buses and multiplexers (Figure 10). 

Omega network reliability model 

The reliability function of the network starts with the switch subsystem. As 
illustrated in Figure 32, each switch has two inputs and two outputs. To allow an input 
to be sent to any of the two outputs, it is necessary a crossbar-like connection, using two 
multiplexers as illustrated in Figure 33. Because the architecture is 32-bits, each 
multiplexer is also 32-bits. 

 

Figure 33. 32-bits switch 

 

As well as the 32-bits multiplexers of the LOwER-FaT array, the multiplexers 
inside the switch are also composed of a chain of 2:1 1-bit multiplexers. Therefore, the 
first subsystem is the 2:1 32-bits multiplexer, with reliability function described in 
equations (11) and (12).  

Since there is no fault tolerance strategy implemented in the switches, to allow the 
switch to work properly, both multiplexers need to work. Therefore, the switch 
subsystem is a series system with function given by equation (44), 

'(h+
{���� = ,-'ab^U7_���..																																																																																																											�44�
b

+1�
 

As mentioned earlier, the Omega network has logb� stages with N being the 
number of inputs. Considering the original Omega network without extra stages, there is 
only one path between an input/output pair. Hence, the switch used in the first stage to 
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send data must work so the data can pass to the next stage. This same requirement is 
demanded to the other stages. Therefore, the switch used in each stage must work, and if 
a switch fails, the data cannot be sent from the input to the output. 

Figure 34 depicts an Omega network with 8 inputs and	logb 8 = 3	stages. To send 
data from input A to output B, the only path available requires that the grey switches 
work properly. This characterizes a series system with the three switches connected, as 
illustrated in Figure 35. The reliability function for the Omega network is described in 
equation (45), where s is the number of switches.  

 

 

Figure 34. An example of Omega network with one path 

 

 

 

Figure 35. Series system representing one path of the Omega network 
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To increase fault tolerance in MINs, the typically used strategy is increase the 
number of paths between an input/output pair by adding extra stages to the network. For 
each extra stage added to the network, we have 2s paths, where s is the number of extra 
stages. Thus, adding 1 extra stage, 2 paths between an input/output pair are created. 
With 2 extra stages, 4 paths are created, with 4 stages 8 paths are created, and so on.  

The amount of extra stages not only affects reliability, but also changes the 
reliability function by adding parallel subsystems into the architecture. This is due to the 
fact that more switches in each stage can be used to send data from an input to an 
output. The only exceptions are the first and last stages. In this case, there is only one 
switch that can be used, it does not matter how many extra stages were added. To 
demonstrate this, Figure 36 depicts an Omega network with one extra stage (two paths). 

stage 1        stage 2       stage 3
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Figure 36. Omega network with one extra stage and two paths 

 

Adding an extra stage to the Omega network implies in adding one more path 
between the inputs A and B. Consequently, in stages 2 and 3, two switches can be used 
to pass data throughout the stages. However, as mentioned before, stages 1 and 4 
continue demanding that one switch works properly. Figure 37 illustrates the subsystem 
that connects input A to output B. 

 

 
Figure 37. Omega network with one extra stage block diagram 

 

Now, adding one more extra stage to the network, two more paths are created 
connecting A to B. In this case, with 5 stages, the network has four different paths to 
connect A to B. However, the paths share switches in the two first stages and two last 
stages. Figure 38 presents the block diagram representation of this subsystem. 

 

Figure 38. Omega network with two extra stages block diagram 

A

B

stage 1        stage 2       stage 3        stage 4

stage 1         stage 2       stage 3        stage 4

stage 1         stage 2           stage 3          stage 4         stage5
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The reliability model of the Omega network with two extra stages is described 
next, based on the block diagram depicted in Figure 38.  

We start presenting the reliability model of one input/output pair, and then we 
extend the model to the other pairs. In one input/output pair, there are two possible 
paths, as one can see in Figure 36. Since the two paths present the same amount of 
switches and are connected in the same manner, we start defining only one reliability 
function. This function will be used in both paths until the connection to the switches in 
the first and last stages. Therefore, the first subsystem in hierarchy is composed by two 
subsystems of parallel switches in stage three. Equation (46) describes the reliability 
function, 
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Following the hierarchy, the parallel switches in stage three are connected in 
series to one switch in stage 2 and another one in stage 4. The series connection is 
presented in equation (47),  

'(
3w)(b30Y���� = 	'Zh+
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At this point, only one path was described. The four paths compose a parallel 
subsystem with reliability function given by equation (48), 
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The first and last stages have only one switch, each one connected in series to the 
two paths subsystems. For this reason, the reliability model for one input of the Omega 
network is a series system with reliability function given by equation (49), 

'l0)�027
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To conclude the reliability model of the Omega network with extra stages, we 
have to extend the model for one input described above to all the other inputs. Figure 39 
illustrates the Omega network with two extra stages. The figure illustrates the four 
possible paths between one input/output pair. As can be observed, in the third stage all 
the switches are used to provide the four paths. This means that, in spite of the fact that 
four paths per input have been created with the extra stages, there is not enough 
switches in each stage to provide N*4 parallel paths, where N=8 is the number of 
inputs. Therefore, the paths need to share switches along the stages.  
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Figure 39. Omega network with two extra stages and two paths 

 

To represent this condition in the reliability model, it is necessary to connect all 
the one-input subsystems, taking into consideration that, in some stages, it is possible to 
use different switches, e.g. stages 1, 2, 4 and 5 use only part of the switches, the other 
switches can be used by a different input.  

All these particularities of the Omega network with extra stages were translated to 
the reliability model, but for sake of clarity, the rest of the equations were omitted, and 
from now one we assume that the reliability function of the Omega network with extra 
stages is defined by	'l9)w3�_
*3Z
3w)(���.  

Comparing the interconnection models 

To compare between the two models, firstly it is necessary to specify the two 
equivalent models.  The main characteristic of the MIN is the fact that it can connect all 
N inputs to all N outputs. In this way, to provide the same interconnection with 
multiplexers, N multiplexers are required in a crossbar-like connection, as illustrated in 
Figure 40.  

Moreover, for a 16-input Omega network with no extra stages, 4 stages are 
required (logb 16 = 4�, 8 switches per stage and only one possible path between one 
input/output pair. The total amount of 2:1 32-bits multiplexers is twice the numbers of 
switches. Thus, the network has in total 32 switches (8 switches per stage * 4 stages), 
totalizing 64 2:1 multiplexers. 

To connect 16 inputs to 16 outputs, the multiplexer model requires 16 16:1 
multiplexers. Each 16:1 multiplexer has a chain of 15 2:1 multiplexers. Therefore, the 
model has in total 240 2:1 multiplexers. This is almost four times the area of the 
network. Figure 40 illustrates the multiplexer-based model to connect N inputs to the 
each one of the N outputs. 

As demonstrated in equation (45), the network without extra stages is a series 
system of all switches. This is the same premise for the multiplexer-based model, 
without redundancy, all multiplexers are connected in series. In this sense, both 
reliabilities are very low and the multiplexer-based reliability is worse than the network, 
since the former has more multiplexers connected in series. For this reason, a 
comparison between the two models with fault tolerance seems more interesting, once 
we can evaluate if adding extra stages is actually an effective strategy to increase 
reliability. 

 

A

stage 1                 stage 2                   stage 3                stage 4                stage 5

B
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Figure 40. Multiplexer-based model 

 

The chart in Figure 41 presents a comparison between the 16 input Omega 
network with three extra stages and the multiplexer-based model. The network has 56 
switches in total, which is an area overhead of 75% in comparison to the original 
network. Additionally, four possible paths between an input/output pair are created. 
Adding this same amount of redundancy in the multiplexer-based model, we have 180 
more multiplexers (75% of 240). This corresponds to a k-of-m model where m=420 
(240+180) and k=240.  

For this comparison, two spare multiplexer strategies were used. In the first one 
(Multiplexer-based model 1), adding spare multiplexers in the model implies in adding 
one more multiplexer to select between the original and the spare (this problem was 
discussed in section 4.5.2.2 - Figure 28). For these results, it was assumed that each 
spare multiplexer is added to a different multiplexer forming a pair of original and 
spare. Consequently, by adding 180 spares, the same amount of multiplexers must be 
added to select between the original and the spare.  In the second multiplexer-based 
model, we assume that adding spare multiplexers consists in simply including more 
spares outputs, as it is done with the output multiplexers of the LOwER-FaT array 
(section 4.5.2.2). 

 

Figure 41. 16:1 Multiplexer-based model versus 16-input Omega network with 3 extra 
stages 

..
 .
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From  Figure 41, it can be observed that the MIN-based model presents significant 
higher reliability than the multiplexer-based model 1. The multiplexer-based model 
decreases to 0.99999 in 10 hours while the MIN-based model decreases to the same 
reliability at 11.01 x 106 hours. On the other hand, when comparing the alternate 
multiplexer-based model, the MIN-based one presents lower reliability. The results 
show a difference of 5.5 times difference, considering 0.99999 reliability, and 1.9 times 
at 0.96 reliability. This result indicates that in spite of the extra paths to connect an 
input/output pair, sharing switches among paths is not as efficient as having spare 
multiplexers using the strategy implemented in the output multiplexers model of the 
LOwER-FaT array. 

In spite of the result presented above, we decided to compare the LOwER-FaT 
array with both models. This decision was based on the fact that to replace the models, 
not only the output multiplexers but also the input group has to be modified.  

Reconfigurable architecture with different interconnection models 

Since this is the same architecture already analyzed, only with a different 
interconnection model, the functional units and context registers present the same 
reliability functions described in equations (8), (9), (10) and (39).  

Figure 42 illustrates one level of the reconfigurable architecture with multistage 
interconnection networks. As can be observed, there are four networks to send the input 
context (from the context registers) to all functional units. Because the networks have 
multiple outputs, each output is sent to one input of the functional units. Hence, in this 
approach, the multiplexers that select the inputs in each functional unit are not 
necessary. In addition, to preserve the capability of bypassing the input context, the 
networks also have the context from the previous network as output.  

 
Figure 42. Array with multistage interconnection networks 

 

It is important to highlight that this is only one design solution proposed to replace 
multiplexers by networks. There are different ways of placing the functional units and 
interconnects. However, more advanced architecture modifications may influence the 
results, affecting the comparison between both models. Furthermore, since the main 
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goal of this analysis is to evaluate the impact of the interconnection model on reliability, 
we consider that the presented analysis is adequate to validate our conclusions. For this 
reason, we did not perform a comprehensive design exploration nor presented any 
analysis related to performance, power and energy results when using the MIN model. 

For the comparisons presented next, we used 32-input MINs with four extra 
stages, in a total of 9 stages and 144 switches (around 80% of extra area redundancy). 
The percentage of extra area due to the extra stages was used to add spare output 
multiplexers to the LOwER-FaT array. Figure 43 presents the reliabilities as a function 
of time for the reconfigurable architecture with both models.  

 

Figure 43. Multiplexer-based architecture versus MIN-based architecture 

 

The curves in Figure 43 demonstrate that when adding the same percentage of 
redundancy to the interconnection models, the difference in time when reliability is 
0.99999 is four orders of magnitude. This difference reduces to 40 times when 
reliability is 0.96.  These results confirm that sharing switches between the extra stages 
is in fact an inefficient solution compared to the redundancy strategy implemented to 
the output multiplexers. To demonstrate this conclusion, the curves Only MIN and Only 

Multiplexer in Figure 43 also depicts the reliability curves of both models when the 
functional units and registers are not considered. As can be observed, the MIN-based 
model presents lower reliability than the Multiplexer-based model. 

From the analyses presented above, we can conclude that to improve overall 
reliability of the reconfigurable architecture, the multistage interconnection model is an 
interesting solution when the spare multiplexers require the addition of a third 
multiplexer to select between the spares.  At the same time, if redundancy can be 
applied with the output multiplexer strategy, one can have better results by adding 
spares multiplexers to the architecture. 

Finally, it is important to mention that the analyses presented here were made in 
the context of the reconfigurable architecture and taking into consideration its 
characteristics. Although the analyses can be also applied for a more general case, it 
does not mean that multistage interconnection networks are not efficient solutions. In 
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the main works that propose MINs, they are used as solution to replace very expensive 
crossbars and not scalable single global bus (WU and FENG, 1980). Nevertheless, if the 
networks are used in the same context as the analysis presented in this work, then the 
multiplexer-based model appears to be better solution. 

 

4.5.3 Performance and Energy Analysis 

4.5.3.1 Graceful Degradation 

Using the simulation environment described in the beginning of this section, we 
evaluated performance degradation in two different cases. In the first case, we 
considered the array with 16 context registers. In the second analysis, we doubled the 
number of context registers to compare the performance when the spare output 
multiplexers are included in the architecture.  

Array with 16 context registers  

Figure 44 presents the speedup degradation as a function of the fault rate. The 
initial speedup was calculated based on the applications running in the MIPS R3000.  

 

 
Figure 44. LOwER-FaT array speedup degradation – 16-context registers 

 

According to Figure 44, most applications presents a slight performance 
degradation, with exception of two applications, smoothing and sha. The former has a 
performance degradation of 64% and the latter 24.2%, under 20% of faulty resources. 
The mean performance degradation was 14.75%.  

This result demonstrates that, in spite of the high fault rate, the LOwER-FaT array 
is still able to execute all applications and, with exception of smoothing application, 
accelerate execution when compared to the processor’s execution. 

The high performance degradation detected in the execution of smoothing and sha 

was due to the fact that these two applications require the largest amount of parallel 
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functional units in the architecture. For this reason, when many units are lost, there is no 
enough parallelism to execute the operations. 

To compare the performance degradation when spare output multiplexers are 
added to the architecture, we have also simulated the architecture with 32 context 
registers. In this approach, more context registers were added. Therefore, if a data 
cannot flow through one context line due to a faulty multiplexer, the configuration 
generator selects a different context line. Figure 45 illustrated this strategy.  

 

Figure 45. Spare multiplexers in the LOwER-FaT array 

 

In Figure 45.a, it is presented an example with four context registers in use and 
four as spare. For sake of simplicity, the example shows only one row of multiplexers. 
In Figure 45.b, the register allocated to the faulty context line is moved to a fault-free 
one (register R1).  

Array with 32 context registers  

Figure 46 presents the performance degradation of the LOwER-FaT array with 32 
context registers. Before starting to analyze the performance degradation, it is important 
to mention that in some applications the initial speedup, when all the resources are fault-
free, is higher than the initial speedup of the 16-context registers architecture. This 
happens because with more registers available, the configuration generator is able to 
allocate more registers in one configuration. In other words, there are configurations 
that require more than 16 registers. In the 16-context registers architecture, these 
configurations have to be broken in configurations with a small number of instructions. 
However, with the 32 context registers, the configurations are able to perform. Table 7 
presents the speedup gains due to the addition of context registers. 

 

CONTEXT REGISTERS

R1 R2 R3 R4

CONTEXT REGISTERS
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a) Fault-free multiplexers with spare context lines b) Faulty context line replaced by a spare one
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Figure 46. LOwER-FaT array speedup degradation – 32-context registers 

 

According to Figure 46, smoothing was the application with highest acceleration 
degradation (67.6% of acceleration reduction under a 20% fault rate). Moreover, this 
architecture presented a higher mean performance degradation than the 16-context 
register one, 18% of performance degradation considering all the applications. This 
result is due to the fact that in this architecture, a higher percentage of output 
multiplexers was faulty, in comparison to the 16-context registers architecture. While 
the 16-context register architecture presented 48% of faults in functional units and 12% 
in the output multiplexers, the 32-context register one presented 42% of faulty 
functional units and 16% in the output multiplexers at 20% fault rate. Therefore, the 
simulation results also lead to the same conclusion presented in the reliability analysis. 
Interconnects are in fact the critical elements to system reliability. 

Table 7. Percentage of speedup increase - 100% more context registers 

Application Speedup increase (%) 

corners 32.6 

djikstra 0.9 

edges 40.9 

jpegD 89.1 

jpegE 29.8 

rijndaelE 38.6 

sha 6.9 

smoothing 1.5 

Average 30.0 
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Other shapes 

We have also evaluated performance degradation considering the other two 
reconfigurable architecture organizations generated by ARISE tool (Table 4). For both 
architectures, we considered 32 context registers. 

The analysis presented next considers the amount of ideal functional units based 
on the application requirements. This architecture, called Ideal Shape, was generated as 
the reference architecture. It achieves the higher performance possible with no area 
restriction. Therefore, the only reason not to execute parallel operations is the 
dependence between instructions. Figure 47 presents the performance degradation 
results. 

 

 

Figure 47. Ideal shape speedup degradation 

 

As shown in Figure 47, the highest speedup degradation of ideal shape was 
presented in the execution of rijndaelE, with an average of 19.73% of acceleration loss 
under a 20% fault rate. This low degradation in the acceleration is a direct result of the 
substantial amount of functional units available in the ideal shape. Therefore, even 
loosing 20% of resources, there are still many resources. 

The other architecture analyzed presents an extremely reduced amount of 
functional units (only 11% of the Ideal Shape resources). Figure 48 presents the 
performance degradation results. 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 0.01 0.1 1 10 20

S
p

e
e

d
u

p

Fault rate (%)

Ideal Shape

edges

dijkstra

corners

jpegE

smoothing

sha

jpegD

rijndaelE



 

 

77 

 

 

Figure 48. LAC II speedup degradation 

 

As can be observed in Figure 48, since the LAC II architecture presents a reduced 
amount of units, it already starts with low performance, when compared to the other 
architectures. In spite of that, most applications did not present significant speedup 
degradation. This happened because with a small number of available functional units, 
only few instructions can be executed in the array. Consequently, most part of the 
applications are being executed by the processor. As one can observe, the most affected 
applications were the ones with speedup higher than 2. Some examples are: corners, 
with 15.5% of speedup degradation under 20% fault rate; jpegD, with 19.3% of 
degradation; edges, with 9.2% degradation, and sha, which had the highest speedup and 
for this reason presented the highest degradation, 33.9%.  

 

4.5.3.2 Energy Reduction 

In an attempt to reduce the power consumption of the reconfigurable architecture, 
we also proposed a solution that uses power-gating technique. The use of this technique 
in the reconfigurable architecture was already proposed in (RUTZIG, BECK and 
CARRO, 2009). However, in this analysis, we propose to extend the use of power-
gating to be implemented also in faulty functional units.  

Power-gating is one of the most effective leakage reduction methods (SHI and 
HOWARD, 2006). It consists of using sleep transistors to shut off the power supply of 
standby or idle resources.  

In the original work (RUTZIG, BECK and CARRO, 2009), the authors proposed 
to add two sleep transistors in each functional unit, and during dynamic configuration, 
shut off the idle units. In next configuration, in case of the idle units start to operate, 
they can be shut on. Since the configuration generator allocates the functional units in 
each configuration, this same mechanism can be used to set the on/off bits in each 
functional unit. Therefore, according to the authors, the area overhead corresponds to 
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two transistors for each functional unit and only a few bits to turn on and off the sleep 
transistors. 

To reduce even more power consumption, we propose to use the same mechanism 
that controls the sleep transistors of the idle functional units, to control the sleep 
transistors of the faulty ones. The difference is that sleep transistors of idle functional 
units can change between ON and OFF states according to the configuration, while 
sleep transistors of faulty units will always be set to the OFF state. 

An evaluation of the energy consumption of the reconfigurable system and the 
MIPS R3000 demonstrates the effectiveness of the sleep transistor approach. 

Figure 49 presents the energy consumption of the reconfigurable system and the 
standalone MIPS R3000. The Full Reconfigurable System bar represents the system 
without the sleep transistor technique and the Low Energy Reconfigurable System bar 
corresponds to the system with sleep transistor approach.  

 

 

Figure 49. LOwER-FaT array energy consumption 

 

Two observations can be made from the results presented in Figure 49. First, the 
application execution on the reconfigurable system resulted in a large amount of energy 
saving. This is a consequence of the speedup improvement achieved by the parallelism 
exploitation and by reducing the accesses to the processor instruction cache. The 
execution on the reconfigurable system resulted in at least 34.7% of energy saving. 

Furthermore, the application of the sleep transistor approach reduced the energy 
consumption of the reconfigurable system in at least 16% in the edges execution and up 
to 41% in smoothing execution.  

As mentioned before, sleep transistors can also be used to shut off faulty 
functional units. Although this approach is used to avoid power consumption of units 
that will never be used, this is not reflected in the energy consumption of the 
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reconfiguration system. Since the faults reduce the amount of functional units available, 
this directly affects the execution time, which increases the energy. 

For this reason, the applications studied in this work presented a slightly increase 
in energy consumption when too many faults were presented. Ideal shape presented up 
to 6.2% of energy increase with respect to a fault-free array. Likewise, shape LAC I 
presented a 9.5% increase, and shape LAC II presented a 9.7% energy increase, all 
under a 20% fault rate. 
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5 PIPERENCH 

PipeRench is a coarse-grained reconfigurable architecture firstly proposed in 1997 
(SCHMIT, 1997), targeted to accelerate execution of streaming multimedia applications 
(CHOU, PILLAI, SCHMIT, et al., 2000), (SCHMIT, WHELIHAND, TSAI, et al., 
2002) and (KAGOTANI and SCHMIT, 2003). (SINHA, KAMARCHIK and 
GOLDSTEIN, 2000) proposed a fault tolerance strategy to cope with permanent faults 
in logic, memory and interconnect elements.  

We have opted for investigating this architecture because its fault tolerance 
strategy presents an interesting solution to avoid faulty processing elements and 
interconnects. The authors propose to use register files to bypass the entire faulty 
processing element (PE), which is composed of ALU, input and output multiplexers. 
The register files are directly connected in one another and have independent access. 
With this approach, the system does not have to rely on multiplexers to send data to 
other PEs. On the other hand, this strategy introduces the register files as new elements 
that may be critical to reliability. 

Next, we present a brief architecture description, based on the details presented in 
(SCHMIT, WHELIHAND, TSAI, et al., 2002). In section 5.2, we detail the fault 
tolerance technique proposed in (SINHA, KAMARCHIK and GOLDSTEIN, 2000). 
From the architecture and fault tolerance technique description, we modeled the 
reliability function, which is described in section 5.3.To conclude this chapter, the last 
section provides a reliability analysis comparing this architecture with LOwER-FaT 
array when area equivalence is assumed. Additionally, an evaluation of the fault 
tolerance technique is also presented. 

5.1 Architecture Description 
PipeRench relies on fast partial dynamic reconfiguration to provide hardware 

virtualization. The architecture consists of several processing elements connected to 
each other to form pipeline stages called stripes. A set of physical stripes is used to 
provide virtual stripes. The pipeline stage can be configured every cycle, while other 
stages are executing. Figure 50 illustrates the physical and virtual stripes. 
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Figure 50. PipeRench physical and virtual pipeline 

 

Each processing element (PE) consists of an ALU, registers and multiplexers.  All 
PEs in one stripe can connect to each other through local buses. Moreover, a global bus 
allows connection between stripes. Connected to each PE there is a pass register file that 
sends and receives data from the PEs and from the register files of previous stripes. The 
connection among register files is independent from the PEs connection and it is done 
through the interstripe interconnect lines. Figure 51.a illustrates the PipeRench 
architecture and Figure 51.b illustrates the PEs and the register file, as well as their 
connections. 

 

Figure 51. PipeRench block diagram a) system b) processing element  

 

5.2 Fault Tolerance Technique 
The fault tolerance strategy implemented in PipeRench consists of three steps: 

fault detection, fault isolation and fault tolerance.  

To detect faults the authors proposed a BIST-like (Built-In Self-Test) algorithm 
that only tests for faults that can jeopardize the correct execution of the current 
configuration. For this reason, the authors call it Built-In Applicable Self-Test (BIAST). 
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The testing mechanism consists in adding extra virtual stripes to execute test 
configurations. Once the fault is detected, the next step isolates the fault. The isolation 
requires the execution of the test configurations alternating the tested stripes until the 
error can be isolated. Subsequently, the fault tolerance mechanism works around the 
fault to allow correct execution of the system.  

There are two types of faults: non-interstripe interconnect faults and interstripe 
interconnect faults. The former consists of faults that affect the processing elements. 
Since there are no spare processing elements, the fault-tolerant mechanism sets the 
whole stripe as faulty. In this case, the pass register files are used to bypass data through 
the faulty stripe. This strategy is possible because the same data sent to the ALU is also 
sent to the register file using an individual input. The ALU’s output can be sent to the 
register file or to the buses through an output multiplexer. There is no fault tolerance 
strategy to cope with faulty output multiplexers. Therefore, a fault in an output 
multiplexer will affect the processing element, consequently affecting the stripe that 
must be isolated. Additionally, the next stripe is configured with the function of the 
faulty one. Reducing the amount of available stripes causes a performance degradation 
of one stripe delay per stripe. Figure 52.a illustrates the fault-tolerant strategy to non-
interstripe interconnect.  

The interstripe interconnect faults affect the interstripe interconnect lines. Since 
each processing element has several interconnect lines (one interconnect line for each 
register of each register file in one stripe), if an interconnect line is faulty, there are no 
enough lines to move all register data among PEs. To solve this problem, the fault-
tolerant mechanism leaves one register in each PE’s register file with its respective 
interconnect line as spare. Therefore, it is possible to tolerate one faulty interstripe 
interconnect line per stripe. However, if multiple faults happen in the same stripe, the 
system will not work properly. Figure 52.b illustrates the fault-tolerant strategy to 
interstripe interconnect faults.  

 

 

Figure 52. PipeRench fault tolerance technique 

 

5.3 Reliability Model 
Because there is no enough detail about the overall area, processing elements and 

interconnects, to model and analyze reliability, we have assumed the same area of the 
LOwER-FaT array. Thus, we consider that the ALUs in PipeRench perform the 
operations and have same area of the LOwER-FaT array’s ALUs. We also assume that 
the architecture is 32-bits. 
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To model PipeRench reliability we start with the minor subsystem in the 
hierarchy. Based on Figure 51, each processing element is composed of five input 
multiplexers and two registers connected to the ALU’s input. The PE’s output is sent to 
a multiplexer that also receives the register file’s output. Since the PE and register file 
work independently, there are two subsystems connected in parallel, the PE subsystem 
and the register file subsystem. 

Starting with the PE subsystem, we have to identify the atomic elements, which 
have reliability function given by equation (1). These units are the ALU, the register, 
and the multiplexers, with reliability functions given by equations (50) to (53), 

	'NOP��� = ��	QRS
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The five input multiplexers can be split into three types, based on the amount of 
inputs. The first type is the multiplexers that select from which interconnect line the 
ALU will receive data. It is described in equation (54), where im1 is the number of 32-
bits 2:1 multiplexers required to select between N 32-bits interconnect lines. N is the 
number of processing elements in one stripe,    
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The second type has as input a register and all register file’s input. Equation (55) 
describes the reliability function, where im2 is the number of 32-bits 2:1 multiplexers 
required to select between the inputs, 
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Finally, the third type is the 2:1 32-bits multiplexer, with reliability function 
described in equation (56).  In Figure 51.b, the input multiplexers are identified by their 
numbers. 
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Since there is no fault tolerance implemented in the PE subsystem, all the 
components that compose this subsystem are connected in series. Equation (57) depicts 
the reliability function of the processing element subsystem, 
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The other subsystem that composes the processing element is the register file 
subsystem. According to the architecture description, the register file has one spare 
register to replace a working one in case of a fault. This is represented as a k-out-of-m 
system, where k=m-1. The function for the register file is given by equation (58), 
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where m_reg is the total amount of registers in the register file and k_reg is m_reg-1.  

Up to this point, the reliability model is completely predictable and no significant 
design strategies were made to actually increase reliability. The only strategy that may 
contribute to increase reliability is the fact that the register file has a spare register.  

However, the next subsystems in the hierarchy present an interesting design 
strategy that we would like to reemphasize since it may be the solution to completely 
avoid the faulty interconnects and solve such a critical problem: the processing elements 
and register files were designed with independent outputs. As can be observed in Figure 
51, the register file’s output is sent to the output multiplexer and to the register file of 
the processing element in next stripe. 

Therefore, in this solution, the system does not need to rely on multiplexers to 
keep the architecture working properly. If an ALU or an output multiplexer fails, it is 
possible to avoid these elements, and send the data to the next stripe through the register 
file.  

To represent this strategy in the reliability model, firstly it is necessary to describe 
the dependence between the processing element subsystem and the output multiplexer. 
This dependence is represented as a series connection, with function given by equation 
(59).  
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Additionally, the output multiplexer is a 32-bits multiplexer that has as input the 
ALU, the register file output and the register file input, which corresponds to the output 
of the previous register file, with function given by equation (60). Where o is the 
number of 32-bits 2:1 multiplexers required to compose the output multiplexer, 
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Due to the interstripe interconnect strategy, all processing elements in one stripe 
must work so the stripe works. Otherwise, the entire stripe must be avoided. To 
represent this strategy, all processing elements (with their respective output multiplexer) 
in one stripe compose a series subsystem, with function given by equation (61), where 
pe is the amount of processing elements in one stripe, 
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To complete the interstripe interconnect strategy model, it is necessary to connect 
the stripes subsystems. According to the authors, it is possible to bypass a faulty stripe 
and configure the next one to replace the faulty one. However, the authors do not 
mention how many stripes need to work before affecting the properly functioning of the 
system. Therefore, in this work, we assume that only one stripe needs to work, which is 
the best assumption we can make in favor of the architecture. Any other assumption will 
result in worse reliability results. Based on this assumption, the stripes compose a 
parallel subsystem with reliability function described in equation (62), 
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where st is the total number of stripes. 

The last subsystem in the hierarchy is related to the register files. Because all the 
register files must work, so the system can work properly, the register files form a series 
subsystem, with function given by equation (63),  
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where N is the total number of PEs (PEs multiplied by the number of stripes). 

Finally, the register files and the stripes compose a parallel subsystem, where each 
subsystem can work independently. Equation (64) represents this connection between 
the subsystems and concludes the PipeRench model, 
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Based on the equations presented above, from a reliability point of view, we can 
affirm that the fault tolerance strategy implemented in PipeRench eliminated the system 
dependence on the output multiplexers. This means that, if all the output multiplexers 
fail, the system is still able to operate. Even if it only bypasses the inputs to the outputs 
of the architecture, without any computation by the ALUs. 

In order to do that, another element was introduced to the system, the register file. 
If one register file fails, it is not possible to bypass the results to the next stripe. 
Consequently, the register files are the critical elements to system reliability. In bottom 
line, the fault tolerance strategy proposed by (SINHA, KAMARCHIK and 
GOLDSTEIN, 2000) transferred the dependence on the output multiplexer to the 
dependence on the register file. The analyses presented in next section evaluate if this 
trade was beneficial or detrimental to system reliability.  

5.4 Experimental Results 
Next, we present the reliability analysis considering the model described in last 

section. Because there are no details about the area of each component, and how the 
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performance results were obtained, a comparison considering area, performance and 
energy between the LOwER-FaT array and PipeRench was not possible. 

For this reason, to evaluate reliability and compare the fault tolerance strategies of 
both architectures, we assume that both architectures used the same components, with 
the same failure rate. 

5.4.1 Area 

Based on the architecture description presented by the authors, we have estimated 
the area considering two different cases. In the first case, we considered the LOwER-
FaT array and PipeRench with same area. In order to do this, we calculated the total 
area of the LOwER-FaT (with functional units, multiplexers and registers) and assumed 
this same area to PipeRench. The problem of this approach is the fact that PipeRench 
only has ALUs as functional units. Therefore, to assume the same area, we had to 
convert the LOwER-FaT array’s area only in ALUs, multiplexers and registers. 

The second case was based only on the amount of ALUs used in LOwER-FaT. In 
this case, the architectures do not have the same area, but present the same amount of 
ALUs and hence, can perform the same amount of operations.  

Another problem related to PipeRench organization is the ALUs distribution 
along the stripes. This distribution influences reliability results, since large stripes 
increase the amount of processing elements in series. On the other hand, many stripes 
increase the amount of parallel stripes. For this reason, we based the amount of ALUs 
per stripe and the total amount of stripes according to the parallelism presented in the 
LOwER-FaT array.  

5.4.1.1 Area equivalence 

To calculate the amount of ALUs in each stripe, we used the amount of parallel 
functional units existing in LOwER-FaT array. According to section 4.6.1.1, there are 9 
ALUs, 2 multipliers and 4 load/store units in parallel, in a total of 15 functional units. 
Considering the area ratio of the components described in Table 2, 15 functional units 
are equivalent to 31 ALUs. Therefore, there are 31 ALUs in each stripe. 

The number of stripes is calculated based on the total area of LOwER-FaT array 
divided by the amount of ALUs per stripe. This calculation resulted in 170 stripes.  

5.4.1.2 ALU equivalence 

Taking into consideration only the same amount of ALUs, each stripe has only 9 
ALUs and the total amount of ALUs is 459. Thus, the amount of stripes is 51. 

In both cases, area and ALU equivalence, the register files have 8 registers. This 
number is based on the studies presented by the authors in (SCHMIT, WHELIHAND, 
TSAI, et al., 2002). 

5.4.2 Reliability Analysis 

The analysis presented next compares three architectures: PipeRench with the 
same area of LOwER-FaT (area equivalence curve), PipeRench with the same amount 
of ALUs than LOwER-FaT array (ALU equivalence curve) and LOwER-FaT array. 
Figure 53 illustrates the reliabilities as a function of time for all three architectures.  

 



 

88

 

Figure 53. PipeRench versus LOwER-FaT array 

As can be observed in Figure 53, even considering a reduced amount of resources 
in PipeRench, the LOwER-FaT array still presents higher reliability. For the area 
equivalence comparison, the results show a reliability of 0.99999 in around 11,000 
hours for PipeRench against 860,000 hours achieved by the LOwER-FaT array. 
Moreover, a reliability of 0.96 is detected in approximately 969,000 hours, against 
9,500,000 hours achieved by the LOwER-FaT array. This is a difference of 
approximately 78 and 9.8 times for the 0.99999 and 0.96 reliabilities, respectively.  

When comparing both PipeRench architectures, a better reliability is achieved 
with ALU equivalence. This is due to the reduction in the amount of processing 
elements that also affects the amount of register files. The area equivalent PipeRench 
has 5,270 register files. On the other hand, the ALU equivalent one has only 459 
register files. In spite of that, the reliability is lower than LOwER-FaT array.  
PipeRench with ALU equivalence achieves 0.99999 in 40,000 hours and 0.96 in 
3,200,000 hours. This is around 21 and 3 times lower than LOwER-FaT array’s 
reliability. 

The analysis presented above gives an indication of which architecture presents 
better reliability. Nevertheless, it is not possible to make any assumption about the fault 
tolerance strategy implemented in PipeRench.  

To evaluate if relying on independent register files is more effective than relying 
on multiplexers, a more comprehensive analysis of PipeRench reliability model is 
presented next. 

Firstly, it is necessary to determine how much the register files impact on 
reliability. In order to do this, we start by showing the reliabilities of the register files 
subsystem and the stripes subsystems that compose PipeRench reliability model, as 
described in equation (64). 

Figure 54 presents the reliabilities as a function of time for both subsystems, 
register files and stripes. Additionally, the overall PipeRench reliability for the area 
equivalent architecture is also presented. As can be observed in Figure 54, stripes 
subsystem reliability is higher than the register files subsystem. At the same time, 
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PipeRench presents same reliability as register files subsystem. This indicates that the 
register files are not only influencing the overall reliability but also preventing the 
system to achieve better results. 

 

Figure 54. PipeRench reliability analysis 

Based on this, a possible solution to improve reliability without changing 
architecture design is to increase the number of spare registers in each register file. The 
original fault tolerance strategy described in (SINHA, KAMARCHIK and 
GOLDSTEIN, 2000) proposes one spare register in each register file. In the reliability 
model, this strategy is described in equation (58).  

In an attempt to improve reliability, we added more spare registers to each register 
file. Figure 55 presents the reliability curves of the original architecture with only one 
spare register and with 100%, 300% and 700% spare registers for the area equivalent 
architecture. 

According to the results in Figure 55, by adding 100% spare registers the 
reliability presented a very significant improvement, achieving 0.99999 from 11,000 
hours to 3.8 x106 hours. This is around a 345 times improvement. However, by adding 
more spare registers, the reliability starts to decline, as observed when 300% and 700% 
spares are added. 

This reduction is a consequence of the increase in the area of the multiplexers that 
have the registers as input. Therefore, after some point, the stripes subsystem function 
(which includes the multiplexers) becomes the dominant term in reliability function. As 
already discussed during the analyses of the LOwER-FaT array in section 4.5.2.2 
(Figure 28), adding spare multiplexers is not an efficient solution, since it requires the 
addition of an extra multiplexer to select between the spares. 
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Figure 55. PipeRench reliability - spare registers 

 

Therefore, based on the analyses presented above two conclusions can be made: 
1) In the current architecture design, the register files are in fact the critical elements to 
system reliability. This was demonstrated with the comparisons between the register 
files and stripes subsystems reliability. In this analysis, it was showed that the overall 
system reliability was equivalent to the register files subsystem reliability (Figure 54).  

2) Once again, we have demonstrated that there is a limit in improving reliability. This 
limit is determined by the fact that adding redundancy means area cost and in many 
cases, it also means adding new components that will directly influence reliability. 

To conclude this analysis, we propose to eliminate the register files from the 
original PipeRench architecture and rely on the input and output multiplexers to send 
data throughout the architecture. This strategy allows to finally conclude if using 
independent register files is better than relying on the interconnects. 

Because the register files are a type of redundancy that allows replicating data, to 
perform a fair comparison, we propose to replace the area of the register files by spare 
multiplexers.  

To calculate the amount of spare multiplexers with same area of the register files, 
we used the component ratio presented in Table 2 and the amount of registers and 
multiplexers in the architecture. Moreover, assuming that each spare multiplexer adds a 
third multiplexer to select between the original and spare outputs, with the same area of 
the register files it is possible to add 18% of spare multiplexers. Figure 56 presents the 
reliability as a function of time when replacing the register files by spare multiplexers.  
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Figure 56. PipeRench without RF 

 

According to Figure 56, the architecture without register files and with spare 
multiplexers presents a better result than the one with register files. The results show a 
difference of 148 times when reliability achieves 0.99999 and 1.84 times when it 
achieves 0.96.  

This indicates that a better reliability improvement would be achieved if instead of 
having register files, the architecture had spare multiplexers. In order to do this, it would 
be necessary a complete change in the architecture design and execution. Since no more 
sequential path would exist between operations, this would affect the pipeline-based 
execution. Therefore, this hypothetical comparison was performed only to speculate if 
investments in register file were more efficient than investments in the interconnects. 
However, an important conclusion that can be made from these experiments is that it 
does not matter what type of strategy is implemented to provide communication among 
functional units, providing connection among function units is in fact the critical factor 
to reliability and consequently where the investments should concentrate. 

 

 

 

 

 

 

 

 

 

 



 

92

 

 

 

 

 

 



 

 

93 

 

6 RELATED WORK 

This chapter is devoted to present some of the main works that relate to the 
proposed work. Since this work proposes a more comprehensive solution to assist in the 
design of reliable reconfigurable architectures, it is correlated to fault-tolerant strategies 
to increase yield and/or reliability in reconfigurable architectures.  

In spite of that, it is not possible to provide a fair comparison to each previously 
proposed solution, since we are not proposing a specific solution to a specific 
architecture. Nevertheless, in this chapter we present some of the works that propose 
fault-tolerant strategies targeted to reconfigurable architectures. We also provide a 
comparison to the LOwER-FaT array used as case study. 

6.1 Fault-Tolerant Reconfigurable Architectures 
Reconfigurable architectures are potential candidates to cope with high fault rates 

predicted to future technologies. The inherent redundancy can be used to fault tolerance 
similar to the techniques used in memory devices (STOTT, SEDCOLE and CHEUNG, 
2008). Moreover, the reconfiguration capability allows a high degree of flexibility that 
can be exploited to yield enhancement and reliability increase. In case of yield 
enhancement, the replacement of faulty resources can be performed at the manufacture 
by transparently reconfiguring the architecture, consequently avoiding discarding the 
faulty chips. As for reliability increase, reconfiguration can be used as an efficient fault-
tolerant mechanism to reduce downtime and maintenance costs (HANCHEK and 
DUTT, 1996).  

Despite fault tolerance has existed for 60 years, only in the early 90’s fault 
tolerance approaches in reconfigurable architectures emerged as attractive solutions. 
This is a consequence of the consolidation of reconfigurable architectures as an efficient 
paradigm to balance the tradeoff between the low flexibility but high performance of 
ASICs (Application Specific Integrated Circuits) and the high flexibility and low 
performance of general-purpose processors.  

The fault tolerance approaches in reconfigurable architectures differ in many 
aspects, such as fault type (transient or permanent faults); reconfiguration time 
(dynamic or static); targeted to yield enhancement or reliability increase; tolerance in 
logic blocks or interconnections; etc. Many of the approaches combine the different 
aspects to provide an efficient fault tolerance mechanism. For this reason, classifying 
the techniques in a specific category is very difficult and sometimes impracticable. 
Some works found in the literature divide the techniques between hardware level and 
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configuration level. The fault tolerance is considered hardware-level when the 
modifications in configuration targeted to fault tolerance are made during 
manufacturing or before device usage. On the other hand, configuration-level 
approaches implement the fault-tolerant techniques during the device lifetime, either at 
run-time or statically. We have chosen this classification as the way to present the 
techniques in this chapter. Later in this chapter, we summarize the techniques with their 
respective aspects presented in Table 8. 

6.2 Hardware-Level Fault Tolerance 
Hatori, Sakurai, Nogami, et al. (1993) were the first to propose a fault tolerance 

mechanism for yield enhancement of FPGAs, working at the early stages of circuit 
manufacturing. The approach consists in logically shifting the rows to avoid the faulty 
one. To shift the rows, first, the decoder for the row that has the faulty programming 
element is disabled and the spare row is enabled. Therefore, spare rows must be added 
to the design. In the experiments presented in (HATORI, SAKURAI, NOGAMI, et al., 
1993), one spare row is added. This allows tolerating only one faulty row. To allow 
interconnection between the spare rows and the fault-free ones, extra wiring segments 
are also added to the circuit. Figure 57 illustrates Hatori’s approach. 

 

Figure 57. Hatori, Sakurai, Nogami, et al (1993)’s fault-tolerant mechanism  

In Figure 57, a fault in one of the rows disables the decoder for the row and 
enables the spare row and extra wire segments in this row. The mechanism works in two 
steps. Firstly, a manufacturing test detects and diagnoses the faults. Then, the fault-
tolerant mechanism uses the spare rows to permanently bypass the faulty one. The 
authors claim that with two spare rows it is possible to achieve up to 80% of yield, 
which is around 2.5 times more than the yield of unprotected circuits. To achieve this 
yield, the area overhead is around 2% for row selection logic, and there is no significant 
are overhead for the additional wiring. Moreover, the use of the spare wire segments 
requires the programming of the connections between the wires. These connections are 
called programmable interconnect points (PIPs). According to the authors, the fault-
tolerant mechanism introduces a performance degradation of around 5% due to the 
programming of the extra PIPs. There is no reconfiguration overhead, since the 
approach works during manufacturing.  



 

 

95 

 

The main drawback of this approach is the fact that it only tolerates one fault per 
row. Furthermore, the fault-tolerant mechanism only tolerates logic faults, leaving 
interconnection faults uncovered. 

Howard, Tyrrel and Allison (1994) also proposed a fault-tolerant mechanism to 
increase yield of FPGA circuits. To reduce the reconfiguration overhead and increase 
fault coverage, the authors proposed to group the logical elements in blocks (sub-arrays) 
with individual memories and reconfigure each block individually. Therefore, instead of 
shifting individual logic elements or rows, the fault-tolerant mechanism shifts an entire 
block. This requires less extra interconnects and consequently the impact on overall 
performance is reduced. Figure 58 illustrates this mechanism. 

 

 
Figure 58. Howard, Tyrrel and Allison (1994)’s “blocking” mechanism  

 

In Figure 58, the programmable logic blocks are grouped in larger blocks. When a 
fault is detected in one of the programmable logic blocks, the entire block is invalidated 
and bypassed. Long wires allow communication between non-adjacent blocks, which 
will be used in case of bypassing a faulty block. To tolerate the faulty blocks, alternate 
configurations are pre-computed and stored in memory. According to the faulty block 
position and the targeted layout, the appropriate alternate configuration is loaded from 
the memory. 

The area overhead due to the addition of redundant blocks and routing elements is 
significant high when compared to redundancy in programmable logic blocks. The 
authors mention an increase of 47% overhead of redundant programmable logic blocks 
when 3 spare rows and columns of blocks are added in a 128x128 array. On the other 
hand, if instead of adding entire blocks, only three spare rows and columns of 
programmable logic blocks were added, the area overhead would be around 5%. 
Moreover, there is an 18% routing overhead.  

Despite the increase in area, the authors claim that the performance overhead due 
to the fault-tolerant mechanism is significantly reduced when compared to 
programmable logic block redundancy techniques. Furthermore, since the alternate 
configurations are pre-computed, the fault-tolerant strategy adds a minor impact on 
reconfiguration time.   
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6.3 Configuration-Level Fault Tolerance 
Hanchek and Dutt (1996) also proposed a fault-tolerant technique for yield 

enhancement that works at the manufacture. However, they show that the technique can 
be changed to work at runtime. The main contributions of Hanchek and Dutt’s 
technique are reconfiguration around faulty logic blocks (called cells) without the need 
to generate new routing maps and no need to add extra switches in the channel wiring. 
Nevertheless, additional wiring segments are required. With this technique, the authors 
proposed to eliminate the need to perform new routing every time a new faulty logic 
block is detected and to reduce area overhead by avoiding the addition of extra 
switches. The technique is based on the node-covering approach proposed in (DUTT 
and HAYES, 1992), and consists in adding a spare logic block, called cover cell, to 
replace the faulty one in a chain-like method, where the adjacent cell replaces the faulty 
one, which in turn is replaced by its adjacent, until the spare block is reached. The 
technique tolerates only faults in logic cells. Figure 59 illustrates the node-covering 
technique.  

 

Figure 59. Hanchek and Dutt (1996)’s node-covering mechanism  

 

To allow a cell to cover another cell, the cover cell must be able to replicate the 
functionality of the original one, as well as the connections to the rest of the array. Since 
the cells are identical, replicating the functionality is easily done through 
reconfiguration. Moreover, to replicate the connections, if possible, the fault-tolerant 
mechanism reuses wiring segments existent in the cover cell, otherwise, new cover 
segments must be added. In Figure 59.b, new segments were added (dashed lines) to 
allow the bypassing of the faulty cell and configure the remaining cells. 

The authors present an analysis of a 16×16 array yield comparing the proposed 
technique with two other fault-tolerant techniques and the architecture without any 
fault-tolerant technique. The two other techniques are the spare column technique and 
the spare row/column technique. The results indicated a significant yield improvement 
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when the node-covering technique was used. Moreover, when comparing to the other 
fault-tolerant techniques, the node-covering presented a higher yield improvement with 
the same area overhead of the spare column technique and 50% less area overhead than 
the spare row/column technique.  

Lach, Mangione-Smith and Potkonjak (1998) proposed to provide fault tolerance 
for time-constrained applications by eliminating the need of placement and routing 
before reconfiguration. The technique consists in dynamically tolerating faults by 
partially reconfiguring the FPGA to an alternate configuration that implements the same 
function while avoiding the faulty element. To ensure timing constraints, Lach’s 
strategy consists in partitioning the physical design into tiles with a reserved spare logic 
block in each tile, and reconfiguring only the tiles that present faulty resources. Each tile 
consists of a set of logic blocks and interconnection elements. By reconfiguring only a 
specific tile, they reduce reconfiguration time and therefore, are able to attain timing 
constraints. For local interconnections, interconnect faults are treated as a fault in the 
logic block connected to it. Figure 60 illustrates Lach’s approach.  

 
Figure 60. Tiling strategy proposed by (LACH, MANGIONE-SMITH and 

POTKONJAK, 1998) 

 

In Figure 60.a, a logic block in tile 1 is faulty. Because this logic block is assigned 
with a function, it is necessary to replace it for another fault-free logic block and assign 
the same function. In Figure 60.b, a fault-free logic block replaces the faulty one.  

To reconfigure around the faulty logic block, each tile has a set of alternate 
configurations, each one considering different fault location inside the tile. The alternate 
configurations are pre-computed and stored in the memory. Therefore, when a fault is 
detected the configuration that suits the fault location and interconnection constraints is 
loaded from memory. To replace the faulty logic block, spare logic blocks are added to 
the array. Lach’s technique tolerates only one fault per tile and is limited to logic 
blocks. 

To reconfigure around the faults, the technique relies on run-time reconfiguration. 
However, since all the configurations are pre-computed, the reconfiguration overhead is 
low and requires only loading the appropriate configuration from memory. Moreover, in 
this technique it is not necessary to reconfigure the entire FPGA, once the configuration 
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is specific to the faulty tile. This significantly reduces the reconfiguration time 
overhead.  

According to the authors, experimental results using a 6x2 tiles XILINX 4000 
FPGA presented a timing overhead between 14% to 45%, and a mean area overhead of 
5.4%. Moreover, the design with the mentioned overheads presented 98% reliability 
against less than 1% reliability without the tile technique. 

Lach, Mangione-Smith and Potkonjak (1999) presented an extended approach to 
handle faults in interconnection. The approach is the same applied to handle faults in 
logic blocks. Firstly, some routing resources are added as spare. Alternate 
configurations previously computed and stored are used to replace the original 
configuration. The alternate configurations have the same function implemented using 
different routing and logic elements. In this way, the faulty resources can be avoided. 
The drawback of the approach is tolerating only a limited amount of faults in each tile. 

Although reducing reconfiguration overhead by using pre-computed 
configurations is an important contribution of the proposed fault-tolerant solutions, the 
main drawback of this strategy is related to memory requirements and fault tolerance 
efficiency. To cover all possible faults in all possible locations, a large amount of 
configurations must be generated, consequently requiring a large memory to store all 
the configurations. If the memory is limited, the only solution consists in limiting the 
number of faults that can be tolerated, consequently reducing the efficiency of the 
technique.  

To cope with that, (ABRAMOVICI, STROND, HAMILTON, et al., 1999), 
(ABRAMOVICI, EMMERT and STROUD, 2001) and (EMMERT, STROUD and 
ABRAMOVICI, 2007) proposed an on-line test, diagnosis and fault tolerance 
mechanism to handle faults that occur during circuit lifetime. To work during circuit 
usage, the authors proposed a mechanism that works in part of the circuit that is off-line, 
while the rest of the circuit continues its normal operation. In this way, they can reduce 
the reconfiguration overhead since it is still possible to perform operations in other parts 
of the circuit. The area that remains off-line and is tested and reconfigured is called self-
testing area (STAR). When the test and reconfiguration is completed, the mechanism 
“roves” to another area and performs the same test, diagnostic and reconfiguration until 
the whole circuit has been scanned. The fault-tolerant strategy is illustrated in Figure 61. 

 
Figure 61. Roving STAR area approach proposed by (ABRAMOVICI, STROND, 

HAMILTON, et al., 1999) 
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Figure 61 illustrates the STARs roving across the FPGA to test and tolerate faults. 
In each step, the STARs are tested by a BIST-like approach and the faulty resources are 
tolerated using two different approaches. The first approach consists in using spare 
resources to replace faulty ones. The amount and distribution of spares is based on logic 
block utilization. Depending on the application utilization, the spare logic blocks are 
distributed in a way that each logic block has at least one adjacent spare block or each 
spare block is located no more than one logic block away. The second approach is 
called partially usable block and consists in using partially faulty logic elements. The 
faulty elements are tested in all possible operations and if there are operations that can 
be performed correctly in spite of the fault, these logic elements are still reused. The 
same strategy is also used for interconnection elements. If an interconnect resource is 
faulty, than it is possible to route through this faulty segment.  

To provide a more efficient fault tolerance, besides pre-computed alternate 
configurations, configurations can also be generated during run-time. According to the 
authors, this approach does not affect system operation because the configurations are 
computed for off-line resources, while the rest of the system is operating.  

According to the authors, the programmable logic blocks reserved as spares and 
interconnects required for the BIST technique impose an area overhead that is 
dependent on the total FPGA area and decreases when the area increases. For an FPGA 
with 20x20 programmable logic blocks, the overhead is around 19%. On the other hand, 
for a 40x40 FPGA the area overhead is 10%. To evaluate the performance overhead, the 
proposed technique was implemented in an ORCA 2C series FPGA (LATTICE 
SEMICONDUCTOR CORPORATION, 2012) and the performance was obtained by 
evaluating individual benchmarks. In (ABRAMOVICI, EMMERT and STROUD, 
2001), performance comparisons between the approach with and without pre-allocated 
spares are presented. For the tested benchmarks, the pre-allocated spares presented 
between 2.5% and 15.1% higher operating frequency than the non-allocated spares. 
However, performance comparisons between the FPGA with and without the proposed 
technique are not presented. Since roving from one area to another it is necessary to stop 
the clock, the authors also presented an analysis of the total time consumed by the clock 
interruptions, which is around 6.25% of the entire time. In relation to the fault-tolerant 
technique, the authors do not present analysis of the fault tolerance approach or 
reliability improvements. 

Lakamraju and Tessier (2000) proposed a fault-tolerant technique targeted to 
cluster-based FPGA architectures. In such FPGAs, clusters are composed of pairs of 
logic blocks (in this case look up tables - LUTs) and flip-flops, called basic logic 
elements (BLEs). Such as blocks in (HOWARD, TYRREL and ALLISON, 1994) and 
tiles in (LACH, MANGIONE-SMITH and POTKONJAK, 1998), the main goal of 
cluster-based FPGAs is reducing configuration overhead, since the clusters can be 
manipulated individually. The technique proposed by Lakamraju and Tessier tolerates 
faults in logic clusters or global interconnection, and depending on the fault location, a 
different strategy is used. For faults in logic clusters, the main solution consists in 
remapping some (or all) the LUT’s inputs to unused inputs in the same LUT. If this is 
not possible, the entire BLE is replaced by a spare one in the same cluster. Moreover, 
BLE replacement is also used when the fault affects resources outside the clusters, but 
still affects the clusters input, such as external input/output wiring and multiplexers. 
Figure 62 illustrates the BLE swap strategy, where the faulty BLE is replaced by the 
spare one. The strategy consists in simply using the multiplexer to select the spare BLE. 
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In case of global interconnections, the strategy consists in re-routing to an 
alternate route that still provides connection to the cluster. A special router is used in 
this strategy. To reduce timing overhead caused by the rerouting strategy, the technique 
uses information from the original circuit to create the new routes. 

 

Figure 62. Lakamraju and Tessier (2000)’s BLE swapping strategy 

 

According to the authors, fault injection tests applied in devices with 4 BLEs per 
cluster demonstrated that it was possible to recover from almost all the 10,000 cases of 
random single-fault injection. Moreover, the results also showed that the technique 
could cope with 500 simultaneous interconnection faults. To achieve these results, the 
technique presented a 20% area overhead for 4 BLEs/cluster when added two more 
cluster inputs and a spare BLE in each cluster. This overhead was reduced to 8% when 
the amount of BLEs per cluster increased to 8. 

Sinha, Kamarchik and Goldstein (2000) proposed a fault-tolerant strategy to 
tolerate faults that occurs in a coarse-grained reconfigurable architecture called 
PipeRench. Since PipeRench is also used as case study of this work, a more detailed 
description about the architecture and the fault tolerance strategy can be found in 
chapter 5. In summary, PipeRench consists of several processing elements connected to 
each other to form pipeline stages. The physical pipeline stages, called stripes, are 
combined with fast partial dynamic reconfiguration to provide hardware virtualization. 
A fault in a processing element is tolerated by setting the entire stripe as faulty. To 
bypass the stripe, the mechanism utilizes the register file of the processing elements. 
Additionally, each register file contains a spare register.  

Since the fault tolerance strategy implies in reducing the amount of available 
resources, the authors evaluated the performance degradation in two situations: 1) when 
the fault affects a processing element. In this case, the entire stripe is considered faulty 
and the fault-tolerant mechanism has to bypass this stripe. According to the authors, the 
performance degradation is 1 �v⁄ . Where �v is the number of available physical stripes 
that remains after the fault tolerance mechanism bypasses the faulty ones. 2) when the 
fault occurs in the interconnect line that connects the stripes. In this case, a performance 
degradation of 3 �v⁄  is perceived. The authors do not present any discussion about the 
efficiency of the fault tolerance strategy and system reliability. 
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6.4 The Proposed Approach 
In this work, we address the particular drawbacks of the aforementioned 

approaches by proposing an architectural analysis to improve fault tolerance in general 
architectures.  

Together with this analysis, we also present a fault-tolerant mechanism to increase 
reliability of a coarse-grained reconfigurable architecture. The main advantages of the 
proposed solution are: 

 
• Low time and area overhead fault-tolerant strategy: the strategy to tolerate 

permanent faults in the architecture was designed to cause the minimum impact 
on performance and area. This was possible because the strategy was included 
in the on-line configuration mechanism that transparently generates the 
configuration. Moreover, the mechanism does not require additional spare 
resources. 
o As opposed to (HATORI, SAKURAI, NOGAMI, et al., 1993), (HOWARD, 

TYRREL and ALLISON, 1994) and (HANCHEK and DUTT, 1996), our 
proposed fault tolerance approach is targeted to cope not only with yield 
enhancement but also with aging effects.  

o As opposed to (LACH, MANGIONE-SMITH and POTKONJAK, 1998), 
(LACH, MANGIONE-SMITH and POTKONJAK, 1999) and 
(LAKAMRAJU and TESSIER, 2000), our proposed solution generates the 
configuration during run-time. Therefore, it is not necessary to rely on pre-
computed configurations that do not comprise all possible faults, and require 
a large amount of memory. 

o As opposed to (ABRAMOVICI, STROND, HAMILTON, et al., 1999), our 
approach does not require turning off part of the device to apply the fault-
tolerant strategy and stop the clock. Our fault-tolerant strategy works at run-
time and does not add time overhead to the configuration mechanism. 

o As opposed to all fine-grained solutions, our approach uses a coarse-grained 
architecture, which reduces the time overhead required to reconfigure the 
system. 

In Table 8, we summarize the works in fault-tolerant reconfigurable architectures 
mentioned along this chapter. The works are categorized according to the 
reconfiguration time, if it was proposed to yield enhancement or reliability increase, the 
part of the architecture where the fault tolerance is applied, and the granularity. It is 
important to highlight that all the mentioned works address manufacturing defects 
and/or permanent faults, which is the same type of faults addressed by the proposed 
work. 
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Table 8. Reconfigurable architecture fault-tolerant solutions 

  Fault Type 
Reconfiguration 

time 
Goal Target Granularity 

  
Manufacturing 

defect 
Permanent 

Fault 
Static Dynamic Yield Reliability 

Functional 
Unit 

Interconnect   

(HATORI, 
SAKURAI, 
NOGAMI, et al., 
1993) 

x  x   x   X   
Fine-grained 

(HOWARD, 
TYRREL and 
ALLISON, 
1994) 

x  x   x   X   
Block-based  

(HANCHEK and 
DUTT, 1996) 

x¹   x   x   X   Fine-grained 

(LACH, 
MANGIONE-
SMITH and 
POTKONJAK, 
1998) 

 x   x   x   x 

Tile-based  

(LACH, 
MANGIONE-
SMITH and 
POTKONJAK, 
1999) 

 x   x   x   x 

Fine-grained 

(ABRAMOVICI, 
STROND, 
HAMILTON, et 

al., 1999) 

 x   x²   x X x 
Fine-grained 

(LAKAMRAJU 
and TESSIER, 
2000) 

 x   x   x x x Cluster-
based  

(SINHA, 
KAMARCHIK 
and 
GOLDSTEIN, 
2000) 

 x   x   x x x 
Coarse-
grained 

LOwER-FaT 
Array 

x x   x² x x x x Coarse-
grained 

¹Hanchek and Dutt proposed a solution to yield enhancement. However, they also 
mention the possibility of modifying the approach and using dynamic reconfiguration to 
tolerate permanent faults. 

²In all dynamic approaches, the alternate configurations are generated statically. The 
exceptions are Abramovici’s approach and LOwER-FaT array. The former, besides pre-
computed configurations, also generates configuration at run-time. The latter, generates 
all configurations at run-time.  
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7 CONCLUSIONS 

In this work, the design of fault-tolerant reconfigurable architectures targeted to 
increase reliability of future reduced feature size devices has been investigated. In order 
to do that, we have presented a reliability analysis based on a mathematical model that 
hierarchically connects each resource as a set of series and parallel subsystems. The 
reliability modeling is a powerful mechanism to evaluate the most critical resources to 
system reliability and provides a better direction towards fault tolerance investments 
and design modifications to improve reliability.  

7.1 Summary of Contributions 
In this section, the main contributions of the research work started in 2008 are 

presented.  

7.1.1 Reliability Model of Reconfigurable Architectures 

In this work, we have performed a comprehensive reliability analysis of two 
reconfigurable architectures.  

To perform the analyses, we have used a mathematical model together with the 
block diagram representation to describe the reconfigurable architectures. In the 
representation, each individual component is determined by a reliability function, called 
exponential failure law. Additionally, the components relate to each other forming 
subsystems that are hierarchically connected among each other.  

The analyses presented in this work demonstrated the validity of using this 
reliability model to represent reconfigurable architectures and to evaluate design 
modifications and fault tolerance solutions in order to improve reliability. 

7.1.2 Interconnection  

From the performed reliability analyses, we have found that the communication 
among functional units is the part of the architecture with highest impact on reliability. 

In terms of reliability model, the functional units are completely dependent on the 
elements that allow data moving throughout the architecture. The analyses have 
demonstrated that this is true not only for communication based on interconnection 
model, but also when the communication is provided by register files, which is the case 
when the register files are directly connected in each other.  

This means that the advantage of having several identical functional units that can 
work independently and in case of a fault, having their operations executed in another 
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functional unit, is diminished by the fact that the functional units have to rely on the 
communication elements to move data throughout the architecture.  

7.1.3 Limits on Reliability Improvement 

The analyses have also shown that there is a threshold in reliability improvement 
when hardware redundancy is used as solution.  

This conclusion was made based on the fact that adding hardware redundancy in 
the architecture, e.g. more multiplexers or more registers, directly affects the area. Since 
reliability is also function of area, if the subsystem where redundancy is being added 
has other subsystems or components that rely on it, the area increase may affect 
negatively on reliability. Furthermore, in many cases, to add redundancy implies in 
including extra components or indirectly increasing the area of other components that 
will become critical to reliability. For example, adding extra registers implies in 
increasing the amount of inputs in the multiplexers that select among the registers. 

7.1.4 Ad hoc solution 

The last conclusion based on the reliability analysis is related to the solutions to 
increase reliability.  

The analyses have demonstrated that there is no a general solution to increase 
reliability in reconfigurable architectures. Since there are many different designs, each 
one with a specific interconnection model and configuration strategy, it is not possible 
to find one single solution that will fit in all architectures. Even considering the fact that 
most architectures share a common characteristic: having several identical functional 
units connected by an ample interconnection model. 

Nevertheless, one conclusion is shared among the solutions analyzed: the 
communication among functional units is the critical point to reliability. Therefore, one 
should concentrate the investments in this part of the architecture.  

7.1.5 Fault-Tolerant Reconfigurable Architecture 

In the context of this thesis, we have proposed a fault tolerance approach to be 
implemented in a reconfigurable architecture used as case study.  

The LOwER-FaT (Low Overhead without Extra Redundancy Fault-Tolerant) 
mechanism transparently and at run-time generates the configuration considering only 
fault-free resources, avoiding the faulty ones. Moreover, to avoid increasing time and 
area overheads, the fault-tolerant strategy was kept as simple as possible. In the strategy, 
we exploited the regularity characteristic of the reconfigurable architecture and used the 
replicated resources as spare. Therefore, there is no need to add extra resources. For this 
reason, the number of available resources decreases as the number of fault resources 
increase, consequently introducing a performance penalty. Moreover, to avoid faulty 
functional units, the proposed strategy requires only the elimination of the faulty units, 
preserving all the good units. For faulty multiplexers, the approach proposes the 
elimination of functional units only if the faulty multiplexer selects one of the inputs to 
the respective unit. For all other cases, it is possible to bypass the multiplexer in an 
attempt to find another path between input and output. 

The fault-tolerant approach was implemented in the reconfigurable architecture 
simulator and fault injection simulations were performed to evaluate the performance 
degradation in function of the fault rate. The results presented a mean performance 
degradation of 14.75% in the execution of benchmarks under a 20% fault rate. This 
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result demonstrated that, in spite of the high fault rate, the LOwER-FaT array is still 
able to execute all applications and, with exception of one application, accelerate 
execution when compared to the processor’s execution. 

7.2 Proposed Research Topics for Future works 
In this section, we discuss some possible research topics that can be addressed as 

continuation to this work.  

7.2.1 Investigating different interconnect mechanisms 

The investigated solutions demonstrated that the communication mechanisms 
achieved high reliability only when a large amount of redundancy was applied. 
Consequently, significant area overhead was introduced in the solutions. Therefore, a 
potential research topic is the investigation of other interconnection models in order to 
find better solutions to improve system reliability.  

7.2.2 Extending reliability analysis to FPGAs 

Because of the particular characteristics of FPGAs, extending the reliability 
analysis to these fine-grained reconfigurable architectures requires considerations about 
the functional units and interconnects. 

The functional units in FPGAs, usually called programmable logic blocks, are 
composed of lookup tables (LUTs), which are 1-bit memory elements that implement 
truth tables where the combination of inputs generates an output based on the logic 
implemented by the truth tables (BROWN, FRANCIS, ROSE, et al., 1992). Because of 
this particular characteristic, first it is necessary to evaluate how to model the reliability 
of the lookup tables, as well as the reliability of the programmable logic blocks, which 
have several lookup tables and flip-flops. To connect all the look-up tables inside a 
logic block as well as all logic blocks, FPGAs present a dense and complex 
interconnection model that comprises most of the circuit’s area (BROWN, FRANCIS, 
ROSE, et al., 1992). Extending the reliability model to this type of interconnect also 
deserves a previous analysis to take into consideration the specific characteristics of this 
interconnection model and the solutions to increase reliability.  

7.2.3 Extending reliability analysis to other high performance architectures 

Differently from reconfigurable architectures, architectures such as VLIWs and 
super-scalars do not present such a complex interconnection model. This leads to some 
questions about what are the critical elements to reliability and what is the reliability 
degree of these architectures. These answers would help not only to make the 
appropriate investment to increase reliability considering the critical elements, but also 
could give some indications about what kind of architecture should be considered in a 
design targeted to reliability. 

7.2.4 Extending reliability analysis to MPSoCs with Reconfigurable Architectures 

Another advantage that the aggressively scaling has brought is related to the 
transistor density increase and consequently the higher integration capability of 
processors in one chip (HILL and MARTY, 2008). However, such as reconfigurable 
architectures, multiprocessor system-on-chip (MPSoCs) is also susceptible to the same 
reliability problems already discussed in this work, that are also a consequence of 
scaling.  
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Reconfigurable architectures and MPSoCs have in common the fact that both 
architectures have large amount of identical processing elements and a complex 
interconnection model. However, while reconfigurable architectures are at ALU or LUT 
granularity, MPSoCs are at processor level. 

Therefore, one can extend the reliability assessment presented in this work to 
investigate reliability of MPSoCs. In (PEREIRA and CARRO, 2011), we have 
presented a comparison between LOwER-FaT array and a MIPS-based MPSoC with 
area equivalence. In the comparison, we show that the reconfigurable architecture 
sustains performance even under a 20% fault rate, while all the cores of the MPSoC fail 
under 15% fault rate. For this reason, solutions to improve fault tolerance in MPSoCs 
are necessary. To allow a comprehensive study of possible solutions to improve 
MPSoC`s reliability, an analysis of different networks-on-chip (NoCs) should be 
performed. The analysis should take into consideration topology, routing algorithm, 
network traffic, etc.  

7.2.5 Extending LOwER-FaT array fault tolerance strategy to fine-grained 
reconfigurable architectures 

The main advantages of the fault tolerance strategy proposed in this work are the 
run-time replacement of faulty resources and the elimination of faulty functional units 
without the elimination of fault-free ones. Therefore, the fault tolerance approach can be 
extended to FPGAs, by using the partial dynamic reconfiguration capability available in 
commercial devices.  

In (PEREIRA, BRAUN, HÜBNER, et al., 2011), a collaboration with Karlsruhe 
Institute of Technology research group proposed the combination of the fault tolerance 
approach proposed in this work and a run-time dynamic resource instantiation technique 
proposed by (BRAUN and BECKER, 2010). However, the theoretical work did not 
present any quantitative analysis. Therefore, this work can be extended to FPGAs taking 
into consideration aspects such as area, performance, reliability, etc. 
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APPENDIX A - RELIABILITY RESULTS 

This appendix presents the reliability results for all cases analyzed in this work. 
The results are presented time (hours x 106) for two reliability values, 0.99999 and 0.96, 
and separated according to the respective section and figure legends.  

 

4.5.2.1 Reference reconfigurable architecture 

Figure 23. Reconfigurable array reliability - without fault tolerance 

  0.99999 0.96 

All Levels 0.000000008 0.00006 

60% Levels 0.000002672 0.02100 

 

4.5.2.2 LOwER-FaT array 

Figure 24. LOwER-FaT array reliability 

  0.99999 0.96 

All Levels 0.86 9.50 

60% Levels 0.86 9.50 

 

Figure 25. Spare output multiplexer strategy 

  0.99999 0.96 

No Spares 0.86 9.5 

30% Spares 21.34 89.8 

50% Spares 41.42 130.4 

80% Spares 78.51 192.2 

100% Spares 101.07 215.3 
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Figure 26. Spare output multiplexer strategy – reliability 

  0.99999 0.96 

300% Spares 101.2 128.0 

400% Spares 83.6 105.4 

500% Spares 71.2 89.7 

700% Spares 54.8 69.1 

 

Figure 27. Spare output multiplexer strategy – justification 

  0.99999 0.96 

RoutputMuxes - 100% Spares 101.1 225.0 

RinputMuxes  - 100% Spares 0.0005 3.0 

RoutputMuxes - 700% Spares 546.1 748.7 

RinputMuxes  - 700% Spares 0.0002 0.8 

 

Figure 29. Spare input multiplexer strategy 

  0.99999 0.96 

No Spares 101.2 128.0 

100% Spares 163.3 192.7 

300% Spares 211.0 238.0 

1500% Spares 246.0 282.0 

3100% Spares 177.3 223.0 

 

Figure 30. LOwER-FaT array reliability with spare multiplexers strategy – different 
technologies 

  0.99999 0.96 

90nm 211.0 238.0 

32nm 133.7 153.2 

18nm 74.5 85.3 

11nm 48.1 55.0 

 

4.5.2.3 Multistage Interconnection Network as Interconnection Model 

Figure 41. 16:1 Multiplexer-based model versus 16-input Omega network with 3 extra 
stages 

  0.99999 0.96 

Multiplexer-based model1 0.00001001 0.034 

Multiplexer-based model 2 61.01000000 75.000 

MIN-based model 11.01000000 38.300 
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Figure 43. Multiplexer-based architecture versus MIN-based  

  0.99999 0.96 

MIN-based architecture 0.00110000 4.69 

Multiplexer-based architecture 78.5000 192.1 

Only MIN 18.9000 39.6 

Only Multiplexer 78.5000 192.2 

 

5.4.2 Reliability Analysis 

Figure 53. PipeRench versus LOwER-FaT array 

  0.99999 0.96 

PipeRench - area equivalence 0.011 0.969 

PipeRench - ALU equivalence 0.040 3.200 

LOwER-FaT array 0.860 9.500 

 

Figure 54. PipeRench reliability analysis 

  0.99999 0.96 

Register Files subsystem 0.011 0.969 

Stripes subsystem 4.100 5.900 

PipeRench - area equivalent 0.011 0.969 

 

Figure 55. PipeRench reliability - spare registers 

  0.99999 0.96 

1 Spare 0.011 0.969 

100% Spares 3.800 5.600 

300% Spares 3.400 5.000 

700% Spares 2.940 4.100 

 

Figure 56. PipeRench without RF 

  0.99999 0.96 

PipeRench with RF 0.011 0.969 

PipeRench without RF 1.632 1.784 
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APPENDIX B - LOWER-FAT ARRAY WITH REDUCED 

AREA 

 

This appendix reproduces the reliability analysis for the LOwER-FaT array 
described in chapter 4, considering a architecture with smaller amount of functional 
units. The main goal of this study is to evaluate the reliability when the architecture 
presents a significant reduction in the amount of available units.  

The architecture analyzed next is around five times smaller than the architecture 
analyzed in chapter 4. To differentiate between both architectures, the reduced one is 
called LAC II and the one evaluated in chapter 4 is called LAC I. The description in 
amount of functional units is presented in Table 1. 

Table 1. Number of resources  

 LAC I LAC II 
ALU 459 68 
Load/Store 68 49 
Multiplier 34 1 
Input Multiplexer 16:1 1122 236 
Output Multiplexer 16:1 816 576 

 

The curves present next follow the same analysis presented in chapter 4. To allow 
a comparison between the two architectures, LAC I (presented in chapter 4) and LAC II 
(presented next), we designated the legend of the figures with the same description 
presented in the equivalent figure for LAC I architecture described in section 4.5.2. 

 Figure 1 presents the system reliability without fault tolerance approach. Figure 2 
presents the curves for the LAC II when the fault tolerance mechanism is in place. Both 
figures illustrated the architecture when all the functional units are in use (All Levels) 
and when only 60% of the architecture is in use (60% Levels). The remaining curves 
reproduce the same analysis presented in section 4.5.2, regarding the addition of spare 
interconnection elements. In Figure 3, we evaluated reliability improvement when spare 
output multiplexers were added to the architecture. As can be observed, the reliability 
increase starts to saturate and from 80% the reliability starts to decrease. This behavior 
is also observed when the amount of spares is extrapolated to 300% up to 700%. This is 
the same behavior observed with the LAC I architecture, demonstrated in Figure 25 and 
Figure 26. The reason for this behavior is the fact that in order to increase the amount of 
output multiplexers, it is necessary to increase the area of the input multiplexers that 
have as input the output multiplexers (Figure 10). 
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Following the same analysis presented in section 4.5.2, the next step consists in 
adding spare input multiplexer in an attempt to increase reliability. However, as 
demonstrated with the LAC I architecture, the reliability increase also saturates. The 
reason for this is the fact that extra input multiplexers must be added to select between 
the original multiplexer and the spares (Figure 28). This is demonstrated in Figure 5, 
where reliability decreases after the addition of 3100% spare input multiplexers (total of 
64 input multiplexers in each functional unit input). 

Finally, the last analysis consists in evaluating the reliability when considering 
different technologies. Once again, as already demonstrated with LAC I architecture, 
reliability decreases when technology shrinks. This is demonstrated in Figure 6, 
considering 300% spare output multiplexers and 1500% spare input multiplexers (the 
same amount of spares used in LAC I architecture - Figure 30). 

An overall analysis of the results demonstrates that, in spite of some different in 
the absolute results, the reliability curves for LAC II architecture behave the same way 
as the reliability curves for LAC I architecture. This result shows that, in spite of having 
a significant reduced amount of available resources, the ratio between the amount of 
interconnection elements and functional units remains the same. In other words, as long 
as the architecture relies on a large and complex interconnection model to send data 
throughout the architecture, this model will be the critical element to system reliability. 

 
Figure 1. Reconfigurable array reliability - without fault tolerance 
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Figure 2. LOwER-FaT array reliability 

 

Figure 3. Spare output multiplexer strategy 
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Figure 4. Spare output multiplexer strategy – reliability saturation 

 

Figure 5. Spare input multiplexer strategy 
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Figure 6. LOwER-FaT array reliability with spare multiplexers strategy – different 

technologies 
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APPENDIX C - BRIEF OVERVIEW IN PORTUGUESE 

Este apêndice apresenta uma descrição resumida em língua portuguesa da tese 
descrita nesse documento. A descrição em português consiste de um resumo de toda a 
obra com os principais tópicos abordados na tese e com uma descrição das 
contribuições e conclusões do trabalho. As figuras e resultados apresentados são os 
mesmo descritos na versão em inglês do documento e são apenas parte do que foi obtido 
durante a pesquisa dessa tese.  

Introdução 
A evolução na pesquisa dos semicondutores tem feito várias contribuições para o 

processo de fabricação. Os esforços para atender a demanda e reduzir o custo de 
fabricação podem ser concentrados em aumentar o rendimento (yield) e melhorar o 
desempenho dos equipamentos, aumentar o tamanho do wafer, entre outras estratégias. 
Porém, a principal contribuição para reduzir o custo de fabricação é a redução do 
tamanho do circuito.  

A miniaturização dos circuitos permite a inclusão de mais dispositivos em um 
wafer, com o aumento do desempenho do dispositivo. Em nano escala, é possível 
fabricar elementos lógicos com funcionalidade universal, como arrays programáveis, 
núcleos de memórias e interconexões programáveis.  

Apesar disto, a redução proporcionada pelo processo de miniaturização também 
leva a altas densidades de falhas1. Em nanowires, por exemplo, a redução do diâmetro 
dos fios torna-os mais frágeis e suscetíveis a quebras. Além disso, como as áreas de 
contato entre os fios e os dispositivos também é reduzida, fica mais difícil garantir a 
integridade do contato, o que torna os circuitos mais suscetíveis a falhas no processo de 
fabricação. Isso implica em taxas de falhas muito altas que devem ficar entre 1% e 15% 
para fios e conexões. 

Técnicas de redundância tradicionais que usam replicação podem ser 
extremamente custosas, não apenas por causa da grande quantidade de área necessária 
para tolerar altas densidades de falhas, mas principalmente pela excessiva dissipação de 
potência que essas técnicas introduzem. Uma solução para restringir os custos de 
potência e área das técnicas de redundância clássicas é o uso de partes ativas do circuito 
para substituir os recursos com falhas. Entretanto, uma consequência dessa solução é 
uma degradação de desempenho causada pela redução dos recursos disponíveis. 

                                                
1 Neste texto a palavra "falha" foi usada com sentido de fault. Apenas quando explicitado, falha terá o 
sentido de failure. 
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Assim, existem duas soluções principais para lidar com o projeto de processadores 
usando novas tecnologias. A primeira é modificar e melhorar o processo de litografia, 
mas esta ainda é uma área em desenvolvimento e muitas modificações complexas serão 
necessárias. A segunda é adaptar a arquitetura para que esta continue executando 
aplicações mesmo com altas densidades de defeitos. 

Arquiteturas reconfiguráveis são possíveis candidatas para tolerância a falhas. 
Uma vez que a lógica reconfigurável geralmente consiste de diversos elementos 
idênticos, essa regularidade pode ser explorada para substituir os recursos com falha 
sem a necessidade de adicionar recursos extras e a capacidade de reconfiguração pode 
ser utilizada para alocar apenas os recursos livres de falhas. Além disso, a degradação 
de desempenho causada pelo uso de recursos operacionais para substituir os recursos 
com falha pode ser amortizada pelo alto desempenho atingido por essas arquiteturas. 
Adicionalmente, a reconfiguração dinâmica pode ser usada para evitar a necessidade de 
parar o sistema no momento da substituição de recursos, uma vez que a configuração é 
gerada e realizada em tempo de execução, sem comprometer o desempenho. 

Baseado nisso, o foco desse trabalho consiste em buscar soluções de tolerância a 
falhas, mais especificamente de redundância de hardware, com o objetivo de aumentar a 
confiabilidade de arquiteturas reconfiguráveis, levando em consideração o impacto na 
área e no desempenho do sistema quando a redundância é aplicada.  

As seções a seguir apresentam de forma resumida as principais contribuições 
desse trabalho e uma breve descrição do principal estudo de caso utilizado nessa tese e 
os resultados obtidos durante a pesquisa. 

Contribuições 
Considerando todas as motivações mencionadas anteriormente, esse trabalho 

apresenta três contribuições principais. A primeira contribuição consiste em determinar 
que existe um limite na quantidade de redundância de hardware que pode ser adicionada 
as arquiteturas reconfiguráveis de forma a aumentar a confiabilidade. Dependendo de 
onde e quanta redundância é aplicada ao sistema, isto pode impactar negativamente, e 
até mesmo reduzir a confiabilidade. Esse limite está relacionado ao custo de área que é 
introduzido quando a redundância de hardware é aplicada. Por essa razão, uma análise 
compreensiva deve ser realizada para encontrar a melhor estratégia de redundância para 
aumentar a confiabilidade. 

A segunda contribuição desse trabalho é identificar qual parte da arquitetura 
reconfigurável deve ser investida de forma a aumentar a confiabilidade. Existe um 
consenso na comunidade de pesquisa de arquiteturas reconfiguráveis que o modelo de 
interconexão é crítico para o sistema em muitos aspectos, como área, potência e 
tolerância a falhas. Em alguns aspectos, essa consideração geral é baseada em análises 
críticas como o resultado de vários estudos práticos realizadas ao longo de muitos anos 
de pesquisa. Esse é o caso dos aspectos de área e potência. Entretanto, em relação a 
tolerância a falhas, não existe um estudo abrangente que leve em consideração todas as 
características da arquitetura e quantifique exatamente em quanto o modelo de 
interconexão influencia o confiabilidade da arquitetura em questão. Nesse sentido, esse 
trabalho apresenta uma análise detalhada de arquiteturas reconfiguráveis, estimando o 
impacto do modelo de interconexão na confiabilidade do sistema. Nessa análise, nós 
mostramos que as interconexões são de fato os elementos críticos para a confiabilidade 
do sistema. Nós também discutimos alternativas para superar esse problema e continuar 
aumentando a confiabilidade. 
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A terceira contribuição está relacionada com os meios utilizados para alcançar as 
primeiras duas contribuições. Para realizar uma análise de confiabilidade compreensiva, 
nós propomos o uso de uma modelagem de confiabilidade combinada com a análise de 
outros aspectos, como área e desempenho. para modelar a arquitetura reconfigurável, 
nós propomos o uso de uma representação matemática onde cada componente da 
arquitetura apresenta uma confiabilidade individual. Adicionalmente, a confiabilidade 
total do sistema é uma função das confiabilidades de todos os componentes que 
compõem o sistema. A análise é voltada para avaliar os efeitos das falhas permanentes 
na arquitetura e encontrar a melhor estratégia para atenuar os efeitos das falhas de forma 
a permitir o uso do dispositivo. 

Portanto, a análise tem o objetivo de auxiliar o projeto de arquiteturas 
reconfiguráveis confiáveis dando algumas indicações sobre o tipo de investimento e 
onde este deve ser feito. Consequentemente, encontrando a melhor estratégia para o 
projeto de uma arquitetura confiável e evitando alto custo de área, desempenho e/ou 
potência. 

No contexto desse trabalho, nós também propomos uma nova estratégia de 
tolerância a falhas implementada em uma arquitetura reconfigurável. Essa estratégia 
dinamicamente gera a configuração através da seleção de recursos livres de falhas para 
executar as operações. A estratégia explora a regularidade da arquitetura reconfigurável, 
evitando a inclusão de recursos extras somente para tolerância a falhas. Portanto, nessa 
abordagem, todas as unidade funcionais são usadas para acelerar execução, e somente 
quanto uma falha afeta um recurso, este recurso é eliminado.  

Modelagem de Confiabilidade 
Confiabilidade é a probabilidade que um sistema trabalhe corretamente durante 

um período de tempo sob condições específicas. Em outras palavras, confiabilidade é a 
medida que indica por quanto tempo o sistema pode trabalhar corretamente mesmo 
quando falhas afetam partes do seu sistema. 

Técnicas de tolerância a falhas implementadas em sistemas computacionais 
impactam diretamente na confiabilidade. Um sistema tolerante a falhas é capaz de tomar 
ações para prevenir que as falhas levem a erros e consequentemente a total falha (aqui 
falha tem o sentido de failure) do sistema que afeta o funcionamento correto do sistema. 
Portanto, o sistema pode trabalhar corretamente por um período de tempo maior apesar 
das falhas. 

Para descrever a confiabilidade do sistema é necessário modelar esse sistema 
levando em consideração alguns aspectos importantes relacionados ao projeto do 
sistema e as características físicas que influenciam a probabilidade de falhas. 

Dessa forma, duas informações essenciais devem ser incluídas para garantir uma 
descrição correta do sistema. A primeira informação consiste na descrição dos 
componentes e do relacionamento entre esses componentes. Nesse trabalho, nós 
descrevemos os componentes e os relacionamentos utilizando a representação de 
diagrama de blocos. Como o nome indica, os componentes são representados por blocos 
e o relacionamento entre blocos representam a forma que os componentes se conectam 
uns com os outros no sistema. Além disso, também é necessário especificar a lei de 
probabilidade que governa as falhas. Para dispositivos eletrônicos, a lei de 
probabilidade adotada consiste em uma distribuição exponencial de falhas chamada lei 
exponencial de falhas (exponential failure law), que é função da taxa de falhas (λ) e do 
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tempo. A taxa de falhas descreve a quantidade de erros que irão ocorrer no tempo. É 
uma constante determinada pelo modelo do dispositivo, que leva em consideração 
parâmetros que descrevem as condições físicas e operacionais no dispositivo, e as 
condições ambientais em que o dispositivo opera. A função que define a lei exponencial 
de falhas é descrita na equação (1). 

���� = ��	
.																																																																																																																																			�1� 
Um sistema eletrônico consiste de vários componentes eletrônicos independentes, 

cada um com uma confiabilidade diferente determinada pela equação (1). A 
confiabilidade total do sistema é função das confiabilidades de todos os componentes 
eletrônicos que compõem o sistema. 

Após definir a confiabilidade individual dos componentes, é necessário 
determinar suas conexões uns com os outros. Na representação de diagrama de blocos, 
cada componente é representado com um bloco e as conexões entre os componentes são 
representadas pelas arestas.  

Em um sistema sem redundância, todos os componentes são essenciais para o 
funcionamento adequado do sistema. Para representar este relacionamento, os 
componentes são conectados por uma única aresta, formando a conexão em série. 
Sistemas compostos por conexão em séries são chamado sistemas em série. Por outro 
lado, quando redundância de hardware é adicionada para aumentar a confiabilidade do 
sistema, os componentes redundantes não são essenciais para a correta operação do 
sistema. Para representar isto, os componentes são conectados entre si de forma 
paralela, formando um sistema paralelo. A terceira e última representação também 
usada em sistemas redundantes descreve a situação quando de todos os componentes, 
apenas uma parte deles é necessária para o correto funcionamento do sistema. Esse é 
chamado sistema k-de-m (k-out-of-m), onde m é o número total de componentes e k é o 
número de componentes necessários. Para um sistema totalmente paralelo k=1, e para 
um sistema em série k=m. A Figura 1 ilustra os dois primeiros tipos de sistemas, onde 
Figura 1.a representa o sistema em série, Figura 1.b representa o sistema em paralelo, 
respectivamente. Devido a particularidade do sistema k-de-m, este não possui 
representação gráfica. Além disso, as funções de confiabilidade que descrevem os três 
sistemas, série, paralelo e k-de-m, são descritas nas equações (2), (3) e (4), 
respectivamente. 

 

 

 

 

 
 

 

a) Exemplo de sistema em série b) Exemplo de sistema em paralelo 

Figura 1. Representação de diagrama de blocos  
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Onde R vem do nome em inglês reliability, n é o número total de componentes 
nas equação (2) e (3), m é o número total de componentes na equação (4) e por fim, k é 
o número de componentes necessários na equação (4). 

A função de confiabilidade de sistemas complexos é definida pela combinação de 
vários subsistemas que podem estar em série, paralelo ou k-de-m.  

Na seção seguinte é apresentada a arquitetura reconfigurável utilizada como 
principal estudo de caso desse trabalho, bem como o seu modelo de confiabilidade. 

Arquitetura Reconfigurável 
O sistema reconfigurável consiste de uma arquitetura reconfigurável de 

granularidade grossa fortemente acoplada a um processador MIPS R3000; um 
mecanismo para gerar a configuração e a memória de reconfiguração que armazena a 
configuração. A Figura 2 ilustra o sistema reconfigurável representado em diagrama de 
blocos. 

 

Figura 2. Sistema Reconfigurável 

A arquitetura reconfigurável é um circuito combinacional formado por três grupos 
de unidades funcionais: o grupo de unidades de lógica e aritmética (ULA), o grupo de 
unidades de armazenamento (load/store) e o grupo de unidades de multiplicação. A 
Figura 3 apresenta o diagrama de blocos da arquitetura reconfigurável. 

MIPS 
R3000

Gerador de 
Configuração

Memória de 
Configuração

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

L
/
S

L
/
S

M
U
L
T

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

L
/
S

L
/
S

M
U
L
T

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

U
L
A

L
/
S

L
/
S

M
U
L
T

M
U
L
T

M
U
L
T

M
U
L
T

Nível 3

Nível 2

Nível 1



 

132

 
Figura 3. Arquitetura Reconfigurável 

É importante ressaltar que cada grupo de unidades funcionais pode ter um tempo 
de execução diferente, que depende da tecnologia e da estratégia de implementação. 
Baseado nisso, nesse trabalho, o grupo de ULAs pode executar até três operações em 
um ciclo de processador, enquanto os outros dois grupos executam uma operação cada 
em um ciclo de processador. Para diferenciar o ciclo do processador do ciclo da 
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arquitetura reconfigurável, este último é chamado de nível. Os diferentes tempos de 
execução apresentados por cada grupo de unidades funcionais permite a execução de 
mais que de uma operação por nível. Portanto, a arquitetura reconfigurável pode 
executar até três operações lógicas e/ou aritméticas que apresentam dependência de 
dados entre si em apenas um ciclo. Essa característica da arquitetura permite que a 
mesma acelere a execução de código sequencial, quando comparado com a execução no 
processador MIPS R3000. 

LOwER-FaT Array 
Para poder aumentar a confiabilidade da arquitetura reconfigurável apresentada na 

seção anterior, nesse trabalho foi proposto um mecanismo de tolerância a falhas para 
evitar que falhas em unidades funcionais e elementos de interconexão afetem a 
execução correta do sistema. 

O objetivo do mecanismo é explorar a redundância intrínseca da arquitetura 
reconfigurável através do uso de unidades funcionais e interconexão operantes para 
substituir os recursos com falha. Nessa abordagem não é necessário adicionar recursos 
extras específicos para tolerância a falhas. Com isso, em uma situação em que não 
existam falhas, todas as unidades funcionais são usadas para acelerar a execução da 
aplicação e somente em caso de falha, uma unidade funcional e/ou elemento de 
interconexão é substituído. Além disso, a capacidade de reconfiguração da arquitetura é 
explorada para mudar a alocação de recursos baseado nos recursos com falha, e a 
reconfiguração dinâmica é utilizada para gerar uma nova configuração em tempo de 
execução. Portanto, falhas de envelhecimento que ocorram durante a vida útil do 
dispositivo também podem ser toleradas. 

Para exemplificar como o mecanismo de tolerância falhas funciona, a Figura 4 
apresenta um exemplo de alocação de recursos na arquitetura reconfigurável. A Figura 
4.a ilustra o grafo de dependência de dados que deve ser executado pela arquitetura. 
Para alocar as instruções nas unidades funcionais, inicialmente é buscada a primeira 
unidade funcional disponível. Como pode ser observado na Figura 4.b, a primeira fileira 
de unidades funcionais tem apenas uma unidade funcional disponível, e as demais com 
falha (representadas com um X). Neste caso, apenas a primeira instrução é alocada na 
primeira fileira, e as instruções seguinte são alocadas nas próximas fileiras. Uma vez 
que as instruções 2, 3 e 4 podem ser executas em paralelo, todas são alocadas na 
segunda fileira. Por outro lado, a instrução 5 que depende do resultado das instruções 1 
e 2, deve ser alocada na fileira acima da instrução 2. Bem como a instrução 6, que 
depende da instrução 5 e, consequentemente, deve ser alocada na fileira seguinte. Já a 
instrução 7, que depende das instruções 3 e 4, pode ser alocada na mesma fileira da 
instrução 5. Por fim, a instrução 8 é alocada na última fileira, pois esta depende do 
resultado da instrução 6. 



 

134

 

Figura 4. Exemplo de alocação de instruções com mecanismo de tolerância a falhas 

 

Resultados 
Baseado nas descrições da arquitetura reconfigurável e do mecanismo de 

tolerância a falhas, o modelo de confiabilidade do sistema reconfigurável foi gerado. A 
partir desse modelo, descrito no capítulo 4 desse documento, diversos estudos de 
confiabilidade foram realizados. O objetivo dos estudos foi de avaliar quais as 
estratégias de redundância de hardware mais adequadas para aumentar a confiabilidade, 
levando em consideração o custo de área, quando novos componentes foram 
acrescentados. 

A Figura 5 apresenta a curva de confiabilidade em função do tempo da arquitetura 
reconfigurável com e sem o mecanismo de tolerância a falhas (Figura 5.a e Figura5.b 
respectivamente). Os resultados obtidos nessa comparação apresentaram uma diferença 
de 8 ordens de magnitude entre os resultados, demonstrando um grande aumento da 
confiabilidade quando o mecanismo de tolerância a falhas é adicionado a arquitetura. 
Esse resultado pode ser visto nos gráficos ao observar o eixo do tempo que apresenta 
escalas diferentes. 

b) Alocação de intruções na arquitetura com falhas
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Figura 5.a) Confiabilidade da arquitetura reconfigurável sem tolerância a falhas 

 

Figura 5.b) Confiabilidade da arquitetura reconfigurável com tolerância a falhas 

Outro resultado relevante, também apresentado no capítulo 4, consiste na 
confiabilidade da arquitetura reconfigurável estimada para diferentes tecnologias. Nessa 
análise, além do mecanismo de tolerância a falhas também foram acrescentadas mais 
interconexões para substituírem as interconexões com falha. Essa estratégia foi 
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resultado de um estudo abrangente que avaliou diversas estratégias de redundância, e 
possibilitou identificar a quantidade de redundância ideal para ser acrescentada na 
arquitetura de forma a maximizar a confiabilidade. Para a obtenção da confiabilidade 
apresentada reproduzida na Figura 6 foram acrescentados 300% de multiplexadores de 
saída e 1500% de multiplexadores de entrada. A partir do resultado apresentado na 
Figura 6 também é possível observar que a redução do tamanho do circuito integrado 
para tecnologias menores está de fato impactando de forma negativa na confiabilidade. 

 

Figura 6. Confiabilidade da arquitetura reconfigurável para tecnologias diferentes 

Outros resultados de confiabilidade incluindo o estudo de um modelo de 
interconexão alternativo ao modelo de barramento e multiplexador, além da análise de 
outra arquitetura reconfigurável de granularidade grossa podem ser encontrados nos 
capítulos 4 e 5 desse documento. 

Conclusões 
Esse trabalho investigou o projeto de arquiteturas reconfiguráveis tolerantes a 

falhas visando aumentar a confiabilidade e considerando o aumento da taxa de falhas 
esperado para tecnologias do futuro com tamanho do transistor reduzido. Para tal, foi 
apresentada uma análise de confiabilidade baseada em um modelo matemático que 
hierarquicamente conecta cada recurso como um conjunto de subsistemas, onde cada 
subsistema possui sua própria confiabilidade.  

A modelagem de confiabilidade é um poderoso mecanismo para avaliar os 
recursos mais críticos para a confiabilidade do sistema e permite o direcionamento dos 
investimentos e modificações no projeto do hardware de forma a aumentar a 
confiabilidade e levando em consideração custos como área, desempenho, dentre outros. 

Dentre as principais contribuições desse trabalho destacam-se a utilização de um 
modelo de confiabilidade para estudar a confiabilidade de arquiteturas reconfiguráveis; 
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a identificação dos elementos de interconexão como parte mais crítica na confiabilidade 
de arquiteturas reconfiguráveis; a descoberta de um limite de redundância de hardware 
que pode ser acrescentada para aumento de confiabilidade; a conclusão de que não 
existe uma solução genérica que pode ser aplicada a todas as arquiteturas e por fim, a 
proposta de um mecanismo de tolerância a falhas para a arquitetura reconfigurável 
utilizada como principal estudo de caso desse trabalho. 

Dentre os tópicos de pesquisa futuros que podem dar continuidade a esse trabalho 
estão a investigação de diferentes modelos de interconexão visando encontrar modelos 
mais confiáveis para arquiteturas reconfiguráveis. Aplicar a modelagem de 
confiabilidade para arquiteturas reconfiguráveis de granularidade fina (FPGAs - Field 

Programmable Gate Arrays) com o objetivo de avaliar a confiabilidade desse tipo de 
arquitetura. Estender a análise de confiabilidade para outras arquiteturas de alto 
desempenho, como arquiteturas VLIW (Very Long Instruction Word) e super-escalares, 
de forma a avaliar qual das arquiteturas apresenta uma melhor relação confiabilidade 
versus desempenho. Aplicar a modelagem de confiabilidade para o estudo da 
confiabilidade de arquiteturas multiprocessadas, como MPSoCs (Multiprocessor 

System-on-Chip) bem como o modelo de interconexão utilizado nessas arquiteturas, 
como rede em chip (NoC - network on chip). E implementar a arquitetura 
reconfigurável e o mecanismo de tolerância a falhas proposto como estudo de caso 
desse trabalho em FPGA. 


