
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA

PROGRAMA DE POS GRADUACAO EM COMPUTACAO

FERNANDA GUSMÃO DE LIMA KASTENSMIDT

Designing Single Event Upset Mitigation Techniques
for Large SRAM-Based FPGA Components

Thesis presented in partial fulfillment of the
requirements for the degree of Doctor in Computer
Science

Prof. Dr. Ricardo Augusto da Luz Reis
Advisor

Porto Alegre, September 2003

2

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

Kastensmidt, Fernanda Gusmão de Lima

 Designing Single Event Upset Mitigation Techniques for
Large SRAM-Based FPGA Components / Fernanda Gusmão de
Lima Kastensmidt. – Porto Alegre: PPGC da UFRGS, 2003.

 157 f.: il.

 Thesis (Ph.D) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR-
RS, 2003. Advisor: Ricardo Reis

 1. Técnicas de tolerância a falhas. 2. Circuitos programáveis
customizado por SRAM. 3. Falhas transientes e permanentes. 4.
Injeção de falhas. 5. Efeitos da radiação em FPGA. 6. SEU
mitigation techniques. 7. FPGA. I. Reis, Ricardo. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitora: Profa. Wrana Maria Panizzi
Pró-Reitor de Ensino: Prof. José Carlos Ferraz Hennemann
Pró-Reitora Adjunta de Pós-Graduação: Profa. Jocélia Grazia
Diretor do Instituto de Informática: Prof. Philippe Olivier Alexandre Navaux
Coordenador do PPGC: Prof. Carlos Alberto Heuser
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

3

ACKNOWLEDGMENT

I am very grateful to all of you that have been with me all my life: my family, my
friends and my colleagues. Every person that I know is important to me and each one
has shared something that has made a difference. Everyday when I make decisions, I
know that each one has contributed in some way to these choices and I am sure that my
life is so wonderful because of that.

First I would like to thank God for the wonderful life that I have. Thank you God for
keeping up my courage and enthusiasm every day. I would like to thank my family that
always looks after me. I want especially to thank you mom, Ana Maria, and dad, Luiz
Fernando, for supporting me and for giving me all the best of your heart. For all that I
have conquered in my life so far, I need to thank you both. I would like to thank you,
my lovely husband Christopher, for supporting me in my last year of the thesis,
encouraging me every day. My friends were all present in my life as well, giving me
assistance to get through the difficulties. I want to thank you, all of you, for making my
life so happy and full of emotion.

 I am very grateful to my first professor that has shown to me how to work in a
computer and to write my first lines in code when I was still a little child, Professor
Magda Bercht. Thank you very much; you have raised on me the interest on working in
computers. I want to thank you all my professors that have helped me since I started in
the GME in 1994. I learned a lot with all of you in all stages of the research. I am sure
that my work today has something from all the work that we have done together since
the beginning. You are more than my instructors, you are my friends. Some of them I
want to thank more explicitly for the constant support in this thesis in the past few
years. I want to thank Professor Ricardo Reis, who has been my advisor since I started
in the GME in 1994 for the constant and infinite support in my studies. Thank you very
much, Professor Reis, for always trusting me and encouraging me every moment, in
every new challenge. Thank you for always show to me new opportunities and help me
to get them. I want also to thank Professor Luigi Carro for inviting me to work on the
8051 micro-controller again. Many years after we first worked together on the 8051
architecture, I had the chance to perform this investigation on the 8051 architecture,
protecting against radiation. This work has opened new doors for me for which I am
very grateful. Thank you, Luigi, for supporting me and for encouraging me every
moment in the studies too. You are always present to help me in my work, to discuss
new ideas and to guide me into new investigations. I want to thank Professor Marcelo
Lubaszewski that has also support me in my work, since the first project in the electric
engineer using the micro-controller 8051 to automatic recognize the position of an
object in the tray. Thank you for all the discussions in fault tolerance. I want to thank all
undergraduate students that worked with me in some moments of thesis, in particular,
Gustavo Neuberger, who has done an outstanding research and helped me a lot in the
last two year of work.

4

 I also want to thank the researcher Raoul Velazco from the laboratory TIMA in
Grenoble for the constant support. The internship that I did in his lab for 6 months was
very important for my studies and for my personal life too. I was very pleased for that
opportunity. During that period I had the chance to work in state of the art research
related to radiation effects, SEU mitigation techniques and fault injection in digital
circuits. There I also had a chance to meet great colleagues and friends. I also want to
thank all my colleagues from Xilinx in the USA, where I also had the opportunity to be
an intern for 11 months. There I had the chance to work with state of the art products
and developments related to FPGAs and to meet wonderful friends. I want to give
special thanks to Joe Fabula, Rick Padovani and Carl Carmichael for helping me during
all those months and for always giving me confidence at work. This internship was
fundamental for my thesis work and it was an immense experience for my personal life
too.

Finally, I want to thank the wonderful institution Universidade Federal do Rio
Grande do Sul, Escola de Engenharia and Instituto de Informática for provide me the
opportunity to study since the electrical engineer course, the master degree in computer
science and now the Ph.D. I am also very grateful to the Brazilian research agency
CNPq that has helped me with a grant for all these past years and supporting me to
attend and to present papers at conferences, which were very important to increase my
knowledge and to help the state-of-the-art research.

5

CONTENTS

LIST OF ABBREVIATIONS..7

LIST OF FIGURES ...8

LIST OF TABLES...................................ERROR! BOOKMARK NOT DEFINED.

ABSTRACT ..13

RESUMO ..14

1 INTRODUCTION ...15

2 SPACE ENVIRONMENT AND RADIATION EFFECTS23
2.1 Effect of SET and SEU in Integrated Circuits... 26
2.2 Peculiar Effect of SET and SEU in SRAM-based FPGA Devices .. 29

3 STATE-OF-THE-ART OF SET AND SEU MITIGATION TECHNIQUES ..39
3.1 Design-based Techniques to Detect and Mitigate SET and SEU ... 40
3.1.1 Detection Techniques .. 41
3.1.1 Mitigation Techniques... 41
3.2 Examples of SET and SEU Mitigation Techniques in ASICs... 54
3.3 Examples of SEU Mitigation and Recovery Techniques in FPGAs... 59
3.3.1 Anti-fuse based FPGAs... 60
3.3.2 SRAM-based FPGAs .. 62

4 ARCHITECTURAL SET AND SEU MITIGATION TECHNIQUES FOR
SRAM-BASED FPGAS ...69

4.1 Proposing a SET and SEU Tolerant SRAM-based FPGA.. 70
4.2 Technique based on Hardened Memory Cells to replace the SRAM cells in the Routing,
Customization and Lookup tables .. 71
4.3 Technique based on Error Correction and Detection Codes (EDAC) for the Embedded Memory
.. 74
4.4 Technique based on Logic Redundancy for the CLBs flip-flops.. 76

5 HIGH-LEVEL SEU MITIGATION TECHNIQUES FOR SRAM-BASED
FPGAS ..78

5.1 Triple Modular Redundancy Technique for FPGA.. 78
5.2 Scrubbing .. 82

6

6 EVALUATING THE ROBUSTNESS OF THE TMR TECHNIQUE INTO
VIRTEX® FPGA ..84

6.1 Test Design Methodology... 87
6.2 Fault Injection in the FPGA Bitstream .. 88
6.3 Locating the upset in the design floorplanning.. 89
6.3.1 Bit column location in the matrix.. 89
6.3.2 Bit row location in the matrix.. 90
6.3.3 Bit location in the CLB ... 90
6.3.4 Bit Classification... 90
6.4 Fault Injection Results ... 94
6.5 The “Golden” Chip Approach .. 97

7 DESIGNING AND TESTING A TMR MICRO-CONTROLLER INTO
VIRTEX® FPGA ..98

7.1 Area and Performance Results ... 100
7.2 TMR 8051 Micro-controller Radiation Ground Test Results .. 102
7.3 Final Remarks .. 104

8 REDUCING TMR OVERHEADS BY COMBINING HARDWARE AND
TIME REDUNDANCY..105

8.1 Duplication with comparison combined with time redundancy... 106
8.2 Fault Injection in the VHDL Description... 111
8.3 Area and Performance Results ... 114
8.3 Final Remarks .. 118

9 IMPROVING DUPLICATION WITH COMPARISON BY USING
CONCURRENT ERROR DETECTION TECHNIQUE (DWC-CED)120

9.1 Designing DWC-CED Technique in Arithmetic-based Circuits .. 121
9.1.1 Using CED based on hardware redundancy.. 124
9.1.2 Using CED based on time redundancy.. 125
9.2 Choosing the appropriated CED block for Arithmetic-based Circuits 127
9.2.1 Multipliers ... 127
9.2.2 Arithmetic and Logic Unit (ALU)... 127
9.2.3 Digital FIR Filter... 128
9.3 Fault Coverage Results of the DWC-CED in Arithmetic-based Circuits.................................... 128
9.4 Area and Performance Results of the DWC-CED Technique in Arithmetic-based Circuits 131
9.5 Designing DWC-CED Technique in Non-Arithmetic-based Circuits.. 138

10 CONCLUSIONS...141

REFERENCES ...145

7

LIST OF ABBREVIATIONS

ASIC Application Specific Integrated Circuits
BRAM Embedded Memory
CED Concurrent Error Detection
CLB Complex Logic Block
CMOS Complementary Metal-Oxide Silicon
COTS Commercial-Off-The-Shelf
DMR Dual Modular Redundancy
DSP Digital Signal Processing
EDAC Error Correction and Detection Codes
FPGA Field Programmable Gate Array
IC Integrated Circuits
LET Linear Energy Transfer
LUT Lookup Table
MBU Multiple Bit Upset
NRE Non-Recurring Engineer Cost
RS Code Reed-Solomon Code
SEE Single Event Effect
SET Single Event Transient
SEU Single Event Upset
SOC System on a Chip
SOI Silicon on Insulator
SRAM Static Random Access Memory
TMR Triple Modular Redundancy
VDSM Very Deep Submicron

8

LIST OF FIGURES

Figure 1.1: Design evolution using FPGA ..17
Figure 1.2: Actual architecture generation of commercial field programmable gate

arrays...18
Figure 1.3: Design flow of how to protect a digital circuit implemented in a Sram-

based FPGA ..19
Figure 2.1: Charged particle striking the silicon surface...23
Figure 2.2: An example of cross-section per LET curve ..24
Figure 2.3: 1-10 Mev atmospheric neutron flux vs. altitude, simplified boeing

model ..25
Figure 2.4: Neutron reaction ...26
Figure 2.5: Upsets Hitting combination and sequential logic26
Figure 2.6: Single Event Upset (SEU) effect in a SRAM memory cell27
Figure 2.7: Single Event Transient (SET) effect in combinational logic27
Figure 2.8: MBU provoked by a single particle ..28
Figure 2.9: Sram based FPGA topology ...29
Figure 2.10: Virtex CLB tile schematic ..30
Figure 2.11: Slice overview in the virtex CLB ...31
Figure 2.12: 4-Input LUT schematic...31
Figure 2.13: LUT configuration examples ..32
Figure 2.14: Examples of CLB flip-flop configuration...33
Figure 2.15: Two examples of switch matrices with a different flexibility (a) fs=3

(b) fs=5..33
Figure 2.16: Direction of the connections in a switch matrix (W=6)............................34
Figure 2.17: Routing Switch connections ...34
Figure 2.18: Switch matrix connects the single and hex segments35
Figure 2.20: Input And output multiplexors in the routing ...35
Figure 2.21: Embedded block RAMs (BRAM) ..36
Figure 2.22: The comparison of the effects of a SEU in ASIC and FPGA

architecture..37
Figure 2.23: Examples of upsets in the SRAM-based FPGA architecture38
Figure 3.1: Time redundancy duplication scheme to detect set in combinational

logic ..41
Figure 3.2: Hardware redundancy duplication scheme to detect set in

combinational logic and seu in sequential logic41
Figure 3.3: Full time redundancy scheme to correct set in combinational logic.........42
Figure 3.4: TMR implemented in the entire device ..42
Figure 3.5: TMR memory cell with single voter...43
Figure 3.6: TMR memory cell with three voters and refreshing.................................43

9

Figure 3.7: Full time redundancy scheme for combinational logic combined to full
hardware redundancy in the sequential logic..44

Figure 3.8: Full Hardware redundancy (TMR) scheme for combinational and
sequential logic ...44

Figure 3.9: Duplication and time redundancy to mitigate set in combinational
logic ..45

Figure 3.10: Hamming code 12-bit word and the check bits ..46
Figure 3.11: Hamming code check bits generation...46
Figure 3.12: Reed-Solomon coded word...48
Figure 3.13: Examples of double bit flips in a memory where each row is protected

by RS code ..48
Figure 3.15: Resistor hardened memory cell...49
Figure 3.16: IBM hardened memory cell ..50
Figure 3.17: HIT hardened memory cell ...50
Figure 3.18: Canaris hardened memory cell ...51
Figure 3.19: DICE hardened memory cell ..52
Figure 3.20: NASA I hardened memory cell ..52
Figure 3.21: NASA II hardened memory cell ...52
Figure 3.22: Temporal sampling latch with sample and release stages53
Figure 3.23: General scheme of the SEU hardened 8051 ...55
Figure 3.24: Scheme of the hamming code implemented in the memory and

registers of the 8051-like micro-controller ...55
Figure 3.25: SEU Hardened 8051 daughter board and thesic mother board.................56
Figure 3.26: Radiation test result i of the “not protected” 8051 in the matrix

multiplication test ...56
Figure 3.27: Architecture of Actel FPGAs..61
Figure 3.28: Multistage interconnection network (min) in a Xilinx FPGA63
Figure 3.29: Atmel FPGA logic block ..65
Figure 3.30: Example of SRAM-based FPGA matrix ..65
Figure 3.31: Example of functional cell and routing cell..66
Figure 3.32: Design candidates modified from tmr. (a) the original tmr design. (b) a

hybrid tmr-simplex-ced design. (c) a duplex system with a checking
block. (d) a duplex system with two ced blocks (yu; mccluskey, 2001) ..67

Figure 4.1: A Case of Study: hypothetical FPGA architecture69
Figure 4.2: Special features elements in the SRAM-based FPGA matrix71
Figure 4.3: Schematic of a memory row protected by Reed-Solomon and

hamming code...75
Figure 4.4: Schematic of a memory row protected by Reed-Solomon and

hamming code...75
Figure 4.5: Hamming and RS code in memory architecture75
Figure 4.6: Proposed SEU and SET hardened flip-flop with refreshing.....................77
Figure 5.1: TMR logic with voter ...79
Figure 5.2: Majority voters..80
Figure 5.3: Majority voter in the virtex® output logic...81
Figure 5.4: BRAM TMR with refreshing..82
Figure 5.5: Scrubbing configuration scheme ..83
Figure 6.1: Virtex® architecture overview ..84
Figure 6.2: CLB tile map...86
Figure 6.3: Matrix frame organization map ..86
Figure 6.4: TMR design of a 32-bit pipelined counter...87

10

Figure 6.5: TMR design methodology ..88
Figure 6.6: SEU test platform..89
Figure 6.7: Example of frame organization in Virtex® Family..................................90
Figure 6.8: Example of design connection file (.ncd) ...92
Figure 6.9: CLB tile representation in the ISE floorplanning tool from Xilinx..........94
Figure 6.10: SEU example in the GRM user’s design floorplanning95
Figure 6.11: Example of effect of a SEU in the FPGA routing96
Figure 6.12: “Golden” chip method ..97
Figure 7.1: TMR 8051 design methodology ...99
Figure 7.2: Example of TMR vhdl code..100
Figure 7.4: TMR 8051 Micro-controller routing floorplanning................................101
Figure 7.5: Testing platform..102
Figure 7.6: Scrubbing and refreshing times ..103
Figure 8.1: Time and hardware redundancy schematic for upset detection106
Figure 8.3: Fault effect in the clock period ...108
Figure 8.2: DWC with time redundancy proposed technique scheme for one bit

output ..109
Figure 8.4: Upset detector and voter circuit area optimization using group of n

bits...111
Figure 8.5: Upset detector and voter circuit area optimization using a single state

machine for a group of n bits ..111
Figure 8.6: Schematic of the fault injection generator block112
Figure 8.7: Example of the mechanisms used to inject faults in the design..............113
Figure 8.8: Simulation analysis of a fault injection in the DMR with time

redundancy scheme implemented in a 2x2 bits multiplier115
Figure 8.9: Example of FIR canonical filter of 5 taps scheme..................................116
Figure 8.10: Filter registers protected by TMR...117
Figure 8.11: Filter adders and multipliers protected by DWC with time redundancy 117
Figure 8.12: Evaluation schemes of the TMR and the DWC with time redundancy

approach..118
Figure 9.1: DWC combined with CED scheme ..120
Figure 9.2: Time redundancy for permanent fault detection.....................................121
Figure 9.4: Examples of implementations with the combinational output

registered and in the pads..123
Figure 9.5: Residue code technique implementation ..124
Figure 9.6: Residue code technique implementation in vhdl125
Figure 9.7: Reso technique implementation..126
Figure 9.8: Multiplier using cascaded full adders ...127
Figure 9.9: ALU bit slice...128
Figure 9.10: Upsets emulation in the Chipscope analyzer using the Virtex FPGA

prototype board ...129
Figure 9.11: FIR filter protected by DWC-CED technique ..132
Figure 9.12: FIR filter protected by DWC-CED technique in the combinational and

sequential logic ...133
Figure 9.13: Amplitude signal input in the FIR filter..134
Figure 9.14: Amplitude signal output in the FIR filter..135
Figure 9.15: Map of the memory cells in the filter (9 bits x 10 registers)135
Figure 9.16: Amplitude signal output in the faulty FIR filter137
Figure 9.17: Amplitude signal output in the faulty FIR filter with 3-bit protected in

the first 7 registers taps ...137

11

Figure 9.18: Signal output in the FIR filter in the frequency domain138
Figure 9.19: Signal output in the faulty FIR filter in the frequency domain...............138
Figure 9.20: Signal output in the faulty FIR filter with 3-bit protected in the first 7

registers taps in the frequency domain ...138
Figure 9.21: Parity prediction using single parity bit ..139
Figure 9.22: Multiple parity bits for concurrent error detection139
Figure 9.23: Unidirectional error detecting codes...140

12

LIST OF TABLES

Table 3.1: Hamming code and TMR comparison summary..47
Table 3.2: SEU mitigation techniques summary ...54
Table 3.3: Results of robust 8051-like micro-controller implemented in PLDs57
Table 4.1: Evaluation of the sensitive cells in the Virtex® CLB72
Table 4.2: Summary of hardened memory cells: main advantages and drawbacks73
Table 4.3: Area and delay of reed-solomon and hamming codes used to protect a

memory...76
Table 4.4: Summary of tmr approaches: main advantages and drawbacks77
Table 6.1: Virtex® configuration column type...85
Table 6.2: Frame organization ...86
Table 6.3: Virtex® configuration column type...88
Table 6.4: Bit classification in the CLB ..91
Table 7.1: TMR logic overhead in the 8051 (XQVR300)...101
Table 7.2: Virtex dynamic cross-section of TMR 8051 ..103
Table 8.1: Syndrome analysis in the double modular redundancy approach107
Table 8.2: Example of combinational circuit: multiplier implemented in XCV300-

pq240 FPGA...116
Table 8.3: Example of sequential circuit: FIR canonical filter of 9 taps

implemented in XCV300-pq240 FPGA ...118
Table 9.1: Fault coverage, area and performance evaluation of CED techniques in

sram-based FPGAs ...131
Table 9.2: Comparison of multiplier implementations (XCV300-pq240)131
Table 9.3: Filter implementations XCV300-pq240 ...133
Table 9.4: The influence of the upsets injected in the registers in the filter output.....136
Table 9.5: Filter implementation using dwc-ced in the combinational and sequential

logic (XCV300-pq240)...136

13

ABSTRACT

This thesis presents the study and development of fault-tolerant techniques for
programmable architectures, the well-known Field Programmable Gate Arrays
(FPGAs), customizable by SRAM. FPGAs are becoming more valuable for space
applications because of the high density, high performance, reduced development cost
and re-programmability. In particular, SRAM-based FPGAs are very valuable for
remote missions because of the possibility of being reprogrammed by the user as many
times as necessary in a very short period. SRAM-based FPGA and micro-controllers
represent a wide range of components in space applications, and as a result will be the
focus of this work, more specifically the Virtex® family from Xilinx and the
architecture of the 8051 micro-controller from Intel.

The Triple Modular Redundancy (TMR) with voters is a common high-level
technique to protect ASICs against single event upset (SEU) and it can also be applied
to FPGAs. The TMR technique was first tested in the Virtex® FPGA architecture by
using a small design based on counters. Faults were injected in all sensitive parts of the
FPGA and a detailed analysis of the effect of a fault in a TMR design synthesized in the
Virtex® platform was performed. Results from fault injection and from a radiation
ground test facility showed the efficiency of the TMR for the related case study circuit.
Although TMR has showed a high reliability, this technique presents some limitations,
such as area overhead, three times more input and output pins and, consequently, a
significant increase in power dissipation.

Aiming to reduce TMR costs and improve reliability, an innovative high-level
technique for designing fault-tolerant systems in SRAM-based FPGAs was developed,
without modification in the FPGA architecture. This technique combines time and
hardware redundancy to reduce overhead and to ensure reliability. It is based on
duplication with comparison and concurrent error detection. The new technique
proposed in this work was specifically developed for FPGAs to cope with transient
faults in the user combinational and sequential logic, while also reducing pin count, area
and power dissipation. The methodology was validated by fault injection experiments in
an emulation board. The thesis presents comparison results in fault coverage, area and
performance between the discussed techniques.

Keywords: fault tolerance, FPGA, single event upset, fault injection, time and hardware
redundancy

14

Desenvolvimento de Técnicas de Tolerância a Falhas Transientes em
Componentes Programáveis por SRAM

RESUMO

Esse trabalho consiste no estudo e desenvolvimento de técnicas de proteção a falhas
transientes, também chamadas single event upset (SEU), em circuitos programáveis
customizáveis por células SRAM. Os projetistas de circuitos eletrônicos estão cada vez
mais predispostos a utilizar circuitos programáveis, conhecidos como Field
Programmable Gate Array (FPGA), para aplicações espaciais devido a sua alta
flexibilidade lógica, alto desempenho, baixo custo no desenvolvimento, rapidez na
prototipação e principalmente pela reconfigurabilidade. Em particular, FPGAs
customizados por SRAM são muito importantes para missões espaciais pois podem ser
rapidamente reprogramados à distância quantas vezes for necessário.

A técnica de proteção baseada em redundância tripla, conhecida como TMR, é
comumente utilizada em circuitos integrados de aplicações específicas e pode também
ser aplicada em circuitos programáveis como FPGAs. A técnica TMR foi testada no
FPGA Virtex® da Xilinx em aplicações como contadores e micro-controladores. Falhas
foram injetadas em todos as partes sensíveis da arquitetura e seus efeitos foram
detalhadamente analisados. Os resultados de injeção de falhas e dos experimentos sob
radiação em laboratório comprovaram a eficácia do TMR em proteger circuitos
sintetizados em FPGAs customizados por SRAM. Todavia, essa técnica possui algumas
limitações como aumento em área, uso de três vezes mais pinos de entrada e saída (E/S)
e conseqüentemente, aumento na dissipação de potência.

Com o objetivo de reduzir custos no TMR e melhorar a confiabilidade, uma técnica
inovadora de tolerância a falhas para FPGAs customizados por SRAM foi desenvolvida
para ser implementada em alto nível, sem modificações na arquitetura do componente.
Essa técnica combina redundância espacial e temporal para reduzir custos e assegurar
confiabilidade. Ela é baseada em duplicação com um circuito comparador e um bloco de
detecção concorrente de falhas. Esta nova técnica proposta neste trabalho foi
especificamente projetada para tratar o efeito de falhas transientes em blocos
combinacionais e seqüenciais na arquitetura reconfigurável, reduzir o uso de pinos de
E/S, área e dissipação de potência. A metodologia foi validada por injeção de falhas
emuladas em uma placa de prototipação. O trabalho mostra uma comparação nos
resultados de cobertura de falhas, área e desempenho entre as técnicas apresentadas.

Palavras-Chaves: tolerância a falhas, circuitos programáveis, falhas transientes, injeção
de falhas, redundância espacial e temporal

15

1 INTRODUCTION

Fault-tolerance on semiconductor devices has been a meaningful matter since upsets
were first experienced in space applications several years ago. Since then, the interest in
studying fault-tolerant techniques in order to keep integrated circuits (ICs) operational
in such hostile environment has increased, driven by all possible applications of
radiation tolerant circuits, such as space missions, satellites, high-energy physics
experiments and others (NASA, 2003). Spacecraft systems include a large variety of
analog and digital components that are potentially sensitive to radiation and must be
protected or at least qualified for space operation. Designers for space applications
currently use radiation-hardened devices to cope with radiation effects. However, there
is a strong drive to utilize standard commercial-off-the-shelf (COTS) and military
devices in spaceflight systems to minimize cost and development time as compared to
radiation-hardened devices (KATZ et al., 1997; OBRYAN; LABEL, 2001).

The space radiation environment can have serious effects on spacecraft electronics.
Single Event Effect (SEE) is the main concern in space (BARTH, 1997), with
potentially serious consequences for the application, including loss of information and
functional failure. SEE occurs when charged particles hit the silicon transferring enough
energy in order to provoke a fault in the system. SEE can have a destructive or transient
effect, according to the amount of energy deposited by the charged particles and the
location of the strike in the device. The main consequences of the transient effect, also
called Single Event Upset (SEU), are bit flips in the memory elements. SEU has been
constantly magnified in the past years, caused by the continuous technology evolution
that has led more and more complex architectures, with a large amount of embedded
memories, followed by an amazing scaling down process of transistor dimensions
(Moore’s Law) (MOORE, 1975).

The fabrication technology process of semiconductor components is in continuous
evolution in terms of transistor geometry shrinking, power supply, speed, and logic
density (SIA SEMICONDUCTOR, 1994). As stated in (JOHNSTON, 2000;
OBRYAN; LABEL, 2001; OBRYAN et al., 2002; DUPONT; NICOLAIDIS; ROHR,
2002), drastic device shrinking, power supply reduction, and increasing operating
speeds reduce significantly the noise margins and thus the reliability that very deep
submicron (VDSM) ICs face from the various internal sources of noise. This process is
now approaching a point where it will be unfeasible to produce ICs that are free from
these effects. A more significant problem is related to SEU. It is predicted that neutrons
produced by sun activity will affect dramatically the operation of future ICs. At the sea
level, the energy of these particles is not strong enough to drastically affect the
operation of current ICs. But as we approach 0.1um, or very low supply voltage, the
rates of random errors induced by cosmic neutrons will be unacceptable. The situation is
worse at flight altitudes. Alpha particles produced by packaging material are becoming
another cause of increasing soft error rates in these technologies.

16

The necessity to protect integrated circuits against upsets has become more and
more eminent (JOHNSTON, 2000; LABEL et al., 2000). Experiments presented in
(NORMAND; BAKER, 1993; NORMAND, 1996; NORMAND, 2001) indicate that
neutron particles present in the atmosphere are capable of producing SEE in avionics.
Recent studies also show that memory cells composed of transistors with length smaller
than 0.25 µm and combinational logic composed of transistors with length smaller than
0.13 µm may be subject to upsets while operating in the space environment or inside the
atmosphere (BAUMANN, 2001, BOREL; GAUTIER; GASIOT, 2001). Terrestrial
applications that are determined as critical such as bank servers, telecommunication
servers and avionics are more and more considering the use of fault-tolerant techniques
to ensure reliability.

Both discussed factors, the space market interest of using COTS/military devices in
space applications and the constant increase in the radiation sensitivity of integrated
circuits driven by the process scaling, have brought the necessity of researching fault-
tolerant techniques for ICs able to cope with the radiation effects at sea level and also
qualifying the design for space applications. Although many techniques have been
developed in the last few years attempting to avoid SEU, efficient fault-tolerant
solutions are still a challenge for the next generation semiconductor industry, especially
because of the complexity of the new architectures.

The development of fault-tolerant techniques is strongly associated with the target
device and it requires a detailed analysis of the effects of an upset on the related
architecture. For each type of circuit, there is a set of most suitable solutions to be
applied. In the past years, the integrated circuit industry has designed more and more
complex architectures in order to improve performance, to increase logic density and to
reduce cost. Examples of this development include Application Specific Integrated
Circuits (ASICs), microprocessors composed of millions of transistors, high-density
Field Programmable Gate Array (FPGA) components and more recently System-on-a-
Chip (SOC) composed of embedded microprocessors, memories and analog logic
blocks. These architectures have made a dramatic impact on the way systems are
designed, providing a large amount of information processing on a single chip. They
cover a wide range of applications, from portable systems to dedicated embedded
control units and computers. In particular, FPGAs have made a major improvement in
system designs by adding the reconfigurability feature, which reduces the time to
market and increases the flexibility in the design.

Due to the constant advances in technology over the last few years, Moore’s law
again, the gap between FPGAs and ASICs in terms of performance has been reduced to
a negligible level for the majority of applications, which has increased the market for
FPGAs (figure 1.1). In the 70s, a system was basically composed of a microprocessor
component, a memory chip and discrete logic. In the 80s, a large part of the discrete
logic was replaced by ASICs and some part by programmable logic components
(FPGA). In the 90s, the discrete logic completely disappeared and the system was
composed of microprocessors, memory, ASICs and FPGA components. ASICs are
progressively being replaced by FPGAs in many systems as illustrated in the
illustration. In addition, more complex structures are constantly being added to FPGA
architectures, supported by substantial increases in logic density and performance in the
last few years. Nowadays, FPGAs are also replacing microprocessors and memories as
these parts are being added to the FPGA matrix.

Consequently, next generation of FPGA architectures do not claim to reduce that
gap between ASIC and programmable logic anymore, but to merge microprocessors and
reconfigurability features in the same component in order to improve performance and

17

flexibility (DAC, 2001). FPGAs already provide reconfigurability and high performance
for many applications, but the necessity of adding either more performance for
applications such as Digital Signal Processing (DSP), using high-bandwidth and
reducing the board space, power and cost, has increased the interest of embedding
microprocessors in the programmable matrix, as illustrated in more detail in figure 1.2.
This experience had started with the soft cores synthesized in the FPGA architecture in
order to get the highest performance and density tradeoff (XILINX, 2000; ALTERA,
2001). And it has arrived at the next level of performance and complexity with the
Virtex® II –Pro generation, which has up to four hard PowerPC core microprocessors
from IBM embedded in the matrix (XILINX, 2001a).

FPGAFPGA

2003

Memory

uP

uP FPGA

Figure 1.1: Design Evolution using FPGA

As a consequence, FPGAs are increasingly demanded by spacecraft electronic
designers because of their high flexibility in achieving multiple requirements such as
high performance, low NRE (Non-Recurring Engineering) cost and fast turnaround
time. There are many types of customization in the FPGAs. One of the most popular
ones uses SRAM memory cells to customize the FPGA, which makes possible in-the-
field customization as many times as necessary in a very short period of time.
Examples are the families Virtex®, Virtex®-E and Virtex®-II fabricated by Xilinx. As a
result, SRAM-based FPGAs are even more valuable for remote missions by offering the
additional benefits of allowing in-orbit design changes, with the aim of reducing the
mission cost by correcting errors or improving system performance after launch.

18

Soft IP coreHard IP core

Embedded memory
Customizable Logic Blocks
(CLBs)

Ultra fast I/O

Dedicated routing

Figure 1.2: Actual architecture generation of commercial Field Programmable Gate

Arrays

The advantages of using SRAM-based FPGAs for space applications and the
increase of logic complexity of the programmable logic with more and more embedded
memories and specific architectures such as microprocessors brings us the necessity of
researching new SEU mitigation techniques specific for programmable architecture.
This thesis presents the study and development of SEU mitigation techniques for
programmable logic architectures, more specifically for SRAM-based FPGAs. The
consideration of using FPGA for space applications is fairly recent and there is a lot of
work to be done in this area. Presently, there is no efficient solution for SRAM based
FPGAs that can ensure 100% reliability in all conditions for SEU.

Several fault-tolerant techniques have been studied in the past years to protect
ASICs against transient faults, and because FPGAs are composed of combinational and
sequential logic and more recently embedded processors, previous work dealing with
standard integrated circuits can be adapted to the programmable logic architecture by
finding the best tradeoff among area overhead, performance penalties, single and
multiple upset correction, process technology and implementation cost. However, the
SEU mitigation techniques previously used for ASICs cannot simply be applied to
programmable circuits because of the distinct effect of a SEU in the FPGA architecture
compared to an ASIC, as will be further discussed in the next chapter. Consequently,
the effect of SEUs in the SRAM-based FPGA architecture must be investigated to
identify the limitations of the already used fault-tolerant techniques and to guide the
investigation to new solutions.

The goal of this work is to investigate the techniques used nowadays and to develop
new SEU mitigation techniques for SRAM-based FPGAs that are cost efficient in terms
of:

- time to market,
- low development cost,
- high performance,
- low area cost,

19

- low power dissipation,
- high reliability.

 There are two ways to implement fault-tolerant circuits in SRAM-based FPGAs, as
exemplified in the flowchart in figure 1.3. The first possibility is to design a new FPGA
matrix composed of fault-tolerant elements. These new elements can replace the old
ones in the same architecture topology or a new architecture can be developed in order
to improve robustness. The cost of these two approaches is high and it can differ
according to the development time, number of engineers required to perform the task
and the foundry technology used. Another possibility is to protect the high-level
description by using some sort of redundancy, targeting the FPGA architecture. In this
way, it is possible to use a commercial FPGA part to implement the design and the SEU
mitigation technique is applied to the design description before being synthesized in the
FPGA. The cost of this approach is inferior to the previous one because in this case the
user is responsible for protecting the own design and it does not require new chip
development and fabrication. In this way, the user has the flexibility of choosing the
fault-tolerant technique and consequently the overheads in terms of area, performance
and power dissipation.

How to implement a fault-tolerant digital circuit in
SRAM-based FPGA?

A B C DSEU Hardened
SRAM-based

FPGA

Commercial
SRAM-based

FPGA

For a given digital circuit described in a high-level
description language

Designing a new FPGA
matrix composed of

fault tolerant elements
by:

Protecting the circuit
description by

redundancy, targeting
the FPGA architecture.

Combination
of hardware

and time
redundancy

Developing a
new

architecture
topology

Replacing
elements in the

same architecture
topology

Full
hardware

redundancy

Figure 1.3: Design flow of how to protect a digital circuit implemented in a SRAM-

based FPGA

In summary, the four different implementations of a fault-tolerant FPGA: A, B, C
and D have different costs that are approximately organized as: cost B > cost A >>>>>
cost C > cost D. All of them have their own space in the market, as each application
requires different constraints. But because the semiconductor industry trends to
emphasize time-to-market and low-cost production, the implementations C and D look

20

more interesting. In this work, both architectural and the high-level methods are
presented and discussed, but because of the high cost of the implementations A and B,
only implementations C and D are designed and tested in details.

This thesis work can be divided into three main phases, ranging from the study of
state-of-the-art of SEU mitigation techniques for ASIC and FPGA components, to the
implementation and test of new fault-tolerant techniques for SRAM-based FPGA
components. Some of the research phases are also related to the two internships
concluded during the thesis work, one at Tima laboratory (Grenoble, France) for 6
months under the supervision of researcher Raoul Velazco and other one at Xilinx (San
Jose, USA) for 11 months under the supervision of engineer Joe Fabula in the high
reliability team.

In the first phase of the research, available techniques to protect integrated circuits
against radiation were studied. The radiation fault-tolerant techniques can be classified
as: the ones that change the technology used in the fabrication process such as Silicon
on Insulator (SOI), and the ones that change the hardware design of a system such as
SEU hardened memory cells, error detection and correction codes (EDAC) and logic
redundancy. There is a trade-off with each mitigation technique for each type of
architecture system, and there is no best unique solution so far. Some of the considered
techniques were evaluated in terms of area, cost and performance. The first case study
circuit was the 8051 micro-controller from Intel (INTEL, 1994). The microprocessor
architecture was chosen for its representation of the majority of system requirements in
space applications nowadays, presenting all types of logic to be protected and being part
of the new generation architectures based on FPGA with an embedded hard
microprocessor core.

The description of the 8051 micro-controller used in the experiment was developed
at UFRGS (CARRO; PEREIRA; SUZIM, 1996). It is composed of a datapath unit,
control unit, state machine, instruction decoding unit and embedded memory. Although
the 8051 micro-controller has a simplified architecture compared to the latest
microprocessors, the assumptions made in its architecture can be adapted to any other
processor-like circuit. Techniques such as hamming code and radiation tolerant flip-
flops were implemented in the 8051 micro-controller (LIMA et al., 2000a; LIMA et al.,
2000b). Fault injection (LIMA et al., 2001a; LIMA et al., 2002a; LIMA et al., 2002b)
and simulation were used to analyze the efficiency of the techniques. Area and
performance were taken into consideration with the results.

The second phase of the work resumes the analysis of an SRAM-based FPGA and
the SEU effects in this architecture. The Virtex® family FPGA from Xilinx is the most
popular high density and high performance FPGA used in the market nowadays and it
was chosen to be the object of study in this work. There are two ways to mitigate SEU
in FPGA designs, as mentioned previously. One is based in changing the FPGA
architecture and the other one is based on modifying the high-level design description
before the FPGA synthesis. First, implementations of some SEU mitigation techniques
in the architectural level of the FPGA matrix were proposed. The SRAM-based
architecture was divided in main blocks classified by functionality (such as LUT), flip-
flops, customization routing, embedded memory, PLL, etc. SEU mitigation techniques
for many of the blocks are discussed. The objective is to show the trade-off of each
technique in the Virtex® FPGA and the complexity of developing a new architecture
with changes at the mask level. This investigation was based on the experience collected
in first phase.

Because of the limitations in developing and testing a new fault-tolerant FPGA
architecture such as cost and time-to-market/ techniques at the high-level description

21

must also be investigated. The Triple Modular Redundancy (TMR) with voters is a
common technique to protect against SEU in ASICs and it can be also applied to protect
FPGAs against SEU, as shown in (CARMICHAEL, 2001). In this case, the mitigation
can be applied to the high-level design description language and synthesized in the
device without any changes in the mask process. The TMR technique was first tested in
the Virtex architecture by using a small design based on counters. Faults were injected
in all sensitive parts of the FPGA and a detailed analysis of the effect of a fault in a
TMR design synthesized in the Virtex platform was performed. Results were published
in (LIMA et al., 2001b).

In order to test a more complex design protected by TMR in the Virtex® platform
that would also include embedded memories, the same 8051 like micro-controller
description was protected by TMR and tested under the FPGA platform. There are many
advantages of using the same design as the 8051 micro-controller, such as good
description knowledge, importance of micro-controllers IP in FPGA and the possibility
of comparison with the previous techniques (hamming code and SEU hardened memory
cells) applied in the same description. The TMR 8051 micro-controller was tested by
fault injection and under proton radiation in a ground facility (LIMA et al., 2001b). At
the end of these practical experiments (LIMA et al., 2001b; CARMICHAEL; FULLER;
FABULA; LIMA, 2001), the use of TMR in Virtex FPGAs has confirmed the efficacy
of the TMR structure to recover upsets in the FPGA architecture. However, the TMR
technique presents some limitations, such as area overhead, three times more input and
output pins and, consequently, a significant increase in power dissipation and also some
robustness issues. The result has brought about the necessity of improving this
technique in order to reduce the overheads and to try to improve robustness as well.

In the third phase of the work, additional SEU mitigation techniques for the Virtex®
FPGA architecture were investigated. A new high-level fault-tolerant technique for
SRAM-based FPGA was developed (LIMA, CARRO, REIS, 2003a; LIMA, CARRO,
REIS, 2003b). This technique combines time and hardware redundancy with some extra
features able to cope with the effects of SEU in FPGAs and at the same time it is able to
reduce the number of input and output pads and area overhead compared to the
traditional TMR approach. The methodology was validated in combinational and
sequential circuits by using fault injection experiments emulated in a prototype board.
Results have confirmed that this new technique can reduce not only pin count but also
area as well without compromising performance and reliability.

This thesis report is organized as follows. Chapter 2 describes the radiation effects
on integrated circuits manufactured using CMOS process and it explains in detail the
difference between the effects of a SEU in ASIC and in SRAM-based FPGA
architectures. This chapter shows the architecture analysis of the Virtex® FPGA and all
its radiation sensitive area. Chapter 3 presents the main techniques available in the
literature, either being commercialized by companies or being studied by researchers, to
mitigate the effects of radiation in ASICs, such as microprocessors and memories, and
in programmable architectures, such as FPGAs programmed by SRAM and by anti-fuse
technology.

Chapter 4 discusses some SEU mitigation techniques that can be applied at the
FPGA architectural level. The FPGA was divided by functionality in main logic blocks.
Each block has different characteristics, and the fault-tolerant technique must take into
account the peculiarities of each. In the end, a SEU tolerant FPGA is proposed based on
the presented SEU mitigation techniques.

Chapter 5 defines the problem of protecting SRAM-based FPGAs against radiation
in the high level description. The Triple Modular Redundancy (TMR) technique in the

22

high level description for FPGAs is addressed in this chapter. Chapter 6 evaluates the
robustness of the TMR technique by using fault injection in the bitstream of the FPGA
and also in a radiation ground test facility. In this chapter, a methodology is presented to
relate the upset bit in the bitstream to the SRAM cell location in the user’s design
floorplanning. The obtained results represent an important base for this work, because it
shows the limitations of the TMR method on the SRAM-based FPGA, justifying the
research of new design techniques for SEU mitigation in SRAM based FPGAs.

Chapter 7 shows the implementation and results of the 8051 description protected by
TMR in the Virtex FPGA. All implementation details of the TMR technique were
carefully applied to the VHDL description of the 8051 to test this technique in a more
complex design. The final protected design was tested by fault injection in the FPGA
bitstream and also in a radiation ground test facility. Results and final remarks are
placed at the end of that chapter.

Chapter 8 introduces a new high-level technique for designing fault tolerant systems
for SRAM-based FPGAs, without modifications in the FPGA architecture, able to cope
with transient faults in the user combinational and sequential logic, while also reducing
pin count, area and power dissipation compared to the traditional TMR. The
methodology was validated by fault injection experiments in VHDL description
emulated in a prototyped board. Results in terms of fault coverage and area and
performance comparison with the TMR approach are presented.

The technique presented in chapter 8 presents some limitations in fault coverage
because it uses the standard time redundancy approach to detect the effect of a SEU in
the FPGA matrix. In chapter 9, an improvement to the high-level technique presented in
chapter 8 is proposed. This technique combines duplication with comparison and
concurrent error detection technique in order to cope with the permanent effects of a
SEU in FPGAs and at the same time to reduce TMR overheads. In addition, this
proposed method is also able to detect physical faults, which are permanent faults that
are not corrected by reconfiguration. The methodology was also validated by fault
injection experiments in an emulation board. Some fault coverage results and a
comparison with the TMR approach are evaluated.

The conclusion is placed in chapter 10, followed by the references, and it analyzes
the architectural and high-level methods of fault-tolerant techniques for SRAM-based
FPGAs studied and developed in this thesis. Because the technology is constantly in
evolution, there are always improvements to be made in the projection of integrated
circuits, and consequently, in the way designs are protected against faults. This work
has contributed to some solutions for the SRAM-based FPGAs that are being projected
to work in commercial applications but are manufactured by nanotechnologies and need
to work properly in the presence of upsets. However, there is much more research to be
done as each step of investigation brings more questions and possibilities of solutions.
As a result, future works are proposed at the end of this report.

23

2 SPACE ENVIRONMENT AND RADIATION EFFECTS

Signal integrity is becoming much more critical in integrated circuits (ICs) designed
in very deep sub-micron technologies (VDSM), as device dimensions continue to
shrink. Some of the causes are cross coupling and ground bounce, which are increasing
the sensitivity of VDSM designs to transient errors (IROM ET AL, 2002). In addition,
ICs operating in space environment and more recently at sea level can be upset by
charged particles that also generate transient errors in the system. Transient errors
provoked by radiation effects are a major concern and they must be tolerated in order to
ensure reliability.

The radiation environment is composed of various particles generated by sun
activity (STASSINOPOULOS; RAYMOND, 1988; BARTH, 1997; BAUMANN, 2001;
LERAY, 2001). The particles can be classified as two major types: (1) charged particles
such as electrons, protons and heavy ions, and (2) electromagnetic radiation (photons),
which can be x-ray, gamma ray, or ultraviolet light. The main sources of charged
particles that contribute to radiation effects are protons and electrons trapped in the Van
Allen belts, heavy ions trapped in the magnetosphere, galactic cosmic rays and solar
flares. The charged particles interact with the silicon atoms causing excitation and
ionization of atomic electrons.

When a single heavy ion strikes the silicon, it loses its energy via the production of
free electron hole pairs resulting in a dense ionized track in the local region, as
illustrated in figure 2.1 (a). Protons and neutrons can cause nuclear reaction when
passing through the material, as illustrated in figure 2.1 (b). The recoil also produces
ionization. The ionization generates a transient current pulse that can be interpreted as a
signal in the circuit causing an upset.

p-substrate p-substrateShort-range
recoil produces
ionization

A few protons cause
nuclear reactions

proton
Heavy ion

Ionization by each
particle

Figure 2.1: Charged particle striking the silicon surface (OBRYAN et al., 1998)

The influence of radiation in the material is measured by the energy and the flux of
particles. The flux is the number of particles passing during one second through one cm2

of area [1/s.cm2]. Integrating the flux over time one gets the fluence, which is [1/cm2].

24

The flux of these sources is affected by the activity of the sun. The energy deposited by
the charged particle is measured in rad (1 rad = 10-2

 Js-1), which corresponds roughly to
the generation of 4x1013

 electron-hole pairs in one cm3 of silicon. The rate at which the
particle loses energy is called stopping power (dE/dx). The incremental energy dE is
usually measured in units of MeV while the material thickness is usually measured as a
mass thickness in units of mg/cm2. The energy transferred to the device is called Linear
Energy Transfer (LET) and it is measured by the incremental energy per unit length
(MeV/(mg/cm2)). The minimum LET that can cause an SEU is called the LET threshold
(LETth) (DENTAN, 2000). There are many levels of robustness, according to the
amount of flux and energy transferred to the silicon that can keep the circuit operating
properly. On average, space applications operating in low orbit and military applications
need to be robust to LETs higher than 40 MeV/(mg/cm2).

In other words, there is a minimum charge that must be deposited in the node in
order to cause an upset. This minimum charge is called critical charge (Qcrit) and it is
defined by Qcrit = Cnode.Vnode+ Irestore.Tflip. The critical charge must be bigger than the
node collector charge (Qcol), which is based on node parameters such as capacitance and
voltage. The critical charge has been reduced in the new process technologies because
of the scaling. For constant field scaling, for example, as all physical device dimensions
such as gate length L, gate width W, and gate oxide thickness TOX, are reduced, the
supply voltage VDD and the threshold voltage VTH are also reduced proportionately. This
fact results in proportionately lower drain current (I), proportionately lower load
capacitance (C), and proportionately lower circuit gate delay (C*VDD/I). This means that
less charge or current is required to store information. Consequently, devices are
becoming more vulnerable to radiation and this means that particles with small charge,
which were once negligible, are now much more likely to produce upset.

By counting the number of upsets and knowing how many particles passed through
the part, we can calculate the probability of a particular particle causing an upset. This
resultant number, which is the number of upsets divided by the number of particles per
cm2 causing the upsets, is called the cross-section of the part and is measured in units of
cm2 / device. Consequently, the sensitivity of a device to an upset is measured by a
function of the cross-section (σ) in terms of the LET (Linear Energy Transfer). Figure
2.2 shows an example of cross-section per LET curve.

0 10 20 30 40 50 60 70 80 90 100

10E-2

10E-4

10E-6

10E-8

LET

σ σ sat

Figure 2.2: An example of cross-section per LET curve

LETth

25

Analyzing this curve, one can say that no error occurs in the presence of particles
with LET (linear energy transfer) lower than 25 MeV. For particles with 25 MeV, more
than 100.000.000 particles must travel through the circuit sensitive area to trigger one
upset. For particles with 50 MeV, 10.000 particles per second are needed to trigger one
upset. And a flux of 100 particles per second with a LET of 100 MeV is needed to
trigger one upset.

At the ground level, the neutrons are the most frequent cause of upset (NORMAND,
1996; OBRYAN et al, 1998; BAUMANN; SMITH, 2000). Neutrons are created by
cosmic ion interactions with the oxygen and nitrogen in the upper atmosphere. The
neutron flux is strongly dependent on key parameters such as altitude, latitude and
longitude. Its peak is around 60,000 ft (~20,000 m). At 30,000 ft (~10,000 m) the
neutrons are about 1/3 of the peak flux, and on the ground, it is about ~1/400 of the peak
flux. At airplane altitudes, the neutron flux is 7,200 neutrons/cm2/hour. The peak at
ground level is around 4 neutrons/cm²/sec, but the average at sea level is around 20
neutrons/cm2/hour. Figure 2.3 shows a graphic of the variation of the neutron flux
according to the altitude.

Figure 2.3: 1-10 MeV Atmospheric Neutron Flux vs. Altitude, Simplified Boeing

Model (NORMAND, 1996)

There are high-energy neutrons that interact with the material generating free
electron hole pairs and low energy neutrons. These neutrons interact with a certain type
of Boron present in semiconductor material creating others particles as represented in
figure 2.4. The energized alpha particles are the greatest concern in this case and they
are addressable through processing and packaging material. In principle, a very careful
selection of materials can minimize alpha particles. However, this solution is very
expensive and never eliminates the problem completely (DUPONT; NICOLAIDIS;
ROHR, 2002).

26

Figure 2.4: Neutron reaction (OBRYAN et al, 1998)

The detailed analysis of the effects of radiation particles in the bulk of a
semiconductor is still a challenge. One of the difficulties is in predicting just what
percentage of electron hole pairs is actually collected in the area around the stored data.
It is this percentage that determines the critical point at which the radiation induced
charge provokes an error in the stored data. Solutions to help the analysis can be the use
of complex 3D simulations to help find an accurate shape for the pulse generated by the
strike and the exploration of how the electron-hole-pair cloud can neutralize the stored
data.

2.1 Effect of SET and SEU in Integrated Circuits

A single particle can hit either the combinational logic or the sequential logic in the
silicon (CRAIN et al., 2001; ALEXANDRESCU; ANGHEL; NICOLAIDIS, 2002).
Figure 2.5 illustrates a typical circuit topology found in nearly all sequential circuits.
The data from the first latch is typically released to the combinatorial logic on a falling
or rising clock edge, at which time logic operations are performed. The output of the
combinatorial logic reaches the second latch sometime before the next falling or rising
clock edge. At this clock edge, whatever data happens to be present at its input (and
meeting the setup and hold times) is stored within the latch.

Combinational
logic

clk

IN OUT

upset 1 upset 2

Figure 2.5: Upsets hitting combination and sequential logic

When a charged particle strikes one of the sensitive nodes of a memory cell, such as
a drain in an off state transistor, it generates a transient current pulse that can turn on the
gate of the opposite transistor. The effect can produce an inversion in the stored value,
in other words, a bit flip in the memory cell. Memory cells have two stable states, one
that represents a stored '0' and one that represents a stored '1.' In each state, two
transistors are turned on and two are turned off (SEU target drains). A bit-flip in the
memory element occurs when an energetic particle causes the state of the transistors in

27

the circuit to reverse, as illustrated in figure 2.6. This effect is called Single Event Upset
(SEU) and it is one the major concerns in digital circuits.

Vdd

Vss

A
B

ON

ON

OFF

OFF

p1

n1

p2

n2

1
0

Vdd

Vss

A
B

ON

ON

OFF

OFF

p1

n1

p2

n2

1
0

Vdd

Vss

A
B

OFF

OFF

ON

ON

p1

n1

p2

n2

0
1

 (a) Before the particle hit (b) After the particle hit

Figure 2.6: Single Event Upset (SEU) effect in a SRAM Memory cell

When a charged particle hits the combinational logic block, it also generates a
transient current pulse. This phenomenon is called single transient effect (SET)
(LEAVY et al., 1991). If the logic is fast enough to propagate the induced transient
pulse, then the SET will eventually appear at the input of the second latch in figure 2.5,
where it may be interpreted as a valid signal. Whether or not the SET gets stored as real
data depends on the temporal relationship between its arrival time and the falling or
rising edge of the clock. Figure 2.7 exemplifies the signal paths in a combinational
logic. In (HASS et al., 1998; HASS, 1999) the probability of a SET becoming a SEU is
discussed. The analysis of SET is very complex in large circuits composed of many
paths. Techniques such as timing analysis (GUNTZEL; REIS, 2000) could be applied to
analyze the probability of a SEU in the combinational logic being stored by a memory
cell or resulting in an error in the design operation. Additional invalid transients can
occur at the combinatorial logic outputs as a result of SETs generated within global
signal lines that control the function of the logic. An example of this would be SETs
generated in the instruction lines to an ALU (Arithmetic Logic Unit). In (NICOLAIDIS;
PEREZ, 2003), the widths of some induced transient pulses are measured to obtain
more precise models for fault-tolerant analysis.

E1
E2

E3

clk

clk

D1

D2

Figure 2.7: Single Event Transient (SET) Effect in Combinational Logic (ANGHEL;

ALEXANDRESCU; NICOLAIDIS, 2000)

SEUs can be classified in first, second and third order effects, according to the
number of upsets that occur at the same time in the circuit. A single bit upset (SEU) is
classified as a first order effect, while multiple bit upsets (MBU) are classified as
second or third order effects. MBU can occur when a single charged particle traveling

28

through the IC at a shallow angle, nearly parallel the surface of the die, simultaneously
strikes two sensitive junctions (ZOUTENDYK; EDMONDS; SMITH, 1989). Just as
SEU, direct ionization or nuclear recoil can induce MBUs, as is presented in figure 2.8
(VARGAS; AMORY, 2001).

Heavy Ion

Two adjacent cells

Proton / Neutron

Nuclear recoil

Figure 2.8: MBU provoked by a single particle

In (REED et al., 1997), experiments in memories under proton and heavy ions fluxes
have shown multiple upsets provoked by a single ion. MBUs were observed for all
angles of incidence for LET greater than 25 MeV/(mg/cm2). There are three types of
MBU. The first one occurs when a single particle hits two adjacent nodes, located in
two distinct memory cells. This event is classified as a second-order effect. This type of
MBU can be avoided by specific placement.

The second type of MBU occurs when a single particle strikes two adjacent nodes
located in the same memory cell. This event is classified as a third-order effect. It can be
avoided by layout constraints. In this case, two or more charged particles are necessary
to generate multiple upsets. The probability of this occurrence is related to the
placement of the memory cells. The cross section is proportional to the sensitive areas
of the junctions that are normal to the incident cosmic ray and to the solid angle
subtended between these sensitive areas. The probability of such a multiple node strike
can be minimized in a circuit design by taking care in the physical layout to separate
critical node junctions by large distances and to align such junctions so that the area of
each, as viewed from the other, is minimized.

The third type of MBU occurs when multiple bits strike that silicon provoking
upsets in multiple nodes. This event can be analyzed like a group of SEU and it will
represent the same (this should be “immunity characteristics” or “characteristic
immunity”). Based on (REED et al., 1997), the majority of multiple upsets located in
adjacent cells are provoked by a single particle. There is a very low probability of more
than one charged particle interacting in adjacent cells, provoking upsets in a period
smaller than 1 s. in (VELAZC0; CHEYNET, ECOFFET, 1999), it is shown some SEU
flight results of two SRAM memories (Hitachi and MHS). A total of 691 upsets were
detected for the analyzed period of time, 333 of them arising on the Hitachi SRAM and
358 occurring in the MHS SRAM memory. The distribution of bit flips within the
memory word’s bits was uniform. Some double bit upsets were also detected, 8 double
upsets in the Hitachi and 3 in the MHS memory. Transitions 1 to 0 seem to be slightly
more frequent than 0 to 1 for all the tested memories too.

29

2.2 Peculiar Effect of SET and SEU in SRAM-based FPGA Devices

The Virtex® family from Xilinx (XILINX, 2000) is one of the most popular SRAM-
based programmable devices used in the market nowadays because of its high density
and high-performance. It supports a wide range of configurable gates, from 50k to more
than 1M system gates. It is fabricated on thin-epitaxial silicon wafers using the
commercial mask set and the Xilinx 0.22µ CMOS process with 5 metal layers. The
Virtex® family is valuable for space applications because of the reduced cost, high-
density and reconfigurability, which can considerably reduce the mission cost. Because
it is a VDSM design, it is highly sensitive to radiation effects and its architecture must
be studied in order to be protected against upsets.

The Virtex® architecture consists of a flexible and regular matrix composed of an
array of configurable logic blocks (CLB) surrounded by programmable input and output
blocks (IOB), all interconnected by a large hierarchy of fast and versatile routing
resources, as shown in figure 2.9. The CLB tile is a complex structure composed of
Lookup Tables (LUT), flip-flops and routing resources (switch matrix, multiplexors and
connection segments), as is illustrated in figure 2.10. The CLB provide the functional
elements for constructing logic while the IOB provide the interface between the package
pins and the CLB. The logic blocks are interconnected through a general routing matrix
(GRM) that comprises an array of routing switches located at the intersections of
horizontal and vertical routing channels. The Virtex® matrix also has dedicated memory
blocks called select block RAM (BRAM) of 4,096 bits each, clock DLLs for clock-
distribution delay compensation and clock domain control, and two 3-state buffers
(BUFT) associated with each CLB.

CLB Segmented routing

SelectI/O
Pins

Distributed
SelectRAM
Memory

Block
SelectRAM
Memory

PLL

66 MHz PCI66 MHz PCI SSTL3SSTL3

Vector Based
Interconnect
delay=f(vector)

Figure 2.9: SRAM based FPGA topology

30

Figure 2.10: Virtex CLB Tile Schematic

Each Virtex CLB contains four logic cells that include a 4-input function generator,
carry logic, and a storage element, organized in two similar slices. Figure 2.11 shows a
more detailed view of a single slice. In addition to the four basic logic cells (LC), the
Virtex CLB contains logic that combines function generators to provide functions of
five or six inputs. Consequently, when estimating the number of system gates provided
by a given device, each CLB counts as 4.5 LCs.

Each CLB slice can implement any two of all 4-input logic functions or some
functions up to 9 inputs. The function generator is implemented as a lookup table
(LUT), figure 2.12. Besides operating as a function generator, each LUT can provide a
16 x 1-bit synchronous RAM. Furthermore, the two LUTs within a slice can be
combined to create a 16 x 2-bit or 32 x 1-bit synchronous RAM, a 16x1-bit dual-port
synchronous RAM, or a 6-bit shift register. Figure 2.13 shows some examples of these
configurations.

31

Figure 2.11: Slice overview in the Virtex CLB

Figure 2.12: 4-input LUT Schematic

32

(a) LUT Configured as Shift Register

(b) LUT Configured as Memory

Figure 2.13: LUT configuration examples

The storage elements in the Virtex® slice can be configured either as edge-triggered
D-type flip-flops or as level-sensitive latches. The D inputs can be driven either by the
function generators within the slice or directly from slice inputs, by passing the function
generators. In addition to Clock and Clock Enable signals, each slice has synchronous

33

set and reset signals (SR and BY). SR forces a storage element into the initialization
state specified for it in the configuration. Signal BY forces it into the opposite state.
Alternatively, these signals may be configured to operate asynchronously. All of the
control signals are independently invertible, and are shared by the two flip-flops within
the slice. Each Virtex® CLB contains two 3-state buffers (BUFT) that can drive on-chip
busses. Each Virtex® BUFT has an independent 3-state control pin and an independent
input pin. Figure 2.14 shows the possibilities of flip-flop configuration in the CLB.

Figure 2.14: Examples of CLB flip-flop Configuration

The routing is composed of the switch box and input and output multiplexors. The
switch block is a programmable interconnect block that is found at the intersection of
each horizontal and vertical routing channel. The flexibility of a switch matrix (Fs) is
defined as the number of connections to each incoming track to the number of outgoing
tracks (figure 2.15). Clearly, the flexibility of each switch block is the key to the overall
flexibility and routability of the device. The number of switches required in the matrix
is defined as 2xFsxW, where W is the number of connection directions, figure 2.16.
Two examples of connection elements are the pass transistor and the tri-state buffer,
figure 2.17. Since the transistors in the switch block add capacitance loading to each
track, the switch block has a significant effect on the speed of each routable connection,
and hence the speed of the FPGA as a whole. In addition, since such a large portion of
an FPGA is devoted to routing, the chip area required by each switch block will have a
large effect on the achievable logic density of the device. Thus, the design of an
efficient hardened switch block is of the utmost importance.

Figure 2.15: Two examples of switch matrices with a different flexibility (a) Fs=3 (b)

Fs=5. (DEPREITERE; VAN MARCK; VAN CAMPENHOUT, 1998)

34

Figure 2.16: Direction of the Connections in a Switch Matrix (W=6)

(a) Pass transistor (b) Tri-state buffer

Figure 2.17: Routing Switch Connections (BETZ; ROSE, 1999)

The switch matrix connects the single and the hex wires. A representation of this
matrix is illustrated in figure 2.18. The hex wires are also connected only with other hex
lines by multiplexors, as represented in figure 2.19. The input and output multiplexors
located in the CLB tile are responsible for the connections from the incoming wires
(switch matrix or hex connections) to the CLB slices and the output signals from the
CLB slices to the outgoing wires (switch matrix or hex connections), respectively. The
representation is in figure 2.10. There are 13 input multiplexors per slice, which
includes the F1-F4, G1-G4, CLK, SR, etc. Each input of the CLB has a multiplexor
associated with it that determines which wires drive the inputs. There are 8 output
multiplexors per CLB. Each output multiplexor can select various slice outputs and
drive those signals to the general routing.

35

hex lines

hex lines

single lines

single lines

single lines

si
ng

le
 li

ne
s

hex lines

hex lines

single lines

single lines

single lines

si
ng

le
 li

ne
s

Figure 2.18: Switch matrix connects the Single and Hex Segments

7:2
mux

hex hex

Figure 2.19: Hex line connections in the routing

...

Slice
0

Slice
1

...

..

.
...

Figure 2.20: Input and Output multiplexors in the routing

36

The hex lines can connect up to 3 CLBs given an interval of 2 CLBs between each
of them. Each CLB has sets of 12 hex lines running in North, South, East and West
directions. If the hex line connects to a CLB in the same row or in the same column, it is
called HEX_HORIZ or HEX_VERT, respectively. Some hex wires can only drive data
into the CLB; these are called unidirectional in. Some hex wires can only drive data out
of the CLB; these are called unidirectional out. Some hex wires can drive signal in and
out of the CLB; these are called bi-directional.

Single lines can connect just one CLB. In each CLB, there are sets of 24 single wires
in each North, South, East and West directions. Long lines run the length of the chip.
There are accesses to 2 vertical and 2 horizontal lines in each CLB. They connect to
other CLBs every 6 CLBs away. There is a twist in them, which changes their name. So
for example, if you connect to LongVert[0] in (row, col) you can access the signal from
LongVert[1] in (row+6, col), LongVert[0] in (row+12, col), LongVert[1] in (row+18,
col), etc. Routing works in a hierarchical manner. Long lines can drive hex lines only;
hex lines can drive hex lines and single lines. Also single lines can drive single lines and
vertical long lines. Figure 2.12 shows the switch boxes and the possibilities of
connections between hex lines and single lines.

Virtex® family has several large Select block RAM (BRAM) memories, figure 2.21.
Each embedded memory can be programmed with up to 4,098 bits and a single or dual
port mode. These blocks complement the distributed LUT RAMs that provide shallow
RAM structures implemented in CLBs. BRAM memories are organized in columns. All
Virtex® components contain two such columns, one along each vertical edge. These
columns extend the full height of the chip. Each memory block is four CLBs high, and
consequently, a Virtex® component 64 CLBs high contains 16 memory blocks per
column, and a total of 32 blocks. In the Virtex-E there are four BRAM columns in the
matrix.

(a) BRAM Representation

(b) BRAM Memory cell

Figure 2.21: Embedded Block RAMs (BRAM)

Virtex® components are quickly programmed by loading a configuration bitstream
(collection of configuration bits) into the matrix. The device functionality can be
changed at anytime by loading in a new bitstream. The bitstream is divided into frames
and it contains all the information to configure the programmable storage elements in
the matrix located in the Look-up tables (LUT) and flip-flops, CLBs configuration cells
and interconnections and embedded memories. All these bits are potentially sensitive to
SEU and consequently they were our investigation targets.

SEU has a peculiar effect in FPGAs when a particle hits the user’s combinational
logic. In an ASIC, the effect of a particle hitting either the combinational or the
sequential logic is transient; the only variation is the time duration of the fault. A fault

ca

da /da

/q
q

/db db

cb

37

in the combinational logic is a transient logic pulse in a node that can disappear
according to the logic delay and topology. In other words, this means that a transient
fault in the combinational logic may or may not be latched by a storage cell. Faults in
the sequential logic manifest themselves as bit flips, which will remain in the storage
cell until the next load.

On the other hand, in a SRAM-based FPGA, both the user’s combinational and
sequential logic are implemented by customizable logic memory cells, in other words,
SRAM cells, as represented in figure 2.22. When an upset occurs in the combinational
logic synthesized in the FPGA, it corresponds to a bit flip in one of the LUTs cells or in
the cells that control the routing. An upset in the LUT memory cell modifies the
implemented combinational logic, see figure 2.23(b). It has a permanent effect and it
can only be corrected at the next load of the configuration bitstream. The effect of this
upset is related to a stuck-at fault (one or zero) in the combinational logic defined by
that LUT (figure 2.22, upset type 1). This means that an upset in the combinational logic
of a FPGA will be latched by a storage cell, unless some detection technique is used. An
upset in the routing can connect or disconnect a wire in the matrix, see figure 2.23(a). It
has also a permanent effect and its effect can be mapped to an open or a short circuit in
the combinational logic implemented by the FPGA (figure 2.22, upset type 3). The fault
will also be corrected at the next load of the configuration bitstream.

When an upset occurs in the user sequential logic synthesized in the FPGA, it has a
transient effect, because an upset in the flip-flop of the CLB is corrected by the next
load of the flip-flop (figure 2.22, upset type 2). An upset in the embedded memory
(BRAM) has a permanent effect and it must be corrected by fault tolerant techniques
applied in the architectural or in the high-level description, as the load of the bitstream
cannot change the memory state without interrupting the normal operation of the
application (figure 2.22, upset type 4). In (REBAUDENGO; REORDA; VIOLANTE,
2002a; CAFFREY; GRAHAM; JOHNSON, 2002), the effects of upsets in the FPGA
architecture are also discussed. Note that there is also the possibility of having single
event transient (SET) in the combinational logic used to build the CLB such as input
and output multiplexors used to control part of the routing.

ff
F1
F2
F3
F4

Configuration Memory CellMM

M

M M M M M M
LUT

BlockRAM

SEU
(Bit flip)

clk

E1
E2

E1
E3

E2
E3

Upset type 1

Upset type 2

Virtex FPGA

Upset type 3

Upset type 4

ASIC

Figure 2.22: The comparison of the effects of a SEU in ASIC and FPGA architecture

38

CLB

CLB

CLB

CLB

CLB CLB

1

1

1

0

0

1

0

0

0

11

1

1

1

0

0

1

A B C D

(a) Upset in the routing (undesirable connection) (b) Upset in the LUT

(modification of the logic)

Figure 2.23: Examples of upsets in the SRAM-based FPGA architecture

Radiation tests performed in Xilinx FPGAs (ALFKE; PADOVANI, 1998;
KATZ et al., 1997; LUM; MARTIN, 1998; FULLER et al, 2000; STURESSON et al.,
2001; FULLER et al., 2002) show the effects of SEU in the design application and
prove the necessity of using fault-tolerant techniques for space applications. A fault-
tolerant system designed into SRAM-based FPGAs must be able to cope with the
peculiarities mentioned in this section such as transient and permanent effects of a SEU
in the combinational logic, short and open circuit in the design connections and bit flips
in the flip-flops and memory cells. In (OHLSSON et al., 1998), the effect of neutrons
was also analyzed in a SRAM-based FPGA from Xilinx. In that time, the FPGA
presented very low susceptibility to neutrons, but the vulnerability is increasing as the
technology is reaching smaller transistor size and consequently higher logic density.
Experiments with hundreds of latest generation FPGAs operating in tandem on the same
board located at high altitude have shown one upset each 2 or 3 months due to neutrons.

39

3 STATE-OF-THE-ART OF SET AND SEU MITIGATION
TECHNIQUES

The first SEU mitigation solution that has been used for many years in spacecraft
was shielding, which reduces the particle flux to very low levels but it does not
completely eliminate it. This solution was sufficient to avoid errors caused by radiation
effects for many years in the past. However, due to the continuous evolution of the
fabrication technology process, as explained in last chapter, the electronic circuits are
becoming more and more sensitive to radiation particles, and the charged particles that
once were negligible are now able to cause errors in the electronic design.
Consequently, extra techniques must be applied to avoid radiation effects.

Several SEU mitigation techniques have been proposed in the last few years in order
to avoid faults in digital circuits, including those implemented in programmable logic.
They can be classified as:

- Fabrication process-based techniques, such as:
- Epitaxial CMOS processes
- Advanced process such as silicon-on-insulator (SOI).

- Design-based techniques, such as:
- Detection techniques:

 Hardware redundancy
 Time redundancy
 EDC (error detection coding)
 Self-checker techniques

- Mitigation techniques:
 Triple Modular Redundancy (TMR)
 Multiple redundancy with voting
 EDAC (Error detection and correction coding)
 Hardened memory cell level

- Recovery Techniques (applied to programmable logic only), such as:
- Reconfiguration
- Partial configuration
- Rerouting design

The fabrication process-based techniques, also called technological techniques, such
as epitaxial CMOS process and silicon-on-insulator (IBM, 2000; COLINGE, 2001;
MUSSEAU; FERLET-CAVROIS, 2001), can reduce to acceptable levels some of the
radiation effects, such as Total Ionization Dose (TID) effects and single event latch-up
(SEL), however, they do not eliminate completely upset effects, such as single event
upsets (SEUs) and single transient effect (SET). The fabrication process-based solution
is expensive and consequently very few designs have adopted this technique, especially
for low volume production. In (IROM ET AL, 2002), SEU effects from heavy ions and
protons are measured for Motorola and IBM silicon-on-insulator microprocessors, and

40

compared with results from similar devices with bulk substrates. Results show that the
threshold LET values of the SOI processors are nearly the same as those of bulk/epi
processors from the same manufactures, indicating that little improvement in SEU
sensitivity has resulted from the move to SOI technology. Although the threshold LET
did not change, the cross section of the SOI processors were about an order of
magnitude lower than the bulk/epi counterparts, leading to a lower upset rate in the
space environment. These results show that only modest improvements in SEU
sensitivity can be expected as mainstream integrated circuits move to SOI technology
and consequently design-based techniques must be applied to mitigate SEU.

The design-based techniques, also called architectural techniques, are highly
accepted because they can be applied to many different levels of the design without any
changes in the fabrication process technology. They can be projected to just detect the
presence of an upset in the system or they can be more complex in order to detect and
correct the system error in the presence of an upset. The design-based techniques are
based on some kind of redundancy. Redundancy is provided by extra components
(hardware redundancy), by extra execution time or by different moments of storage
(time redundancy), or by a combination of these. Hardware redundancy is basically
based on logic redundancy, error detection and correction codes (EDAC) and hardened
memory cells.

Recently, new techniques based on recovery have been proposed particularly for
programmable logic components, such as SRAM-based FPGAs. The idea is to recover
the original programmed information after an upset. Examples of this technique are
reconfiguration (scrubbing), partial reconfiguration and rerouting design. They are able
to clean out an upset in the programmable matrix in a very short period of time. This
type of technique is usually used to avoid the accumulation of upsets.

Finding the most appropriate SEU mitigation solution has become a challenge in
order to combine fast turnaround time, low cost, high performance and high reliability.
An efficient set of SEU mitigation techniques should cope with transient faults (SET)
occurring in the combinational logic and SEUs in the storage cells. In this way, transient
faults in the combinational logic will never be stored in the storage cells, and bit flips in
the storage cells will never occur or will be immediately corrected. Each technique has
some advantages and drawbacks, and there is always a compromise between area,
performance, power dissipation and fault tolerance efficiency.

This chapter presents an overview of the design-based techniques on digital circuits
and subsequently it shows the state o the art of SEU mitigation techniques for ASICs
and FPGAs, including solutions using the recovery method.

3.1 Design-based Techniques to Detect and Mitigate SET and SEU

Time and hardware redundancy techniques are largely used in ASICs
(NICOLAIDIS, 1999; DUPONT; NICOLAIDIS; ROHR, 2002; BENZ et al., 2002). The
techniques range from simple upset detection to upset voting and correction. There is a
wide choice of techniques according to the user’s application requirements. Sometimes
it is just necessary to warn the presence of an upset with an interruption in the system
functionality, while sometimes it is required to completely avoid interruptions, assuring
full reliability. There is a set of techniques that can present reliability in between these
two extremes, each one producing more or less overhead according to its fault
reliability.

41

3.1.1 Detection Techniques

Techniques based on time redundancy are usually used to detect a transient effect
(SET) in the combinational logic, while hardware redundancy can help to identify an
SEU in the sequential logic. Examples of the use of time and hardware redundancy for
SET detection have been presented in the (NICOLAIDIS, 1999; ANGHEL;
ALEXANDRESCU; NICOLAIDIS, 2000; DUPONT; NICOLAIDIS; ROHR, 2002). In
the case of time redundancy, the goal is to take advantage of the characteristics of the
transient pulse generated by the particle strike to compare the output signals at two
different moments. The output of the combinational logic is latched at two different
times, where the clock edge of the second latch is shifted by time d. A comparator
indicates a transient pulse occurrence (error detection). The scheme is illustrated in
figure 3.1.

clk

Clk+d

Combinational
logic

Figure 3.1: Time redundancy duplication scheme to detect SET in combinational logic

In the case of hardware redundancy, the duplication with comparison (DWC)
scheme can be used for both combinational and sequential logic to SET and SEU
detection, respectively. Figure 3.2 shows the scheme for transient effect detection. Note
that for both techniques, time and hardware redundancy, it is important to take into
account the duration of the SET.

Combinational
logic (dr0)

Combinational
logic (dr1)

clk

clk

Latch dr0

Latch dr1

Figure 3.2: Hardware redundancy duplication scheme to detect SET in combinational

logic and SEU in sequential logic

Another example for upset detection for sequential logic is error-detecting codes
such as parity. In this case, the parity bit of the group of analyzed bits is calculated and
it is continuously compared to a new parity bit calculation. If a SEU has occurred, it is
possible to detect it. This solution is largely used nowadays in memories. However, for
high-reliability applications, sometimes it is not enough only to detect the presence of a
fault but also ensure the correct operation of the system in the presence of that fault. For
this reason, it is very important to investigate in detail the SEU mitigation solutions.

3.1.1 Mitigation Techniques

3.1.1.1 Full Time and Hardware Redundancy

The use of full time redundancy in the combinational logic permits voting the
correct output value in the presence of a SET. In this case, the output of the
combinational logic is latched at three different moments, where the clock edge of the
second latch is shifted by the time delay d and the clock of the third latch is shifted by
the time delay 2d. A voter chooses the correct value. The scheme is illustrated in figure
3.3. The area overhead comes from the extra sample latches and the performance

42

penalty is measured clk+2d+tp, where d depends on the duration of the transient current
pulse and tp is the delay from the majority voter. The total delay is measured by the
error pulse width multiplied by 2 (Total Delay = 2 x Error Pulse Width ~ 2 x (QCOL / ID)

clk

clk+d

Combinational
logic

clk+2d

MAJ

Figure 3.3: Full time redundancy scheme to correct SET in combinational logic

In the case of the full hardware redundancy, the well-known Triple Modular
Redundancy (TMR) approach, the logic is triplicated and voters are placed at the output
to identify the correct value. The first possibility that was largely used in space
applications is the triplication of the entire device, figure 3.4. This approach uses a voter
as a fourth component in the board. It needs extra connections and it presents a large
area overhead. If an error occurs in one of the three devices, the voter will choose the
correct value. It protects both combinational and sequential logic against upsets.
However, if an upset occurs in the voter, the TMR scheme is ineffective and a wrong
value will come out in the output. Another problem of this approach is the accumulation
of upsets, an extra mechanism is necessary to correct the upset in each device before the
next SEU happens.

Device0

Device1

Device2

voter

Figure 3.4: TMR implemented in the entire device

A more efficient implementation of the TMR is applied focused in the sensitive
logic, for example the memory cells to protect against SEU, see figure 3.5.

43

MAJ

clk

Sequential logic

Combinational
logic

Figure 3.5: TMR Memory Cell with Single Voter

However, this solution does not avoid the accumulation of upsets in the sequential
logic and the voter is vulnerable to upsets. In order to restore the corrected value, a
solution using 3 voters with a feedback was proposed (CARMICHAEL, 2001; KATZ et
al., 2001). Figure 3.6 shows two of these solutions. The upsets in the latches are
corrected by extra logic in order to avoid accumulation. The load frequency (refreshing)
can be set by the multiplexor control signal.

voter

voter

voter

TR0

TR1

TR1
TR2

TR0
TR2

TR2
TR0
TR1

TRV0

TRV1

TRV2

E0

E1

E2

D0

D1

D2

clk0

clk1

clk2

(a) Version I

G

A

B

C

A

B

C

A

B

C

D

B

A

C

Q

(b) Version II

Figure 3.6: TMR memory cell with three voters and refreshing

44

The combinational logic must also be protected to avoid SET. There are many
possibilities. One is to use time redundancy in the logic as shown in figure 3.7. Another
possibility is to triplicate the combinational logic as well, as represented in figure 3.8.

clk

clk+d

Combinational
logic

clk+2d

clk+2d+tp

MAJ

Sequential logic

MAJ

MAJ

MAJMAJ

MAJ

Figure 3.7: Full time redundancy scheme for combinational logic combined to full

hardware redundancy in the sequential logic

Although the last proposed implementation of the TMR (figure 3.8) presents a larger
area overhead compared to time redundancy, since it triplicates all the combinational
and sequential logic, it protects the logic against SET and SEU and avoids accumulation
of upsets. In addition, it does not have major performance penalties, just the voter
propagation time, and it does not need different clock phases.

Combinational
logic

Combinational
logic

Combinational
logic

Sequential logic

clk
MAJ

MAJ

MAJ
clk

clk

Figure 3.8: Full hardware redundancy (TMR) scheme for combinational and sequential

logic

In (ANGHEL; ALEXANDRESCU; NICOLAIDIS, 2000), it is shown a method to
mitigate SET in combinational logic based on duplication and a code word state
preserving (CWSP), as illustrated in figure 3.9(a). The method does not need voters or
comparators. The duplication can be replaced by time redundancy as well, which
reduces the area overhead significantly, figure 3.9(b). The main contribution of this
method is the CWSP stage, which replaces the last gates of the circuit by a particular
gate topology, figure 3.9(c) that is able to pass the correct value in the combinational
logic in the presence of a SET. Additional techniques to cope with SET are presented in
(ALEXANDRESCU; ANGHEL; NICOLAIDIS, 2002).

45

Combinational
logic

Combinational
logic

CWSP

…

…

…

Combinational
logic

CWSP

…

…
d

(a) duplication with CWSP (b) time redundancy with CWSP

(c) CWSP gates

Figure 3.9: Duplication and time redundancy to mitigate SET in combinational logic
(ANGHEL; ALEXANDRESCU; NICOLAIDIS, 2000)

3.1.1.2 Error Correction and Detection Codes

Error detection and correction coding (EDAC) technique (PETERSON, 1980) is also

used to mitigate SEU in integrated circuits. It is usually used in memory. There are
many codes to be used to protect the systems against single and multiple SEUs. An
example of EDAC is the hamming code. It is an error-detecting and error-correcting
binary code that can detect all single- and double-bit errors and correct all single-bit
errors (SEC-DED). This coding method is recommended for systems with low
probabilities of multiple errors in a single data structure (e.g., only a single bit error in a
byte of data). The code satisfies the relation 2k >= m+k+1, where m+k is the total
number of bits in the coded word, m is the number of information bits in the original
word, and k is the number of check bits in the coded word. Following this equation the
hamming code can correct all single-bit errors on n-bit words and detect double-bit
errors when an overall parity check bit is used.

The hamming code implementation is composed of a combinational block
responsible for encoding the data (encoder block), inclusion of extra bits in the word
that indicate the parity (extra latches or flip-flops) and another combinational block
responsible for decoding the data (decoder block). The encoder block calculates the
parity bit and it can be implemented by a set of 2-input XOR gates. The decoder block
is more complex than the encoder block, because it needs not only to detect the fault,
but it must also correct it. It is basically composed of the same logic used to compose
the parity bits plus a decoder that will indicate the bit address that contains the upset.
The decoder block can also be composed of a set of 2-input XOR gates and some AND
and INVERTER gates.

The encoder block calculates the check bits that are placed in the coded word at
positions 1, 2, 4, …, 2(k-1). For example, for 8-bit data, 4 check bits (p1, p2, p3, p4) are
necessary, so that the hamming code is able to detect and correct a single-bit error

46

(SEC-SED). Figure 3.10 demonstrates a 12-bit coded word (m=8 and k=4) with the
check bits p1, p2, p3 and p4 located at positions 1, 2, 4 and 8 respectively. The check
bits are able to inform the position of the error. The encoder block can be implemented
by a set of 2-input XOR gates. For an 8-bit data, 14 2-input XOR gates are necessary in
order to generate the 4 parity bits. The check bit p1 creates even parity for the bit group
{1, 3, 5, 7, 9, 11}. The check bit p2 creates even parity for the bit group {2, 3, 6, 7, 10,
11}. Similarly, p3 creates an even parity for the bit group {4, 5, 6, 7, 12}. Finally, the
check bit p4 creates even parity for the bit group {8, 9, 10, 11, 12}, as shown in figure
3.11.

Position: 1 2 3 4 5 6 7 8 9 …. 12

Check bits: p1 p2 p3 p4
Word: w7 w6 w5 w4 w3 w2 w1 w0

Coded word: d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0

Figure 3.10: Hamming code 12-bit word and the check bits

The decoder block is more complex than the encoder block, because it needs not
only to detect the fault, but it must be able to correct it. It is basically composed of the
same logic used to compose the parity bits plus a decoder that will indicate the bit
address that contains the upset. The decoder block can also be composed of a set of 2-
input XOR gates and some AND gates and an inverter gate. If all parity bits are 0 the
word is correct. If at least one of the parities is 1, there is a bit inversion. The inverted
bit position is calculated by concatenation from P4, P3, P2, and P1 and reading it as a
unique binary number.

Hamming code can protect structures such as registers, registers file and memories.
Each protected register must have its input connected to the encoder block and its output
connected to the decoder block. Note that only one register may be used at a clock
cycle. The main advantage of the set of registers structure is that only one encoder block
and one decoder block are multiplexed for a set of registers.

Position: 1 2 3 4 5 6 7 8 9 …. 12

Parity bit: p1

Position: 1 2 3 4 5 6 7 8 9 …. 12

Parity bit: p2

Position: 1 2 3 4 5 6 7 8 9 …. 12

Parity bit: p3

Position: 1 2 3 4 5 6 7 8 9 …. 12

Parity bit: p4

Figure 3.11: Hamming code check bits generation

Hamming code increases area by requiring additional storage cells (check bits), plus
the encoder and the decoder blocks. For an n bit word, there are approximately log2n
more storage cells. However, the encoder and decoder blocks may add a more
significant area increase. Regarding performance, the delay of the encoder and decoder

47

block is added in the critical path. The delay gets more critical when the number of bits
in the coded word increases. The number of XOR gates in serial is directly proportional
to the number of bits in the coded word.

Table 3.1 shows a comparison between hamming code and the full time redundancy
(TMR) to mitigate SEU in sequential circuits. Results published in (HENTSCHKE;
MARQUES; LIMA; CARRO; SUSIN; REIS, 2002) show that TMR is more efficient in
terms of area and performance to protect registers and small memory structures, while
hamming code is more appropriate to protect large register files and memories.

Table 3.1: Hamming Code and TMR Comparison Summary

 Hamming Code (SEC-DED) TMR
Area It depends on the number of bits

to be protected. It has a small
overhead of storage cells (parity
cells) It needs additional
combinational logic to
implement the encoder and the
decoder blocks in the case of
short coded words.

It needs 3 times more storage cells.
It needs small extra logic for the
voters. The number of voters is
proportional to the number of
storage cells.

Performance The encoder and decoder blocks,
which are located in the critical
path, can affect the performance.
The delay increases
proportionally to the number of
bits to be coded because of the
number of XOR gates in serial in
the encoder and decoder blocks.

The performance is not strongly
affected because the only source of
delay is the voter that is basically
constant with the number of bits to
be protected.

Error-
correcting
code

It corrects one single upset per
word. But it does not correct the
upset in the stored word. Upsets
will accumulate if there is no
extra logic to correct them.

It corrects up to n upsets per n-bit
word if each upset is located in a
distinct bit. It votes the correct value
but it does not correct it. Upsets
will accumulate if there is no extra
logic to correct them.

The problem of hamming code is that it can not correct double bit upsets, which can

be very important for very deep sub-micron technologies, especially in memories
because of the high density of the cells (REED et al., 1997). Other codes must be
investigated to be able to cope with multiple bit upsets. Reed-Solomon (HOUGHTON,
1997) is an error-correcting coding system that was devised to address the issue of
correcting multiple errors. It has a wide range of applications in digital communications
and storage. Reed-Solomon codes are used to correct errors in many systems including:
storage devices, wireless or mobile communications, high-speed modems and others.
Reed-Solomon (RS) encoding and decoding is commonly carried out in software, and
for this reason the RS implementations normally found in the literature do not take into
account area and performance effects for hardware implementation. However, the RS
code hardware implementation as presented in (NEUBERGER; LIMA; CARRO; REIS,
2003) is an efficient solution to protect memories against multiple SEUs.

A Reed-Solomon code is specified as RS(n, k) with s-bit symbols, where n is the
total number of symbols per coded word and k is the number of symbols per
information data. The number of parity symbols is equal to n – k, where n is 2 raised to

48

the power of s minus one (2s – 1). A Reed-Solomon decoder can correct up to t number
of bytes, where 2t = n – k, figure 3.12.

Figure 3.12: Reed-Solomon coded word.

Mathematically, Reed-Solomon codes are based on the arithmetic of finite fields. In
the case of applying RS code in memories, the data word is divided in symbols, and
each data word is a different RS coded word. For example, in an n-rows memory, the
data word uses the entire row, and each data word is divided in m symbols according to
the symbol size and to the memory data size. Multiple upsets may occur in any portion
of the matrix, but they are more likely to occur as double bit flips that are in the same
symbol (upset type a), in vertical adjacent symbols, (upset type b), or in horizontal
adjacent symbols, (upset type c), as shown in figure 3.13.

XX

XX X
X

a

bc

Figure 3.13: Examples of double bit flips in a memory where each row is protected by

RS code

The RS code can easily correct upsets of type a, because it is the essential property
of this code: multiple error correction in a same symbol. The second type of double
upsets that can occur, upset type b illustrated in the figure 3.13, will also be corrected
because each row is a different RS code, so this is equivalent to two single errors in
distinct rows. But the third type of upsets, upset type c, illustrated in figure 3.13, will
not be corrected, because it is equivalent to errors in two different symbols of the same
coded word, and the implemented RS is not capable to correcting this type of error. In
the next chapter, a solution for this problem is proposed and some results of protecting a
memory component with this new solution based on RS code are discussed. More
details can be found in (NEUBERGER; LIMA; CARRO; REIS, 2003).

3.1.1.3 Hardened Memory Cells

Another example of SEU mitigation technique is memory cells composed of extra

devices, which can be resistors or transistors, able to recover the stored value if an upset
strikes one of the drains of a transistor in “off” state. These cells are called hardened
memory cells and they can avoid the occurrence of a SEU by design according to the
flux and to the charge of the particle.

In order to better understand how these hardened memory cells work, let’s start with
the analysis of a standard memory cell composed of 6 transistors (figure 3.14). When a
memory cell holds a value, it has two transistors in “on” state and two transistors in
“off” state; consequently there are always two SEU sensitive nodes in the cell. When a
particle strikes one of these nodes, the energy transferred by the particle can provoke a
transistor to switch “on”. This event will flip the value stored in the memory. If a

49

resistor is inserted between the output of one of the inverters and the input of the other
one, the signal can be delayed for such a time to avoid the bit flip.

The SEU tolerant memory cell protected by resistors (WEAVER ET AL., 1987) was
the first proposed solution in this matter, figure 3.15. The decoupling resistor slows the
regenerative feedback response of the cell, so the cell can discriminate between an upset
caused by a voltage transient pulse and a real write signal. It provides a high silicon
density, for example, the gate resistor can be built using two levels of polysilicon. The
main drawbacks are temperature sensitivity, performance vulnerability in low
temperatures, and an extra mask in the fabrication process for the gate resistor.
However, a transistor controlled by the bulk can also implement the resistor avoiding
the extra mask in the fabrication process. In this case, the gate resistor layout has a small
impact in the circuit density.

c

d /d

/qq

Figure 3.14: Standard Memory Cell

c

d /d

/qq

R

R

Figure 3.15: Resistor Hardened Memory Cell

Memory cells can also be protected by an appropriate feedback devoted to restore
the data when it is corrupted by an ion hit. The main problems are the placement of the
extra transistors in the feedback in order to restore the upset and the influence of the
new sensitive nodes. Examples of this method are IBM hardened memory cells
(ROCKETT, 1988) in figure 3.16, HIT cells (BESSOT; VELAZCO, 1993; VELAZC0
et al., 1994; CALIN; NICOLAIDIS; VELAZCO, 1996) in figure 3.17 and CANARIS
memory cells (WISEMAN ET AL., 1993; CANARIS; WHITAKER, 1995) in figure
3.18. The main advantages of this method are temperature, voltage supply and
technology process independence and good SEU immunity. The main drawback is
silicon area overhead that is due to the extra transistors and their extra size.

The IBM cell has 6 extra transistors, PA and PB are called data state control
transistors, PC and PD are pass-transistors and PE and PF are cross-coupled transistors.
The sensitive nodes are A, B, and C. The HIT cell has also 6 extra transistors placed in a
feedback around the main storage cell. SEU testing presented in (VELAZC0 et al.,
1994) shows that the hardened HIT1 cell design is less sensitive at least by a factor of
10 than unhardened cell design. The CANARIS approach consists of a memory cell
built with AND-NOR and OR-NAND gates that are SEU immune. Each logic gate has

50

two outputs, one for the N-channel transistor and other for the P-channel transistors.
Transistor M1 is sized to be weak compared to the p-channel array and transistor M2 is
sized to be weak compared to the n-channel array in such way that it can be restored to
the original value in the output if a particle hits the sensitive nodes.

c

d /d

/qq

c

PE PF

PA PB

PC PD

A

B

C D

Figure 3.16: IBM Hardened Memory Cell

Vdd

MP3
MP4

Vdd

M L

Q Q'
MP5
MP6

MN1

MN5

MN2

MN6

MP2 MP1

Vss Vss

Vdd

D D'

"1" "0"

MN4 MN3

Vdd

Figure 3.17: HIT Hardened Memory Cell

The interesting aspect of this solution is that it can be applied to even the
combinational and sequential logic when memory cells are implemented using the SEU
immune combinational gates. Using this approach, all the combinational part of the
circuit can be grouped in complex logic functions where each one of these functions has
two extras transistors dividing their outputs. For large complex logic gates, two extra
transistors may not represent a high addition of area. However, due to the duplication of
outputs the number of internal connections can increase according to the
implementation architecture. The main drawback of CANARIS hardened memory cell
is the long recovery time after upset.

51

clk

d

/d

q

/q

(a) Canaris SEU hardened memory cell

(b) Canaris SEU hardened memory cell detailed implementation

Figure 3.18: Canaris Hardened Memory Cell

Another mitigation principle is to store the data in two different locations in the cell
in such a way that the corrupted part can be restored. Examples of this technique are
DICE cells (CANARIS; WHITAKER, 1995) in figure 3.19 and NASA cells
(WHITAKER; CANARIS; LIU, 1991; LIU; WHITAKER, 1992) in figure 3.20 and
3.21 respectively. The main advantages of this method are also temperature, voltage
supply and technology process independence, good SEU immunity and high
performance (read/write time). DICE cell consists of a symmetric structure of four
CMOS inverters, where each inverter has the n-channel transistor and the p-channel
transistor separately controlled by two adjacent nodes storing the same state. The 4
nodes of the DICE cell form a pair of latches in two alternate ways, depending on the
stored logic value. One of the adjacent nodes controls the conduction state of the
transistor connecting the current node to a power supply line, and the other node blocks
the complementary transistor of the inverter, isolating it from the opposite supply line.

52

 DATA

MN0 MN1 MN2 MN3

 CK

MN6MN5MN4 MN7

 DATA

MP0 MP1 MP2 MP3

 1 1 0 0

A B C D

d /d

clk clk

Figure 3.19: DICE Hardened Memory Cell

d

d /d

/d

/clk/clk

clkclk

Figure 3.20: NASA I Hardened Memory Cell

d

d /q

q

/clk

clk

Figure 3.21: NASA II Hardened

Memory Cell

The NASA cells also store the information in two different places. This provides a
redundancy and maintains a source of uncorrupted data after a SEU. The recovery path
is based on the use of weak and strong transistors. The weak transistor size is
approximately 1/3 of the normal transistor size. The size of the weak feedback
transistors is responsible for the recovery time. The DICE latch is, in principle, SEU
immune in that two nodes must be simultaneously driven to change the state of the
latch. A single cosmic ray can, however, simultaneously strike two critical nodes if it
passes through the chip at an extremely small angle of incidence. The probability of this
occurring depends on the solid angle subtended by drain diffusions and the integral
fluence of cosmic rays with an LET (linear energy transfer) value greater than some
threshold that depends on the circuit response and collection volume.

Another SEU hardened memory solution is presented in (MAVIS; EATON, 2000),
figure 3.22. The hardened memory cell contains nine level-sensitive latches (U1 through
U9), one majority gate (U10), and three inverters (U11 through U13). Each level-
sensitive latch is transparent (sample mode) when its clock input is high and is blocking
(hold mode) when its clock input is low. When in sample mode, data appearing at the
input D also appears at the output Q. When in hold mode, the data stored within the
latch appears at the output Q and any data changes at the input D are blocked. Two level
sensitive latches in tandem and clocked by complementary clock signals (such as U1
followed by U2) form an edge triggered D flip-flop. With the clock inversions, the D-

53

Flip-Flops formed by (U1,U2), (U3,U4), and (U5,U6) are triggered on the falling edges
of the clocks CLKA, CLKB, and CLKC, respectively. Each of these four clocks
operates at a 25% duty factor and each one is delayed to the master clock. CLKA is high
during the first half of cycle one of the master clock. CLKB is high during the second
half of cycle one of the master clock. CLKC and CLKD are high during the first and
second halves, respectively, of cycle two of the master clock. Thus a full cycle of the A,
B, C, and D clocks occupies two cycles of the master clock. These clocks are actually
quite easy to generate with simple circuitry presented in a later section. Controlling the
fidelity of the four clocks is not a problem since the temporal sampling latch will
operate correctly even in the presence of skew or overlaps.

The upset immunity of the circuit in figure 3.19 is a consequence of two distinct
parallelisms: (1) a spatial parallelism resulting from the three parallel circuit branches
and (2) a temporal parallelism resulting from the unique clocking scheme. In addition,
when implemented using DICE-based latches, the temporal latch can achieve immunity
to multiple node cosmic ray strikes and, unlike any other SEU mitigation approach, it is
immune to a second and third-order effect.

Figure 3.22: Temporal Sampling Latch with Sample and Release Stages

Analyzing the SEU hardened robustness to MBU, the temporal latch, in its simplest
form, is clearly immune to upset from any single cosmic ray striking a single circuit
node (a first-order effect). This is also true for TMR-based latches and for DICE-based
latches. Multiple node strikes (a second-order effect), although having much lower
probabilities of occurrence, will surely cause upsets when such latches are fielded in an
actual space environment.

 Table 3.2 presents a general comparison between the techniques presented in this
section: hardened memory cells, hamming code and TMR.

54

Table 3.2: SEU mitigation techniques summary

SEU
Mitigation
Technique

SEU Tolerant Memory
cells Hamming Code TMR

Area
Usually it doubles the
area of each memory
cell. It is strongly layout
and transistor size
dependent

It depends on the
number of bits to be
protected. It has extra
sequential and
combinational logic

It presents a little
more than 3 times
the area overhead
because of the
voter.

Performance The performance is not
affected if the extra
transistors or resistors
(path delay) work only
when the cell is on hold.

The encoder and
decoder blocks can
affect the
performance.

The performance is
not strongly
affected. The only
source of delay is
the voter.

Error
correction

It avoids the error by a
delay in the memory
loop
(redundancy/recovery)

Normally it corrects
one single upset per
word, but in order to
refresh the stored
value an extra path is
necessary (scrubbing
rate)

It does not correct
the upsets. The
upsets will
accumulate if there
is no extra logic
for the refreshing.

Multiple
Upset

Robust to 3rd order of
multiple upsets as each
cell protects itself.

Not efficient for
multiple upsets in the
same coded word. But
efficient for multiple
upsets in different
parts of the circuit.

It can be robust for
multiple upsets in
different parts of
the circuit but not
in the same TMR
signal.

Technology It can use some extra
area because of the
asymmetry of the
transistors and large
resistance in polysilicon.

Completely compatible with CMOS
technology

COTS Requires architectural
design development

It can be designed at the architectural level
and in the high-level languages

3.2 Examples of SET and SEU Mitigation Techniques in ASICs

Many commercial microprocessors from Intel, IBM, Motorola and Sun are available
in the market in a radiation tolerant version. These hardened microprocessors were
designed by space project companies and research laboratories. The fault tolerance
concern has started many years ago (SEXTON, 1991; HASS; TREECE; GIDDINGS,
1989). Each product offers different levels of radiation immunity for distinct space and
military applications. The techniques used to protect the microprocessors are usually
based on the process technology or package shielding, TMR, SEU hardened memory
cells, EDAC (hamming code) or a combination of them.

In (LIMA et al., 2000a; LIMA et al., 2000b), a radiation fault-tolerant version of the
8051-like micro-controller (INTEL, 1994) is proposed. This work was started based on

55

the testing techniques and the studies about EDAC codes published in (COTA et al.,
1999). The VHDL (SKAHILL, 1996) description of this micro-controller was designed
at UFRGS (CARRO; PEREIRA; SUZIM, 1996; SILVA; LIMA; CARRO; REIS, 1997)
and it was re-used to insert SEU radiation fault-tolerant structures. The original code is
entirely compatible with the INTEL 8051 microprocessor in terms of instruction timing.
The microprocessor description is divided into six main blocks. These units are finite
state machine, control unit, instruction unit, datapath and RAM and ROM memories.
Single error correction hamming code (SEC) was applied in all registers and internal
memory as represented in figure 3.23.

This technique was innovative because it uses EDAC not only in the memory but
also in all registers and single memory cells. The memory has a refreshing mechanism,
called scrubbing, to avoid accumulation of upsets. A detailed scheme of the hamming
code implementation is presented in figure 3.24.

Datapath

All the registers are 12-bit
(coded by Hamming Code)

decoder decoder

encoder

decoder

encoder add/sub PC

ALU

RAM
memory

PCdecoder

ROM data

decoder

decoder
AD_low

AD_high

12-bit data

ROM
memory

encoder

decoder
AD

data

refreshing

Figure 3.23: General scheme of the SEU hardened 8051

encoder

decoder

word

parity bits

refreshing
data

encoder

encoder

decoder

decoder

words

coded bits

Refreshing logic

data

WR
RD

Figure 3.24: Scheme of the hamming code implemented in the memory and registers of
the 8051-like micro-controller

A board implementation has been done with the robust 8051, figure 3.25. The
hardened description was prototyped into three programmable logic devices
customizable by EEPROM technology from Altera, family MAX 9000, one EPM9560
with 208 pins and two EPM9400 with 84 pins (ALTERA, 2001). The SEU hardened

56

8051 daughter board has been tested in the THESIC tester environment (VELAZCO et
al., 2000) under radiation conditions in Louvain-la-Neuve (Belgium) using the Cyclone
radiation facility. Cyclone is a cyclotron offering the possibility of accelerating various
heavy ion species. Two versions of the 8051 were implemented in the board: 1) the
standard 8051 version without protection and 2) the 8051 with the internal memory
protected by hamming code.

Figure 3.25: SEU Hardened 8051 daughter board and THESIC mother board

The application test of the standard 8051 without protection shows that many upsets
have occurred in each analyzed period of time. Figure 3.26 show the number of errors
of each period analysis, for a flux of 700 particles per second. The same application test
of the 8051 with the internal memory protected by hamming code show that “NO
ERROR” has occurred for the radiation energy mentioned before. The result proves the
efficiency of the hamming code method in SEU protection.

Ion Kr (700 particles per second)

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250

Time (s)

#e
rr

o
rs

Figure 3.26: Radiation Test result I of the “Not protected” 8051 in the matrix

multiplication test

THESIC
Mother board

DUTs

Daughter
board

Internal
Memory

Instruction
unit

MMI

Buffers

EEPROM

Control
+ FSM

57

Table 3.3 shows the results of the robust 8051 prototyped into the PLD MAX9000
family. The number of flip-flops presented in table 4 refers to the internal registers of
control unit, finite state machine and datapath. The internal memory is implemented
outside the PLDs like it is shown in the board photo. The full-protected versions of the
8051 do not fit in the PLDs family due to the reduced number of CLBs in the
MAX9000 family. Consequently, only the datapath partial protected were implemented
in the board. In the partial protected datapath only the accumulator and the program
counter registers are protected by hamming code.

Table 3.3: Results of robust 8051-like Micro-Controller implemented in PLDs

Version Control
unit

State
Machine

Internal
memory

Datapath #flip-
flops

#CLBs

8051-A Not
protected

Not
protected

Not protected Not
protected

130 536

8051-B Fully
protected

Fully
protected

Fully
protected

Not
protected

150 692

8051-C Fully
protected

Fully
protected

Fully
protected

Partially
protected

158 824

8051-D Fully
protected

Fully
protected

Fully
protected

Fully
protected

202 909

8051-E Not
protected

Not
protected

Not protected Not
protected

138 579

8051-F Fully
protected

Fully
protected

Fully
protected

Not
protected

158 728

8051-G Fully
protected

Fully
protected

Fully
protected

Partially
protected

170 909

8051-H Fully
protected

Fully
protected

Fully
protected

Fully
protected

206 987

The efficiency of the SEC hamming code was tested by fault injection (LIMA et al.,

2001a). The results show that no errors were found in the application in presence of
SEU. However this technique is not suitable for MBU. In (LIMA et al., 2002a; LIMA et
al., 2002b), MBU were injected in the SEU tolerant 8051. The necessity of DEC
hamming code and register refreshing in addition of the memory refreshing may be
evident in next process technologies.

Maxwell (MAXWELL, 2001) has a large range of SEU tolerant microprocessors
protected by a patented radiation hardened RAD-PAK® technology that basically is a
package shielding. The company offers microprocessors such as Intel 386, 486 and
Pentium and SPARC from Sun. This same company also provides the microprocessor
PowerPC from Motorola with the CPU protected by TMR and the memory protected by
EDAC. The TMR compares the output of each of 3 CPUs on a bit-by-bit basis. In the
event of a single upset a simple voting scheme detects and selects the correct value. The
advent of a second error would be uncorrectable, thus the processor is flushed and
synchronized. In addition the components also have the package shielding.

Honeywell (HONEYWELL, 2003) offers fault-tolerant microprocessors based on
device redundancy and EDAC techniques too. An example is the radiation hardened
PowerPC 603 where the data and program memories are protected by SEC-DED
hamming code and redundancy is applied in the internal registers. Aitech Defense
Systems Inc. (AITECH, 2001) also provides a radiation tolerant PowerPC 750 protected
by EDAC.

58

Lockheed Martin has developed a SEU tolerant PowerPC (G3) for JPL (JPL
LABORATORY, 2001). It provides a modular standard product that allows the
spacecraft developer excellent flexibility in system configuration. There are over
800,000 storage elements in the PowerPC 750 (G3), all of which have been replaced
with SEU hardened circuitry in the RAD750. The earlier RAD6000 employed resistor
decoupling memory cells (figure 3.15) that require special polysilicon resistors in the
manufacturing process. The RAM cells and latches in the RAD750 have been designed
using hardening techniques for circuits that require no special process steps and
optimize performance using the cells referred to in (LIU; WHITAKER, 1992), figure
3.20. The RAD750 is expected to achieve SEU hardness levels of 1E-11 upsets/bit-day.
The memory and PROM located on the board have been protected by EDAC.

Atmel provides an 8-bit radiation tolerant micro-controller 80C32E, DSP
microprocessor and a SPARC microprocessor for military and space applications
(ATMEL, 2001). The radiation tolerant DSP microprocessor Radiation from Atmel uses
the Hit cell (VELAZC0 et al., 1994), figure 3.17, in order to protect the memory cells
against radiation. The Atmel SPARC microprocessor is protected by EDAC. The Atmel
static RAM design separates the cells that represent the different data word bits. This
feature virtually eliminates the risk of one impact provoking dual bit upsets (MBU)
leaving only single bit upsets (SEU) that can be corrected by SEC hamming code. The
additional processing associated with an EDAC protected solution is the initialization of
the check bit RAM and a refresh procedure that performs read-write operations on the
protected memory, also called scrubbing. The initialization of the check bit RAM does
not introduce an overhead since most space borne applications move their code from
ROM to RAM at reset, and automatically initialize the check bit RAM at the same time.
The scrubbing performed during processor idle time is necessary to eliminate the risk of
two separate impacts generating a dual bit upset (MBU) in one same data word.
However, if a dual bit upset in one same data word should occur it would still be
detected and signaled by the EDAC, SEC-DED hamming code. The EDAC
implementation uses the “correct always” solution. The “Bus-Watch” system technique
is suitable for very fast systems, but implies more overheads in the error handling
hardware and software. With respect to the processor speeds used in space borne
systems, the propagation delay of flow-through EDAC is fast enough and therefore the
“correct-always” solution has been used.

In (GAISLER, 2002), a fault-tolerant processor is proposed: the Spacelite, based on
the SPARC V8 architecture. The techniques applied to this processor aim to detect and
to tolerate one error in any on-chip register, and a one error correction and double error
detection in two adjacent bits in any on-chip memory structure (caches and tags). The
approach to SEU fault-tolerance in the Spacelite processor is to divide all registers into
two groups; primary and redundant. A primary register is defined as register carrying
information, which is not present anywhere else in the system (processor or memory)
and where an error in the register contents would cause a malfunction of the system. A
redundant register is defined as a register that contains information that is replicated
somewhere else in the system, and can be recreated by either reloading the register or
performing other recovery actions. An error in a redundant register must also not alter
the state or operation of the system in a way that will create a malfunction during the
time it contains an erroneous value. To tolerate one random register error, all primary
registers are designed fault-tolerant, either by replication or by use of error-correcting
codes. The redundant registers need only be provided with error-detection functions,
since they can be recovered from their redundant locations.

59

Individual fault-tolerant registers are implemented using TMR, three registers in
parallel and a voter selecting the majority result. The benefit of such a scheme is that
error masking and error-removal is implicit, and than no glitch is produced at the output
when a SEU occurs. The register file is provided with a 32-bit single error correction
(SEC) and double error detection (DED) EDAC instead of TMR cells to reduce the
overhead. Errors in redundant registers are detected through parity generation and
checking. Cache memories and tags are protected with two parity bits, one for odd and
one for even data bits. This scheme makes it possible to detect a double-error in two
adjacent bits. In case of an EDAC error, the corrected register value is written back to
the register file when the instruction reaches the write stage, and the instruction is then
restarted. An error in the cache memory (instruction or data) will automatically cause a
cache miss, and the cache will be updated with the correct data from the main memory.

In (REBAUDENGO et al, 2002), the software implemented fault tolerance (SIFT) is
discussed to protect microprocessors against upsets in the sequential (SEU) and
combinational logic (SET). Fault injection experiments have been performed to evaluate
the capabilities of the SIFT technique of detecting transient faults in the internal
memory elements of a processor and in its combinational logic. A major originality of
the strategy relies on the fact of being based on a set of simple transformation rules,
their implementation on any high-level code can be completely automated. This reduces
the costs for program hardening. The SIFT system implementations were tested under
radiation in the 8051 micro-controller. Results show that SIFT was able to detect 88.2%
of the upsets observed in the processor.

3.3 Examples of SEU Mitigation and Recovery Techniques in FPGAs

Field Programmable Gate Array (FPGA) devices are becoming increasingly popular
with spacecraft electronic designers as they fill a critical niche between discrete logic
devices and the mask programmed gate arrays. The devices are inherently flexible to
meet multiple requirements and offer significant cost and schedule advantages. Since
FPGAs are re-programmable, data can be sent after launch to correct errors or improve
the performance of spacecraft.

The architecture of programmable logic components is based on an array of logic
blocks that can be programmed by the interconnections to implement different designs.
A FPGA logic block can be as simple as a small logic gate or as complex as clusters
composed of many gates. The logic blocks of current commercial FPGAs are composed
of one or more pairs of transistor, small gates, multiplexors, Lookup tables and and-or
structures. The routing architecture incorporates wire segments of various lengths,
which can be interconnected via electrically programmable switches. Several different
programming technologies are used to implement the programmable switches. There are
three types of such programmable switch technologies currently in use:

• SRAM, where the programmable switch is a pass transistor controlled by the
state of a SRAM bit (SRAM based FPGAs)

• Anti-fuse, when an electrically programmable switch forms a low resistance
path between two metal layers. (Anti-fuses based FPGAs)

• EPROM, EEPROM or FLASH cell, where the switch is a floating gate
transistor that can be turned off by injecting charge onto the floating gate.
These programmable logic circuits are called EPLDs or EEPLDs.

Customizations based on SRAM are volatile. This means that SRAM-based FPGAs
can be reprogrammed as many times as necessary at the work site. The anti-fuse

60

customizations are non-volatile and they can be programmed just once. Each of them
has a particular architecture. Programmable logic companies such as Xilinx and Actel
offer radiation tolerant FPGA families. Each one uses different mitigation techniques to
better take into account the architecture characteristics. Some companies from the space
market are licensed to develop tolerant FPGAs, such as Aeroflex UTMC, which is
licensed to QuickLogic and Honeywell, which is licensed to Atmel. However, there is
no current, finished space product based on the QuickLogic and Atmel FPGAs so far.
Actel and Xilinx are the main commercial FPGA companies to share the market of
space FPGAs nowadays as observed in the industry floor of the most important
conferences of the area such as Military and Aerospace Applications of Programmable
Devices and Technologies (MAPLD), Nuclear and Space Radiation Effect (NSREC),
Radiation Effects on Components and Systems (RADECS) and Field Programmable
Gate Array Symposium.

The programmable logic devices are critically sensitive to SEU due to the large
amount of memory elements located in these structures. Programmable logic devices
must be strongly protected to avoid errors running in the space environment. There are
two main ways to mitigate the radiation effects in Programmable Logic Devices: by
high-level description or by architectural design.

Each method has a different implementation cost and it can be more suitable for
some types of applications, FPGA topology and customization approach. For example,
FPGAs programmed by anti-fuse topology are more like standard cell ASICs, as the
customization cells (anti-fuse) are not susceptible to radiation effects. For this reason,
techniques used in ASICs such as EDAC can be easily applied to the high-level
description. At the architectural level, for instance, it is simple to replace all the flip-
flops with hardened memory cells. As you will see later in this thesis, for FPGAs
customizable by SRAM, applying high-level SEU mitigation techniques is not so
simple because all the design blocks are sensitive to radiation. The same occurs when
architecture design techniques are applied because of the FPGA matrix complexity.

3.3.1 Anti-fuse based FPGAs

The problem of SEU in anti-fuse FPGAs, more specifically based on the Actel
architecture, has been addressed in (KATZ et al., 1997; KATZ et al., 1998; KATZ et al.,
1999; WANG et al., 2000). Actel offers SEU tolerant FPGA families programmed by
anti-fuse called SX (ACTEL, 2000). This family architecture is described as a “sea-of-
modules” architecture because the entire floor of the device is covered with a grid of
logic modules with virtually no chip area lost to interconnect elements or routing.
Actel’s SX family has been improved in the past years. The first version provided two
types of logic modules, identical to the standard Actel family, the register cell (R-cell)
and the combinatorial cell (C-cell) exemplified in figure 3.27.

61

(a) Combinational Logic Blocks Configurations (C-cell)

(b) C-cell Schemactic (c) Register Cell (R-cell)

Figure 3.27: Architecture of Actel FPGAs

Interconnection between these logic modules is achieved using Actel’s patented

metal-to-metal programmable anti-fuse interconnect elements, which are embedded
between the M2 and M3 layers. These anti-fuses are normally open circuit and, when
programmed, form a permanent low-impedance connection. In this first SEU tolerant
FPGA version (ACTEL, 2001), three proposed techniques for implementing the logic of
the sequential elements in order to avoid upsets were presented: CC, TMR, or
TMR_CC. The sequential elements are automatically implemented during the synthesis
in the Symplify tool. The CC technique uses combinatorial cells with feedback instead
of flip-flop or latch primitives to implement storage cells. For example, a DFP1,
comprised of two combinational modules, would be used in place of a DF1. This
technique can avoid SEU in CMOS technologies larger than 0.23um but it will not be
able to avoid SEU in next-generation process technologies where the combinational
logic can also be affected by charged particles. TMR is a register implementation
technique where each register is implemented by three flip-flops or latches that “vote”
to determine the state of the register. TMR_CC is also a triple-module-redundancy
technique, where each voting register is composed of combinatorial cells with feedback
(instead of flip-flop or latch primitives).

The CC flip-flops (CC-FFs) produce designs that are more resistant to SEU effects
than designs that use the standard flip-flop (S-FF). CC-FFs typically use twice the area
resources of S-FFs. Triple voting, or triple module redundancy (TMR), produces
designs that are most resistant to SEU effects. Instead of a single flip-flop, triple voting
uses three flip-flops leading to a majority gate voting circuit. This way, if one flip-flop
is flipped to the wrong state, the other two override it, and the correct value is
propagated to the rest of the circuit. Because of the cost (three to four times the area and

62

two times the delay required for S-FF implementations), triple voting is usually
implemented using S-FFs. However, one can implement triple voting using only CC-
FFs in the Synplify tool.

Actel introduced in 2001 a new version of the space FPGA family SX, composed of
special radiation-tolerant flip-flops. These new SEU-hardened structures eliminate the
need for TMR flip-flop designs implemented in HDL because the flip-flop is already
protected by TMR at the architectural level (matrix). They use the D-type flip-flop
proposed in (KATZ et al., 2001), presented in figure 3.6(b). Three D-type flip-flops are
connected in parallel to the clock and data inputs. A voter (or majority circuit) is
implemented by the top MUX to create a “hardened” output. The outputs of two flip-
flops, A and B, go to the selects of the voter MUX. If both A and B read logic zero,
MUX input D0 is selected. Since it is tied to GND, the output of the MUX will read
logic zero. Similarly, if A and B read logic one, the output of the MUX will read logic
one. If A and B disagree due to a SEU (or for other reasons), the MUX will select flip-
flop C. We know C agrees with either A or B, and thus the MUX “voted” to produce
data agreed on by two of the three flip-flops.

3.3.2 SRAM-based FPGAs

The SEU has a peculiar effect in SRAM-based FPGAs as discussed in the previous
chapter. For consequence, it is not that simple to apply a high-level technique to this
type of FPGA because all the implementation blocks (logic, customization and routing)
are susceptible to upsets. Many solutions in the literature suggest new architecture
topologies for SRAM-based FPGAs using hardened memory cells and innovative
routing structures. Others solutions are high-level description techniques developed to
be applied on the most popular family of SRAM-based FPGA, the Virtex® from Xilinx.
The majority of the solutions for Virtex® are based on fault recovery and they use partial
reconfiguration and re-routing to correct upset and guarantee reliability. However, it is
important to notice that many of the solutions that have been proposed for the Virtex®
FPGA family in the high-level description are not very efficient because they do not
take into account the peculiar effect of a SEU in the SRAM-based FPGA matrix, which
is a permanent fault in the logic, customization and routing. Hardware redundancy is
mandatory in this case to guarantee reliability.

3.3.2.1 SEU Mitigation Solution in high-level description

Xilinx has a military family for the Virtex® that is also used for space applications. It
is called Virtex® QPRO family (XILINX, 2000) and it provides a commercial off-the-
shelf system-level solution for aerospace and defense customers. It is fabricated on thin-
epitaxial silicon wafers using the commercial mask set and the Xilinx 5-layer-metal
0.22 µm CMOS process. The use of epitaxial CMOS process technology has made
Virtex® Single Event latchup immune (LETth >120 MeV*cm2/mg, TID=100 Krads(si)).
In addition, Xilinx has proposed a high-level technique to mitigate SEU in the SRAM-
based FPGA: the TMR approach in the high-level design description combined to
reconfiguration (scrubbing) in order to avoid accumulation of upsets (CARMICHAEL;
CAFFREY; SALAZAR, 2000; CARMICHAEL, 2001). This solution is complete to
avoid single points of failure in the matrix as all blocks are triplicated. This solution has
been investigated and experiment tests were performed. In the chapters 5, 6 and 7 the
SEU mitigation technique based on TMR for the Virtex® FPGA from Xilinx is
discussed in detail.

63

In (ALDERIGHI et al, 2002), a design for a Xilinx FPGA-based multistage
interconnection network (MIN) for a multi-sensor system is proposed that will be used
in future scientific space missions. It is characterized by good concurrent fault diagnosis
and fault detection capabilities. The fault tolerance strategy adopted is based on both
network configuration and FPGA re-configuration. A slice control unit, one per each
slice, allows changing the actual slice configuration, while the network control unit sets
a new permutation. When a fault affecting a slice is detected, a finite-state machine
fires and marks the actual configuration as faulty in the fault LUT. The state machine
goes, in turn, to an active status and searches for an equivalent configuration available
among those stored in the configuration LUT. When such a configuration is found, it is
applied as to fix the problem. See figure 3.28(a) from the paper. To detect faults, a
Parity Checker is used in each slice, figure 3.28(b). Parity is actually the only invariant
property that can be defined for the slice. The parity checker is endowed with self-
checking ability so that it can report faulty conditions relevant to the set of faults.

(a) Slice control unit

(b) Parity checker

Figure 3.28: Multistage interconnection network (MIN) in a Xilinx FPGA
(ALDERIGHI et al, 2002)

The limitation of this method is that only very few types of faults can be recovered
by reconfiguring the network. All the faults in the customization routing in the FPGA
that have permanent effect (as described in previous chapter) can only be corrected by
FPGA reconfiguration (scrubbing). Results show that only 10% of the injected single

64

upsets are recovered by the method, which are probably the faults in the LUTs. The
majority are recovered by simple scrubbing.

3.3.2.2 SEU Mitigation Solutions at the Architectural level

In (MAVIS et al., 1998), a FPGA has been developed for space and military
applications based on a combination of four technologies: (1) radiation hardened
nonvolatile SONOS (Silicon-Oxide Nitride-Oxide Semiconductor) EEPROM
transistors, (2) unique SEU immune storage circuits, both for nonvolatile SONOS
implementations and for volatile SRAM (static random access memory)
implementations, (3) high-performance, radiation hardened, 0.8 micron, 3-level metal
CMOS technology, and (4) new FPGA architectures developed specifically to
accommodate good radiation-hardened circuit design practices. It is hardened for total
ionization dose up to 200 krad(Si) and LET greater than 100 MeV-cm2/mg. The NMOS
SONOS transistors differ from conventional NMOS transistors in that the SONOS
transistor has a variable threshold voltage while the NMOS transistor has a fixed
threshold voltage. To erase a SONOS transistor (program it to a negative threshold
voltage) a large (10 V) negative voltage is applied from the gate to the P-Well. This
causes pair-hole tunneling into the nitride-oxide gate dielectric layer and the resulting
positive charge storage produces a depletion mode device. To store data in the transistor
(program it to a positive threshold voltage) a large (10 V) positive voltage is applied
from the gate to the P-Well. This causes electron tunneling into the gate dielectric and
the resulting negative stored charge. In the SRAM version of the FPGA, volatile
configuration storage is accomplished using a circuit derived from the DICE (dual
interlocked storage cell) latch. The chip is programmed in much the same way as the
SONOS version, using a shift register to serially load the row data and a column decode
to select the column being written.

Actel has prototyped an SRAM-based FPGA (WANG et al., 1999). In this case, the
standard SRAM memory cells were replaced by resistor-decoupling memory cells
where the effectiveness depends on the resistor value; and DICE memory cells that are
practically SEU immune at 0.25um if only one node is hit. Figure 3.15 demonstrates the
resistor decoupling memory cell and figure 3.19 the DICE cell, respectively. The
resistor decoupling memory cell is able to avoid upsets because the resistors inserted in
the feedback path work as filters to the transient pulse provoked by the charged particle.
The DICE cell can avoid upsets because it stores the data in two distinct parts, where if
one part is corrupted the other one is isolated by the cell construction. However,
conclusions presented in (WANG et al., 1999) show that multiple bit upsets (MBU) will
limit both solutions in the future if the layout does not pay special attention to this issue.
The redundancy hardening (DICE memory) is less effective than the resistor solution in
two orders of upset rates. The disadvantage of the resistor solution is temperature
operation range sensitivity and the increase in delay. The DICE also has a disadvantage
in area overhead. It has 12 transistors compared to 6 transistors in the standard memory
cell. For 0.18 um, the effectiveness of both solutions will be compromised and more
ingenious designs will be needed in the circuit level.

Atmel (ATMEL, 2001) also has published a version of an SRAM-based FPGA
(AT6010) using the SOI process. The logic block presented in figure 3.29 was not
logically modified. The improvement achieved is limited to the SOI reliability in
presence of SEU. Previous results have shown that the use of only SOI technology does
not guarantee protection against SEU. Consequently, this solution from Atmel is not
completely suitable for the space environment.

65

Figure 3.29: Atmel FPGA logic block

In (KUMAR, 2003), a new SRAM-based FPGA is proposed based on the human
immune system. This architecture adopts a distributed network without any centralized
control. Error (antigen) detection is based on the principle of operation of the B-cell.
Once an error is detected in a functional cell, a pre-determined spare cell replaces the
functional cell by cloning its behavior. The proposed reconfiguration technique reduces
the redundancy in the system. Figure 3.30 shows the proposed matrix with the logic
function cells and the space cells.

r f r f r f r f f r

f s f s f s f s s f

r f r f r f r f f r

f s f s f s f s s f

r f r f r f r f f r

f s f s f s f s s f

r f r f r f r f f r

f s f s f s f s s f

r f r f r f r f f r

f s f s f s f s s f

F S RFunctional cells Spare cells Router
Figure 3.30: SRAM-based FPGA Matrix from (KUMAR, 2003)

Functional cells consist of a 10-bit control register, 1-bit error register and a logic
block. The contents of the control register may be considered as the genetic code, as
illustrated in figure 3.31(a) from the paper. The process of recognizing an error
(antigen) by a B-cell is emulated in a functional cell by ensuring that the outputs
generated are complementary. If the outputs are identical i.e. an error is present, the

66

results are forced into high impedance. By forcing the outputs of a functional cell to 00
or 11 in the presence of an error, the role of a B cell is emulated. Once an error has been
detected the 1-bit error register in the cell is set to 1, and all input information of the
functional cell is loaded into the corresponding spare cell. The same occurs in the
routing cell that also has a control register to detect the presence of faults, figure
3.31(b). The authors did not go into much detail about faults in the control registers and
how much time the system must be on hold until the logic is replaced by the spare logic.

Logic block

Error signal

R9 R8 R7 R6 R5 R4 R0R1R2R3

Control Register

Secondary

Primary

control signal

(a) Functional Cell

000

001

010
Decoder

011

100

101

110

111

000 000

001 001

010 010
Buffer

011 011

100 100

101 101

110 110

111 111

X Y Z

X

Y

Z

xxx

000

000

xxx

xxx

xxx

xxx

001

xxx

000

000

xxx

xxx

xxx

xxx

001

xxxxxx

000000

000000

xxxxxx

xxxxxx

xxxxxx

xxxxxx

001001

Control register

(b) Routing Cell

Figure 3.31: Example of Functional cell and Routing cell (KUMAR, 2003)

3.3.2.3 Recovery technique

Many fault-tolerant approaches for SRAM-based FPGAs were presented in the past
years related to re-routing and alternate configuration to avoid upsets in the used CLBs.
The first problem of correcting faults by runtime reconfiguration without using any
redundancy is the method to find the faults in the matrix. In (MITRA; SHIRVANI;
MCCLUSKEY, 1998), a method that uses pseudo-exhaustive BIST is presented to
detect upsets in the matrix. The technique has an extra advantage that it is not necessary
to bring the whole system down while fault location is carried out. The problem is the
time duration to detect faults. Some applications can not be on hold for a long time
waiting for the system to be recovered.

An example of fault recovery based on reconfiguration and re-routing is shown in
(LACH; MANGIONE-SMITH; POTKONJAK, 1998; LACH; MANGIONE-SMITH;

67

POTKONJAK, 2000), where the physical design is partitioned into a set of tiles. The
key element of this approach is partially reconfiguring the FPGA to an alternate
configuration in response to a fault. If the new configuration implements the same
function as the original, while avoiding the faulty hardware block, the system can be
restarted. The challenging step is to identify an alternate configuration efficiently and to
have fast runtime fault detection. In (XU et al., 2000), another fault-tolerant approach
for SRAM-Based FPGAs is presented related to the routing procedure. The problem is
that both papers discuss radiation effects that are mainly upset (SEU). But in this case,
the fault will be corrected in the next load of the bitstream (reconfiguration) and no
work must be done in searching a new alternate configuration or routing. The methods
are only justified if real permanent faults are present in the matrix due to total ionization
dose, such as gate rupture, short or open metal wires.

In (YU; MCCLUSKEY, 2001), a solution to permanent fault repair in finer
granularity of the FPGA is presented. A faulty module can be repaired by reconfiguring
the chip so that a damaged configurable logic block (CLB) or routing resource is not
used by the design. Many techniques have been presented to provide permanent fault
removal for FPGAs through reconfiguration. One approach is to generate a new
configuration after permanent faults are detected in computing systems. Another
approach is to generate pre-compiled alternative FPGA configurations and store the
configuration bit maps in non-volatile memory, so that when permanent faults are
present, a new configuration can be chosen without the delay of re-routing and re-
mapping. The authors propose some equivalent design candidates that can replace the
original TMR design in case of a permanent fault, figure 3.32.

Figure 3.32: Design candidates modified from TMR. (a) The original TMR design. (b)
A hybrid TMR-Simplex-CED design. (c) A duplex system with a checking block. (d) A

duplex system with two CED blocks (YU; MCCLUSKEY, 2001)

For system transients, the authors suggest the use of traditional transient error
recovery techniques. Typical examples include the roll-forward and rollback recovery
techniques. Basically, these approaches are designed at the system level and thus are
general to recover both Application Specific Integrated Circuit (ASIC) and FPGA
systems. However, this assumption is not true because in the SRAM-based FPGA not
only can the logic be affected by upsets, but also the routing, which can invalidate the
path to perform roll-forward and rollback techniques. The paper does not discuss the
difference between real permanent faults (gate rupture, open or short metal wires) and
the SEU that also has a permanent effect until the next reconfiguration.

In (HUANG; MCCLUSKEY, 2001), partial reconfiguration is also discussed to
improve reliability by detecting and correcting errors in on-chip configuration data, but
another problem is addressed in this paper: the memory coherence capability during
partial reconfiguration. Because the LUTs can also implement memory modules for user

68

applications, a memory coherence issue arises such that memory contents in user
applications may be altered by the online configuration data recovery process. In this
reference, the memory coherence problem is investigated and it proposes a memory
coherence technique that does not impose extra constraints on the placement of
memory-configured LUTs. Theoretical analyses and simulation results show that the
proposed technique guarantees the memory coherence with a very small (on the order of
0.1%) execution time overhead in user applications. This technique is interesting and it
can be further used with FPGA scrubbing in order to avoid SEU in the embedded
memory too.

In summary, many fault-tolerant techniques have been proposed over the last years
for SRAM-based FPGAs based on recovery, architectural design and high-level design.
The majority of the techniques proposed in the past related to the high-level design
method and the recovery procedure do not take into account all the details and effects of
a SEU in the SRAM-based FPGA because this knowledge is very recent. No published
paper before (LIMA, CARRO, REIS, 2003a) has established the difference between a
real permanent fault and a SEU that has also a permanent effect in the LUTs,
customization and routing cells in the FPGA. The next chapters show in detail the
analysis of the effects of a SEU in the programmable matrix and the importance of
using some kind of redundancy in order to ensure run time error recovery and scrubbing
(continuous reconfiguration) to avoid accumulation of faults.

69

4 ARCHITECTURAL SET AND SEU MITIGATION
TECHNIQUES FOR SRAM-BASED FPGAS

Programmable devices customizable by SRAM are composed of many components,
such as complex logic blocks with lookup tables (LUTs), multiplexors and flip-flops,
embedded memories, PLLs and dedicated routing segments, as explained in chapter 2.
In addition, the next generation of FPGAs not only has the possibility of soft core
insertion, but there are also hard microprocessor cores embedded in the chip to improve
the data processing and performance, such as the family Virtex-II-Pro from Xilinx.
Figure 4.1 diagrams a hypothetical topology.

…

…

pads Embedded memory

Embedded processor

CLBs

routing

Figure 4.1: A case of Study: Hypothetical FPGA architecture

The SEU mitigation problem in the next FPGA families with embedded hard
processors can be analyzed in two parts: the microprocessor and the programmable
logic. Consequently, each part can be sub divided into small logic blocks according to
the functionality and some special features. Studies about the protection of a
microprocessor have been done in the 8051-like micro-controller developed at UFRGS
(CARRO; PEREIRA; SUZIM, 1996). All registers and the internal memory were
protected by hamming code (LIMA et al., 2000a; LIMA et al., 2000b; COTA et al.,
2000). The results have shown the reliability of this method and the necessity of
refreshing in some parts of the circuit, mainly in the memory, in order to avoid
accumulation of upsets. A fault injection system was developed (LIMA et al., 2001a) in
order to test the standard and the full SEU tolerant 8051 in the presence of single and
multiple upsets (LIMA et al., 2002a). Based on the references presented in chapter 3
and the studies previously done, the problem of protecting microprocessors against SEU

70

is relatively well understood and the available techniques presented in the literature can
be applied in order to achieve reliability.

However, in the case of SRAM based FPGAs, the problem of finding an efficient
technique in terms of area, performance and power is very challenging, because of the
high complexity of the architecture. As previously mentioned, when an upset occurs in
the user’s combinational logic implemented in an FPGA, it provokes a very peculiar
effect not commonly seen in ASICs. The SEU behavior is characterized as a transient
effect, followed by a permanent effect. The upset can affect either the combinational
logic or the routing. The consequences of this type of effect, a transient followed by a
permanent fault, cannot be handled by the standard fault tolerant solutions used in
ASICs, such as Error Detection and Correction Codes (EDAC), hamming code, or the
standard TMR with a single voter, because a fault in the encoder or decoder logic or in
the voter would invalidate the technique. The problem of protecting SRAM-based
FPGAs against SEU is not yet solved and more studies are required to reduce the
limitation of the methods currently used.

The previous chapter presented some architectural and high-level techniques for
SRAM-based FPGAs. In this chapter, improvements to the architectural method will be
addressed. The high-level method will be discussed in next chapters.

In the architectural level, the previous solutions leave open at least two problems to
be solved:

- how to cope with SETs in the CLB logic to avoid upsets being stored
in the flip-flop,

- how to cope with multiple bit upsets in the LUTs, routing and
especially the embedded memory.

In this chapter, we propose the investigation and development of SEU mitigation
techniques for SRAM-based FPGAs that can be applied to FPGAs with or without
embedded processors that can cope with the two problems still not solved. The SRAM
based FPGAs were chosen because of their high applicability in space. Different than
FPGAs programmed by anti-fuse that can be programmed just once, SRAM based
FPGAs can be reprogrammed by the user as many times as necessary in a very short
period. So, applications can be updated and corrected after launch. This feature is very
valuable for space applications because it can reduce the cost in update missions or even
save missions that were launched with design problems.

4.1 Proposing a SET and SEU Tolerant SRAM-based FPGA

First, it is necessary to analyze the amount of the sensitive area in the programmable
matrix and the characteristics of them to propose improvements in the SEU mitigation
techniques for SRAM-based FPGAs. Table 4.1 shows the set of configuration cells in a
CLB tile of the Virtex family. There are 864 memory bits responsible for the
customization of the logic. Analyzing the percentage of each type of SRAM cell in the
whole set of memory elements in the CLBs, the LUTs represent 7.4%, the flip-flops
represent 0.46%, the customization bits in the CLB represent 6.36% and the general
routing represents 82.9%.

Based on these results, the effect of an upset in the routing configuration
(customization bits of the CLB and general routing) seems to be the major concern,
totaling approximately 90% of the sensitive area in each CLB. This type of fault, as
mentioned previously, has a permanent effect, which represents an open or short circuit
in the final connections of the logic design. A solution that can increase the area of this
customization logic too much is not very attractive in final area and cost of this FPGA.

71

In addition to these programmable cells presented in table 4.1, there are other
memory elements in FPGA devices that can also be affected by SEU:

- SelectMAP (Selectable Microprocessor Access Port) latches
- JTAG (Joint Test Action Group - IEEE Std. 1149.1x) TAP (Test

Access Port) latches
- Others latches of other built-in non-programmable features.

The main effects of a SEU in these latches are SEFI (Single Event Functional
Interrupt) such as configuration circuit upsets and JTAG circuit upsets. There are few
flip-flops or latches in the POR, less than 40 latches or flip-flops, which leads to a very
small cross-section. But they cannot be disregarded because an upset in one of these
latches can force the chip to be reprogrammed. Figure 4.2 show the location of these
flip-flops in the FPGA matrix.

POR

PROG

JTAG

Figure 4.2: Special features elements in the SRAM-based FPGA matrix

Some solutions to protect the POR can be: TMR the whole block, replace the cells
by SEU hardened memory cells or use extra logic to turn off the POR after the device is
programmed by an external pin. In the next sections, some fault-tolerant techniques will
be discussed to protect the SRAM cells of the LUT, flip-flops, routing and
customization cells, and the embedded block RAM. The advantages and disadvantages
of each technique were analyzed based on previous work results in ASICs
implementations.

4.2 Technique based on Hardened Memory Cells to replace the SRAM
cells in the Routing, Customization and Lookup tables

The first solution that can be studied is to replace some or all of the latches in the
FPGA by SEU hardened flip-flops. Many hardened memory cells were designed during
the last years. However each one has different characteristics that can show more
efficiency for some applications. Table 4.2 shows a summary of a comparison among
them. The main characteristics used for the comparison are the number of transistor, the
method, the SEU order effect, the ability to accumulate or not upsets and the SET
immunity in combinational logic. For example, standard latches have a first order of
susceptibility; in other words, they are upset by a single node strike. Some of them
require multiple node strikes to upset cells such as TMR memory cells, DICE memory
cell and simple temporal memory cells. Temporal latches built from DICE cells, for
example, have a second and third order of susceptibility.

T
ab

le
 4

.1
: E

va
lu

at
io

n
of

 th
e

se
ns

iti
ve

 c
el

ls
 in

 th
e

V
ir

te
x®

 C
L

B

N
um

be
r

of
 la

tc
he

s
C

L
B

 B
lo

ck

(1
53

6
pe

r
ch

ip
)

L
U

T

(c
om

bi
na

ti
on

al
 lo

gi
c)

F

lip
-f

lo
p

(s
eq

ue
nt

ia
l l

og
ic

)
C

us
to

m
iz

at
io

n
R

ou
ti

ng

T
ot

al

8
m

ux
 1

2:
1

7

la
tc

he
s

x
8

56

(6
.6

5
%

)
2

lo
gi

c
bl

oc
ks

,
ea

ch
 o

ne
 h

as
 2

L

U
T

 (
16

:1
),

2

fl
ip

-f
lo

ps
 a

nd

m
ul

tip
le

xo
rs

L
U

T
Fs

li
ce

0:
 1

6
la

tc
he

s
L

U
T

G
sl

ic
e0

: 1
6

la
tc

he
s

L
U

T
Fs

li
ce

1:
 1

6
la

tc
he

s
L

U
T

G
sl

ic
e1

: 1
6

la
tc

he
s

Fl
ip

-f
lo

py
sl

ic
e0

Fl

ip
-f

lo
px

sl
ic

e0

Fl
ip

-f
lo

py
sl

ic
e1

Fl

ip
-f

lo
px

sl
ic

e1

L
U

T
ct

rl
: 7

 la
tc

he
s

x
2

Ff
ct

rl
: 3

 la
tc

he
s

x
2

Ff
co

nf
ig

: 3
 la

tc
he

s
x

2
x

2
C

on
fi

g:
 5

 la
tc

he
s

x
2

2
un

us
ed

 la
tc

he
s

11

0
+

 2

(1
3.

30
%

)

L
on

g-
tb

fs

2
+

 2
 +

 4

B
uf

fe
r:

 5

1
un

us
ed

 la
tc

h

13

 +
 1

(1

.6
6%

)

16
 m

ux
 2

8:
1,

12

 m
ux

 1
6:

1,

 4
 m

ux
 8

:1

9

la
tc

he
s

x
16

6

la
tc

he
s

x
12

3

la
tc

he
s

x
4

22
8

(2
7.

07
%

)

Si
ng

le
s

24

 +
 8

0
la

tc
he

s
96

 la
tc

he
s

24
 +

 8
0

la
tc

he
s

30
4

(3
6.

10
%

)

16
 m

ux
 7

:2

8

la
tc

he
s

x
16

12

8
(1

5.
20

%
)

C
L

B
 b

lo
ck

 T
O

T
A

L
: 8

64
 b

its
 (

22
 u

nu
se

d)

84
2

T
ab

le
 4

.2
: S

um
m

ar
y

of
 H

ar
de

ne
d

M
em

or
y

C
el

ls
: m

ai
n

A
dv

an
ta

ge
s

an
d

D
ra

w
ba

ck
s

H
ar

de
ne

d
m

em
or

y
ce

ll
M

et
ho

d

tr
an

s.

SE
U

 /
M

B
U

 O
rd

er

E
ff

ec
t

Im
m

un
it

y
A

cc
um

ul
at

io
n

of

up
se

ts

SE
T

 I
m

m
un

it
y

1st

2nd

3rd

R

es
is

to
r

m
em

or
y

ce
ll

D

ec
ou

pl
in

g
re

si
st

or

8
Y

es

Y
es

N

o
N

o
N

o
IB

M
 m

em
or

y
ce

ll

R
es

to
re

 f
ee

db
ac

k

12

Y
es

Y

es

N
o

N
o

N
o

N
A

SA
 I

 a
nd

 I
I

m
em

or
y

ce
ll

Ph
ys

ic
al

 r
ed

un
da

nc
y

12

Y
es

Y

es

N
o

N
o

N
o

D
IC

E
 m

em
or

y
ce

ll
Ph

ys
ic

al
 r

ed
un

da
nc

y
12

Y

es

Y
es

N

o
N

o
N

o
H

IT
 m

em
or

y
ce

ll

R
es

to
re

 f
ee

db
ac

k
12

Y

es

Y
es

N

o
N

o
N

o
C

A
N

A
R

IS
 m

em
or

y
ce

ll
R

es
to

re
 f

ee
db

ac
k

32

Y
es

Y

es

N
o

N
o

N
o

T
M

R
 w

ith
 o

ne
 v

ot
er

 w
ith

ou
t

re
fr

es
hi

ng

Ph
ys

ic
al

 r
ed

un
da

nc
y

38

Y
es

N

o
Y

es

Y
es

Y

es
*

T
M

R
 w

ith
 th

re
e

vo
te

rs
 w

ith

re
fr

es
hi

ng

Ph
ys

ic
al

 r
ed

un
da

nc
y

90

Y
es

N

o
Y

es

N
o

Y
es

**

T
em

po
ra

l m
em

or
y

ce
ll

T

em
po

ra
l a

nd

ph
ys

ic
al

 r
ed

un
da

nc
y

80

Y
es

N

o
Y

es

Y
es

Y

es

T
em

po
ra

l m
em

or
y

ce
ll

 w
ith

 D
IC

E

T
em

po
ra

l a
nd

ph

ys
ic

al
 r

ed
un

da
nc

y
13

4
Y

es

Y
es

Y

es

N
o

Y
es

*
It

 is
 S

E
T

 im
m

un
e

if
 th

e
co

m
bi

na
tio

na
l l

og
ic

 is
 a

ls
o

T
M

R
.

**
 I

t i
s

SE
T

 im
m

un
e

if
 th

e
co

m
bi

na
tio

na
l l

og
ic

 is
 a

ls
o

T
M

R
. T

he
 n

um
be

r
of

 tr
an

si
st

or
 is

 c
al

cu
la

te
d

w
ith

 th
e

m
ul

tip
le

xo
r

im
pl

em
en

te
d

by
 p

as
s

tr
an

si
st

or
s.

74

The hardened memory solution is suitable to replace the SRAM cells in the routing,

general customization and lookup tables because they present a small overhead
compared to logic redundancy technique and EDAC. Solutions such as IBM, NASA,
DICE, HIT and resistor memory cells look interesting in the number of transistors and
fault coverage. The final area will be around 2 times the original one, which is a very
good result in terms of high-reliability.

For the LUT, for instance, if the cells are placed too close to each other, it is possible
to use the solution of a TMR memory cell, where each cell is a DICE memory cell. In
this case, this solution is robust to the 1st, 2nd and 3rd order of upsets. And because the
LUT cells comprise only 7.4% of the cells, the impact in area will not be so intense. In
(ROCKETT, 2001), a SEU immune memory cell based on decoupling resistors was
developed for FPGAs. The design is asymmetric to provide that the data cell powers-up
in a know state. In the paper, the size and the speed of the cell are discussed. The cells
are not in the critical path, such as the cells that control de routing, for example, do not
need a high-speed. In this case, the tolerance and the size are the main issue. Results
show the high reliability of the cell for heavy ions strike.

4.3 Technique based on Error Correction and Detection Codes
(EDAC) for the Embedded Memory

The embedded memory in the FPGA must be protected in order to avoid errors.
EDAC is a suitable technique to correct upsets in memory structures, as discussed
previously. An example is the hamming code that can be applied to embedded FPGA
memory. However, as discussed in the previous chapter, hamming code is not able to
cope with multiple upsets in the same coded word. And in the case of the embedded
memory, it is very important to protect the cells against MBU for two main reasons:

- new SRAM technologies (VDSM) are susceptible to MBU,

- the scrubbing procedure does not reconfigure (update) the internal
memory, consequently, upsets have a higher probability of
accumulating in the memory.

So, a new code is needed to correct all possible double errors. The initial option
would be using a Reed-Solomon code with capability to correct two different symbols.
But this RS code has more than twice the area and delay overhead of the single symbol
correction RS (HOUGHTON, 1997), which makes this solution inappropriate for
hardware implementation in memory architectures. Previous work has been published
on the use of RS code to protect memory (REDINBO; NAPOLITANO; ANDALEON,
1993), however it does not take into account double bit upsets in the same coded word,
which is likely to occur in VDSM technologies.

An innovative solution has been developed able to correct all double bit upsets in
VDSM memories. This solution combines hamming code and RS code with single
symbol correction capability. This technique solves the problem of how to achieve
100% of double fault correction with a low-cost RS code. The hamming code protects
the bits between the RS symbols. The number of bits protected by hamming will be the
same as the number of symbols protected by Reed-Solomon, so this option does not
significantly increases the area overhead. Figure 4.3 presents the insertion of hamming
code in row already coded by RS code.

75

Protected by Reed-Solomon code

Protected by Hamming code
Figure 4.3: Schematic of a memory row protected by Reed-Solomon and hamming code

This solution is explained in detail in (NEUBERGER; LIMA; CARRO; REIS,
2003). Results show the efficiency of the proposed method in the presence of all single
and double upsets and many types of multiple upsets. All double faults and a large
combination of multiple faults were corrected by the method, faults type a, b, c, d, e, f,
and g in figure 4.4. The only type of multiple faults that was detected but not corrected
by the method is where multiple upsets (three or more) affect two different RS code
symbols, fault type h in figure 4.4.

XX
X
X

a
b

c
XX

X X X

d
X
X
X

X
X
X

e

X X X
f

h
X X X

g

Figure 4.4: Schematic of a memory row protected by Reed-Solomon and hamming code

Figure 4.5 shows the final architecture of the double error tolerant memory. For
instance, for 128-bit data protection, 14 extra bits are needed due to Reed-Solomon and
5 extra bits due to hamming code, totaling 19 parity bits for each data row. There are
two encoder and decoder blocks, one for hamming code and another for RS code. The
parity bits are also stored in the memory in a reserved area. The placement of all RS
parity symbols and hamming parity bits must be also taken into account to avoid double
upsets in the same hamming coded parity word or in two parity symbols of the same RS
coded word. The RS encoder block can be adapted to any size of data memory as
presented in (NEUBERGER; LIMA; CARRO; REIS, 2003).

MEMORY

ENCODERS DECODERS

R
S

128

128

19

128

19

128

R
S

H
A
M
M
I
N
G

16 21 1621

112 126 112126

PARITY BITS

H
A
M
M
I
N
G

Figure 4.5: Hamming and RS code in memory architecture

The case study memory was described in VHDL and prototyped in a Virtex-E FPGA
using BlockRAMs and CLBs in order to be evaluated in terms of area, performance and
fault coverage. Results are presented in table 4.3.

76

Table 4.3: Area and Delay of Reed-Solomon and hamming codes used to protect a
memory

 16-bit Hamming 112-bit RS
 Encoder Decoder Encoder Decoder

4-LUTs 22 99 215 538
Extra ffs 5 x # of row 14 x # of rows
Delay (ns) 9.3 21.7 14.5 47.6

In the results, it is shown that the fault tolerant memory has an area overhead that is
basically the area used by the encoder and decoder blocks. Only two more BlockRAMs
are needed, one to store the RS redundancy symbols and other to store the hamming
extra bits. The performance penalty in the fault tolerant memory synthesized in the
FPGA is around 50%. This penalty can reduce when the encoder and decoder blocks are
implemented using random logic instead of the CLBs (prototype version).

In summary, the proposed method that combines RS code and hamming code to
protect memory against SEU is an attractive fault-tolerant technique to be applied in the
new hardened SRAM-based FPGA. It is able to protect the memory against all double
faults and a large set of multiple faults. It does not present a large impact in area and it
does not interfere with the normal operation and customization of the current embedded
memory cell. The presented method is innovative. In the literature, only one approach
has been found similar to this one (REDINBO; NAPOLITANO; ANDALEON, 1993),
but it uses only Reed-Solomon code. This method works in two modes: correction of a
single symbol error or detection of a double symbol error, and the choice is made by the
user. The approach proposed in (REDINBO; NAPOLITANO; ANDALEON, 1993)
does not deal with the correction of double faults at the interface of two different
symbols. Our approach corrects this type of fault, avoiding the choice between
correcting one symbol error and detecting double symbol errors.

4.4 Technique based on Logic Redundancy for the CLBs flip-flops

The triple modular redundancy (TMR) is another SEU mitigation technique. There
are many TMR topologies. Each implementation is associated with different area
penalties and fault coverage. The system requirements and the architecture must be
analyzed in order to correctly choose the most convenient approach. Table 4.4 show a
summary of the main approaches of TMR.

The CLB flip-flops receive the output of the multiplexors that set up the signal path
from the LUT in the CLB slice. If a transient fault (SET) occurs in one of the
multiplexors, this upset must not be stored in the flip-flops. Consequently, it is not
sufficiently reliable to replace the CLB flip-flop by a hardened flip-flop. It is also
necessary to insert some kind of fault detection and correction in the input of this flip-
flop to filter SETs. The combinational logic does not need to be changed. A possible
solution is to combine the temporal latch composed of DICE memory cells, presented in
(MAVIS; EATON, 2000; MAVIS; EATON, 2002) with the TMR approach with
refreshing. The final flip-flop shows a high reliability to 1st, 2nd and 3rd order of SEU
and SETs, refreshing of SEU and additionally a small impact in the final area because
the flip-flops correspond to less than 1% of the total sensitive area. Figure 4.6 shows
this hardened flip-flop topology.

77

Table 4.4: Summary of TMR approaches: main Advantages and Drawbacks

TMR Approach SEU / MBU Order
Effect Immunity

Accumulation
of upsets

SET
Immunity

 1st 2nd 3rd
TMR Device without refreshing Yes Yes Yes Yes Yes*
TMR in sequential logic without
refreshing

See table 4.1, according
to the TMR latch

Yes No

TMR in sequential with
refreshing

See table 4.1, according
to the TMR latch

No No

TMR combinational and
sequential logic without
refreshing

Yes No Yes Yes Yes

TMR combinational and
sequential logic with refreshing

Yes No Yes No Yes

clk

clk+d

clk+2d

clk+2d+tp

MAJ

IN

Dice cell

Figure 4.6: Proposed SEU and SET Hardened flip-flop with refreshing

78

5 HIGH-LEVEL SEU MITIGATION TECHNIQUES FOR
SRAM-BASED FPGAS

The previous chapter discussed fault-tolerant techniques in the architectural level for
SRAM-based FPGAs. Although these solutions can achieve a high reliability, they also
present a high cost because they need investment in development, test and fabrication.
So far, there are very few FPGA companies that are investing in designing fault-tolerant
FPGAs as this market is still focused in only military and space application, which is
very small compared to the commercial market. However, because of the technology
evolution, applications at the atmosphere and at ground level have been starting to face
the effect of neutrons, as mentioned in chapter 2. As a result, fault-tolerant techniques
begin to be necessary in many commercial applications that need some level of
reliability.

A less expensive solution is a high-level SEU tolerant technique that can be easily
implemented by the user or by the company designers in commercial FPGAs or in parts
manufactured by a technology that can avoid latch up and reduce the total ionization
dose, as the Virtex® QPRO family (XILINX, 2000). The high-level SEU mitigation
technique used nowadays to protect designs synthesized in the Virtex® architecture is
mostly based on TMR combined with scrubbing (CARMICHAEL; CAFFREY;
SALAZAR, 2000; CARMICHAEL, 2001). The TMR mitigation scheme uses three
identical logic circuits (redundant block 0, redundant block 1 and redundant block 2),
synthesized in the FPGA, performing the same task in tandem, with corresponding
outputs being compared through a majority vote circuit. The TMR technique for Virtex®
is presented in details in (CARMICHAEL, 2001), and more examples are also presented
in (LIMA et al., 2001b).

5.1 Triple Modular Redundancy Technique for FPGA

The correct implementation of TMR circuitry within the Virtex® architecture
depends on the type of data structure to be mitigated. The logic may be grouped into
four different structure types: Throughput Logic, State-machine Logic, I/O Logic, and
Special Features (Select block RAM, DLLs, etc.). The throughput logic is a logic
module of any size or functionality, synchronous or asynchronous, where all of the logic
paths flow from the inputs to the outputs of the module without ever forming a logic
loop. In this case, it is necessary to just triplicate the logic, creating three redundant
logic parts (0, 1 and 2). No voters are required, as the FPGA output will be by default
voted later.

The state-machine logic is any structure where a registered output, at any register
stage within the module, is fed back into any prior stage within the module, forming a
registered logic loop. This structure is used in accumulators, counters, or any custom
state-machine or state-sequencer where the given state of the internal registers is

79

dependent on its own previous state. In this case, it is necessary to triplicate the logic
and to have majority voters in the outputs. The register cannot be locked in a wrong
value, for this reason there is a voter for each redundant logic part in the feedback path
making the system able to recover by itself. Figure 5.1 shows a general example of this
structure.

Redundant Logic 0

Redundant Logic 1

Redundant Logic 2

Voter

Voter

Voter

Figure 5.1: TMR Logic with Voter

The majority voter, figure 5.2 (a), can be easily implemented by one LUT. Because
the LUT can be upset, the voters are also triplicated. In this way, if one voter is upset,
there are still two voters working properly. For designs constrained by available logic
resources, the majority voter can be implemented using the Virtex® 3-state buffers
instead of LUTs, Figure 5.2 (b). There are two 3-state buffers per CLB. Figure 5.2 (c)
shows the 3-state buffer schematic in the Virtex® matrix.

The primary purpose of using a TMR design methodology is to remove all single
points of failure from the design. This begins with the FPGA inputs. If a single input
was connected to all three redundant logic legs within the FPGA then a failure at that
input would cause these errors to propagate through all the redundancies and thus the
error would not be mitigated. Therefore, each redundant leg of the design that uses
FPGA inputs should have its own set of inputs. Thus, if one of the inputs suffers a
failure, it will only affect one of the redundant logic parts. The outputs are the key to the
overall TMR strategy. Since the full triple module redundancy generates every logic
path in triplicate, there must ultimately be a method for bringing these triple logic paths
back to a single path that does not create a single point of failure. This can be
accomplished with TMR outputs majority voters inside the output logic block, as
presented in figure 5.3.

The Virtex® architecture provides a number of special features, such as block RAM
(BRAM), DLLs, etc, which require specialized methods for implementing effective
redundancy. A reliable method to TMR the BRAM is to constantly refresh the BRAM
contents, figure 5.4. Since these are dual port memories, one of the ports could be
dedicated to error detection and correction. But this also means that the BRAM could
only be used as single port memories by the rest of the user logic. To refresh the
memory contents, a counter may be used to cycle through the memory addresses
incrementing the address once every n clock cycles. The data content of each address is
voted at a determined frequency and the majority voter value written back into the cells.

A typical FPGA design will be implemented with signals that were resolved to a
logic constant (VCC or GND), but could not be entirely optimized out of the design.
When the Place and Route (PAR) tools implement the VCC and GND signals, they are
implemented in a way that maximizes device resource utilization. This is accomplished

80

by utilizing "Keeper" circuits that exist at the input pins of all CLBs and I/O blocks
(IOBs). Keepers lie in series with routing channels and logic block input pins. When the
routing channel carries an active signal, the keeper is transparent. But when the channel
is unused, the keeper will keep its last known value - which was determined when the
device was initially powered-up or re-initialized by activating the FPGA input PROG.
When a logic element (i.e. flip-flop) inside a logic block (i.e. CLB or IOB) requires a
logical constant, such as a VCC or GND, this logical constant may be obtained from the
keeper circuit of an unused pin of the logic block. Its polarity may be selected by
programmable inversion within the logic block.

(a) 3-Input Majority Voter Schematic

(b) 3-Input Majority Voter Implemented by 3-State Buffers

(c) Virtex® Bus Logic

Figure 5.2: Majority Voters (CARMICHAEL, 2001)

An SEU may upset, or alter, the state of a keeper circuit either by direct
ionization, or indirectly by momentarily connecting an active routing channel to the
input of the keeper. In either case, the result is a functional disturbance that can neither
be detected by readback nor corrected by partial reconfiguration. Therefore, this type of
error is known as a "persistent error", and it can only be corrected by completely re-
initializing the FPGA. Schematic designers should be careful to examine the primitive

81

implementation of all library macros that are likely to contain registers, before using
them in their design. Even if the macro provides clock enable and reset pins at the top
level, the primitive implementation may be different than expected. Similarly, if a
VHDL user describes a synchronous process without specifying a clock-enable or
initialization function, the synthesis tool will implement this function by using
primitives and connecting all unused pins to the correct logical constant, thus creating
VCC and GND. In order to avoid persistent errors, user VCCs, user GNDs and user
clock enables for each redundant logic part must be created in the design as inputs.

Figure 5.3: Majority Voter in the Virtex® Output Logic (CARMICHAEL, 2001)

82

Figure 5.4: BRAM TMR with Refreshing (CARMICHAEL, 2001)

5.2 Scrubbing

However, the use of TMR in the design is not sufficient to ensure reliability of a
long period of time as upsets can accumulate in the matrix provoking an error in the
TMR. Note, as explained in chapter 2, the upsets located at LUTs and in the routing
configuration cells will not be removed until the next configuration of the device.
Consequently, it is necessary to clean up all the upsets in such a frequency as to
guarantee the correct functionality of the TMR methodology. The first technique
proposed to clean the upsets inside the matrix was based on readback of the bitstream,
detecting an upset and reloading the original one (CARMICHAEL; CAFFREY;
SALAZAR, 2000). The problem of this technique is that it is too time consuming.

A simpler method of SEU correction is to omit readback and detection of SEUs and
simply reload the entire CLB Frame segment at a chosen interval (XILINX, 2000c).
This is called "scrubbing". Scrubbing requires substantially fewer overheads in the
system, but does mean that the configuration logic is likely to be in "write mode" for a
greater percentage of time. However, the cycle time for a complete scrub can be made
relatively short. The scrubbing allows a system to repair SEUs in the configuration

83

memory without disrupting its operations. It is performed through the Virtex
SelectMAP interface. When the FPGA is in this mode, an external oscillator generates
the configuration clock that drives the PROM and the FPGA. At each clock cycle new
data are available on the PROM data pins. One example is the Flash-PROM
XQR18V04 that provides a parallel frequency up to 264 Mbps at 33 MHz. Figure 5.5
shows the scrubbing scheme.

The scrubbing cycle time depends on the configuration clock frequency and on the
readback bitstream size. For the XQVR300, it is necessary to utilize 207,972 clock
cycles in order to perform the full scrubbing load (Scrub cycle = # clock cycles x clock
period). The scrubbing rate describes how often a scrubbing cycle must occur. It is
determined by the expected upset rate of the device for the given application. Upset
rates are calculated from the static bit cross-section of the device and the charged
particle flux the application or mission is expected to endure. The scrubbing rate should
be set such that any SEU on the configuration memory will be fixed before the next
upset will occur. In reality the scrubbing rate is minimized to be equal to the scrubbing
cycle. In this way configuration logic is always being refreshed. The implemented
design can also have influence in the selection of the scrubbing rate. A good "rule of
thumb" is to place the scrubbing rate one order of magnitude or more above the
expected upset rate. In other words, the system should scrub, on the average, at least ten
times between upsets.

VIRTEX (E)

OSC

INIT
DONE

CCLK

OE/RESET

CLK

XQR18V04

I/O

DATA[7:0] DATA[7:0]

CE

WR
GND

I/O
I/O

OE/RESET

CLK

XQR18V04
DATA[7:0]

CE

I/O

GND

I/O

CS

BOOT

SCRUB

SCRUB
Controller

Figure 5.5: Scrubbing configuration scheme

84

6 Evaluating the Robustness of the TMR technique
into Virtex® FPGA

The robustness of the TMR technique implemented in a high-level description
language synthesized in the Virtex® FPGA was evaluated by injecting faults in the
configuration bits of the matrix (LUTs and configuration routing cells) and in the
presence of protons generated by an electronic beam in a radiation ground test facility.
In order to better understand how the faults were injected in the configuration cells and
how they will effect the design operation, it is necessary to first study the configuration
memory of the FPGA.

The Virtex® configuration memory can be visualized as a rectangular array of bits,
that is called the bitstream, figure 6.1. The configuration memory array is divided into
three separate segments: The "CLB Frames", "BRAM0 Frames" and "BRAM1 Frames”.
The two BRAM segments contain only the RAM content cells for the Block RAM
elements. The BRAM segments are addressed separately from the CLB Array.
Therefore, accessing the Block RAM content data requires a separate read/write
operation. Read/Write operations to the BRAM segments should be avoided during
post-configuration operations, as this may disrupt user operation.

DLL

DLL

IO
Bs

DLL

DLL

B
RA

MCLBs

IOBs

IOBs

BR
A

M
IO

Bs

static memory cell

0
0
1
1
1
0
1
0
1
0
0
0
0
1
1
0
0
0
1
0
1configuration bits

Figure 6.1: Virtex® Architecture Overview

85

The CLB Frames contain all configuration data for all programmable elements
within the FPGA. These include all Lookup Table (LUT) values, CLB, IOB, and
BRAM control elements, and all interconnect control. Therefore, every programmable
element within the FPGA can be addressed with a single read or write operation. These
entire configuration latches can be accessed without any disruption to the functioning
user design, as long as LUTs are not used as distributed RAM components.

While CLB flip-flops do have programmable features that are selected by
configuration latches, the flip-flop registers themselves are separate from configuration
latches, and cannot be accessed through configuration. Therefore, readback and partial
configuration will not affect the data stored in these registers. However, when a LUT is
used as either a distributed RAM element or as a shift register function, the 16
configuration latches that normally only contain the static LUT values are now dynamic
design elements in the user design. Therefore, the use of partial reconfiguration in a
design that contains either LUT-RAM (i.e., RAM16X1S) or LUT-Shift-register
(SRL16) components may have a disruptive effect on the user operation. For this reason
the use of these components cannot be supported for this type of operation.

However, Select block RAMs (BRAM) may be used in such an application. Since
all of the programmable control elements for the BRAM are contained within the CLB
Frames and the BRAM content is in separate frame segments, partial reconfiguration
may be used without disrupting user operation of the BRAM as design elements.

The configuration memory segments are further divided into columns of data
frames. A data frame is the smallest portion of configuration data, which may be read
from, or written to, the configuration memory. The bits are grouped into vertical frames
that are one-bit wide and extend from the top to the bottom of the array composing a
column defined by a major address (XILINX, 2000c). Each matrix column is associated
with a major address and to a different number of frames according to the nature of the
column, shown in table 6.1.

The frames are read and written sequentially with ascending addresses for each
operation. The frame size depends on the number of rows in the device. The number of
configuration bits in a frame is 18 x (# of CLB rows +2), and is padded with zeros on
the right bottom (LSB) to fit a 32-bit word.

The frame organization differs for each type of column. Each frame is located
vertically in the device with the front of the frame at the top. Table 6.2 shows the CLB
column frame, IOB column frame and BRAM content organization. The frame top is
showed on the left.

The CLB tile is composed of the CLB logic and the surrounding interconnection that
is placed in a determined row and column in the matrix. There are 864 customization
bits per CLB tile distributed in 48 frames with 18 bits each, figure 6.2. The bits can be
divided in Look-up table bits (7.4%), CLB configuration bits (6.8%), interconnection
bits (84.2%) and 3-state buffer configuration bits (1.6%). Figure 6.3 shows a global
view of the CLB tiles placed in rows and columns in the matrix.

Table 6.1: Virtex® Configuration Column Type

Column Type # of frames # per device
center 8 1
CLB 48 # CLB columns
IOB 54 2

BRAM interconnect 27 # of blocks SelectRAM columns
BRAM content 64 # of blocks SelectRAM columns

86

Table 6.2: Frame Organization

CLB column frame
Top 2 IOB CLB R1 … CLB Rn Bottom 2 IOB

18 bits 18 bits … 18 bits 18 bits
IOB column frame

Top 3 IOB 3 IOBs … 3 IOBs Bottom 3 IOB
18 bits 18 bits … 18 bits 18 bits

Block SelectRAM content column frame
PAD RAM R0 … RAM RN PAD

18 bits 72 bits … 72 bits 18 bits

...

Frame 0
Frame 1

Frame 47

Bit 0Bit 17

Frame 2
Frame 3

Frame 46

...

Figure 6.2: CLB Tile Map

... ...

Column 1 Column 2 Column 47 Column 48

M.A. 48 M.A. 46 M.A. 45 M.A. 47… M.A. 0 …

bit 17
bit 16
bit 15
bit 14
bit 13
…
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

CLB
Tile

...

Fram
e 47

Fram
e 46

Fram
e 45

…Fram
e 5

Fram
e 4

Fram
e 3

Fram
e 2

Fram
e 1

Fram
e 0

bit 17
bit 16
bit 15
bit 14
bit 13
…
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

bit 17
bit 16
bit 15
bit 14
bit 13
…
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

...

bit 17
bit 16
bit 15
bit 14
bit 13
…
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

CLB
Tile

...

Fram
e 47

Fram
e 46

Fram
e 45

…Fram
e 5

Fram
e 4

Fram
e 3

Fram
e 2

Fram
e 1

Fram
e 0

bit 17
bit 16
bit 15
bit 14
bit 13
…
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

bit 17
bit 16
bit 15
bit 14
bit 13
…
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

...

bit 17
bit 16
bit 15
bit 14
bit 13
…
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

CLB
Tile

...

Fram
e 47

Fram
e 46

Fram
e 45

…Fram
e 5

Fram
e 4

Fram
e 3

Fram
e 2

Fram
e 1

Fram
e 0

bit 17
bit 16
bit 15
bit 14
bit 13
…
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

bit 17
bit 16
bit 15
bit 14
bit 13
…
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

...

bit 17
bit 16
bit 15
bit 14
bit 13
…
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

CLB
Tile

...

Fram
e 47

Fram
e 46

Fram
e 45

…Fram
e 5

Fram
e 4

Fram
e 3

Fram
e 2

Fram
e 1

Fram
e 0

bit 17
bit 16
bit 15
bit 14
bit 13
…
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

bit 17
bit 16
bit 15
bit 14
bit 13
…
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

Frame
byte

...

Frame
byteIOB

and
IOI

IOB
and
IOI

IOB
and
IOI

IOB
and
IOI

R
ow

 3
2

R
ow

 3
1

R
ow

 1

...

Figure 6.3: Matrix frame organization map

87

Previous results from the radiation ground testing presented at (CARMICHAEL,
2001) showed that using TMR in Virtex® FPGAs, the cross section was reduced by
1,000 times compared to using only the scrubbing technique without TMR. But it was
still not zero. The fault injection investigation started with the objective of justifying the
errors obtained from the ground testing experiments in the Virtex® TMR design. The
analysis must explain how a single bit upset in the bitstream of the Virtex® FPGA could
cause two errors in distinctly redundant logic parts of the TMR design.

The fault injection in SRAM-based FPGAs is defined as a bit flip in all bits of the
configuration bitstream. In this way, it is possible to evaluate the effects of an upset in
all sensitive areas of the programmable matrix. Some of these bits are directly related to
the user’s design combinational and sequential logic, and some of them are related to
the FPGA architecture and design implementation.

The fault injection analysis was executed in four main steps. First, the fault injection
tool developed by Los Alamos National Laboratory was used to catalogue all the
configuration bit locations that caused a dynamic error in the TMR design. Then all the
reported bits were identified in the general FPGA matrix in terms of row, column and
functionality. Based on this information it was possible to identify those bits in the
FPGA IC schematics. The third step identified the correlation between the bit location
in the FPGA IC schematic and its location in the design under test in the FPGA editor
tool. The last step was the characterization of the error.

6.1 Test Design Methodology

The TMR test design methodology used to analyze the SEU in the Virtex® FPGA
consists of a TMR counter design replicated in the circuit in order to fill the resources of
the part (XQVR300). All CLBs were used to implement eight TMR 32-bit counters
with pipeline design. The design can be divided in three groups: the redundant logic part
0, redundant logic part 1 and redundant logic part 2. Each redundant group is composed
of eight 32-bit counters. Figure 6.4 illustrates the design scheme.

TMR
Counter 0

T
R

0

T
R

1

T
R

2

T
R

0

T
R

1

T
R

2

T
R

0

T
R

1

T
R

2

T
R

0

T
R

1

T
R

2

T
R

0

T
R

1

T
R

2

T
R

0

T
R

1

T
R

2

T
R

0

T
R

1

T
R

2

T
R

0

T
R

1

T
R

2

32 x 8-to-1 Multiplexers and 32 bit shift register
TMR

Outputs

TMR
Counter 1

TMR
Counter 2

TMR
Counter 3

TMR
Counter 4

TMR
Counter 5

TMR
Counter 6

TMR
Counter 7

32

1

State-machine Logic

Through-put Logic

IOB Logic

Figure 6.4: TMR design of a 32-bit pipelined counter

88

In order to detect an error in one of the 32-bit counters, the eight 32-bit counters
located in the same redundant logic group are compared against each other. There is one
comparator for each group. Comparators 0, 1 and 2 report an error in the redundant part
0, 1 and 2 respectively.

The three redundant logic groups are finally compared in the majority voter
located in the output logic block. The error flag, a result of the majority voter, reports if
there is an error in two or more redundant parts. A schematic of this approach is
illustrated in figure 6.5.

Error flag

XQVR300

TMR
Design

comparator

M
inority voters

tr0

tr0

tr1

tr1

tr2

tr2

tr2

tr0
tr1

...

TMR
Design

tr0
tr1
tr2

Figure 6.5: TMR Design Methodology

6.2 Fault Injection in the FPGA Bitstream

The fault injection tool developed in Los Alamos National Laboratory specific for
Xilinx needs is able to corrupt all the bits of Virtex® bitstream in a sequential way, or
individually by choosing a specific bit location. The objective of this tool is to analyze
the effect of a single bit upset in a TMR design implemented in the Virtex® architecture.
All single bit upsets able to cause an error in the TMR design were cataloged for
investigation. In this text, this tool will be called Virtex fault injection tool.

In principle, no single bit upset in the bitstream should cause an error in the TMR
design if a single upset error affects only one redundant part of the design. By TMR
definition, if one redundant part is corrupted by an upset, the majority voters continue
voting the correct value from the two other redundant uncorrupted parts.

The Virtex fault injection tool can upset a single bit in the bitstream sequentially
starting from a user defined major address and frame, or it can upset one specific bit
when the user defines the major address, frame, frame byte and bit. Fault injection is
performed in three steps, presented in table 6.3. The three-step method guarantees no
double upsets for any short period of time.

Table 6.3: VIRTEX® Configuration Column Type

Fault injection steps Bitstream example
Read the bitstream: … 0110010101010…
Corrupt one bit and load the bitstream: … 1110010101010…
Correct the previous bit and load the bitstream: … 0110010101010…
Reset the flip-flops … 0110010101010…

89

Each time an error is reported by the test design comparator, the fault injection tool
shows the location of the upset bit that caused the error. The tool reports the major
address, frame, frame byte and bit location. Using this information it is possible to know
the exact location of the bit in the bitstream, and as consequence in the FPGA matrix.

The fault injection test platform, shown in figure 6.6, is made from two AFX
V300PQ240-100 daughter cards; a MultiLINXTM cable used as an interface to a host
PC, and a control panel. The system can operate stand-alone or in conjunction with a
host PC and test software. The control panel communicates directly with the control
chip to specify the mode of operation. Configuration of the DUT may be controlled by
either the control chip or the test software via the MultiLINX Cable. The control chip
also controls the dynamic operation of the DUT and dynamic error detection.

Figure 6.6: SEU Test platform

6.3 Locating the upset in the design floorplanning

For a given bit located in the bitstream in the CLB frames, there is a unique address
location that is defined by the Major Address, Frame, Frame Byte and Bit position. In
order to know the location of this bit in the FPGA matrix and consequently its purpose
in the user design, it is necessary to follow the next steps:

6.3.1 Bit column location in the matrix

The CLB address space begins with ’0’ for the center column and alternates between
the right and left halves of the device for all the CLB columns, then IOB columns, and
BRAM interconnect columns, as illustrated in figure 6.7. Analyzing the figure
schematic, if the major address is 23, for example, it means that the column is 24.

90

Figure 6.7: Example of frame organization in Virtex® family

6.3.2 Bit row location in the matrix

Each bit column starts from the top I/O block, passes through all CLB blocks and it
ends in the bottom I/O block. Each row has 18 bits, including the I/O block. The
equation 6.1 provides the row position.

Row = (Byte Frame x 8 + bit) / 18 6.1

The frame, frame byte and bit data are used to obtain the exact bit location in the
CLB tile by using the equation 6.2.

CLB tile bit = 17 - [Byte Frame x 8 - Floor((Byte Frame x 8 +
Bit) / 18), 18) + Bit]

6.2

6.3.3 Bit location in the CLB

Each bit of the CLB tile has been identified in the FPGA IC schematic and therefore
in the design floorplanning by using some internal Xilinx tools. In this way it was
possible to build a design flow from the upset bit information coming from the fault
injection tool (major address, frame, frame byte and bit) and the final design
floorplanning bit location.

6.3.4 Bit Classification

The CLB map has the general bit classification (LUT, flip-flop, customization or
routing) in terms of frame number and the bit location in the CLB. This map gives just a
general view. In order to be able to find the specific location of the bit in the CLB
architecture a table containing all the bit names is used. Table 6.4 shows a portion of the
used CLB map table containing just the frame address 0.

91

Table 6.4: Bit Classification in the CLB

Frame Bit Function
0 0 I_c_hexes.I67.hex_mux_s3
0 1 I_c_hexes.I55.hex_mux_s3
0 2 I_c_singles.I621.I377
0 3 I_c_singles.I625.I377
0 4 I_c_singles.I611.I377
0 5 I_c_singles.Iw22o7.I377
0 6 I_c_singles.Is23n23.I377
0 7 I_c_singles.I101.I377
0 8 I_c_singles.Iw0n23.I377
0 9 I_c_imux.s1ce_16to1.I16to4_2
0 10 I_c_imux.s0ce_16to1.I16to4_4
0 11 I_c_imux.s1ce_16to1.I2to1
0 12 I_c_imux.s0ce_16to1.I16to4_1
0 13 I_c_cle.pblk1.pibce.cfgmem
0 14 I_c_cle.slice1.luts.flut.lm15.I74
0 15 I_c_cle.slice1.luts.glut.lm15.I74
0 16 Ic_lng_tbf.Itblk.I57.Its12
0 17 I_c_omux.Iom6.om2

Analyzing table 6.4, there are some names that can be easily associated to a routing
position, for example I_c_singles.Iw22o7.I377 that shows the connection between the
single wire West 22 and single wire out 7. However, the majority of the names do not
make any sense without the use of the FPGA schematics.

An intense search was done in the Virtex schematic in order to associate each name
to each structure. But still this was not enough to be able to associate the bits in the
FPGA architecture to the signals in the user design. The software package called XDL
(XILINX, 2001b) must be used to see all the connections and instantiations in the user
design. XDL is a full featured design language that provides direct read and write access
to Xilinx proprietary Native Circuit Description (ncd), figure 6.8. It is a single tool with
3 fundamental modes: report device resource information, convert NCD to XDL
(ncd2xdl) and convert XDL to NCD (xdl2ncd).

Command example: xdl -ncd2xdl design.ncd design.xdl

92

inst "counter6/I$2/pipe0/N$3(3)" "SLICE" , placed R31C7 CLB_R31C7.S1 ,
 cfg "CKINV::1 DYMUX::1 DXMUX::1
 F:counter6/I$2/pipe0/stage2/pipe3/I$8:#LUT:D=(~A2*A3)
 G:counter6/I$2/pipe0/stage2/pipe2/I$8:#LUT:D=(~A2*A3)
 CEMUX::CE_B SRMUX::SR_B GYMUX::G FXMUX::F SYNC_ATTR::SYNC
 SRFFMUX::0 INITY::LOW
 FFX:counter6/I$2/pipe0/stage2/pipe3/I$3:#FF
 FFY:counter6/I$2/pipe0/stage2/pipe2/I$3:#FF INITX::LOW

_PINMAP:24:0,1,2,3,4,5,8,6,7,9,10,11,14,12,13,15,16,17,18,19,20,21,22,
23"
 ;

net "count_data_tr2_0(1)" ,
 outpin "count_data_tr2_0(0)" YQ,
 inpin "mux2/L1.L1.1_mux/G_22_73" G4,
 pip R32C46 S0_YQ -> OUT0 ,
 pip R32C46 OUT0 -> N0 ,
 pip R31C46 S0 == E22 ,
 pip R31C47 W22 -> W_P22 ,
 pip R31C47 W_P22 -> S1_G_B4 ,
 # net "count_data_tr2_0(1)" loads=1 drivers=1 pips=5 rtpips=0
 ;
net "L0.L0.3_C/Pipe2/pipeline_5(0)" ,
 outpin "L0.L0.3_C/Pipe2/pipeline_5(1)" YQ,
 inpin "count_data_tr2_3(0)" F2,
 pip R16C46 S1_YQ -> OUT5 ,
 pip R16C46 OUT5 -> E15 ,
 pip R16C46 E15 -> E_P15 ,
 pip R16C46 E_P15 -> S0_F_B2 ,
 # net "L0.L0.3_C/Pipe2/pipeline_5(0)" loads=1 drivers=1 pips=4
rtpips=0
 ;

Figure 6.8: Example of design connection file (.ncd)

Based on the information of the Virtex® Architecture and the equations presented in
this section is possible to make a correlation between the programmable bit in the
bitstream and its location in the design floorplanning that can be observed in the
Foundation or Alliance software. Figure 6.9 (a) shows the single and hex routing
segments in the design floorplanning and the correspondent segments in the FPGA
schematic. Figure 6.9 (b) shows the CLB slice signals and input multiplexor
connections in the design floorplanning and the correspondent names in the CLB FPGA
schematic. Figure 6.9 (c) shows the output multiplexor signals in the design
floorplanning and the corresponding names in the CLB schematic. These next three
figures help to correlate the signals from the design and the signals in the FPGA
schematic, giving the location and placement of both.

93

single

single

single

singlesingle

hex

hex

hex

hex hex hex

hex
hex

hex

S23…S0 H6W11…H6W0 H6m11…H6m0 H6E11…H6E0

W23 …
W0

E23 …
E0

V6S9
V6S8
V6S5
V6S4
V6S1
V6S0

N23…N0
OUT7…OUT0

V6m9
V6m8
V6m5
V6m4
V6m1
V6m0

V6N9
V6N8
V6N5
V6N4
V6N1
V6N0

V6S11
V6S10
V6S7
V6S6
V6S3
V6S2

V6m11
V6m10
V6m7
V6m6
V6m3
V6m2

V6N11
V6N10
V6N7
V6N6
V6N3
V6N2

Connections done by the
singles matrix in the schematic

Connections done by the
hexes matrix in the schematic

(a) Single and Hex Routing

W_P23 S_P23 E_P23 N_P23 ... W_P0 S_P0 E_P0 N_P0

Slice 1 Slice 0

S1_G_B4 … B1

S1_F_B4 … B1

S0_F_B4 … B1

BY F5IN CE CLK SRCLK3-0

Slice 1

BY F5IN CE CLK SR

Cin
BX

(b) CLB Slices and Input Multiplexors

94

S1Y S1YQ S1XB S1F5 S1X S1XQ S0Y S0YQ S0XB S0F5 S0X S0XQ

out0
…

out7

(c) Output Multiplexors

Figure 6.9: CLB Tile representation in the ISE Floorplanning Tool from Xilinx

6.4 Fault Injection Results

The fault injection was performed in the TMR test design running at 10 and 20
MHz. The report showed that 224 upset bits of 1,663,200 bits in the XQVR300
bitstream had caused an error in the TMR design application execution.

Analyzing the upset bits in the design floorplanning, we observed that a single upset
in the routing matrix (GRM) could provoke an undesirable connection between two
different signals placed in distinct parts of the FPGA. An example of upset in the GRM
that was able to cause an error in the output of the TMR design is located in the major
address: 10, frame: 35, frame byte: 46, bit: 5 of the bitstream. Using the equations 3.1
and 3.2, the upset bit in the floorplanning is placed at CLB row 20, column 20
(R20C20) and CLB bit tile: 4. The upset was identified in the IC schematic as
I_c_singles.Iw6he1.I377 that means a connection between the single line west 6 and hex
line 1, represented in figure 6.10 (a). Apparently this upset cannot generate an error
because it connects a signal from the comparator of the redundant part 0 to “no” signal.
However, the hex line connects the CLB R20C20 to two others CLBs as displayed in
figure 6.10 (b) marked by circles. Analyzing the CLB R20C23, for example, we noticed
that actually there is a signal connected to this hex line. The signal is from one of the
counters of the redundant part 2, as shown in figure 6.10 (c).

95

Signal: tr0_comp/N$302

No signal

(a) Upset in CLB R20C20

Hex line
R20C23 R20C26R20C20

(b) CLBs connected by the hex line

Signal: tr0_comp/N$302

upset

Signal:counter6/counter/I$26/tr2_count(1)

Redundant 0

Redundant 2

(c) Undesirable connection detected in CLB R20C20

Figure 6.10: SEU example in the GRM user’s design floorplanning

The analyzed upset bit was characterized by an undesired connection from one bit of
the 32-bit counter in a redundant module to a signal from the comparator logic of
another redundant module. In this case, both comparators 0 and 2 are going to report an
error producing “one” in the error flag. This kind of error would have never occurred if
the comparators were placed out of the chip.

In summary, it is important to remark that there is a possibility of an upset if the
routing connects two different modules of the TMR, but it is very low. For example, in
figure 6.11, upset connections labeled as b, g and f do not interfere in the correct

96

operation of the TMR design. The others could interfere according to the bit that they
are affecting because they connect two different logic modules of the TMR. The
probability is related to the routing density and logic placement. Dedicated
floorplanning for each redundant module of the TMR can reduce the probability of
upsets in the routing affecting two or more logic modules. Table 6.5 summarizes the
effect of a fault in each FPGA module in the TMR design with no assigned area
constraint floorplanning.

tr
0_

0
tr

1_
0

tr
2_

0

tr
0_

0
tr

1_
0

tr
2_

0

tr
0_

0
tr

1_
0

tr
2_

0

tr1tr0 tr2

I/O tr2I/O tr1I/O tr0

a

b

c d
e

f

g

Figure 6.11: Example of effect of a SEU in the FPGA routing

Table 6.4: Upsets Analysis in the Triple Modular Redundancy Approach with No
Assigned Area Constraint Floorplanning

Upset
Location

Action Consequences Upset
Correction

LUT Modification in
the
Combinational
logic

- Error in the redundant part with
no error in the TMR design
output

By Scrubbing

Routing Connection or
disconnection
between any two
signals in the
design

- Error in the redundant part with
no error in the TMR design
output
- Error in more than one
redundant parts with error in the
design output

By scrubbing

Customization
logic in
general

Connection or
disconnection
between any two
signals in the
same CLB

- Error in the redundant part with
no error in the TMR design
output
- Error in more than one
redundant parts with error in the
design output

By Scrubbing

Flip-flops Modification in
the sequential
logic

- Error in the redundant part, no
error in the TMR design output

By user
correction
technique
(VHDL)

97

6.5 The “Golden” Chip Approach

In order to avoid upset connections between the test design and the comparator test
circuitry, a new TMR design based on the “golden” chip approach was implemented in
the Virtex® component, where the DUT output signal is compared to the golden design
placed outside the chip, figure 6.12. In this case, if a single bit upset in the DUT routing
matrix provokes an undesirable connection between two signals from different
redundant parts of the design, the TMR will always vote the correct signal to the storage
elements and to the output. A bit flip in the customization logic will only be able to
generate an error if it upsets the exact same bit in two distinct redundant logic parts,
which has an extremely low probability to occur. Moreover, this type of error can be
totally avoided with a structured floorplanning of the design placement.

Error flag

“Gold” Design

comparator

TMR
DesignTMR

DesignTMR
Design

tr0
tr1
tr2

XQVR300

DUT

M
inority voters

Figure 6.12: “Golden” Chip Method

The fault injection experiment using the “golden” chip method was performed in the
TMR design running at 25 MHz. The tool has reported “no errors” for all the bits in the
bitstream. The result has finally confirmed the efficacy of the TMR structure to recover
any error in the FPGA architecture. The radiation characterization results (LIMA et al.,
2001b; CARMICHAEL; FULLER; FABULA; LIMA, 2001) performed at the proton
facility in UC Davis show that the Virtex® FPGA has presented the same reliability
achieved by the fault injection experiment.

98

7 Designing and Testing a TMR Micro-controller into
Virtex® FPGA

Micro-controllers implemented in programmable logic platforms are becoming more
and more advantageous in order to integrate system-on-a-chip (SOC) improving
performance, flexibility and time to market. When a micro-controller is implemented in
an SRAM-based FPGA, not only are the registers and memories sensitive to SEU but
also all the programmable logic defined by the FPGA architecture such as the Lookup
Tables, routing switches, flip-flops and memories. The previous experiment has shown
that TMR can protect designs against SEU in SRAM-based FPGA platforms, for this
reason it has been applied to micro-controller architectures too. In addition, a fast time-
to-market using commercial off-the-shelf micro-controller architecture for space
applications can be achieved by protecting the micro-controller core description and
implementing in Virtex® QPRO FPGA.

Following this direction a micro-controller VHDL description developed at UFRGS
and presented at (CARRO; PEREIRA; SUZIM, 1996; SILVA; LIMA; CARRO; REIS,
1997) was re-used to implement the SEU hardened micro-controller into Virtex®
XQVR300 FPGA using the TMR techniques proposed in (CARMICHAEL, 2001). The
8051-like VHDL description is divided into six main blocks as illustrated in figure 7.1.
The Finite State Machine (FSM) block implements a counter that generates 24 clock
cycles to guide the instruction execution. The Control unit generates all the enable
signals for the registers and Arithmetic unit located in the datapath. The Instruction unit
generates the microcode word for each instruction. The datapath includes an Arithmetic
Logic Unit (ALU) and many registers. There are two 256 byte internal memories, one
for the data and the other for the application program.

The 8051 micro-controller runs an application based on two 6x6 matrix
multiplications at a frequency of 10 MHz. This application performs the multiplication
by shifter register and addition. This allows an intensive use of the available memory
and internal registers since the operators are read and written many times and both
operators and result are stored in the internal memory.

An extra logic circuit was designed to be able to analyze the results of the 8051 after
a bit is upset. This block is able to read all the memory data and to send the data to an
output pin serially. This output data is compared to the “golden” chip located in a
distinct FPGA component. If the data does not match, the comparator circuit sends a
flag error to the fault injection tool. Each corrupted bit able to cause an error in the
TMR design is reported in a file.

E
rr

or
 f

la
g

11 22

3344

55

66

D
at

ap
at

h

CLOCK(0-2)

RESET(0-2)

PSEN(0-2)

LD_IR(0-2)

INC_PC(0-2)

ST
A

T
E

 (1
4-

0)

IR (23-0)

IN
S

T
R

U
C

T
IO

N
 (

23
-0

)

D
A

T
A

 (
23

-0
)

A
D

D
R

E
SS

 (
47

-0
)

...
PC

_P
O

R
T

(0
-2

)

A
C

C
_P

O
R

T
(0

-2
)

ac
c_

st
at

us
(0

-2
)

P1
.7

IN
T

0(
0-

2)

R
O

M
R

A
M

B
lo

ck
R

am
B

lo
ck

R
am

A
D

D
R

E
SS

 (
47

-0
)

D
A

T
A

 (
23

-0
)C
on

tr
ol

 +
S

ta
te

 m
ac

hi
ne

In
st

ru
ct

io
n

un
it

D
A

T
A

 (
23

-0
)

R
ea

d
m

em
or

y
bl

oc
k

01
0.

..

G
ol

d
80

51
R

ea
d

m
em

or
y

bl
oc

k

01
0.

..

X
Q

V
R

30
0

Fi

gu
re

 7
.1

: T
M

R
 8

05
1

D
es

ig
n

M
et

ho
do

lo
gy

100

In order to protect the VHDL description against SEU, each logic block has been
triplicated and voters were inserted in all register loops. The datapath, control and
instruction logic blocks are mainly throughput logic and consequently they were just
triplicated. The registers in these blocks are constantly being written to avoid being
locked in a wrong state. An example of a TMR datapath register with its surround logic
in VHDL code is presented in figure 7.2. The vector signals were replaced by an array
of 3 vectors (0, 1 and 2) representing the vector signal for each redundant logic part.

L0: For K in 0 to 2 generate
process (OP_ACU(K), reg_alu_out(K), data_rom(K), reg_PC_low(K), data_rd_ram(K))
begin
CASE OP_ACU(K) IS
WHEN "000" => reg_accu_mux(K) <= "00000000";
WHEN "001" => reg_accu_mux(K) <= reg_alu_out(K);
WHEN "010" => reg_accu_mux(K) <= data_rom(K);
WHEN "101" => reg_accu_mux(K) <= reg_PC_low(K);
WHEN others => reg_accu_mux(K) <= data_rd_ram(K);
END CASE; end process;

process (reset_micro(K), clock(K))
begin
if (reset_micro(K)='0') then

 reg_accu(K) <= "00000000";
elsif (clock(K)'event and clock(K)='1') THEN

if (GCE(K)='1') then
if (accu_port(K)='1') then
 reg_accu(K) <= reg_accu_mux(K);
end if; end if;

end if; end process; end generate;

 Figure 7.2: Example of TMR VHDL code

All persistent errors (caused by ‘weak-keepers’) were avoided by using user ground
input and user global clock enable. The registered loops located in the state machine and
in the counters were protected by TMR with a major voter in each redundant feedback
path. All voters were implemented using LUTs. The TMR BRAM component presented
previously in figure 3.8 replaced the internal memories. In the DATA memory there is a
circuitry able to detect write conflicts in the memory when refreshing. The micro-
controller always has the write priority. In the program memory there is no conflict
because it is a read only memory from the micro-controller point of view.

7.1 Area and Performance Results

Table 7.1 shows a summary of the TMR design logic overhead in the 8051-like
micro-controller. The number of flip-flops in the TMR design has increased 3.6 times.
The ratio exceeds 3 because of the extra counters located in the BRAM scrubbing logic.
The TMR design contains 3 times the number of BRAM and each one of them has an
extra logic of flip-flops and LUTs for voters, counters and logic analyzes. The number
of LUTs in the TMR design is approximately 3.6 times bigger than in the standard
design. This proportion also exceeds three times because of the voters and the scrubbing
logic. Three of the four available global clock buffers in the device are being used for
the system clock.

The fault injection experiment was performed at 10 MHz using the test board
presented in the previous chapter in figure 6.5. Bit flips were inserted in all 1,663,200
bits of the XQVR300 bitstream. Each fault has remained in the bitstream enough time to
run many cycles through the application in the micro-controller. The application is a
matrix multiplication. Figure 7.3 shows the values stored in the matrix 1, matrix 2 and
the result matrix in the correspondent memory address. The fault injection results

101

showed that less than 1 % of the bit upsets could provoke an error in the output of the
TMR design, representing a very small cross-section. Figure 7.4 shows the floorplan
routing of the TMR 8051 micro-controller. The reduction of the number of bits that
could provoke an error in the TMR design could be observed to up to 0 by changing the
logic placement.

Table 7.1: TMR Logic Overhead in the 8051 (XQVR300)

Item Standard 8051 TMR 8051
FDCE 127 459
BRAM 2 of 16 6 of 16
TMR BRAM extra logic - 36 FDCE, 87 LUTs
Inputs 2 12
Outputs 1 3
BUFG 1 of 4 3 of 4
LUTs 757 (12%) 2778 (45%)

1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6

15 2A 3F 54 69 7E
15 2A 3F 54 69 7E
15 2A 3F 54 69 7E
15 2A 3F 54 69 7E
15 2A 3F 54 69 7E
15 2A 3F 54 69 7E

1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6

1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6

15 2A 3F 54 69 7E
15 2A 3F 54 69 7E
15 2A 3F 54 69 7E
15 2A 3F 54 69 7E
15 2A 3F 54 69 7E
15 2A 3F 54 69 7E

1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6

variables

Matrix 1

Matrix results

Matrix 2

0h
0Ah
0Bh
...

2Eh
2Fh
…

52h
53h
…

77h

Internal Memory

 Figure 7.3: Application for testing the TMR 8051 micro-controller

Figure 7.4: TMR 8051 micro-controller routing floorplanning

102

7.2 TMR 8051 Micro-controller Radiation Ground Test Results

The test was performed at Crocker Nuclear Laboratory at UC Davis, USA. The
proton energy and fluxes were measured as incident on the DUT package. All tests were
performed at room temperature. More details about the test can be found in (LIMA et
al., 2001b). The test platform is composed of two AFX V300PQ240-100 daughter
cards, a MultiLINXTM cable used as an interface to a host PC, and a control panel. The
system can operate stand-alone or in conjunction with a host PC and test software. The
control panel communicates directly with the control chip to specify the mode of
operation. Either the control chip or the test software, via the MultiLINXTM cable, may
control the DUT configuration. The control chip also controls the dynamic operation of
the DUT and dynamic error detection.

The beam energy was set to 63.3 MeV. The proton flux varied from 8.54E+08 to
1.70E+09 protons/sec-cm2, in order to ensure a scrubbing rate higher than the error rate.
The TMR 8051 design was tested in the dynamic mode and compared to the non-
protected design. The tested part was XQVR300 (0.22um, 2.5V). The cumulative limit
of TID achieved in this test was 116 krads(Si).

The fluence to upset was measured in the design of the no-TMR 8051 and in the
TMR version. The first experiment used the test software to readback the bitstream in
order to analyze the nature of the dynamic errors. When an error was detected, a
readback of the bitstream was initiated and the number of bitstream errors noted
alongside the total fluence to functional error. The second experiment compared the
design of the TMR 8051 with and without scrubbing. No readback was performed. A
logical reset of the flip-flops used in the design would then demonstrate whether the
functional error was from configuration/user upsets or the architecture ones. The fluence
to upset was measured while the PROM was continually scrubbing the configuration
bits.

Experiment 2 tested 3 different approaches in order to demonstrate the benefits of
TMR combined with scrubbing, see figure 7.5. Each test measured the fluence to
failure. The no-TMR and TMR designs were tested with and without scrubbing. Table
7.2 presents the TMR 8051 cross-section average for the observed fluence to upset
collected in the second experiment.

Proton Fluence to Upset

1.00E+09

1.00E+10

1.00E+11

1.00E+12

1.00E+13

8051 8051 TMR
(no scrub)

8051 TMR
(scrub)

POR

8.8E+9

8.8E+10

Figure 7.5: Testing Platform

103

Table 7.2: Virtex Dynamic Cross-section of TMR 8051

Upset Hit Cross-section (cm2)
Bit 18 6.93E-12
Persistent 2 1.91E-10
POR 0
Average 2.54E-11

The experiment frequency was set at 9 MHz. The same clock was provided to the

scrubbing PROM. The BRAM refreshing performed inside the DUT used the same
clock divided by 8. It takes 4 ms to entirely run the two 6x6 matrix multiplications and
the internal memory read. The scrubbing takes 22 ms to refresh the whole matrix. And
the BRAM refreshing takes 0.2275 ms to refresh all addresses.

In summary, the application runs 4 times during a scrubbing cycle and the BRAM is
refreshed 17 times per application cycle as it is illustrated in figure 7.6. The application
re-starts with a reset in the micro-controller coming from the read memory logic. In
general, bits from the BRAM and the CLB flip-flops (user logic upsets) have the highest
refresh rate. The LUTs, customization and routing bits (configuration upsets) are
refreshed by the scrubbing rate.

...
Block RAM refreshing (0.22 ms)

Application program (4 ms)

Scrubbing cycle (22 ms)

Figure 7.6: Scrubbing and Refreshing Times

An error can just occur in the design functionality if the number of accumulated
upsets is enough to overcome the TMR. For example, if an upset in the routing occurs in
the first application execution time of the scrubbing cycle, 2 out of 3 legs in the TMR
should be able to vote the correct value. However this undesirable connection or
disconnection may affect different parts of the design generating upsets that can be
stored in different redundant parts. All of these upset cells must be refreshed with their
original values. If the refreshing rate is such that one cannot avoid the accumulation of
upsets, errors are going to be observed in the output. It is important to analyze how the
upsets can propagate inside the architecture. In the next application cycle, the CLB flip-
flops are going to be reset, however the BRAM are never reset, they have always been
refreshed by voting their own values. If the refreshing in the BRAM is not fast enough
to avoid accumulation of upsets, a failure can be observed in the output.

The average of TMR 8051 error rate = 17 bits/upset (6e-2 upsets/bit/s = 190
upsets/bit/day) and the average scrub rate is 45. This means that in average there are 0.4
upsets per bits scrubbing. This rate could be unsatisfactory, besides the fact that the flux
is not always constant (2 or more upsets can occur during a scrubbing cycle) and the
upsets can propagate in the architecture generating more upsets. In real applications the
scrubbing rate should be at least 2 orders of magnitude higher than the error rate.

In order to improve the results, two solutions can be tried. The first option is to set
the proton flux in the radiation facility one order of magnitude or more lower in order to
be sure that there is only one upset per scrubbing cycle. In space the flux is much, much
lower than the test 99% of the time. However a very low flux would take a long time to
observe each error. The other solution is to speed up the scrubbing frequency. However
the PROM used can only achieve up to 16 MHz with reliable performance.

104

7.3 Final Remarks

The TMR technique for SRAM FPGAs was evaluated in Virtex family using two
designs. The first design was a 32-bit counter and the other design was an 8051 micro-
controller. The results observed in both designs have proved that the reliability of the
TMR is strongly related to the placement of the design in the FPGA matrix. In the first
design, the results achieved showed that no errors could be observed in the presence of
upsets. The main reason is because the counter design is a simple architecture that does
not use embedded memory (BRAM). Consequently the scrubbing issue is not so
evident. In addition, the presented result was based on that specific placement. There is
a probability that if another placement is performed, the results can change.

When a more complex design that uses embedded memory such as the 8051 micro-
controller was tested, the probability of upsets in the routing provoking an error in the
application results was more eminent because of its complexity and the scrubbing issue
in the embedded memories. Many placements were performed in the TMR 8051 and
each one has shown different results in terms of upset bits that could provoke an error in
the application results. However, in each case the difference was manly in the routing
bit locations that could provoke an error and not in the number of bits that was always
around 1% of the bits of the bitstream.

Based on the analyzed results, the TMR technique in SRAM based FPGAs can
improve substantially the reliability of the design but there is a low probability of error
caused by upsets in the routing. This result is correlated with the logic placement. The
solution can be in using a fault injection tool combined with a dedicated placement in
order to achieve 100% reliability.

105

8 Reducing TMR Overheads by Combining Hardware
and Time Redundancy

The TMR technique is a suitable solution for FPGAs because it provides a full
hardware redundancy, including the user’s combinational and sequential logic, the
routing, and the I/O pads. However, it comes with some penalties because of its full
hardware redundancy, such as area, I/O pad limitations and power dissipation. Although
these overheads and limitations could be reduced by using some architectural SEU
mitigation solutions such as hardened memory cells, EDAC techniques and standard
TMR with single voter, as presented in chapter 4, these solutions are very costly
because they require modifications to the matrix architecture of the FPGA (NRE cost).
Many applications can accept the limitations of the TMR approach but some cannot.
The main limitations are:

- The number of I/O pads available for designers is reduced by three
times, because each input and output of each TMR redundant block (tr0,
tr1, tr2) should have its own input and output pads. The number of
dedicated clock resource segments for the routing available is also
reduced by three times, because each input and output of each TMR
redundant block (tr0, tr1, tr2) should have its own clock.

- The size of the combinational logic in the design is multiplied by three
times, and this also happens in the sequential logic, where each storage
cell must be replaced by three storage cells, with three voters and
multiplexors.

- The embedded memory also needs to be triplicated and refreshed using
extra logic.

- There is a delay overhead inserted by the voters.
- The power consumption is increased by three times as all input and

output pins as well as the combinational and sequential logic are
triplicated.

A new high-level fault-tolerant technique is introduced in this chapter that combines
time and hardware redundancy, with some extra features able to cope with SEU in
SRAM-based FPGAs. This technique allows the reduction of the number of I/O pads
and consequently power dissipation in the interface. The main idea is to reduce the
hardware overhead, which in the case of the TMR is three times more to some point
close to twice the original area, maintaining the same reliability.

The possibility of applying time redundancy combined with hardware redundancy
for FPGAs looks interesting to reduce the costs of using full hardware redundancy
(TMR) and to improve reliability (less sensitive area!). Potentially the use of duplication
with comparison (DWC) combined with time redundancy may reduce area and pin
count and consequently power dissipation in the I/O pads, the main drawbacks of the
TMR approach. But there are two problems to be solved. First, previous techniques

106

based on time redundancy can only be used to detect upsets, and not upsets that become
permanent, as is the case of SRAM based FPGAs. Second, in the FPGA, usually DWC
can only detect an upset, but in this case, it is not only sufficient to detect an upset, but
one also must be able to vote the correct value in order to ensure the correct output. In
the next section, we present a technique based on time and hardware redundancy for
SRAM-based FPGA that takes into consideration the above problems to reduce pin
count, area and power dissipation.

8.1 Duplication with comparison combined with time redundancy

Time redundancy by itself can only detect transient faults (NICOLAIDIS, 1999;
ANGHEL; ALEXANDRESCU; NICOLAIDIS, 2000). The same occurs with
duplication with comparison (DWC), which can also only detect faults. However, the
combination of time redundancy and DWC can provide an interesting upset evaluation,
which can not only detect the presence of a fault, but also recognize in which redundant
block the upset has occurred. Figure 8.1 shows the detailed scheme. There are two
redundant blocks: dr0 and dr1. In this way, upsets in the combinational logic can be
detected and voted before being latched.

clk

clk

Clk+d

Clk+d

Combinational
logic 0

Tc0

Tc1

Hc

Hcd

Combinational
logic 1

dr0

dr1

dr0_ d

dr1_ d

out0

out1

Figure 8.1: Time and Hardware Redundancy Schematic for Upset Detection

Four values are stored in the auxiliary latches (dr0, dr0_d, dr1 and dr1_d), two from
each redundant block collected at different instants. Two latches store the dr0 and the
dr1 outputs at the clock edge and two latches store the dr0 and dr1 outputs at the clock
edge plus a delay d. As a consequence, there are four outputs of comparators in the
scheme: Tc0 is the time redundancy comparator from redundant block 0, Hc is the
hardware redundancy comparator at the clock edge, Tc1 is the time redundancy
comparator from redundant block 1 and Hcd is the hardware redundancy comparator at
the clock+d edge. Analyzing the sixteen possibilities of output combinations of dr0,
dr0_d, dr1 and dr1_d, eight different syndromes are recognized, as presented in table
8.1. Analyzing the syndromes from table 1, it is possible to see the temporal effect of an
upset in the FPGA. The steps are basically no fault, upset effect in redundant block 0
(dr0) or block 1 (dr1), permanent effect in redundant block 0 (dr0) or block 1 (dr1),
recovery upset effect in redundant block 0 (dr0) or block 1 (dr1), and no fault.

An upset in redundant block 0, syndrome 1001, is characterized by a transient
variation in the output (Tc0=1) with no changes at output dr1 (Tc1=0), and in addition
Hc=0 and Hcd=1. An upset occurrence in dr1 is recognized in an equivalent way, where
Tc1=1 and Tc0=0. There are many other syndromes that are not commonly seen in an

107

ASIC environment, only in FPGAs. One example is the permanent effect of an upset,
syndrome 0101. By analyzing this syndrome, it is not possible to conclude which
redundant block has the correct value and which does not. The previous syndrome
characterized by the transient effect detection is necessary to vote the correct path. This
phenomenon characterizes the necessity of a state machine to vote the correct value.
This technique considers only one upset per design at once, either in redundant block 0
or in redundant block 1. An implementation with an assigned area constraint may avoid
the occurrence of a fault in the redundant block 0 at the same time as a fault in
redundant block 1 (syndrome 1010). The identification of this syndrome can be used as
a flag to show that upsets have overcome the DMR scheme.

Table 8.1: Syndrome Analysis in the Double Modular Redundancy Approach

dr0 dr0_d dr1 dr1_d Tc0 Hc Tc1 Hcd Syndrome
0 0 0 0 0 0 0 0 No fault
0 0 0 1 0 0 1 1 Fault dr1 (stage 1, transient)
0 0 1 0 0 1 1 0 Fault recovery dr1
0 0 1 1 0 1 0 1 Fault dr0 or dr1 (stage 2,

permanent)
0 1 0 0 1 0 0 1 Fault dr0 (stage 1, transient)
0 1 0 1 1 0 1 0 Fault dr0 and dr1 (stage 1,

transient)
0 1 1 0 1 1 1 1 Fault dr0 or dr1, recovery dr0 or

dr1
0 1 1 1 1 1 0 0 Fault recovery dr0
1 0 0 0 1 1 0 0 Fault recovery dr0
1 0 0 1 1 1 1 1 Fault dr0 or dr1, recovery dr0 or

dr1
1 0 1 0 1 0 1 0 Fault dr0 and dr1 (stage 1,

transient)
1 0 1 1 1 0 0 1 Fault dr0 (stage1, transient)
1 1 0 0 0 1 0 1 Fault dr0 or dr1 (stage 2,

permanent)
1 1 0 1 0 1 1 0 Fault recovery dr1
1 1 1 0 0 0 1 1 Fault dr1 (stage1, transient)
1 1 1 1 0 0 0 0 No fault

The DWC with time redundancy proposed technique for the combinational blocks,

illustrated in figure 8.2, combines duplication with comparison and time concurrent
error detection to identify combinational upsets in FPGAs. DWC with time redundancy
tolerates upsets without system interruptions. The combinational logic is duplicated and
there is a voter circuit able to detect an upset and to identify which redundant block
should be connected to the CLB flip-flops. The upsets in the combinational logic are
corrected by scrubbing, while upsets in the CLB flip-flops are corrected by the TMR
scheme. It is important to notice that for upset correction, scrubbing is performed
continuously, to ensure that only one upset has occurred between two reconfigurations
in the design.

When the circuit is reset, the state machine starts in state 0 and it is persistently
monitoring the redundant block 0, while the redundant block 1 is the spare. At this
point, an upset in the redundant block 1 will not affect the system, and it will be

108

corrected by the periodic scrubbing. If an upset occurs in the redundant block 0, the
state machine recognizes the fault, and the operation switches to the spare path, the
redundant block 1. The upset in the redundant block 0 will be soon corrected by the
scrubbing, while now the system is operating with the redundant block 1. At this point,
the state machine is constantly monitoring the redundant block 1, looking for upsets and
the redundant block 0 is the spare. Upsets in the redundant block 0 will be corrected by
scrubbing.

As the fault detection technique used for this method is able to identify only
transient faults, it is necessary to have an observation period to detect the fault
occurrence and consequently the faulty module (dr0 or dr1). The size of the observation
period of a fault occurrence is referred to as the clock delay d. As a result, the transient
fault observability occurs between clock and clock+d. Outside this observation period,
the fault is seen as permanent and the faulty module can not be recognized, only the
presence of a fault can be detected. The percentage of faulty module detection is related
to d. As the observation period (d) becomes greater, the probability of faulty module
detection becomes higher. One can use d as half of one clock cycle. The performance
penalty of this method is related to the time duration of the fault observability (d).

The registers from the sequential logic store the combinational logic outputs at clock
plus d, plus the delay from the upset detection circuit, totaling a new delay d’. The
latches from the concurrent upset detection state machine will also store the next state at
clock+d’. In order to simplify the number of clocks in the design, one possibility is to
reduce the frequency of the design by two. In this way, the combinational output is
stable at the clock falling edge. At this time, the value is captured for the future
comparison. The fault observability period is until the next clock rising edge where the
correct redundant logic is voted. Figure 8.3 illustrates two fault effects, one occurring
during the propagation time and one occurring during the observation time.

clk

Fault effect (1)

Fault effect (2)

fault observation period (d)propagation period

Figure 8.3: Fault effect in the clock period

If a fault effect occurs during the propagation period, the DWC with time
redundancy scheme will detect an error but will not be able to recognize which
redundant block (dr0 or dr1) is faulty. However, some fault effects occurring during the
propagation period can be tolerated, if they affect the spare redundant logic that is not
being observed at that time. The fault can be corrected in the next scrubbing and no
error may occur. If a fault effect occurs during the observation time, the DWC with time
redundancy scheme will be able to detect the output variation and vote the fault-free
redundant module (dr0 or dr1). Faults in the observation time will always be correctly
voted, except for those whose effect will not be manifested at the time, for instance, a
fault stuck at one in a node that already has the logic value one because of the input
vectors.

dr
0

dr
1

dr
0_

 d

dr
1_

 d

vo
te

r

vo
te

r

vo
te

r

cl
k0

+
d’

cl
k1

+
d’

cl
k2

+
d’

tr
v0

tr
v1 tr
v2

cl
k0

dr
0

dr
0

cl
k1

dr
1

dr
1

dr
1_

 d

U
ps

et
 D

et
ec

to
r

an
d

vo
te

r

cl
k1

+
d

cl
k0

+
d

dr
0_

 d

ou
t0

ou
t1

ou
t0

ou
t1

ou
t0

ou
t1

cl
k0

 +
d’

cl
k1

 +
d’

cl
k2

 +
d’

ou
t0

ou
t1

dr
0

dr
1

dr
0_

 d

dr
1_

 d

dr
0

dr
1

dr
0_

 d

dr
1_

 d

1-
bi

t T
M

R
 r

eg
is

te
r

S
am

pl
e

la
tc

he
s

D
W

C
m

od
ul

es

tr
0

tr
1 tr
2

Fi

gu
re

 8
.2

: D
W

C
 w

ith
 ti

m
e

re
du

nd
an

cy
 p

ro
po

se
d

te
ch

ni
qu

e
sc

he
m

e
fo

r
on

e
bi

t o
ut

pu
t

110

Some constraints must be observed for the perfect functioning of the technique. The
constraints are the same as TMR:

- There must be only one upset per dual modular redundancy (DMR)
combinational logic, including the state machine detection and voting
circuit, consequently it is important to use some assigned area constraints
to reduce the probability of short circuits between redundant block 0 and
1 (dr0 and dr1).

- The scrubbing rate should be fast enough to avoid accumulation of
upsets in two different redundant blocks.

- Upsets in the detection and voting circuit do not interfere with the correct
execution of the system, because the logic is already triplicated. In
addition, upsets in the latches of this logic are not critical, as they are
refreshed in each clock cycle. Assuming a single upset per chip between
scrubbing, if an upset alters the correct voting, it does not matter as long
as there is no upset in both redundant blocks.

This technique can be used as an additional option for the TMR technique for
designing reliable circuits in FPGAs with pads and power reduction. Because the
combinational circuit is just duplicated, inputs and outputs can be duplicated instead of
triplicated, as in the TMR approach. However, it is important to notice that the TMR
inputs related to the user’s sequential logic used in the CLB flip-flops are not changed
as triple input clocks, reset and user vdd and gnd (CARMICHAEL, 2001).

The upset detector and voter circuit can be optimized in terms of area. In figure 8.2,
the upset detector and voter circuit are represented for only one bit. However, it is
possible to use the circuit for groups of bits. In this way, only one state-machine per
TMR redundant part for each group of bits is necessary, as presented in figure 8.4.
Another possible optimization is to use a single state machine to vote just the input of
the redundant block 2 of the TMR register, as presented in figure 8.5. In this way, a
fault in one of the combinational redundant blocks (dr0 or dr1) is voted to the tr2 input,
assuring the correct operation. A fault in this upset detection and voter block will
corrupt just the redundant block 2 of the TMR (tr2), consequently, tr0 and tr1 will still
vote the correct value. The scheme presented in figure 8.5 also shows the clock
optimizations, where the sample storage cells are latched at the clock falling edge (clk0,
clk1) and the state machine of the upset detection block is latched at the clock rising
edge (clk2). The three clocks are the same, and are all connected outside the FPGA
chip.

In summary, the final DWC with time redundancy scheme is composed of:
- Two redundant blocks of the combinational logic.
- A set of sample latches related to the number of output bits of each

redundant block, which is used to capture the value at the clock falling
edge.

- Upset detection block, which is continuously monitoring a variation
between the captured value and the combinational output during the
observation period (clock low level).

- The corrected redundant part is voted just before the next clock rising
edge, where the TMR redundant part 2 from the register stores the fault-
free redundant logic (dr0 or dr1).

111

trv0

trv1

trv2

n-bits TMR
register

n bits

tr0

tr1

tr2
dr0

dr1

dr0_ d

dr1_ d

out0
out1

out0
out1

out0
out1

clk0 +d’

clk1 +d’

clk2 +d’

dr0

dr1

dr0_ d

dr1_ d

dr0

dr1

dr0_ d

dr1_ d
n bits

n bits

f It returns 1 if at least one bit is erroneous

f It returns 0 if at least one bit is erroneous

f

f

f

f

f

f

Figure 8.4: Upset detector and voter circuit area optimization using group of n bits

clk0

dr0
dr0

clk1
dr1dr1

dr0_ d

Sample latches

DWC
modules

trv0

trv1

trv2

n-bit TMR register

n bits

n bits

tr0

tr2

tr1

out0

out1

dr0

dr1

dr0_ d

dr1_ d
clk2

out0
out1

f

f

f It returns 1 if at least one bit is erroneous

f It returns 0 if at least one bit is erroneous

dr1_ d

Figure 8.5: Upset detector and voter circuit area optimization using a single state
machine for a group of n bits

8.2 Fault Injection in the VHDL Description

The DWC with time redundancy scheme was validated by fault injection
methodology in a prototype board using VHDL. The fault injection system described in
VHDL was specifically developed to test the proposed technique (DELONG;
JOHNSON; PROFETA, 1996; LIMA et al., 2001a). Results were emulated in an AFX-
PQ249-110 board using a XCV300 part. Some area comparisons between the proposed
approach and TMR were also performed using Xilinx implementation tools. We use

112

multipliers as combinational circuit case studies, and FIR canonical filters as sequential
circuit case studies.

Fault injection in VHDL combined with the full emulation in a FPGA platform was
used to characterize and validate the technique. The proposed fault injection system
emulates single event upsets in memory related components (single flip-flops or latches,
registers and memories) designed in high-level description and in the combinational
logic nodes. The whole system is a run-time fault injection mechanism that is performed
during the prototype execution without interrupting the design application. It injects one
fault per execution. This approach does not concern the mean time between failures
(MTBF), in other words, we are not considering more than one fault per execution time
or the fault occurrence frequency. The approach aims to emulate a single upset per
execution, and to validate the efficiency of SEU mitigation techniques. However, this
technique is completely customizable, and it can inject as many upsets as wanted per
execution.

The developed fault injection system is divided into 3 main design blocks, figure
8.6:

- Fault injection Control block: generates all the fault enable signals to all
register, memories and combinational nodes. It also chooses the time and
location of the injected transient bit flip fault or a stuck at fault (in the case
of FPGA),

- Device Under Test (DUT) core: the modified design core. Fault injection
paths are added to the design in order to inject bit flips or stuck at one in all
SEU sensitive parts and logic nodes,

- Monitor block: responsible for monitoring the results of the DUT core in
order to analyze the effects of each inserted fault.

Figure 8.7 shows some schemes for the fault injection in the memory, register and
combinational nodes. The main advantages of this approach compared to a software
based method are its high flexibility of fault injection parameters (time, location and
fault value), fast turnaround time and free access to all sensitive parts of the design.

TIME

FT_REG

FT_MEM

Select
Signal and
Fault Mask
Generator
(SelectSM)

Enable_registers

FT_MEM_REG

Fault mask
reset

Reset_core

clock

FT_MEM

Fault Injection Control Block

DUT
core

FT_BIT

Pseudo-
random
number

generator
(RGN)

FT_MEM_REG

Figure 8.6: Schematic of the fault injection generator block

113

FI_memory location

mask

WEA
ENA
RSTA
CLKA
ADDRA
DIA

DOA

DOB

WEB
ENB
RSTB
CLKB
ADDRB
DIB

FI_enable_memory

WEA

(a) Dual-port Memory

CLK RST

mask ...

FI_EN

EN

FI_EN

(b) Register

Fault_enable

data

‘1’

‘0’

node

(c) Logic node

Figure 8.7: Example of the mechanisms used to inject faults in the design

The fault injection system is able to randomly choose the fault time, the fault node
and the redundant block. In order to test the duplication method in the combinational
logic, stuck at one and stuck at zero faults were injected in all nodes, emulating the bit-
flip in a SRAM cell in the FPGA architecture (permanent effect of a SEU). There is a
reset fault signal that works as a scrubbing, cleaning up the fault. A 2x2 bit multiplier
with and without a register at the output was chosen for this first evaluation. It was
possible to inject a set of faults in all the user’s combinational nodes of the example
circuit, covering several time intervals in the clock cycle, and to emulate the scrubbing
between faults. The multiplier input vectors were also randomly generated.

The fault is a stuck at one and it was inserted in the redundant block 0 during the
observation time. There is one point of data acquisition at the clock falling edge, just
after the combinational output has stabilized. The fault must be detected before the next

114

clock rising edge (clock+d), as shown in figure 8.8. The fault effect between these two
points can be easily detected, and the correct redundant block can be voted. However,
upset effects located extremely near the clock rising edge of the register, or during the
propagation time cannot be voted, but they can be detected. This limitation of the
detection of a fault is due to the impossibility of distinguishing a data disparity coming
from a fault or from the input variations in the redundant block 0 and redundant block 1.
As the effect of an upset in the user’s combinational logic in an FPGA is permanent, all
the results from the redundant block 0 after the fault effect are erroneous until the next
scrubbing takes place.

Fault injection results show the reliability of the presented method. There were 128
stuck at one and 128 stuck at zero faults inserted in a random single node (ranging from
0 to 7) at a random instant of the clock cycle in a 2x2 bit multiplier that could occur
during the propagation or the observation time. Among the stuck at one faults, 113 of
them were detected and tolerated, either because they were correctly voted or because
the fault did not affect the correct design output. Among the stuck at zero faults, 121 of
them were also detected and tolerated, either because they were correctly voted or
because the fault did not affect the correct design output.

The injected faults during the observation time that generated an error were the ones
where the effect could not be observed by the input vectors at that time. Faults occurring
during the propagation time were detected and some of them were also tolerated. The
tolerated faults are the ones that occurred in the spare redundant block. When the upset
effect happens during the propagation time, the scheme presented in figure 6 is not
capable of detecting in which redundant block the fault has occurred, only detecting that
the system is in error. Consequently, after fault detection with no correction (syndrome
0101), the system should be reinitialized or some results should not be considered.

8.3 Area and Performance Results

Table 8.2 presents area results of 2x2, 8x8 and 16x16 bit multipliers, implemented in
the XCV300 FPGA using no tolerance technique, TMR technique and DWC with time
redundancy in order to reduce pin count. All of the multipliers were synthesized with a
register at the output. Table 2 results show that it is possible not only to reduce the
number of I/O pins but also the area, according to the size of the combinational logic
block. Note that the 16x16 bit multiplier protected by TMR could not be synthesized in
the prototype board that uses a Virtex part with 240 I/O pins (166 available for the
user). However, the same multiplier implemented by the proposed technique could fit in
the chip, also occupying less area.

fa
ul

t (
st

uc
k

at
 1

)
in

 d
r0

da
ta

 a
cq

ui
si

tio
n

I

dr
0

is
 b

ee
n

ob
se

rv
ed

 d
r1

 is
 b

ee
n

ob
se

rv
ed

fa
ul

t o
bs

er
va

tio
n

pe
rio

d
pr

op
ag

at
io

n
pe

rio
d

tr
an

si
en

t f
au

lt
de

te
ct

ed

Fi
gu

re
 8

.8
: S

im
ul

at
io

n
A

na
ly

si
s

of
 a

 f
au

lt
in

je
ct

io
n

in
 th

e
D

M
R

 w
ith

 ti
m

e
re

du
nd

an
cy

 s
ch

em
e

im
pl

em
en

te
d

in
 a

 2
x2

 b
its

 m
ul

tip
lie

r

Table 8.2: Example of combinational circuit: Multiplier Implemented in XCV300-
PQ240 FPGA

 Standard TMR DWC with time
redundancy

Multipliers 2x2 8x8 16x16 2x2 8x8 16x16* 2x2 8x8 16x16
Combinational Input
Pins

4 16 32 12 48 96 8 32 64

Sequential Input Pins 2 2 2 12 12 12 12 12 12
Output Pins 4 16 32 12 48 96 12 48 96
Number of 4-input
LUTs

4 156 705 16 514 2002 33 440 1504

Number of ffs 4 16 32 12 48 96 21 81 161
*I/O pins were out of range for the TMR approach, the part XCV300-BG432 was used.

There is a constant area in this proposed method, resulting from the upset detection
and voter block. Consequently, the proposed approach will only show a smaller area
than TMR when the area of the combinational logic related to the third redundant part
of the TMR that is suppressed is larger than this constant cost. However, this technique
can be used in I/O circuitry, to ensure pin count reduction in critical pin count designs.

A canonical FIR filter circuit was chosen as a sequential case study circuit for the
proposed technique. Digital filters such as the finite-length impulse response (FIR)
filter are typically used in many DSP-based systems applications that usually use
FPGAs, such as image and voice-processing applications. Figure 8.9 shows the scheme
of a canonical filter of 5 taps. The multipliers were designed with constant coefficients,
resulting in an optimized area. The registers are protected by TMR, figure 8.10, while
the combinational logic (multipliers and adders) is protected by DWC with time
redundancy technique. The upset detection and voter block is placed at the outputs, and
it votes the correct pad output from dr0 or dr1, as shown in figure 8.11.

x

+

x x x

+ +

x

+

C1 C2 C3 C4 C5

IN

OUT

R0 R1 R2 R3

x

+

x x x

+ +

x

+

C1 C2 C3 C4 C5

IN

OUT

R0 R1 R2 R3

Figure 8.9: Example of FIR Canonical Filter of 5 taps scheme

117

IN_tr0

IN_tr1

IN_tr2

MJA

MJA

MJA

TMR register R0 R1 R2 R3

R3_tr0

R3_tr1

R3_tr2

R0_tr0

R0_tr1

R0_tr2

R1_tr0

R1_tr1

R1_tr2

R2_tr0

R2_tr1

R2_tr2

Figure 8.10: Filter registers protected by TMR

Upset
detection

and
voter
block

x

C1_tr0

OUT_dr0

IN_tr0 R0_tr0 R1_tr0 R2_tr0 R3_tr0

+

x

C2_tr0

+

x

C3_tr0

+

x

C4_tr0

+

x

C5_tr0

x

C1_tr1

OUT_dr1

IN_tr1 R0_tr1 R1_tr1 R2_tr1 R3_tr1

+

x

C2_tr1

+

x

C3_tr1

+

x

C4_tr1

+

x

C5_tr1

check1

pad

check0

pad

Figure 8.11: Filter adders and multipliers protected by DWC with time redundancy

An 8-bit FIR canonical filter of 9 taps was synthesized in an XCV300 FPGA to
evaluate area and pin count. The multiplier coefficients are: 2, 6, 17, 32 and 38. Table
8.3 presents area results of this filter using no tolerance technique, TMR technique and
the proposed technique. Results show that the 9 taps FIR canonical filter occupies 22%
less area in the FPGA if protected by DWC and time redundancy instead of by TMR.
The results also present a reduction of 20% in the pin count compared to TMR.

118

Table 8.3: Example of Sequential circuit: FIR canonical filter of 9 taps implemented in
XCV300-PQ240 FPGAs

 Standard TMR DWC with time redundancy
Combinational Input Pins 8 24 24
Sequential Input Pins 3 15 15
Output Pins 16 48 32
Number of 4-input LUTs 265 948 741
Number of ffs 64 192 225

According to the user’s application requirements, the designer will be able to choose
between a full hardware redundancy implementation (TMR) or a mixed solution where
duplication with comparison is combined to concurrent error detection to reduce pins
and power dissipation in the interface, as well as area, as shown in previous examples.
Figure 8.14 shows some implementations combining TMR and DWC with time
redundancy. It is possible to use this new technique only in the interface of the FPGA,
in this way reducing pins, as shown in figure 8.12(a). DWC with time redundancy can
also be used along the design as presented in figure 8.12(b) to reduce the number of I/O
pads and also area for large combinational circuits, as presented in table 8.2 and table
8.3.

Sequential circuits such as counters and state machines are more suitable to be
protected by TMR, as the combinational logic is small compared to the sequential logic.
The proposed technique is an alternate method to protect combinational circuits, as it is
necessary to insert a concurrent error detection block. On the other side, large
combinational logic blocks can be easily found in many applications. For example,
microprocessors are composed of combinational logic such as the Arithmetic and Logic
Unit, multipliers and the micro-instruction decoder.

CED
CED

pads
pads

(a) DMR with time redundancy implementation in the interfaces

CED CED CED

pads
pads

(b) DMR with time redundancy implemented in the entire circuit

Figure 8.12: Evaluation schemes of the TMR and the DWC with time redundancy
approach

8.3 Final Remarks

This work presents a new technique for upset detection and voting that combines
duplication with comparison (DWC) with time redundancy for the user’s combinational
logic in SRAM-based FPGAs. This technique reduces the number of input and output
pins of the user’s combinational logic when compared to TMR technique. In addition, it
can also reduce area, when large combinational blocks are used. The proposed

119

approach was validated by fault injection in a Virtex prototype board using VHDL.
Upsets were randomly inserted in the user’s combinational logic nodes to emulate faults
in the logic. The fault injection procedure was developed in VHDL, and it represents the
effect of a SEU in a SRAM-based FPGA, where it has a transient effect followed by a
permanent effect. Experiments in a 2x2 bit multiplier showed that 100% of the faults
can be detected and 234 of the 256 injected stuck at zero and stuck at one faults (91%)
were tolerated, either because they were correctly voted before being captured by a CLB
flip-flop or that specific faults did not affect the correct design output.

Although the time redundancy technique can be successfully used to reduce pin
count and area overhead over a full hardware redundancy, the transient concurrent error
detection technique is not able to correct 100% of the faults occurring in FPGAs.
Another penalty of this method is performance overhead because of the observation
time. The evolution of this work investigates the use of modified time redundancy
technique based on permanent fault detection to improve fault correction and to reduce
the performance penalty at each clock cycle.

120

9 Improving Duplication with Comparison by using
Concurrent Error Detection Technique (DWC-CED)

The time redundancy by itself cannot detect 100% of the faults in an SRAM-based
FPGA because of the permanent effect of the faults. Consequently, it is necessary to
continue investigating a technique able to detect the presence of permanent faults in the
logic circuit. (LUBASZEWSKI; COURTOIS, 1998) discusses the reliability and the
safety of TMR scheme compared to self-checking-based fault-tolerant schemes. The
experimental results presented in (LUBASZEWSKI; COURTOIS, 1998) show that the
higher the complexity of the module, the greater the difference in reliability between
self-checking and TMR. In summary, the self-checking fault-tolerant scheme can
achieve a higher reliability in comparison to the TMR if the self-checking overhead
bound of 73% is not exceeded.

The idea of using self-checking fault-tolerant scheme can be extended for FPGAs by
using the duplication with comparison (DWC) method combined with concurrent error
detection (CED) technique. Figure 9.1 presents the scheme, called hot backup DWC-
CED. The CED is able to detect which module is faulty in the presence of an upset, and
consequently, there is always a correct value in the output of the scheme, because the
mechanism is able to select the correct output out of two.

dr1

CED

dr0

CED

Sequential logic
Combinational logic

Permanent
fault detection

TMR

Figure 9.1: DWC combined with CED scheme

In the case of SEU detection in SRAM-based FPGAs, the CED must be able to
identify permanent faults in the redundant modules. The CED works by finding the
property of the analyzed logic block that can help to identify an error in the output in the
presence of a permanent fault. There are many methods to implement logic to detect
permanent faults, most solutions are based on time or hardware redundancy and they
manifest a property of the logic block that is being analyzed.

The CED scheme based on time redundancy recomputes the input operands in two
different ways to detect permanent faults. During the first computation at time t0, the
operands are used directly in the combinational block and the result is stored for further
comparison. During the second computation at time t0+d, the operands are modified,

121

prior to use, in such a way that errors resulting from permanent faults in the
combinational logic are different in the first calculation than in the second and can be
detected when results are compared. These modifications are seen as encode and
decode processes and they depend on the characteristics of the logic block. The scheme
is presented in figure 9.2.

Combinational
logic

Combinational
logic

encoder decoder

Time t=t0

Time t=t0+d
clk

com
parator

error

output

Figure 9.2 – Time redundancy for permanent fault detection

If an output mismatch occurs, the output register will hold its original value for one
extra clock cycle, while the CED block detects the permanent fault. After this, the
output will receive the data from the fault free module until the next reconfiguration
(fault correction). The important characteristic of this method is that it does not incur a
high performance penalty when the system is operating free of faults or with a single
fault. The method just needs one clock cycle in hold operation to detect the faulty
module, and after that it will operate normally again without performance penalties. The
final clock period is the original clock period plus the propagation delay of the output
comparator. Sample registers are latched at the rising clock edge and the user’s TMR
registers are latched at the rising clock+d edge.

Many techniques to encode and decode were proposed in the literature to detect
permanent faults (JOHNSTON; AYLOR; HANA, 1988; PATEL; FUNG, 1996;
AVIZIENIS, 1971), some based on time redundancy, such as bit-wise inversion, re-
computing with shift operands (RESO) and re-computing with swapped operands
(REWSO); and some based on hardware redundancy, such as parity prediction and
module code.

9.1 Designing DWC-CED Technique in Arithmetic-based Circuits

The combination of DWC technique and CED blocks enabling one to detect
permanent faults provides a new high-level SEU mitigation technique for FPGAs. Two
clock cycles are needed to identify a permanent fault in the combinational logic module.
However, this extra time does not occur at every clock operation in our approach. Using
DWC combined with CED for permanent faults, it is possible to take advantage of the
simple comparison at the output of the duplication scheme to inform whether it is
necessary to re-compute the data for permanent fault detection. The re-computation is
needed only when a mismatch of the outputs occurs. This method has been named
duplication with comparison combined to concurrent error detection block (DWC-
CED).

Figure 9.3 shows the scheme proposed for an arithmetic module, in the present case
study: a multiplier. There are two multiplier modules: mult_dr0 and mult_dr1. There are
multiplexors at the output able to provide normal or shifted operands. The output

122

computed from the normal operands is always stored in a sample register, one for each
module. Each output goes directly to the input of the user’s TMR register. Module dr0
connects to register tr0 and module dr1 connects to register tr1. Register tr2 will receive
the module that does not have any fault. By default, the circuit starts passing the module
dr0. A comparator at the output of register dr0 and dr1 indicates an output mismatch
(Hc). If Hc=0, no error is found and the circuit will continue to operate normally. If
Hc=1, an error is characterized and the operands need to be re-computed using the
RESO method to detect which module has the permanent fault. The detection takes one
clock cycle.

AB

10

dr1

=

Tc1

dr1clk0

=

Hc

encode

10

encode

decode

A B

1 0

dr0

=

Tc0

dr0 clk1

encode

1 0

encode

decode

voter

ST0

ST0

ST1Enable faulty
free module

ST1

Figure 9.3: Fault tolerant technique based on DWC combined with CED for SRAM-

based FPGAs

In the case of a registered output, each output goes directly to the input of the user’s
TMR register. Figure 9.4(a) illustrates the logic scheme. Module dr0 connects to
register tr0 and module dr1 connects to register tr1. While the circuit performs the
detection, the user’s TMR register holds its previous value. While the circuit performs
the detection, the TMR register holds its previous value. When the faulty free module is
found, register tr2 receives the output of this module and it will continue to receive this
output until the next chip reconfiguration (fault correction). By default, the circuit starts
passing the module dr0. In the case of a non-registered output, the signals can be driven
directly to the next combinational module or to the I/O pads, as shown in figure 9.4(b).

Let’s consider two different fault situations when the output is saved in a TMR
register. In one, the fault occurs in module dr0 (Mult_dr0). Hc indicates that there is an
output mismatch; Tc0 indicates that module dr0 is faulty and Tc1 indicates that dr1 is
fault free. This analysis takes one clock cycle. Consequently, the permanent fault
detection block selects dr1 for the tr2 input. Note that the value stored in the user’s
TMR register is held for one cycle while the scheme identifies the faulty free module. In

123

the second case, a fault occurs in the module dr1 (Mult_dr1), similar to the previous
example, Hc indicates that there is an output mismatch; Tc0 indicates that module dr0 is
fault free and Tc1 indicates that dr1 is faulty. The permanent fault detection block
selects dr0 for the tr2 input.

tr0

MAJ MAJ MAJ

clk2+d

dr0 dr1 Enable faulty
free module

dr0 dr1

tr1 tr2clk0 clk1

(a) Combinational output registered

pad

pad

dr0

dr1

Enable faulty
free module

(b) Combinational output in the pad

Figure 9.4: Examples of implementations with the combinational output registered and
in the pads

Note that in both methods, TMR and the proposed technique, the upsets in the user’s

combinational logic are corrected by scrubbing, while upsets in the user’s sequential
logic are corrected by the TMR scheme used in the CLB flip-flops. It is important to
notice that for upset correction the scrubbing is performed continuously, to guarantee
that only one upset has occurred between two reconfigurations in the design. Some
constraints must be observed for the perfect functioning of the technique, same as TMR:
there must not be upsets in more than one redundant module, including the state
machine detection and voting circuit, consequently it is important to use some assigned
area constraints to reduce the probability of short circuits between redundant module
dr0 and dr1. The scrubbing rate should be fast enough to avoid accumulation of upsets
in two different redundant blocks. Upsets in the detection and voting circuit do not
interfere with the correct execution of the system, because the logic is already
triplicated. In addition, upsets in the latches of this logic are not critical, as they are
refreshed in each clock cycle. Assuming a single upset per chip between scrubbing, if
an upset alters the correct voting, it does not matter, as long as there is no upset in both
redundant blocks.

In the proposed method, the area reduced by the design compared to the TMR is the
area of one user’s combinational logic module and the number of inputs that is reduced
from 3 times to 2 times the original number. This technique can be used as an additional
option for the TMR technique for designing reliable circuits in FPGAs with pads and
power reduction. Because the combinational circuit is just duplicated, inputs and

124

outputs can be duplicated instead of triplicated, as in the TMR approach. However, it is
important to notice that the TMR inputs related to the user’s sequential logic used in the
CLB flip-flops are not changed as triple clocks, reset, etc.

In addition, the advantage of using this technique is not only focused in reducing the
pin count and the number of CLBs, but also in other types of radiation effects such as
total ionization dose, as this method has the important characteristic of detecting
permanent faults. So far, we have mentioned only SEUs that happen in the SRAM
programmable cells that are permanent until the next reconfiguration. However, a
circuit operating in the space environment can suffer from total ionization dose and
other effects that can provoke permanent physical damages in the circuit.

Because there are many CED techniques, the next section evaluates the main CED
techniques used in ASIC to detect a permanent effect of a SEU in arithmetic-based
circuits synthesized in an SRAM-based FPGA. The goal is to investigate each one in
terms of fault detection, area and performance penalties and to select the most
appropriated ones for each type of circuit.

9.1.1 Using CED based on hardware redundancy

CED techniques based on hardware redundancy use extra hardware to compute the
operation twice and compare the results. A direct way to implement it is the use of
duplication with comparison (DWC) that simply duplicates the original hardware with
the same operands and compares the results. The fault coverage depends on the
observability of the fault by the input vectors. For single faults affecting only one of the
circuits that compose the DWC scheme, there will be at least one input vector able to
manifest the fault in the output. This technique has an area overhead of about 100% but
almost no performance penalties, consequently, it is too costly and it will not be used to
protect combinational circuits in the DWC-CED technique in SRAM-based FPGAs.

Another approach for CED based on hardware redundancy is to use extra hardware
to compute different operands that are coded versions of the original ones, preferably
with fewer bits, to minimize the area overhead. Any code can be used, but it is more
appropriate to use a code that maintains the arithmetical and logical properties of the
operands, to avoid the need of designing a totally new hardware to predict the new
output. It means that, given two operands a and b, an operation op and a code c, the
following equation must be valid:

c(a) op c(b) = c(a op b)

An interesting code with arithmetical properties is the residue code, also called
module code. Residue code is applied by a recomputation of the remainders of the
division of the operands by a given number. Figure 9.5 presents the schematic of a
circuit using residue code as CED technique.

logic

com
parator

error

output

input

mod N

mod N logic

Figure 9.5: Residue code technique implementation

125

The version implemented in this paper uses module-15. The outputs of this code will
have a maximum length of 4 bits. Most circuits used in this work have operands with 8
or more bits, so this code will surely provoke a reduction in the number of bits of the
operands. The following piece of VHDL code shows the developed algorithm to
calculate module 2n-1, for n=4 (module-15).

s <= ('1'&a(7 downto 4))-(not a(3 downto 0));
if (sub(4) = '1') then
moda := sub(3 downto 0); else
moda := a(7 downto 4) + a(3 downto 0); end if;
if (moda = "1111") then
mod_a := "0000"; end if;

Figure 9.6: Residue code technique implementation in VHDL

Because the work targets the investigation of techniques to detect the permanent
effect of a SEU in SRAM-based FPGAs using the DWC-CED approach, the CED
hardware redundancy based techniques are not attractive because they can increase the
area instead of reducing the costs. Residue code has less area overhead than DWC,
depending on the width of the input of the original operands, so it can be used under
some circumstances. However, it has performance penalties, depending on the delay of
the residue encoder.

9.1.2 Using CED based on time redundancy

CED techniques based on time redundancy reduce the hardware cost at the expense
of using extra time. It recomputes the operation in a different way to allow errors to be
detected. During the first computation step, the normal operands are applied. In the
recomputation step, the operands are encoded and a correct result can be generated after
decoding. The mismatch of the two results indicates an error and, consequently, the
presence of a fault in the circuit. In applications where performance is not essential,
time redundancy is used to minimize the cost of the circuit, without increase in the
circuit area or power consumption.

A very intuitive technique to use, but with limited applications, is the recomputing
with swapped operands (RESWO). It can only be used in commutative operations, like
adders and multipliers. It cannot be used for instance in division or subtraction
operations. The RESWO technique tries to detect errors alternating the position of the
operands. For example, after the computing of a+b, the operation b+a can be done and
the results compared to see if it is the same. Of course, it will not detect any faults if the
two operands are equal, but it can have a high error detection capability in the other
cases.

Another possible encoding technique is to use the distributive property of arithmetic
logic to be able to identify faults. If one performs a 1-bit left shift of the input operands,
it results in a multiplication by 2 of the operand. According to the operation, the result
will be multiplied by 2 (adders) or by 4 (multipliers) and it can be easily divided by
performing a 1-bit or 2-bit right shift in the output. This technique is called recomputing
with shifted operands (RESO). Thus, in the first computation, the operands are
computed and stored in a register. At the second computation, the operands are shifted k
bits to the left, computed and the result is shifted k bits to the right (2k bits, if a
multiplier or divider). In the proposed application, the operands are shifted by 1 bit. The
result of the second step is compared to the previous result stored in the register. A
mismatch indicates the presence of a permanent fault in the circuit. For example, in an
adder, the left shifted operands are equal to the original ones multiplied by 2. The result

126

of the sum should be the original result multiplied by 2 too. Then it is only necessary to
shift right the new result and compare with the original one to detect a fault. The adder
should be wide enough to add the shifted numbers without causing overflow. If not, a
non existent fault can be wrong detected. Studies show the RESO detection capability
(PATEL; FUNG, 1982).

For functions with operands of 8 bits, two approaches can be used: the use of the
RESO with the same number of bits (8), or RESO with one more bit, to decrease the
number of false detected faults. Of course, the second approach will result in an area
overhead due to the new width of the operation.

Another option to increase the fault coverage with RESO is the use of one more
clock cycle. Originally in the first cycle, the original operands are computed and in the
next cycle, the left shifted operands are processed. If the fault is not detected yet,
another clock cycle can be used, with the operands left shifted one more time
(multiplied by 4 in the total). RESO increases the fault coverage as more shifts are
applied to the operands (PATEL; FUNG, 1982). This approach will be called as 2-shift
RESO, while the original approach as 1-shift RESO or only RESO. In order to increase
the coverage, the performance will be depreciated due to the extra clock cycles. The
schematic of a circuit using RESO is presented in figure 9.7.

Combinational
logic

com
parator

errorinput

clk

output

right shifter

left shifter M
U
X

Figure 9.7: RESO technique implementation

Another option for time redundancy is the use of residue code, already presented in
the hardware redundancy section. As the encoded operands have fewer bits than the
original ones, the same hardware can be used to perform the original and the coded
operands at two different moments. In order to use the same hardware, zeros must fill
the non-used bits. The fault coverage will be reduced compared with the
implementation using distinct hardware (one for the logic and the other for the
encoding) because now both of the results are computed in the same faulty hardware.

In order to increase the fault coverage, these encoding techniques can be combined,
one per each clock cycle. In the first clock cycle, the original operands are computed; in
the second cycle, the operands using one type of encoding; and finally in the third cycle,
the operands using another type of encoding. Of course, the drawback of this solution is
the increase of area due to the use of two encoders and decoders, and the extra
performance penalty with one more extra clock cycle.

127

9.2 Choosing the appropriated CED block for Arithmetic-based
Circuits

In order to evaluate the fault coverage of the techniques previously presented, some
combinational and sequential circuits were tested, including an 8-bit multiplier,
arithmetic and logic unit (ALU), and a FIR canonical filter. Two tools, called Lemon
Dragon multiplier and filter generator, automatically generated the multipliers and
filters respectively. The tool provides two different syntheses: full array multipliers and
constant array multipliers. Basically, several multipliers, adders and registers compose
one FIR filter. To accomplish the goal of this paper, an automatic generation of fault
injection structures was developed. All nodes in the design will be connected to exactly
one fault injection component, so that the user may insert as many faults as needed. The
components are described in VHDL language. One version of the raw Lemon Dragon
Multiplier Generator may be found in (HENTSCHKE, 2003).

9.2.1 Multipliers

An 8-bit multiplier was the first case study. All techniques presented were
implemented on this circuit: residue code, using hardware redundancy; RESWO, 1-shift
RESO with 8 bits (ignoring the left bit) and 9 bits (expanding the operands), 2-shift
RESO with 8 and 9 bits, and residue code, using time redundancy. The multipliers were
implemented using cascaded full adders (FA), as shown in figure 9.8. For the 8-bit
multiplier, there are 528 nodes, 1056 faults in total (stuck-at 0 or 1), and for the 9-bit
multiplier, 675 nodes, 1350 faults in total. In both cases, the two original operands have
8 bits, resulting in 216 (65,536) combinations of input vectors. All combinations of
faults and input vectors were injected, totaling 69,206,016 for the 8-bit version and
88,473,600 for 9-bit one.

x0y0x0y1x1y0

FA 0

x0y2x1y1

FA

x2y0

FA 0

x0y3x1y2
x2y1

FA

FA

x3y0

FA 0

S0
S1S2S3

...

...

...

...

Figure 9.8: Multiplier using cascaded full adders

9.2.2 Arithmetic and Logic Unit (ALU)

The next case study was an Arithmetic and Logic Unit (ALU). This ALU performs
the following operations: addition, subtraction, increment, decrement, AND, OR, XOR
and NOT. It was designed in a bit slice approach, and the slice schematic is presented in
figure 9.9. The operation is selected by signals c1, c2 and c3, operands are a(i) and b(i),
cin is the carry in from the previous slice, the signal cout is the carry out to the next
slice, and s(i) is the output of the slice. This ALU has two input operands of 8 bits, plus
4 bits to select the operation. Then, there are 220 = 1,048,576 combinations of input

128

vectors to be tested. Each slice has 16 nodes, resulting in 256 different faults for an 8-bit
ALU. All the combinations were injected, totaling 268,435,456. At this time not all
techniques were evaluated. The method RESWO was not used because some operations
performed by the ALU are not commutative, like subtraction, increment or decrement.

a(i)

b(i)

a(i)

b(i)

c3

c2

c1

cin

c3

s(i)

cout

Figure 9.9: ALU bit slice

9.2.3 Digital FIR Filter

A canonical FIR filter circuit was chosen as a sequential case study for the proposed
technique. Figure 8.9 showed the partial scheme of a canonical filter. The multipliers
were designed with constant coefficients, resulting in an optimized area and minimal
number of nodes. An 8-bit FIR canonical filter of 9 taps was automatically generated.
The multiplier coefficients are: 2, 6, 17, 32 and 38. There is an 8-bit input;
consequently, there are 28 = 256 combinations of input vectors to test. The total of
nodes in the FIR filter, including all its multipliers and adders is 4208. All the possible
combinations of input vectors and faults were tested, totaling 1,077,248.

9.3 Fault Coverage Results of the DWC-CED in Arithmetic-based
Circuits

The proposed DWC-CED technique for permanent fault detection was first validated
by fault injection methodology in a prototype board using emulation. The fault injection
system described in VHDL was specifically developed to test the proposed technique.
Results were emulated in an AFX-PQ249-110 board using a XCV300 part. Some area
comparisons between the proposed approach and TMR were also performed using
Xilinx implementation tools.

The fault injection system is able to randomly choose the instant of insertion of the
fault, the node and the redundant module (mult_dr0 or mult_dr1). There is a reset fault
signal that works as a scrubbing, cleaning up the fault. Fault injection results show the
reliability of the presented method. Figure 9.10 shows two graphics representing two
different fault situations. In one, the fault occurs in module dr0 (st_perm_dr1=0,
indicating that dr0 is fault free, number 1 in fig.), consequently, trv2 receives dr1
(mux_select=1, number 2 in fig.). Note that the value stored in the user’s TMR register
is held for one cycle (number 3 in fig.), while the scheme identifies the free faulty
module. In the second graph, a fault occurs in the module dr1 (st_perm_dr0=0,
indicating that dr0 is fault free, number 4 in fig.), as the default is register trv2 receiving
dr0, nothing changes after the permanent fault detection (number 5 in fig.).

Fi

gu
re

 9
.1

0:
 U

ps
et

s
em

ul
at

io
n

in
 th

e
C

hi
ps

co
pe

 A
na

ly
ze

r
(X

IL
IN

X
, 2

00
1b

)
us

in
g

th
e

V
ir

te
x

FP
G

A
 p

ro
to

ty
pe

 b
oa

rd

1

2

3

4

5

130

For the exhaustive fault coverage evaluation, the following experiment was built
based on the DWC-CED technique explained in section 9.2. Four versions of each case
study circuit running in parallel were described in VHDL:

- Gold one to compute the expected output of the circuits (module dr0)
- Copy of module dr0 with recomputing CED technique.
- Circuit under test (DUT) with fault injection capability, where the faults

are injected (module dr1).
- Copy of module dr1 with recomputing CED technique, where the same

faults are injected.
Note that in the real operation, the same hardware is used as DUT and for

recomputation, consequently, there are only two modules: module dr0 and module dr1.
However, for the experiment, two circuits for each redundancy module were used to
perform both operations in parallel to reduce process time. In addition, a prototype
board (AFX-PQ240) was used to perform the fault injection experiment to speed up the
process.

In order to insert faults in all nodes of the case study circuits, a 4 to 1 multiplexor
was inserted in each node in the VHDL description. If the select signal of the
multiplexor is 00, the original signal is passed to the output; if select is 01, the constant
0 is the output (stuck-at 0); if select is 10, the constant 1 is propagated (stuck-at 1). The
fault injection system operates with two clocks, one to control the change of the input
vectors and other one to control the change of the faults. A counter controls the total
number of combinations of input vectors and faults that must be inserted in the circuit.
All combinations have been injected. There is a signal to indicate when the fault
injection is done.

In all cycles, the outputs of the gold circuit (module dr0) and the DUT (module dr1)
are compared. If the outputs are equal (Hc=0), this means that if there is a fault in one of
the circuits, the fault did not generate an error in the output, so for real time operation
proposes, this fault can be ignored and no detection operation must be performed. If a
fault has generated an error in the output (Hc=1), the output of module dr1 is compared
with the decoded output of the recomputing circuit (copy of module dr1). If the outputs
are not equal (Tc1=1), this means that the technique currently used was able to detect
the fault. At the same time, the output of module dr0 is compared to the decoded output
of the recomputing circuit (copy of module dr0). If the outputs are equal (Tc0=0), this
means that the technique was able to detect a fault-free module.

An undetected fault is characterized when there is a mismatch in the output of dr0
and dr1 (Hc=1) and the technique was not able to detect the faulty module (status
Tc1=0) or it was not able to detect the fault-free module (status Tc0=1). A counter is
incremented to show the number of total undetected faults. After all, this counter is read
from the prototyped board and the percentage of undetected faults is calculated. The
results in numbers and percentage of detected faults are in table 9.1.

Results show that all variations of RESO had better results in terms of fault coverage
than residue code using time redundancy and RESWO. One can notice that residue code
had higher fault coverage using hardware redundancy than time redundancy. It is
because of the using of the same faulty hardware to compute the residue code, there is a
high possibility of the coded word having the same effect in the output.

RESO is the most appropriate technique in terms of fault coverage for multipliers
and consequently all the circuits that use them as filters. For ALU, no one of the
presented techniques was suitable enough to guarantee 100% of detection. This happens
because the ALU logic is not only composed of arithmetic operations but also logic
Boolean functions, where the discussed techniques are not efficient.

131

Table 9.1: Fault Coverage, Area and Performance Evaluation of CED techniques in
SRAM-based FPGAs

Circuit CED Technique
of injected

faults
of detected

faults

% of
detected

faults
Residue-15 (hard) 69,206,016 69,136,448 99.89
Residue-15 (time) 69,206,016 47,387,924 68.47
RESWO 69,206,016 48,458,171 70.02
RESO 8 bits 69,206,016 69,176,011 99.95
RESO 9 bits 88,473,600 88,473,600 100.00

8-bit
Multiplier

2-shift RESO 8 bits 69,206,016 69,198,150 99.98
Residue-15 (hard) 268,435,456 222,135,593 82.75
Residue-15 (time) 268,435,456 199,912,813 74.47
RESO 8 bits 268,435,456 213,005,264 79.35
RESO 9 bits 268,435,456 245,694,848 91.52
2-shift RESO 8 bits 268,435,456 213,048,871 79.36
2-shift RESO 9 bits 268,435,456 245,763,385 91.55

8-bit
ALU

Residue-15+RESO-
9bits

268,435,456 248,907,886 92.72

Residue-15 (hard) 1,077,248 1,077,248 100.00
Residue-15 (time) 1,077,248 718,105 66.66

8-bit
Filter

RESO 8 bits 1,077,248 1,077,248 100.00

9.4 Area and Performance Results of the DWC-CED Technique in
Arithmetic-based Circuits

Table 9.2 presents area results of 8x8 and 16x16 bits multipliers, implemented in the
XCV300 FPGA using no fault tolerance technique, TMR technique and the proposed
technique (DWC-CED for permanent faults using RESO approach). All of the
multipliers are synthesized with a register at the output. Results show that according to
the size of the combinational logic block, it is possible to not only reduce the number of
I/O pins but also area.

Table 9.2: Comparison of multiplier implementations (XCV300-PQ240)

 Multipliers Standard TMR DWC-CED
Registered output 8x8 16x16 8x8 16x16* 8x8 16x16
Total of I/O pads 34 66 108 204 92 (-14%) 172 (-17%)

Number of 4-LUTs 159 741 584 2285 534 (-8,5%) 1791 (-22%)
Number of ffs 16 32 48 96 82 (+34) 162 (+66)

Non-registered output 8x8 16x16 8x8 16x16* 8x8 16x16
Total of I/O pads 32 64 96 192 66 (-31%) 130 (-32%)

Number of 4-LUTs 156 711 551 2159 425 (-23%) 1442 (-33%)
Number of ffs 0 0 0 0 34 66

* I/O pins were out of range, the part XCV300-BG432 was used.

Note that the 16x16 bits multiplier protected by TMR could not be synthesized in

the prototype board that uses a Virtex part with 240 I/O pins (166 available for the
user); while the same multiplier, implemented by the proposed technique could fit in the

132

chip, and also occupy less area. In terms of performance, the TMR approach has
presented a estimated frequency of 33.8 MHz, while the DMR-CED approach has
presented a frequency of 26.7 MHz.

As mentioned previously, according to the user’s application requirements, the
designer will be able to choose between a full hardware redundancy implementation
(TMR) or a mixed solution, where time redundancy is combined with hardware
redundancy to reduce pins and power dissipation in the interface. It is possible to use
DMR and time redundancy only in the interface of the FPGA, in this way reducing pins.
DMR and time redundancy can also be used in the design to reduce not only number of
I/O pads, but also area for large combinational circuits as presented in table 9.2 and to
increase reliability based on the concept published in (LUBASZEWSKI; COURTOIS,
1998).

The same canonical FIR filter circuit presented in chapter 8 was used as a sequential
case study circuit for the proposed technique, an 8-bit 9 taps filter with multiplier
coefficients: 2, 6, 17, 32 and 38. The registers are also protected by TMR, while the
combinational logic (multipliers and adders) is protected by DWC-CED using RESO
approach. The CED block is placed at the outputs, and it votes the correct pad output
from dr0 or dr1, as shown in figure 9.11.

Table 9.3 presents area results of this filter using no tolerance technique, TMR
technique and the proposed technique. Results show that the 9 taps FIR canonical filter
occupies 13% less area in the FPGA if protected by DWC and time redundancy instead
of by TMR. The results also present a reduction of 19% in the pin count compared to
TMR. In terms of performance, the TMR has presented an estimated frequency of 40
MHz, while the DWC-CED technique has presented a frequency of 22 MHz. More
results can be found in (LIMA, CARRO, REIS, 2003b).

CED
voter

x

C1_tr0

out_dr0

IN_tr0 R0_tr0 R1_tr0 R2_tr0 R3_tr0

+

f

x

C2_tr0

f

+

x

C3_tr0

f

+

x

C4_tr0

f

+

x

C5_tr0

f

x

C1_tr1

out_dr1

IN_tr1 R0_tr1 R1_tr1 R2_tr1 R3_tr1

+

f

x

C2_tr1
f

+

x

C3_tr1
f

+

x

C4_tr1
f

+

x

C5_tr1
f

check1

pad

check0

pad

f-1

f-1

Figure 9.11: FIR Filter protected by DWC-CED technique

133

Table 9.3: Filter Implementations XCV300-PQ240

 Standard TMR The proposed method
Total of I/O pads 26 84 68
Number of 4-LUTs 244 887 776
Number of ffs 64 192 226

In the case of the FIR digital filter, the technique can be additionally improved by

using duplication in the registers too. The possibility of using duplication instead of
TMR in the sequential logic is due to some characteristics of the filter. The first one is
because the data inside the filter is pipelined. At each clock cycle, each register receives
a new input that cleans up the upset that is propagated to the next register. In the worst
case, it is necessary to wait the n clock cycles of the pipeline to wash out all the upsets.
The second characteristic is the use of multiplier coefficients that are multiplied by a
constant that usually corresponds to the highest possible input number to avoid floating
point multiplications. This implies that the output must be divided by this same constant
number, consequently the output is truncated and many upsets in the internal operation
are eliminated in the end.

 The test case is an 11 taps 9-bit digital low-pass filter protected by only DWC-CED
in the combinational and sequential logic. The original coefficients calculated by Matlab
(MATHWORKS, 2003) were multiplied by the constant 512. The final multiplier
coefficients are: 1, -1, -9, 6, 73 and 120. There are ten 9-bit registers, totaling 90 bits
that can be upset by SEU. Figure 9.12 shows some fault sensitive areas in the filter. An
upset can affect the registers, which has a transient effect, or can affect the logic
(multipliers, adders, voters), which has a permanent effect.

CED
voter

out_dr0

x

C1_dr1

out_dr1

IN_tr1 R2_tr1 R3_tr1 R4_tr1 R5_tr1

+

x

C2_dr1
f

+

x

C3_dr1
f

+

x

C4_dr1
f

+

x

C5_dr1
f

check1

pads

check0

pads

f

R8_tr1 R9_tr1

+

x

C2_dr1
f

+

x

C1_dr1
f

R6_tr1 R7_tr1

+

x

C4_dr1
f

+

x

C3_dr1
f

f-1

x

C1_dr0

R2_tr0 R3_tr0 R4_tr0 R5_tr0

+

x

C2_dr0
f

+

x

C3_dr0
f

+

x

C4_dr0
f

+

x

C5_dr0
ff

R8_tr0 R9_tr0

+

x

C2_dr0
f

+

x

f

R6_tr0 R7_tr0

+

x

C4_dr0
f

+

x

C3_dr0
f

f-1

IN_tr0pads

pads

C1_dr0

X

X

X

X

X

X

X

Figure 9.12: FIR Filter protected by DWC-CED technique in the combinational and

sequential logic

Based on the percentage of each type of memory cell in the whole set of memory
elements in the CLBs, the LUTs represent 7.4%, the flip-flops represent 0.46%, the

134

customization bits in the CLB represent 6.36% and the general routing represents
82.9%, the probability of an upset affecting the registers is very low compared to the
probability of this same upset affecting the logic. In addition, the effect of an upset in a
register is not always seen in the final output after being divided by the constant, in the
example, the number 512.

Figure 9.13 shows the amplitude waveform of the input signal used in the case study
filter. Figure 9.14 shows the amplitude waveform of the output of the filter in time
domain. The input waveform has the frequencies 100Hz, 1 KHz and 8 KHz added in the
same signal. The frequencies lower than 3.75 KHz are passed to the output without any
attenuation, in the example: frequencies 100Hz and 1KHz. Frequencies from 3.75 to
5.625 KHz are attenuated. Frequencies higher than 5.625 are blocked by the filter
design.

Figure 9.13: Amplitude signal input in the FIR filter

135

Figure 9.14: Amplitude signal output in the FIR filter

All possible combinations of bit flips for the tested input signal were injected in the

registers. In total, 90 bit-flip faults were injected. Figure 9.15 shows the map of the bits
in the filter. There are 9 bits multiplied by 10 registers, the fault bits from the first
register need 10 clock cycles to be washed out, the fault bits from the second register
need 9 clock cycles, the fault bits in the third register need 8 clock cycles, and so on.
The calculation of the total number of clock cycles needed for the fault injection test is
show in equation (1). Consequently, the filter is operating with the presence of faults for
495 clock cycles.

10 clock cycles
9 clock cycles

2 clock cycles

Figure 9.15: Map of the memory cells in the filter (9 bits x 10 registers)

clock cycles = 9x10 + 9x9 + 9x8 + 9x7 + 9x6 + 9x5 + 9x4 + 9x3 + 9x2
+ 9x1 (1)
clock cycles = 9x55 = 495

Table 9.4 shows the effect of these upsets in the filter output. Note that less than
50% of the injected faults present an effect in the 9 most significant bits of the output.
Figure 9.16 shows the amplitude waveform of the output when faults were injected in
the filter. Note that the signal has some noise compared to the original output.

136

In order to improve the integrity of the filter output signal, the 7 first tap registers,
which are the ones that influence the most the output, had the 3 most significant bits
(msb) protected by TMR, including the signal bit. In summary, 21 bits were protected
from the total of 90, which represent 23% of the total sensitive bits. This protection
reduces to upset effects in the output to a very low level as seen in graphics from the
Matlab tool (MATHWORKS, 2003). Figure 9.17 shows the amplitude waveform of the
filter output signal, in the presence of upsets, with the 21 bits protected by TMR. Note
that the noise has reduced to very low level. Figures 9.18, 9.19 and 9.20 show the
equivalent output signals in the frequency domain.

Table 9.4: The influence of the upsets injected in the registers in the filter output

Total number of injected bit flips 90
Total number of clock cycles in the presence of fault 495
Number of faulty clock cycles 487
Number of output faults in the 9 most significant bits 201
Number of output faults in the bit 9 43
Number of output faults in the bit 10 40
Number of output faults in the bit 11 31
Number of output faults in the bit 12 21
Number of output faults in the bit 13 21
Number of output faults in the bit 14 12
Number of output faults in the bit 15 13
Number of output faults in the bit 16 0
Number of output faults in the bit 17 (signal) 20

Table 9.5 shows a comparison between many SEU hardened filter implementations:

the standard version, the TMR version, the filter protected by DWC-CED technique
only in the combinational logic, the DWC-CED technique applied in the combinational
and sequential logic, and the proposed DWC-CED technique applied in the
combinational and in some bits of the sequential logic to improve reliability reducing
cost.

Table 9.5: Filter Implementation using DWC-CED in the combinational and sequential
logic (XCV300-PQ240)

 Standard TMR DWC-CED
(combinational)

DWC-
CED (all)

DWC-
CED (*)

Total of I/O
pads

28 84 66 56 56

Number of
4-LUTs

496 1548 1350 1274 1304

Number of
ffs

90 270 308 218 248

* 3 bits in the 7 first registers protected by TMR

Results show that for the 11 taps 9-bit FIR canonical filter protected by DMR and
efficient TMR in only some bits of the registers occupies 3.5% less area in the FPGA
compared with the DMR in the combinational logic and TMR in registers with 60 less

137

flip-flops. Comparing with the full TMR, this new method shows a reduction of 16.5%
in area and 22 less flip-flops.

Figure 9.16: Amplitude signal output in the faulty FIR filter

Figure 9.17: Amplitude signal output in the faulty FIR filter with 3-bit protected in the

first 7 registers taps

138

Figure 9.18: Signal output in the FIR filter in the frequency domain

Figure 9.19: Signal output in the faulty FIR filter in the frequency domain

Figure 9.20: Signal output in the faulty FIR filter with 3-bit protected in the first 7

registers taps in the frequency domain

9.5 Designing DWC-CED Technique in Non-Arithmetic-based Circuits

The techniques presented previously are suitable for arithmetic-based circuits
because it uses some properties of the operation, but they are not convenient for random
logic. An example of concurrent error detection for non-arithmetic based circuits is the
parity prediction. The even/odd parity function indicates whether the number of 1’s in a
set of binary digits is even or odd. Techniques for designing datapath logic circuits and

139

general combinational circuits with parity prediction have been described in
(NICOLAIDIS; DUARTE, 1998; NICOLAIDIS, 2003; MITRA; MCCLUSKEY, 2002).

 Figure 9.21 shows the basic architecture of a system with concurrent error detection
using a single parity bit. The circuit has m outputs and is designed in such a way that
there is no sharing among the logic cones generating each of the outputs. Thus, a single
fault can affect at most one output. The restriction of no logic sharing among different
logic cones can result in large area overhead for circuits with a single parity bit. Hence,
the idea of using a single parity bit has been extended to multiple parity bits. This
technique partitions the primary outputs into different parity groups. Sharing is allowed
only among logic cones of the outputs that belong to different parity groups. There is a
parity bit associated with the outputs in each parity group. The outputs of each parity
group are checked using a parity checker.

Figure 9.21: Parity prediction using single parity bit (MITRA; MCCLUSKEY, 2002)

Figure 9.22 shows the general structure of a combinational logic circuit with two
parity groups bit position. The parity of the outputs is predicted independently. The
parity checker checks whether the actual parity of the outputs matches the predicted
parity.

Figure 9.22: Multiple parity bits for concurrent error detection (MITRA;

MCCLUSKEY, 2002)

The problem of using CED implemented by parity bit prediction is that many times
the area occupied by the parity prediction logic is more than half of the original logic.
Consequently, the final area result of the DWC-CED technique implemented with parity
bit prediction can exceed the size of the TMR. But the advantage is still reduction in the

140

number of input and output pads and possible increase in reliability (duplication with
CED blocks).

Another example of CED for non-based arithmetic circuits is a technique based on
unidirectional error detecting codes (MITRA; MCCLUSKEY, 2002). A unidirectional
error detecting code assumes that all errors are unidirectional; i.e., they change 0s to 1s
or 1s to 0s but never both at the same time. Two unidirectional error detecting codes
used for concurrent error detection are Berger codes and Bose-Lin codes. For the Berger
code, a code-word is formed by appending a binary string representing the number of 0s
(or the bit-wise complement of the number of 1s) to the given information word. Thus,
for an information word consisting of n bits, the Berger code requires nlog2n, n extra
bits to represent the number of 0s (or the bit-wise complement of number of 1s) in the
information word. The Berger code has the capability of detecting all unidirectional
errors. Figure 2.23 shows a concurrent error detection technique using Berger codes.
Since the Berger code is a unidirectional error detection code, it is important to ensure
that a single fault causes unidirectional errors at the outputs. This imposes a restriction
that the logic circuits should be synthesized in such a way that they are inverter-free.
Inverters can only appear at the primary inputs. In general, for Berger codes used to
detect unidirectional errors on communication channels, the check-bits represent the
bitwise complement of the number of 1’s in the information word. However, since
concurrent error detection techniques are designed to guarantee data integrity in the
presence of single faults, a single fault can affect either the actual logic function or the
logic circuit that predicts the number of 1’s at the output but never both at the same time
(since there is no logic sharing between the actual circuit and the circuit that predicts the
number of 1’s).

Figure 9.23: Unidirectional error detecting codes (MITRA; MCCLUSKEY, 2002)

The main conclusions presented in (MITRA; MCCLUSKEY, 2002) show that
results on benchmark circuits reveal marginal reduction in logic area by using CED
schemes based on parity prediction instead of duplication. CED schemes based on
Berger codes and Bose-Lin codes incur very high logic area overhead. It has been seen
that it is important to analyze the properties of the combinational logic in order to
choose the best technique in terms of fault coverage and area overhead. As future work,
other solutions besides parity prediction and unidirectional error detecting codes, such
as using prediction based on reversible logic function, will be also investigated to apply
the DWC-CED method for non-based arithmetic logic.

141

10 Conclusions

This thesis proposed the study and development of SEU mitigation techniques for
programmable architectures such as SRAM-based FPGAs. The choice of SRAM based
FPGAs is due to their high applicability in apace applications. Because they are
reprogrammable, designs can be updated or corrected after launch, which can reduce
considerably the mission cost. The Virtex family from Xilinx was chosen to be the case
study for this work because is one of the most popular, highest logic density and best
performing FPGAs in the market.

The problem of how to protect SRAM-based FPGAs in the architectural and in the
high-level methods was addressed in this thesis. Several fault-tolerant techniques able to
protect integrated circuits against upsets in the combinational and sequential logic have
been studied. The goal of this work was to investigate the techniques used nowadays
and to develop new SEU mitigation techniques for SRAM-based FPGAs that are cost
efficient in terms of time to market, low development cost, high performance, low area
cost, low power dissipation and high reliability. In addition, FPGA are becoming more
complex with embedded hard microprocessors, such as the Virtex II-Pro family from
Xilinx. Consequently, the microprocessors must also be protected against upset.

In the first phase of the research, available techniques to protect integrated circuits
against radiation were studied. The first case study circuit was the 8051 micro-controller
from Intel. The microprocessor architecture was chosen for its representation of the
majority of system requirements in space applications nowadays, presenting all types of
logic to be protected and being part of the new generation architectures based on FPGA
with an embedded hard microprocessor core. The description of the 8051 micro-
controller used in the experiment was developed at UFRGS (CARRO; PEREIRA;
SUZIM, 1996). All registers and memories in the 8051 description were manually
protected by hamming code (LIMA et al., 2000; LIMA et al., 2000b). A fault injection
system built in VHDL was designed to test the protected version of the 8051 (LIMA et
al., 2001a). Results show a high reliability of the hamming code in presence of single
upsets. The protected version was prototyped in a FPGA board from Altera and it has
been tested under radiation ground test too. Results from the radiation show the
necessity of using error correction code with multiple fault correction capability. In
(LIMA et al., 2002a), a fault injection study of the effect of multiple faults in the 8051
architecture is presented.

The second phase of the research has focused on the programmable field. A detailed
analysis of the effect of a SEU in the programmable matrix of a SRAM-based FPGA
was performed. When an upset occurs in the user’s combinational logic implemented in
a FPGA, it provokes a very peculiar effect not commonly seen in ASICs. The SEU
behavior is characterized as a transient effect, followed by a permanent effect. The upset
can affect either the combinational logic or the routing. The consequences of this type
of effect, a transient followed by a permanent fault, cannot be handled by the standard

142

fault tolerant solutions used in ASICs, such as Error Detection and Correction Codes
(EDAC), Hamming code, or the standard TMR with a single voter, because a fault in
the encoder or decoder logic or in the voter would invalidate the technique. The
problem of protecting SRAM-based FPGAs against SEU is not well solved yet and
more studies are required to improve the limitation of the methods currently used.

Some architectural solutions have been proposed to improve the reliability of the
ones currently used nowadays. One of them is the use of RS code combined with
hamming code to protect the embedded memory against multiple upsets. This is an
innovative solution that can be easily applied to any memory structure to protect against
all double bit upsets and a large combination of multiple upsets. This technique was
prototyped in a FPGA and results show that the area overhead is acceptable for the
reliability achieved (NEUBERGER; LIMA; CARRO; REIS, 2003). One of the main
advantages of this technique compared to the TMR is the low parity bits overhead,
which in the case of the TMR is 200% and in the proposed approach varies around 10 to
20%. A drawback of this technique is the performance penalty. As future work, the
encoder and decoder blocks will be implemented in ASIC to evaluate also the area and
performance. We expect to get a lower area and performance penalty compared to the
results from the FPGA prototype.

Another architectural proposed solution is based on the use of hardened memory
cells with SET detection capability to replace the flip-flops located in the CLB in order
to avoid bit flips and errors from transient faults in the combinational gates of the CLB,
for instance, the multiplexors. This proposed approach can protect the flip-flop against
SEU in the 1st, 2nd and 3rd order, and in addition to SET, which is a big concern in the
very deep submicron technologies. As future work, a small prototype version of a SEU
hardened FPGA protected by hardened memory cells and RS and hamming code will be
designed (logic, simulation and layout) and tested in presence of faults.

However the main focus of this thesis is SEU mitigation techniques in high level
description, which has been easily applied by the user with a low cost and a fast
turnaround time for the market. Triple Modular Redundancy (TMR) with voters is a
common high-level technique to protect ASICs against SEU and it can also be applied
to protect FPGAs. The TMR technique was first tested in the Virtex® FPGA
architecture by using a small design based on counters. Faults were injected in all
sensitive parts of the FPGA by using the bitstream and a detailed analysis of the effect
of a fault in a TMR design synthesized in the Virtex® platform was performed. This
study needed confidential information from Xilinx and it has been done under their
supervision during an internship. This work has built a correlation between faults in the
bitstream of the FPGA (one of the SRAM cells in the architecture) to the design logic
synthesized in the FPGA. Results from fault injection and from radiation ground test
facility showed the efficiency of the TMR for the related case study circuit.

In order to test a more complex design protected by TMR in the Virtex® platform
that would also include embedded memories, the same 8051-like micro-controller
description was protected by TMR and tested in the FPGA. The TMR 8051 micro-
controller was tested by fault injection and under proton radiation in a ground facility.
Fault injection analysis presented in (LIMA et al., 2001b) showed that there are a few
upset bits in the bitstream related to the routing that can provoke an error in the TMR
design. This limitation is due to the switch matrix that can connect two signals from
different redundant parts when a programmable cell is upset. Based on the references
presented in chapter 2, there is no totally efficient solution for SRAM based FPGAs that
can ensure 100% of reliability in all conditions for SEU. This thesis had the goal of
investigating the techniques used nowadays and to propose improvements in order to

143

increase reliability. Although TMR has show high reliability, this technique presents
some limitations, such as area overhead, three times more input and output pins and,
consequently, a significant increase in power dissipation.

Aiming to reduce TMR costs and improving reliability, an innovative high-level
technique for designing fault tolerant systems in SRAM-based FPGAs was developed,
without modification to the FPGA architecture. The first proposed technique combines
time and hardware redundancy to reduce area and pin count overhead (LIMA, CARRO,
REIS, 2003a). This technique is based on duplication with comparison and time
redundancy in the combination blocks of the design. It can be applied in arithmetic and
in non-arithmetic circuits. Although the time redundancy technique can be successfully
used to reduce pin count and area overhead over a full hardware redundancy, the
transient concurrent error detection technique is not able to correct 100% of the faults
occurring in FPGAs. Another penalty of this method is performance overhead because
of the observation time. The evolution of this work investigates the use of modified time
redundancy technique based on permanent fault detection to improve fault correction
and to reduce the performance penalty at each clock cycle.

This technique was improved to a new one able to assure higher reliability with the
same cost reduction. It is based on duplication with comparison and concurrent error
detection (DWC-CED) (LIMA, CARRO, REIS, 2003b). This new technique proposed
in this work was specifically developed for FPGAs to cope with transient faults that
become permanent in the user combinational and sequential logic, while also reducing
pin count, area and power dissipation. The RESO technique has been successfully
applied in the DWC-CED approach proposed to detect and correct permanent faults in
arithmetic circuits. The methodology was validated by fault injection experiments in an
emulation board. Results in terms of area and pin count show reduction from 10 to 33%
in the two cases studied (multipliers and digital filters). In addition, for digital filters,
the DWC-CED approach can be applied in the combinational and sequential logic
without loss in protection. For non-arithmetic based circuits, techniques such as parity
prediction can be used in the DWC-CED method.

The technique DWC-CED has presented some performance penalties. As future
work, improvements in this technique will be investigated to reduce the penalties in the
performance. In addition, alternative techniques to detect permanent faults in non-
arithmetic combinational circuits will be investigated. These techniques must present
reduced area overhead and high fault coverage. According to the target application, it
will be more important to reduce area, pin count or power dissipation. Another issue to
be investigated is a technique to speed up the performance, increasing the area (there is
always a compromise) for some specific applications, without reduce reliability.

In terms of fault analysis, the circuits protected by DWC-CED were evaluated by
fault injection in the VHDL. As a future work, a fault injection tool able to inject faults
directly in the bitstream, as the tool that it has been used at Xilinx, will be developed to
analyze in more detail the effect of the faults in the Virtex matrix. Also, in this case, it
will be possible to consider the effect of a dedicated floorplanning to avoid related
routing upsets. Based on the results presented in chapter 6, a dedicated floorplanning is
very important to ensure the correct operation of the SEU mitigation technique in the
FPGA.

The consideration of using FPGA in space applications is fairly recent and there is
still a lot of work to be done in this area. In summary, the main contributions of this
work were the detailed analysis of the effects of a single event upset (SEU) in the
architecture of a SRAM-based FPGA, the investigation and experiment tests of the
state-of-the-art fault-tolerant techniques and the development of new SEU mitigation

144

techniques that improve the reliability and reduce the cost compared to the current
solutions presented in the market nowadays. Additionally to what has been mentioned
previously, future work also includes the implementation of the DWC-CED technique
combined to the TMR technique in a more complex case study, such as the micro-
controller 8051, which has arithmetic and random combinational logic, sequential logic
and embedded memories. In this case, all the details and techniques will be tested. The
final analysis of this new version of the full protected 8051 micro-controller in a FPGA
platform will be performed under radiation ground test. The results will guide the
research in future developments.

145

References

ACTEL INC. Using Synplify to Design in Actel Radiation-Hardened FPGAs:
Application Report, USA, 2000. Available at: <www.actel.com/appnotes>. Visited on
November, 2000.

ACTEL INC., RT54SX-S Rad-Tolerant FPGAs for Space Applications: Data Sheet.
USA, 2001. Available at: <www.actel.com/datasheets>. Visited on August, 2001.

ALDERIGHI, M. et al. A Fault-Tolerant FPGA-based Multi-Stage Interconnection
Network for Space Applications. In: IEEE INTERNATIONAL WORKSHOP ON
ELECTRONIC DESIGN, TEST AND APPLICATIONS, DELTA, 1., 2002.
Proceedings… [S.l.]: IEEE Computer Society, 2002. p. 302-306.

ALEXANDRESCU, D.; ANGHEL, L.; NICOLAIDIS, M. New methods for evaluating
the impact of single event transients in VDSM ICs. In: IEEE INTERNATIONAL
SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN VLSI SYSTEMS
WORKSHOP, DFT, 17., 2002. Proceedings… [S.l.]: IEEE Computer Society, 2002. p.
99-107.

ALFKE, P.; PADOVANI, R. Radiation Tolerance on High-Density FPGAs. San
Jose, USA: Xilinx, 1998.

ALTERA INC. Data Book. USA, 2001. Available at: <www.altera.com>. Visited on
November, 2001.

ANGHEL, L.; ALEXANDRESCU, D.; NICOLAIDIS, M. Evaluation of a soft error
tolerance technique based on time and/or space redundancy. In: SYMPOSIUM ON
INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 13., 2000.
Proceedings… Los Alamitos : IEEE Computer Society, 2000. p. 237-242.

AVIZIENIS, A. Arithmetic Codes: Cost and Effectiveness Studies for Applications in
Digital Systems Design. IEEE Transactions on Computer, New York, v.C-20, Nov.
1971.

ATMEL INC. Data Book. USA, 2001. Available at: <www.atmel.com>. Visited on
November, 2001.

BARTH, J. Applying Computer Simulation Tools to Radiation Effects Problems. In:
IEEE NUCLEAR SPACE RADIATION EFFECTS CONFERENCE, NSREC, 1997.
Proceedings… [S.l.]: IEEE Computer Society, 1997. p. 1-83.

BAUMANN, R.; SMITH, E. Neutron-induced boron fission as a major source of soft
errors in deep submicron SRAM devices. In: IEEE INTERNATIONAL RELIABILITY
PHYSICS SYMPOSIUM, 38., 2000. Proceedings… [S.l.]: IEEE Computer Society,
2000.

146

BAUMANN, R. Soft errors in advanced semiconductor devices-part I: the three
radiation sources. IEEE Transactions on Device and Materials Reliability, New
York, v.1, n.1, p. 17-22, Mar. 2001.

BENS, H. et al. Low power radiation tolerant VLSI for advanced spacecraft. In: IEEE
AEROSPACE CONFERENCE, 2002. Proceedings… [S.l.]: IEEE Computer Society,
2002. p. 5-2401-5-2406.

BESSOT, D.; VELAZCO, R. Design of SEU-hardened CMOS memory cells: the HIT
Cell. In: EUROPEAN CONFERENCE ON RADIATION AND ITS EFFECTS ON
COMPONENTS AND SYSTEMS, RADECS, 2., 1993. Proceedings… [S.l.]: IEEE
Computer Society, 1993. p. 563-570.

BETZ, V.; ROSE, J. FPGA Routing Architecture: Segmentation and Buffering to
Optimize Speed and Density. In: ACM/SIGDA INTERNATIONAL SYMPOSIUM
FIELD PROGRAMMABLE GATE ARRAY, FPGA, 1999. Proceedings… New York:
ACM, 1999.

BOREL, J.; GAUTIER, J.; GASIOT, J. Silicon Redemption. In: EUROPEAN
CONFERENCE ON RADIATION AND ITS EFFECTS ON COMPONENTS AND
SYSTEMS, RADECS, 2001. Proceedings… [S.l.]: IEEE Computer Society, 2001.

CAFFREY, M.; GRAHAM, P.; JOHNSON, E. Single Event Upset in SRAM FPGAs.
In: MILITARY AND AEROSPACE APPLICATIONS OF PROGRAMMABLE
LOGIC CONFERENCE, MAPLD, 2002. Proceedings... [S.l.: s.n.], 2002.

CALIN, T.; NICOLAIDIS, M.; VELAZCO, R. Upset hardened memory design for
submicron CMOS technology. IEEE Transactions on Nuclear Science, New York,
v.43, n.6, p. 2874 -2878, Dec. 1996.

CANARIS, J.; WHITAKER, S. Circuit techniques for the radiation environment of
space. In: CUSTOM INTEGRATED CIRCUITS CONFERENCE, 1995. Proceedings...
[S.l.]: IEEE Computer Society, 1995, p. 77-80.

CARMICHAEL, C.; CAFFREY, M.; SALAZAR, A. Correcting Single-Event Upsets
Through Virtex® Partial Configuration: Application Notes 216. San Jose, USA:
Xilinx, 2000.

CARMICHAEL, C. Triple Module Redundancy Design Techniques for Virtex®
Series FPGA: Application Notes 197. San Jose, USA: Xilinx, 2000.

CARMICHAEL, C.; FULLER, E.; FABULA, J.; LIMA, F. Proton Testing of SEU
Mitigation Methods for the Virtex® FPGA. In: INTERNATIONAL CONFERENCE
ON MILITARY AND AEROSPACE APPLICATIONS OF PROGRAMMABLE
LOGIC DEVICES, MAPLD, 2001. Proceedings... [S.l.: s.n.], 2001.

CARRO, L.; PEREIRA, C.; SUZIM, A. Prototyping and reengineering of
microcontroller-based systems. In: IEEE INTERNATIONAL WORKSHOP ON
RAPID SYSTEM PROTOTYPING, RSP, 7., 1996. Proceedings... [S.l.]: IEEE
Computer Society, 1996. p. 178 -182.

CARMICHAEL, C.; FULLER, E.; BLAIN, P.; CAFFREY, M. SEU Mitigation
Techniques for Virtex® FPGAs in Space Applications. San Jose, USA: Xilinx, 1999.

COLINGE, J. Silicon-on-Insulator Technology: Overview and Device Physics. In: IEEE
NUCLEAR SPACE RADIATION EFFECTS CONFERENCE, NSREC, 2001.
Proceedings… [S.l.]: IEEE Computer Society, 2001.

147

COTA, E.; LIMA, F.; REZGUI, S.; CARRO, L.; VELAZCO, R.; LUBASZEWSKI, M.;
REIS, R. Synthesis of an 8051-like Micro-Controller Tolerant to Transient Faults.
Journal of Electronic Testing Theory and Applications, JETTA, MA, USA, v.17,
n.2, 2001.

COTA, E. et al Implementing a self-testing 8051 microprocessor. In: SYMPOSIUM
ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 1999.
Proceedings... Los Alamitos: IEEE Computer Society, 1999. p. 202–205.

CRAIN, S. et al. Analog and digital single-event effects experiments in space. IEEE
Transactions on Nuclear Science, New York, v.48, n.6, Dec. 2001.

WHEN or Will FPGAs kill ASICs? Panel presented at ACM Design Automation
Conference , DAC, 2001.

DELONG, T.A.; JOHNSON, B.W.; PROFETA, J.A. A fault injection technique for
VHDL behavioral-level models. IEEE Design & Test of Computers, New York, v.13
n.4 , p. 24-33, Winter 1996.

DENTAN, M. Radiation Effects On Electronic Components And Circuits. In:
TRAINING COURSE OF THE EUROPEAN ORGANIZATION FOR NUCLEAR
RESEARCH, CERN, 2000. Available at: <http://atlas.web.cern.ch/Atlas/GROUPS/
FRONTEND /radhard.htm>. Visited on June, 2001.

DEPREITERE, J.; VAN MARCK, H.; VAN CAMPENHOUT, J. Evaluation of FPGA
Switch Matrices using a Monte Carlo Approach. In: JAPANESE FPGA/PLD DESIGN
CONFERENCE, 6., 1998. Proceedings… [S.l.: s.n.], 1998. p. 303-306.

DUPONT, E.; NICOLAIDIS, M.; ROHR, P. Embedded robustness IPs for transient-
error-free ICs. IEEE Design & Test of Computers, New York, v.19, n.3, p. 54-68,
May-June 2002.

FULLER, E. et al. Radiation Testing Update, SEU Mitigation, and Availability
Analysis of the Virtex® FPGA for Space Re-configurable Computing. In: IEEE
NUCLEAR SPACE RADIATION EFFECTS CONFERENCE, NSREC, 2000.
Proceedings… [S.l.]: IEEE Computer Society, 2000.

FULLER, E. et al. Radiation test results of the Virtex FPGA and ZBT SRAM for Space
Based Reconfigurable Computing. In: INTERNATIONAL CONFERENCE ON
MILITARY AND AEROSPACE APPLICATIONS OF PROGRAMMABLE LOGIC
DEVICES, MAPLD, 2002. Proceedings... [S.l.: s.n.], 2002.

GAISLER, J. A portable and fault-tolerant microprocessor based on the SPARC v8
architecture. In: INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS
AND NETWORKS, 2002. Proceedings... [S.l.]: IEEE Computer Society, 2002. p. 409-
415.

HASS, K. J.; TREECE, R. K.; GIDDINGS, A. E. A radiation-hardened 16/32-bit
microprocessor. IEEE Transactions on Nuclear Science, New York, v.36, n.6, p. 2252
-2257, Dec. 1989.

HASS, J. et al. Mitigating Single Event Upsets From Combinational Logic. In: NASA
SYMPOSIUM ON VLSI DESIGN, 7., 1998. Proceedings... [S.l.: s.n.], 1998.

HASS, J. Probabilistic Estimates of Upset Caused by Single Event Transients. In:
NASA SYMPOSIUM ON VLSI DESIGN, 8., 1999. Proceedings... [S.l.: s.n.], 1999.

148

HENTSCHKE, R.; MARQUES, F.; LIMA, F.; CARRO, L.; SUSIN, A.; REIS, R.
Analyzing area and performance penalty of protecting different digital modules with
hamming code and triple modular redundancy. In: SYMPOSIUM ON INTEGRATED
CIRCUITS AND SYSTEMS DESIGN, 15., 2002. Proceedings..., Los Alamitos: IEEE
Computer Society, 2002. p. 95-100.

HENTSCHKE, R. Lemon Dragon Multiplier Generator Tool: Technical Report.
Porto Alegre: [s.n.], June 2003.

HONEYWELL INC. MIL-STD-1705A Microprocessor Data Sheet. USA, 2003.

HOUGHTON, A. D. The Engineer’s Error Coding Handbook. London: Chapman &
Hall, 1997.

HUANG, W.; MCCLUSKEY, E. A Memory Coherence Technique for Online Transient
Error Recovery of FPGA Configurations. In: ACM/SIGDA INTERNATIONAL
SYMPOSIUM ON FIELD PROGRAMMABLE GATE ARRAY, FPGA, 2001.
Proceedings…New York: ACM, 2001. p. 183-192.

IBM INC. SOI Technology: IBM’s Next Advance in Chip Design. USA, 2000.
Available at: <www.ibm.com>. Visited on November, 2000.

INTEL INC. Embedded Micro-controllers Datasheet. USA, 1994.

IROM, F. et al. Single-event upset in commercial silicon-on-insulator PowerPC
microprocessors. In: IEEE INTERNATIONAL SILICON-ON-INSULATOR
CONFERENCE, 2002. Proceedings... [S.l.]: IEEE Computer Society, 2002. p.203-204.

JOHNSTON, A. Scaling and Technology Issues for Soft Error Rates. In: RESEARCH
CONFERENCE ON RELIABILITY, 4., 2000. Proceedings... Palo Alto: Stanford
University, 2000.

JOHNSON, B.; AYLOR, J. H.; HANA, H. Efficient Use of Time and Hardware
Redundancy for Concurrent Error Detection in a 32-bit VLSI Adder. IEEE Journal of
Solid-State-Circuits, New York, v.23, n.1, p. 208-215, Feb. 1988.

KATZ, R. et al. An SEU-Hard flip-Flop for Antifuse FPGAs. In: INTERNATIONAL
CONFERENCE ON MILITARY AND AEROSPACE APPLICATIONS OF
PROGRAMMABLE LOGIC DEVICES, MAPLD, 2001. Proceedings... [S.l.: s.n.],
2001.

KATZ, R. et al. Radiation effects on current field programmable technologies. IEEE
Transactions on Nuclear Science, New York, v.44, n.6, p. 1945-1956, Dec. 1997.

KATZ, R. et al. Current radiation issues for programmable elements and devices. IEEE
Transactions on Nuclear Science, New York, v.45, n.6, p. 2600 -2610, Dec. 1998.

KATZ, R. et al. The effects of architecture and process on the hardness of
programmable technologies. IEEE Transactions on Nuclear Science, New York, v.46,
n.6, p. 1736 -1743, Dec. 1999.

KUMAR, B. K. An FPGA Architecture with Error Correction Capability. In:
ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD PROGRAMMABLE
GATE ARRAYS, FPGA, 2003. Proceedings... New York: ACM, 2003.

LABEL, K. et al. A roadmap for NASA's radiation effects research in emerging
microelectronics and photonics. In: IEEE AEROSPACE CONFERENCE, 2000.
Proceedings... [S.l.]: IEEE Computer Society, 2000. p. 535 -545.

149

LACH, J.; MANGIONE-SMITH, W.; POTKONJAK, M. Efficient Error Detection,
Localization and Correction for FPGA-Based Debugging. In: ACM/SIGDA
INTERNATIONAL DESIGN AUTOMATION CONFERENCE, DAC, 2000.
Proceedings… [S.l.]: IEEE Computer Society, 2000.

LACH, J.; MANGIONE-SMITH, W.; POTKONJAK, M. Efficiently supporting fault-
tolerance in FPGAs. In: ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD
PROGRAMMABLE GATE ARRAYS, FPGA, 1998. Proceedings... New York: ACM,
1998. p. 105-115.

LEAVY, J. et al. Upset due to a single particle caused propagated transient in a bulk
CMOS microprocessor. IEEE Transactions on Nuclear Science, New York, v.38, n.6,
p. 1493-1499, Dec. 1991.

LERAY, J. Earth and Space Single-Events in Present and Future Electronics. In:
EUROPEAN CONFERENCE ON RADIATION AND ITS EFFECTS ON
COMPONENTS AND SYSTEMS, RADECS, 6., 2001. Short Course. [S.l.]: IEEE
Computer Society, 2001.

LIMA, F.; COTA, E.; CARRO, L.; LUBASZEWSKI, M.; REIS, R.; VELAZCO, R.;
REZGUI, S. Designing a radiation hardened 8051-like micro-controller. In:
SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI,
13., 2000. Proceedings... Los Alamitos: IEEE Computer Society, 2000a. p. 255-260.

LIMA, F.; REZGUI, S.; COTA, E.; CARRO, L.; LUBASZEWSKI, M.; VELAZCO, R.;
REIS, R. Designing and Testing a Radiation Hardened 8051-like Micro-controller. In:
INTERNATIONAL CONFERENCE ON MILITARY AND AEROSPACE
APPLICATIONS OF PROGRAMMABLE LOGIC DEVICES, MAPLD, 2000.
Proceedings... [S.l.: s.n.], 2000b.

LIMA, F.; REZGUI, S.; CARRO, L.; VELAZCO, R.; REIS, R. On the use of VHDL
simulation and emulation to derive error rates. In: EUROPEAN CONFERENCE ON
RADIATION AND ITS EFFECTS ON COMPONENTS AND SYSTEMS, RADECS,
2001. Proceedings... [S.l.]: IEEE Computer Society, 2001a. p. 253-260.

LIMA, F.; CARMICHAEL, C.; FABULA, J.; PADOVANI, R.; REIS, R. A fault
injection analysis of Virtex FPGA TMR design methodology. In: EUROPEAN
CONFERENCE ON RADIATION AND ITS EFFECTS ON COMPONENTS AND
SYSTEMS, RADECS, 2001. Proceedings... [S.l.]: IEEE Computer Society, 2001b. p.
275 -282.

LIMA, F.; CARRO, L.; VELAZCO, R.; REIS, R. Injecting Multiple Upsets in a SEU
tolerant 8051 Micro-controller. In: LATIN AMERICA TEST WORKSHOP, LATW,
2002. Proceedings... Amissville: IEEE Computer Society, 2002a.

LIMA, F.; CARRO, L.; VELAZCO, R.; REIS, R. Injecting multiple upsets in a SEU
tolerant 8051 micro-controller. In: IEEE INTERNATIONAL ON-LINE TESTING
WORKSHOP, IOLTW, 8., 2002. Proceedings... [S.l.]: IEEE Computer Society, 2002b.
p. 194.

LIMA, F.; CARRO, L.; REIS, R. Prototyping, verification, and test: Reducing pin and
area overhead in fault-tolerant FPGA-based designs. In: ACM/SIGDA
INTERNATIONAL SYMPOSIUM ON FIELD PROGRAMMABLE GATE ARRAYS,
FPGA, 2002. Proceedings... New York: ACM, 2003a. p. 108-117.

150

LIMA, F.; CARRO, L; REIS, R. Techniques for reconfigurable logic applications:
Designing fault tolerant systems into SRAM-based FPGAs. In: INTERNATIONAL
DESIGN AUTOMATION CONFERENCE, DAC, 2003. Proceedings... New York:
ACM, 2003b. p. 650-655.

LIU, M.N.; WHITAKER, S. Low power SEU immune CMOS memory circuits. IEEE
Transactions on Nuclear Science, New York, v.39, n.6, p. 1679-1684, Dec. 1992.

LUBASZEWSKI, M.; COURTOIS, B. A reliable fail-safe system. IEEE Transactions
on Computers, New York, v.47, n.2, p. 236-241, Feb. 1998.

LUM, G.; MARTIN, L. Single Event Effects Testing of Xilinx FPGAs. San Jose,
USA: Xilinx, 1998.

MATHWORKS INC. Matlab and Simulink Documentation. USA, 2003.

MAVIS, D.; EATON, P. SEU and SET Mitigation Techniques for FPGA Circuit and
Configuration Bit Storage Design. In: INTERNATIONAL CONFERENCE ON
MILITARY AND AEROSPACE APPLICATIONS OF PROGRAMMABLE LOGIC
DEVICES, MAPLD, 2000. Proceedings... [S.l.: s.n.], 2000.

MAVIS, D.; EATON, P. Soft error rate mitigation techniques for modern microcircuits.
In: RELIABILITY PHYSICS SYMPOSIUM, 40., 2002. Proceedings... [S.l. : s.n.],
2002. p. 216-225.

MAVIS, D. et al. A Reconfigurable, Nonvolatile, Radiation Hardened Field
Programmable Gate Array (FPGA) for Space Applications. In: INTERNATIONAL
CONFERENCE ON MILITARY AND AEROSPACE APPLICATIONS OF
PROGRAMMABLE LOGIC DEVICES, MAPLD, 1998. Proceedings... [S.l.: s.n.],
1998.

MAXWELL TECHNOLOGIES. Product Data sheet. USA, 2001. Available at:
<www. spaceelectronics.com/>. Visited on January, 2002.

MITRA, S.; MCCLUSKEY, E. Which Concurrent Error Detection Scheme To Choose?
In: INTERNATIONAL TEST CONFERENCE, ITC, 2002. Proceedings... [S.l.]: IEEE
Computer Society, 2002.

MITRA, S.; SHIRVANI, P.; MCCLUSKEY, E. Fault Location in FPGA-Based
Reconfigurable Systems. In: WORKSHOP ON DEFECT AND FAULT-TOLERANCE
IN VLSI SYSTEMS, 1998. Proceedings... [S.l.]: IEEE Computer Society, 1998.

MOORE, G. E. Progress in Digital Integrated Electronics. Digest of the 1975
International Electron Devices Meeting, New York, p. 1113, 1975.

MUSSEAU, O.; FERLET-CAVROIS, V. Silicon-on-Insulator Technology: Radiation
Effects. In: IEEE NUCLEAR SPACE RADIATION EFFECTS CONFERENCE,
NSREC, 2001. Short Course. [S.l.] : IEEE Computer Society, 2001.

NASA. Radiation Effects on Digital Systems. USA, 2002. Available at: <
radhome.gsfc.nasa.gov/top.htm>. Visited on January, 2003.

NEUBERGER, G.; LIMA, F.; CARRO, L.; REIS, R. A Multiple Bit Upset Tolerant
SRAM Memory. Transactions on Design Automation of Electronic Systems,
TODAES, New York, v.8, n.4, Oct. 2003.

NICOLAIDIS, M.; PEREZ, R. Measuring the width of transient pulses induced by
radiation. In: IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM,
2003. Proceedings... [S.l.]: IEEE Computer Society, 2003. p. 56-59.

151

NICOLAIDIS, M. Carry checking/parity prediction adders and ALUs. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, New York, v.11,
n.1, p. 121-128, Feb. 2003.

NICOLAIDIS, M.; DUARTE, R.O. Design of fault-secure parity-prediction Booth
multipliers. In: INTERNATIONAL CONFERENCE ON DESIGN, AUTOMATION
AND TEST IN EUROPE, DATE, 1998. Proceedings… [S.l.]: IEEE Computer Society,
1998. p. 7-14.

NICOLAIDIS, M. Time redundancy based soft-error tolerance to rescue nanometer
technologies. In: IEEE VLSI TEST SYMPOSIUM, 17., 1999. Proceedings... [S.l.]:
IEEE Computer Society, 1999. p. 86-94.

NORMAND, E. Correlation of in-flight neutron dosimeter and SEU measurements with
atmospheric neutron model. IEEE Transactions on Nuclear Science, New York, v.48,
n.6, p. 1996-2003, Dec. 2001.

NORMAND, E.; BAKER, T.J. Altitude and latitude variations in avionics SEU and
atmospheric neutron flux. IEEE Transactions on Nuclear Science, New York, v.40,
n.6, p. 1484-1490, Dec. 1993.

NORMAND, E. Single event upset at ground level. IEEE Transactions on Nuclear
Science, New York, v.43, n.6, p. 2742 -2750, Dec. 1996.

O’BRYAN, M., LABEL, K. Recent Radiation Damage and Single Event Effect Results
for Candidate Spacecraft Electronics. In: IEEE NUCLEAR SPACE RADIATION
EFFECTS CONFERENCE, NSREC, 2001. Proceedings… [S.l.]: IEEE Computer
Society, 2001.

O'BRYAN, M. et al. Current single event effects and radiation damage results for
candidate spacecraft electronics. In: IEEE RADIATION EFFECTS DATA
WORKSHOP, 2002. Proceedings... [S.l.]: IEEE Computer Society, 2002. p. 82-105.

OHLSSON, M.; DYREKLEV, P.; JOHANSSON, K.; ALFKE, P. Neutron Single Event
Upsets in SRAM based FPGAs. In: IEEE NUCLEAR SPACE RADIATION EFFECTS
CONFERENCE, NSREC, 1998. Proceedings… [S.l.]: IEEE Computer Society, 1998.

PATEL, J. H.; FUNG, L. Y. Concurrent Error Detection in ALUs by Recomputing with
Shifted Operands. IEEE Transactions on Computer, New York, v.C-31, July 1982.

PATEL, J.; FUNG, L. Multiplier and Divider Arrays with Concurrent Error Detection.
In: INTERNATIONAL SYMPOSIUM ON FAULT-TOLERANT COMPUTING, 1996.
Proceedings... [S.l.]: IEEE Computer Society, 1996.

PETERSON, W. Wesley. Error-correcting codes. 2nd. ed. Cambridge : The Mit Press,
1980. 560p.

REBAUDENGO, M.; REORDA, M.S.; VIOLANTE, M. Simulation-based Analysis of
SEU effects of SRAM-based FPGAs. In: INTERNATIONAL WORKSHOP ON
FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS, FPL, 2002.
Proceedings... [S.l.]: IEEE Computer Society, 2002. p. 607-615.

REBAUDENGO, M.; REORDA, M.S.; VIOLANTE, M.; NICOLESCU, B.;
VELAZCO, R. Coping with SEUs/SETs in microprocessors by means of low-cost
solutions: a comparison study. IEEE Transactions on Nuclear Science, New York,
v.49, n.3, June 2002.

152

REDINBO, G.; AND NAPOLITANO, L.; AND ANDALEON, D. Multi-bit Correcting
Data Interface for Fault-Tolerant Systems. IEEE Transactions on Computers, New
York, v.42, n.4, p. 433-446, Apr. 1993.

REED, R.A. et al. Heavy ion and proton-induced single event multiple upset. IEEE
Transactions on Nuclear Science, New York, v.44, n.6, p. 2224-2229, Dec. 1997.

ROCKETT, L. R. A design based on proven concepts of an SEU-immune CMOS
configurable data cell for reprogrammable FPGAs. Microelectronics Journal, Elsevier,
v.32, p. 99-111, 2001.

ROCKETT, L. R. An SEU-hardened CMOS data latch design. IEEE Transactions on
Nuclear Science, New York, v.35, n.6, p. 1682-1687, Dec. 1988.

SEXTON, F. et al. SEU simulation and testing of resistor-hardened D-latches in the
SA3300 microprocessor. IEEE Transactions on Nuclear Science, New York, v.38,
n.6, p. 1521-1528, Dec. 1991.

SIA SEMICONDUCTOR INDUSTRY ASSOCIATION. The National Technology
Roadmap for Semiconductors. USA, 1994.

SILVA, L.; LIMA, F.; CARRO, L.; REIS, R. Synthesis of the FPGA Version of 8051.
In: UFRGS MICROELECTRONICS SEMINAR, 12., 1997, Porto Alegre.
Proceedings… Porto Alegre: CPGCC da UFRGS, 1997. p. 115-120.

SKAHILL, K. VHDL for Programmable Logic. [S.l.]: Addison Wesley. 1996. p. 1-
23.

STASSINOPOULOS, E.; RAYMOND, J. The space radiation environment for
electronics. Proceedings of the IEEE, New York, v.76, n.11, p. 1423-1442, Nov. 1988.

STURESSON, F.; MAUSSON, S.; CARMICHAEL, C.; HARBOE-SORENSEN, R.
Heavy ion characterization of SEU mitigation methods for the Virtex FPGA. In:
EUROPEAN CONFERENCE ON RADIATION AND ITS EFFECTS ON
COMPONENTS AND SYSTEMS, RADECS, 2001. Proceedings... [S.l.]: IEEE
Computer Society, 2001. p. 285-291.

VARGAS, F.; AMORY, A. Circuit Modeling and Fault Injection Approach to Predict
SEU Rate and MTTF in Complex Circuits. In: LATIN AMERICA TEST WORKSHOP,
LATW, 2001. Proceedings... Amissville: IEEE Computer Society, 2001.

VELAZCO, R. et al. Two CMOS memory cells suitable for the design of SEU-tolerant
VLSI circuits. IEEE Transactions on Nuclear Science, New York, v.41, n.6, p. 2229–
2234, Dec. 1994.

VELAZCO, R.; CHEYNET, P.; ECOFFET, R. Effects of radiation on digital
architectures: one year results from a satellite experiment. In: SYMPOSIUM ON
INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 1999. Proceedings...
Los Alamitos: IEEE Computer Society, 1999. p. 164-169.

VELAZCO, R.; REZGUI, S.; ECOFFET, R. Transient bitflip injection on
microprocessor-based digital architectures. In: IEEE NUCLEAR AND SPACE
RADIATION EFFECTS CONFERENCE, NSREC, 2000. Proceedings… [S.l.]: IEEE
Computer Society, 2000.

WANG, J. et al. Clock buffer circuit soft errors in antifuse-based field programmable
gate arrays. IEEE Transactions on Nuclear Science, New York, v.47, n.6 , Dec. 2000.

153

WANG, J. et al. SRAM based re-programmable FPGA for space applications. IEEE
Transactions on Nuclear Science, New York, v.46, n.6, p. 1728-1735, Dec. 1999.

WEAVER, H.; et al. An SEU Tolerant Memory Cell Derived from Fundamental Studies
of SEU Mechanisms in SRAM. IEEE Transactions on Nuclear Science, New York,
v.34, n.6, Dec. 1987.

WHITAKER, S.; CANARIS, J.; LIU, K. SEU hardened memory cells for a CCSDS
Reed-Solomon encoder. IEEE Transactions on Nuclear Science, New York, v.38, n.6,
p. 1471-1477, Dec. 1991.

WISEMAN, D. et al. Design and Testing of SEU / SEL Immune Memory and Logic
Circuits in a Commercial CMOS Process. In: IEEE NUCLEAR SPACE RADIATION
EFFECTS CONFERENCE, NSREC, 1993. Proceedings… [S.l.] : IEEE Computer
Society, 1993.

XILINX, INC. Virtex®™ 2.5 V Field Programmable Gate Arrays: Datasheet
DS003. USA, 2000a.

XILINX, INC. QPRO™Virtex®™ 2.5V Radiation Hardened FPGAs: Application
Notes 151. USA, 2000b.

XILINX INC. Virtex® Series Configuration Architecture User Guide: Application
Notes 151. USA, 2000c.

XILINX INC. Virtex-II IP-Immersion™ Technology Enables Next-Generation Platform
FPGAs. Xcell Journal Online. USA, 2001a.

XILINX INC. ISE Software and Chipscope Analyzer Manual. USA, 2001b.

XU, J. et al. A Novel Fault Tolerant Approach for SRAM-Based FPGAs. In: PACIFIC
INTERNATIONAL SYMPOSIUM ON DEPENDABLE COMPUTING, 1999.
Proceedings… [S.l.]: IEEE Computer Society, 2000.

YU, Shu-Yi, MCCLUSKEY, E. Permanent Fault Repair for FPGAs with Limited
Redundant Area. In: DESIGN FOR FAULT TOLERANCE CONFERENCE, DFT,
2001. Proceedings... [S.l.]: IEEE Computer Society, 2001.

ZOUTENDYK, J.; EDMONDS, L.; SMITH, L. Characterization of multiple-bit errors
from single-ion tracks in integrated circuits. IEEE Transactions on Nuclear Science,
New York, v.36, n.6, p. 2267 -2274, Dec. 1989.

154

Appendix A

Resumo da Tese em Português

Desenvolvimento de Técnicas de Tolerância a Falhas Transientes em

Componentes Programáveis por SRAM

Circuitos programáveis tais como Field Programmable Gate Arrays (FPGAs) estão
sendo cada vez mais demandados por projetistas de circuitos eletrônicos para aplicações
espaciais devido a sua alta flexibilidade lógica em alcançar múltiplos requerimentos
como alto desempenho, baixo custo no desenvolvimento e rapidez de chegada do
produto ao mercado. Em particular, FPGAs são muito valiosos para missões espaciais
pois podem ser reprogramados a distância quantas vezes for necessário muito
rapidamente. Conseqüentemente, FPGAs baseados em SRAM oferecem o benefício
adicional de mudanças e melhorias no projeto feitas a distância, correções de erros e
ajustes após o lançamento espacial. Por este motivo FPGAs baseados em SRAM foram
escolhidos como foco deste trabalho, mais especificamente a família de FPGA Virtex da
empresa Xilinx.

Falhas transientes, também conhecidas como Single Event Upset (SEU), são o maior
preocupação como fontes de erros em aplicações espaciais, com potencialmente serias
conseqüências para o dispositivo, incluindo perda de informação, falha funcional e
perda de controle. Falhas transientes ocorrem quando uma partícula energizada incide
na superfície do circuito integrado (silício) transferindo uma energia suficiente para
provocar uma troca de valor em uma célula de armazenamento (latch ou flip-flop) ou
um pulso de corrente no circuito combinacional que pode ser interpretado como um
sinal. SEU em circuitos integrados tem se tornando mais e mais freqüente por causa da
redução do tamanho dos transistores devido a constante evolução da tecnologia de
fabricação de semicondutores. Como resultado, não apenas circuitos operando em
aplicações espaciais mas também circuitos operando em aplicações consideradas de alto
risco, como servidores bancários, servidores de telecomunicação, aviões e outros, estão
sofrendo o efeito da radiação e devem ser protegidos com técnicas de tolerância a falhas
para garantir confiabilidade.

SEU apresenta um efeito peculiar em FPGAs baseados em SRAM quando uma
partícula energizada atinge a lógica combinacional do usuário mapeada na arquitetura
programável. Em um circuito ASIC, o efeito de uma partícula atingindo a lógica
combinacional ou seqüencial é transiente, a única variação é o tempo de duração da
falha. A falha no circuito combinacional é um pulso transiente que pode ou não
desaparecer de acordo com o atraso na lógica, na topologia e nos vetores de entrada
(sensibilização do caminho). Em outras palavras, isso quer dizer que umas falha

155

transiente em uma lógica combinacional pode ou não ser capturada pela célula de
armazenamento. Falhas nos circuitos seqüenciais manifestam-se como uma inversão no
valor armazenado (bit flip), e irão se manter até a próxima carga da célula de
armazenamento.

Por outro lado, em FPGA baseado em SRAM, ambas lógica combinacional e lógica
seqüencial são implementadas por células de armazenamento (SRAM). Quando uma
falha ocorre na lógica combinacional, atingindo o roteamento ou a lógica, ela possui um
efeito transiente seguido de permanente porque a célula de armazenamento que compõe
aquela lógica ou que controla aquele roteamento teve o seu valor invertido. Esse valor
somente será corrigido após a reconfiguração do FPGA. Isso significa que uma falha
transiente na lógica combinacional do FPGA tem um efeito permanente e será capturado
por uma célula de armazenamento durante a próxima carga, ao menos que alguma
técnica de detecção ou correção de falhas seja utilizada. Quando uma falha ocorre na
lógica seqüencial do FPGA, o efeito é transiente, igual ao que acontece no ASIC,
porque a falha pode ser corrigida na próxima carga da célula de armazenamento.
Conseqüentemente, é muito importante levar em consideração o efeito de uma falha
transiente (SEU) em FPGA baseado em SRAM no desenvolvimento de técnicas de
proteção contra SEU neste tipo de arquitetura.

Este trabalho analisa em detalhas os efeitos das falhas transientes na arquitetura de
um FPGA baseado em SRAM e as principais técnicas de proteção a falhas utilizadas
recentemente, como por exemplo a triplicação com votação. A técnica de triplicação da
lógica com votação, conhecida como triple modular redundancy (TMR), combinada
com uma reconfiguração constante da programação (scrubbing) é utilizada no FPGA
Virtex para proteger este contra os efeitos da SEU. O TMR é uma técnica adequada a
FPGA baseado em SRAM por sua característica de redundância espacial completa, ou
seja, da parte física (hardware) na lógica seqüencial e combinacional. Este trabalho
investiga e teste essa técnica na descrição do micro-controlador 8051 sintetizado no
FPGA Virtex. O circuito final protegido foi testado utilizando injeção de falhas e em um
laboratório com gerador de partículas energizadas. Resultados em termos de
confiabilidade, área e desempenho são apresentados neste trabalho.

Todavia, a técnica de proteção a falhas TMR é custosa em termos de área, logo, foi
feito um estudo para o desenvolvimento de uma nova técnica de proteção para FPGAs
capaz de reduzir o custo em área, sem diminuir a confiabilidade. Essa tese apresenta
uma técnica inovadora de proteção contra SEU em FPGA baseado em SRAM capaz de
tratar os problemas previamente descritos: o efeito permanente de uma SEU na
arquitetura programável e alto custo em área do TMR. O método combinada duplicação
com votação e detecção de erro simultânea baseado em redundância temporal e
espacial.

Várias técnicas de proteção contra SEU foram propostas nos últimos anos visando
evitar falhas transientes em circuitos integrados. Um circuito imune a SEU deve ser
composto por uma variedade de técnicas de proteção baseadas em redundância.
Redundância é alcançada através de componentes extra (redundância espacial), de
tempo de execução extra (redundância temporal) ou uma combinação das duas. Uma
técnica de proteção contra SEU eficiente deve tratar falhas transientes na lógica
combinacional e na lógica seqüencial. Desta forma, falhas no circuito combinacional
nunca serão armazenados no circuito seqüencial ou serão votados corretamente, o
mesmo acontece com falhas no circuito seqüencial que nunca deve acontecer ou devem
ser imediatamente corrigidos por votação ou outras técnicas baseadas em redundância
ou paridade. Cada técnica tem suas vantagens e desvantagens e tem sempre um

156

compromisso entre área, desempenho, potencia dissipada e eficiência na tolerância a
falhas.

Redundância espacial e temporal são largamente utilizadas em ASICs. Elas variam
de detecção simultânea de erros a mecanismos de correção. O uso de redundância
espacial ou temporal completa permite votar o correto valor do sinal na presença de
falha (SEU). No caso da redundância temporal, o objetivo é aproveitar a característica
do pulso transitório gerado pela falha e comparar o sinal de saída em momentos
diferentes. Logo, a saída da lógica combinacional é carregada em três momentos
diferentes, onde a transição do relógio da segunda célula de armazenamento é deslocada
de um atraso d e a transição do relógio da terceira célula de armazenamento é deslocada
de um atraso d vezes 2. Um circuito votador escolhe o valor correto. O esquemático está
ilustrado na figura 1a. O aumento em área é devido as células de armazenamento extras
e a penalidade em desempenho é devido a captura com atraso máximo de 2 vezes o
atraso que é referente ao tempo de duração do pulso. A complexidade deste método é
devido aos 3 diferentes relógios.

A redundância espacial, o conhecido TMR, também pode ser utilizado para
identificar o valor correto na saída da lógica combinacional e seqüencial, como
apresentado na figura 1b. Embora apresente um maior aumento em área comparado com
a redundância temporal, já que toda a lógica combinacional e seqüencial é triplicada,
essa técnica não apresenta grande penalidade no desempenho, apenas o atraso de
propagação do votador e não necessita de diferentes fases do relógio.

No caso de FPGAs baseados em SRAM, o problema de encontrar uma técnica de
tolerância a falhas eficiente em termos de área, desempenho e potencia dissipada é um
desafiante por causa da alta complexidade da arquitetura. Como mencionado
anteriormente, quando uma falha ocorre na lógica combinacional do usuário no FPGA,
ela provoca um efeito muito peculiar que não é comumente visto em ASIC. O
comportamento de uma SEU na arquitetura de um FPGA baseado em SRAM é
caracterizado como um efeito transiente seguido de permanente. A falha pode atingir
tanto a lógica como o roteamento. E a conseqüência deste tipo de efeito não pode ser
tratada diretamente com soluções de tolerância a falhas usadas em ASICs como códigos
de detecção e correção de erros e TMR original com apenas um votador, porque falhas
no codificador ou decodificador ou no votador iriam invalidar a técnica.

Técnicas especiais devem ser desenvolvidas para FPGAs para tratar este efeito. A
técnica de proteção contra SEU usada hoje em dia em projetos sintetizados na
arquitetura Virtex é basicamente baseada em TMR com reconfiguração continua do
FPGA para evitar acumulo de falhas na matriz. O esquema do TMR usa três circuitos
lógicos idênticos (bloco 0, bloco 1 e bloco 2), sintetizados no FPGA e realizando a
mesma operação em paralelo com as respectivas saídas sendo comparadas em um
circuito votador de maioridade. A técnica TMR é apresentada em detalhes em [CAR01].
As células de armazenamento da aplicação (flip-flops ou latches) são substituídos por
três células de armazenamento e multiplexadores implementados por lookup tables
(LUT), um para cada. A lógica combinacional assim como os pinos de entrada e saída
também são triplicados para evitar qualquer ponto único de falha dentro do FPGA.
Desta forma, qualquer falha dentro da matriz pode ser voltada pela estrutura do TMR
assegurando o correto valor na saída.

No caso de FPGA customizado por SRAM, o problema de encontrar uma técnica
eficiente de proteção a falhas transientes é ainda mais eminente devido ao grande
numero de células de memória SRAM que compõem o circuito (LUTs, bits de
programação no CLB e no roteamento, flip-flops e memória embarcada). O objetivo é
encontrar o melhor compromisso em termos de área, desempenho, custo e nível de

157

proteção. Há duas maneiras de proteger um FPGA customizado por SRAM: o método
arquitetural, onde a topologia da matrix é substituída por uma nova tolerante a falhas, e
o método de alto nível, onde a descrição de alto nível de hardware é modificada para
ficar tolerante a falhas antes de ser sintetizada no FPGA. O uso de FPGAs em
aplicações espaciais é bem recente e há muito trabalho ainda ser feito. Atualmente, não
há uma solução completamente eficiente para FPGAs customizados por SRAM que
pode assegurar 100% de confiabilidade com baixo custo em área, alto desempenho e
baixo custo de implementação. Este trabalho investigou as técnicas utilizadas
atualmente e propôs melhorias para aumentar o grau de confiabilidade e baixar os
custos.

A técnica de proteção TMR (Triple Modular Redundancy) com circuito votadores é
uma técnica de alto nível comumente utilizada em ASICs que pode também ser aplicada
em FPGAs. A técnica TMR foi a primeira a ser testada no FPGA Virtex da Xilinx em
um circuito pequeno composto por contadores. Falhas foram injetadas em todos as
partes sensíveis da arquitetura e seus efeitos foram detalhadamente analisados. Os
resultados de injeção de falha e dos experimentos sob radiação em laboratório
comprovaram a eficácia do TMR em proteger circuitos sintetizados em FPGAs
customizados por SRAM. Visando testar circuitos mais complexos protegidos por
TMR, que incluíssem memória embarcada e um maior numero de lógica, a mesma
descrição VHDL do micro-controlador 8051 foi agora protegida por TMR, sintetizada e
testada em FPGA. Os mesmos métodos de injeção de falhas e experimento sob
radiação em laboratório foram realizados. Os resultados mostraram que o TMR pode
recuperar quase 100% das falhas ocorridas na matriz. Esse numero depende do
posicionamento dos blocos redundantes na matriz para evitar que falhas no roteamento
afetem mais de um bloco redundante. Embora essa técnica mostre uma alta
confiabilidade, ela possui algumas limitações como aumento em área, uso de 3x mais
números de pinos de entrada e saída (E/S) disponíveis para a aplicação e
conseqüentemente, aumento na dissipação de potencia.

Com o objetivo de reduzir custos no TMR e melhorar a confiabilidade, uma técnica
inovadora em alto nível de tolerância a falhas para FPGAs customizados por SRAM foi
desenvolvida, sem modificações na arquitetura do componente. Essa técnica combina
redundância espacial e temporal para reduzir custos e assegurar confiabilidade. Ela é
baseada em duplicação com um circuito comparador e bloco de detecção concorrente de
falhas. Esta nova técnica proposta neste trabalho foi especificamente projetada para
tratar o efeito de falhas transientes em blocos combinacionais e seqüenciais na
arquitetura reconfigurável, e reduzir o uso de pinos de E/S, área e dissipação de
potencia. A metodologia foi validade por injeção de falhas emuladas em uma placa de
prototipação da família Virtex. O trabalho mostra uma comparação nos resultados de
cobertura de falhas, área e desempenho entre as técnicas apresentadas.

As principais contribuições deste trabalho são a análise detalhada dos efeitos das
falhas transientes na arquitetura da matriz de um FPGA customizado por SRAM, a
investigação e teste experimental de técnicas atuais de tolerância a falhas e o
desenvolvimento de novas técnicas de proteção que aumentam a confiabilidade e
reduzem o custo em comparação com as técnicas atuais.

