

ANÁLISE DE FALHA DE UM EIXO DE ROTOMOLDAGEM

Douglas Martinazzi, Afonso Reguly, Márcio L.K. Macedo

1. Introdução

Os equipamentos utilizados nas indústrias de grande porte possuem componentes robustos para máquinas que atendem uma produção contínua e de larga escala. Em função disso, a possibilidade de ocorrer falhas em serviço de um componente poderá acarretar acidentes graves, gastos desnecessários com paradas na produção e trocas de componentes, entre outros problemas não esperados. Desta forma a análise de falha é uma ferramenta muito importante para apurar a(s) causa(s) da falha e com isso evitar futuros problemas operacionais.

2. Materiais e Métodos

A figura 1 mostra o componente conforme recebido para análise de falha. Trata-se de um eixo em tubo trepanado cuja matéria prima é de aço ao carbono SAE 1030.

Figura 1: Imagem do componente recebido para análise.

Neste estudo foi realizada: análise da superfície de fratura, análise microestrutural e ensaio de dureza.

3. Resultados

3.1 Análise da Superfície de Fratura

A figura 2 mostra a superfície de fratura com marcas concêntricas (de praia), indicativo de fratura por fadiga e os pontos de iniciação.

Figura 2: Imagem identificando a superfície de fratura.

A inspeção visual e por lupa de baixo aumento mostrou uma camada superficial depositada (figura 3) sobre a superfície do eixo. Esta camada apresentou-se como um ressalto e com aparência de ser um material de propriedades mecânicas diferentes do substrato.

Figura 3: Imagem identificando a superfície de fratura.

3.2 Análise Microestrutural

O material do substrato do componente apresentou microestrutura formada por perlita e ferrita (figura 4). A região de depósito na superfície apresentou microestrutura bruta de fusão característica de metal de solda de aço de baixo carbono (figura 5). Nas figuras 6 e 7 observa-se a interface entre a solda e material base.

Figura 4: Micrografia com ataque químico (Nital 2%) mostrando microestrutura de perlita e ferrita no substrato do componente.

Figura 5: Micrografia com ataque químico (Nital 2%) mostrando microestrutura composta por material bruto de fusão na solda.

Figura 6: Imagem mostrando a interface da solda com o substrato.

Figura 7: Imagem falta de adesão entre a solda e o substrato.

3.3 Ensaio de Dureza

Foi realizado um perfil de dureza partindo da superfície ao centro do componente conforme mostra a Figura 8.

Figura 8: Perfil de microdureza na escala Vickers.

4. Conclusões

A análise de falha indicou que o componente falhou por fadiga. Esta falha ocorreu a partir da interface da camada depositada por solda e o metal de base do eixo, devido aos defeitos presentes no depósito de metal de solda aliados ao gradiente microestrutural entre a camada depositada e o metal de base do eixo.

Laboratório de Metalurgia Física

