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ABSTRACT 

This thesis presents the study and development of fault-tolerant techniques for 
programmable architectures, the well-known Field Programmable Gate Arrays 
(FPGAs), customizable by SRAM. FPGAs are becoming more valuable for space 
applications because of the high density, high performance, reduced development cost 
and re-programmability. In particular, SRAM-based FPGAs are very valuable for 
remote missions because of the possibility of being reprogrammed by the user as many 
times as necessary in a very short period. SRAM-based FPGA and micro-controllers 
represent a wide range of components in space applications, and as a result will be the 
focus of this work, more specifically the Virtex® family from Xilinx and the 
architecture of the 8051 micro-controller from Intel. 

The Triple Modular Redundancy (TMR) with voters is a common high-level 
technique to protect ASICs against single event upset (SEU) and it can also be applied 
to FPGAs. The TMR technique was first tested in the Virtex® FPGA architecture by 
using a small design based on counters. Faults were injected in all sensitive parts of the 
FPGA and a detailed analysis of the effect of a fault in a TMR design synthesized in the 
Virtex® platform was performed. Results from fault injection and from a radiation 
ground test facility showed the efficiency of the TMR for the related case study circuit. 
Although TMR has showed a high reliability, this technique presents some limitations, 
such as area overhead, three times more input and output pins and, consequently, a 
significant increase in power dissipation.   

Aiming to reduce TMR costs and improve reliability, an innovative high-level 
technique for designing fault-tolerant systems in SRAM-based FPGAs was developed, 
without modification in the FPGA architecture. This technique combines time and 
hardware redundancy to reduce overhead and to ensure reliability. It is based on 
duplication with comparison and concurrent error detection. The new technique 
proposed in this work was specifically developed for FPGAs to cope with transient 
faults in the user combinational and sequential logic, while also reducing pin count, area 
and power dissipation. The methodology was validated by fault injection experiments in 
an emulation board. The thesis presents comparison results in fault coverage, area and 
performance between the discussed techniques.   
 

Keywords: fault tolerance, FPGA, single event upset, fault injection, time and hardware 
redundancy 
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Desenvolvimento de Técnicas de Tolerância a Falhas Transientes em 
Componentes Programáveis por SRAM 

RESUMO 

Esse trabalho consiste no estudo e desenvolvimento de técnicas de proteção a falhas 
transientes, também chamadas single event upset (SEU), em circuitos programáveis 
customizáveis por células SRAM. Os projetistas de circuitos eletrônicos estão cada vez 
mais predispostos a utilizar circuitos programáveis, conhecidos como Field 
Programmable Gate Array (FPGA), para aplicações espaciais devido a sua alta 
flexibilidade lógica, alto desempenho, baixo custo no desenvolvimento, rapidez na 
prototipação e principalmente pela reconfigurabilidade. Em particular, FPGAs 
customizados por SRAM são muito importantes para missões espaciais pois podem ser 
rapidamente reprogramados à distância quantas vezes for necessário.  

A técnica de proteção baseada em redundância tripla, conhecida como TMR, é 
comumente utilizada em circuitos integrados de aplicações específicas e pode também 
ser aplicada em circuitos programáveis como FPGAs. A técnica TMR foi testada no 
FPGA Virtex® da Xilinx em aplicações como contadores e micro-controladores. Falhas 
foram injetadas em todos as partes sensíveis da arquitetura e seus efeitos foram 
detalhadamente analisados. Os resultados de injeção de falhas e dos experimentos sob 
radiação em laboratório comprovaram a eficácia do TMR em proteger circuitos 
sintetizados em FPGAs customizados por SRAM. Todavia, essa técnica possui algumas 
limitações como aumento em área, uso de três vezes mais pinos de entrada e saída (E/S) 
e conseqüentemente, aumento na dissipação de potência.  

Com o objetivo de reduzir custos no TMR e melhorar a confiabilidade, uma técnica 
inovadora de tolerância a falhas para FPGAs customizados por SRAM foi desenvolvida 
para ser implementada em alto nível, sem modificações na arquitetura do componente. 
Essa técnica combina redundância espacial e temporal para reduzir custos e assegurar 
confiabilidade. Ela é baseada em duplicação com um circuito comparador e um bloco de 
detecção concorrente de falhas.  Esta nova técnica proposta neste trabalho foi 
especificamente projetada para tratar o efeito de falhas transientes em blocos 
combinacionais e seqüenciais  na arquitetura reconfigurável, reduzir o uso de pinos de 
E/S, área e dissipação de potência. A metodologia foi validada por injeção de falhas 
emuladas em uma placa de prototipação. O trabalho mostra uma comparação nos 
resultados de cobertura de falhas, área e desempenho entre as técnicas apresentadas.  
 
Palavras-Chaves: tolerância a falhas, circuitos programáveis, falhas transientes, injeção 
de falhas, redundância espacial e temporal 
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1 INTRODUCTION  

Fault-tolerance on semiconductor devices has been a meaningful matter since upsets 
were first experienced in space applications several years ago. Since then, the interest in 
studying fault-tolerant techniques in order to keep integrated circuits (ICs) operational 
in such hostile environment has increased, driven by all possible applications of 
radiation tolerant circuits, such as space missions, satellites, high-energy physics 
experiments and others (NASA, 2003). Spacecraft systems include a large variety of 
analog and digital components that are potentially sensitive to radiation and must be 
protected or at least qualified for space operation. Designers for space applications 
currently use radiation-hardened devices to cope with radiation effects. However, there 
is a strong drive to utilize standard commercial-off-the-shelf (COTS) and military 
devices in spaceflight systems to minimize cost and development time as compared to 
radiation-hardened devices (KATZ et al., 1997; OBRYAN; LABEL, 2001).  

The space radiation environment can have serious effects on spacecraft electronics. 
Single Event Effect (SEE) is the main concern in space (BARTH, 1997), with 
potentially serious consequences for the application, including loss of information and 
functional failure. SEE occurs when charged particles hit the silicon transferring enough 
energy in order to provoke a fault in the system.  SEE can have a destructive or transient 
effect, according to the amount of energy deposited by the charged particles and the 
location of the strike in the device. The main consequences of the transient effect, also 
called Single Event Upset (SEU), are bit flips in the memory elements. SEU has been 
constantly magnified in the past years, caused by the continuous technology evolution 
that has led more and more complex architectures, with a large amount of embedded 
memories, followed by an amazing scaling down process of transistor dimensions 
(Moore’s Law) (MOORE, 1975).  

The fabrication technology process of semiconductor components is in continuous 
evolution in terms of transistor geometry shrinking, power supply, speed, and logic 
density (SIA SEMICONDUCTOR, 1994).  As stated in  (JOHNSTON, 2000;  
OBRYAN; LABEL, 2001; OBRYAN et al., 2002; DUPONT; NICOLAIDIS; ROHR, 
2002), drastic device shrinking, power supply reduction, and increasing operating 
speeds reduce significantly the noise margins and thus the reliability that very deep 
submicron (VDSM) ICs face from the various internal sources of noise. This process is 
now approaching a point where it will be unfeasible to produce ICs that are free from 
these effects. A more significant problem is related to SEU.  It is predicted that neutrons 
produced by sun activity will affect dramatically the operation of future ICs. At the sea 
level, the energy of these particles is not strong enough to drastically affect the 
operation of current ICs. But as we approach 0.1um, or very low supply voltage, the 
rates of random errors induced by cosmic neutrons will be unacceptable. The situation is 
worse at flight altitudes. Alpha particles produced by packaging material are becoming 
another cause of increasing soft error rates in these technologies.   
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The necessity to protect integrated circuits against upsets has become more and 
more eminent (JOHNSTON, 2000; LABEL et al., 2000). Experiments presented in 
(NORMAND; BAKER, 1993; NORMAND, 1996; NORMAND, 2001) indicate that 
neutron particles present in the atmosphere are capable of producing SEE in avionics. 
Recent studies also show that memory cells composed of transistors with length smaller 
than 0.25 µm and combinational logic composed of transistors with length smaller than 
0.13 µm may be subject to upsets while operating in the space environment or inside the 
atmosphere (BAUMANN, 2001, BOREL; GAUTIER; GASIOT, 2001). Terrestrial 
applications that are determined as critical such as bank servers, telecommunication 
servers and avionics are more and more considering the use of fault-tolerant techniques 
to ensure reliability.  

Both discussed factors, the space market interest of using COTS/military devices in 
space applications and the constant increase in the radiation sensitivity of integrated 
circuits driven by the process scaling, have brought the necessity of researching fault-
tolerant techniques for ICs able to cope with the radiation effects at sea level and also 
qualifying the design for space applications. Although many techniques have been 
developed in the last few years attempting to avoid SEU, efficient fault-tolerant 
solutions are still a challenge for the next generation semiconductor industry, especially 
because of the complexity of the new architectures.  

The development of fault-tolerant techniques is strongly associated with the target 
device and it requires a detailed analysis of the effects of an upset on the related 
architecture. For each type of circuit, there is a set of most suitable solutions to be 
applied. In the past years, the integrated circuit industry has designed more and more 
complex architectures in order to improve performance, to increase logic density and to 
reduce cost. Examples of this development include Application Specific Integrated 
Circuits (ASICs), microprocessors composed of millions of transistors, high-density 
Field Programmable Gate Array (FPGA) components and more recently System-on-a-
Chip (SOC) composed of embedded microprocessors, memories and analog logic 
blocks. These architectures have made a dramatic impact on the way systems are 
designed, providing a large amount of information processing on a single chip. They 
cover a wide range of applications, from portable systems to dedicated embedded 
control units and computers. In particular, FPGAs have made a major improvement in 
system designs by adding the reconfigurability feature, which reduces the time to 
market and increases the flexibility in the design. 

Due to the constant advances in technology over the last few years, Moore’s law 
again, the gap between FPGAs and ASICs in terms of performance has been reduced to 
a negligible level for the majority of applications, which has increased the market for 
FPGAs (figure 1.1). In the 70s, a system was basically composed of a microprocessor 
component, a memory chip and discrete logic. In the 80s, a large part of the discrete 
logic was replaced by ASICs and some part by programmable logic components 
(FPGA). In the 90s, the discrete logic completely disappeared and the system was 
composed of microprocessors, memory, ASICs and FPGA components. ASICs are 
progressively being replaced by FPGAs in many systems as illustrated in the 
illustration. In addition, more complex structures are constantly being added to FPGA 
architectures, supported by substantial increases in logic density and performance in the 
last few years. Nowadays, FPGAs are also replacing microprocessors and memories as 
these parts are being added to the FPGA matrix.  

Consequently, next generation of FPGA architectures do not claim to reduce that 
gap between ASIC and programmable logic anymore, but to merge microprocessors and 
reconfigurability features in the same component in order to improve performance and 
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flexibility (DAC, 2001). FPGAs already provide reconfigurability and high performance 
for many applications, but the necessity of adding either more performance for 
applications such as Digital Signal Processing (DSP), using high-bandwidth and 
reducing the board space, power and cost, has increased the interest of embedding 
microprocessors in the programmable matrix, as illustrated in more detail in figure 1.2. 
This experience had started with the soft cores synthesized in the FPGA architecture in 
order to get the highest performance and density tradeoff (XILINX, 2000; ALTERA, 
2001). And it has arrived at the next level of performance and complexity with the 
Virtex® II –Pro generation, which has up to four hard PowerPC core microprocessors 
from IBM embedded in the matrix (XILINX, 2001a).  

 

FPGAFPGA

2003

Memory

uP

uP FPGA

 
Figure 1.1: Design Evolution using FPGA 

As a consequence, FPGAs are increasingly demanded by spacecraft electronic 
designers because of their high flexibility in achieving multiple requirements such as 
high performance, low NRE (Non-Recurring Engineering) cost and fast turnaround 
time. There are many types of customization in the FPGAs. One of the most popular 
ones uses SRAM memory cells to customize the FPGA, which makes possible in-the-
field customization as many times as necessary in a very short period of time.  
Examples are the families Virtex®, Virtex®-E and Virtex®-II fabricated by Xilinx. As a 
result, SRAM-based FPGAs are even more valuable for remote missions by offering the 
additional benefits of allowing in-orbit design changes, with the aim of reducing the 
mission cost by correcting errors or improving system performance after launch.  
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Figure 1.2: Actual architecture generation of commercial Field Programmable Gate 

Arrays 

The advantages of using SRAM-based FPGAs for space applications and the 
increase of logic complexity of the programmable logic with more and more embedded 
memories and specific architectures such as microprocessors brings us the necessity of 
researching new SEU mitigation techniques specific for programmable architecture. 
This thesis presents the study and development of SEU mitigation techniques for 
programmable logic architectures, more specifically for SRAM-based FPGAs. The 
consideration of using FPGA for space applications is fairly recent and there is a lot of 
work to be done in this area. Presently, there is no efficient solution for SRAM based 
FPGAs that can ensure 100% reliability in all conditions for SEU. 

Several fault-tolerant techniques have been studied in the past years to protect 
ASICs against transient faults, and because FPGAs are composed of combinational and 
sequential logic and more recently embedded processors, previous work dealing with 
standard integrated circuits can be adapted to the programmable logic architecture by 
finding the best tradeoff among area overhead, performance penalties, single and 
multiple upset correction, process technology and implementation cost. However, the 
SEU mitigation techniques previously used for ASICs cannot simply be applied to 
programmable circuits because of the distinct effect of a SEU in the FPGA architecture 
compared to an ASIC, as will be further discussed in the next chapter. Consequently, 
the effect of SEUs in the SRAM-based FPGA architecture must be investigated to 
identify the limitations of the already used fault-tolerant techniques and to guide the 
investigation to new solutions.  

The goal of this work is to investigate the techniques used nowadays and to develop 
new SEU mitigation techniques for SRAM-based FPGAs that are cost efficient in terms 
of: 

- time to market, 
- low development cost, 
- high performance, 
- low area cost, 
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- low power dissipation, 
- high reliability. 

 There are two ways to implement fault-tolerant circuits in SRAM-based FPGAs, as 
exemplified in the flowchart in figure 1.3. The first possibility is to design a new FPGA 
matrix composed of fault-tolerant elements. These new elements can replace the old 
ones in the same architecture topology or a new architecture can be developed in order 
to improve robustness. The cost of these two approaches is high and it can differ 
according to the development time, number of engineers required to perform the task 
and the foundry technology used. Another possibility is to protect the high-level 
description by using some sort of redundancy, targeting the FPGA architecture. In this 
way, it is possible to use a commercial FPGA part to implement the design and the SEU 
mitigation technique is applied to the design description before being synthesized in the 
FPGA. The cost of this approach is inferior to the previous one because in this case the 
user is responsible for protecting the own design and it does not require new chip 
development and fabrication. In this way, the user has the flexibility of choosing the 
fault-tolerant technique and consequently the overheads in terms of area, performance 
and power dissipation.  

 

How to implement a fault-tolerant digital circuit in 
SRAM-based FPGA?
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Figure 1.3: Design flow of how to protect a digital circuit implemented in a SRAM-

based FPGA 

In summary, the four different implementations of a fault-tolerant FPGA: A, B, C 
and D have different costs that are approximately organized as: cost B > cost A >>>>> 
cost C > cost D. All of them have their own space in the market, as each application 
requires different constraints. But because the semiconductor industry trends to 
emphasize time-to-market and low-cost production, the implementations C and D look 
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more interesting. In this work, both architectural and the high-level methods are 
presented and discussed, but because of the high cost of the implementations A and B, 
only implementations C and D are designed and tested in details.  

This thesis work can be divided into three main phases, ranging from the study of 
state-of-the-art of SEU mitigation techniques for ASIC and FPGA components, to the 
implementation and test of new fault-tolerant techniques for SRAM-based FPGA 
components. Some of the research phases are also related to the two internships 
concluded during the thesis work, one at Tima laboratory (Grenoble, France) for 6 
months under the supervision of researcher Raoul Velazco and other one at Xilinx (San 
Jose, USA) for 11 months under the supervision of engineer Joe Fabula in the high 
reliability team.  

In the first phase of the research, available techniques to protect integrated circuits 
against radiation were studied. The radiation fault-tolerant techniques can be classified 
as: the ones that change the technology used in the fabrication process such as Silicon 
on Insulator (SOI), and the ones that change the hardware design of a system such as 
SEU hardened memory cells, error detection and correction codes (EDAC) and logic 
redundancy. There is a trade-off with each mitigation technique for each type of 
architecture system, and there is no best unique solution so far. Some of the considered 
techniques were evaluated in terms of area, cost and performance. The first case study 
circuit was the 8051 micro-controller from Intel (INTEL, 1994). The microprocessor 
architecture was chosen for its representation of the majority of system requirements in 
space applications nowadays, presenting all types of logic to be protected and being part 
of the new generation architectures based on FPGA with an embedded hard 
microprocessor core. 

The description of the 8051 micro-controller used in the experiment was developed 
at UFRGS (CARRO; PEREIRA; SUZIM, 1996). It is composed of a datapath unit, 
control unit, state machine, instruction decoding unit and embedded memory. Although 
the 8051 micro-controller has a simplified architecture compared to the latest 
microprocessors, the assumptions made in its architecture can be adapted to any other 
processor-like circuit. Techniques such as hamming code and radiation tolerant flip-
flops were implemented in the 8051 micro-controller (LIMA et al., 2000a; LIMA et al., 
2000b). Fault injection (LIMA et al., 2001a; LIMA et al., 2002a; LIMA et al., 2002b) 
and simulation were used to analyze the efficiency of the techniques. Area and 
performance were taken into consideration with the results. 

The second phase of the work resumes the analysis of an SRAM-based FPGA and 
the SEU effects in this architecture. The Virtex® family FPGA from Xilinx is the most 
popular high density and high performance FPGA used in the market nowadays and it 
was chosen to be the object of study in this work. There are two ways to mitigate SEU 
in FPGA designs, as mentioned previously. One is based in changing the FPGA 
architecture and the other one is based on modifying the high-level design description 
before the FPGA synthesis. First, implementations of some SEU mitigation techniques 
in the architectural level of the FPGA matrix were proposed. The SRAM-based 
architecture was divided in main blocks classified by functionality (such as LUT), flip-
flops, customization routing, embedded memory, PLL, etc. SEU mitigation techniques 
for many of the blocks are discussed. The objective is to show the trade-off of each 
technique in the Virtex® FPGA and the complexity of developing a new architecture 
with changes at the mask level. This investigation was based on the experience collected 
in first phase.  

Because of the limitations in developing and testing a new fault-tolerant FPGA 
architecture such as cost and time-to-market/ techniques at the high-level description 
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must also be investigated. The Triple Modular Redundancy (TMR) with voters is a 
common technique to protect against SEU in ASICs and it can be also applied to protect 
FPGAs against SEU, as shown in (CARMICHAEL, 2001). In this case, the mitigation 
can be applied to the high-level design description language and synthesized in the 
device without any changes in the mask process. The TMR technique was first tested in 
the Virtex architecture by using a small design based on counters. Faults were injected 
in all sensitive parts of the FPGA and a detailed analysis of the effect of a fault in a 
TMR design synthesized in the Virtex platform was performed. Results were published 
in (LIMA et al., 2001b). 

In order to test a more complex design protected by TMR in the Virtex® platform 
that would also include embedded memories, the same 8051 like micro-controller 
description was protected by TMR and tested under the FPGA platform. There are many 
advantages of using the same design as the 8051 micro-controller, such as good 
description knowledge, importance of micro-controllers IP in FPGA and the possibility 
of comparison with the previous techniques (hamming code and SEU hardened memory 
cells) applied in the same description. The TMR 8051 micro-controller was tested by 
fault injection and under proton radiation in a ground facility (LIMA et al., 2001b). At 
the end of these practical experiments (LIMA et al., 2001b; CARMICHAEL; FULLER; 
FABULA; LIMA, 2001), the use of TMR in Virtex FPGAs has confirmed the efficacy 
of the TMR structure to recover upsets in the FPGA architecture. However, the TMR 
technique presents some limitations, such as area overhead, three times more input and 
output pins and, consequently, a significant increase in power dissipation and also some 
robustness issues.  The result has brought about the necessity of improving this 
technique in order to reduce the overheads and to try to improve robustness as well. 

In the third phase of the work, additional SEU mitigation techniques for the Virtex® 
FPGA architecture were investigated.  A new high-level fault-tolerant technique for 
SRAM-based FPGA was developed (LIMA, CARRO, REIS, 2003a; LIMA, CARRO, 
REIS, 2003b). This technique combines time and hardware redundancy with some extra 
features able to cope with the effects of SEU in FPGAs and at the same time it is able to 
reduce the number of input and output pads and area overhead compared to the 
traditional TMR approach. The methodology was validated in combinational and 
sequential circuits by using fault injection experiments emulated in a prototype board. 
Results have confirmed that this new technique can reduce not only pin count but also 
area as well without compromising performance and reliability.  

This thesis report is organized as follows. Chapter 2 describes the radiation effects 
on integrated circuits manufactured using CMOS process and it explains in detail the 
difference between the effects of a SEU in ASIC and in SRAM-based FPGA 
architectures. This chapter shows the architecture analysis of the Virtex® FPGA and all 
its radiation sensitive area. Chapter 3 presents the main techniques available in the 
literature, either being commercialized by companies or being studied by researchers, to 
mitigate the effects of radiation in ASICs, such as microprocessors and memories, and 
in programmable architectures, such as FPGAs programmed by SRAM and by anti-fuse 
technology.  

Chapter 4 discusses some SEU mitigation techniques that can be applied at the 
FPGA architectural level. The FPGA was divided by functionality in main logic blocks. 
Each block has different characteristics, and the fault-tolerant technique must take into 
account the peculiarities of each. In the end, a SEU tolerant FPGA is proposed based on 
the presented SEU mitigation techniques.  

Chapter 5 defines the problem of protecting SRAM-based FPGAs against radiation 
in the high level description. The Triple Modular Redundancy (TMR) technique in the 
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high level description for FPGAs is addressed in this chapter. Chapter 6 evaluates the 
robustness of the TMR technique by using fault injection in the bitstream of the FPGA 
and also in a radiation ground test facility. In this chapter, a methodology is presented to 
relate the upset bit in the bitstream to the SRAM cell location in the user’s design 
floorplanning. The obtained results represent an important base for this work, because it 
shows the limitations of the TMR method on the SRAM-based FPGA, justifying the 
research of new design techniques for SEU mitigation in SRAM based FPGAs. 

Chapter 7 shows the implementation and results of the 8051 description protected by 
TMR in the Virtex FPGA. All implementation details of the TMR technique were 
carefully applied to the VHDL description of the 8051 to test this technique in a more 
complex design. The final protected design was tested by fault injection in the FPGA 
bitstream and also in a radiation ground test facility. Results and final remarks are 
placed at the end of that chapter.  

Chapter 8 introduces a new high-level technique for designing fault tolerant systems 
for SRAM-based FPGAs, without modifications in the FPGA architecture, able to cope 
with transient faults in the user combinational and sequential logic, while also reducing 
pin count, area and power dissipation compared to the traditional TMR. The 
methodology was validated by fault injection experiments in VHDL description 
emulated in a prototyped board. Results in terms of fault coverage and area and 
performance comparison with the TMR approach are presented.  

The technique presented in chapter 8 presents some limitations in fault coverage 
because it uses the standard time redundancy approach to detect the effect of a SEU in 
the FPGA matrix. In chapter 9, an improvement to the high-level technique presented in 
chapter 8 is proposed. This technique combines duplication with comparison and 
concurrent error detection technique in order to cope with the permanent effects of a 
SEU in FPGAs and at the same time to reduce TMR overheads. In addition, this 
proposed method is also able to detect physical faults, which are permanent faults that 
are not corrected by reconfiguration. The methodology was also validated by fault 
injection experiments in an emulation board. Some fault coverage results and a 
comparison with the TMR approach are evaluated.  

The conclusion is placed in chapter 10, followed by the references, and it analyzes 
the architectural and high-level methods of fault-tolerant techniques for SRAM-based 
FPGAs studied and developed in this thesis. Because the technology is constantly in 
evolution, there are always improvements to be made in the projection of integrated 
circuits, and consequently, in the way designs are protected against faults. This work 
has contributed to some solutions for the SRAM-based FPGAs that are being projected 
to work in commercial applications but are manufactured by nanotechnologies and need 
to work properly in the presence of upsets. However, there is much more research to be 
done as each step of investigation brings more questions and possibilities of solutions. 
As a result, future works are proposed at the end of this report.   
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2 SPACE ENVIRONMENT AND RADIATION EFFECTS  

Signal integrity is becoming much more critical in integrated circuits (ICs) designed 
in very deep sub-micron technologies (VDSM), as device dimensions continue to 
shrink. Some of the causes are cross coupling and ground bounce, which are increasing 
the sensitivity of VDSM designs to transient errors (IROM ET AL, 2002). In addition, 
ICs operating in space environment and more recently at sea level can be upset by 
charged particles that also generate transient errors in the system. Transient errors 
provoked by radiation effects are a major concern and they must be tolerated in order to 
ensure reliability.  

The radiation environment is composed of various particles generated by sun 
activity (STASSINOPOULOS; RAYMOND, 1988; BARTH, 1997; BAUMANN, 2001; 
LERAY, 2001). The particles can be classified as two major types: (1) charged particles 
such as electrons, protons and heavy ions, and (2) electromagnetic radiation (photons), 
which can be x-ray, gamma ray, or ultraviolet light. The main sources of charged 
particles that contribute to radiation effects are protons and electrons trapped in the Van 
Allen belts, heavy ions trapped in the magnetosphere, galactic cosmic rays and solar 
flares. The charged particles interact with the silicon atoms causing excitation and 
ionization of atomic electrons.  

When a single heavy ion strikes the silicon, it loses its energy via the production of 
free electron hole pairs resulting in a dense ionized track in the local region, as 
illustrated in figure 2.1 (a). Protons and neutrons can cause nuclear reaction when 
passing through the material, as illustrated in figure 2.1 (b). The recoil also produces 
ionization. The ionization generates a transient current pulse that can be interpreted as a 
signal in the circuit causing an upset.  
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Figure 2.1: Charged particle striking the silicon surface (OBRYAN et al., 1998) 

The influence of radiation in the material is measured by the energy and the flux of 
particles. The flux is the number of particles passing during one second through one cm2

 

of area [1/s.cm2].  Integrating the flux over time one gets the fluence, which is [1/cm2]. 
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The flux of these sources is affected by the activity of the sun. The energy deposited by 
the charged particle is measured in rad (1 rad = 10-2

 Js-1), which corresponds roughly to 
the generation of 4x1013

 electron-hole pairs in one cm3 of silicon. The rate at which the 
particle loses energy is called stopping power (dE/dx). The incremental energy dE is 
usually measured in units of MeV while the material thickness is usually measured as a 
mass thickness in units of mg/cm2. The energy transferred to the device is called Linear 
Energy Transfer (LET) and it is measured by the incremental energy per unit length 
(MeV/(mg/cm2)). The minimum LET that can cause an SEU is called the LET threshold 
(LETth) (DENTAN, 2000). There are many levels of robustness, according to the 
amount of flux and energy transferred to the silicon that can keep the circuit operating 
properly. On average, space applications operating in low orbit and military applications 
need to be robust to LETs higher than 40 MeV/(mg/cm2). 

In other words, there is a minimum charge that must be deposited in the node in 
order to cause an upset. This minimum charge is called critical charge (Qcrit) and it is 
defined by Qcrit = Cnode.Vnode+ Irestore.Tflip. The critical charge must be bigger than the 
node collector charge (Qcol), which is based on node parameters such as capacitance and 
voltage.  The critical charge has been reduced in the new process technologies because 
of the scaling. For constant field scaling, for example, as all physical device dimensions 
such as gate length L, gate width W, and gate oxide thickness TOX, are reduced, the 
supply voltage VDD and the threshold voltage VTH are also reduced proportionately. This 
fact results in proportionately lower drain current (I), proportionately lower load 
capacitance (C), and proportionately lower circuit gate delay (C*VDD/I). This means that 
less charge or current is required to store information. Consequently, devices are 
becoming more vulnerable to radiation and this means that particles with small charge, 
which were once negligible, are now much more likely to produce upset. 

By counting the number of upsets and knowing how many particles passed through 
the part, we can calculate the probability of a particular particle causing an upset. This 
resultant number, which is the number of upsets divided by the number of particles per 
cm2 causing the upsets, is called the cross-section of the part and is measured in units of 
cm2 / device. Consequently, the sensitivity of a device to an upset is measured by a 
function of the cross-section (σ) in terms of the LET (Linear Energy Transfer). Figure 
2.2 shows an example of cross-section per LET curve. 
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Figure 2.2: An example of cross-section per LET curve 
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Analyzing this curve, one can say that no error occurs in the presence of particles 
with LET (linear energy transfer) lower than 25 MeV. For particles with 25 MeV, more 
than 100.000.000 particles must travel through the circuit sensitive area to trigger one 
upset. For particles with 50 MeV, 10.000 particles per second are needed to trigger one 
upset. And a flux of 100 particles per second with a LET of 100 MeV is needed to 
trigger one upset.   

At the ground level, the neutrons are the most frequent cause of upset (NORMAND, 
1996; OBRYAN et al, 1998; BAUMANN; SMITH, 2000). Neutrons are created by 
cosmic ion interactions with the oxygen and nitrogen in the upper atmosphere. The 
neutron flux is strongly dependent on key parameters such as altitude, latitude and 
longitude. Its peak is around 60,000 ft (~20,000 m). At 30,000 ft (~10,000 m) the 
neutrons are about 1/3 of the peak flux, and on the ground, it is about ~1/400 of the peak 
flux. At airplane altitudes, the neutron flux is 7,200 neutrons/cm2/hour. The peak at 
ground level is around 4 neutrons/cm²/sec, but the average at sea level is around 20 
neutrons/cm2/hour. Figure 2.3 shows a graphic of the variation of the neutron flux 
according to the altitude. 

 

 
Figure 2.3: 1-10 MeV Atmospheric Neutron Flux vs. Altitude, Simplified Boeing 

Model (NORMAND, 1996) 

There are high-energy neutrons that interact with the material generating free 
electron hole pairs and low energy neutrons. These neutrons interact with a certain type 
of Boron present in semiconductor material creating others particles as represented in 
figure 2.4. The energized alpha particles are the greatest concern in this case and they 
are addressable through processing and packaging material. In principle, a very careful 
selection of materials can minimize alpha particles. However, this solution is very 
expensive and never eliminates the problem completely (DUPONT; NICOLAIDIS; 
ROHR, 2002). 
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Figure 2.4: Neutron reaction (OBRYAN et al, 1998) 

The detailed analysis of the effects of radiation particles in the bulk of a 
semiconductor is still a challenge. One of the difficulties is in predicting just what 
percentage of electron hole pairs is actually collected in the area around the stored data. 
It is this percentage that determines the critical point at which the radiation induced 
charge provokes an error in the stored data. Solutions to help the analysis can be the use 
of complex 3D simulations to help find an accurate shape for the pulse generated by the 
strike and the exploration of how the electron-hole-pair cloud can neutralize the stored 
data.  

2.1 Effect of SET and SEU in Integrated Circuits 

A single particle can hit either the combinational logic or the sequential logic in the 
silicon (CRAIN et al., 2001; ALEXANDRESCU; ANGHEL; NICOLAIDIS, 2002). 
Figure 2.5 illustrates a typical circuit topology found in nearly all sequential circuits. 
The data from the first latch is typically released to the combinatorial logic on a falling 
or rising clock edge, at which time logic operations are performed. The output of the 
combinatorial logic reaches the second latch sometime before the next falling or rising 
clock edge. At this clock edge, whatever data happens to be present at its input (and 
meeting the setup and hold times) is stored within the latch. 

Combinational
logic

clk

IN OUT

upset 1 upset 2

 
Figure 2.5: Upsets hitting combination and sequential logic 

When a charged particle strikes one of the sensitive nodes of a memory cell, such as 
a drain in an off state transistor, it generates a transient current pulse that can turn on the 
gate of the opposite transistor. The effect can produce an inversion in the stored value, 
in other words, a bit flip in the memory cell. Memory cells have two stable states, one 
that represents a stored '0' and one that represents a stored '1.' In each state, two 
transistors are turned on and two are turned off (SEU target drains). A bit-flip in the 
memory element occurs when an energetic particle causes the state of the transistors in 
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the circuit to reverse, as illustrated in figure 2.6. This effect is called Single Event Upset 
(SEU) and it is one the major concerns in digital circuits. 
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     (a) Before the particle hit         (b) After the particle hit 

Figure 2.6: Single Event Upset (SEU) effect in a SRAM Memory cell 

When a charged particle hits the combinational logic block, it also generates a 
transient current pulse. This phenomenon is called single transient effect (SET) 
(LEAVY et al., 1991). If the logic is fast enough to propagate the induced transient 
pulse, then the SET will eventually appear at the input of the second latch in figure 2.5, 
where it may be interpreted as a valid signal. Whether or not the SET gets stored as real 
data depends on the temporal relationship between its arrival time and the falling or 
rising edge of the clock. Figure 2.7 exemplifies the signal paths in a combinational 
logic.  In (HASS et al., 1998; HASS, 1999) the probability of a SET becoming a SEU is 
discussed. The analysis of SET is very complex in large circuits composed of many 
paths. Techniques such as timing analysis (GUNTZEL; REIS, 2000) could be applied to 
analyze the probability of a SEU in the combinational logic being stored by a memory 
cell or resulting in an error in the design operation. Additional invalid transients can 
occur at the combinatorial logic outputs as a result of SETs generated within global 
signal lines that control the function of the logic. An example of this would be SETs 
generated in the instruction lines to an ALU (Arithmetic Logic Unit). In (NICOLAIDIS; 
PEREZ, 2003), the widths of some induced transient pulses are measured to obtain 
more precise models for fault-tolerant analysis.  
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Figure 2.7: Single Event Transient (SET) Effect in Combinational Logic (ANGHEL; 

ALEXANDRESCU; NICOLAIDIS, 2000) 

SEUs can be classified in first, second and third order effects, according to the 
number of upsets that occur at the same time in the circuit. A single bit upset (SEU) is 
classified as a first order effect, while multiple bit upsets (MBU) are classified as 
second or third order effects. MBU can occur when a single charged particle traveling 
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through the IC at a shallow angle, nearly parallel the surface of the die, simultaneously 
strikes two sensitive junctions (ZOUTENDYK; EDMONDS; SMITH, 1989). Just as 
SEU, direct ionization or nuclear recoil can induce MBUs, as is presented in figure 2.8 
(VARGAS; AMORY, 2001).  

 

Heavy Ion

Two adjacent cells

Proton / Neutron

Nuclear recoil

 
Figure 2.8: MBU provoked by a single particle  

In (REED et al., 1997), experiments in memories under proton and heavy ions fluxes 
have shown multiple upsets provoked by a single ion. MBUs were observed for all 
angles of incidence for LET greater than 25 MeV/(mg/cm2). There are three types of 
MBU. The first one occurs when a single particle hits two adjacent nodes, located in 
two distinct memory cells. This event is classified as a second-order effect. This type of 
MBU can be avoided by specific placement.  

The second type of MBU occurs when a single particle strikes two adjacent nodes 
located in the same memory cell. This event is classified as a third-order effect. It can be 
avoided by layout constraints. In this case, two or more charged particles are necessary 
to generate multiple upsets. The probability of this occurrence is related to the 
placement of the memory cells. The cross section is proportional to the sensitive areas 
of the junctions that are normal to the incident cosmic ray and to the solid angle 
subtended between these sensitive areas. The probability of such a multiple node strike 
can be minimized in a circuit design by taking care in the physical layout to separate 
critical node junctions by large distances and to align such junctions so that the area of 
each, as viewed from the other, is minimized.  

The third type of MBU occurs when multiple bits strike that silicon provoking 
upsets in multiple nodes. This event can be analyzed like a group of SEU and it will 
represent the same (this should be “immunity characteristics” or “characteristic 
immunity”). Based on (REED et al., 1997), the majority of multiple upsets located in 
adjacent cells are provoked by a single particle. There is a very low probability of more 
than one charged particle interacting in adjacent cells, provoking upsets in a period 
smaller than 1 s. in (VELAZC0; CHEYNET, ECOFFET, 1999), it is shown some SEU 
flight results of two SRAM memories (Hitachi and MHS). A total of 691 upsets were 
detected for the analyzed period of time, 333 of them arising on the Hitachi SRAM and 
358 occurring in the MHS SRAM memory. The distribution of bit flips within the 
memory word’s bits was uniform. Some double bit upsets were also detected, 8 double 
upsets in the Hitachi and 3 in the MHS memory. Transitions 1 to 0 seem to be slightly 
more frequent than 0 to 1 for all the tested memories too.  
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2.2 Peculiar Effect of SET and SEU in SRAM-based FPGA Devices 

The Virtex® family from Xilinx (XILINX, 2000) is one of the most popular SRAM-
based programmable devices used in the market nowadays because of its high density 
and high-performance. It supports a wide range of configurable gates, from 50k to more 
than 1M system gates. It is fabricated on thin-epitaxial silicon wafers using the 
commercial mask set and the Xilinx 0.22µ CMOS process with 5 metal layers. The 
Virtex® family is valuable for space applications because of the reduced cost, high-
density and reconfigurability, which can considerably reduce the mission cost. Because 
it is a VDSM design, it is highly sensitive to radiation effects and its architecture must 
be studied in order to be protected against upsets.  

The Virtex® architecture consists of a flexible and regular matrix composed of an 
array of configurable logic blocks (CLB) surrounded by programmable input and output 
blocks (IOB), all interconnected by a large hierarchy of fast and versatile routing 
resources, as shown in figure 2.9. The CLB tile is a complex structure composed of 
Lookup Tables (LUT), flip-flops and routing resources (switch matrix, multiplexors and 
connection segments), as is illustrated in figure 2.10. The CLB provide the functional 
elements for constructing logic while the IOB provide the interface between the package 
pins and the CLB. The logic blocks are interconnected through a general routing matrix 
(GRM) that comprises an array of routing switches located at the intersections of 
horizontal and vertical routing channels. The Virtex® matrix also has dedicated memory 
blocks called select block RAM (BRAM) of 4,096 bits each, clock DLLs for clock-
distribution delay compensation and clock domain control, and two 3-state buffers 
(BUFT) associated with each CLB.  

CLB Segmented routing
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Block
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Memory

PLL
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Figure 2.9: SRAM based FPGA topology 
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Figure 2.10: Virtex CLB Tile Schematic 

Each Virtex CLB contains four logic cells that include a 4-input function generator, 
carry logic, and a storage element, organized in two similar slices. Figure 2.11 shows a 
more detailed view of a single slice. In addition to the four basic logic cells (LC), the 
Virtex CLB contains logic that combines function generators to provide functions of 
five or six inputs. Consequently, when estimating the number of system gates provided 
by a given device, each CLB counts as 4.5 LCs. 

Each CLB slice can implement any two of all 4-input logic functions or some 
functions up to 9 inputs. The function generator is implemented as a lookup table 
(LUT), figure 2.12. Besides operating as a function generator, each LUT can provide a 
16 x 1-bit synchronous RAM. Furthermore, the two LUTs within a slice can be 
combined to create a 16 x 2-bit or 32 x 1-bit synchronous RAM, a 16x1-bit dual-port 
synchronous RAM, or a 6-bit shift register. Figure 2.13 shows some examples of these 
configurations.  
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Figure 2.11: Slice overview in the Virtex CLB 

 

 
 

Figure 2.12: 4-input LUT Schematic 
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(a) LUT Configured as Shift Register 

 
(b) LUT Configured as Memory 

Figure 2.13: LUT configuration examples 

The storage elements in the Virtex® slice can be configured either as edge-triggered 
D-type flip-flops or as level-sensitive latches. The D inputs can be driven either by the 
function generators within the slice or directly from slice inputs, by passing the function 
generators. In addition to Clock and Clock Enable signals, each slice has synchronous 
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set and reset signals (SR and BY). SR forces a storage element into the initialization 
state specified for it in the configuration. Signal BY forces it into the opposite state. 
Alternatively, these signals may be configured to operate asynchronously. All of the 
control signals are independently invertible, and are shared by the two flip-flops within 
the slice. Each Virtex® CLB contains two 3-state buffers (BUFT) that can drive on-chip 
busses. Each Virtex® BUFT has an independent 3-state control pin and an independent 
input pin. Figure 2.14 shows the possibilities of flip-flop configuration in the CLB.  

   
Figure 2.14: Examples of CLB flip-flop Configuration 

The routing is composed of the switch box and input and output multiplexors. The 
switch block is a programmable interconnect block that is found at the intersection of 
each horizontal and vertical routing channel. The flexibility of a switch matrix (Fs) is 
defined as the number of connections to each incoming track to the number of outgoing 
tracks (figure 2.15). Clearly, the flexibility of each switch block is the key to the overall 
flexibility and routability of the device. The number of switches required in the matrix 
is defined as 2xFsxW, where W is the number of connection directions, figure 2.16. 
Two examples of connection elements are the pass transistor and the tri-state buffer, 
figure 2.17. Since the transistors in the switch block add capacitance loading to each 
track, the switch block has a significant effect on the speed of each routable connection, 
and hence the speed of the FPGA as a whole. In addition, since such a large portion of 
an FPGA is devoted to routing, the chip area required by each switch block will have a 
large effect on the achievable logic density of the device. Thus, the design of an 
efficient hardened switch block is of the utmost importance. 

 
Figure 2.15: Two examples of switch matrices with a different flexibility (a) Fs=3 (b) 

Fs=5. (DEPREITERE; VAN MARCK; VAN CAMPENHOUT, 1998) 
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Figure 2.16: Direction of the Connections in a Switch Matrix (W=6) 

 

 
(a) Pass transistor     (b) Tri-state buffer 

Figure 2.17: Routing Switch Connections (BETZ; ROSE, 1999) 

The switch matrix connects the single and the hex wires. A representation of this 
matrix is illustrated in figure 2.18. The hex wires are also connected only with other hex 
lines by multiplexors, as represented in figure 2.19. The input and output multiplexors 
located in the CLB tile are responsible for the connections from the incoming wires 
(switch matrix or hex connections) to the CLB slices and the output signals from the 
CLB slices to the outgoing wires (switch matrix or hex connections), respectively. The 
representation is in figure 2.10. There are 13 input multiplexors per slice, which 
includes the F1-F4, G1-G4, CLK, SR, etc. Each input of the CLB has a multiplexor 
associated with it that determines which wires drive the inputs. There are 8 output 
multiplexors per CLB. Each output multiplexor can select various slice outputs and 
drive those signals to the general routing. 
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Figure 2.18: Switch matrix connects the Single and Hex Segments 
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Figure 2.19: Hex line connections in the routing 
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Figure 2.20: Input and Output multiplexors in the routing 
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The hex lines can connect up to 3 CLBs given an interval of 2 CLBs between each 
of them. Each CLB has sets of 12 hex lines running in North, South, East and West 
directions. If the hex line connects to a CLB in the same row or in the same column, it is 
called HEX_HORIZ or HEX_VERT, respectively. Some hex wires can only drive data 
into the CLB; these are called unidirectional in. Some hex wires can only drive data out 
of the CLB; these are called unidirectional out. Some hex wires can drive signal in and 
out of the CLB; these are called bi-directional.  

Single lines can connect just one CLB. In each CLB, there are sets of 24 single wires 
in each North, South, East and West directions. Long lines run the length of the chip. 
There are accesses to 2 vertical and 2 horizontal lines in each CLB. They connect to 
other CLBs every 6 CLBs away. There is a twist in them, which changes their name. So 
for example, if you connect to LongVert[0] in (row, col) you can access the signal from 
LongVert[1] in (row+6, col), LongVert[0] in (row+12, col), LongVert[1] in (row+18, 
col), etc.  Routing works in a hierarchical manner. Long lines can drive hex lines only; 
hex lines can drive hex lines and single lines. Also single lines can drive single lines and 
vertical long lines. Figure 2.12 shows the switch boxes and the possibilities of 
connections between hex lines and single lines. 

Virtex® family has several large Select block RAM (BRAM) memories, figure 2.21. 
Each embedded memory can be programmed with up to 4,098 bits and a single or dual 
port mode. These blocks complement the distributed LUT RAMs that provide shallow 
RAM structures implemented in CLBs. BRAM memories are organized in columns. All 
Virtex® components contain two such columns, one along each vertical edge. These 
columns extend the full height of the chip. Each memory block is four CLBs high, and 
consequently, a Virtex® component 64 CLBs high contains 16 memory blocks per 
column, and a total of 32 blocks. In the Virtex-E there are four BRAM columns in the 
matrix.  

 

 
(a) BRAM Representation 

 
(b) BRAM Memory cell 

Figure 2.21: Embedded Block RAMs (BRAM) 

Virtex® components are quickly programmed by loading a configuration bitstream 
(collection of configuration bits) into the matrix. The device functionality can be 
changed at anytime by loading in a new bitstream. The bitstream is divided into frames 
and it contains all the information to configure the programmable storage elements in 
the matrix located in the Look-up tables (LUT) and flip-flops, CLBs configuration cells 
and interconnections and embedded memories. All these bits are potentially sensitive to 
SEU and consequently they were our investigation targets.  

SEU has a peculiar effect in FPGAs when a particle hits the user’s combinational 
logic. In an ASIC, the effect of a particle hitting either the combinational or the 
sequential logic is transient; the only variation is the time duration of the fault. A fault 
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in the combinational logic is a transient logic pulse in a node that can disappear 
according to the logic delay and topology. In other words, this means that a transient 
fault in the combinational logic may or may not be latched by a storage cell. Faults in 
the sequential logic manifest themselves as bit flips, which will remain in the storage 
cell until the next load.  

On the other hand, in a SRAM-based FPGA, both the user’s combinational and 
sequential logic are implemented by customizable logic memory cells, in other words, 
SRAM cells, as represented in figure 2.22.  When an upset occurs in the combinational 
logic synthesized in the FPGA, it corresponds to a bit flip in one of the LUTs cells or in 
the cells that control the routing. An upset in the LUT memory cell modifies the 
implemented combinational logic, see figure 2.23(b). It has a permanent effect and it 
can only be corrected at the next load of the configuration bitstream. The effect of this 
upset is related to a stuck-at fault (one or zero) in the combinational logic defined by 
that LUT (figure 2.22, upset type 1). This means that an upset in the combinational logic 
of a FPGA will be latched by a storage cell, unless some detection technique is used. An 
upset in the routing can connect or disconnect a wire in the matrix, see figure 2.23(a). It 
has also a permanent effect and its effect can be mapped to an open or a short circuit in 
the combinational logic implemented by the FPGA (figure 2.22, upset type 3). The fault 
will also be corrected at the next load of the configuration bitstream.  

When an upset occurs in the user sequential logic synthesized in the FPGA, it has a 
transient effect, because an upset in the flip-flop of the CLB is corrected by the next 
load of the flip-flop (figure 2.22, upset type 2). An upset in the embedded memory 
(BRAM) has a permanent effect and it must be corrected by fault tolerant techniques 
applied in the architectural or in the high-level description, as the load of the bitstream 
cannot change the memory state without interrupting the normal operation of the 
application (figure 2.22, upset type 4). In (REBAUDENGO; REORDA; VIOLANTE, 
2002a; CAFFREY; GRAHAM; JOHNSON, 2002), the effects of upsets in the FPGA 
architecture are also discussed. Note that there is also the possibility of having single 
event transient (SET) in the combinational logic used to build the CLB such as input 
and output multiplexors used to control part of the routing.  
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Figure 2.22: The comparison of the effects of a SEU in ASIC and FPGA architecture   
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(a) Upset in the routing (undesirable connection)        (b) Upset in the LUT 
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Figure 2.23: Examples of upsets in the SRAM-based FPGA architecture  

Radiation tests performed in Xilinx FPGAs (ALFKE; PADOVANI, 1998; 
KATZ et al., 1997; LUM; MARTIN, 1998; FULLER et al, 2000; STURESSON et al., 
2001; FULLER et al., 2002) show the effects of SEU in the design application and 
prove the necessity of using fault-tolerant techniques for space applications.  A fault-
tolerant system designed into SRAM-based FPGAs must be able to cope with the 
peculiarities mentioned in this section such as transient and permanent effects of a SEU 
in the combinational logic, short and open circuit in the design connections and bit flips 
in the flip-flops and memory cells. In (OHLSSON et al., 1998), the effect of neutrons 
was also analyzed in a SRAM-based FPGA from Xilinx. In that time, the FPGA 
presented very low susceptibility to neutrons, but the vulnerability is increasing as the 
technology is reaching smaller transistor size and consequently higher logic density. 
Experiments with hundreds of latest generation FPGAs operating in tandem on the same 
board located at high altitude have shown one upset each 2 or 3 months due to neutrons.  
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3 STATE-OF-THE-ART OF SET AND SEU MITIGATION 
TECHNIQUES 

The first SEU mitigation solution that has been used for many years in spacecraft 
was shielding, which reduces the particle flux to very low levels but it does not 
completely eliminate it. This solution was sufficient to avoid errors caused by radiation 
effects for many years in the past. However, due to the continuous evolution of the 
fabrication technology process, as explained in last chapter, the electronic circuits are 
becoming more and more sensitive to radiation particles, and the charged particles that 
once were negligible are now able to cause errors in the electronic design.  
Consequently, extra techniques must be applied to avoid radiation effects.  

Several SEU mitigation techniques have been proposed in the last few years in order 
to avoid faults in digital circuits, including those implemented in programmable logic. 
They can be classified as: 

- Fabrication process-based techniques, such as: 
- Epitaxial CMOS processes 
- Advanced process such as silicon-on-insulator (SOI). 

- Design-based techniques, such as: 
- Detection techniques: 

 Hardware redundancy 
 Time redundancy 
 EDC (error detection coding) 
 Self-checker techniques 

- Mitigation techniques: 
 Triple Modular Redundancy (TMR) 
 Multiple redundancy with voting 
 EDAC (Error detection and correction coding) 
 Hardened memory cell level  

- Recovery Techniques (applied to programmable logic only), such as: 
- Reconfiguration 
- Partial configuration 
- Rerouting design 

The fabrication process-based techniques, also called technological techniques, such 
as epitaxial CMOS process and silicon-on-insulator (IBM, 2000; COLINGE, 2001; 
MUSSEAU; FERLET-CAVROIS, 2001), can reduce to acceptable levels some of the 
radiation effects, such as Total Ionization Dose (TID) effects and single event latch-up 
(SEL), however, they do not eliminate completely upset effects, such as single event 
upsets (SEUs) and single transient effect (SET). The fabrication process-based solution 
is expensive and consequently very few designs have adopted this technique, especially 
for low volume production.  In (IROM ET AL, 2002), SEU effects from heavy ions and 
protons are measured for Motorola and IBM silicon-on-insulator microprocessors, and 
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compared with results from similar devices with bulk substrates. Results show that the 
threshold LET values of the SOI processors are nearly the same as those of bulk/epi 
processors from the same manufactures, indicating that little improvement in SEU 
sensitivity has resulted from the move to SOI technology. Although the threshold LET 
did not change, the cross section of the SOI processors were about an order of 
magnitude lower than the bulk/epi counterparts, leading to a lower upset rate in the 
space environment. These results show that only modest improvements in SEU 
sensitivity can be expected as mainstream integrated circuits move to SOI technology 
and consequently design-based techniques must be applied to mitigate SEU. 

The design-based techniques, also called architectural techniques, are highly 
accepted because they can be applied to many different levels of the design without any 
changes in the fabrication process technology. They can be projected to just detect the 
presence of an upset in the system or they can be more complex in order to detect and 
correct the system error in the presence of an upset. The design-based techniques are 
based on some kind of redundancy. Redundancy is provided by extra components 
(hardware redundancy), by extra execution time or by different moments of storage 
(time redundancy), or by a combination of these. Hardware redundancy is basically 
based on logic redundancy, error detection and correction codes (EDAC) and hardened 
memory cells.  

Recently, new techniques based on recovery have been proposed particularly for 
programmable logic components, such as SRAM-based FPGAs. The idea is to recover 
the original programmed information after an upset. Examples of this technique are 
reconfiguration (scrubbing), partial reconfiguration and rerouting design. They are able 
to clean out an upset in the programmable matrix in a very short period of time. This 
type of technique is usually used to avoid the accumulation of upsets.  

Finding the most appropriate SEU mitigation solution has become a challenge in 
order to combine fast turnaround time, low cost, high performance and high reliability. 
An efficient set of SEU mitigation techniques should cope with transient faults (SET) 
occurring in the combinational logic and SEUs in the storage cells. In this way, transient 
faults in the combinational logic will never be stored in the storage cells, and bit flips in 
the storage cells will never occur or will be immediately corrected. Each technique has 
some advantages and drawbacks, and there is always a compromise between area, 
performance, power dissipation and fault tolerance efficiency.  

This chapter presents an overview of the design-based techniques on digital circuits 
and subsequently it shows the state o the art of SEU mitigation techniques for ASICs 
and FPGAs, including solutions using the recovery method. 

3.1 Design-based Techniques to Detect and Mitigate SET and SEU 

Time and hardware redundancy techniques are largely used in ASICs 
(NICOLAIDIS, 1999; DUPONT; NICOLAIDIS; ROHR, 2002; BENZ et al., 2002). The 
techniques range from simple upset detection to upset voting and correction. There is a 
wide choice of techniques according to the user’s application requirements. Sometimes 
it is just necessary to warn the presence of an upset with an interruption in the system 
functionality, while sometimes it is required to completely avoid interruptions, assuring 
full reliability. There is a set of techniques that can present reliability in between these 
two extremes, each one producing more or less overhead according to its fault 
reliability.  
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3.1.1 Detection Techniques 

Techniques based on time redundancy are usually used to detect a transient effect 
(SET) in the combinational logic, while hardware redundancy can help to identify an 
SEU in the sequential logic. Examples of the use of time and hardware redundancy for 
SET detection have been presented in the (NICOLAIDIS, 1999; ANGHEL; 
ALEXANDRESCU; NICOLAIDIS, 2000; DUPONT; NICOLAIDIS; ROHR, 2002). In 
the case of time redundancy, the goal is to take advantage of the characteristics of the 
transient pulse generated by the particle strike to compare the output signals at two 
different moments. The output of the combinational logic is latched at two different 
times, where the clock edge of the second latch is shifted by time d. A comparator 
indicates a transient pulse occurrence (error detection). The scheme is illustrated in 
figure 3.1.  
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logic

 
Figure 3.1: Time redundancy duplication scheme to detect SET in combinational logic 

In the case of hardware redundancy, the duplication with comparison (DWC) 
scheme can be used for both combinational and sequential logic to SET and SEU 
detection, respectively. Figure 3.2 shows the scheme for transient effect detection. Note 
that for both techniques, time and hardware redundancy, it is important to take into 
account the duration of the SET.  
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Figure 3.2: Hardware redundancy duplication scheme to detect SET in combinational 

logic and SEU in sequential logic 

Another example for upset detection for sequential logic is error-detecting codes 
such as parity. In this case, the parity bit of the group of analyzed bits is calculated and 
it is continuously compared to a new parity bit calculation. If a SEU has occurred, it is 
possible to detect it. This solution is largely used nowadays in memories. However, for 
high-reliability applications, sometimes it is not enough only to detect the presence of a 
fault but also ensure the correct operation of the system in the presence of that fault. For 
this reason, it is very important to investigate in detail the SEU mitigation solutions.  

3.1.1 Mitigation Techniques 

3.1.1.1 Full Time and Hardware Redundancy 

The use of full time redundancy in the combinational logic permits voting the 
correct output value in the presence of a SET. In this case, the output of the 
combinational logic is latched at three different moments, where the clock edge of the 
second latch is shifted by the time delay d and the clock of the third latch is shifted by 
the time delay 2d. A voter chooses the correct value. The scheme is illustrated in figure 
3.3. The area overhead comes from the extra sample latches and the performance 
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penalty is measured clk+2d+tp, where d depends on the duration of the transient current 
pulse and tp is the delay from the majority voter. The total delay is measured by the 
error pulse width multiplied by 2 (Total Delay = 2 x Error Pulse Width ~ 2 x (QCOL / ID) 
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Figure 3.3: Full time redundancy scheme to correct SET in combinational logic 

In the case of the full hardware redundancy, the well-known Triple Modular 
Redundancy (TMR) approach, the logic is triplicated and voters are placed at the output 
to identify the correct value. The first possibility that was largely used in space 
applications is the triplication of the entire device, figure 3.4. This approach uses a voter 
as a fourth component in the board. It needs extra connections and it presents a large 
area overhead. If an error occurs in one of the three devices, the voter will choose the 
correct value. It protects both combinational and sequential logic against upsets. 
However, if an upset occurs in the voter, the TMR scheme is ineffective and a wrong 
value will come out in the output. Another problem of this approach is the accumulation 
of upsets, an extra mechanism is necessary to correct the upset in each device before the 
next SEU happens.  

Device0

Device1

Device2

voter

 

Figure 3.4: TMR implemented in the entire device 

A more efficient implementation of the TMR is applied focused in the sensitive 
logic, for example the memory cells to protect against SEU, see figure 3.5.  
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Figure 3.5: TMR Memory Cell with Single Voter 

However, this solution does not avoid the accumulation of upsets in the sequential 
logic and the voter is vulnerable to upsets.  In order to restore the corrected value, a 
solution using 3 voters with a feedback was proposed (CARMICHAEL, 2001; KATZ et 
al., 2001). Figure 3.6 shows two of these solutions. The upsets in the latches are 
corrected by extra logic in order to avoid accumulation. The load frequency (refreshing) 
can be set by the multiplexor control signal.  
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(b) Version II 

Figure 3.6: TMR memory cell with three voters and refreshing 
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The combinational logic must also be protected to avoid SET. There are many 
possibilities. One is to use time redundancy in the logic as shown in figure 3.7. Another 
possibility is to triplicate the combinational logic as well, as represented in figure 3.8.  
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Figure 3.7: Full time redundancy scheme for combinational logic combined to full 

hardware redundancy in the sequential logic 

Although the last proposed implementation of the TMR (figure 3.8) presents a larger 
area overhead compared to time redundancy, since it triplicates all the combinational 
and sequential logic, it protects the logic against SET and SEU and avoids accumulation 
of upsets. In addition, it does not have major performance penalties, just the voter 
propagation time, and it does not need different clock phases. 
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Figure 3.8: Full hardware redundancy (TMR) scheme for combinational and sequential 

logic 

In (ANGHEL; ALEXANDRESCU; NICOLAIDIS, 2000), it is shown a method to 
mitigate SET in combinational logic based on duplication and a code word state 
preserving (CWSP), as illustrated in figure 3.9(a). The method does not need voters or 
comparators. The duplication can be replaced by time redundancy as well, which 
reduces the area overhead significantly, figure 3.9(b). The main contribution of this 
method is the CWSP stage, which replaces the last gates of the circuit by a particular 
gate topology, figure 3.9(c) that is able to pass the correct value in the combinational 
logic in the presence of a SET. Additional techniques to cope with SET are presented in 
(ALEXANDRESCU; ANGHEL; NICOLAIDIS, 2002). 
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(a) duplication with CWSP    (b) time redundancy with CWSP 

 
(c) CWSP gates 

Figure 3.9: Duplication and time redundancy to mitigate SET in combinational logic 
(ANGHEL; ALEXANDRESCU; NICOLAIDIS, 2000) 

 
3.1.1.2 Error Correction and Detection Codes 

 
Error detection and correction coding (EDAC) technique (PETERSON, 1980) is also 

used to mitigate SEU in integrated circuits. It is usually used in memory. There are 
many codes to be used to protect the systems against single and multiple SEUs. An 
example of EDAC is the hamming code. It is an error-detecting and error-correcting 
binary code that can detect all single- and double-bit errors and correct all single-bit 
errors (SEC-DED). This coding method is recommended for systems with low 
probabilities of multiple errors in a single data structure (e.g., only a single bit error in a 
byte of data). The code satisfies the relation 2k >= m+k+1, where m+k is the total 
number of bits in the coded word, m is the number of information bits in the original 
word, and k is the number of check bits in the coded word. Following this equation the 
hamming code can correct all single-bit errors on n-bit words and detect double-bit 
errors when an overall parity check bit is used.  

The hamming code implementation is composed of a combinational block 
responsible for encoding the data (encoder block), inclusion of extra bits in the word 
that indicate the parity (extra latches or flip-flops) and another combinational block 
responsible for decoding the data (decoder block). The encoder block calculates the 
parity bit and it can be implemented by a set of 2-input XOR gates. The decoder block 
is more complex than the encoder block, because it needs not only to detect the fault, 
but it must also correct it. It is basically composed of the same logic used to compose 
the parity bits plus a decoder that will indicate the bit address that contains the upset. 
The decoder block can also be composed of a set of 2-input XOR gates and some AND 
and INVERTER gates. 

The encoder block calculates the check bits that are placed in the coded word at 
positions 1, 2, 4, …, 2(k-1). For example, for 8-bit data, 4 check bits (p1, p2, p3, p4) are 
necessary, so that the hamming code is able to detect and correct a single-bit error 
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(SEC-SED). Figure 3.10 demonstrates a 12-bit coded word (m=8 and k=4) with the 
check bits p1, p2, p3 and p4 located at positions 1, 2, 4 and 8 respectively. The check 
bits are able to inform the position of the error. The encoder block can be implemented 
by a set of 2-input XOR gates. For an 8-bit data, 14 2-input XOR gates are necessary in 
order to generate the 4 parity bits. The check bit p1 creates even parity for the bit group 
{1, 3, 5, 7, 9, 11}. The check bit p2 creates even parity for the bit group {2, 3, 6, 7, 10, 
11}. Similarly, p3 creates an even parity for the bit group {4, 5, 6, 7, 12}. Finally, the 
check bit p4 creates even parity for the bit group {8, 9, 10, 11, 12}, as shown in figure 
3.11. 

 

Position:    1  2  3  4  5   6  7 8   9 ….  12

Check bits: p1 p2   p3            p4
Word:           w7  w6 w5 w4    w3 w2 w1 w0

Coded word:  d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0

 
Figure 3.10: Hamming code 12-bit word and the check bits 

The decoder block is more complex than the encoder block, because it needs not 
only to detect the fault, but it must be able to correct it. It is basically composed of the 
same logic used to compose the parity bits plus a decoder that will indicate the bit 
address that contains the upset. The decoder block can also be composed of a set of 2-
input XOR gates and some AND gates and an inverter gate. If all parity bits are 0 the 
word is correct. If at least one of the parities is 1, there is a bit inversion. The inverted 
bit position is calculated by concatenation from P4, P3, P2, and P1 and reading it as a 
unique binary number.  

Hamming code can protect structures such as registers, registers file and memories. 
Each protected register must have its input connected to the encoder block and its output 
connected to the decoder block. Note that only one register may be used at a clock 
cycle. The main advantage of the set of registers structure is that only one encoder block 
and one decoder block are multiplexed for a set of registers. 

Position:    1  2  3  4  5   6  7 8   9 ….  12

Parity bit: p1

Position:    1  2  3  4  5   6  7 8   9 ….  12

Parity bit: p2

Position:    1  2  3  4  5   6  7 8   9 ….  12

Parity bit: p3

Position:    1  2  3  4  5   6  7 8   9 ….  12

Parity bit: p4
 

Figure 3.11: Hamming code check bits generation 

Hamming code increases area by requiring additional storage cells (check bits), plus 
the encoder and the decoder blocks. For an n bit word, there are approximately log2n 
more storage cells. However, the encoder and decoder blocks may add a more 
significant area increase. Regarding performance, the delay of the encoder and decoder 
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block is added in the critical path. The delay gets more critical when the number of bits 
in the coded word increases. The number of XOR gates in serial is directly proportional 
to the number of bits in the coded word.  

Table 3.1 shows a comparison between hamming code and the full time redundancy 
(TMR) to mitigate SEU in sequential circuits. Results published in (HENTSCHKE; 
MARQUES; LIMA; CARRO; SUSIN; REIS, 2002) show that TMR is more efficient in 
terms of area and performance to protect registers and small memory structures, while 
hamming code is more appropriate to protect large register files and memories.  

Table 3.1: Hamming Code and TMR Comparison Summary 

 Hamming Code (SEC-DED) TMR 
Area It depends on the number of bits 

to be protected. It has a small 
overhead of storage cells (parity 
cells) It needs additional 
combinational logic to 
implement the encoder and the 
decoder blocks in the case of 
short coded words.  

It needs 3 times more storage cells. 
It needs small extra logic for the 
voters. The number of voters is 
proportional to the number of 
storage cells.  

Performance The encoder and decoder blocks, 
which are located in the critical 
path, can affect the performance. 
The delay increases 
proportionally to the number of 
bits to be coded because of the 
number of XOR gates in serial in 
the encoder and decoder blocks. 

The performance is not strongly 
affected because the only source of 
delay is the voter that is basically 
constant with the number of bits to 
be protected.  

Error- 
correcting 
code 

It corrects one single upset per 
word.  But it does not correct the 
upset in the stored word. Upsets 
will accumulate if there is no 
extra logic to correct them.  

It corrects up to n upsets per n-bit 
word if each upset is located in a 
distinct bit. It votes the correct value 
but it does not correct it.  Upsets 
will accumulate if there is no extra 
logic to correct them.  

 
The problem of hamming code is that it can not correct double bit upsets, which can 

be very important for very deep sub-micron technologies, especially in memories 
because of the high density of the cells (REED et al., 1997).  Other codes must be 
investigated to be able to cope with multiple bit upsets. Reed-Solomon (HOUGHTON, 
1997) is an error-correcting coding system that was devised to address the issue of 
correcting multiple errors.  It has a wide range of applications in digital communications 
and storage. Reed-Solomon codes are used to correct errors in many systems including: 
storage devices, wireless or mobile communications, high-speed modems and others. 
Reed-Solomon (RS) encoding and decoding is commonly carried out in software, and 
for this reason the RS implementations normally found in the literature do not take into 
account area and performance effects for hardware implementation. However, the RS 
code hardware implementation as presented in (NEUBERGER; LIMA; CARRO; REIS, 
2003) is an efficient solution to protect memories against multiple SEUs.  

A Reed-Solomon code is specified as RS(n, k) with s-bit symbols, where n is the 
total number of symbols per coded word and k is the number of symbols per 
information data. The number of parity symbols is equal to n – k, where n is 2 raised to 
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the power of s minus one (2s – 1). A Reed-Solomon decoder can correct up to t number 
of bytes, where 2t = n – k, figure 3.12. 

 

Figure 3.12: Reed-Solomon coded word. 

Mathematically, Reed-Solomon codes are based on the arithmetic of finite fields. In 
the case of applying RS code in memories, the data word is divided in symbols, and 
each data word is a different RS coded word. For example, in an n-rows memory, the 
data word uses the entire row, and each data word is divided in m symbols according to 
the symbol size and to the memory data size.  Multiple upsets may occur in any portion 
of the matrix, but they are more likely to occur as double bit flips that are in the same 
symbol (upset type a), in vertical adjacent symbols, (upset type b), or in horizontal 
adjacent symbols, (upset type c), as shown in figure 3.13.  

XX

XX X
X

a

bc

 
Figure 3.13: Examples of double bit flips in a memory where each row is protected by 

RS code 

The RS code can easily correct upsets of type a, because it is the essential property 
of this code: multiple error correction in a same symbol. The second type of double 
upsets that can occur, upset type b illustrated in the figure 3.13, will also be corrected 
because each row is a different RS code, so this is equivalent to two single errors in 
distinct rows. But the third type of upsets, upset type c, illustrated in figure 3.13, will 
not be corrected, because it is equivalent to errors in two different symbols of the same 
coded word, and the implemented RS is not capable to correcting this type of error. In 
the next chapter, a solution for this problem is proposed and some results of protecting a 
memory component with this new solution based on RS code are discussed. More 
details can be found in (NEUBERGER; LIMA; CARRO; REIS, 2003).  

 
 

3.1.1.3 Hardened Memory Cells 
 
Another example of SEU mitigation technique is memory cells composed of extra 

devices, which can be resistors or transistors, able to recover the stored value if an upset 
strikes one of the drains of a transistor in “off” state. These cells are called hardened 
memory cells and they can avoid the occurrence of a SEU by design according to the 
flux and to the charge of the particle.  

In order to better understand how these hardened memory cells work, let’s start with 
the analysis of a standard memory cell composed of 6 transistors (figure 3.14). When a 
memory cell holds a value, it has two transistors in “on” state and two transistors in 
“off” state; consequently there are always two SEU sensitive nodes in the cell. When a 
particle strikes one of these nodes, the energy transferred by the particle can provoke a 
transistor to switch “on”. This event will flip the value stored in the memory. If a 
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resistor is inserted between the output of one of the inverters and the input of the other 
one, the signal can be delayed for such a time to avoid the bit flip.   

The SEU tolerant memory cell protected by resistors (WEAVER ET AL., 1987) was 
the first proposed solution in this matter, figure 3.15. The decoupling resistor slows the 
regenerative feedback response of the cell, so the cell can discriminate between an upset 
caused by a voltage transient pulse and a real write signal. It provides a high silicon 
density, for example, the gate resistor can be built using two levels of polysilicon. The 
main drawbacks are temperature sensitivity, performance vulnerability in low 
temperatures, and an extra mask in the fabrication process for the gate resistor. 
However, a transistor controlled by the bulk can also implement the resistor avoiding 
the extra mask in the fabrication process. In this case, the gate resistor layout has a small 
impact in the circuit density. 
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Figure 3.14: Standard Memory Cell 
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Figure 3.15: Resistor Hardened Memory Cell 

Memory cells can also be protected by an appropriate feedback devoted to restore 
the data when it is corrupted by an ion hit. The main problems are the placement of the 
extra transistors in the feedback in order to restore the upset and the influence of the 
new sensitive nodes. Examples of this method are IBM hardened memory cells 
(ROCKETT, 1988) in figure 3.16, HIT cells (BESSOT; VELAZCO, 1993; VELAZC0 
et al., 1994; CALIN; NICOLAIDIS; VELAZCO, 1996) in figure 3.17 and CANARIS 
memory cells (WISEMAN ET AL., 1993; CANARIS; WHITAKER, 1995) in figure 
3.18.  The main advantages of this method are temperature, voltage supply and 
technology process independence and good SEU immunity. The main drawback is 
silicon area overhead that is due to the extra transistors and their extra size.  

The IBM cell has 6 extra transistors, PA and PB are called data state control 
transistors, PC and PD are pass-transistors and PE and PF are cross-coupled transistors. 
The sensitive nodes are A, B, and C. The HIT cell has also 6 extra transistors placed in a 
feedback around the main storage cell. SEU testing presented in (VELAZC0 et al., 
1994) shows that the hardened HIT1 cell design is less sensitive at least by a factor of 
10 than unhardened cell design. The CANARIS approach consists of a memory cell 
built with AND-NOR and OR-NAND gates that are SEU immune. Each logic gate has 
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two outputs, one for the N-channel transistor and other for the P-channel transistors. 
Transistor M1 is sized to be weak compared to the p-channel array and transistor M2 is 
sized to be weak compared to the n-channel array in such way that it can be restored to 
the original value in the output if a particle hits the sensitive nodes.  
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Figure 3.16: IBM Hardened Memory Cell 
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Figure 3.17: HIT Hardened Memory Cell 

The interesting aspect of this solution is that it can be applied to even the 
combinational and sequential logic when memory cells are implemented using the SEU 
immune combinational gates. Using this approach, all the combinational part of the 
circuit can be grouped in complex logic functions where each one of these functions has 
two extras transistors dividing their outputs. For large complex logic gates, two extra 
transistors may not represent a high addition of area. However, due to the duplication of 
outputs the number of internal connections can increase according to the 
implementation architecture. The main drawback of CANARIS hardened memory cell 
is the long recovery time after upset. 
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(a) Canaris SEU hardened memory cell 

 
(b) Canaris SEU hardened memory cell detailed implementation 

Figure 3.18: Canaris Hardened Memory Cell 

Another mitigation principle is to store the data in two different locations in the cell 
in such a way that the corrupted part can be restored. Examples of this technique are 
DICE cells (CANARIS; WHITAKER, 1995) in figure 3.19 and NASA cells 
(WHITAKER; CANARIS; LIU, 1991; LIU; WHITAKER, 1992) in figure 3.20 and 
3.21 respectively. The main advantages of this method are also temperature, voltage 
supply and technology process independence, good SEU immunity and high 
performance (read/write time). DICE cell consists of a symmetric structure of four 
CMOS inverters, where each inverter has the n-channel transistor and the p-channel 
transistor separately controlled by two adjacent nodes storing the same state. The 4 
nodes of the DICE cell form a pair of latches in two alternate ways, depending on the 
stored logic value. One of the adjacent nodes controls the conduction state of the 
transistor connecting the current node to a power supply line, and the other node blocks 
the complementary transistor of the inverter, isolating it from the opposite supply line.  
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Figure 3.19: DICE Hardened Memory Cell 
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Figure 3.20: NASA I Hardened Memory Cell 
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Figure 3.21: NASA II Hardened 

Memory Cell 

The NASA cells also store the information in two different places. This provides a 
redundancy and maintains a source of uncorrupted data after a SEU. The recovery path 
is based on the use of weak and strong transistors. The weak transistor size is 
approximately 1/3 of the normal transistor size. The size of the weak feedback 
transistors is responsible for the recovery time. The DICE latch is, in principle, SEU 
immune in that two nodes must be simultaneously driven to change the state of the 
latch. A single cosmic ray can, however, simultaneously strike two critical nodes if it 
passes through the chip at an extremely small angle of incidence. The probability of this 
occurring depends on the solid angle subtended by drain diffusions and the integral 
fluence of cosmic rays with an LET (linear energy transfer) value greater than some 
threshold that depends on the circuit response and collection volume.  

Another SEU hardened memory solution is presented in (MAVIS; EATON, 2000), 
figure 3.22. The hardened memory cell contains nine level-sensitive latches (U1 through 
U9), one majority gate (U10), and three inverters (U11 through U13). Each level-
sensitive latch is transparent (sample mode) when its clock input is high and is blocking 
(hold mode) when its clock input is low. When in sample mode, data appearing at the 
input D also appears at the output Q. When in hold mode, the data stored within the 
latch appears at the output Q and any data changes at the input D are blocked. Two level 
sensitive latches in tandem and clocked by complementary clock signals (such as U1 
followed by U2) form an edge triggered D flip-flop. With the clock inversions, the D-
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Flip-Flops formed by (U1,U2), (U3,U4), and (U5,U6) are triggered on the falling edges 
of the clocks CLKA, CLKB, and CLKC, respectively. Each of these four clocks 
operates at a 25% duty factor and each one is delayed to the master clock. CLKA is high 
during the first half of cycle one of the master clock. CLKB is high during the second 
half of cycle one of the master clock. CLKC and CLKD are high during the first and 
second halves, respectively, of cycle two of the master clock. Thus a full cycle of the A, 
B, C, and D clocks occupies two cycles of the master clock. These clocks are actually 
quite easy to generate with simple circuitry presented in a later section. Controlling the 
fidelity of the four clocks is not a problem since the temporal sampling latch will 
operate correctly even in the presence of skew or overlaps.  

The upset immunity of the circuit in figure 3.19 is a consequence of two distinct 
parallelisms: (1) a spatial parallelism resulting from the three parallel circuit branches 
and (2) a temporal parallelism resulting from the unique clocking scheme. In addition, 
when implemented using DICE-based latches, the temporal latch can achieve immunity 
to multiple node cosmic ray strikes and, unlike any other SEU mitigation approach, it is 
immune to a second and third-order effect.  

 
Figure 3.22: Temporal Sampling Latch with Sample and Release Stages 

Analyzing the SEU hardened robustness to MBU, the temporal latch, in its simplest 
form, is clearly immune to upset from any single cosmic ray striking a single circuit 
node (a first-order effect). This is also true for TMR-based latches and for DICE-based 
latches. Multiple node strikes (a second-order effect), although having much lower 
probabilities of occurrence, will surely cause upsets when such latches are fielded in an 
actual space environment. 

  Table 3.2 presents a general comparison between the techniques presented in this 
section: hardened memory cells, hamming code and TMR.  
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Table 3.2: SEU mitigation techniques summary 

SEU 
Mitigation 
Technique 

SEU Tolerant Memory 
cells Hamming Code TMR 

Area 
Usually it doubles the 
area of each memory 
cell. It is strongly layout 
and transistor size 
dependent  

It depends on the 
number of bits to be 
protected. It has extra 
sequential and 
combinational logic 

It presents a little 
more than 3 times 
the area overhead 
because of the 
voter. 

Performance The performance is not 
affected if the extra 
transistors or resistors 
(path delay) work only 
when the cell is on hold.  

The encoder and 
decoder blocks can 
affect the 
performance.  

The performance is 
not strongly 
affected. The only 
source of delay is 
the voter. 

Error 
correction 

It avoids the error by a 
delay in the memory 
loop 
(redundancy/recovery) 

Normally it corrects 
one single upset per 
word, but in order to 
refresh the stored 
value an extra path is 
necessary (scrubbing 
rate) 

It does not correct 
the upsets. The 
upsets will 
accumulate if there 
is no extra logic 
for the refreshing. 

Multiple 
Upset 

Robust to 3rd order of 
multiple upsets as each 
cell protects itself.  

Not efficient for 
multiple upsets in the 
same coded word. But 
efficient for multiple 
upsets in different 
parts of the circuit. 

It can be robust for 
multiple upsets in 
different parts of 
the circuit but not 
in the same TMR 
signal. 

Technology It can use some extra 
area because of the 
asymmetry of the 
transistors and large 
resistance in polysilicon. 

Completely compatible with CMOS 
technology 

COTS Requires architectural 
design development 

It can be designed at the architectural level 
and in the  high-level languages 
 

 

3.2 Examples of SET and SEU Mitigation Techniques in ASICs 

Many commercial microprocessors from Intel, IBM, Motorola and Sun are available 
in the market in a radiation tolerant version. These hardened microprocessors were 
designed by space project companies and research laboratories. The fault tolerance 
concern has started many years ago (SEXTON, 1991; HASS; TREECE; GIDDINGS, 
1989). Each product offers different levels of radiation immunity for distinct space and 
military applications. The techniques used to protect the microprocessors are usually 
based on the process technology or package shielding, TMR, SEU hardened memory 
cells, EDAC (hamming code) or a combination of them.   

In (LIMA et al., 2000a; LIMA et al., 2000b), a radiation fault-tolerant version of the 
8051-like micro-controller (INTEL, 1994) is proposed. This work was started based on 



 

 

55 

the testing techniques and the studies about EDAC codes published in (COTA et al., 
1999).  The VHDL (SKAHILL, 1996) description of this micro-controller was designed 
at UFRGS (CARRO; PEREIRA; SUZIM, 1996; SILVA; LIMA; CARRO; REIS, 1997) 
and it was re-used to insert SEU radiation fault-tolerant structures. The original code is 
entirely compatible with the INTEL 8051 microprocessor in terms of instruction timing. 
The microprocessor description is divided into six main blocks. These units are finite 
state machine, control unit, instruction unit, datapath and RAM and ROM memories. 
Single error correction hamming code (SEC) was applied in all registers and internal 
memory as represented in figure 3.23. 

This technique was innovative because it uses EDAC not only in the memory but 
also in all registers and single memory cells. The memory has a refreshing mechanism, 
called scrubbing, to avoid accumulation of upsets. A detailed scheme of the hamming 
code implementation is presented in figure 3.24. 
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Figure 3.23: General scheme of the SEU hardened 8051 
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Figure 3.24: Scheme of the hamming code implemented in the memory and registers of 
the 8051-like micro-controller 

A board implementation has been done with the robust 8051, figure 3.25. The 
hardened description was prototyped into three programmable logic devices 
customizable by EEPROM technology from Altera, family MAX 9000, one EPM9560 
with 208 pins and two EPM9400 with 84 pins (ALTERA, 2001). The SEU hardened 
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8051 daughter board has been tested in the THESIC tester environment (VELAZCO et 
al., 2000) under radiation conditions in Louvain-la-Neuve (Belgium) using the Cyclone 
radiation facility. Cyclone is a cyclotron offering the possibility of accelerating various 
heavy ion species. Two versions of the 8051 were implemented in the board: 1) the 
standard 8051 version without protection and 2) the 8051 with the internal memory 
protected by hamming code. 

 

 
Figure 3.25: SEU Hardened 8051 daughter board and THESIC mother board 

The application test of the standard 8051 without protection shows that many upsets 
have occurred in each analyzed period of time. Figure 3.26 show the number of errors 
of each period analysis, for a flux of 700 particles per second. The same application test 
of the 8051 with the internal memory protected by hamming code show that “NO 
ERROR” has occurred for the radiation energy mentioned before. The result proves the 
efficiency of the hamming code method in SEU protection. 
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Figure 3.26: Radiation Test result I of the “Not protected” 8051 in the matrix 

multiplication test 

THESIC 
Mother board 

DUTs 

Daughter 
board 

Internal 
Memory 

Instruction 
unit 

MMI 

Buffers 

EEPROM 

Control 
+ FSM 



 

 

57 

Table 3.3 shows the results of the robust 8051 prototyped into the PLD MAX9000 
family. The number of flip-flops presented in table 4 refers to the internal registers of 
control unit, finite state machine and datapath. The internal memory is implemented 
outside the PLDs like it is shown in the board photo. The full-protected versions of the 
8051 do not fit in the PLDs family due to the reduced number of CLBs in the 
MAX9000 family. Consequently, only the datapath partial protected were implemented 
in the board. In the partial protected datapath only the accumulator and the program 
counter registers are protected by hamming code. 

Table 3.3: Results of robust 8051-like Micro-Controller implemented in PLDs  

Version Control 
unit 

State 
Machine 

Internal 
memory 

Datapath #flip-
flops 

#CLBs 

8051-A Not 
protected 

Not 
protected 

Not protected Not 
protected 

130 536 

8051-B Fully 
protected 

Fully 
protected 

Fully 
protected 

Not 
protected 

150 692 

8051-C Fully 
protected 

Fully 
protected 

Fully 
protected 

Partially 
protected 

158 824 

8051-D Fully 
protected 

Fully 
protected 

Fully 
protected 

Fully 
protected 

202 909 

8051-E Not 
protected 

Not 
protected 

Not protected Not 
protected 

138 579 

8051-F Fully 
protected 

Fully 
protected 

Fully 
protected 

Not 
protected 

158 728 

8051-G Fully 
protected 

Fully 
protected 

Fully 
protected 

Partially 
protected 

170 909 

8051-H Fully 
protected 

Fully 
protected 

Fully 
protected 

Fully 
protected 

206 987 

 
The efficiency of the SEC hamming code was tested by fault injection (LIMA et al., 

2001a). The results show that no errors were found in the application in presence of 
SEU. However this technique is not suitable for MBU. In (LIMA et al., 2002a; LIMA et 
al., 2002b), MBU were injected in the SEU tolerant 8051. The necessity of DEC 
hamming code and register refreshing in addition of the memory refreshing may be 
evident in next process technologies. 

Maxwell (MAXWELL, 2001) has a large range of SEU tolerant microprocessors 
protected by a patented radiation hardened RAD-PAK® technology that basically is a 
package shielding. The company offers microprocessors such as Intel 386, 486 and 
Pentium and SPARC from Sun. This same company also provides the microprocessor 
PowerPC from Motorola with the CPU protected by TMR and the memory protected by 
EDAC. The TMR compares the output of each of 3 CPUs on a bit-by-bit basis.  In the 
event of a single upset a simple voting scheme detects and selects the correct value. The 
advent of a second error would be uncorrectable, thus the processor is flushed and 
synchronized. In addition the components also have the package shielding. 

Honeywell (HONEYWELL, 2003) offers fault-tolerant microprocessors based on 
device redundancy and EDAC techniques too. An example is the radiation hardened 
PowerPC 603 where the data and program memories are protected by SEC-DED 
hamming code and redundancy is applied in the internal registers. Aitech Defense 
Systems Inc. (AITECH, 2001) also provides a radiation tolerant PowerPC 750 protected 
by EDAC. 
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Lockheed Martin has developed a SEU tolerant PowerPC (G3) for JPL (JPL 
LABORATORY, 2001). It provides a modular standard product that allows the 
spacecraft developer excellent flexibility in system configuration. There are over 
800,000 storage elements in the PowerPC 750 (G3), all of which have been replaced 
with SEU hardened circuitry in the RAD750. The earlier RAD6000 employed resistor 
decoupling memory cells (figure 3.15) that require special polysilicon resistors in the 
manufacturing process. The RAM cells and latches in the RAD750 have been designed 
using hardening techniques for circuits that require no special process steps and 
optimize performance using the cells referred to in (LIU; WHITAKER, 1992), figure 
3.20. The RAD750 is expected to achieve SEU hardness levels of 1E-11 upsets/bit-day. 
The memory and PROM located on the board have been protected by EDAC. 

Atmel provides an 8-bit radiation tolerant micro-controller 80C32E, DSP 
microprocessor and a SPARC microprocessor for military and space applications 
(ATMEL, 2001). The radiation tolerant DSP microprocessor Radiation from Atmel uses 
the Hit cell (VELAZC0 et al., 1994), figure 3.17, in order to protect the memory cells 
against radiation. The Atmel SPARC microprocessor is protected by EDAC. The Atmel 
static RAM design separates the cells that represent the different data word bits. This 
feature virtually eliminates the risk of one impact provoking dual bit upsets (MBU) 
leaving only single bit upsets (SEU) that can be corrected by SEC hamming code. The 
additional processing associated with an EDAC protected solution is the initialization of 
the check bit RAM and a refresh procedure that performs read-write operations on the 
protected memory, also called scrubbing. The initialization of the check bit RAM does 
not introduce an overhead since most space borne applications move their code from 
ROM to RAM at reset, and automatically initialize the check bit RAM at the same time. 
The scrubbing performed during processor idle time is necessary to eliminate the risk of 
two separate impacts generating a dual bit upset (MBU) in one same data word. 
However, if a dual bit upset in one same data word should occur it would still be 
detected and signaled by the EDAC, SEC-DED hamming code. The EDAC 
implementation uses the “correct always” solution. The “Bus-Watch” system technique 
is suitable for very fast systems, but implies more overheads in the error handling 
hardware and software. With respect to the processor speeds used in space borne 
systems, the propagation delay of flow-through EDAC is fast enough and therefore the 
“correct-always” solution has been used.  

In (GAISLER, 2002), a fault-tolerant processor is proposed: the Spacelite, based on 
the SPARC V8 architecture. The techniques applied to this processor aim to detect and 
to tolerate one error in any on-chip register, and a one error correction and double error 
detection in two adjacent bits in any on-chip memory structure (caches and tags). The 
approach to SEU fault-tolerance in the Spacelite processor is to divide all registers into 
two groups; primary and redundant. A primary register is defined as register carrying 
information, which is not present anywhere else in the system (processor or memory) 
and where an error in the register contents would cause a malfunction of the system. A 
redundant register is defined as a register that contains information that is replicated 
somewhere else in the system, and can be recreated by either reloading the register or 
performing other recovery actions. An error in a redundant register must also not alter 
the state or operation of the system in a way that will create a malfunction during the 
time it contains an erroneous value. To tolerate one random register error, all primary 
registers are designed fault-tolerant, either by replication or by use of error-correcting 
codes. The redundant registers need only be provided with error-detection functions, 
since they can be recovered from their redundant locations. 
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Individual fault-tolerant registers are implemented using TMR, three registers in 
parallel and a voter selecting the majority result. The benefit of such a scheme is that 
error masking and error-removal is implicit, and than no glitch is produced at the output 
when a SEU occurs. The register file is provided with a 32-bit single error correction 
(SEC) and double error detection (DED) EDAC instead of TMR cells to reduce the 
overhead. Errors in redundant registers are detected through parity generation and 
checking. Cache memories and tags are protected with two parity bits, one for odd and 
one for even data bits. This scheme makes it possible to detect a double-error in two 
adjacent bits. In case of an EDAC error, the corrected register value is written back to 
the register file when the instruction reaches the write stage, and the instruction is then 
restarted. An error in the cache memory (instruction or data) will automatically cause a 
cache miss, and the cache will be updated with the correct data from the main memory. 

In (REBAUDENGO et al, 2002), the software implemented fault tolerance (SIFT) is 
discussed to protect microprocessors against upsets in the sequential (SEU) and 
combinational logic (SET). Fault injection experiments have been performed to evaluate 
the capabilities of the SIFT technique of detecting transient faults in the internal 
memory elements of a processor and in its combinational logic. A major originality of 
the strategy relies on the fact of being based on a set of simple transformation rules, 
their implementation on any high-level code can be completely automated. This reduces 
the costs for program hardening. The SIFT system implementations were tested under 
radiation in the 8051 micro-controller. Results show that SIFT was able to detect 88.2% 
of the upsets observed in the processor.  

3.3 Examples of SEU Mitigation and Recovery Techniques in FPGAs 

Field Programmable Gate Array (FPGA) devices are becoming increasingly popular 
with spacecraft electronic designers as they fill a critical niche between discrete logic 
devices and the mask programmed gate arrays. The devices are inherently flexible to 
meet multiple requirements and offer significant cost and schedule advantages. Since 
FPGAs are re-programmable, data can be sent after launch to correct errors or improve 
the performance of spacecraft.  

The architecture of programmable logic components is based on an array of logic 
blocks that can be programmed by the interconnections to implement different designs. 
A FPGA logic block can be as simple as a small logic gate or as complex as clusters 
composed of many gates. The logic blocks of current commercial FPGAs are composed 
of one or more pairs of transistor, small gates, multiplexors, Lookup tables and and-or 
structures. The routing architecture incorporates wire segments of various lengths, 
which can be interconnected via electrically programmable switches.  Several different 
programming technologies are used to implement the programmable switches. There are 
three types of such programmable switch technologies currently in use: 

•  SRAM, where the programmable switch is a pass transistor controlled by the 
state of a SRAM bit (SRAM based FPGAs) 

•  Anti-fuse, when an electrically programmable switch forms a low resistance 
path between two metal layers. (Anti-fuses based FPGAs) 

•  EPROM, EEPROM or FLASH cell, where the switch is a floating gate 
transistor that can be turned off by injecting charge onto the floating gate. 
These programmable logic circuits are called EPLDs or EEPLDs. 

Customizations based on SRAM are volatile. This means that SRAM-based FPGAs 
can be reprogrammed as many times as necessary at the work site. The anti-fuse 
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customizations are non-volatile and they can be programmed just once. Each of them 
has a particular architecture. Programmable logic companies such as Xilinx and Actel 
offer radiation tolerant FPGA families. Each one uses different mitigation techniques to 
better take into account the architecture characteristics. Some companies from the space 
market are licensed to develop tolerant FPGAs, such as Aeroflex UTMC, which is 
licensed to QuickLogic and Honeywell, which is licensed to Atmel. However, there is 
no current, finished space product based on the QuickLogic and Atmel FPGAs so far. 
Actel and Xilinx are the main commercial FPGA companies to share the market of 
space FPGAs nowadays as observed in the industry floor of the most important 
conferences of the area such as Military and Aerospace Applications of Programmable 
Devices and Technologies (MAPLD), Nuclear and Space Radiation Effect (NSREC), 
Radiation Effects on Components and Systems (RADECS) and Field Programmable 
Gate Array Symposium.  

The programmable logic devices are critically sensitive to SEU due to the large 
amount of memory elements located in these structures. Programmable logic devices 
must be strongly protected to avoid errors running in the space environment. There are 
two main ways to mitigate the radiation effects in Programmable Logic Devices: by 
high-level description or by architectural design.  

Each method has a different implementation cost and it can be more suitable for 
some types of applications, FPGA topology and customization approach. For example, 
FPGAs programmed by anti-fuse topology are more like standard cell ASICs, as the 
customization cells (anti-fuse) are not susceptible to radiation effects. For this reason, 
techniques used in ASICs such as EDAC can be easily applied to the high-level 
description. At the architectural level, for instance, it is simple to replace all the flip-
flops with hardened memory cells. As you will see later in this thesis, for FPGAs 
customizable by SRAM, applying high-level SEU mitigation techniques is not so 
simple because all the design blocks are sensitive to radiation. The same occurs when 
architecture design techniques are applied because of the FPGA matrix complexity.  

3.3.1 Anti-fuse based FPGAs 

The problem of SEU in anti-fuse FPGAs, more specifically based on the Actel 
architecture, has been addressed in (KATZ et al., 1997; KATZ et al., 1998; KATZ et al., 
1999; WANG et al., 2000). Actel offers SEU tolerant FPGA families programmed by 
anti-fuse called SX (ACTEL, 2000). This family architecture is described as a “sea-of-
modules” architecture because the entire floor of the device is covered with a grid of 
logic modules with virtually no chip area lost to interconnect elements or routing. 
Actel’s SX family has been improved in the past years. The first version provided two 
types of logic modules, identical to the standard Actel family, the register cell (R-cell) 
and the combinatorial cell (C-cell) exemplified in figure 3.27.  
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(a) Combinational Logic Blocks Configurations (C-cell) 

  
(b) C-cell Schemactic    (c) Register Cell (R-cell) 

Figure 3.27: Architecture of Actel FPGAs 

 
Interconnection between these logic modules is achieved using Actel’s patented 

metal-to-metal programmable anti-fuse interconnect elements, which are embedded 
between the M2 and M3 layers. These anti-fuses are normally open circuit and, when 
programmed, form a permanent low-impedance connection. In this first SEU tolerant 
FPGA version (ACTEL, 2001), three proposed techniques for implementing the logic of 
the sequential elements in order to avoid upsets were presented: CC, TMR, or 
TMR_CC. The sequential elements are automatically implemented during the synthesis 
in the Symplify tool. The CC technique uses combinatorial cells with feedback instead 
of flip-flop or latch primitives to implement storage cells. For example, a DFP1, 
comprised of two combinational modules, would be used in place of a DF1. This 
technique can avoid SEU in CMOS technologies larger than 0.23um but it will not be 
able to avoid SEU in next-generation process technologies where the combinational 
logic can also be affected by charged particles. TMR is a register implementation 
technique where each register is implemented by three flip-flops or latches that “vote” 
to determine the state of the register. TMR_CC is also a triple-module-redundancy 
technique, where each voting register is composed of combinatorial cells with feedback 
(instead of flip-flop or latch primitives). 

The CC flip-flops (CC-FFs) produce designs that are more resistant to SEU effects 
than designs that use the standard flip-flop (S-FF). CC-FFs typically use twice the area 
resources of S-FFs. Triple voting, or triple module redundancy (TMR), produces 
designs that are most resistant to SEU effects. Instead of a single flip-flop, triple voting 
uses three flip-flops leading to a majority gate voting circuit. This way, if one flip-flop 
is flipped to the wrong state, the other two override it, and the correct value is 
propagated to the rest of the circuit. Because of the cost (three to four times the area and 



 

 

62 

two times the delay required for S-FF implementations), triple voting is usually 
implemented using S-FFs. However, one can implement triple voting using only CC-
FFs in the Synplify tool.   

Actel introduced in 2001 a new version of the space FPGA family SX, composed of 
special radiation-tolerant flip-flops. These new SEU-hardened structures eliminate the 
need for TMR flip-flop designs implemented in HDL because the flip-flop is already 
protected by TMR at the architectural level (matrix). They use the D-type flip-flop 
proposed in (KATZ et al., 2001), presented in figure 3.6(b). Three D-type flip-flops are 
connected in parallel to the clock and data inputs. A voter (or majority circuit) is 
implemented by the top MUX to create a “hardened” output. The outputs of two flip-
flops, A and B, go to the selects of the voter MUX. If both A and B read logic zero, 
MUX input D0 is selected. Since it is tied to GND, the output of the MUX will read 
logic zero. Similarly, if A and B read logic one, the output of the MUX will read logic 
one. If A and B disagree due to a SEU (or for other reasons), the MUX will select flip-
flop C. We know C agrees with either A or B, and thus the MUX “voted” to produce 
data agreed on by two of the three flip-flops. 

3.3.2 SRAM-based FPGAs 

The SEU has a peculiar effect in SRAM-based FPGAs as discussed in the previous 
chapter. For consequence, it is not that simple to apply a high-level technique to this 
type of FPGA because all the implementation blocks (logic, customization and routing) 
are susceptible to upsets. Many solutions in the literature suggest new architecture 
topologies for SRAM-based FPGAs using hardened memory cells and innovative 
routing structures. Others solutions are high-level description techniques developed to 
be applied on the most popular family of SRAM-based FPGA, the Virtex® from Xilinx. 
The majority of the solutions for Virtex® are based on fault recovery and they use partial 
reconfiguration and re-routing to correct upset and guarantee reliability. However, it is 
important to notice that many of the solutions that have been proposed for the Virtex® 
FPGA family in the high-level description are not very efficient because they do not 
take into account the peculiar effect of a SEU in the SRAM-based FPGA matrix, which 
is a permanent fault in the logic, customization and routing. Hardware redundancy is 
mandatory in this case to guarantee reliability.  

3.3.2.1 SEU Mitigation Solution in high-level description 

Xilinx has a military family for the Virtex® that is also used for space applications. It 
is called Virtex® QPRO family (XILINX, 2000) and it provides a commercial off-the-
shelf system-level solution for aerospace and defense customers. It is fabricated on thin-
epitaxial silicon wafers using the commercial mask set and the Xilinx 5-layer-metal 
0.22 µm CMOS process. The use of epitaxial CMOS process technology has made 
Virtex® Single Event latchup immune (LETth >120 MeV*cm2/mg, TID=100 Krads(si)). 
In addition, Xilinx has proposed a high-level technique to mitigate SEU in the SRAM-
based FPGA: the TMR approach in the high-level design description combined to 
reconfiguration (scrubbing) in order to avoid accumulation of upsets (CARMICHAEL; 
CAFFREY; SALAZAR, 2000; CARMICHAEL, 2001). This solution is complete to 
avoid single points of failure in the matrix as all blocks are triplicated. This solution has 
been investigated and experiment tests were performed. In the chapters 5, 6 and 7 the 
SEU mitigation technique based on TMR for the Virtex® FPGA from Xilinx is 
discussed in detail. 
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In (ALDERIGHI et al, 2002), a design for a Xilinx FPGA-based multistage 
interconnection network (MIN) for a multi-sensor system is proposed that will be used 
in future scientific space missions. It is characterized by good concurrent fault diagnosis 
and fault detection capabilities. The fault tolerance strategy adopted is based on both 
network configuration and FPGA re-configuration. A slice control unit, one per each 
slice, allows changing the actual slice configuration, while the network control unit sets 
a new permutation.  When a fault affecting a slice is detected, a finite-state machine 
fires and marks the actual configuration as faulty in the fault LUT. The state machine 
goes, in turn, to an active status and searches for an equivalent configuration available 
among those stored in the configuration LUT. When such a configuration is found, it is 
applied as to fix the problem. See figure 3.28(a) from the paper.  To detect faults, a 
Parity Checker is used in each slice, figure 3.28(b). Parity is actually the only invariant 
property that can be defined for the slice. The parity checker is endowed with self-
checking ability so that it can report faulty conditions relevant to the set of faults. 

 
(a) Slice control unit 

 
(b) Parity checker 

Figure 3.28: Multistage interconnection network (MIN) in a Xilinx FPGA 
(ALDERIGHI et al, 2002) 

The limitation of this method is that only very few types of faults can be recovered 
by reconfiguring the network. All the faults in the customization routing in the FPGA 
that have permanent effect (as described in previous chapter) can only be corrected by 
FPGA reconfiguration (scrubbing). Results show that only 10% of the injected single 
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upsets are recovered by the method, which are probably the faults in the LUTs. The 
majority are recovered by simple scrubbing.  

3.3.2.2 SEU Mitigation Solutions at the Architectural level 

In (MAVIS et al., 1998), a FPGA has been developed for space and military 
applications based on a combination of four technologies: (1) radiation hardened 
nonvolatile SONOS (Silicon-Oxide Nitride-Oxide Semiconductor) EEPROM 
transistors, (2) unique SEU immune storage circuits, both for nonvolatile SONOS 
implementations and for volatile SRAM (static random access memory) 
implementations, (3) high-performance, radiation hardened, 0.8 micron, 3-level metal 
CMOS technology, and (4) new FPGA architectures developed specifically to 
accommodate good radiation-hardened circuit design practices. It is hardened for total 
ionization dose up to 200 krad(Si) and LET greater than 100 MeV-cm2/mg. The NMOS 
SONOS transistors differ from conventional NMOS transistors in that the SONOS 
transistor has a variable threshold voltage while the NMOS transistor has a fixed 
threshold voltage. To erase a SONOS transistor (program it to a negative threshold 
voltage) a large (10 V) negative voltage is applied from the gate to the P-Well. This 
causes pair-hole tunneling into the nitride-oxide gate dielectric layer and the resulting 
positive charge storage produces a depletion mode device. To store data in the transistor 
(program it to a positive threshold voltage) a large (10 V) positive voltage is applied 
from the gate to the P-Well. This causes electron tunneling into the gate dielectric and 
the resulting negative stored charge. In the SRAM version of the FPGA, volatile 
configuration storage is accomplished using a circuit derived from the DICE (dual 
interlocked storage cell) latch. The chip is programmed in much the same way as the 
SONOS version, using a shift register to serially load the row data and a column decode 
to select the column being written. 

Actel has prototyped an SRAM-based FPGA (WANG et al., 1999). In this case, the 
standard SRAM memory cells were replaced by resistor-decoupling memory cells 
where the effectiveness depends on the resistor value; and DICE memory cells that are 
practically SEU immune at 0.25um if only one node is hit. Figure 3.15 demonstrates the 
resistor decoupling memory cell and figure 3.19 the DICE cell, respectively. The 
resistor decoupling memory cell is able to avoid upsets because the resistors inserted in 
the feedback path work as filters to the transient pulse provoked by the charged particle. 
The DICE cell can avoid upsets because it stores the data in two distinct parts, where if 
one part is corrupted the other one is isolated by the cell construction. However, 
conclusions presented in (WANG et al., 1999) show that multiple bit upsets (MBU) will 
limit both solutions in the future if the layout does not pay special attention to this issue. 
The redundancy hardening (DICE memory) is less effective than the resistor solution in 
two orders of upset rates. The disadvantage of the resistor solution is temperature 
operation range sensitivity and the increase in delay. The DICE also has a disadvantage 
in area overhead. It has 12 transistors compared to 6 transistors in the standard memory 
cell. For 0.18 um, the effectiveness of both solutions will be compromised and more 
ingenious designs will be needed in the circuit level. 

Atmel (ATMEL, 2001) also has published a version of an SRAM-based FPGA 
(AT6010) using the SOI process. The logic block presented in figure 3.29 was not 
logically modified. The improvement achieved is limited to the SOI reliability in 
presence of SEU. Previous results have shown that the use of only SOI technology does 
not guarantee protection against SEU. Consequently, this solution from Atmel is not 
completely suitable for the space environment.  
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Figure 3.29: Atmel FPGA logic block 

In (KUMAR, 2003), a new SRAM-based FPGA is proposed based on the human 
immune system. This architecture adopts a distributed network without any centralized 
control.  Error (antigen) detection is based on the principle of operation of the B-cell.   
Once an error is detected in a functional cell, a pre-determined spare cell replaces the 
functional cell by cloning its behavior. The proposed reconfiguration technique reduces 
the redundancy in the system. Figure 3.30 shows the proposed matrix with the logic 
function cells and the space cells.  
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Figure 3.30: SRAM-based FPGA Matrix from (KUMAR, 2003) 

Functional cells consist of a 10-bit control register, 1-bit error register and a logic 
block.  The contents of the control register may be considered as the genetic code, as 
illustrated in figure 3.31(a) from the paper. The process of recognizing an error 
(antigen) by a B-cell is emulated in a functional cell by ensuring that the outputs 
generated are complementary.  If the outputs are identical i.e. an error is present, the 
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results are forced into high impedance. By forcing the outputs of a functional cell to 00 
or 11 in the presence of an error, the role of a B cell is emulated. Once an error has been 
detected the 1-bit error register in the cell is set to 1, and all input information of the 
functional cell is loaded into the corresponding spare cell. The same occurs in the 
routing cell that also has a control register to detect the presence of faults, figure 
3.31(b). The authors did not go into much detail about faults in the control registers and 
how much time the system must be on hold until the logic is replaced by the spare logic.  
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Figure 3.31: Example of Functional cell and Routing cell (KUMAR, 2003) 

3.3.2.3 Recovery technique  

Many fault-tolerant approaches for SRAM-based FPGAs were presented in the past 
years related to re-routing and alternate configuration to avoid upsets in the used CLBs. 
The first problem of correcting faults by runtime reconfiguration without using any 
redundancy is the method to find the faults in the matrix. In (MITRA; SHIRVANI; 
MCCLUSKEY, 1998), a method that uses pseudo-exhaustive BIST is presented to 
detect upsets in the matrix. The technique has an extra advantage that it is not necessary 
to bring the whole system down while fault location is carried out. The problem is the 
time duration to detect faults. Some applications can not be on hold for a long time 
waiting for the system to be recovered.  

An example of fault recovery based on reconfiguration and re-routing is shown in 
(LACH; MANGIONE-SMITH; POTKONJAK, 1998; LACH; MANGIONE-SMITH; 
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POTKONJAK, 2000), where the physical design is partitioned into a set of tiles. The 
key element of this approach is partially reconfiguring the FPGA to an alternate 
configuration in response to a fault. If the new configuration implements the same 
function as the original, while avoiding the faulty hardware block, the system can be 
restarted. The challenging step is to identify an alternate configuration efficiently and to 
have fast runtime fault detection. In (XU et al., 2000), another fault-tolerant approach 
for SRAM-Based FPGAs is presented related to the routing procedure. The problem is 
that both papers discuss radiation effects that are mainly upset (SEU). But in this case, 
the fault will be corrected in the next load of the bitstream (reconfiguration) and no 
work must be done in searching a new alternate configuration or routing. The methods 
are only justified if real permanent faults are present in the matrix due to total ionization 
dose, such as gate rupture, short or open metal wires.   

In (YU; MCCLUSKEY, 2001), a solution to permanent fault repair in finer 
granularity of the FPGA is presented. A faulty module can be repaired by reconfiguring 
the chip so that a damaged configurable logic block (CLB) or routing resource is not 
used by the design. Many techniques have been presented to provide permanent fault 
removal for FPGAs through reconfiguration. One approach is to generate a new 
configuration after permanent faults are detected in computing systems. Another 
approach is to generate pre-compiled alternative FPGA configurations and store the 
configuration bit maps in non-volatile memory, so that when permanent faults are 
present, a new configuration can be chosen without the delay of re-routing and re-
mapping. The authors propose some equivalent design candidates that can replace the 
original TMR design in case of a permanent fault, figure 3.32. 

 
Figure 3.32: Design candidates modified from TMR. (a) The original TMR design. (b) 
A hybrid TMR-Simplex-CED design. (c) A duplex system with a checking block. (d) A 

duplex system with two CED blocks (YU; MCCLUSKEY, 2001) 

For system transients, the authors suggest the use of traditional transient error 
recovery techniques. Typical examples include the roll-forward and rollback recovery 
techniques. Basically, these approaches are designed at the system level and thus are 
general to recover both Application Specific Integrated Circuit (ASIC) and FPGA 
systems. However, this assumption is not true because in the SRAM-based FPGA not 
only can the logic be affected by upsets, but also the routing, which can invalidate the 
path to perform roll-forward and rollback techniques. The paper does not discuss the 
difference between real permanent faults (gate rupture, open or short metal wires) and 
the SEU that also has a permanent effect until the next reconfiguration.  

In (HUANG; MCCLUSKEY, 2001), partial reconfiguration is also discussed to 
improve reliability by detecting and correcting errors in on-chip configuration data, but 
another problem is addressed in this paper: the memory coherence capability during 
partial reconfiguration. Because the LUTs can also implement memory modules for user 
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applications, a memory coherence issue arises such that memory contents in user 
applications may be altered by the online configuration data recovery process. In this 
reference, the memory coherence problem is investigated and it proposes a memory 
coherence technique that does not impose extra constraints on the placement of 
memory-configured LUTs. Theoretical analyses and simulation results show that the 
proposed technique guarantees the memory coherence with a very small (on the order of 
0.1%) execution time overhead in user applications. This technique is interesting and it 
can be further used with FPGA scrubbing in order to avoid SEU in the embedded 
memory too.  

In summary, many fault-tolerant techniques have been proposed over the last years 
for SRAM-based FPGAs based on recovery, architectural design and high-level design. 
The majority of the techniques proposed in the past related to the high-level design 
method and the recovery procedure do not take into account all the details and effects of 
a SEU in the SRAM-based FPGA because this knowledge is very recent. No published 
paper before (LIMA, CARRO, REIS, 2003a) has established the difference between a 
real permanent fault and a SEU that has also a permanent effect in the LUTs, 
customization and routing cells in the FPGA. The next chapters show in detail the 
analysis of the effects of a SEU in the programmable matrix and the importance of 
using some kind of redundancy in order to ensure run time error recovery and scrubbing 
(continuous reconfiguration) to avoid accumulation of faults.  
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4 ARCHITECTURAL SET AND SEU MITIGATION 
TECHNIQUES FOR SRAM-BASED FPGAS 

Programmable devices customizable by SRAM are composed of many components, 
such as complex logic blocks with lookup tables (LUTs), multiplexors and flip-flops, 
embedded memories, PLLs and dedicated routing segments, as explained in chapter 2. 
In addition, the next generation of FPGAs not only has the possibility of soft core 
insertion, but there are also hard microprocessor cores embedded in the chip to improve 
the data processing and performance, such as the family Virtex-II-Pro from Xilinx. 
Figure 4.1 diagrams a hypothetical topology.   

…

…

pads Embedded memory

Embedded processor

CLBs

routing

 
Figure 4.1: A case of Study: Hypothetical FPGA architecture  

The SEU mitigation problem in the next FPGA families with embedded hard 
processors can be analyzed in two parts: the microprocessor and the programmable 
logic. Consequently, each part can be sub divided into small logic blocks according to 
the functionality and some special features. Studies about the protection of a 
microprocessor have been done in the 8051-like micro-controller developed at UFRGS 
(CARRO; PEREIRA; SUZIM, 1996). All registers and the internal memory were 
protected by hamming code (LIMA et al., 2000a; LIMA et al., 2000b; COTA et al., 
2000). The results have shown the reliability of this method and the necessity of 
refreshing in some parts of the circuit, mainly in the memory, in order to avoid 
accumulation of upsets. A fault injection system was developed (LIMA et al., 2001a) in 
order to test the standard and the full SEU tolerant 8051 in the presence of single and 
multiple upsets (LIMA et al., 2002a). Based on the references presented in chapter 3 
and the studies previously done, the problem of protecting microprocessors against SEU 
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is relatively well understood and the available techniques presented in the literature can 
be applied in order to achieve reliability.  

However, in the case of SRAM based FPGAs, the problem of finding an efficient 
technique in terms of area, performance and power is very challenging, because of the 
high complexity of the architecture. As previously mentioned, when an upset occurs in 
the user’s combinational logic implemented in an FPGA, it provokes a very peculiar 
effect not commonly seen in ASICs. The SEU behavior is characterized as a transient 
effect, followed by a permanent effect. The upset can affect either the combinational 
logic or the routing. The consequences of this type of effect, a transient followed by a 
permanent fault, cannot be handled by the standard fault tolerant solutions used in 
ASICs, such as Error Detection and Correction Codes (EDAC), hamming code, or the 
standard TMR with a single voter, because a fault in the encoder or decoder logic or in 
the voter would invalidate the technique. The problem of protecting SRAM-based 
FPGAs against SEU is not yet solved and more studies are required to reduce the 
limitation of the methods currently used.  

The previous chapter presented some architectural and high-level techniques for 
SRAM-based FPGAs. In this chapter, improvements to the architectural method will be 
addressed. The high-level method will be discussed in next chapters.  

In the architectural level, the previous solutions leave open at least two problems to 
be solved:  

- how to cope with SETs in the CLB logic to avoid upsets being stored 
in the flip-flop,  

- how to cope with multiple bit upsets in the LUTs, routing and 
especially the embedded memory.  

In this chapter, we propose the investigation and development of SEU mitigation 
techniques for SRAM-based FPGAs that can be applied to FPGAs with or without 
embedded processors that can cope with the two problems still not solved. The SRAM 
based FPGAs were chosen because of their high applicability in space. Different than 
FPGAs programmed by anti-fuse that can be programmed just once, SRAM based 
FPGAs can be reprogrammed by the user as many times as necessary in a very short 
period. So, applications can be updated and corrected after launch. This feature is very 
valuable for space applications because it can reduce the cost in update missions or even 
save missions that were launched with design problems. 

4.1 Proposing a SET and SEU Tolerant SRAM-based FPGA 

First, it is necessary to analyze the amount of the sensitive area in the programmable 
matrix and the characteristics of them to propose improvements in the SEU mitigation 
techniques for SRAM-based FPGAs. Table 4.1 shows the set of configuration cells in a 
CLB tile of the Virtex family. There are 864 memory bits responsible for the 
customization of the logic. Analyzing the percentage of each type of SRAM cell in the 
whole set of memory elements in the CLBs, the LUTs represent 7.4%, the flip-flops 
represent 0.46%, the customization bits in the CLB represent 6.36% and the general 
routing represents 82.9%.  

Based on these results, the effect of an upset in the routing configuration 
(customization bits of the CLB and general routing) seems to be the major concern, 
totaling approximately 90% of the sensitive area in each CLB.  This type of fault, as 
mentioned previously, has a permanent effect, which represents an open or short circuit 
in the final connections of the logic design. A solution that can increase the area of this 
customization logic too much is not very attractive in final area and cost of this FPGA.  
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In addition to these programmable cells presented in table 4.1, there are other 
memory elements in FPGA devices that can also be affected by SEU:  

- SelectMAP (Selectable Microprocessor Access Port) latches 
- JTAG (Joint Test Action Group - IEEE Std. 1149.1x) TAP (Test 

Access Port) latches 
- Others latches of other built-in non-programmable features. 

The main effects of a SEU in these latches are SEFI (Single Event Functional 
Interrupt) such as configuration circuit upsets and JTAG circuit upsets. There are few 
flip-flops or latches in the POR, less than 40 latches or flip-flops, which leads to a very 
small cross-section. But they cannot be disregarded because an upset in one of these 
latches can force the chip to be reprogrammed. Figure 4.2 show the location of these 
flip-flops in the FPGA matrix. 

POR

PROG

JTAG

 
Figure 4.2: Special features elements in the SRAM-based FPGA matrix 

Some solutions to protect the POR can be: TMR the whole block, replace the cells 
by SEU hardened memory cells or use extra logic to turn off the POR after the device is 
programmed by an external pin. In the next sections, some fault-tolerant techniques will 
be discussed to protect the SRAM cells of the LUT, flip-flops, routing and 
customization cells, and the embedded block RAM. The advantages and disadvantages 
of each technique were analyzed based on previous work results in ASICs 
implementations.  

4.2 Technique based on Hardened Memory Cells to replace the SRAM 
cells in the Routing, Customization and Lookup tables 

The first solution that can be studied is to replace some or all of the latches in the 
FPGA by SEU hardened flip-flops. Many hardened memory cells were designed during 
the last years. However each one has different characteristics that can show more 
efficiency for some applications. Table 4.2 shows a summary of a comparison among 
them. The main characteristics used for the comparison are the number of transistor, the 
method, the SEU order effect, the ability to accumulate or not upsets and the SET 
immunity in combinational logic. For example, standard latches have a first order of 
susceptibility; in other words, they are upset by a single node strike. Some of them 
require multiple node strikes to upset cells such as TMR memory cells, DICE memory 
cell and simple temporal memory cells. Temporal latches built from DICE cells, for 
example, have a second and third order of susceptibility.  
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The hardened memory solution is suitable to replace the SRAM cells in the routing, 

general customization and lookup tables because they present a small overhead 
compared to logic redundancy technique and EDAC. Solutions such as IBM, NASA, 
DICE, HIT and resistor memory cells look interesting in the number of transistors and 
fault coverage. The final area will be around 2 times the original one, which is a very 
good result in terms of high-reliability.  

For the LUT, for instance, if the cells are placed too close to each other, it is possible 
to use the solution of a TMR memory cell, where each cell is a DICE memory cell. In 
this case, this solution is robust to the 1st, 2nd and 3rd order of upsets. And because the 
LUT cells comprise only 7.4% of the cells, the impact in area will not be so intense. In 
(ROCKETT, 2001), a SEU immune memory cell based on decoupling resistors was 
developed for FPGAs. The design is asymmetric to provide that the data cell powers-up 
in a know state. In the paper, the size and the speed of the cell are discussed. The cells 
are not in the critical path, such as the cells that control de routing, for example, do not 
need a high-speed. In this case, the tolerance and the size are the main issue. Results 
show the high reliability of the cell for heavy ions strike.  

4.3 Technique based on Error Correction and Detection Codes 
(EDAC) for the Embedded Memory 

The embedded memory in the FPGA must be protected in order to avoid errors. 
EDAC is a suitable technique to correct upsets in memory structures, as discussed 
previously. An example is the hamming code that can be applied to embedded FPGA 
memory. However, as discussed in the previous chapter, hamming code is not able to 
cope with multiple upsets in the same coded word. And in the case of the embedded 
memory, it is very important to protect the cells against MBU for two main reasons: 

- new SRAM technologies (VDSM) are susceptible to MBU, 

- the scrubbing procedure does not reconfigure (update) the internal 
memory, consequently, upsets have a higher probability of 
accumulating in the memory. 

So, a new code is needed to correct all possible double errors. The initial option 
would be using a Reed-Solomon code with capability to correct two different symbols. 
But this RS code has more than twice the area and delay overhead of the single symbol 
correction RS (HOUGHTON, 1997), which makes this solution inappropriate for 
hardware implementation in memory architectures. Previous work has been published 
on the use of RS code to protect memory (REDINBO; NAPOLITANO; ANDALEON, 
1993), however it does not take into account double bit upsets in the same coded word, 
which is likely to occur in VDSM technologies.  

An innovative solution has been developed able to correct all double bit upsets in 
VDSM memories. This solution combines hamming code and RS code with single 
symbol correction capability. This technique solves the problem of how to achieve 
100% of double fault correction with a low-cost RS code. The hamming code protects 
the bits between the RS symbols. The number of bits protected by hamming will be the 
same as the number of symbols protected by Reed-Solomon, so this option does not 
significantly increases the area overhead. Figure 4.3 presents the insertion of hamming 
code in row already coded by RS code. 
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Protected by Reed-Solomon code

Protected by Hamming code  
Figure 4.3: Schematic of a memory row protected by Reed-Solomon and hamming code 

This solution is explained in detail in (NEUBERGER; LIMA; CARRO; REIS, 
2003). Results show the efficiency of the proposed method in the presence of all single 
and double upsets and many types of multiple upsets. All double faults and a large 
combination of multiple faults were corrected by the method, faults type a, b, c, d, e, f, 
and g in figure 4.4. The only type of multiple faults that was detected but not corrected 
by the method is where multiple upsets (three or more) affect two different RS code 
symbols, fault type h in figure 4.4.  
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Figure 4.4: Schematic of a memory row protected by Reed-Solomon and hamming code 

Figure 4.5 shows the final architecture of the double error tolerant memory. For 
instance, for 128-bit data protection, 14 extra bits are needed due to Reed-Solomon and 
5 extra bits due to hamming code, totaling 19 parity bits for each data row. There are 
two encoder and decoder blocks, one for hamming code and another for RS code. The 
parity bits are also stored in the memory in a reserved area. The placement of all RS 
parity symbols and hamming parity bits must be also taken into account to avoid double 
upsets in the same hamming coded parity word or in two parity symbols of the same RS 
coded word. The RS encoder block can be adapted to any size of data memory as 
presented in (NEUBERGER; LIMA; CARRO; REIS, 2003). 
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Figure 4.5: Hamming and RS code in memory architecture 

The case study memory was described in VHDL and prototyped in a Virtex-E FPGA 
using BlockRAMs and CLBs in order to be evaluated in terms of area, performance and 
fault coverage. Results are presented in table 4.3.  
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Table 4.3: Area and Delay of Reed-Solomon and hamming codes used to protect a 
memory 

 16-bit Hamming 112-bit RS 
 Encoder Decoder Encoder Decoder 

# 4-LUTs 22 99 215 538 
# Extra ffs 5 x  # of row 14 x  # of rows 
Delay (ns) 9.3 21.7 14.5 47.6 

 

In the results, it is shown that the fault tolerant memory has an area overhead that is 
basically the area used by the encoder and decoder blocks. Only two more BlockRAMs 
are needed, one to store the RS redundancy symbols and other to store the hamming 
extra bits. The performance penalty in the fault tolerant memory synthesized in the 
FPGA is around 50%. This penalty can reduce when the encoder and decoder blocks are 
implemented using random logic instead of the CLBs (prototype version).  

In summary, the proposed method that combines RS code and hamming code to 
protect memory against SEU is an attractive fault-tolerant technique to be applied in the 
new hardened SRAM-based FPGA. It is able to protect the memory against all double 
faults and a large set of multiple faults. It does not present a large impact in area and it 
does not interfere with the normal operation and customization of the current embedded 
memory cell. The presented method is innovative. In the literature, only one approach 
has been found similar to this one (REDINBO; NAPOLITANO; ANDALEON, 1993), 
but it uses only Reed-Solomon code. This method works in two modes: correction of a 
single symbol error or detection of a double symbol error, and the choice is made by the 
user. The approach proposed in (REDINBO; NAPOLITANO; ANDALEON, 1993) 
does not deal with the correction of double faults at the interface of two different 
symbols. Our approach corrects this type of fault, avoiding the choice between 
correcting one symbol error and detecting double symbol errors. 

4.4 Technique based on Logic Redundancy for the CLBs flip-flops 

The triple modular redundancy (TMR) is another SEU mitigation technique. There 
are many TMR topologies. Each implementation is associated with different area 
penalties and fault coverage. The system requirements and the architecture must be 
analyzed in order to correctly choose the most convenient approach. Table 4.4 show a 
summary of the main approaches of TMR. 

The CLB flip-flops receive the output of the multiplexors that set up the signal path 
from the LUT in the CLB slice. If a transient fault (SET) occurs in one of the 
multiplexors, this upset must not be stored in the flip-flops. Consequently, it is not 
sufficiently reliable to replace the CLB flip-flop by a hardened flip-flop. It is also 
necessary to insert some kind of fault detection and correction in the input of this flip-
flop to filter SETs. The combinational logic does not need to be changed. A possible 
solution is to combine the temporal latch composed of DICE memory cells, presented in 
(MAVIS; EATON, 2000; MAVIS; EATON, 2002) with the TMR approach with 
refreshing. The final flip-flop shows a high reliability to 1st, 2nd and 3rd order of SEU 
and SETs, refreshing of SEU and additionally a small impact in the final area because 
the flip-flops correspond to less than 1% of the total sensitive area. Figure 4.6 shows 
this hardened flip-flop topology.  
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Table 4.4: Summary of TMR approaches: main Advantages and Drawbacks 

TMR Approach SEU / MBU Order 
Effect Immunity 

Accumulation 
of upsets 

SET 
Immunity 

 1st 2nd 3rd   
TMR Device without refreshing Yes Yes Yes Yes Yes* 
TMR in sequential logic without 
refreshing 

See table 4.1, according 
to the TMR latch 

Yes No 

TMR in sequential with 
refreshing 

See table 4.1, according 
to the TMR latch 

No No 

TMR combinational and 
sequential logic without 
refreshing 

Yes No Yes Yes Yes 

TMR combinational and 
sequential logic with refreshing 

Yes No Yes No Yes 

 

clk

clk+d

clk+2d

clk+2d+tp

MAJ

IN

Dice cell
 

Figure 4.6: Proposed SEU and SET Hardened flip-flop with refreshing 
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5 HIGH-LEVEL SEU MITIGATION TECHNIQUES FOR 
SRAM-BASED FPGAS  

The previous chapter discussed fault-tolerant techniques in the architectural level for 
SRAM-based FPGAs. Although these solutions can achieve a high reliability, they also 
present a high cost because they need investment in development, test and fabrication. 
So far, there are very few FPGA companies that are investing in designing fault-tolerant 
FPGAs as this market is still focused in only military and space application, which is 
very small compared to the commercial market. However, because of the technology 
evolution, applications at the atmosphere and at ground level have been starting to face 
the effect of neutrons, as mentioned in chapter 2.  As a result, fault-tolerant techniques 
begin to be necessary in many commercial applications that need some level of 
reliability.  

A less expensive solution is a high-level SEU tolerant technique that can be easily 
implemented by the user or by the company designers in commercial FPGAs or in parts 
manufactured by a technology that can avoid latch up and reduce the total ionization 
dose, as the Virtex® QPRO family (XILINX, 2000).  The high-level SEU mitigation 
technique used nowadays to protect designs synthesized in the Virtex® architecture is 
mostly based on TMR combined with scrubbing (CARMICHAEL; CAFFREY; 
SALAZAR, 2000; CARMICHAEL, 2001). The TMR mitigation scheme uses three 
identical logic circuits (redundant block 0, redundant block 1 and redundant block 2), 
synthesized in the FPGA, performing the same task in tandem, with corresponding 
outputs being compared through a majority vote circuit. The TMR technique for Virtex® 
is presented in details in (CARMICHAEL, 2001), and more examples are also presented 
in (LIMA et al., 2001b).  

5.1 Triple Modular Redundancy Technique for FPGA 

The correct implementation of TMR circuitry within the Virtex® architecture 
depends on the type of data structure to be mitigated. The logic may be grouped into 
four different structure types: Throughput Logic, State-machine Logic, I/O Logic, and 
Special Features (Select block RAM, DLLs, etc.). The throughput logic is a logic 
module of any size or functionality, synchronous or asynchronous, where all of the logic 
paths flow from the inputs to the outputs of the module without ever forming a logic 
loop. In this case, it is necessary to just triplicate the logic, creating three redundant 
logic parts (0, 1 and 2). No voters are required, as the FPGA output will be by default 
voted later.  

The state-machine logic is any structure where a registered output, at any register 
stage within the module, is fed back into any prior stage within the module, forming a 
registered logic loop. This structure is used in accumulators, counters, or any custom 
state-machine or state-sequencer where the given state of the internal registers is 
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dependent on its own previous state. In this case, it is necessary to triplicate the logic 
and to have majority voters in the outputs. The register cannot be locked in a wrong 
value, for this reason there is a voter for each redundant logic part in the feedback path 
making the system able to recover by itself. Figure 5.1 shows a general example of this 
structure.  

Redundant Logic 0

Redundant Logic 1

Redundant Logic 2

Voter

Voter

Voter
 

Figure 5.1: TMR Logic with Voter 

The majority voter, figure 5.2 (a), can be easily implemented by one LUT. Because 
the LUT can be upset, the voters are also triplicated. In this way, if one voter is upset, 
there are still two voters working properly. For designs constrained by available logic 
resources, the majority voter can be implemented using the Virtex® 3-state buffers 
instead of LUTs, Figure 5.2 (b). There are two 3-state buffers per CLB. Figure 5.2 (c) 
shows the 3-state buffer schematic in the Virtex® matrix.  

The primary purpose of using a TMR design methodology is to remove all single 
points of failure from the design. This begins with the FPGA inputs. If a single input 
was connected to all three redundant logic legs within the FPGA then a failure at that 
input would cause these errors to propagate through all the redundancies and thus the 
error would not be mitigated. Therefore, each redundant leg of the design that uses 
FPGA inputs should have its own set of inputs. Thus, if one of the inputs suffers a 
failure, it will only affect one of the redundant logic parts. The outputs are the key to the 
overall TMR strategy. Since the full triple module redundancy generates every logic 
path in triplicate, there must ultimately be a method for bringing these triple logic paths 
back to a single path that does not create a single point of failure. This can be 
accomplished with TMR outputs majority voters inside the output logic block, as 
presented in figure 5.3. 

The Virtex® architecture provides a number of special features, such as block RAM 
(BRAM), DLLs, etc, which require specialized methods for implementing effective 
redundancy. A reliable method to TMR the BRAM is to constantly refresh the BRAM 
contents, figure 5.4. Since these are dual port memories, one of the ports could be 
dedicated to error detection and correction. But this also means that the BRAM could 
only be used as single port memories by the rest of the user logic. To refresh the 
memory contents, a counter may be used to cycle through the memory addresses 
incrementing the address once every n clock cycles. The data content of each address is 
voted at a determined frequency and the majority voter value written back into the cells. 

A typical FPGA design will be implemented with signals that were resolved to a 
logic constant (VCC or GND), but could not be entirely optimized out of the design. 
When the Place and Route (PAR) tools implement the VCC and GND signals, they are 
implemented in a way that maximizes device resource utilization. This is accomplished 
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by utilizing "Keeper" circuits that exist at the input pins of all CLBs and I/O blocks 
(IOBs). Keepers lie in series with routing channels and logic block input pins. When the 
routing channel carries an active signal, the keeper is transparent. But when the channel 
is unused, the keeper will keep its last known value - which was determined when the 
device was initially powered-up or re-initialized by activating the FPGA input PROG. 
When a logic element (i.e. flip-flop) inside a logic block (i.e. CLB or IOB) requires a 
logical constant, such as a VCC or GND, this logical constant may be obtained from the 
keeper circuit of an unused pin of the logic block. Its polarity may be selected by 
programmable inversion within the logic block.  

 

 
(a) 3-Input Majority Voter Schematic 

 
(b) 3-Input Majority Voter Implemented by 3-State Buffers 

 
(c) Virtex® Bus Logic 

Figure 5.2: Majority Voters (CARMICHAEL, 2001) 

An SEU may upset, or alter, the state of a keeper circuit either by direct 
ionization, or indirectly by momentarily connecting an active routing channel to the 
input of the keeper. In either case, the result is a functional disturbance that can neither 
be detected by readback nor corrected by partial reconfiguration. Therefore, this type of 
error is known as a "persistent error", and it can only be corrected by completely re-
initializing the FPGA. Schematic designers should be careful to examine the primitive 
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implementation of all library macros that are likely to contain registers, before using 
them in their design. Even if the macro provides clock enable and reset pins at the top 
level, the primitive implementation may be different than expected. Similarly, if a 
VHDL user describes a synchronous process without specifying a clock-enable or 
initialization function, the synthesis tool will implement this function by using 
primitives and connecting all unused pins to the correct logical constant, thus creating 
VCC and GND. In order to avoid persistent errors, user VCCs, user GNDs and user 
clock enables for each redundant logic part must be created in the design as inputs.  

 

 
Figure 5.3: Majority Voter in the Virtex® Output Logic (CARMICHAEL, 2001) 
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Figure 5.4: BRAM TMR with Refreshing (CARMICHAEL, 2001) 

5.2 Scrubbing 

However, the use of TMR in the design is not sufficient to ensure reliability of a 
long period of time as upsets can accumulate in the matrix provoking an error in the 
TMR. Note, as explained in chapter 2, the upsets located at LUTs and in the routing 
configuration cells will not be removed until the next configuration of the device. 
Consequently, it is necessary to clean up all the upsets in such a frequency as to 
guarantee the correct functionality of the TMR methodology. The first technique 
proposed to clean the upsets inside the matrix was based on readback of the bitstream, 
detecting an upset and reloading the original one (CARMICHAEL; CAFFREY; 
SALAZAR, 2000). The problem of this technique is that it is too time consuming. 

A simpler method of SEU correction is to omit readback and detection of SEUs and 
simply reload the entire CLB Frame segment at a chosen interval (XILINX, 2000c). 
This is called "scrubbing". Scrubbing requires substantially fewer overheads in the 
system, but does mean that the configuration logic is likely to be in "write mode" for a 
greater percentage of time. However, the cycle time for a complete scrub can be made 
relatively short. The scrubbing allows a system to repair SEUs in the configuration 
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memory without disrupting its operations. It is performed through the Virtex  
SelectMAP interface. When the FPGA is in this mode, an external oscillator generates 
the configuration clock that drives the PROM and the FPGA. At each clock cycle new 
data are available on the PROM data pins. One example is the Flash-PROM 
XQR18V04 that provides a parallel frequency up to 264 Mbps at 33 MHz. Figure 5.5 
shows the scrubbing scheme. 

The scrubbing cycle time depends on the configuration clock frequency and on the 
readback bitstream size. For the XQVR300, it is necessary to utilize 207,972 clock 
cycles in order to perform the full scrubbing load (Scrub cycle = # clock cycles x clock 
period). The scrubbing rate describes how often a scrubbing cycle must occur. It is 
determined by the expected upset rate of the device for the given application. Upset 
rates are calculated from the static bit cross-section of the device and the charged 
particle flux the application or mission is expected to endure. The scrubbing rate should 
be set such that any SEU on the configuration memory will be fixed before the next 
upset will occur. In reality the scrubbing rate is minimized to be equal to the scrubbing 
cycle.  In this way configuration logic is always being refreshed. The implemented 
design can also have influence in the selection of the scrubbing rate. A good "rule of 
thumb" is to place the scrubbing rate one order of magnitude or more above the 
expected upset rate. In other words, the system should scrub, on the average, at least ten 
times between upsets. 
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Figure 5.5: Scrubbing configuration scheme 
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6 Evaluating the Robustness of the TMR technique 
into Virtex® FPGA  

The robustness of the TMR technique implemented in a high-level description 
language synthesized in the Virtex® FPGA was evaluated by injecting faults in the 
configuration bits of the matrix (LUTs and configuration routing cells) and in the 
presence of protons generated by an electronic beam in a radiation ground test facility. 
In order to better understand how the faults were injected in the configuration cells and 
how they will effect the design operation, it is necessary to first study the configuration 
memory of the FPGA.  

The Virtex® configuration memory can be visualized as a rectangular array of bits, 
that is called the bitstream, figure 6.1.  The configuration memory array is divided into 
three separate segments: The "CLB Frames", "BRAM0 Frames" and "BRAM1 Frames”. 
The two BRAM segments contain only the RAM content cells for the Block RAM 
elements. The BRAM segments are addressed separately from the CLB Array. 
Therefore, accessing the Block RAM content data requires a separate read/write 
operation. Read/Write operations to the BRAM segments should be avoided during 
post-configuration operations, as this may disrupt user operation. 
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Figure 6.1: Virtex® Architecture Overview 
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The CLB Frames contain all configuration data for all programmable elements 
within the FPGA. These include all Lookup Table (LUT) values, CLB, IOB, and 
BRAM control elements, and all interconnect control. Therefore, every programmable 
element within the FPGA can be addressed with a single read or write operation. These 
entire configuration latches can be accessed without any disruption to the functioning 
user design, as long as LUTs are not used as distributed RAM components. 

While CLB flip-flops do have programmable features that are selected by 
configuration latches, the flip-flop registers themselves are separate from configuration 
latches, and cannot be accessed through configuration. Therefore, readback and partial 
configuration will not affect the data stored in these registers. However, when a LUT is 
used as either a distributed RAM element or as a shift register function, the 16 
configuration latches that normally only contain the static LUT values are now dynamic 
design elements in the user design. Therefore, the use of partial reconfiguration in a 
design that contains either LUT-RAM (i.e., RAM16X1S) or LUT-Shift-register 
(SRL16) components may have a disruptive effect on the user operation. For this reason 
the use of these components cannot be supported for this type of operation. 

However, Select block RAMs (BRAM) may be used in such an application. Since 
all of the programmable control elements for the BRAM are contained within the CLB 
Frames and the BRAM content is in separate frame segments, partial reconfiguration 
may be used without disrupting user operation of the BRAM as design elements. 

The configuration memory segments are further divided into columns of data 
frames. A data frame is the smallest portion of configuration data, which may be read 
from, or written to, the configuration memory. The bits are grouped into vertical frames 
that are one-bit wide and extend from the top to the bottom of the array composing a 
column defined by a major address (XILINX, 2000c). Each matrix column is associated 
with a major address and to a different number of frames according to the nature of the 
column, shown in table 6.1.  

The frames are read and written sequentially with ascending addresses for each 
operation. The frame size depends on the number of rows in the device. The number of 
configuration bits in a frame is 18 x (# of CLB rows +2), and is padded with zeros on 
the right bottom (LSB) to fit a 32-bit word.  

The frame organization differs for each type of column. Each frame is located 
vertically in the device with the front of the frame at the top. Table 6.2 shows the CLB 
column frame, IOB column frame and BRAM content organization. The frame top is 
showed on the left. 

The CLB tile is composed of the CLB logic and the surrounding interconnection that 
is placed in a determined row and column in the matrix. There are 864 customization 
bits per CLB tile distributed in 48 frames with 18 bits each, figure 6.2. The bits can be 
divided in Look-up table bits (7.4%), CLB configuration bits (6.8%), interconnection 
bits (84.2%) and 3-state buffer configuration bits (1.6%). Figure 6.3 shows a global 
view of the CLB tiles placed in rows and columns in the matrix. 

Table 6.1: Virtex® Configuration Column Type 

Column Type # of frames # per device 
center 8 1 
CLB 48 # CLB columns 
IOB 54 2 

BRAM interconnect 27 # of blocks SelectRAM columns 
BRAM content 64 # of blocks SelectRAM columns 
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Table 6.2: Frame Organization 

CLB column frame 
Top 2 IOB CLB R1 … CLB Rn Bottom 2 IOB 

18 bits 18 bits … 18 bits 18 bits 
IOB column frame 

Top 3 IOB 3 IOBs … 3 IOBs Bottom 3 IOB 
18 bits 18 bits … 18 bits 18 bits 

Block SelectRAM content column frame 
PAD RAM R0 … RAM RN PAD 

18 bits 72 bits … 72 bits 18 bits 
 

...

Frame 0
Frame 1

Frame 47

Bit 0Bit 17

Frame 2
Frame 3

Frame 46

...

 
Figure 6.2: CLB Tile Map 
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Figure 6.3: Matrix frame organization map 

 



 

 

87 

Previous results from the radiation ground testing presented at (CARMICHAEL, 
2001) showed that using TMR in Virtex® FPGAs, the cross section was reduced by 
1,000 times compared to using only the scrubbing technique without TMR. But it was 
still not zero. The fault injection investigation started with the objective of justifying the 
errors obtained from the ground testing experiments in the Virtex® TMR design. The 
analysis must explain how a single bit upset in the bitstream of the Virtex® FPGA could 
cause two errors in distinctly redundant logic parts of the TMR design.  

The fault injection in SRAM-based FPGAs is defined as a bit flip in all bits of the 
configuration bitstream. In this way, it is possible to evaluate the effects of an upset in 
all sensitive areas of the programmable matrix. Some of these bits are directly related to 
the user’s design combinational and sequential logic, and some of them are related to 
the FPGA architecture and design implementation.  

The fault injection analysis was executed in four main steps. First, the fault injection 
tool developed by Los Alamos National Laboratory was used to catalogue all the 
configuration bit locations that caused a dynamic error in the TMR design. Then all the 
reported bits were identified in the general FPGA matrix in terms of row, column and 
functionality. Based on this information it was possible to identify those bits in the 
FPGA IC schematics. The third step identified the correlation between the bit location 
in the FPGA IC schematic and its location in the design under test in the FPGA editor 
tool. The last step was the characterization of the error. 

6.1 Test Design Methodology 

The TMR test design methodology used to analyze the SEU in the Virtex® FPGA 
consists of a TMR counter design replicated in the circuit in order to fill the resources of 
the part (XQVR300). All CLBs were used to implement eight TMR 32-bit counters 
with pipeline design. The design can be divided in three groups: the redundant logic part 
0, redundant logic part 1 and redundant logic part 2. Each redundant group is composed 
of eight 32-bit counters. Figure 6.4 illustrates the design scheme.  
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Figure 6.4: TMR design of a 32-bit pipelined counter  
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In order to detect an error in one of the 32-bit counters, the eight 32-bit counters 
located in the same redundant logic group are compared against each other. There is one 
comparator for each group. Comparators 0, 1 and 2 report an error in the redundant part 
0, 1 and 2 respectively. 

The three redundant logic groups are finally compared in the majority voter 
located in the output logic block. The error flag, a result of the majority voter, reports if 
there is an error in two or more redundant parts. A schematic of this approach is 
illustrated in figure 6.5.  
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Figure 6.5: TMR Design Methodology 

6.2 Fault Injection in the FPGA Bitstream 

The fault injection tool developed in Los Alamos National Laboratory specific for 
Xilinx needs is able to corrupt all the bits of Virtex® bitstream in a sequential way, or 
individually by choosing a specific bit location. The objective of this tool is to analyze 
the effect of a single bit upset in a TMR design implemented in the Virtex® architecture. 
All single bit upsets able to cause an error in the TMR design were cataloged for 
investigation. In this text, this tool will be called Virtex fault injection tool. 

In principle, no single bit upset in the bitstream should cause an error in the TMR 
design if a single upset error affects only one redundant part of the design. By TMR 
definition, if one redundant part is corrupted by an upset, the majority voters continue 
voting the correct value from the two other redundant uncorrupted parts.  

The Virtex fault injection tool can upset a single bit in the bitstream sequentially 
starting from a user defined major address and frame, or it can upset one specific bit 
when the user defines the major address, frame, frame byte and bit. Fault injection is 
performed in three steps, presented in table 6.3. The three-step method guarantees no 
double upsets for any short period of time. 

Table 6.3: VIRTEX® Configuration Column Type 

Fault injection steps Bitstream example 
Read the bitstream: …  0110010101010… 
Corrupt one bit and load the bitstream: …  1110010101010… 
Correct the previous bit and load the bitstream: …  0110010101010… 
Reset the flip-flops …  0110010101010… 
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Each time an error is reported by the test design comparator, the fault injection tool 
shows the location of the upset bit that caused the error. The tool reports the major 
address, frame, frame byte and bit location. Using this information it is possible to know 
the exact location of the bit in the bitstream, and as consequence in the FPGA matrix.  

The fault injection test platform, shown in figure 6.6, is made from two AFX 
V300PQ240-100 daughter cards; a MultiLINXTM cable used as an interface to a host 
PC, and a control panel.  The system can operate stand-alone or in conjunction with a 
host PC and test software. The control panel communicates directly with the control 
chip to specify the mode of operation. Configuration of the DUT may be controlled by 
either the control chip or the test software via the MultiLINX Cable. The control chip 
also controls the dynamic operation of the DUT and dynamic error detection.  

 

 
Figure 6.6: SEU Test platform 

6.3 Locating the upset in the design floorplanning 

For a given bit located in the bitstream in the CLB frames, there is a unique address 
location that is defined by the Major Address, Frame, Frame Byte and Bit position. In 
order to know the location of this bit in the FPGA matrix and consequently its purpose 
in the user design, it is necessary to follow the next steps: 

6.3.1 Bit column location in the matrix 

The CLB address space begins with ’0’ for the center column and alternates between 
the right and left halves of the device for all the CLB columns, then IOB columns, and 
BRAM interconnect columns, as illustrated in figure 6.7. Analyzing the figure 
schematic, if the major address is 23, for example, it means that the column is 24.  
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Figure 6.7: Example of frame organization in Virtex® family 

 

6.3.2 Bit row location in the matrix 

Each bit column starts from the top I/O block, passes through all CLB blocks and it 
ends in the bottom I/O block. Each row has 18 bits, including the I/O block. The 
equation 6.1 provides the row position.  

Row = (Byte Frame x 8 + bit) / 18  6.1 

The frame, frame byte and bit data are used to obtain the exact bit location in the 
CLB tile by using the equation 6.2.  

CLB tile bit = 17 - [Byte Frame x 8 - Floor((Byte Frame x 8 + 
Bit) / 18), 18) + Bit] 

6.2 

6.3.3 Bit location in the CLB  

Each bit of the CLB tile has been identified in the FPGA IC schematic and therefore 
in the design floorplanning by using some internal Xilinx tools. In this way it was 
possible to build a design flow from the upset bit information coming from the fault 
injection tool (major address, frame, frame byte and bit) and the final design 
floorplanning bit location.  

6.3.4 Bit Classification 

The CLB map has the general bit classification (LUT, flip-flop, customization or 
routing) in terms of frame number and the bit location in the CLB. This map gives just a 
general view. In order to be able to find the specific location of the bit in the CLB 
architecture a table containing all the bit names is used. Table 6.4 shows a portion of the 
used CLB map table containing just the frame address 0.   
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Table 6.4: Bit Classification in the CLB 

Frame Bit Function 
0 0 I_c_hexes.I67.hex_mux_s3 
0 1 I_c_hexes.I55.hex_mux_s3 
0 2 I_c_singles.I621.I377 
0 3 I_c_singles.I625.I377 
0 4 I_c_singles.I611.I377 
0 5 I_c_singles.Iw22o7.I377 
0 6 I_c_singles.Is23n23.I377 
0 7 I_c_singles.I101.I377 
0 8 I_c_singles.Iw0n23.I377 
0 9 I_c_imux.s1ce_16to1.I16to4_2 
0 10 I_c_imux.s0ce_16to1.I16to4_4 
0 11 I_c_imux.s1ce_16to1.I2to1 
0 12 I_c_imux.s0ce_16to1.I16to4_1 
0 13 I_c_cle.pblk1.pibce.cfgmem 
0 14 I_c_cle.slice1.luts.flut.lm15.I74 
0 15 I_c_cle.slice1.luts.glut.lm15.I74 
0 16 Ic_lng_tbf.Itblk.I57.Its12 
0 17 I_c_omux.Iom6.om2 

 
 

Analyzing table 6.4, there are some names that can be easily associated to a routing 
position, for example I_c_singles.Iw22o7.I377 that shows the connection between the 
single wire West 22 and single wire out 7. However, the majority of the names do not 
make any sense without the use of the FPGA schematics.  

An intense search was done in the Virtex schematic in order to associate each name 
to each structure. But still this was not enough to be able to associate the bits in the 
FPGA architecture to the signals in the user design. The software package called XDL 
(XILINX, 2001b) must be used to see all the connections and instantiations in the user 
design. XDL is a full featured design language that provides direct read and write access 
to Xilinx proprietary Native Circuit Description (ncd), figure 6.8. It is a single tool with 
3 fundamental modes: report device resource information, convert NCD to XDL 
(ncd2xdl) and convert XDL to NCD (xdl2ncd). 
 

 
Command example: xdl -ncd2xdl design.ncd design.xdl 
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inst "counter6/I$2/pipe0/N$3(3)" "SLICE" , placed R31C7 CLB_R31C7.S1 , 
 cfg "CKINV::1 DYMUX::1 DXMUX::1 
      F:counter6/I$2/pipe0/stage2/pipe3/I$8:#LUT:D=(~A2*A3) 
      G:counter6/I$2/pipe0/stage2/pipe2/I$8:#LUT:D=(~A2*A3) 
      CEMUX::CE_B SRMUX::SR_B GYMUX::G FXMUX::F SYNC_ATTR::SYNC 
      SRFFMUX::0 INITY::LOW 
      FFX:counter6/I$2/pipe0/stage2/pipe3/I$3:#FF 
      FFY:counter6/I$2/pipe0/stage2/pipe2/I$3:#FF INITX::LOW 
      
_PINMAP:24:0,1,2,3,4,5,8,6,7,9,10,11,14,12,13,15,16,17,18,19,20,21,22,
23" 
 ; 
 
net "count_data_tr2_0(1)" , 
 outpin "count_data_tr2_0(0)" YQ, 
 inpin  "mux2/L1.L1.1_mux/G_22_73" G4, 
 pip R32C46 S0_YQ -> OUT0 , 
 pip R32C46 OUT0 -> N0 , 
 pip R31C46 S0 == E22 , 
 pip R31C47 W22 -> W_P22 , 
 pip R31C47 W_P22 -> S1_G_B4 , 
 # net "count_data_tr2_0(1)" loads=1 drivers=1 pips=5 rtpips=0 
 ; 
net "L0.L0.3_C/Pipe2/pipeline_5(0)" , 
 outpin "L0.L0.3_C/Pipe2/pipeline_5(1)" YQ, 
 inpin  "count_data_tr2_3(0)" F2, 
 pip R16C46 S1_YQ -> OUT5 , 
 pip R16C46 OUT5 -> E15 , 
 pip R16C46 E15 -> E_P15 , 
 pip R16C46 E_P15 -> S0_F_B2 , 
 # net "L0.L0.3_C/Pipe2/pipeline_5(0)" loads=1 drivers=1 pips=4 
rtpips=0 
 ; 

 

Figure 6.8: Example of design connection file (.ncd) 

Based on the information of the Virtex® Architecture and the equations presented in 
this section is possible to make a correlation between the programmable bit in the 
bitstream and its location in the design floorplanning that can be observed in the 
Foundation or Alliance software. Figure 6.9 (a) shows the single and hex routing 
segments in the design floorplanning and the correspondent segments in the FPGA 
schematic. Figure 6.9 (b) shows the CLB slice signals and input multiplexor 
connections in the design floorplanning and the correspondent names in the CLB FPGA 
schematic. Figure 6.9 (c) shows the output multiplexor signals in the design 
floorplanning and the corresponding names in the CLB schematic. These next three 
figures help to correlate the signals from the design and the signals in the FPGA 
schematic, giving the location and placement of both. 
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single

single

single

singlesingle

hex

hex

hex

hex hex hex

hex
hex

hex

S23…S0 H6W11…H6W0 H6m11…H6m0 H6E11…H6E0

W23 …
W0

E23 …
E0

V6S9
V6S8
V6S5
V6S4
V6S1
V6S0

N23…N0
OUT7…OUT0

V6m9
V6m8
V6m5
V6m4
V6m1
V6m0

V6N9
V6N8
V6N5
V6N4
V6N1
V6N0

V6S11
V6S10
V6S7
V6S6
V6S3
V6S2

V6m11
V6m10
V6m7
V6m6
V6m3
V6m2

V6N11
V6N10
V6N7
V6N6
V6N3
V6N2

Connections done by the
singles matrix in the schematic

Connections done by the
hexes matrix in the schematic

 
(a) Single and Hex Routing 

W_P23 S_P23 E_P23 N_P23    ...    W_P0 S_P0 E_P0 N_P0

Slice 1 Slice 0

S1_G_B4 … B1

S1_F_B4 … B1

S0_F_B4 … B1

BY F5IN CE CLK SRCLK3-0

Slice 1

BY F5IN CE CLK  SR

Cin
BX

 
(b) CLB Slices and Input Multiplexors 
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S1Y S1YQ S1XB S1F5 S1X S1XQ S0Y S0YQ S0XB S0F5 S0X S0XQ

out0
…
 
out7

 
(c) Output Multiplexors 

Figure 6.9: CLB Tile representation in the ISE Floorplanning Tool from Xilinx 

6.4 Fault Injection Results 

The fault injection was performed in the TMR test design running at 10 and 20 
MHz. The report showed that 224 upset bits of 1,663,200 bits in the XQVR300 
bitstream had caused an error in the TMR design application execution.  

Analyzing the upset bits in the design floorplanning, we observed that a single upset 
in the routing matrix (GRM) could provoke an undesirable connection between two 
different signals placed in distinct parts of the FPGA. An example of upset in the GRM 
that was able to cause an error in the output of the TMR design is located in the major 
address: 10, frame: 35, frame byte: 46, bit: 5 of the bitstream. Using the equations 3.1 
and 3.2, the upset bit in the floorplanning is placed at CLB row 20, column 20 
(R20C20) and CLB bit tile: 4. The upset was identified in the IC schematic as 
I_c_singles.Iw6he1.I377 that means a connection between the single line west 6 and hex 
line 1, represented in figure 6.10 (a). Apparently this upset cannot generate an error 
because it connects a signal from the comparator of the redundant part 0 to “no” signal. 
However, the hex line connects the CLB R20C20 to two others CLBs as displayed in 
figure 6.10 (b) marked by circles. Analyzing the CLB R20C23, for example, we noticed 
that actually there is a signal connected to this hex line. The signal is from one of the 
counters of the redundant part 2, as shown in figure 6.10 (c).  
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Signal: tr0_comp/N$302

No signal
 

(a) Upset in CLB R20C20 

Hex line
R20C23 R20C26R20C20

 
(b) CLBs connected by the hex line 

Signal:  tr0_comp/N$302

upset

Signal:counter6/counter/I$26/tr2_count(1) 

Redundant 0

Redundant 2
 

(c) Undesirable connection detected in CLB R20C20 

Figure 6.10: SEU example in the GRM user’s design floorplanning 

The analyzed upset bit was characterized by an undesired connection from one bit of 
the 32-bit counter in a redundant module to a signal from the comparator logic of 
another redundant module. In this case, both comparators 0 and 2 are going to report an 
error producing “one” in the error flag. This kind of error would have never occurred if 
the comparators were placed out of the chip. 

In summary, it is important to remark that there is a possibility of an upset if the 
routing connects two different modules of the TMR, but it is very low. For example, in 
figure 6.11, upset connections labeled as b, g and f do not interfere in the correct 
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operation of the TMR design. The others could interfere according to the bit that they 
are affecting because they connect two different logic modules of the TMR. The 
probability is related to the routing density and logic placement. Dedicated 
floorplanning for each redundant module of the TMR can reduce the probability of 
upsets in the routing affecting two or more logic modules. Table 6.5 summarizes the 
effect of a fault in each FPGA module in the TMR design with no assigned area 
constraint floorplanning.  
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Figure 6.11: Example of effect of a SEU in the FPGA routing 

 

Table 6.4: Upsets Analysis in the Triple Modular Redundancy Approach with No 
Assigned Area Constraint Floorplanning 

Upset 
Location 

Action Consequences Upset 
Correction 

LUT  Modification in 
the 
Combinational 
logic 

- Error in the redundant part with 
no error in the TMR design 
output 

By Scrubbing 

Routing  Connection or 
disconnection 
between any two 
signals in the 
design 

- Error in the redundant part with 
no error in the TMR design 
output 
- Error in more than one 
redundant parts with error in the 
design output 

By scrubbing 

Customization 
logic in 
general 

Connection or 
disconnection 
between any two 
signals in the 
same CLB 

- Error in the redundant part with 
no error in the TMR design 
output 
- Error in more than one 
redundant parts with error in the 
design output 

By Scrubbing 

Flip-flops Modification in 
the sequential 
logic 

- Error in the redundant part, no 
error in the TMR design output 

By user 
correction 
technique 
(VHDL) 
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6.5 The “Golden” Chip Approach 

In order to avoid upset connections between the test design and the comparator test 
circuitry, a new TMR design based on the “golden” chip approach was implemented in 
the Virtex® component, where the DUT output signal is compared to the golden design 
placed outside the chip, figure 6.12. In this case, if a single bit upset in the DUT routing 
matrix provokes an undesirable connection between two signals from different 
redundant parts of the design, the TMR will always vote the correct signal to the storage 
elements and to the output. A bit flip in the customization logic will only be able to 
generate an error if it upsets the exact same bit in two distinct redundant logic parts, 
which has an extremely low probability to occur. Moreover, this type of error can be 
totally avoided with a structured floorplanning of the design placement. 

 

Error flag

“Gold” Design

comparator

TMR
DesignTMR

DesignTMR
Design

tr0
tr1
tr2

XQVR300

DUT

M
inority voters

 
Figure 6.12: “Golden” Chip Method 

The fault injection experiment using the “golden” chip method was performed in the 
TMR design running at 25 MHz. The tool has reported “no errors” for all the bits in the 
bitstream. The result has finally confirmed the efficacy of the TMR structure to recover 
any error in the FPGA architecture. The radiation characterization results (LIMA et al., 
2001b; CARMICHAEL; FULLER; FABULA; LIMA, 2001) performed at the proton 
facility in UC Davis show that the Virtex® FPGA has presented the same reliability 
achieved by the fault injection experiment.  
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7 Designing and Testing a TMR Micro-controller into 
Virtex® FPGA 

Micro-controllers implemented in programmable logic platforms are becoming more 
and more advantageous in order to integrate system-on-a-chip (SOC) improving 
performance, flexibility and time to market. When a micro-controller is implemented in 
an SRAM-based FPGA, not only are the registers and memories sensitive to SEU but 
also all the programmable logic defined by the FPGA architecture such as the Lookup 
Tables, routing switches, flip-flops and memories. The previous experiment has shown 
that TMR can protect designs against SEU in SRAM-based FPGA platforms, for this 
reason it has been applied to micro-controller architectures too. In addition, a fast time-
to-market using commercial off-the-shelf micro-controller architecture for space 
applications can be achieved by protecting the micro-controller core description and 
implementing in Virtex® QPRO FPGA.  

Following this direction a micro-controller VHDL description developed at UFRGS 
and presented at (CARRO; PEREIRA; SUZIM, 1996; SILVA; LIMA; CARRO; REIS, 
1997) was re-used to implement the SEU hardened micro-controller into Virtex® 
XQVR300 FPGA using the TMR techniques proposed in (CARMICHAEL, 2001). The 
8051-like VHDL description is divided into six main blocks as illustrated in figure 7.1. 
The Finite State Machine (FSM) block implements a counter that generates 24 clock 
cycles to guide the instruction execution. The Control unit generates all the enable 
signals for the registers and Arithmetic unit located in the datapath. The Instruction unit 
generates the microcode word for each instruction. The datapath includes an Arithmetic 
Logic Unit (ALU) and many registers. There are two 256 byte internal memories, one 
for the data and the other for the application program. 

The 8051 micro-controller runs an application based on two 6x6 matrix 
multiplications at a frequency of 10 MHz. This application performs the multiplication 
by shifter register and addition. This allows an intensive use of the available memory 
and internal registers since the operators are read and written many times and both 
operators and result are stored in the internal memory.  

An extra logic circuit was designed to be able to analyze the results of the 8051 after 
a bit is upset. This block is able to read all the memory data and to send the data to an 
output pin serially. This output data is compared to the “golden” chip located in a 
distinct FPGA component. If the data does not match, the comparator circuit sends a 
flag error to the fault injection tool. Each corrupted bit able to cause an error in the 
TMR design is reported in a file.  
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In order to protect the VHDL description against SEU, each logic block has been 
triplicated and voters were inserted in all register loops. The datapath, control and 
instruction logic blocks are mainly throughput logic and consequently they were just 
triplicated. The registers in these blocks are constantly being written to avoid being 
locked in a wrong state. An example of a TMR datapath register with its surround logic 
in VHDL code is presented in figure 7.2. The vector signals were replaced by an array 
of 3 vectors (0, 1 and 2) representing the vector signal for each redundant logic part.  

 
L0: For K in 0 to 2 generate 
process (OP_ACU(K), reg_alu_out(K), data_rom(K), reg_PC_low(K), data_rd_ram(K)) 
begin 
CASE OP_ACU(K) IS 
WHEN "000" => reg_accu_mux(K) <= "00000000"; 
WHEN "001" => reg_accu_mux(K) <= reg_alu_out(K);  
WHEN "010" => reg_accu_mux(K) <= data_rom(K); 
WHEN "101" => reg_accu_mux(K) <= reg_PC_low(K);  
WHEN others => reg_accu_mux(K) <= data_rd_ram(K);  
END CASE; end process; 
 
process (reset_micro(K), clock(K)) 
begin 
if (reset_micro(K)='0') then 

 reg_accu(K) <= "00000000"; 
elsif (clock(K)'event and clock(K)='1') THEN 

if (GCE(K)='1') then  
if (accu_port(K)='1') then 
 reg_accu(K) <= reg_accu_mux(K); 
end if; end if; 

end if; end process; end generate; 

 Figure 7.2: Example of TMR VHDL code 

All persistent errors (caused by ‘weak-keepers’) were avoided by using user ground 
input and user global clock enable. The registered loops located in the state machine and 
in the counters were protected by TMR with a major voter in each redundant feedback 
path. All voters were implemented using LUTs. The TMR BRAM component presented 
previously in figure 3.8 replaced the internal memories. In the DATA memory there is a 
circuitry able to detect write conflicts in the memory when refreshing. The micro-
controller always has the write priority. In the program memory there is no conflict 
because it is a read only memory from the micro-controller point of view.  

7.1 Area and Performance Results 

Table 7.1 shows a summary of the TMR design logic overhead in the 8051-like 
micro-controller. The number of flip-flops in the TMR design has increased 3.6 times. 
The ratio exceeds 3 because of the extra counters located in the BRAM scrubbing logic. 
The TMR design contains 3 times the number of BRAM and each one of them has an 
extra logic of flip-flops and LUTs for voters, counters and logic analyzes. The number 
of LUTs in the TMR design is approximately 3.6 times bigger than in the standard 
design. This proportion also exceeds three times because of the voters and the scrubbing 
logic. Three of the four available global clock buffers in the device are being used for 
the system clock.  

The fault injection experiment was performed at 10 MHz using the test board 
presented in the previous chapter in figure 6.5. Bit flips were inserted in all 1,663,200 
bits of the XQVR300 bitstream. Each fault has remained in the bitstream enough time to 
run many cycles through the application in the micro-controller. The application is a 
matrix multiplication. Figure 7.3 shows the values stored in the matrix 1, matrix 2 and 
the result matrix in the correspondent memory address. The fault injection results 
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showed that less than 1 % of the bit upsets could provoke an error in the output of the 
TMR design, representing a very small cross-section. Figure 7.4 shows the floorplan 
routing of the TMR 8051 micro-controller. The reduction of the number of bits that 
could provoke an error in the TMR design could be observed to up to 0 by changing the 
logic placement.  

Table 7.1: TMR Logic Overhead in the 8051 (XQVR300) 

Item Standard 8051 TMR 8051 
FDCE 127 459 
BRAM 2 of 16 6 of 16 
TMR BRAM extra logic - 36 FDCE, 87 LUTs 
Inputs 2 12 
Outputs 1 3 
BUFG 1 of 4 3 of 4 
LUTs 757 (12%) 2778 (45%) 
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variables

Matrix 1

Matrix results

Matrix 2

0h
0Ah
0Bh
...

2Eh
2Fh
…

52h
53h
…

77h

Internal Memory

 
                 Figure 7.3: Application for testing the TMR 8051 micro-controller 

 
Figure 7.4: TMR 8051 micro-controller routing floorplanning 
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7.2 TMR 8051 Micro-controller Radiation Ground Test Results 

The test was performed at Crocker Nuclear Laboratory at UC Davis, USA. The 
proton energy and fluxes were measured as incident on the DUT package. All tests were 
performed at room temperature. More details about the test can be found in (LIMA et 
al., 2001b). The test platform is composed of two AFX V300PQ240-100 daughter 
cards, a MultiLINXTM cable used as an interface to a host PC, and a control panel. The 
system can operate stand-alone or in conjunction with a host PC and test software. The 
control panel communicates directly with the control chip to specify the mode of 
operation. Either the control chip or the test software, via the MultiLINXTM cable, may 
control the DUT configuration. The control chip also controls the dynamic operation of 
the DUT and dynamic error detection.  

The beam energy was set to 63.3 MeV. The proton flux varied from 8.54E+08 to 
1.70E+09 protons/sec-cm2, in order to ensure a scrubbing rate higher than the error rate. 
The TMR 8051 design was tested in the dynamic mode and compared to the non-
protected design. The tested part was XQVR300 (0.22um, 2.5V). The cumulative limit 
of TID achieved in this test was 116 krads(Si). 

The fluence to upset was measured in the design of the no-TMR 8051 and in the 
TMR version. The first experiment used the test software to readback the bitstream in 
order to analyze the nature of the dynamic errors. When an error was detected, a 
readback of the bitstream was initiated and the number of bitstream errors noted 
alongside the total fluence to functional error. The second experiment compared the 
design of the TMR 8051 with and without scrubbing. No readback was performed. A 
logical reset of the flip-flops used in the design would then demonstrate whether the 
functional error was from configuration/user upsets or the architecture ones. The fluence 
to upset was measured while the PROM was continually scrubbing the configuration 
bits. 

Experiment 2 tested 3 different approaches in order to demonstrate the benefits of 
TMR combined with scrubbing, see figure 7.5.  Each test measured the fluence to 
failure.  The no-TMR and TMR designs were tested with and without scrubbing. Table 
7.2 presents the TMR 8051 cross-section average for the observed fluence to upset 
collected in the second experiment.  

Proton Fluence to Upset

1.00E+09

1.00E+10

1.00E+11

1.00E+12

1.00E+13

8051 8051 TMR
(no scrub)

8051 TMR
(scrub)

POR

8.8E+9

8.8E+10

 
Figure 7.5: Testing Platform 
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Table 7.2: Virtex  Dynamic Cross-section of TMR 8051 

Upset Hit Cross-section (cm2) 
Bit 18 6.93E-12 
Persistent 2 1.91E-10 
POR 0  
Average  2.54E-11 

 
The experiment frequency was set at 9 MHz. The same clock was provided to the 

scrubbing PROM. The BRAM refreshing performed inside the DUT used the same 
clock divided by 8. It takes 4 ms to entirely run the two 6x6 matrix multiplications and 
the internal memory read. The scrubbing takes 22 ms to refresh the whole matrix. And 
the BRAM refreshing takes 0.2275 ms to refresh all addresses. 

In summary, the application runs 4 times during a scrubbing cycle and the BRAM is 
refreshed 17 times per application cycle as it is illustrated in figure 7.6. The application 
re-starts with a reset in the micro-controller coming from the read memory logic. In 
general, bits from the BRAM and the CLB flip-flops (user logic upsets) have the highest 
refresh rate. The LUTs, customization and routing bits (configuration upsets) are 
refreshed by the scrubbing rate.  

... ... ... ...
Block RAM refreshing (0.22 ms)

Application program (4 ms)

Scrubbing cycle (22 ms)

 
Figure 7.6: Scrubbing and Refreshing Times 

An error can just occur in the design functionality if the number of accumulated 
upsets is enough to overcome the TMR. For example, if an upset in the routing occurs in 
the first application execution time of the scrubbing cycle, 2 out of 3 legs in the TMR 
should be able to vote the correct value. However this undesirable connection or 
disconnection may affect different parts of the design generating upsets that can be 
stored in different redundant parts. All of these upset cells must be refreshed with their 
original values. If the refreshing rate is such that one cannot avoid the accumulation of 
upsets, errors are going to be observed in the output. It is important to analyze how the 
upsets can propagate inside the architecture. In the next application cycle, the CLB flip-
flops are going to be reset, however the BRAM are never reset, they have always been 
refreshed by voting their own values. If the refreshing in the BRAM is not fast enough 
to avoid accumulation of upsets, a failure can be observed in the output.  

The average of TMR 8051 error rate = 17 bits/upset (6e-2 upsets/bit/s = 190 
upsets/bit/day) and the average scrub rate is 45. This means that in average there are 0.4 
upsets per bits scrubbing. This rate could be unsatisfactory, besides the fact that the flux 
is not always constant (2 or more upsets can occur during a scrubbing cycle) and the 
upsets can propagate in the architecture generating more upsets. In real applications the 
scrubbing rate should be at least 2 orders of magnitude higher than the error rate. 

In order to improve the results, two solutions can be tried. The first option is to set 
the proton flux in the radiation facility one order of magnitude or more lower in order to 
be sure that there is only one upset per scrubbing cycle. In space the flux is much, much 
lower than the test 99% of the time. However a very low flux would take a long time to 
observe each error.  The other solution is to speed up the scrubbing frequency. However 
the PROM used can only achieve up to 16 MHz with reliable performance.  
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7.3 Final Remarks 

The TMR technique for SRAM FPGAs was evaluated in Virtex family using two 
designs. The first design was a 32-bit counter and the other design was an 8051 micro-
controller. The results observed in both designs have proved that the reliability of the 
TMR is strongly related to the placement of the design in the FPGA matrix. In the first 
design, the results achieved showed that no errors could be observed in the presence of 
upsets. The main reason is because the counter design is a simple architecture that does 
not use embedded memory (BRAM). Consequently the scrubbing issue is not so 
evident. In addition, the presented result was based on that specific placement. There is 
a probability that if another placement is performed, the results can change. 

When a more complex design that uses embedded memory such as the 8051 micro-
controller was tested, the probability of upsets in the routing provoking an error in the 
application results was more eminent because of its complexity and the scrubbing issue 
in the embedded memories. Many placements were performed in the TMR 8051 and 
each one has shown different results in terms of upset bits that could provoke an error in 
the application results. However, in each case the difference was manly in the routing 
bit locations that could provoke an error and not in the number of bits that was always 
around 1% of the bits of the bitstream.  

Based on the analyzed results, the TMR technique in SRAM based FPGAs can 
improve substantially the reliability of the design but there is a low probability of error 
caused by upsets in the routing. This result is correlated with the logic placement. The 
solution can be in using a fault injection tool combined with a dedicated placement in 
order to achieve 100% reliability.  
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8 Reducing TMR Overheads by Combining Hardware 
and Time Redundancy 

The TMR technique is a suitable solution for FPGAs because it provides a full 
hardware redundancy, including the user’s combinational and sequential logic, the 
routing, and the I/O pads. However, it comes with some penalties because of its full 
hardware redundancy, such as area, I/O pad limitations and power dissipation. Although 
these overheads and limitations could be reduced by using some architectural SEU 
mitigation solutions such as hardened memory cells, EDAC techniques and standard 
TMR with single voter, as presented in chapter 4, these solutions are very costly 
because they require modifications to the matrix architecture of the FPGA (NRE cost). 
Many applications can accept the limitations of the TMR approach but some cannot. 
The main limitations are:  

- The number of I/O pads available for designers is reduced by three 
times, because each input and output of each TMR redundant block (tr0, 
tr1, tr2) should have its own input and output pads. The number of 
dedicated clock resource segments for the routing available is also 
reduced by three times, because each input and output of each TMR 
redundant block (tr0, tr1, tr2) should have its own clock. 

- The size of the combinational logic in the design is multiplied by three 
times, and this also happens in the sequential logic, where each storage 
cell must be replaced by three storage cells, with three voters and 
multiplexors. 

- The embedded memory also needs to be triplicated and refreshed using 
extra logic. 

- There is a delay overhead inserted by the voters. 
- The power consumption is increased by three times as all input and 

output pins as well as the combinational and sequential logic are 
triplicated. 

A new high-level fault-tolerant technique is introduced in this chapter that combines 
time and hardware redundancy, with some extra features able to cope with SEU in 
SRAM-based FPGAs. This technique allows the reduction of the number of I/O pads 
and consequently power dissipation in the interface. The main idea is to reduce the 
hardware overhead, which in the case of the TMR is three times more to some point 
close to twice the original area, maintaining the same reliability.  

The possibility of applying time redundancy combined with hardware redundancy 
for FPGAs looks interesting to reduce the costs of using full hardware redundancy 
(TMR) and to improve reliability (less sensitive area!). Potentially the use of duplication 
with comparison (DWC) combined with time redundancy may reduce area and pin 
count and consequently power dissipation in the I/O pads, the main drawbacks of the 
TMR approach. But there are two problems to be solved. First, previous techniques 
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based on time redundancy can only be used to detect upsets, and not upsets that become 
permanent, as is the case of SRAM based FPGAs. Second, in the FPGA, usually DWC 
can only detect an upset, but in this case, it is not only sufficient to detect an upset, but 
one also must be able to vote the correct value in order to ensure the correct output. In 
the next section, we present a technique based on time and hardware redundancy for 
SRAM-based FPGA that takes into consideration the above problems to reduce pin 
count, area and power dissipation. 

8.1 Duplication with comparison combined with time redundancy 

Time redundancy by itself can only detect transient faults (NICOLAIDIS, 1999; 
ANGHEL; ALEXANDRESCU; NICOLAIDIS, 2000). The same occurs with 
duplication with comparison (DWC), which can also only detect faults. However, the 
combination of time redundancy and DWC can provide an interesting upset evaluation, 
which can not only detect the presence of a fault, but also recognize in which redundant 
block the upset has occurred. Figure 8.1 shows the detailed scheme. There are two 
redundant blocks: dr0 and dr1. In this way, upsets in the combinational logic can be 
detected and voted before being latched.  

clk

clk

Clk+d

Clk+d

Combinational 
logic 0

Tc0

Tc1

Hc

Hcd

Combinational 
logic 1

dr0

dr1

dr0_ d

dr1_ d

out0

out1

 
Figure 8.1: Time and Hardware Redundancy Schematic for Upset Detection 

Four values are stored in the auxiliary latches (dr0, dr0_d, dr1 and dr1_d), two from 
each redundant block collected at different instants.  Two latches store the dr0 and the 
dr1 outputs at the clock edge and two latches store the dr0 and dr1 outputs at the clock 
edge plus a delay d. As a consequence, there are four outputs of comparators in the 
scheme: Tc0 is the time redundancy comparator from redundant block 0, Hc is the 
hardware redundancy comparator at the clock edge, Tc1 is the time redundancy 
comparator from redundant block 1 and Hcd is the hardware redundancy comparator at 
the clock+d edge. Analyzing the sixteen possibilities of output combinations of dr0, 
dr0_d, dr1 and dr1_d, eight different syndromes are recognized, as presented in table 
8.1. Analyzing the syndromes from table 1, it is possible to see the temporal effect of an 
upset in the FPGA. The steps are basically no fault, upset effect in redundant block 0 
(dr0) or block 1 (dr1), permanent effect in redundant block 0 (dr0) or block 1 (dr1), 
recovery upset effect in redundant block 0 (dr0) or block 1 (dr1), and no fault. 

An upset in redundant block 0, syndrome 1001, is characterized by a transient 
variation in the output (Tc0=1) with no changes at output dr1 (Tc1=0), and in addition 
Hc=0 and Hcd=1. An upset occurrence in dr1 is recognized in an equivalent way, where 
Tc1=1 and Tc0=0. There are many other syndromes that are not commonly seen in an 
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ASIC environment, only in FPGAs. One example is the permanent effect of an upset, 
syndrome 0101. By analyzing this syndrome, it is not possible to conclude which 
redundant block has the correct value and which does not.  The previous syndrome 
characterized by the transient effect detection is necessary to vote the correct path. This 
phenomenon characterizes the necessity of a state machine to vote the correct value. 
This technique considers only one upset per design at once, either in redundant block 0 
or in redundant block 1. An implementation with an assigned area constraint may avoid 
the occurrence of a fault in the redundant block 0 at the same time as a fault in 
redundant block 1 (syndrome 1010). The identification of this syndrome can be used as 
a flag to show that upsets have overcome the DMR scheme.  

 

Table 8.1: Syndrome Analysis in the Double Modular Redundancy Approach 

dr0 dr0_d dr1 dr1_d Tc0 Hc Tc1 Hcd Syndrome 
0 0 0 0 0 0 0 0 No fault 
0 0 0 1 0 0 1 1 Fault dr1 (stage 1, transient) 
0 0 1 0 0 1 1 0 Fault recovery dr1 
0 0 1 1 0 1 0 1 Fault dr0 or dr1 (stage 2, 

permanent) 
0 1 0 0 1 0 0 1 Fault dr0 (stage 1, transient) 
0 1 0 1 1 0 1 0 Fault dr0 and dr1 (stage 1, 

transient) 
0 1 1 0 1 1 1 1 Fault dr0 or dr1, recovery dr0 or 

dr1 
0 1 1 1 1 1 0 0 Fault recovery dr0 
1 0 0 0 1 1 0 0 Fault recovery dr0 
1 0 0 1 1 1 1 1 Fault dr0 or dr1, recovery dr0 or 

dr1 
1 0 1 0 1 0 1 0 Fault dr0 and dr1 (stage 1, 

transient) 
1 0 1 1 1 0 0 1 Fault dr0 (stage1, transient) 
1 1 0 0 0 1 0 1 Fault dr0 or dr1 (stage 2, 

permanent) 
1 1 0 1 0 1 1 0 Fault recovery dr1 
1 1 1 0 0 0 1 1 Fault dr1 (stage1, transient) 
1 1 1 1 0 0 0 0 No fault 

 
The DWC with time redundancy proposed technique for the combinational blocks, 

illustrated in figure 8.2, combines duplication with comparison and time concurrent 
error detection to identify combinational upsets in FPGAs. DWC with time redundancy 
tolerates upsets without system interruptions. The combinational logic is duplicated and 
there is a voter circuit able to detect an upset and to identify which redundant block 
should be connected to the CLB flip-flops. The upsets in the combinational logic are 
corrected by scrubbing, while upsets in the CLB flip-flops are corrected by the TMR 
scheme. It is important to notice that for upset correction, scrubbing is performed 
continuously, to ensure that only one upset has occurred between two reconfigurations 
in the design. 

When the circuit is reset, the state machine starts in state 0 and it is persistently 
monitoring the redundant block 0, while the redundant block 1 is the spare. At this 
point, an upset in the redundant block 1 will not affect the system, and it will be 
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corrected by the periodic scrubbing. If an upset occurs in the redundant block 0, the 
state machine recognizes the fault, and the operation switches to the spare path, the 
redundant block 1. The upset in the redundant block 0 will be soon corrected by the 
scrubbing, while now the system is operating with the redundant block 1. At this point, 
the state machine is constantly monitoring the redundant block 1, looking for upsets and 
the redundant block 0 is the spare. Upsets in the redundant block 0 will be corrected by 
scrubbing. 

As the fault detection technique used for this method is able to identify only 
transient faults, it is necessary to have an observation period to detect the fault 
occurrence and consequently the faulty module (dr0 or dr1). The size of the observation 
period of a fault occurrence is referred to as the clock delay d. As a result, the transient 
fault observability occurs between clock and clock+d. Outside this observation period, 
the fault is seen as permanent and the faulty module can not be recognized, only the 
presence of a fault can be detected.  The percentage of faulty module detection is related 
to d.  As the observation period (d) becomes greater, the probability of faulty module 
detection becomes higher. One can use d as half of one clock cycle. The performance 
penalty of this method is related to the time duration of the fault observability (d). 

The registers from the sequential logic store the combinational logic outputs at clock 
plus d, plus the delay from the upset detection circuit, totaling a new delay d’. The 
latches from the concurrent upset detection state machine will also store the next state at 
clock+d’. In order to simplify the number of clocks in the design, one possibility is to 
reduce the frequency of the design by two. In this way, the combinational output is 
stable at the clock falling edge. At this time, the value is captured for the future 
comparison. The fault observability period is until the next clock rising edge where the 
correct redundant logic is voted. Figure 8.3 illustrates two fault effects, one occurring 
during the propagation time and one occurring during the observation time. 

 

clk

Fault effect (1)

Fault effect (2)

fault observation period (d)propagation period
 

Figure 8.3: Fault effect in the clock period 

If a fault effect occurs during the propagation period, the DWC with time 
redundancy scheme will detect an error but will not be able to recognize which 
redundant block (dr0 or dr1) is faulty. However, some fault effects occurring during the 
propagation period can be tolerated, if they affect the spare redundant logic that is not 
being observed at that time. The fault can be corrected in the next scrubbing and no 
error may occur. If a fault effect occurs during the observation time, the DWC with time 
redundancy scheme will be able to detect the output variation and vote the fault-free 
redundant module (dr0 or dr1). Faults in the observation time will always be correctly 
voted, except for those whose effect will not be manifested at the time, for instance, a 
fault stuck at one in a node that already has the logic value one because of the input 
vectors.  
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Some constraints must be observed for the perfect functioning of the technique. The 
constraints are the same as TMR:  

- There must be only one upset per dual modular redundancy (DMR) 
combinational logic, including the state machine detection and voting 
circuit, consequently it is important to use some assigned area constraints 
to reduce the probability of short circuits between redundant block 0 and 
1 (dr0 and dr1). 

- The scrubbing rate should be fast enough to avoid accumulation of 
upsets in two different redundant blocks.  

- Upsets in the detection and voting circuit do not interfere with the correct 
execution of the system, because the logic is already triplicated. In 
addition, upsets in the latches of this logic are not critical, as they are 
refreshed in each clock cycle.  Assuming a single upset per chip between 
scrubbing, if an upset alters the correct voting, it does not matter as long 
as there is no upset in both redundant blocks.  

This technique can be used as an additional option for the TMR technique for 
designing reliable circuits in FPGAs with pads and power reduction. Because the 
combinational circuit is just duplicated, inputs and outputs can be duplicated instead of 
triplicated, as in the TMR approach. However, it is important to notice that the TMR 
inputs related to the user’s sequential logic used in the CLB flip-flops are not changed 
as triple input clocks, reset and user vdd and gnd (CARMICHAEL, 2001). 

The upset detector and voter circuit can be optimized in terms of area. In figure 8.2, 
the upset detector and voter circuit are represented for only one bit. However, it is 
possible to use the circuit for groups of bits. In this way, only one state-machine per 
TMR redundant part for each group of bits is necessary, as presented in figure 8.4. 
Another possible optimization is to use a single state machine to vote just the input of 
the redundant block 2 of the TMR register, as presented in figure 8.5. In this way, a 
fault in one of the combinational redundant blocks (dr0 or dr1) is voted to the tr2 input, 
assuring the correct operation. A fault in this upset detection and voter block will 
corrupt just the redundant block 2 of the TMR (tr2), consequently, tr0 and tr1 will still 
vote the correct value. The scheme presented in figure 8.5 also shows the clock 
optimizations, where the sample storage cells are latched at the clock falling edge (clk0, 
clk1) and the state machine of the upset detection block is latched at the clock rising 
edge (clk2). The three clocks are the same, and are all connected outside the FPGA 
chip. 

In summary, the final DWC with time redundancy scheme is composed of: 
- Two redundant blocks of the combinational logic. 
- A set of sample latches related to the number of output bits of each 

redundant block, which is used to capture the value at the clock falling 
edge. 

- Upset detection block, which is continuously monitoring a variation 
between the captured value and the combinational output during the 
observation period (clock low level).  

- The corrected redundant part is voted just before the next clock rising 
edge, where the TMR redundant part 2 from the register stores the fault-
free redundant logic (dr0 or dr1). 
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Figure 8.4: Upset detector and voter circuit area optimization using group of n bits 
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Figure 8.5: Upset detector and voter circuit area optimization using a single state 
machine for a group of n bits 

8.2 Fault Injection in the VHDL Description 

The DWC with time redundancy scheme was validated by fault injection 
methodology in a prototype board using VHDL. The fault injection system described in 
VHDL was specifically developed to test the proposed technique (DELONG; 
JOHNSON; PROFETA, 1996; LIMA et al., 2001a). Results were emulated in an AFX-
PQ249-110 board using a XCV300 part. Some area comparisons between the proposed 
approach and TMR were also performed using Xilinx implementation tools. We use 
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multipliers as combinational circuit case studies, and FIR canonical filters as sequential 
circuit case studies.  

Fault injection in VHDL combined with the full emulation in a FPGA platform was 
used to characterize and validate the technique. The proposed fault injection system 
emulates single event upsets in memory related components (single flip-flops or latches, 
registers and memories) designed in high-level description and in the combinational 
logic nodes. The whole system is a run-time fault injection mechanism that is performed 
during the prototype execution without interrupting the design application. It injects one 
fault per execution. This approach does not concern the mean time between failures 
(MTBF), in other words, we are not considering more than one fault per execution time 
or the fault occurrence frequency. The approach aims to emulate a single upset per 
execution, and to validate the efficiency of SEU mitigation techniques. However, this 
technique is completely customizable, and it can inject as many upsets as wanted per 
execution. 

The developed fault injection system is divided into 3 main design blocks, figure 
8.6:  

- Fault injection Control block: generates all the fault enable signals to all 
register, memories and combinational nodes. It also chooses the time and 
location of the injected transient bit flip fault or a stuck at fault (in the case 
of FPGA),  

- Device Under Test (DUT) core: the modified design core. Fault injection 
paths are added to the design in order to inject bit flips or stuck at one in all 
SEU sensitive parts and logic nodes,  

- Monitor block: responsible for monitoring the results of the DUT core in 
order to analyze the effects of each inserted fault. 

Figure 8.7 shows some schemes for the fault injection in the memory, register and 
combinational nodes. The main advantages of this approach compared to a software 
based method are its high flexibility of fault injection parameters (time, location and 
fault value), fast turnaround time and free access to all sensitive parts of the design.  
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Figure 8.6: Schematic of the fault injection generator block 
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Figure 8.7: Example of the mechanisms used to inject faults in the design 

The fault injection system is able to randomly choose the fault time, the fault node 
and the redundant block. In order to test the duplication method in the combinational 
logic, stuck at one and stuck at zero faults were injected in all nodes, emulating the bit-
flip in a SRAM cell in the FPGA architecture (permanent effect of a SEU). There is a 
reset fault signal that works as a scrubbing, cleaning up the fault. A 2x2 bit multiplier 
with and without a register at the output was chosen for this first evaluation. It was 
possible to inject a set of faults in all the user’s combinational nodes of the example 
circuit, covering several time intervals in the clock cycle, and to emulate the scrubbing 
between faults. The multiplier input vectors were also randomly generated.  

The fault is a stuck at one and it was inserted in the redundant block 0 during the 
observation time. There is one point of data acquisition at the clock falling edge, just 
after the combinational output has stabilized. The fault must be detected before the next 
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clock rising edge (clock+d), as shown in figure 8.8. The fault effect between these two 
points can be easily detected, and the correct redundant block can be voted. However, 
upset effects located extremely near the clock rising edge of the register, or during the 
propagation time cannot be voted, but they can be detected. This limitation of the 
detection of a fault is due to the impossibility of distinguishing a data disparity coming 
from a fault or from the input variations in the redundant block 0 and redundant block 1. 
As the effect of an upset in the user’s combinational logic in an FPGA is permanent, all 
the results from the redundant block 0 after the fault effect are erroneous until the next 
scrubbing takes place.  

Fault injection results show the reliability of the presented method. There were 128 
stuck at one and 128 stuck at zero faults inserted in a random single node (ranging from 
0 to 7) at a random instant of the clock cycle in a 2x2 bit multiplier that could occur 
during the propagation or the observation time. Among the stuck at one faults, 113 of 
them were detected and tolerated, either because they were correctly voted or because 
the fault did not affect the correct design output. Among the stuck at zero faults, 121 of 
them were also detected and tolerated, either because they were correctly voted or 
because the fault did not affect the correct design output. 

The injected faults during the observation time that generated an error were the ones 
where the effect could not be observed by the input vectors at that time. Faults occurring 
during the propagation time were detected and some of them were also tolerated. The 
tolerated faults are the ones that occurred in the spare redundant block. When the upset 
effect happens during the propagation time, the scheme presented in figure 6 is not 
capable of detecting in which redundant block the fault has occurred, only detecting that 
the system is in error. Consequently, after fault detection with no correction (syndrome 
0101), the system should be reinitialized or some results should not be considered. 

8.3 Area and Performance Results 

Table 8.2 presents area results of 2x2, 8x8 and 16x16 bit multipliers, implemented in 
the XCV300 FPGA using no tolerance technique, TMR technique and DWC with time 
redundancy in order to reduce pin count. All of the multipliers were synthesized with a 
register at the output. Table 2 results show that it is possible not only to reduce the 
number of I/O pins but also the area, according to the size of the combinational logic 
block. Note that the 16x16 bit multiplier protected by TMR could not be synthesized in 
the prototype board that uses a Virtex part with 240 I/O pins (166 available for the 
user). However, the same multiplier implemented by the proposed technique could fit in 
the chip, also occupying less area. 
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Table 8.2: Example of combinational circuit: Multiplier Implemented in XCV300-
PQ240 FPGA 

 Standard TMR DWC with time 
redundancy 

Multipliers 2x2 8x8 16x16 2x2 8x8 16x16* 2x2 8x8 16x16 
Combinational Input 
Pins 

4 16 32 12 48 96 8 32 64 

Sequential Input Pins 2 2 2 12 12 12 12 12 12 
Output Pins 4 16 32 12 48 96 12 48 96 
Number of 4-input 
LUTs 

4 156 705 16 514 2002 33 440 1504 

Number of ffs 4 16 32 12 48 96 21 81 161 
*I/O pins were out of range for the TMR approach, the part XCV300-BG432 was used.  
 

There is a constant area in this proposed method, resulting from the upset detection 
and voter block. Consequently, the proposed approach will only show a smaller area 
than TMR when the area of the combinational logic related to the third redundant part 
of the TMR that is suppressed is larger than this constant cost. However, this technique 
can be used in I/O circuitry, to ensure pin count reduction in critical pin count designs.  

A canonical FIR filter circuit was chosen as a sequential case study circuit for the 
proposed technique.  Digital filters such as the finite-length impulse response (FIR) 
filter are typically used in many DSP-based systems applications that usually use 
FPGAs, such as image and voice-processing applications. Figure 8.9 shows the scheme 
of a canonical filter of 5 taps. The multipliers were designed with constant coefficients, 
resulting in an optimized area. The registers are protected by TMR, figure 8.10, while 
the combinational logic (multipliers and adders) is protected by DWC with time 
redundancy technique. The upset detection and voter block is placed at the outputs, and 
it votes the correct pad output from dr0 or dr1, as shown in figure 8.11.  
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Figure 8.9: Example of FIR Canonical Filter of 5 taps scheme 
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Figure 8.10: Filter registers protected by TMR  
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Figure 8.11: Filter adders and multipliers protected by DWC with time redundancy 

An 8-bit FIR canonical filter of 9 taps was synthesized in an XCV300 FPGA to 
evaluate area and pin count. The multiplier coefficients are: 2, 6, 17, 32 and 38. Table 
8.3 presents area results of this filter using no tolerance technique, TMR technique and 
the proposed technique. Results show that the 9 taps FIR canonical filter occupies 22% 
less area in the FPGA if protected by DWC and time redundancy instead of by TMR. 
The results also present a reduction of 20% in the pin count compared to TMR. 
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Table 8.3: Example of Sequential circuit: FIR canonical filter of 9 taps implemented in 
XCV300-PQ240 FPGAs  

 Standard TMR DWC with time redundancy 
Combinational Input Pins 8 24 24 
Sequential Input Pins 3 15 15 
Output Pins 16 48 32 
Number of 4-input LUTs 265 948 741 
Number of ffs 64 192 225 

 

According to the user’s application requirements, the designer will be able to choose 
between a full hardware redundancy implementation (TMR) or a mixed solution where 
duplication with comparison is combined to concurrent error detection to reduce pins 
and power dissipation in the interface, as well as area, as shown in previous examples. 
Figure 8.14 shows some implementations combining TMR and DWC with time 
redundancy. It is possible to use this new technique only in the interface of the FPGA, 
in this way reducing pins, as shown in figure 8.12(a). DWC with time redundancy can 
also be used along the design as presented in figure 8.12(b) to reduce the number of I/O 
pads and also area for large combinational circuits, as presented in table 8.2 and table 
8.3. 

Sequential circuits such as counters and state machines are more suitable to be 
protected by TMR, as the combinational logic is small compared to the sequential logic. 
The proposed technique is an alternate method to protect combinational circuits, as it is 
necessary to insert a concurrent error detection block. On the other side, large 
combinational logic blocks can be easily found in many applications. For example, 
microprocessors are composed of combinational logic such as the Arithmetic and Logic 
Unit, multipliers and the micro-instruction decoder.  

CED
CED

pads
pads

 

(a) DMR with time redundancy implementation in the interfaces 

CED CED CED

pads
pads

 
(b) DMR with time redundancy implemented in the entire circuit 

Figure 8.12: Evaluation schemes of the TMR and the DWC with time redundancy 
approach  

8.3 Final Remarks 

This work presents a new technique for upset detection and voting that combines 
duplication with comparison (DWC) with time redundancy for the user’s combinational 
logic in SRAM-based FPGAs. This technique reduces the number of input and output 
pins of the user’s combinational logic when compared to TMR technique. In addition, it 
can also reduce area, when large combinational blocks are used.  The proposed 
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approach was validated by fault injection in a Virtex prototype board using VHDL. 
Upsets were randomly inserted in the user’s combinational logic nodes to emulate faults 
in the logic. The fault injection procedure was developed in VHDL, and it represents the 
effect of a SEU in a SRAM-based FPGA, where it has a transient effect followed by a 
permanent effect. Experiments in a 2x2 bit multiplier showed that 100% of the faults 
can be detected and 234 of the 256 injected stuck at zero and stuck at one faults (91%) 
were tolerated, either because they were correctly voted before being captured by a CLB 
flip-flop or that specific faults did not affect the correct design output.  

Although the time redundancy technique can be successfully used to reduce pin 
count and area overhead over a full hardware redundancy, the transient concurrent error 
detection technique is not able to correct 100% of the faults occurring in FPGAs. 
Another penalty of this method is performance overhead because of the observation 
time. The evolution of this work investigates the use of modified time redundancy 
technique based on permanent fault detection to improve fault correction and to reduce 
the performance penalty at each clock cycle. 

 
 
 
 
 
 
 



 

 

120 

9 Improving Duplication with Comparison by using 
Concurrent Error Detection Technique (DWC-CED) 

The time redundancy by itself cannot detect 100% of the faults in an SRAM-based 
FPGA because of the permanent effect of the faults. Consequently, it is necessary to 
continue investigating a technique able to detect the presence of permanent faults in the 
logic circuit. (LUBASZEWSKI; COURTOIS, 1998) discusses the reliability and the 
safety of TMR scheme compared to self-checking-based fault-tolerant schemes.  The 
experimental results presented in (LUBASZEWSKI; COURTOIS, 1998) show that the 
higher the complexity of the module, the greater the difference in reliability between 
self-checking and TMR. In summary, the self-checking fault-tolerant scheme can 
achieve a higher reliability in comparison to the TMR if the self-checking overhead 
bound of 73% is not exceeded.   

The idea of using self-checking fault-tolerant scheme can be extended for FPGAs by 
using the duplication with comparison (DWC) method combined with concurrent error 
detection (CED) technique. Figure 9.1 presents the scheme, called hot backup DWC-
CED. The CED is able to detect which module is faulty in the presence of an upset, and 
consequently, there is always a correct value in the output of the scheme, because the 
mechanism is able to select the correct output out of two. 

 

dr1

CED

dr0

CED

Sequential logic
Combinational logic

Permanent  
fault detection

TMR

 
Figure 9.1:  DWC combined with CED scheme 

In the case of SEU detection in SRAM-based FPGAs, the CED must be able to 
identify permanent faults in the redundant modules.  The CED works by finding the 
property of the analyzed logic block that can help to identify an error in the output in the 
presence of a permanent fault. There are many methods to implement logic to detect 
permanent faults, most solutions are based on time or hardware redundancy and they 
manifest a property of the logic block that is being analyzed.   

The CED scheme based on time redundancy recomputes the input operands in two 
different ways to detect permanent faults. During the first computation at time t0, the 
operands are used directly in the combinational block and the result is stored for further 
comparison. During the second computation at time t0+d, the operands are modified, 
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prior to use, in such a way that errors resulting from permanent faults in the 
combinational logic are different in the first calculation than in the second and can be 
detected when results are compared.  These modifications are seen as encode and 
decode processes and they depend on the characteristics of the logic block. The scheme 
is presented in figure 9.2.  

Combinational 
logic

Combinational 
logic

encoder decoder

Time t=t0

Time t=t0+d
clk

com
parator

error

output
 

Figure 9.2 – Time redundancy for permanent fault detection 

If an output mismatch occurs, the output register will hold its original value for one 
extra clock cycle, while the CED block detects the permanent fault. After this, the 
output will receive the data from the fault free module until the next reconfiguration 
(fault correction). The important characteristic of this method is that it does not incur a 
high performance penalty when the system is operating free of faults or with a single 
fault. The method just needs one clock cycle in hold operation to detect the faulty 
module, and after that it will operate normally again without performance penalties. The 
final clock period is the original clock period plus the propagation delay of the output 
comparator. Sample registers are latched at the rising clock edge and the user’s TMR 
registers are latched at the rising clock+d edge. 

Many techniques to encode and decode were proposed in the literature to detect 
permanent faults (JOHNSTON; AYLOR; HANA, 1988; PATEL; FUNG, 1996; 
AVIZIENIS, 1971), some based on time redundancy, such as bit-wise inversion, re-
computing with shift operands (RESO) and re-computing with swapped operands 
(REWSO); and some based on hardware redundancy, such as parity prediction and 
module code. 

9.1 Designing DWC-CED Technique in Arithmetic-based Circuits 

The combination of DWC technique and CED blocks enabling one to detect 
permanent faults provides a new high-level SEU mitigation technique for FPGAs. Two 
clock cycles are needed to identify a permanent fault in the combinational logic module. 
However, this extra time does not occur at every clock operation in our approach. Using 
DWC combined with CED for permanent faults, it is possible to take advantage of the 
simple comparison at the output of the duplication scheme to inform whether it is 
necessary to re-compute the data for permanent fault detection. The re-computation is 
needed only when a mismatch of the outputs occurs.  This method has been named 
duplication with comparison combined to concurrent error detection block (DWC-
CED). 

Figure 9.3 shows the scheme proposed for an arithmetic module, in the present case 
study: a multiplier. There are two multiplier modules: mult_dr0 and mult_dr1. There are 
multiplexors at the output able to provide normal or shifted operands. The output 
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computed from the normal operands is always stored in a sample register, one for each 
module. Each output goes directly to the input of the user’s TMR register. Module dr0 
connects to register tr0 and module dr1 connects to register tr1. Register tr2 will receive 
the module that does not have any fault. By default, the circuit starts passing the module 
dr0. A comparator at the output of register dr0 and dr1 indicates an output mismatch 
(Hc). If Hc=0, no error is found and the circuit will continue to operate normally.  If 
Hc=1, an error is characterized and the operands need to be re-computed using the 
RESO method to detect which module has the permanent fault. The detection takes one 
clock cycle.  
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Figure 9.3: Fault tolerant technique based on DWC combined with CED for SRAM-

based FPGAs 

In the case of a registered output, each output goes directly to the input of the user’s 
TMR register. Figure 9.4(a) illustrates the logic scheme. Module dr0 connects to 
register tr0 and module dr1 connects to register tr1. While the circuit performs the 
detection, the user’s TMR register holds its previous value.  While the circuit performs 
the detection, the TMR register holds its previous value. When the faulty free module is 
found, register tr2 receives the output of this module and it will continue to receive this 
output until the next chip reconfiguration (fault correction). By default, the circuit starts 
passing the module dr0. In the case of a non-registered output, the signals can be driven 
directly to the next combinational module or to the I/O pads, as shown in figure 9.4(b). 

Let’s consider two different fault situations when the output is saved in a TMR 
register. In one, the fault occurs in module dr0 (Mult_dr0). Hc indicates that there is an 
output mismatch; Tc0 indicates that module dr0 is faulty and Tc1 indicates that dr1 is 
fault free. This analysis takes one clock cycle. Consequently, the permanent fault 
detection block selects dr1 for the tr2 input. Note that the value stored in the user’s 
TMR register is held for one cycle while the scheme identifies the faulty free module. In 
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the second case, a fault occurs in the module dr1 (Mult_dr1), similar to the previous 
example, Hc indicates that there is an output mismatch; Tc0 indicates that module dr0 is 
fault free and Tc1 indicates that dr1 is faulty. The permanent fault detection block 
selects dr0 for the tr2 input. 

tr0

MAJ MAJ MAJ

clk2+d

dr0 dr1 Enable faulty 
free module

dr0 dr1

tr1 tr2clk0 clk1

  

(a) Combinational output registered 

pad

pad

dr0

dr1

Enable faulty 
free module

 

(b) Combinational output in the pad 

Figure 9.4: Examples of implementations with the combinational output registered and 
in the pads 

 
Note that in both methods, TMR and the proposed technique, the upsets in the user’s 

combinational logic are corrected by scrubbing, while upsets in the user’s sequential 
logic are corrected by the TMR scheme used in the CLB flip-flops. It is important to 
notice that for upset correction the scrubbing is performed continuously, to guarantee 
that only one upset has occurred between two reconfigurations in the design. Some 
constraints must be observed for the perfect functioning of the technique, same as TMR: 
there must not be upsets in more than one redundant module, including the state 
machine detection and voting circuit, consequently it is important to use some assigned 
area constraints to reduce the probability of short circuits between redundant module 
dr0 and dr1. The scrubbing rate should be fast enough to avoid accumulation of upsets 
in two different redundant blocks. Upsets in the detection and voting circuit do not 
interfere with the correct execution of the system, because the logic is already 
triplicated. In addition, upsets in the latches of this logic are not critical, as they are 
refreshed in each clock cycle.  Assuming a single upset per chip between scrubbing, if 
an upset alters the correct voting, it does not matter, as long as there is no upset in both 
redundant blocks.  

In the proposed method, the area reduced by the design compared to the TMR is the 
area of one user’s combinational logic module and the number of inputs that is reduced 
from 3 times to 2 times the original number. This technique can be used as an additional 
option for the TMR technique for designing reliable circuits in FPGAs with pads and 
power reduction. Because the combinational circuit is just duplicated, inputs and 
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outputs can be duplicated instead of triplicated, as in the TMR approach. However, it is 
important to notice that the TMR inputs related to the user’s sequential logic used in the 
CLB flip-flops are not changed as triple clocks, reset, etc.  

In addition, the advantage of using this technique is not only focused in reducing the 
pin count and the number of CLBs, but also in other types of radiation effects such as 
total ionization dose, as this method has the important characteristic of detecting 
permanent faults. So far, we have mentioned only SEUs that happen in the SRAM 
programmable cells that are permanent until the next reconfiguration. However, a 
circuit operating in the space environment can suffer from total ionization dose and 
other effects that can provoke permanent physical damages in the circuit.  

Because there are many CED techniques, the next section evaluates the main CED 
techniques used in ASIC to detect a permanent effect of a SEU in arithmetic-based 
circuits synthesized in an SRAM-based FPGA. The goal is to investigate each one in 
terms of fault detection, area and performance penalties and to select the most 
appropriated ones for each type of circuit. 

9.1.1 Using CED based on hardware redundancy 

CED techniques based on hardware redundancy use extra hardware to compute the 
operation twice and compare the results. A direct way to implement it is the use of 
duplication with comparison (DWC) that simply duplicates the original hardware with 
the same operands and compares the results. The fault coverage depends on the 
observability of the fault by the input vectors. For single faults affecting only one of the 
circuits that compose the DWC scheme, there will be at least one input vector able to 
manifest the fault in the output. This technique has an area overhead of about 100% but 
almost no performance penalties, consequently, it is too costly and it will not be used to 
protect combinational circuits in the DWC-CED technique in SRAM-based FPGAs.  

Another approach for CED based on hardware redundancy is to use extra hardware 
to compute different operands that are coded versions of the original ones, preferably 
with fewer bits, to minimize the area overhead. Any code can be used, but it is more 
appropriate to use a code that maintains the arithmetical and logical properties of the 
operands, to avoid the need of designing a totally new hardware to predict the new 
output. It means that, given two operands a and b, an operation op and a code c, the 
following equation must be valid: 

c(a) op c(b) = c(a op b) 

An interesting code with arithmetical properties is the residue code, also called 
module code. Residue code is applied by a recomputation of the remainders of the 
division of the operands by a given number. Figure 9.5 presents the schematic of a 
circuit using residue code as CED technique.  
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Figure 9.5:  Residue code technique implementation  
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The version implemented in this paper uses module-15. The outputs of this code will 
have a maximum length of 4 bits. Most circuits used in this work have operands with 8 
or more bits, so this code will surely provoke a reduction in the number of bits of the 
operands. The following piece of VHDL code shows the developed algorithm to 
calculate module 2n-1, for n=4 (module-15).  

 
s <= ('1'&a(7 downto 4))-(not a(3 downto 0)); 
if (sub(4) = '1') then  
moda := sub(3 downto 0); else  
moda := a(7 downto 4) + a(3 downto 0); end if; 
if (moda = "1111") then  
mod_a := "0000"; end if; 

Figure 9.6: Residue code technique implementation in VHDL 

Because the work targets the investigation of techniques to detect the permanent 
effect of a SEU in SRAM-based FPGAs using the DWC-CED approach, the CED 
hardware redundancy based techniques are not attractive because they can increase the 
area instead of reducing the costs. Residue code has less area overhead than DWC, 
depending on the width of the input of the original operands, so it can be used under 
some circumstances. However, it has performance penalties, depending on the delay of 
the residue encoder.  

9.1.2 Using CED based on time redundancy  

CED techniques based on time redundancy reduce the hardware cost at the expense 
of using extra time. It recomputes the operation in a different way to allow errors to be 
detected. During the first computation step, the normal operands are applied.  In the 
recomputation step, the operands are encoded and a correct result can be generated after 
decoding. The mismatch of the two results indicates an error and, consequently, the 
presence of a fault in the circuit. In applications where performance is not essential, 
time redundancy is used to minimize the cost of the circuit, without increase in the 
circuit area or power consumption.  

A very intuitive technique to use, but with limited applications, is the recomputing 
with swapped operands (RESWO). It can only be used in commutative operations, like 
adders and multipliers. It cannot be used for instance in division or subtraction 
operations. The RESWO technique tries to detect errors alternating the position of the 
operands. For example, after the computing of a+b, the operation b+a can be done and 
the results compared to see if it is the same. Of course, it will not detect any faults if the 
two operands are equal, but it can have a high error detection capability in the other 
cases. 

Another possible encoding technique is to use the distributive property of arithmetic 
logic to be able to identify faults. If one performs a 1-bit left shift of the input operands, 
it results in a multiplication by 2 of the operand. According to the operation, the result 
will be multiplied by 2 (adders) or by 4 (multipliers) and it can be easily divided by 
performing a 1-bit or 2-bit right shift in the output. This technique is called recomputing 
with shifted operands (RESO). Thus, in the first computation, the operands are 
computed and stored in a register. At the second computation, the operands are shifted k 
bits to the left, computed and the result is shifted k bits to the right (2k bits, if a 
multiplier or divider). In the proposed application, the operands are shifted by 1 bit. The 
result of the second step is compared to the previous result stored in the register. A 
mismatch indicates the presence of a permanent fault in the circuit. For example, in an 
adder, the left shifted operands are equal to the original ones multiplied by 2. The result 
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of the sum should be the original result multiplied by 2 too. Then it is only necessary to 
shift right the new result and compare with the original one to detect a fault. The adder 
should be wide enough to add the shifted numbers without causing overflow. If not, a 
non existent fault can be wrong detected. Studies show the RESO detection capability 
(PATEL; FUNG, 1982). 

For functions with operands of 8 bits, two approaches can be used: the use of the 
RESO with the same number of bits (8), or RESO with one more bit, to decrease the 
number of false detected faults. Of course, the second approach will result in an area 
overhead due to the new width of the operation. 

Another option to increase the fault coverage with RESO is the use of one more 
clock cycle. Originally in the first cycle, the original operands are computed and in the 
next cycle, the left shifted operands are processed. If the fault is not detected yet, 
another clock cycle can be used, with the operands left shifted one more time 
(multiplied by 4 in the total). RESO increases the fault coverage as more shifts are 
applied to the operands (PATEL; FUNG, 1982). This approach will be called as 2-shift 
RESO, while the original approach as 1-shift RESO or only RESO. In order to increase 
the coverage, the performance will be depreciated due to the extra clock cycles. The 
schematic of a circuit using RESO is presented in figure 9.7. 
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Figure 9.7: RESO technique implementation 

Another option for time redundancy is the use of residue code, already presented in 
the hardware redundancy section. As the encoded operands have fewer bits than the 
original ones, the same hardware can be used to perform the original and the coded 
operands at two different moments. In order to use the same hardware, zeros must fill 
the non-used bits. The fault coverage will be reduced compared with the 
implementation using distinct hardware (one for the logic and the other for the 
encoding) because now both of the results are computed in the same faulty hardware. 

In order to increase the fault coverage, these encoding techniques can be combined, 
one per each clock cycle. In the first clock cycle, the original operands are computed; in 
the second cycle, the operands using one type of encoding; and finally in the third cycle, 
the operands using another type of encoding. Of course, the drawback of this solution is 
the increase of area due to the use of two encoders and decoders, and the extra 
performance penalty with one more extra clock cycle.  
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9.2 Choosing the appropriated CED block for Arithmetic-based 
Circuits 

In order to evaluate the fault coverage of the techniques previously presented, some 
combinational and sequential circuits were tested, including an 8-bit multiplier, 
arithmetic and logic unit (ALU), and a FIR canonical filter. Two tools, called Lemon 
Dragon multiplier and filter generator, automatically generated the multipliers and 
filters respectively. The tool provides two different syntheses: full array multipliers and 
constant array multipliers. Basically, several multipliers, adders and registers compose 
one FIR filter. To accomplish the goal of this paper, an automatic generation of fault 
injection structures was developed. All nodes in the design will be connected to exactly 
one fault injection component, so that the user may insert as many faults as needed. The 
components are described in VHDL language. One version of the raw Lemon Dragon 
Multiplier Generator may be found in (HENTSCHKE, 2003).  

9.2.1 Multipliers 

An 8-bit multiplier was the first case study. All techniques presented were 
implemented on this circuit: residue code, using hardware redundancy; RESWO, 1-shift 
RESO with 8 bits (ignoring the left bit) and 9 bits (expanding the operands), 2-shift 
RESO with 8 and 9 bits, and residue code, using time redundancy. The multipliers were 
implemented using cascaded full adders (FA), as shown in figure 9.8. For the 8-bit 
multiplier, there are 528 nodes, 1056 faults in total (stuck-at 0 or 1), and for the 9-bit 
multiplier, 675 nodes, 1350 faults in total. In both cases, the two original operands have 
8 bits, resulting in 216 (65,536) combinations of input vectors. All combinations of 
faults and input vectors were injected, totaling 69,206,016 for the 8-bit version and 
88,473,600 for 9-bit one.  
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x2y1
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Figure 9.8: Multiplier using cascaded full adders 

9.2.2 Arithmetic and Logic Unit (ALU) 

The next case study was an Arithmetic and Logic Unit (ALU). This ALU performs 
the following operations: addition, subtraction, increment, decrement, AND, OR, XOR 
and NOT. It was designed in a bit slice approach, and the slice schematic is presented in 
figure 9.9. The operation is selected by signals c1, c2 and c3, operands are a(i) and b(i), 
cin is the carry in from the previous slice, the signal cout is the carry out to the next 
slice, and s(i) is the output of the slice. This ALU has two input operands of 8 bits, plus 
4 bits to select the operation. Then, there are 220 = 1,048,576 combinations of input 
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vectors to be tested. Each slice has 16 nodes, resulting in 256 different faults for an 8-bit 
ALU. All the combinations were injected, totaling 268,435,456. At this time not all 
techniques were evaluated. The method RESWO was not used because some operations 
performed by the ALU are not commutative, like subtraction, increment or decrement.  

a(i)

b(i)

a(i)

b(i)

c3

c2

c1

cin

c3

s(i)

cout

 
Figure 9.9: ALU bit slice 

9.2.3 Digital FIR Filter 

A canonical FIR filter circuit was chosen as a sequential case study for the proposed 
technique. Figure 8.9 showed the partial scheme of a canonical filter. The multipliers 
were designed with constant coefficients, resulting in an optimized area and minimal 
number of nodes. An 8-bit FIR canonical filter of 9 taps was automatically generated. 
The multiplier coefficients are: 2, 6, 17, 32 and 38. There is an 8-bit input; 
consequently, there are 28 = 256 combinations of input vectors to test. The total of 
nodes in the FIR filter, including all its multipliers and adders is 4208. All the possible 
combinations of input vectors and faults were tested, totaling 1,077,248. 

9.3 Fault Coverage Results of the DWC-CED in Arithmetic-based 
Circuits 

The proposed DWC-CED technique for permanent fault detection was first validated 
by fault injection methodology in a prototype board using emulation. The fault injection 
system described in VHDL was specifically developed to test the proposed technique. 
Results were emulated in an AFX-PQ249-110 board using a XCV300 part. Some area 
comparisons between the proposed approach and TMR were also performed using 
Xilinx implementation tools.  

The fault injection system is able to randomly choose the instant of insertion of the 
fault, the node and the redundant module (mult_dr0 or mult_dr1). There is a reset fault 
signal that works as a scrubbing, cleaning up the fault. Fault injection results show the 
reliability of the presented method. Figure 9.10 shows two graphics representing two 
different fault situations. In one, the fault occurs in module dr0 (st_perm_dr1=0, 
indicating that dr0 is fault free, number 1 in fig.), consequently, trv2 receives dr1 
(mux_select=1, number 2 in fig.). Note that the value stored in the user’s TMR register 
is held for one cycle (number 3 in fig.), while the scheme identifies the free faulty 
module. In the second graph, a fault occurs in the module dr1 (st_perm_dr0=0, 
indicating that dr0 is fault free, number 4 in fig.), as the default is register trv2 receiving 
dr0, nothing changes after the permanent fault detection (number 5 in fig.).  
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For the exhaustive fault coverage evaluation, the following experiment was built 
based on the DWC-CED technique explained in section 9.2.  Four versions of each case 
study circuit running in parallel were described in VHDL: 

- Gold one to compute the expected output of the circuits (module dr0) 
- Copy of module dr0 with recomputing CED technique. 
- Circuit under test (DUT) with fault injection capability, where the faults 

are injected (module dr1).  
- Copy of module dr1 with recomputing CED technique, where the same 

faults are injected.  
Note that in the real operation, the same hardware is used as DUT and for 

recomputation, consequently, there are only two modules: module dr0 and module dr1. 
However, for the experiment, two circuits for each redundancy module were used to 
perform both operations in parallel to reduce process time. In addition, a prototype 
board (AFX-PQ240) was used to perform the fault injection experiment to speed up the 
process. 

In order to insert faults in all nodes of the case study circuits, a 4 to 1 multiplexor 
was inserted in each node in the VHDL description. If the select signal of the 
multiplexor is 00, the original signal is passed to the output; if select is 01, the constant 
0 is the output (stuck-at 0); if select is 10, the constant 1 is propagated (stuck-at 1). The 
fault injection system operates with two clocks, one to control the change of the input 
vectors and other one to control the change of the faults. A counter controls the total 
number of combinations of input vectors and faults that must be inserted in the circuit. 
All combinations have been injected. There is a signal to indicate when the fault 
injection is done.   

In all cycles, the outputs of the gold circuit (module dr0) and the DUT (module dr1) 
are compared. If the outputs are equal (Hc=0), this means that if there is a fault in one of 
the circuits, the fault did not generate an error in the output, so for real time operation 
proposes, this fault can be ignored and no detection operation must be performed. If a 
fault has generated an error in the output (Hc=1), the output of module dr1 is compared 
with the decoded output of the recomputing circuit (copy of module dr1). If the outputs 
are not equal (Tc1=1), this means that the technique currently used was able to detect 
the fault. At the same time, the output of module dr0 is compared to the decoded output 
of the recomputing circuit (copy of module dr0). If the outputs are equal (Tc0=0), this 
means that the technique was able to detect a fault-free module.  

An undetected fault is characterized when there is a mismatch in the output of dr0 
and dr1 (Hc=1) and the technique was not able to detect the faulty module (status 
Tc1=0) or it was not able to detect the fault-free module (status Tc0=1). A counter is 
incremented to show the number of total undetected faults. After all, this counter is read 
from the prototyped board and the percentage of undetected faults is calculated. The 
results in numbers and percentage of detected faults are in table 9.1. 

Results show that all variations of RESO had better results in terms of fault coverage 
than residue code using time redundancy and RESWO. One can notice that residue code 
had higher fault coverage using hardware redundancy than time redundancy. It is 
because of the using of the same faulty hardware to compute the residue code, there is a 
high possibility of the coded word having the same effect in the output. 

RESO is the most appropriate technique in terms of fault coverage for multipliers 
and consequently all the circuits that use them as filters. For ALU, no one of the 
presented techniques was suitable enough to guarantee 100% of detection. This happens 
because the ALU logic is not only composed of arithmetic operations but also logic 
Boolean functions, where the discussed techniques are not efficient.  



 

 

131 

Table 9.1: Fault Coverage, Area and Performance Evaluation of CED techniques in 
SRAM-based FPGAs 

Circuit CED Technique 
# of injected 

faults 
# of detected 

faults 

% of 
detected 

faults 
Residue-15 (hard) 69,206,016 69,136,448 99.89 
Residue-15 (time) 69,206,016 47,387,924 68.47 
RESWO 69,206,016 48,458,171 70.02 
RESO 8 bits 69,206,016 69,176,011 99.95 
RESO 9 bits 88,473,600 88,473,600 100.00 

8-bit 
Multiplier 

2-shift RESO 8 bits 69,206,016 69,198,150 99.98 
Residue-15 (hard) 268,435,456 222,135,593 82.75 
Residue-15 (time) 268,435,456 199,912,813 74.47 
RESO 8 bits 268,435,456 213,005,264 79.35 
RESO 9 bits 268,435,456 245,694,848 91.52 
2-shift RESO 8 bits 268,435,456 213,048,871 79.36 
2-shift RESO 9 bits 268,435,456 245,763,385 91.55 

8-bit 
ALU 

Residue-15+RESO-
9bits 

268,435,456 248,907,886 92.72 

Residue-15 (hard) 1,077,248 1,077,248 100.00 
Residue-15 (time) 1,077,248 718,105 66.66 

8-bit 
Filter 

RESO 8 bits 1,077,248 1,077,248 100.00 
 

9.4 Area and Performance Results of the DWC-CED Technique in 
Arithmetic-based Circuits 

Table 9.2 presents area results of 8x8 and 16x16 bits multipliers, implemented in the 
XCV300 FPGA using no fault tolerance technique, TMR technique and the proposed 
technique (DWC-CED for permanent faults using RESO approach). All of the 
multipliers are synthesized with a register at the output. Results show that according to 
the size of the combinational logic block, it is possible to not only reduce the number of 
I/O pins but also area.  

Table 9.2: Comparison of multiplier implementations (XCV300-PQ240) 

 Multipliers Standard TMR DWC-CED 
Registered output 8x8 16x16 8x8 16x16* 8x8 16x16 
Total of I/O pads 34 66 108 204 92 (-14%) 172 (-17%) 

Number of 4-LUTs 159 741 584 2285 534 (-8,5%) 1791 (-22%) 
Number of ffs 16 32 48 96 82 (+34) 162 (+66) 

Non-registered output 8x8 16x16 8x8 16x16* 8x8 16x16 
Total of I/O pads 32 64 96 192 66 (-31%) 130 (-32%) 

Number of 4-LUTs 156 711 551 2159 425 (-23%) 1442 (-33%) 
Number of ffs 0 0 0 0 34 66 

* I/O pins were out of range, the part XCV300-BG432 was used. 
 
Note that the 16x16 bits multiplier protected by TMR could not be synthesized in 

the prototype board that uses a Virtex part with 240 I/O pins (166 available for the 
user); while the same multiplier, implemented by the proposed technique could fit in the 
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chip, and also occupy less area. In terms of performance, the TMR approach has 
presented a estimated frequency of 33.8 MHz, while the DMR-CED approach has 
presented a frequency of 26.7 MHz. 

As mentioned previously, according to the user’s application requirements, the 
designer will be able to choose between a full hardware redundancy implementation 
(TMR) or a mixed solution, where time redundancy is combined with hardware 
redundancy to reduce pins and power dissipation in the interface. It is possible to use 
DMR and time redundancy only in the interface of the FPGA, in this way reducing pins. 
DMR and time redundancy can also be used in the design to reduce not only number of 
I/O pads, but also area for large combinational circuits as presented in table 9.2 and to 
increase reliability based on the concept published in (LUBASZEWSKI; COURTOIS, 
1998). 

The same canonical FIR filter circuit presented in chapter 8 was used as a sequential 
case study circuit for the proposed technique, an 8-bit 9 taps filter with multiplier 
coefficients: 2, 6, 17, 32 and 38.  The registers are also protected by TMR, while the 
combinational logic (multipliers and adders) is protected by DWC-CED using RESO 
approach. The CED block is placed at the outputs, and it votes the correct pad output 
from dr0 or dr1, as shown in figure 9.11.  

Table 9.3 presents area results of this filter using no tolerance technique, TMR 
technique and the proposed technique. Results show that the 9 taps FIR canonical filter 
occupies 13% less area in the FPGA if protected by DWC and time redundancy instead 
of by TMR. The results also present a reduction of 19% in the pin count compared to 
TMR. In terms of performance, the TMR has presented an estimated frequency of 40 
MHz, while the DWC-CED technique has presented a frequency of 22 MHz. More 
results can be found in (LIMA, CARRO, REIS, 2003b). 
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Figure 9.11: FIR Filter protected by DWC-CED technique 
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Table 9.3: Filter Implementations XCV300-PQ240 

  Standard TMR The proposed method 
Total of I/O pads 26 84 68  
Number of 4-LUTs 244 887 776 
Number of ffs 64 192 226 

 
In the case of the FIR digital filter, the technique can be additionally improved by 

using duplication in the registers too. The possibility of using duplication instead of 
TMR in the sequential logic is due to some characteristics of the filter. The first one is 
because the data inside the filter is pipelined. At each clock cycle, each register receives 
a new input that cleans up the upset that is propagated to the next register. In the worst 
case, it is necessary to wait the n clock cycles of the pipeline to wash out all the upsets. 
The second characteristic is the use of multiplier coefficients that are multiplied by a 
constant that usually corresponds to the highest possible input number to avoid floating 
point multiplications. This implies that the output must be divided by this same constant 
number, consequently the output is truncated and many upsets in the internal operation 
are eliminated in the end. 

 The test case is an 11 taps 9-bit digital low-pass filter protected by only DWC-CED 
in the combinational and sequential logic. The original coefficients calculated by Matlab 
(MATHWORKS, 2003) were multiplied by the constant 512. The final multiplier 
coefficients are: 1, -1, -9, 6, 73 and 120. There are ten 9-bit registers, totaling 90 bits 
that can be upset by SEU. Figure 9.12 shows some fault sensitive areas in the filter. An 
upset can affect the registers, which has a transient effect, or can affect the logic 
(multipliers, adders, voters), which has a permanent effect.  
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Figure 9.12: FIR Filter protected by DWC-CED technique in the combinational and 

sequential logic 

Based on the percentage of each type of memory cell in the whole set of memory 
elements in the CLBs, the LUTs represent 7.4%, the flip-flops represent 0.46%, the 
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customization bits in the CLB represent 6.36% and the general routing represents 
82.9%, the probability of an upset affecting the registers is very low compared to the 
probability of this same upset affecting the logic. In addition, the effect of an upset in a 
register is not always seen in the final output after being divided by the constant, in the 
example, the number 512.  

Figure 9.13 shows the amplitude waveform of the input signal used in the case study 
filter. Figure 9.14 shows the amplitude waveform of the output of the filter in time 
domain. The input waveform has the frequencies 100Hz, 1 KHz and 8 KHz added in the 
same signal. The frequencies lower than 3.75 KHz are passed to the output without any 
attenuation, in the example: frequencies 100Hz and 1KHz. Frequencies from 3.75 to 
5.625 KHz are attenuated. Frequencies higher than 5.625 are blocked by the filter 
design. 

 
Figure 9.13: Amplitude signal input in the FIR filter 
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Figure 9.14: Amplitude signal output in the FIR filter 

 
All possible combinations of bit flips for the tested input signal were injected in the 

registers. In total, 90 bit-flip faults were injected. Figure 9.15 shows the map of the bits 
in the filter. There are 9 bits multiplied by 10 registers, the fault bits from the first 
register need 10 clock cycles to be washed out, the fault bits from the second register 
need 9 clock cycles, the fault bits in the third register need 8 clock cycles, and so on.  
The calculation of the total number of clock cycles needed for the fault injection test is 
show in equation (1). Consequently, the filter is operating with the presence of faults for 
495 clock cycles. 

 

10 clock cycles
9 clock cycles

2 clock cycles

 
Figure 9.15: Map of the memory cells in the filter (9 bits x 10 registers)  

 
# clock cycles = 9x10 + 9x9 + 9x8 + 9x7 + 9x6 + 9x5 + 9x4 + 9x3 + 9x2 
+ 9x1    (1) 
# clock cycles = 9x55 = 495  
 

Table 9.4 shows the effect of these upsets in the filter output. Note that less than 
50% of the injected faults present an effect in the 9 most significant bits of the output. 
Figure 9.16 shows the amplitude waveform of the output when faults were injected in 
the filter. Note that the signal has some noise compared to the original output.  
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In order to improve the integrity of the filter output signal, the 7 first tap registers, 
which are the ones that influence the most the output, had the 3 most significant bits 
(msb) protected by TMR, including the signal bit. In summary, 21 bits were protected 
from the total of 90, which represent 23% of the total sensitive bits. This protection 
reduces to upset effects in the output to a very low level as seen in graphics from the 
Matlab tool (MATHWORKS, 2003). Figure 9.17 shows the amplitude waveform of the 
filter output signal, in the presence of upsets, with the 21 bits protected by TMR. Note 
that the noise has reduced to very low level. Figures 9.18, 9.19 and 9.20 show the 
equivalent output signals in the frequency domain. 

Table 9.4: The influence of the upsets injected in the registers in the filter output 

Total number of injected bit flips 90 
Total number of clock cycles in the presence of fault  495 
Number of faulty clock cycles 487 
Number of output faults in the 9 most significant bits 201 
Number of output faults in the bit 9 43 
Number of output faults in the bit 10 40 
Number of output faults in the bit 11 31 
Number of output faults in the bit 12 21 
Number of output faults in the bit 13 21 
Number of output faults in the bit 14 12 
Number of output faults in the bit 15 13 
Number of output faults in the bit 16 0 
Number of output faults in the bit 17 (signal) 20 
 

  
Table 9.5 shows a comparison between many SEU hardened filter implementations: 

the standard version, the TMR version, the filter protected by DWC-CED technique 
only in the combinational logic, the DWC-CED technique applied in the combinational 
and sequential logic, and the proposed DWC-CED technique applied in the 
combinational and in some bits of the sequential logic to improve reliability reducing 
cost.  

 

Table 9.5: Filter Implementation using DWC-CED in the combinational and sequential 
logic (XCV300-PQ240) 

 Standard TMR DWC-CED 
(combinational) 

DWC-
CED (all) 

DWC-
CED (*) 

Total of I/O 
pads 

28 84 66 56 56 

Number of 
4-LUTs 

496 1548 1350 1274 1304 

Number of 
ffs 

90 270 308 218 248 

* 3 bits in the 7 first registers protected by TMR 
 

Results show that for the 11 taps 9-bit FIR canonical filter protected by DMR and 
efficient TMR in only some bits of the registers occupies 3.5% less area in the FPGA 
compared with the DMR in the combinational logic and TMR in registers with 60 less 
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flip-flops. Comparing with the full TMR, this new method shows a reduction of 16.5% 
in area and 22 less flip-flops.  

 

 
Figure 9.16: Amplitude signal output in the faulty FIR filter 

 
Figure 9.17: Amplitude signal output in the faulty FIR filter with 3-bit protected in the 

first 7 registers taps 
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Figure 9.18: Signal output in the FIR filter in the frequency domain 

 
Figure 9.19: Signal output in the faulty FIR filter in the frequency domain 

 

 
Figure 9.20: Signal output in the faulty FIR filter with 3-bit protected in the first 7 

registers taps in the frequency domain 

9.5 Designing DWC-CED Technique in Non-Arithmetic-based Circuits  

The techniques presented previously are suitable for arithmetic-based circuits 
because it uses some properties of the operation, but they are not convenient for random 
logic. An example of concurrent error detection for non-arithmetic based circuits is the 
parity prediction. The even/odd parity function indicates whether the number of 1’s in a 
set of binary digits is even or odd. Techniques for designing datapath logic circuits and 
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general combinational circuits with parity prediction have been described in 
(NICOLAIDIS; DUARTE, 1998; NICOLAIDIS, 2003; MITRA; MCCLUSKEY, 2002). 

 Figure 9.21 shows the basic architecture of a system with concurrent error detection 
using a single parity bit. The circuit has m outputs and is designed in such a way that 
there is no sharing among the logic cones generating each of the outputs. Thus, a single 
fault can affect at most one output. The restriction of no logic sharing among different 
logic cones can result in large area overhead for circuits with a single parity bit. Hence, 
the idea of using a single parity bit has been extended to multiple parity bits. This 
technique partitions the primary outputs into different parity groups. Sharing is allowed 
only among logic cones of the outputs that belong to different parity groups. There is a 
parity bit associated with the outputs in each parity group. The outputs of each parity 
group are checked using a parity checker.  

 
Figure 9.21: Parity prediction using single parity bit (MITRA; MCCLUSKEY, 2002) 

Figure 9.22 shows the general structure of a combinational logic circuit with two 
parity groups bit position. The parity of the outputs is predicted independently. The 
parity checker checks whether the actual parity of the outputs matches the predicted 
parity. 

 

 
Figure 9.22: Multiple parity bits for concurrent error detection (MITRA; 

MCCLUSKEY, 2002) 

The problem of using CED implemented by parity bit prediction is that many times 
the area occupied by the parity prediction logic is more than half of the original logic. 
Consequently, the final area result of the DWC-CED technique implemented with parity 
bit prediction can exceed the size of the TMR. But the advantage is still reduction in the 
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number of input and output pads and possible increase in reliability (duplication with 
CED blocks). 

Another example of CED for non-based arithmetic circuits is a technique based on 
unidirectional error detecting codes (MITRA; MCCLUSKEY, 2002). A unidirectional 
error detecting code assumes that all errors are unidirectional; i.e., they change 0s to 1s 
or 1s to 0s but never both at the same time. Two unidirectional error detecting codes 
used for concurrent error detection are Berger codes and Bose-Lin codes. For the Berger 
code, a code-word is formed by appending a binary string representing the number of 0s 
(or the bit-wise complement of the number of 1s) to the given information word. Thus, 
for an information word consisting of n bits, the Berger code requires nlog2n, n extra 
bits to represent the number of 0s (or the bit-wise complement of number of 1s) in the 
information word. The Berger code has the capability of detecting all unidirectional 
errors. Figure 2.23 shows a concurrent error detection technique using Berger codes. 
Since the Berger code is a unidirectional error detection code, it is important to ensure 
that a single fault causes unidirectional errors at the outputs. This imposes a restriction 
that the logic circuits should be synthesized in such a way that they are inverter-free. 
Inverters can only appear at the primary inputs. In general, for Berger codes used to 
detect unidirectional errors on communication channels, the check-bits represent the 
bitwise complement of the number of 1’s in the information word. However, since 
concurrent error detection techniques are designed to guarantee data integrity in the 
presence of single faults, a single fault can affect either the actual logic function or the 
logic circuit that predicts the number of 1’s at the output but never both at the same time 
(since there is no logic sharing between the actual circuit and the circuit that predicts the 
number of 1’s).  

 

 
 

Figure 9.23: Unidirectional error detecting codes (MITRA; MCCLUSKEY, 2002) 

The main conclusions presented in (MITRA; MCCLUSKEY, 2002) show that 
results on benchmark circuits reveal marginal reduction in logic area by using CED 
schemes based on parity prediction instead of duplication. CED schemes based on 
Berger codes and Bose-Lin codes incur very high logic area overhead. It has been seen 
that it is important to analyze the properties of the combinational logic in order to 
choose the best technique in terms of fault coverage and area overhead. As future work, 
other solutions besides parity prediction and unidirectional error detecting codes, such 
as using prediction based on reversible logic function, will be also investigated to apply 
the DWC-CED method for non-based arithmetic logic.  
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10 Conclusions 

This thesis proposed the study and development of SEU mitigation techniques for 
programmable architectures such as SRAM-based FPGAs. The choice of SRAM based 
FPGAs is due to their high applicability in apace applications. Because they are 
reprogrammable, designs can be updated or corrected after launch, which can reduce 
considerably the mission cost. The Virtex family from Xilinx was chosen to be the case 
study for this work because is one of the most popular, highest logic density and best 
performing FPGAs in the market.  

The problem of how to protect SRAM-based FPGAs in the architectural and in the 
high-level methods was addressed in this thesis. Several fault-tolerant techniques able to 
protect integrated circuits against upsets in the combinational and sequential logic have 
been studied.  The goal of this work was to investigate the techniques used nowadays 
and to develop new SEU mitigation techniques for SRAM-based FPGAs that are cost 
efficient in terms of time to market, low development cost, high performance, low area 
cost, low power dissipation and high reliability. In addition, FPGA are becoming more 
complex with embedded hard microprocessors, such as the Virtex II-Pro family from 
Xilinx.  Consequently, the microprocessors must also be protected against upset. 

In the first phase of the research, available techniques to protect integrated circuits 
against radiation were studied. The first case study circuit was the 8051 micro-controller 
from Intel. The microprocessor architecture was chosen for its representation of the 
majority of system requirements in space applications nowadays, presenting all types of 
logic to be protected and being part of the new generation architectures based on FPGA 
with an embedded hard microprocessor core. The description of the 8051 micro-
controller used in the experiment was developed at UFRGS (CARRO; PEREIRA; 
SUZIM, 1996). All registers and memories in the 8051 description were manually 
protected by hamming code (LIMA et al., 2000; LIMA et al., 2000b). A fault injection 
system built in VHDL was designed to test the protected version of the 8051 (LIMA et 
al., 2001a). Results show a high reliability of the hamming code in presence of single 
upsets. The protected version was prototyped in a FPGA board from Altera and it has 
been tested under radiation ground test too. Results from the radiation show the 
necessity of using error correction code with multiple fault correction capability. In 
(LIMA et al., 2002a), a fault injection study of the effect of multiple faults in the 8051 
architecture is presented.  

The second phase of the research has focused on the programmable field. A detailed 
analysis of the effect of a SEU in the programmable matrix of a SRAM-based FPGA 
was performed. When an upset occurs in the user’s combinational logic implemented in 
a FPGA, it provokes a very peculiar effect not commonly seen in ASICs. The SEU 
behavior is characterized as a transient effect, followed by a permanent effect. The upset 
can affect either the combinational logic or the routing. The consequences of this type 
of effect, a transient followed by a permanent fault, cannot be handled by the standard 
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fault tolerant solutions used in ASICs, such as Error Detection and Correction Codes 
(EDAC), Hamming code, or the standard TMR with a single voter, because a fault in 
the encoder or decoder logic or in the voter would invalidate the technique. The 
problem of protecting SRAM-based FPGAs against SEU is not well solved yet and 
more studies are required to improve the limitation of the methods currently used.  

Some architectural solutions have been proposed to improve the reliability of the 
ones currently used nowadays. One of them is the use of RS code combined with 
hamming code to protect the embedded memory against multiple upsets. This is an 
innovative solution that can be easily applied to any memory structure to protect against 
all double bit upsets and a large combination of multiple upsets. This technique was 
prototyped in a FPGA and results show that the area overhead is acceptable for the 
reliability achieved (NEUBERGER; LIMA; CARRO; REIS, 2003). One of the main 
advantages of this technique compared to the TMR is the low parity bits overhead, 
which in the case of the TMR is 200% and in the proposed approach varies around 10 to 
20%. A drawback of this technique is the performance penalty. As future work, the 
encoder and decoder blocks will be implemented in ASIC to evaluate also the area and 
performance. We expect to get a lower area and performance penalty compared to the 
results from the FPGA prototype.  

Another architectural proposed solution is based on the use of hardened memory 
cells with SET detection capability to replace the flip-flops located in the CLB in order 
to avoid bit flips and errors from transient faults in the combinational gates of the CLB, 
for instance, the multiplexors. This proposed approach can protect the flip-flop against 
SEU in the 1st, 2nd and 3rd order, and in addition to SET, which is a big concern in the 
very deep submicron technologies. As future work, a small prototype version of a SEU 
hardened FPGA protected by hardened memory cells and RS and hamming code will be 
designed (logic, simulation and layout) and tested in presence of faults.  

However the main focus of this thesis is SEU mitigation techniques in high level 
description, which has been easily applied by the user with a low cost and a fast 
turnaround time for the market. Triple Modular Redundancy (TMR) with voters is a 
common high-level technique to protect ASICs against SEU and it can also be applied 
to protect FPGAs. The TMR technique was first tested in the Virtex® FPGA 
architecture by using a small design based on counters. Faults were injected in all 
sensitive parts of the FPGA by using the bitstream and a detailed analysis of the effect 
of a fault in a TMR design synthesized in the Virtex® platform was performed. This 
study needed confidential information from Xilinx and it has been done under their 
supervision during an internship. This work has built a correlation between faults in the 
bitstream of the FPGA (one of the SRAM cells in the architecture) to the design logic 
synthesized in the FPGA. Results from fault injection and from radiation ground test 
facility showed the efficiency of the TMR for the related case study circuit.  

In order to test a more complex design protected by TMR in the Virtex® platform 
that would also include embedded memories, the same 8051-like micro-controller 
description was protected by TMR and tested in the FPGA. The TMR 8051 micro-
controller was tested by fault injection and under proton radiation in a ground facility. 
Fault injection analysis presented in (LIMA et al., 2001b) showed that there are a few 
upset bits in the bitstream related to the routing that can provoke an error in the TMR 
design. This limitation is due to the switch matrix that can connect two signals from 
different redundant parts when a programmable cell is upset. Based on the references 
presented in chapter 2, there is no totally efficient solution for SRAM based FPGAs that 
can ensure 100% of reliability in all conditions for SEU. This thesis had the goal of 
investigating the techniques used nowadays and to propose improvements in order to 
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increase reliability. Although TMR has show high reliability, this technique presents 
some limitations, such as area overhead, three times more input and output pins and, 
consequently, a significant increase in power dissipation.   

Aiming to reduce TMR costs and improving reliability, an innovative high-level 
technique for designing fault tolerant systems in SRAM-based FPGAs was developed, 
without modification to the FPGA architecture. The first proposed technique combines 
time and hardware redundancy to reduce area and pin count overhead (LIMA, CARRO, 
REIS, 2003a). This technique is based on duplication with comparison and time 
redundancy in the combination blocks of the design. It can be applied in arithmetic and 
in non-arithmetic circuits. Although the time redundancy technique can be successfully 
used to reduce pin count and area overhead over a full hardware redundancy, the 
transient concurrent error detection technique is not able to correct 100% of the faults 
occurring in FPGAs. Another penalty of this method is performance overhead because 
of the observation time. The evolution of this work investigates the use of modified time 
redundancy technique based on permanent fault detection to improve fault correction 
and to reduce the performance penalty at each clock cycle. 

This technique was improved to a new one able to assure higher reliability with the 
same cost reduction. It is based on duplication with comparison and concurrent error 
detection (DWC-CED) (LIMA, CARRO, REIS, 2003b). This new technique proposed 
in this work was specifically developed for FPGAs to cope with transient faults that 
become permanent in the user combinational and sequential logic, while also reducing 
pin count, area and power dissipation. The RESO technique has been successfully 
applied in the DWC-CED approach proposed to detect and correct permanent faults in 
arithmetic circuits. The methodology was validated by fault injection experiments in an 
emulation board. Results in terms of area and pin count show reduction from 10 to 33% 
in the two cases studied (multipliers and digital filters). In addition, for digital filters, 
the DWC-CED approach can be applied in the combinational and sequential logic 
without loss in protection. For non-arithmetic based circuits, techniques such as parity 
prediction can be used in the DWC-CED method.  

The technique DWC-CED has presented some performance penalties. As future 
work, improvements in this technique will be investigated to reduce the penalties in the 
performance. In addition, alternative techniques to detect permanent faults in non-
arithmetic combinational circuits will be investigated. These techniques must present 
reduced area overhead and high fault coverage. According to the target application, it 
will be more important to reduce area, pin count or power dissipation. Another issue to 
be investigated is a technique to speed up the performance, increasing the area (there is 
always a compromise) for some specific applications, without reduce reliability. 

In terms of fault analysis, the circuits protected by DWC-CED were evaluated by 
fault injection in the VHDL. As a future work, a fault injection tool able to inject faults 
directly in the bitstream, as the tool that it has been used at Xilinx, will be developed to 
analyze in more detail the effect of the faults in the Virtex matrix. Also, in this case, it 
will be possible to consider the effect of a dedicated floorplanning to avoid related 
routing upsets. Based on the results presented in chapter 6, a dedicated floorplanning is 
very important to ensure the correct operation of the SEU mitigation technique in the 
FPGA.  

The consideration of using FPGA in space applications is fairly recent and there is 
still a lot of work to be done in this area. In summary, the main contributions of this 
work were the detailed analysis of the effects of a single event upset (SEU) in the 
architecture of a SRAM-based FPGA, the investigation and experiment tests of the 
state-of-the-art fault-tolerant techniques and the development of new SEU mitigation 
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techniques that improve the reliability and reduce the cost compared to the current 
solutions presented in the market nowadays. Additionally to what has been mentioned 
previously, future work also includes the implementation of the DWC-CED technique 
combined to the TMR technique in a more complex case study, such as the micro-
controller 8051, which has arithmetic and random combinational logic, sequential logic 
and embedded memories. In this case, all the details and techniques will be tested. The 
final analysis of this new version of the full protected 8051 micro-controller in a FPGA 
platform will be performed under radiation ground test.  The results will guide the 
research in future developments.  
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Appendix A 

Resumo da Tese em Português 

 
Desenvolvimento de Técnicas de Tolerância a Falhas Transientes em 

Componentes Programáveis por SRAM 
 
 

Circuitos programáveis tais como Field Programmable Gate Arrays (FPGAs) estão 
sendo cada vez mais demandados por projetistas de circuitos eletrônicos para aplicações 
espaciais devido a sua alta flexibilidade lógica em alcançar múltiplos requerimentos 
como alto desempenho, baixo custo no desenvolvimento e rapidez de chegada do 
produto ao mercado. Em particular, FPGAs são muito valiosos para missões espaciais 
pois podem ser reprogramados a distância quantas vezes for necessário muito 
rapidamente. Conseqüentemente, FPGAs baseados em SRAM oferecem o benefício 
adicional de mudanças e melhorias no projeto feitas a distância, correções de erros e 
ajustes após o lançamento espacial.   Por este motivo FPGAs baseados em SRAM foram 
escolhidos como foco deste trabalho, mais especificamente a família de FPGA Virtex da 
empresa Xilinx.  

Falhas transientes, também conhecidas como Single Event Upset (SEU), são o maior 
preocupação como fontes de erros em aplicações espaciais, com potencialmente serias 
conseqüências para o dispositivo, incluindo perda de informação, falha funcional e 
perda de controle.  Falhas transientes ocorrem quando uma partícula energizada incide 
na superfície do circuito integrado (silício) transferindo uma energia suficiente para 
provocar uma troca de valor em uma célula de armazenamento (latch ou flip-flop)  ou 
um pulso de corrente no circuito combinacional que pode ser interpretado como um 
sinal. SEU em circuitos integrados tem se tornando mais e mais freqüente por causa da 
redução do tamanho dos transistores devido a constante evolução da tecnologia de 
fabricação de semicondutores. Como resultado, não apenas circuitos operando em 
aplicações espaciais mas também circuitos operando em aplicações consideradas de alto 
risco, como servidores bancários, servidores de telecomunicação, aviões e outros, estão 
sofrendo o efeito da radiação e devem ser protegidos com técnicas de tolerância a falhas 
para garantir confiabilidade.  

SEU apresenta um efeito peculiar em FPGAs baseados em SRAM quando uma 
partícula energizada atinge a lógica combinacional do usuário mapeada na arquitetura 
programável. Em um circuito ASIC, o efeito de uma partícula atingindo a lógica 
combinacional ou seqüencial é transiente, a única variação é o tempo de duração da 
falha. A falha no circuito combinacional é um pulso transiente que pode ou não 
desaparecer de acordo com o atraso na lógica, na topologia e nos vetores de entrada 
(sensibilização do caminho). Em outras palavras, isso quer dizer que umas falha 
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transiente em uma lógica combinacional pode ou não ser capturada pela célula de 
armazenamento. Falhas nos circuitos seqüenciais manifestam-se como uma inversão no 
valor armazenado (bit flip), e irão se manter até a próxima carga da célula de 
armazenamento.  

Por outro lado, em FPGA baseado em SRAM, ambas lógica combinacional e lógica 
seqüencial são implementadas por células de armazenamento (SRAM). Quando uma 
falha ocorre na lógica combinacional, atingindo o roteamento ou a lógica, ela possui um 
efeito transiente seguido de permanente porque a célula de armazenamento que compõe 
aquela lógica ou que controla aquele roteamento teve o seu valor invertido. Esse valor 
somente será corrigido após a reconfiguração do FPGA. Isso significa que uma falha 
transiente na lógica combinacional do FPGA tem um efeito permanente e será capturado 
por uma célula de armazenamento durante a próxima carga, ao menos que alguma 
técnica de detecção ou correção de falhas seja utilizada. Quando uma falha ocorre na 
lógica seqüencial do FPGA, o efeito é transiente, igual ao que acontece no ASIC, 
porque a falha pode ser corrigida na próxima carga da célula de armazenamento. 
Conseqüentemente, é muito importante levar em consideração o efeito de uma falha 
transiente (SEU) em FPGA baseado em SRAM no desenvolvimento de técnicas de 
proteção contra SEU neste tipo de arquitetura.  

Este trabalho analisa em detalhas os efeitos das falhas transientes na arquitetura de 
um FPGA baseado em SRAM e as principais técnicas de proteção a falhas utilizadas 
recentemente, como por exemplo a triplicação com votação. A técnica de triplicação da 
lógica com votação, conhecida como triple modular redundancy (TMR), combinada 
com uma reconfiguração constante da programação (scrubbing) é utilizada no FPGA 
Virtex para proteger este contra os efeitos da SEU. O TMR é uma técnica adequada a 
FPGA baseado em SRAM por sua característica de redundância espacial completa, ou 
seja, da parte física (hardware) na lógica seqüencial e combinacional.  Este trabalho 
investiga e teste essa técnica na descrição do micro-controlador 8051 sintetizado no 
FPGA Virtex. O circuito final protegido foi testado utilizando injeção de falhas e em um 
laboratório com gerador de partículas energizadas. Resultados em termos de 
confiabilidade, área e desempenho são apresentados neste trabalho.  

Todavia, a técnica de proteção a falhas TMR é custosa em termos de área, logo, foi 
feito um estudo para o desenvolvimento de uma nova técnica de proteção para FPGAs 
capaz de reduzir o custo em área, sem diminuir a confiabilidade. Essa tese apresenta 
uma técnica inovadora de proteção contra SEU em FPGA baseado em SRAM capaz de 
tratar os problemas previamente descritos: o efeito permanente de uma SEU na 
arquitetura programável e alto custo em área do TMR. O método combinada duplicação 
com votação e detecção de erro simultânea baseado em redundância temporal e 
espacial.  

Várias técnicas de proteção contra SEU foram propostas nos últimos anos visando 
evitar falhas transientes em circuitos integrados. Um circuito imune a SEU deve ser 
composto por uma variedade de técnicas de proteção baseadas em redundância. 
Redundância é alcançada através de componentes extra (redundância espacial), de 
tempo de execução extra (redundância temporal) ou uma combinação das duas. Uma 
técnica de proteção contra SEU eficiente deve tratar falhas transientes na lógica 
combinacional e na lógica seqüencial. Desta forma, falhas no circuito combinacional 
nunca serão armazenados no circuito seqüencial ou serão votados corretamente, o 
mesmo acontece com falhas no circuito seqüencial que nunca deve acontecer ou devem 
ser imediatamente corrigidos por votação ou outras técnicas baseadas em redundância 
ou paridade. Cada técnica tem suas vantagens e desvantagens e tem sempre um 
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compromisso entre área, desempenho, potencia dissipada e eficiência na tolerância a 
falhas.  

Redundância espacial e temporal são largamente utilizadas em ASICs. Elas variam 
de detecção simultânea de erros a mecanismos de correção. O uso de redundância 
espacial ou temporal completa permite votar o correto valor do sinal na presença de 
falha (SEU). No caso da redundância temporal, o objetivo é aproveitar a característica 
do pulso transitório gerado pela falha e comparar o sinal de saída em momentos 
diferentes. Logo, a saída da lógica combinacional é carregada em três momentos 
diferentes, onde a transição do relógio da segunda célula de armazenamento é deslocada 
de um atraso d e a transição do relógio da terceira célula de armazenamento é deslocada 
de um atraso d vezes 2. Um circuito votador escolhe o valor correto. O esquemático está 
ilustrado na figura 1a. O aumento em área é devido as células de armazenamento extras 
e a penalidade em desempenho é devido a captura com atraso máximo de 2 vezes o 
atraso que é referente ao tempo de duração do pulso. A complexidade deste método é 
devido aos 3 diferentes relógios.   

A redundância espacial, o conhecido TMR, também pode ser utilizado para 
identificar o valor correto na saída da lógica combinacional e seqüencial, como 
apresentado na figura 1b. Embora apresente um maior aumento em área comparado com 
a redundância temporal, já que toda a lógica combinacional e seqüencial é triplicada, 
essa técnica não apresenta grande penalidade no desempenho, apenas o atraso de 
propagação do votador e não necessita de diferentes fases do relógio.  

No caso de FPGAs baseados em SRAM, o problema de encontrar uma técnica de 
tolerância a falhas eficiente em termos de área, desempenho e potencia dissipada é um 
desafiante por causa da alta complexidade da arquitetura. Como mencionado 
anteriormente, quando uma falha ocorre na lógica combinacional do usuário no FPGA, 
ela provoca um efeito muito peculiar que não é comumente visto em ASIC. O 
comportamento de uma SEU na arquitetura de um FPGA baseado em SRAM é 
caracterizado como um efeito transiente seguido de permanente. A falha pode atingir 
tanto a lógica como o roteamento. E a conseqüência deste tipo de efeito não pode ser 
tratada diretamente com soluções de tolerância a falhas usadas em ASICs como códigos 
de detecção e correção de erros e TMR original com apenas um votador, porque falhas 
no codificador ou decodificador ou no votador iriam invalidar a técnica.  

Técnicas especiais devem ser desenvolvidas para FPGAs para tratar este efeito. A 
técnica de proteção contra SEU usada hoje em dia em projetos sintetizados na 
arquitetura Virtex é basicamente baseada em TMR com reconfiguração continua do 
FPGA para evitar acumulo de falhas na matriz. O esquema do TMR usa três circuitos 
lógicos idênticos (bloco 0, bloco 1 e bloco 2), sintetizados no FPGA e realizando a 
mesma operação em paralelo com as respectivas saídas sendo comparadas em um 
circuito votador de maioridade. A técnica TMR é apresentada em detalhes em [CAR01]. 
As células de armazenamento da aplicação (flip-flops ou latches) são substituídos por 
três células de armazenamento e multiplexadores  implementados por lookup tables 
(LUT), um para cada. A lógica combinacional assim como os pinos de entrada e saída 
também são triplicados para evitar qualquer ponto único de falha dentro do FPGA. 
Desta forma, qualquer falha dentro da matriz pode ser voltada pela estrutura do TMR 
assegurando o correto valor na saída.  

No caso de FPGA customizado por SRAM, o problema de encontrar uma técnica 
eficiente de proteção a falhas transientes é ainda mais eminente devido ao grande 
numero de células de memória SRAM que compõem o circuito (LUTs, bits de 
programação no CLB e no roteamento, flip-flops e memória embarcada). O objetivo é 
encontrar o melhor compromisso em termos de área, desempenho, custo e nível de 
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proteção.  Há duas maneiras de proteger um FPGA customizado por SRAM: o método 
arquitetural, onde a topologia da matrix é substituída por uma nova tolerante a falhas, e 
o método de alto nível, onde a descrição de alto nível de hardware é modificada para 
ficar tolerante a falhas antes de ser sintetizada no FPGA. O uso de FPGAs em 
aplicações espaciais é bem recente e há muito trabalho ainda ser feito. Atualmente, não 
há uma solução completamente eficiente para FPGAs customizados por SRAM que 
pode assegurar 100% de confiabilidade com baixo custo em área, alto desempenho e 
baixo custo de implementação. Este trabalho investigou as técnicas utilizadas 
atualmente e propôs melhorias para aumentar o grau de confiabilidade e baixar os 
custos.  

A técnica de proteção TMR (Triple Modular Redundancy) com circuito votadores é 
uma técnica de alto nível comumente utilizada em ASICs que pode também ser aplicada 
em FPGAs. A técnica TMR foi a primeira a ser testada no FPGA Virtex da Xilinx em 
um circuito pequeno composto por contadores. Falhas foram injetadas em todos as 
partes sensíveis da arquitetura e seus efeitos foram detalhadamente analisados. Os 
resultados de injeção de falha e dos experimentos sob radiação em laboratório 
comprovaram a eficácia do TMR em proteger circuitos sintetizados em FPGAs 
customizados por SRAM. Visando testar circuitos mais complexos protegidos por 
TMR, que incluíssem memória embarcada e um maior numero de lógica, a mesma 
descrição VHDL do micro-controlador 8051 foi agora protegida por TMR, sintetizada e 
testada em FPGA.  Os mesmos métodos de injeção de falhas e experimento sob 
radiação em laboratório foram realizados. Os resultados mostraram que o TMR pode 
recuperar quase 100% das falhas ocorridas na matriz. Esse numero depende do 
posicionamento dos blocos redundantes na matriz para evitar que falhas no roteamento 
afetem mais de um bloco redundante. Embora essa técnica mostre uma alta 
confiabilidade, ela possui algumas limitações como aumento em área, uso de 3x  mais 
números de pinos de entrada e saída (E/S) disponíveis para a aplicação e 
conseqüentemente, aumento na dissipação de potencia.  

Com o objetivo de reduzir custos no TMR e melhorar a confiabilidade, uma técnica 
inovadora em alto nível de tolerância a falhas para FPGAs customizados por SRAM foi 
desenvolvida, sem modificações na arquitetura do componente. Essa técnica combina 
redundância espacial e temporal para reduzir custos e assegurar confiabilidade. Ela é 
baseada em duplicação com um circuito comparador e bloco de detecção concorrente de 
falhas.  Esta nova técnica proposta neste trabalho foi especificamente projetada para 
tratar o efeito de falhas transientes em blocos combinacionais e seqüenciais  na 
arquitetura reconfigurável, e reduzir o uso de pinos de E/S, área e dissipação de 
potencia. A metodologia foi validade por injeção de falhas emuladas em uma placa de 
prototipação da família Virtex. O trabalho mostra uma comparação nos resultados de 
cobertura de falhas, área e desempenho entre as técnicas apresentadas.  

As principais contribuições deste trabalho são a análise detalhada dos efeitos das 
falhas transientes na arquitetura da matriz de um FPGA customizado por SRAM, a 
investigação e teste experimental de técnicas atuais de tolerância a falhas e o 
desenvolvimento de novas técnicas de proteção que aumentam a confiabilidade e 
reduzem o custo em comparação com as técnicas atuais.  

 
 
 
 

 


