BIOPRODUÇÃO DE ÁCIDO LACTOBIÔNICO: EFEITO DA CONCENTRAÇÃO DE CÉLULAS DE Zymomonas mobilis

NAS ETAPAS DE IMOBILIZAÇÃO E BIOCONVERSÃO

BRUNA CAMPOS DE SOUZA e MAURICIO MOURA DA SILVEIRA

Universidade de Caxias do Sul – Instituto de Biotecnologia Caixa Postal 1352 – 95070-560 Caxias do Sul – RS - E-mail: bcsouza@ucs.br

DE CAXIAS DO SUL

INTRODUÇÃO

Ácido lactobiônico e sorbitol são produtos da reação catalisada por enzimas periplasmáticas de Zymomonas mobilis, glicose-frutose-oxidorredutase e gluconolactonase (Zachariou & Scopes, 1986). Ácido lactobiônico é uma substância de alto valor comercial, com aplicações na área médica, na conservação de órgãos a serem transplantados e na área cosmética, por seu poder hidratante, cicatrizante e anti-radicais livres (Sumimoto e Kamada, 1990; Van Scott *et al.,* 1996).

A imobilização proporciona o aumento da estabilidade enzimática, além de facilitar a separação dos biocatalisadores e produtos na fase líquida. Entretanto, alguns aspectos merecem atenção, como a possibilidade de perda de atividade durante a imobilização e de instabilidade do biocatalisador, além da barreira à transferência de massa (Zanin & Moraes, 2004).

Neste contexto o objetivo deste trabalho foi avaliar a bioprodução de ácido lactobiônico, com células imobilizadas de Z. mobilis, considerando o efeito da concentração da suspensão celular usada na imobilização em alginato de cálcio e a concentração do biocatalisador no processo de bioconversão.

MATERIAL E MÉTODOS

Microrganismo: Zymomonas mobilis ATCC 29191

Meio de cultura

Composição do meio (g/L) $(NH_4)_2SO_4$, 2,0; MgSO₄.7H₂O, 1,0; FeSO₄.7H₂O, 0,01; KH₂PO₄, 3,5; extrato de levedura bruto, 7,5

Concentração de glicose

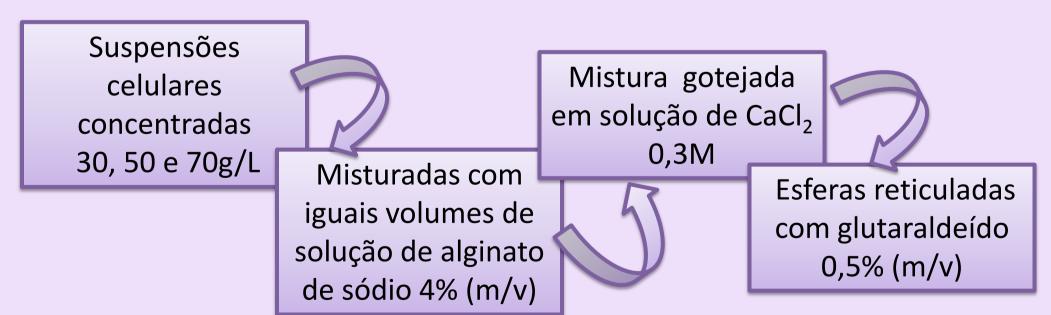
Ativação e conservação - 20 g/L Inóculo -100 g/L Produção de biomassa - 150 g/L

Condições experimentais

Inóculo

450 mL de meio

30°C, 10h, 200 rpm


Ensaio Fermentativo

- 5,5 L de meio
- 30°C, 400 rpm
- pH 5,5 controlado com adição de NaOH (5M)

Concentração e permeabilização

Biomassa concentrada e permeabilizada com CTAB (0,2% v/v)

Imobilização de células de **Z. mobilis**

Ensaios de bioconversão em reator de mistura completa

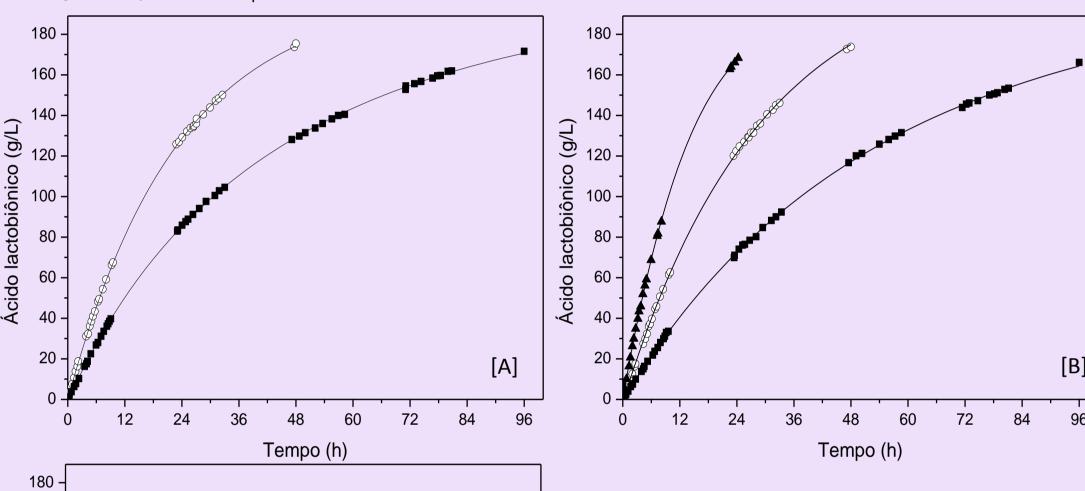
- 200 mL de solução 0,7 mol/L lactose/frutose;
- agitação magnética; 39°C, pH 6,4;
- Biocatalisador imobilizado 5, 10, 20 e 30 g/L.

Esquema do sistema utilizado na determinação da atividade enzimática de GFOR/GL e em processos de bioconversão. (1) biorreator de mistura completa, sob temperatura controlada; (2) agitador magnético; (3) eletrodo de pH; (4) bureta contendo NaOH; (5) adição de NaOH; (6) controlador de pH.

Determinação da difusividade efetiva

- 500 esferas de alginato de cálcio;
- 15 mL solução 100g/L de glicose, a 39°C;
- agitação magnética.

Métodos analíticos


- Concentração celular: gravimetria;
- Concentração de glicose: método DNS (Miller, 1959);
- Concentração de ácido lactobiônico: concentração e volume de NaOH

RESULTADOS

Resultados gerais obtidos relativos à produção de ácido lactobiônico utilizando células de Zymomonas mobilis imobilizadas em suspensões de 30 a 70 g/L e diferentes concentrações de biocatalisadores em ensaios de bioconversão.

Concentração celular na imobilização (g/L)	30		50			70			
Biocatalisador (g/L)	5	10	5	10	20	5	10	20	30
P _{max} (g/L)	172	175	166	173	168	148	168	156	156
t (h)	96	48	96	48	24	96	48	24	16
ρ (%)	73	75	71	74	72	63	72	66	66
p (g/L/h)	1,79	3,64	1,73	3,60	7,0	1,54	3,50	6,5	9,75
q (g/g/h)	0,38	0,39	0,37	0,39	0,37	0,33	0,37	0,35	0,34
$\mu_{P,max}$ (g/g/h)	1,0	0,9	0,77	0,72	0,68	0,78	0,68	0,65	0,60
S _f (g/L)	62	58	70	60	66	88	66	79	79

 P_{max} , concentração máxima de ácido lactobiônico; t, tempo de processo; ρ , rendimento do processo; p_m , produtividade mássica; q, produtividade específica; $\mu_{P,max}$, máxima velocidade específica de formação de produto; S_f, lactose residual.

160 -140 [C] 12 24 36 60 Tempo (h)

Glicose (g/L)

Concentração de ácido lactobiônico em função do tempo, com células de Zymomonas mobilis imobilizadas em suspensões de 30 [A], 50 [B] e 70g/L [C], em ensaios de bioconversão com diferentes concentrações celulares. (■) 5g/L; (O) 10g/L; (▲) 20g/L; (△) 30g/L. Substratos, 0,7mol/L; 39°C; pH 6,4.

Difusão de glicose para o interior das esferas de alginato de cálcio contendo células de imobilizadas em diferentes concentrações da suspensão celular de *Zymomonas mobilis*. (\bullet) 30g/L; (\Box) 50g/L; (▼) 70g/L. Temperatura: 39°C; volume de solução: 15mL; quantidade de esferas: 500.

CONCLUSÕES

Na bioprodução de ácido lactobiônico pelo sistema GFOR/GL de Z. mobilis imobilizado em alginato de cálcio, o equilíbrio entre a concentração de células/enzimas na etapa de imobilização, buscando favorecer o transporte de massa, e a concentração de células utilizadas no processo, com o fim de promover o aumento da produtividade, devem ser cuidadosamente consideradas.

Os resultados desse trabalho reforçam a necessidade de novos estudos com respeito ao design de reatores específicos com vistas à aplicação industrial deste sistema enzimático.

REFERÊNCIAS BIBLIOGRÁFICAS

220

Tempo (s)

APOIO Miller, G.L. (1959) Anal Chem, 31: 426-428. Zachariou, M; Scopes, RK (1986) J Bacteriol, 3:863-869. Sumimoto, R. e Kamada, N. (1990) Transplant Process, 22: 2198-2199. Zanin, G. M. & Moraes, F. F. (2004) Enzimas como agentes biotecnológicos. Eds. Said, S. e Pietro, R.C.L.R. Legis Summa, Ribeirão Preto, São Paulo, Brasil, p.35-85. Van Scott, E.; Ditre, C.M.; Yu, R.J. (1996) Clinics Dermatol, 14: 217-226.

