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The preservation of Onsager symmetry for the effective dielectric tensor is discussed for ahomogeneous plasma
immersed in ainhomogeneous magnetic field, using the unperturbed orbits correct up to order k5, which isthe
scalelength of the field inhomogeneity. General features of the calculation of the components of the tensor
are discussed and detailed calculations are developed for the zz component, which is shown to satisfy the
conditions for Onsager symmetry, in agreement with previous results obtained using less precise expressions

for the unperturbed orbits.

1 Introduction

The effective dielectric tensor has been proposed as the cor-
rect form to be used for the description of waves in inho-
mogeneous plasmas in the context of alocal approximation
[1]. Its basic property is that it is aimed to satisfy energy
conservation, even in the presence of inhomogeneities. This
property of energy conservation is closely connected with
the property of Onsager symmetry, since if Onsager sym-
metry is satisfied the anti-Hermitian parts of the dielectric
tensor only feature resonant parts, properly describing wave-
particle energy exchange. On the other hand, if Onsager
symmetry is not satisfied, non-resonant terms appear in the
anti-Hermitian parts of the dielectric tensor, which describe
the variation of the wave amplitude due to the modification
of the group velacity in an inhomogeneous medium, not true
absorption or amplification [2, 3]. This point has been il-
lustrated with examples in Ref. [4], where results obtained
from the dispersion relation with use of the effective dielec-
tric tensor are compared with results obtained using other
approaches found in the literature [2,5-8]. The Onsager
symmetry of the effective dielectric tensor for electromag-
netic waves has a so been discussed in Ref. [9], for the case
of homogeneous magnetic field and inhomogeneous plasma
parameters.

Fur the purpose of the present investigation, it isimpor-
tant to remark that, although the general conception of the
effective dielectric tensor is aimed to satisfy energy conser-
vation, the proper symmetry of the tensor may be lost due to
approximations introduced in the process of actual calcula-
tion of specific expressions of its components. It istherefore
important to investigate limiting cases which alow detailed
calculation. Here we investigate the case of inhomogeneous
magnetic field, neglecting the density inhomogeneity which
occurs in order to satisfy equilibrium conditions. More re-
alistic situations which contain simultaneously inhomoge-

neities in the magnetic field and in the plasma parameters
can of course be treated with the formalism of the effective
dielectric tensor. However, since our objective is to discuss
specific featuresrelated to field inhomogeneity, and improve
the accuracy of the cal culations as compared to previous ap-
proaches, we neglect inhomogeneities in the plasma para-
meters.

In previous investigations of the effective dielectric ten-
sor for the case of inhomogeneous magnetic field, we have
considered high frequency oscillations propagating in arbi-
trary directions in a plasma, and we have obtained expli-
cit expressions for the components of the effective dielectric
tensor, which satisfy Onsager symmetry [4, 10]. We now
return to the subject, aiming to improve the accuracy of the
calculations, in the sense that the unperturbed orbits will be
described more precisely than in previous work. We consi-
der a homogeneous plasma immersed in a inhomogeneous
magnetic field along the z direction, By = By(z)e., where
By(z) = Bo(0)(1+ kpx). We also assume waves propaga-
ting in an arbitrary direction relative to the ambient magne-
tic field and to the field inhomogeneity. Using the proposed
geometry we solve the eguations of movement and obtain
the unperturbed orbits, correct up to order k. In references
[4, 10], where a dielectric tensor featuring Onsager symme-
try was obtained, we had used the unperturbed orbits, but
neglecting some corrections of order &, while keeping the
correction to the cyclotron frequency 2,0, which is neces-
sary in order to avoid secular terms, and the term proporti-
onal to 7 in the 3y’ coordinate, which describes the drift of
the guiding center due to the inhomogeneity. For the present
investigation, we keep all the other terms of order kg inthe
expressions for the unperturbed orbits, re-derive the dielec-
tric tensor, and discuss the ensuing properties of symmetry.

Thiswork presents one exampl e of the calculation which
we are developing in order to obtain an effective dielectric
tensor exactly correct to order kg, to be used in the inves-
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tigation of waves propagating in inhomogeneous plasmas.
We develop in detail the procedure which conducts to the
zz component of the effective dielectric tensor, in order to
point out the problems which must be treated. We also ob-
serve that for each component theinitial approach must be a
little different, but the guiding line is that some expansions
are forbidden, in the sense that they can give rise to secu-
lar contributions; if secular contributions are introduced, the
Onsager symmetry disappears.

2 TheUnperturbed Orbits
The complete set of unperturbed orbits, givenin[4] is

Po(T) = pi cos(p — waT)
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where
1 dB
hp = 5=y le=0; Bol@) = Bo(1+ ksa)
Q(X Q(X i
wo =20 =22 (1 +k3x+k3p“m‘p) .
,ya 'Va maQa

These orbit equations satisfy all the necessary condi-
tions. They satisfy the initial conditions, they are self-
consistent and, up to order kg, they satisfy the constants
of mation.

3 The zz Component of the Effective
Dielectric Tensor

ksp? To obtain the effective diel ectric tensor it is necessary to start
tom.q, 2eosesin(p —wer) —sin2(p —war)l, (Ui the calculation of the tensor <0, which is obtained using
b2 the usual expressions obtained with plane wave approxima:
p; (1) = posin(p — wat) + Bpé tion, but incorporating effects due to the inhomogeneity:
2ma$y
TN Al P
k 2 0_+1 _ a d3 = A 7
7275550[ [2cos pcos(p —waT) —cos2(p — waT)], (2) e=1— ; WM, / p Yo Y @)
/
PAT) =p| ©) 0 N
( ) Il Aa _ / dr Oa ez[k'(l‘ —r)—wT] , (8)
(1) —z= péz [sin p — sin(¢ — wa7)], >
Ma Qa0 o,-(1-X P’ 9fao + (- Vor) oo p. 9
kBpi “ YaMaw ) 0P’ YoM aW ’
+o5 a7 [2€08pcos(p — waT) ) . . ]
2m S0, As mentioned in the Introduction, for the present appli-
1 1 cation we calculate only the zz component of the tensor. In
—5 cos 2(p —waT) — 5 cos 20— 1], (4) order to simplify the analysiswe consider propagation in the
r — z plane. Thenk = k ey + kje,. In this case we can
kpp? write as follows the zz component of the effective tensor
Yy (T)—y = [cos(p—waT) —cos cp]—i—Bile,
TnaQon QIYQWLQQQ 1 +o0 +oo
22(7, K, = 5= dk’ d
kep? . sl dow) = o /_m + /_oo !
+ SmZ02 [2 cos psin(p — waT) \ -
1 1 Xagz(ac + 2 K, k”,w)el(lu—lu)ﬁ ) (10)
—Z8in2(p — waT) — = sin 20| , 5 . . .
g B (p = war) g SHEP © We note that some quantities appearing in the integrand
D of 9., 2z component of the tensor obtained with the plane
1) — 2= S , (6) wave approximation, can be written as follows:
YaMa
]
1. of 0
Oaz = o0 = baL o S — Wq
2= G+ b fao) cos( —war)
Qo . :
+ﬁbaL(faO)noz [2 CosS @ Sln(@ - waT> — S 2(90 - waT)} ) (11)
where
_h9 9
~ pidpL  Op
b = FipL _ 1 kppy
T maQy YT 2ma ]
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) p k
eilke (v’ —r)—wr] _ Fy (SO,T)F2(SO) exp |:’L < 1P w) 7_:| ’ (12)

where

L Q
File.m) = exp { it g

YaMa

= sin(p — waT)
a0

1
+ibaNa [2 cos p cos(p — waT) — 5 cos 2(p — waT)} } ,

L Qg
Fg(go):exp{lb o

0 k
Anz = Fg(ap)/ dr exp [z (|p|
— 00 Vama

which can be cast in the form

1
sin  + b, {cos&p—}— 1}}

_w> T} (0fao _ Llfa0) 0 ) Fulor), (13)

8pH w or

0
Aue = B 2L Llfu) [ dr exo [ (’“'p' - w> T} Fip,r) - i) (14)

where

r= <1 Ry

YoM aW

We observethat Q2,9 depends on ¢ and, because at some
moment it will be necessary to perform theintegrationinthis
variable, we must explicitly show this dependence. To this
end we approximate

Qo 1
Qoo 1+ kpx + 2n, sing

~ 0, — Masing,
where we define
0 =1+kpe.
Then, we can write

Fi(p,7) = exp [—ibad, sin(p — waT)
—%b@na €08 2( — waT) + 2iba Ny cos(war)] (15)

Fy(p) = exp |:7:b045:r sin + %bana cos 2¢ — 2iboﬂ7a:|

(16)
Using one of the definitions of the Generalized Bessel
Functions introduced in references [11, 12, 13]

> .
> e (s i)

n—=—oo

e:l:iz sin ¢+iycos2¢ _

and
oo
e:l:izcosa — Z Il(:l:ix)eila ,

l=—00

we can write

+oo 1
Z Jn(ba6;7 iboﬂ?a; —1)

l,n=—o00

YaMq

0 kpL 0

oL YaMmaw dp|

x I; (2ibana)e*m“"ei(l+”)“’“7

and

p _ .
H fa() Z Jn b 5 a'r]ou_z)

l,n=—o0

Aaz — ’YuF (
w

. B i L N
x[l(Zibana)e_m‘P/ dretPusnya™ _ (fa0) . an
0 w

where the resonance term is defined by

kipp @

Do = Ya — n—=(8; + 2nasing) .

WM,

In order to obtain £V, the last step is to perform the ¢
integration in the momentum integration:

2
T = d(pFQ(@)e—msDeiD(un)aT

o =
0

which gives

. Y _ 1 .
ILP = QwezD(H")aTe Zibala Jn(baéz — 04T, ibana;z) )

where
kyp Q
DnaE’Ya*aniéiv
WMy w
oy = 27“7047(1
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Finally we obtain

+oo

—l—zz 4ﬂ'qa Z

l,nzfoo

2
p 00 .

x / Bp—L L( fa0)H(2ibata) / dreiDismar
pL 0
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1
2ba770m )J (b 57 a ana;*i)

=2 e i o [y (o) (18)

where H;(z) = e *I;(2).
In order to perform the BGI correction in this component
of the tensor, we write equation (10) as

XJIp (baly — QuinT,

4
EZZ(ZE,k, —172 ﬂ-qa /ds pHLfaO)

i dmqg, 3 u
- wzmaZ/ dr/d L(f

where

0)ePaima@r L (19)

+oo +oo
IBcr E/ dkl/ dnei[kL7kL7(l+n)kBSlar/2w]nHl(2ib/ana)

—00 —

oo

1

_ 1 _ .
(b;(sm.;.n/g AynT, 5%%; ) (b,a(sx_g.n/ga B ;7706 *Z) .

Now we usein thisexpression theintegral representation

of the Generalized Bessel Functions, given by
1 21
J (.’I} v il) 2 / d(b e:l:z'x sin ¢4y cos 2¢Fing )
s

We obtain

27 27 “+o0
Ipar = %/ d¢1/ d¢2/ dk'y Hi(2ibgna)
(2m)% Jo 0 —o0

X exp [i(bgdw — QuipT)sing; + %b;na cos2¢1 — in(bl}

X exp [ b0, sin ¢o — ana cos 2¢5 + 2n¢2:|

oo

Performing the » integration

BEL = on 0 "o > 1 = 1o (sin gy — sin ¢y)

—+oo
x / b, M2, 170)

— 00

X exp [i(b’ 0y — QinT)singy + bana cos 2¢1 — m(bl}

X exp [ il 8, sin ¢y — 5 bl Mo €OS 2¢2 + m(bg]

ba + a[+nT/2
l —
X0 (bo‘ 1 —na(singy —sings) / -

+oo
~ / d77 6i{[1fna(sin ¢1—sin ¢g2)]k’ —k 1 —(I4+n)kpQaT/2w}n )

Performing the &/, integration

I B 1 /271' d(b /271' d(b 1
BE =97 Jo A > 1= 1 (sin g, — sin¢s)

bo, + QpgnT/2
i ( - N (sin g1 — SIH¢2)

. ba + QpynT/2 .
X exp [z <1 e (sin 61 — sin ¢2)5 — QT | Sin ¢

) ba + Oél+n7'/2
21 — ny(sin gy — sin ¢

7l 05201 — m(zn]

. bo + Qi 4nT/2 .

— 1)
xexp[ Z(lna(sinqﬁlsinqﬁg) z Sin g2
_1 ba +Oél+n7'/2

21— 1a(sin ¢y — sin ¢z)

We now expand the different factors of this expression,
maintaining al terms up to order k; then

Mo COS 2009 + inqﬁg} .

1 27 27 ) )
Ipgr =~ or / doy dpz [1 4 1o (sin ¢y — sin ¢)]
™ Jo 0

X Hl (Qibana)

X exp {z (ﬁ(:(l+n) + baTa (sin ¢ — sin ¢2)) sin ¢4
—I—%bana cos 2¢1 — inqﬁl}

X exp [—i (ﬁ;r(Hn) + bana(sin gy — sin ¢2)) sin ¢o
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—%banac052¢2+in¢2 ’ We also use, keeping only termslinear in kg

H1(2ibana) ~ (1 — ibama)0r,0 + ibatadj1
where

E  =0a0, +a,T/2. which, after some trigonometric manipulations gives

]

(1 = ibama)d1,0 + ibanad)y 1]

1
Ipgr =~ %[

27 27
X / dor / doo {1 + N (sin @1 — sin ¢g) — 2iby1q Sin @1 sin pg — b1, COS 2¢2}
0 0

X exp [zﬂ;(“rn) sin ¢ — in(bl] exp [—i ;_(l—s-n) sin ¢o + ind)g} .

Using the following integral representations of the usual Bessel functions and its derivatives

27
QWJn(Z) — / d¢ eiizsinqﬁq:inqﬁ
0

27
F2imJ;(2) = /O d¢ sin ¢ e=7sm OFIne

2 1 J/ 2 o )
27 |12 ni_f Jn(Z)—2 (Z) :/ d(b COS2§Z5 eizzsmd):!:md)’
22 2 z 0

we obtain, maintaining in the coefficients of the Bessel functions and its derivative terms up to order &g,

Tpar = 2700 {In (B3 0m))In (B 1my) = 0 [T (B ) T (B ) = T B B |}

2
. _ . n _ "
—27d; 0 {QZbanaJé(ﬁa(Hn))Jé(ﬁ;r(“,n)) + ZZbanab?l']"(ﬁa(l+n))‘]"(6a(l+n))}

+27Tiba77a5|l|,1 Jn(ﬁ;(Hn))Jn (ﬁ:(l—i-n)) .

Using
“+oo
— D1 4nyaT
Z Z Jn(ﬁa(l+n))=]n(ﬁ:(l+n))e ()
n=—o0 [=%+1
+o0 )
= Z [Jn—l(ﬂ;n)']n—l(ﬁi_n) + Jn-&-l(ﬁ(;n)‘]n-i-l(ﬂ:n)] eZDnQT )
we can obtain

1 “+oo - “+o0o .
il Dtn)yaT — -
27_(_ l n;ooZBGIe n;OO {Jn(ﬁan)Jn( an)

=0 [T (Ban) Tn(Ban) — Jn(ﬁ;n)J;(ggn)]}eti 7

which gives for the zz component of the effective dielectric tensor

471'q(2 p
Ezz(xakaw) =1- Z ﬁ /dgp THL(faO)

i Arg? X[ 3 Pﬁ iD
-l o dr | dp—LL(fa0)eilnoT
%;MQ%Z”/O r [ @l L e

X {Jn(ﬂ;n)‘]n(ﬁl_n) - Z’l]a[J:l(ﬂ(;n)Jn( an) - Jn(ﬁ(;n)']’;b( (—)tn)]} . (20)
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4 TheOnsager Symmetry

For the zz component of the dielectric tensor the symmetry
condition to be verified is

5zz(kaw; BOv {faO(pZvaH)})

_BOa{faO(pia_pH)}) . (21)

What we must do in the expressions here obtained, in
order to construct the right-hand side of the symmetry con-
dition, is to make the substitutions

- Ezz(_ka ws

Qa _’_Qa»

kg — kg,
bo — ba
Na = —MNa
5 — 0y,
Ql4n) 77 X(l4n) »
B, — B,
L— L,
AR TR
Yam L Yamaw Ip|

k o
BUPL | (4 p)Zegt
w

D(l+n)a - D(H—n)a = Ya +

«

We also need to change the dummy variablesp| — —py,
n — —n and [ — —I, which produces

fao 1, —p) = fao(PT, —p)) ,

A(14n) =7 —Q>4n)
+ _, A3F

L——L,
L— L,
D(l+n)a - D(l+n)a .

It is trivial to see that the zz component of the effec-
tive dielectric tensor satisfies the required Onsager’s sym-
metry. The zz component of the dielectric tensor without
the BGI correction doesn’t feature this symmetry, since af-
ter the substitutions described above it transforms into

47rq <
zz_)l_ZZ < Z (_1)l

l,n:—oo

oo

/ dp »Cfuo (2 o) Ha(~2ibana)

0

B 1 . _ 1 .
Xln(ba(sw + apnT, §bo¢77a§ _Z)Jn(ba(sw , §b<y7la; Z)

dr ePa+naT
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Argp, 3, Dl 2
— E i d L(f, ,
« (UQma / P Ve (f 0(pL p”)>

which is not the same as the expression given by equation
(18).

These calculations show that the zz component of the
effective dielectric tensor in the case of magnetic field with
inhomogeneity perpendicular to the direction of thefield sa-
tisfies Onsager symmetry, when all terms of the order of the
inhomogeneity parameter are kept in the expressions for the
unperturbed orbits of the particles. Aswe have seen, the de-
rivation of the dielectric tensor in this case requires a large
amount of mathematical manipulations, considerably more
than in the case of more approximated orbits. They certainly
require much heavier load of algebraic manipulations than
the homogeneous case. Similar calculations must be now
developed for the other components of the effective dielec-
tric tensor, in order to verify if Onsager symmetry isindeed
satisfied by the tensor, as demonstrated in the case of simpler
expressions for the unperturbed orbits [4, 10], aswell asin
the case of homogeneous field and inhomogeneous plasma
parameters[14].
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