

Otimização da extração de β-cariofileno a partir de nanoemulsões contendo óleo de copaíba (Copaifera

multijuga Hayne) por meio de microextração em fase sólida acoplada à cromatografia gasosa (SPME-GC)

Mariana Colombo¹, Daiane de O. Dias¹, Valdir F. Veiga Jr. ², Renata P. Limberger³, Letícia S. Koester¹

¹Laboratório de Desenvolvimento Galênico-UFRGS, ²Departamento de Química-UFAM

³Laboratório de Toxicologia- UFRGS

INTRODUÇÃO

óleo de copaíba, extraído de árvores do gênero Copaifera, possui diversas propriedades farmacológicas, sendo amplamente utilizado na medicina popular como antiinflamatório. Estudos recentes têm demonstrado que a atividade antiinflamatória do óleo de copaíba pode ser devido ao alto teor de β -cariofileno, o sesquiterpeno mais comumente encontrado, principalmente na espécie Entretanto, Copaifera multijuga Hayne. baixa hidrossolubilidade acarreta dificuldades quanto a sua incorporação em formas farmacêuticas de uso tópico. Neste contexto, as nanoemulsões podem ser consideradas como um potencial sistema para administração tópica deste óleo. O objetivo deste trabalho foi otimizar e validar um método por SPME-GC para a quantificação do β-cariofileno em nanoemulsões de óleo de copaíba produzidas homogeneização à alta pressão.

METODOLOGIA

1) Preparação das nanoemulsões

Duas formulações foram preparadas (Nanoemulsão #1 e Nanoemulsão #2).

As fases oleosa e aquosa foram misturados sob agitação magnética (5 minutos, à temperatura ambiente) para obter uma emulsão grosseira. Depois, foram individualmente submetidos à homogeneização à alta pressão (EmulsiFlex-C3®, Avestin, Canadá) por 12 ciclos a 750 bar.

Tabela 1. Constituição das nanoemulsões

	Componentes	Nanoemulsão #1	Nanoemulsão #2
Fase Oleosa	Óleo de copaíba	10%	5%
	TCM	-	5%
	Span 80	1%	1%
Fase Aquosa	Polissorbato 20	2%	2%
	Água mili-Q	q.s.p.	q.s.p.

2) Otimização dos parâmetros da extração

A análise do β-cariofileno foi realizada por microextração em fase sólida, modo "headspace", acoplada a cromatografia gasosa com detector de ionização de chama (HS-SPME-GC-FID), onde diferentes condições de extração foram avaliadas através de planejamento fatorial Box–Behnken 3³, variandose: tempo de extração, temperatura da amostra durante a extração e efeito da força iônica.

3) Validação do método analítico

A validação foi realizada segundo diretrizes da legislação brasileira vigente (Brasil, 2003) e internacional (ICH, 2005). Foram avaliados os parâmetros de linearidade, limites de detecção (LOD) e quantificação (LOQ), precisão e robustez.

RESULTADOS E DISCUSSÃO

As nanoemulsões #1 e #2 apresentaram tamanho de partícula de 140 nm e 120 nm, respectivamente. As melhores condições para a extração de β-cariofileno foram: 45 ° C, 20 minutos e sem adição de NaCl.

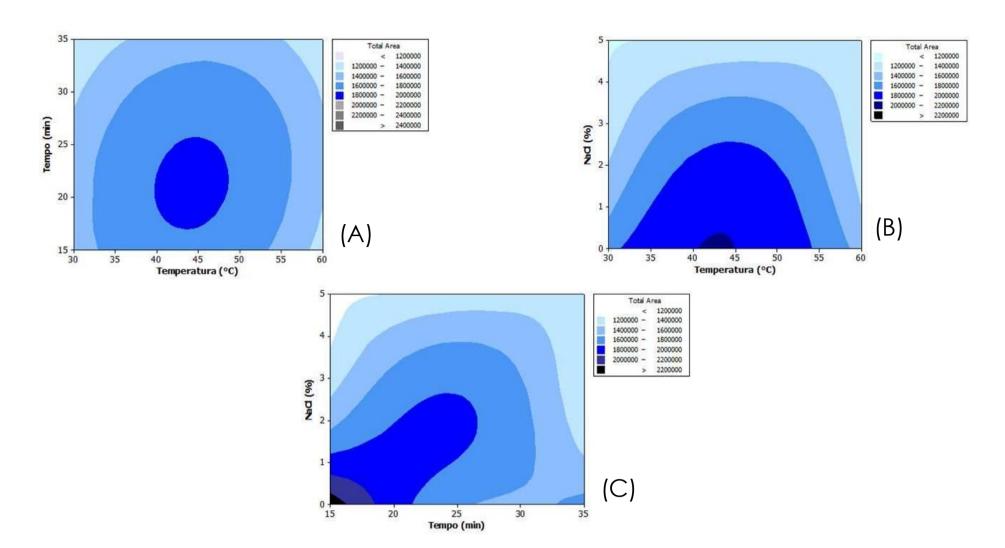


Fig. 1. Gráfico de contorno para a área de β-cariofileno obtida pela plotagem: (A) tempo de exposição da fibra vs. temperatura de extração, (B) concentração de NaCl vs. temperatura de extração e (C) concentração de NaCl vs. tempo de exposição da fibra.

Os resultados dos testes de degradação forçada mostraram uma redução em menor grau da área do pico de β -cariofileno das nanoemulsões comparada à observada para a solução padrão de β -cariofileno.

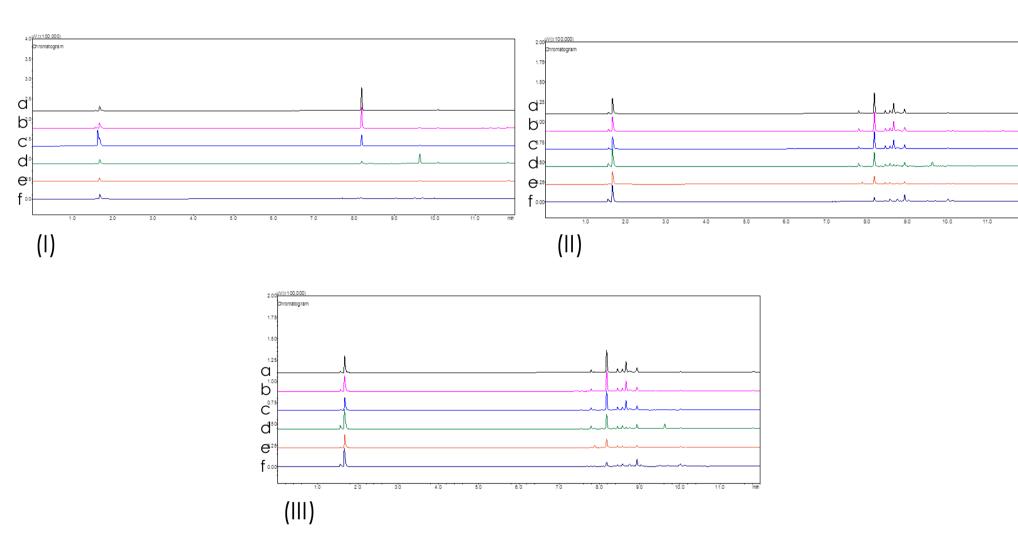


Fig.2. Cromatogramas relativos a (I) Solução de β-cariofileno (II) Nanoemulsão # 1 e (III) Nanoemulsão # 2 submetidas a : a)sem condições de estresse, b) NaOH 1 M, c)60 °C, d) 30 % H2O2, e)radiação UV-A por 48 h e f) HCl 1 M.

O método foi linear na faixa de 0,14-0,68 µg/mL de β -cariofileno ($r^2>0,999$), preciso (RSD% $\leq 5,0$), exato(97,85% - 101,87%) e robusto. Os limites de LOD e LOQ foram 0,03 e 0,14 µg/mL, respectivamente.

As nanomulsões # 1 e # 2 apresentaram cerca de 28,03 \pm 1,02 mg/mL e 13,33 \pm 1,11 mg/mL de β -cariofileno, respectivamente.

CONCLUSÃO

O método proposto pode ser utilizado para determinação quantitativa da β -cariofileno em nanoemulsões de uso tópico. Observou-se efeito parcialmente protetor das nanoemulsões sobre a degradação do β -cariofileno.

REFERÊNCIAS:

BRASIL, ANVISA. Resol. RE 899 (29/05/03). Guia para validação de métodos analíticos e bioanalíticos. Disponível em: www.anvisa.gov.br International Conference on Harmonization (ICH), Validation of Analytical Procedures: Methodology, Q2(R1), 2005.