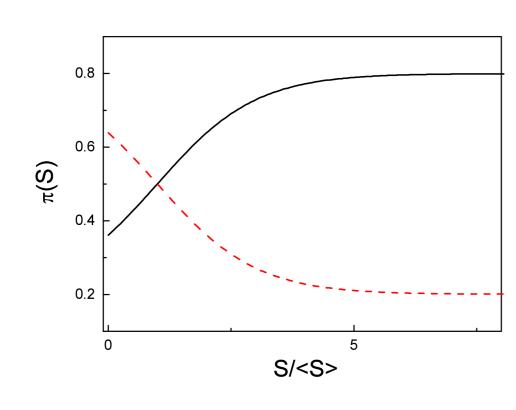
Crime e Castigo: A punição compensa?

Éder M. Schneider^a, J. R. Iglesias^{a,b}, V. Semeshenko^c, M. B. Gordon^d

^aInstituto de Física, UFRGS, Caixa Postal 15051, 91501-970 Porto Alegre, RS, Brasil ^bPrograma de Pós-Graduação em Economia, UFRGS, Av. João Pessoa 52, 90040-000 Porto Alegre, RS, Brasil ^cAcademia Nacional de Ciencias Económicas, Av. Alvear 1790, 1014, Buenos Aires, Argentina. ^dLaboratoire TIMC-IMAG (UMR 5525), University of Grenoble I, Domaine de La Merci - Jean Roget, F-38706 La Tronche, France


Introdução

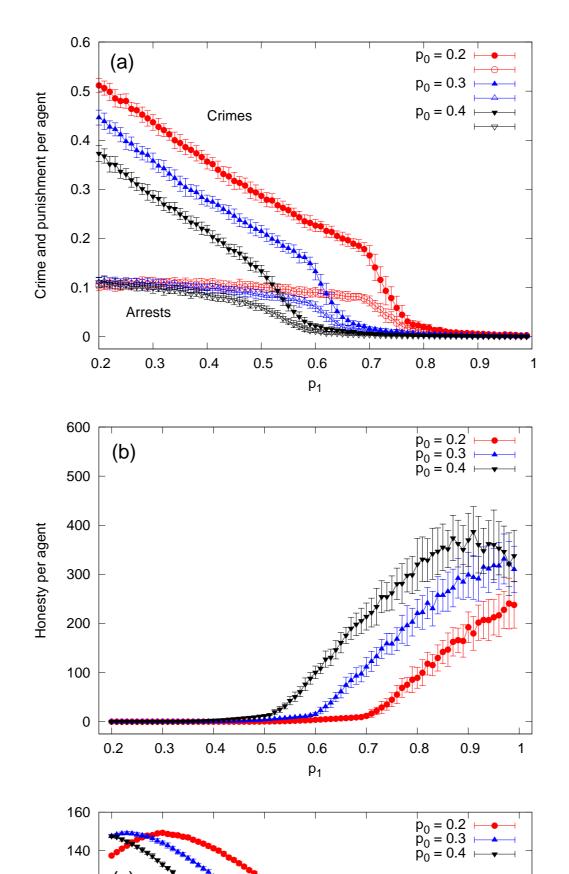
Simulou-se uma sociedade artificial simples, os agentes recebem rendas fixas e podem aumentar (ou diminuir) sua riqueza com um ato criminoso bem sucedido (ou sendo presos e multados), a probabilidade de punição depende da gravidade do crime. O custo da manutenção da lei é comparado com o dano causado pelo crime.

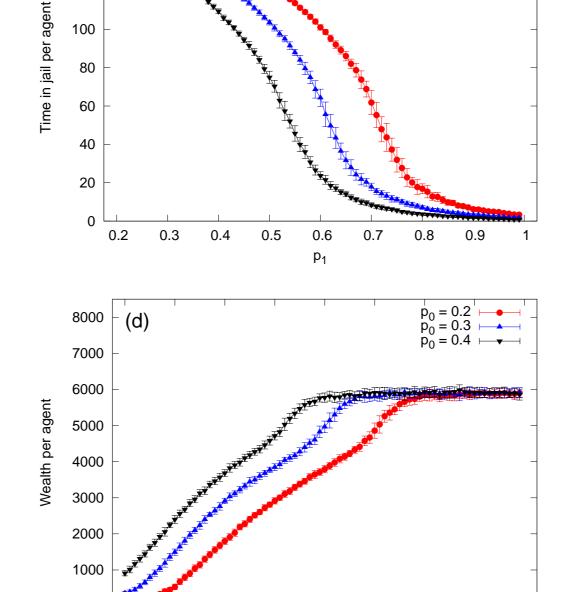
Descrição do modelo

A sociedade é formada por N indivíduos, caracterizados individualmente por uma renda mensal W_i fixa, e um parâmetro de honestidade H_i , que inibe a prática criminosa. Para cada crime em potencial, a probabilidade de punição $\pi(S)$ é uma função do valor do saque S, da probabilidade de punir crimes leves p_0 e crimes graves p_1 . Na figura: linha sólida ($p_0 = 0.2 p_1 = 0.8$), linha tracejada $(p_0 = 0.8 p_1 = 0.2).$

$$\pi(S) = p_1 + \frac{(p_0 - p_1)}{1 + e^{\frac{S - \langle S \rangle}{\langle S \rangle}}}$$

A possibilidade da ocorrência de um crime depende da utilidade U para o indivíduo, ajustada pelo honestidade, ser positiva.

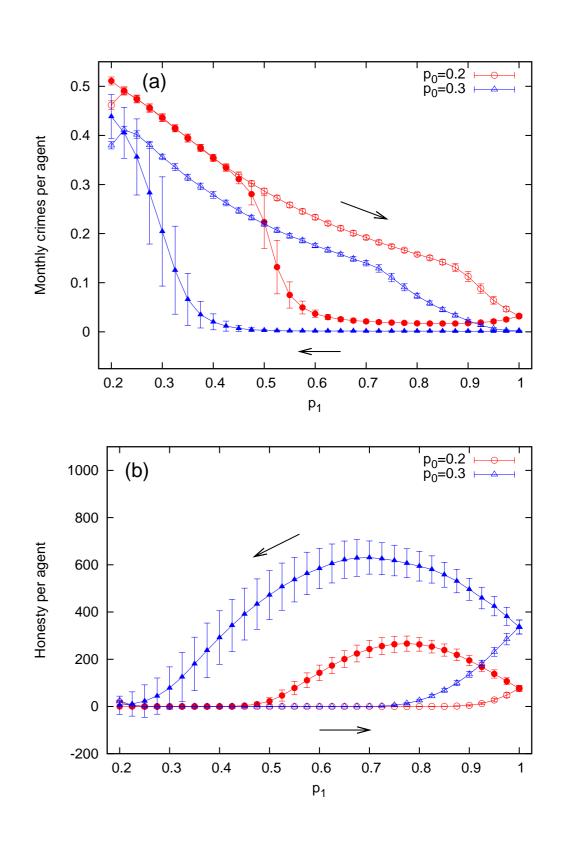

$$U = [(1 - \pi)(S + \tau W_i) - \pi(1 + f_D)S] - Hi - \tau W_i$$


Onde f_DS é a multa aplicada sobre o criminoso e τ é o tempo de aprisionamento (proporcional ao valor do saque). Ao final de um mês (ciclo) a honestidade dos indivíduos é ajustada de acordo com a proporção entre crimes punidos N_p e impunes N_k :

$$H_i = H_i + \frac{2N_p - N_k}{N_k} \delta H$$

Simulações com p_0 e p_1 fixos

Simulou-se a evolução de sociedades distintas, a partir da mesma condição inicial, com parâmetros p_1 e p_0 fixos, verificando-se o que ocorre com crimes e punições (a), honestidade (b), tempo de aprisionamento (c) e riqueza (d).


120

100

Simulações com p_1 dinâmico

Para testar a resposta da sociedade a uma mudança nas penalidades, partiu-se de um estado de alta criminalidade, aumentando p_1 de 0.2 a 1.0, e retornou-se a situação original, dando tempo ao sistema para que se estabilizasse a cada passo. Um efeito de histerese foi observado na criminalidade e na

honestidade.

Conclusões

Existe uma transição de fase abrupta na criminalidade como função da probabilidade de punição p_1 , e o ponto desta transição depende de maneira muito sensível da chance de punição de pequenas ofensas p_0 .

Tolerância muito grande a pequenas ofensas tem consequências globais negativas. Políticas de tolerância-zero não são indispensáveis, mas a impunidade é pior.

Uma vez atingido o estado de alta criminalidade, é necessário um esforço muito maior controlar a situação do que para manter uma situação de baixa criminalidade.

Estados de alta criminalidade empobrecem a sociedade como um todo.

Referências

- [1] G. Becker. Crime and punishment: an economic approach. Journal of Political Economy, **76**:169–217, (1968).
- [2] M. B. Gordon, J. R. Iglesias, V. Semeshenko, and J.-P. Nadal. Crime and punishment: the economic burden of impunity. European Physical Journal B, 68:133–144, (2009).
- [3] G.M. Caon, S. Gonçalves, and J.R. Iglesias. The unfair consequences of equal opportunities: comparing exchange models of wealth distribution. The European Physical Journal - Special Topics, 143:69–74, (2007).