DETECÇÃO POR PCR E ANÁLISE DAS SEQUÊNCIAS DE NUCLEOTÍDEOS OBTIDAS DE LENTÍVIRUS DE PEQUENOS RUMINANTES

Catarina Marcon Chiapetta1,2, Eloiza Teles Caldart1, Eliana Franco Lopes1, Gabriel Costa Larizatti1, Ana Paula Ravazzolo (orientadora)1
1. Laboratório de Imunologia e Biologia Molecular, Faculdade de Veterinárias – UFRGS
2. Bolsista Iniciação Científica PRIC CNPq

Introdução
O vírus da artrite encefalítica caprina (CAEV) e o vírus Masei Virus dos ovinos (MVV) são retrovírus denominados de lentívirus de pequenos ruminantes (SRLV) e estão relacionados biologicamente, fenotípicamente e antigenicamente. Embora tenham sido descritos inicialmente como espécies específicas, em rebanhos mistos pode haver a infecção de caprinos por MVV e vice-versa. Esses vírus desencadeiam processos inflamatórios lentos e progressivos podendo atingir articulações, pulmão, glândula mamária e sistema nervoso. A principal forma de transmissão é através da ingestão de colostro e/ou leite contaminados. São patogênicos que causam redução do bem-estar animal e consideráveis perdas econômicas. A maior parte dos programas de controle e prevenção é de iniciativa voluntária e têm como motivação a possibilidade do uso da vacina como estratégia de marketing e aumento na produtividade do rebanho. O monitoramento geralmente é realizado através de testes sorológicos, como immunofluorescência e ELISA. A técnica de PCR para detecção de SRLV tem sido proposta por vários autores, com diferentes genes alvo e tem apresentado resultados variados quanto à capacidade de detecção do vírus. Provavelmente devido à flutuação na carga proviral e as variáveis virais circulantes.

Objetivo
O objetivo do projeto é eliminar o diagnóstico de SRLV por PCR, avaliando diferentes métodos de extração de DNA, a fim de definir qual é o mais eficiente para os diferentes tipos de amostras (sangue e leite), comparando a eficiência de amplificação de diferentes regiões do genoma proviral (env e gag) comuns a MVV e CAEV, através de heminested PCR e, verificando qual o tipo de amostra (sangue ou leite) é o mais indicado para uso no diagnóstico em questão.

A fim de avaliar a variabilidade das sequências amplificadas por PCR, utilizaram-se três amostras de origem caprina que apresentaram resultado positivo para o gene gag para que fossem caracterizadas através de clonagem e sequenciamento.

Materiais e Métodos

Animais e amostragem
Amostras de sangue e leite foram coletadas em duas propriedades leiteras (uma de cabras e outra de ovelhas) do estado do Rio Grande do Sul cujo diagnóstico de SRLV dos animais fora confirmado por sorologia. O sangue foi coletado da veia jugular em tubos de vaca, os quais foram mantidos sob refrigeração por 12 horas. As amostras de leite foram coletadas minutos antes da ordenha em tubos esterilizados diretamente do leite teimado e mantidos sob refrigeração por 24 horas.

Reação em Cadeia da Polimerase (PCR)
Em um primeiro momento, o material extraído foi submetido a uma PCR para um gene constitutivo (GAPDH) com os primers forward e reverse, a fim de se verificar a eficiência de cada método de extração.

Em seguida, as amostras foram submetidas a heminested PCR para os genes gag e env, com primers e condições específicas para cada reação.

Os produtos da PCR foram analisados, após eletroforese em gel de agarose a 2%, corados com brometo de etílio e visualizados em transiluminador, sob luz UV.

Resultados e Discussão
Os resultados parciais não demonstraram maior eficiência de detecção quanto à utilização de primers para gag ou env, pois o número de amostrais detectadas pelos dois genes alvo foi o mesmo.

Com relação ao método de extração de DNA e ao material biológico, notamos que, de modo geral, o percentual de amplificação das amostras de sangue foi superior ao das de leite e que o método de DNAzol® apresentou o melhor desempenho (Tabela 1). Quanto à caracterização por sequenciamento do DNA viral, a partir dos fragmentos de PCR gag positiva, verificou-se que todas as sequências obtidas de amostras caprinas apresentaram similaridade com sequências de SRLVs quando submetidas ao BLAST. Comparando-se as sequências prováveis de aminoácidos com o protótipo CAEV-CORK (Figura 1), observou-se a presença de sete aminoácidos distintos no fragmento analisado. Este fato poderia influenciar no diagnóstico sorológico quando utilizados antígenos diferentes das amostras.

<table>
<thead>
<tr>
<th>Método de extração</th>
<th>Nº de Amostras</th>
<th>PCR (%)</th>
<th>Nº de amostras</th>
<th>PCR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNAzol®</td>
<td>27 amostras</td>
<td>62,90</td>
<td>32 amostras</td>
<td>31,25</td>
</tr>
<tr>
<td></td>
<td>12 amostras</td>
<td>91,66</td>
<td>10 amostras</td>
<td>90,00</td>
</tr>
<tr>
<td>FTA®</td>
<td>36 amostras</td>
<td>8,33</td>
<td>36 amostras</td>
<td>19,44</td>
</tr>
<tr>
<td></td>
<td>12 amostras</td>
<td>75,00</td>
<td>10 amostras</td>
<td>50,00</td>
</tr>
<tr>
<td>Silica</td>
<td>30 amostras</td>
<td>83,33</td>
<td>26 amostras</td>
<td>38,46</td>
</tr>
<tr>
<td></td>
<td>12 amostras</td>
<td>41,70</td>
<td>10 amostras</td>
<td>60,00</td>
</tr>
</tbody>
</table>

*Percentual de amostras analisadas positivas para a amplificação do gene GAPDH

Extracção do DNA
Com a finalidade de obter um número maior de células mononucleares provenientes de sangue e do leite, ambos materiais biológicos foram submetidos a centrifugação. Ao final desse processo, com uma maior concentração dessas células por ml, esse material foi submetido aos diferentes métodos de extração.

O DNA de todas as amostras foi extraído por três métodos de extração diferentes: Sôlica, FTA® e DNAzol®, sendo que o método de Sôlica foi realizado segundo Bowman et al. (1990) e os outros dois métodos segundo recomendações do fabricante.

Clonagem e sequenciamento
A partir do pool do DNA purificado de três amostras de origem caprina que apresentaram resultado positivo para o gene gag foi feita a ligação a um vetor plasmídico (TOPO TA Cloning®, Invitrogen).

Posteriormente bactérias competentes foram transformadas e após o período de multiplicação bacteriana, quatro colônias foram isoladas e submetidas ao processo de extração do DNA plasmídico (Invisorb® Spin Plasmid Mini Two, Invitrogen).

O DNA plasmídico foi encaminhado ao processo de sequenciamento (ACTGene – Análises Moléculares) para que a sequência de DNA clonado fosse caracterizada.

As sequências obtidas foram submetidas ao BLAST (NCBI) e analisadas com o auxílio dos programas Mega e Bloedit.

Figura 1 – Alinhamento das sequências de aminoácidos prováveis correspondentes aos fragmentos de nucleotídeos sequenciados

Referências Bibliográficas