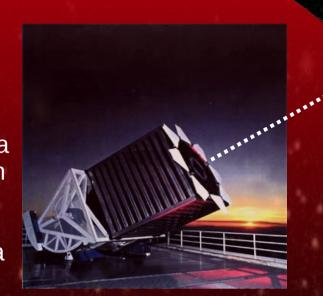
Estudo das cores de anãs brancas observadas pelo Sloan Digital Sky Survey

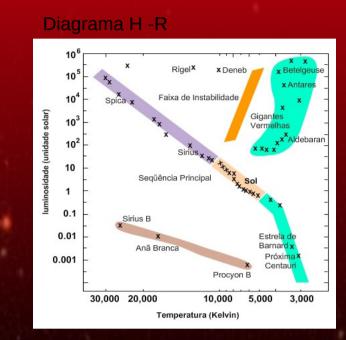
Instituto de Física - UFRGS


Vinicius Beltram Tergolina, J. E. S. Costa


(Bolsista IC FAPERGS)

(Orientador)

Introdução

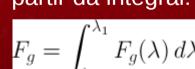

O projeto Sloan Digital Sky Survey (SDSS) obteve o espectro de milhares de estrelas anãs brancas. Independentemente, o Sloan também realizou medidas fotométricas nas bandas u, g, r, i e z. Comparando o espectro de uma estrela com espectros teóricos obtidos a partir de modelos para atmosferas de anãs brancas pode-se obter a temperatura T e a gravidade Log(g) superficiais da estrela. A temperatura e a gravidades superficiais também podem ser obtidas a partir da comparação das medidas das cores (u-g), (g-r), (r-i) e (i-z) com as cores calculadas a partir dos mesmo modelos teóricos. Entretanto, os valores obtidos para T e Log(g) a partir da espectroscopia e da fotometria (por cores) nem sempre são consistentes entre si.

Anãs Brancas

Anãs Brancas são
estrelas compactas
remanescentes da
evolução de estrelas de
até 10 massas solares,
possuem tamanho
comparável ao da Terra
e massas típicas ao
redor de 0,6 massas
solares.

Fotometria e Espectroscopia no SDSS

A câmera do Sloan possui uma resolução de 120 megapixels e é composta por **30 CCDs**, cada uma das 5 colunas de 6 CCDs (imagem à direita) recebe luz de um objeto filtrado por um dos 5 filtros do sistema **UGRIZ** assim, é feita a fotometria das cores do objeto.


Já na na espectroscopia, o telescópio capta a luz de 640 objetos simultaneamente e, por um sistema de **fibras óticas** (imagem à esquerda), as envia a dois espectrógrafos compostos por prismas que decompões a luz de cada objeto para obter seus **espectros eletromagnéticos**.

O objetivo principal deste trabalho é utilizar cores para a determinação de T e Log(g) de anãs brancas do tipo DA observadas pelo Sloan Digital Sky Survey.

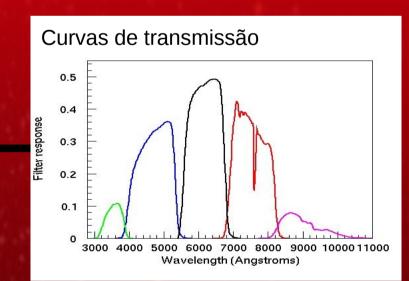
Procedimento

Primeiro:

A curva de transmissão do filtro g foi aplicada a cada espectro observado gerando o espectro "filtrado". O fluxo total F_g para o filtro g foi calculado a partir da integral:

Espectro eletromagnético

1.6e-15


1.2e-15

1e-15

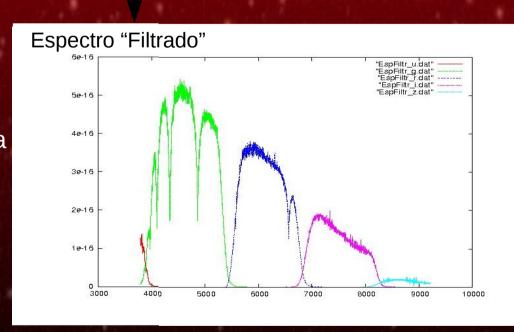
8e-16

4e-16

2e-16

A constante de calibração C_g foi calculada para aproximadamente **2200 estrelas** para assim obtermos seu valor médio e seu desvio padrão.

Filtro	Constante de Calibração	Desvio Padrão
u	- 15.9467	0.3435
g	- 13.9679	0.0896
r	- 14.4136	0.0912
i	- 15.0810	0.1411
Z	- 17.5509	0.3072

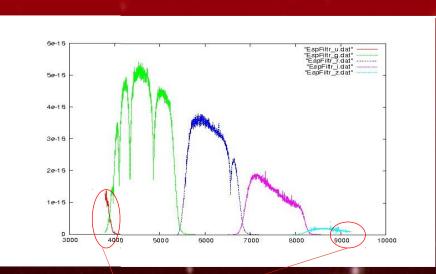

As constantes de calibração para os outros filtros foram calculadas pelo mesmo processo.

Depois, a partir do fluxo total na banda g, pode-se calcular a magnitude m_{g_i} desde que a constante de calibração C_g seja conhecida, utilizando a equação abaixo:

$$m_g = -2.5log(F_g) + C_g$$

Neste trabalho, a constante de calibração C_g foi calculada empiricamente a partir das magnitudes m_g medidas pela **fotometria do Sloan**, rearranjando a equação acima:

$$C_g = 2.5 log(F_g) + m_g$$


(Tabela, Constantes de calibração)

Todos os cálculos vistos aqui foram realizados utilizando programas em linguagem C desenvolvidos especialmente para este fim.

Limitações na espectroscopia

O Sloan realiza medidas fotométricas nas bandas u, g, r, i e z. A espectroscopia do Sloan se estende de 3800 a 9200 Angstrons. Como se pode ver, na imagem ao lado, a região correspondente à banda u não é totalmente coberta pela

espectroscopia do Sloan. O mesmo ocorre em menor escala com a banda z. Isto deve ser levado em conta no cálculo das constantes de calibração.

Cortes no espectro "fltrado"

Resultados Preliminares

Com as constantes de calibração, calculamos as cores para um conjunto de espectros de modelos de atmosferas de anãs brancas DAs para diferentes valores de T e Log(g). Dando continuidade a estre projeto, utilizaremos esta tabela de

para diferentes valores de T e Log(g). Dando continuidade a estre projeto, utilizaremos esta tabela de cores para determinar, através de comparações, a temperatura de T e Log(g) para estrelas anãs brancas DAs observadas pelo Sloan.

Modelos T, Log(g)	u-g	g-r	r-i	i-z
47500 K, 8.75 N	- 1.5564	- 0.5336	- 0.3479	- 0.0423
47500 K, 9.00 N	- 1.5599	- 0.5315	- 0.3469	- 0.0425
14800 K, 9.75 N	- 1.2297	- 0.2011	- 0.1961	0.0337
14900 K, 10.0 N	- 1.2555	- 0.2021	- 0.1922	0.0335
10250 K, 5.00 N	- 0.5390	- 0.2459	- 0.1842	0.1215
10250 K, 5.25 N	- 0.5571	- 0.2337	- 0.1808	0.1165

(Alguns exemplos)