UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Departamento de Bioquímica- Laboratório 35

Modificações astrogliais induzidas pela tarefa de habilidade do alcance e preensão contribuem para a recuperação sensório-motora após a hemorragia intracerebral experimental

Lígia Simões Braga Boisserand^{1,5}, Régis Gemerasca Mestriner^{2,5}, Aline de Souza Pagnussat³, Lauren Valentim⁵, Carlos Alexandre Netto^{4,5} 1. FAENFI/ PUCRS; 2. PPG Fisiologia/ UFRGS; 3. UNIPAMPA; 4. Professor orientador / UFRGS; 5. Bioquímica / UFRGS

INTRODUÇÃO

sugerem que a realização de tarefas motoras podem levar a mudanças comportamentais e neurofisiológicas. Alguns Estudos trabalhos evidenciam uma possível participação dos astrócitos GFAP+ na plasticidade induzida por experiências comportamentais.

OBJETIVO

Avaliar o desempenho sensório-motor e aspectos morfológicos de astrócitos GFAP+ no córtex sensório-motor (área de representação do membro anterior) e o estriado dorsolateral, em ratos controles ou submetidos à hemorragia intra-cerebral (HIC) e aos treinamentos de habilidade do alcance (TH) ou ao treinamento de não-habilidade (TNH).

MATERIAIS E MÉTODOS

Os animais (N=64) ratos Wistar foram divididos em 6 grupos, HIC+TH, HIC+NH, HIC, sham, sham+TH e sham+NH. A HIC foi induzida por meio de uma micro-injeção estriatal de colagenase $(0,2U/1\mu L)$. Os grupos sham receberam a mesma quantidade de salina. Uma semana após a cirurgia, os grupos submetidos ao tratamento de reabilitação receberam sessões diárias de TH (alcance e preensão) ou NH (marcha em esteira motorizada 1,8m/min) durante 40min 5dias/semana por 4 semanas. Os grupos controle permaneceram em caixas padrão de biotério. Ao longo desse período, os animais foram testados quanto ao desempenho sensório-motor ao final de cada semana de treinamento. Encerrado o período de treinamento, os animais foram profundamente anestesiados, perfundidos e tiveram seus encéfalos processados para a análise morfológica, realizada pela avaliação do volume da lesão e dos astrócitos GFAP+ (imagens obtidas em microscópio confocal - eixo-z). A ramificação dos processos primários foi avaliada por meio do método dos círculos concêntricos de Sholl. Este trabalho foi aprovado pelo Comitê de Ética em Pesquisa da UFRGS (CEP-UFRGS n.º 2008015).

Α

Comprimento dos proces GFAP+ (μm ± EPAD)

 \mathbf{C}

Fig 1: Tarefa de não-habilidade

Fig 2: Tarefa de habilidade

Astrócitos GFAP+/r (média±EPAD) \mathbf{C} Estriado ipsilateral Estriado contralateral ☐ Sham □ ніс ☐ HIC ड्रा प्राप्त डा पा प्राप

Córtex sensório-motor ipsilateral

Córtex sensório-motor ipsilateral

Estriado ipsilateral

डा सा स्था

Córtex sensório-motor contralatera

Córtex sensório-motor contralateral

Estriado contralateral

st th thi

 \mathbf{D}

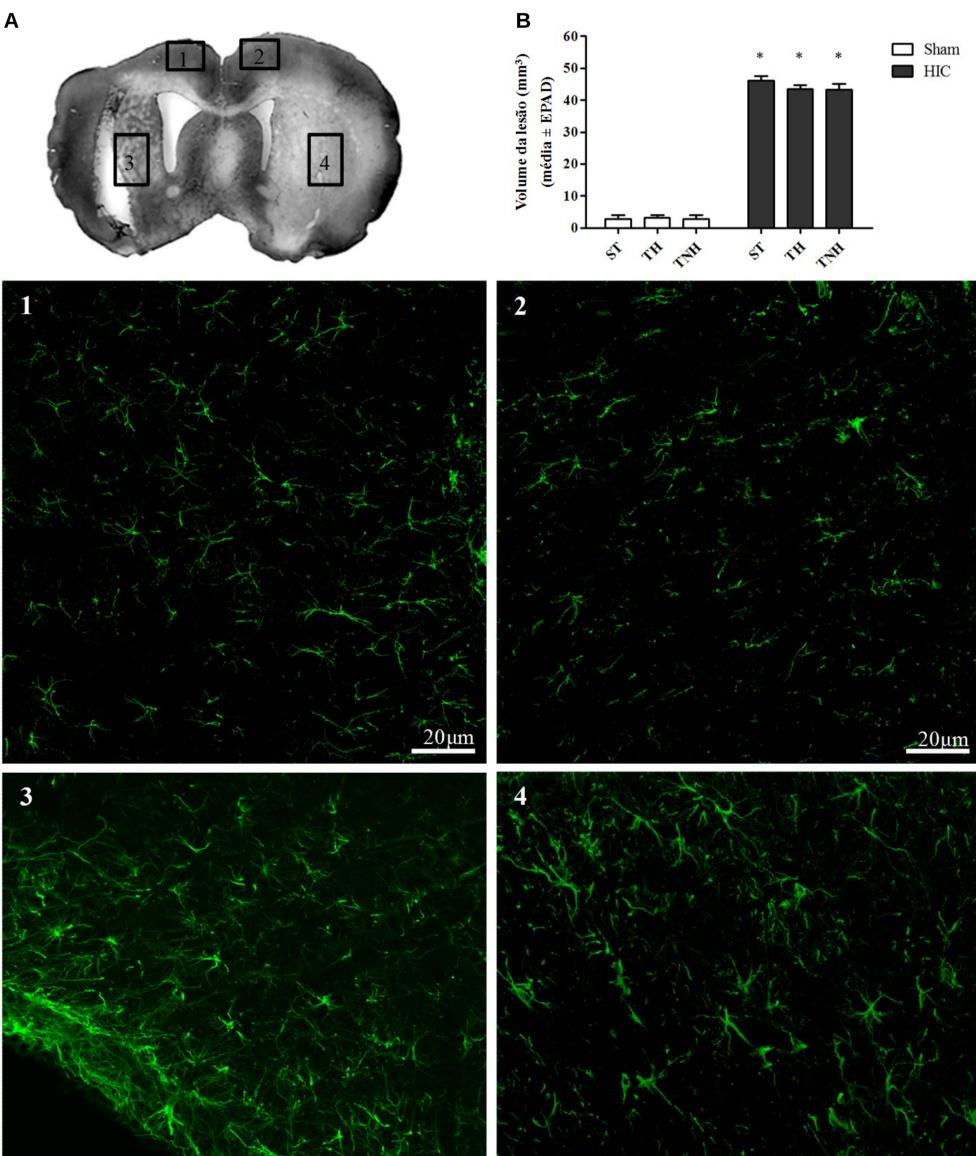
☐ Sham

☐ Sham

☐ HIC

☐ Sham

☐ HIC


Figura 3: Comprimento médio dos processos primários GFAP+

☐ Sham

☐ HIC

☐ Sham

☐ HIC

RESULTADOS

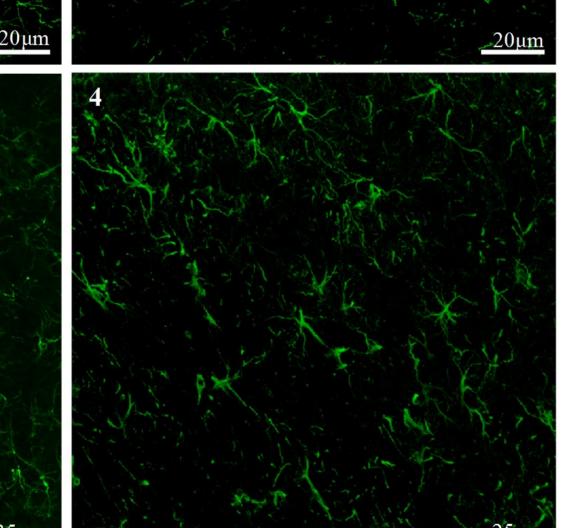


Figura 4: Densidade de astrócitos GFAP+ / mm³ Córtex sensório-motor contralateral Córtex sensório-motor ipsilateral ☐ Sham ■ Sham □ НІС Estriado ipsilateral Estriado contralateral ☐ Sham ☐ HIC

Figura 6. Representação das diferentes regiões encefálicas de interesse. (A) fotomicrografia demonstrando as regiões analisadas; (B) volume da lesão. Em verde, marcação imunofluorescente de astrócitos GFAP+ . "1": córtex sensório-motor ipsilateral à injeção estereotáxica; "2": córtex sensóriomotor contralateral à injeção estereotáxica; "3": estriado dorsolateral ipsilateral à injeção estereotáxica; "4": estriado contralateral à injeção estereotáxica.

☐ Sham ☐ HIC

Figura 5: Número de processos primários GFAP+

CONCLUSÃO

O treinamento da tarefa de habilidade do alcance e preensão foi capaz de aumentar o comprimento dos processos primários de astrócitos GFAP+ em estruturas cerebrais importantes para o controle motor, tais como o córtex sensório-motor (bilateralmente) e o estriado dorsolateral (perilesional), tanto em animais lesados pela HIC quanto em animais não-lesados. Adicionalmente, a HIC foi capaz de aumentar a densidade e o comprimento dos processos primários de astrócitos GFAP+ no córtex sensório-motor (bilateralmente), assim como no estriado dorsolateral (perilesional), além de aumentar o número de processos primários por astrócito no córtex sensório-motor ipsilateral ao dano nesses animais.