
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

MATEUS BECK RUTZIG

A Transparent and Energy Aware Reconfigurable
Multiprocessor Platform for Efficient ILP and TLP Exploitation

Prof. Dr. Luigi Carro
Advisor

Porto Alegre
January/2012

Thesis presented in partial
fulfillment of the requirements
for the degree of Doctor of
Computer Science

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitora de Pós-Graduação: Prof. Aldo Bolten Lucion
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do PPGC: Prof. Alvaro Freitas Moreira
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

Beck Rutzig, Mateus

A Transparent and Energy Aware Reconfigurable
Multiprocessor Platform for Efficient ILP and TLP
Exploitation/Mateus Beck Rutzig – Porto Alegre: Programa de
Pós-Graduação em Computação, 2012.

119 p.:il.

Tese (doutorado) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação. Porto Alegre, BR –
RS, 2012. Orientador: Luigi Carro.

1.Sistemas Multiprocessados 2.Arquiteturas Reconfiguráveis
3.Sistemas Embarcados I. Carro, Luigi II. Título

3

TABLE OF CONTENTS

1 INTRODUCTION ... 13

1.1 Contributions ... 19

2 RELATED WORK ... 21

2.1 Single-Threaded Reconfigurable Systems ... 21
2.2 Multiprocessing Systems ... 25
2.3 Multi-Threaded Reconfigurable Systems .. 30
2.4 The Proposed Approach .. 41

3 ANALYTICAL MODEL ... 43

3.1 Performance Comparison ... 44
3.1.1 Low End Single Processor .. 44
3.1.2 High End Single Processor ... 44
3.1.3 High-End Single Processor versus Homogeneous Multiprocessor Chip 45
3.1.4 Applying the Performance Modeling in Real Processors 47
3.1.5 Communication Modeling in Multiprocessing Systems 48
3.1.6 Applying the Performance Modeling in Real Processors considering the
Communication Overhead .. 50
3.2 Energy Comparison ... 53
3.2.1 Applying the Energy Modeling in Real Processors .. 53
3.2.2 Communication Modeling in Energy of Multiprocessing Systems 54
3.2.3 Applying the Energy Modeling in Real Processors considering the
Communication Overhead for Multiprocessing Systems ... 55
3.3 Example of a Application Parallelization Process in a Multiprocessing System
 57

4 CREAMS ... 61

4.1 Dynamic Adaptive Processor (DAP) .. 61
4.1.1 Processor Pipeline (Block 2) ... 61
4.1.2 Reconfigurable Data Path Structure (Block 1) ... 61
4.1.3 Dynamic Detection Hardware (Block 4) .. 63
4.1.4 Storage Components (Block 3) ... 67

5 RESULTS .. 69

5.1 Methodology ... 69
5.1.1 Benchmarks .. 69
5.1.2 Simulation Environment ... 70
5.1.3 VHDL descriptions ... 71

4

5.1.4 How does the thread synchronization work? .. 72
5.1.5 Organization of this Chapter ... 73
5.2 The Potential of CReAMS ... 74
5.2.1 Considering the Same Chip Area .. 75
5.2.2 Considering the Power Budget ... 78
5.2.3 Energy-Delay Product ... 79
5.3 The impact of Inter-thread Communication ... 80
5.3.1 Considering the Same Chip Area .. 81
5.3.2 Considering the Power Budget ... 86
5.3.3 Energy-Delay Product ... 87
5.4 Heterogeneous Organization CReAMS ... 89
5.4.1 Methodology ... 89
5.5 CReAMS versus Out-Of-Order Superscalar SparcV8 97

6 CONCLUSIONS AND FUTURE WORKS .. 101

6.1 Future Works ... 101
6.1.1 Scheduling Algorithm ... 101
6.1.2 Studies over TLP and ILP considering the Operating System 102
6.1.3 Behavioral of CReAMS on a Multitask Environment 102
6.1.4 Automatic CReAMS generation ... 102
6.1.5 Area reductions by applying the Data Path Virtualization Strategy 102
6.1.6 Boosting TLP performance with Heterogeneous Multithread CReAMS 103

7 PUBLICATIONS ... 105

7.1 Book Chapters .. 105
7.2 Journals ... 105
7.3 Conferences .. 105

APPENDIX A.. 111

Introdução ... 111
Objetivos .. 112
CReAMS .. 113
DAP .. 113
Metodologia ... 117
Resultados ... 118
Conclusões ... 119

5

LIST OF ABBREVIATIONS AND ACRONYMS

ALU Arithmetic and Logic Unit

ARM Advanced RISC Machine

ASIC Application Specific Integrated Circuits

BT Binary Translation

CAD Computer Aided Design

CCA Configurable Compute Array

DIM Dynamic Instruction Merging

DSP Digital Signal Processor

FIFO First In, First Out

FPGA Field Programmable Gate Array

ILP Instruction Level Parallelism

TLP Thread Level Parallelism

IPC Instructions per Cycle

RAW Read After Write

RFU Reconfigurable Functional Unit

RPU Reconfigurable Processor Unit

SIMD Single Instruction – Multiple Data

6

7

LIST OF FIGURES

Figure 1. Different Architectures and Organizations ... 16
Figure 2. Speedup of homogeneous multiprocessing systems on embedded applications
 .. 17
Figure 3. Coupling setups (HAUCK e COMPTON, 2002) .. 22
Figure 4. Virtualization process of Piperench (GOLDSTEIN, SCHMIT, et al., 2000) . 23
Figure 5. How the DIM system works (BECK, RUTZIG, et al., 2008) 24
Figure 6. KAHRISMA architecture overview (KOENIG, BAUER, et al., 2010) 32
Figure 7. Overview of Thread Warping execution process (STITT e VAHID, 2007)... 33
Figure 8. Blocks of the Reconfigurable Architecture (YAN, WU, et al., 2010) 34
Figure 9. Block Diagram of Annabelle SoC (SMIT, 2008) ... 35
Figure 10. The Montium Core Architecture ... 36
Figure 11. Fabric utilization considering many architecture organizations (WATKINS,
CIANCHETTI e ALBONESI, 2008) ... 37
Figure 12. (a) SPL cell architecture (b) Interconnection strategy (WATKINS,
CIANCHETTI e ALBONESI, 2008) ... 38
Figure 13. (a) Spatial sharing (b) Temporal sharing (WATKINS, CIANCHETTI e
ALBONESI, 2008) ... 38
Figure 14. Thread Intercommunication steps (ALBONESI e WATKINS, 2010) 39
Figure 15. Modeling of the (a) Multiprocessor System and the (b) High-End Single-
Processor ... 44
Figure 16. Multiprocessor system and Superscalar performance regarding a power
budget using different ILP and TLP; α = δ is assumed. ... 48
Figure 17.Execution time of different designs considering ߠ ൌ 0.16 51
Figure 18. Execution time of different designs considering ߠ ൌ 0.33 51
Figure 19. Execution time of different designs considering ߠ ൌ 0.66 52
Figure 20. Execution time of different designs considering ߠ ൌ 0.99 52
Figure 21. Multiprocessing Systems and High-end single processor energy
consumption; α = δ is assumed. .. 54
Figure 22. Energy consumption of different designs considering ߠ ൌ 0.16 55
Figure 23. Energy consumption of different designs considering ߠ ൌ0.33 56
Figure 24. Energy consumption of different designs considering ߠ ൌ0.66 56
Figure 25. Energy consumption of different designs considering ߠ ൌ0.99 56
Figure 26. Speedup provided in 18-tap FIR filter execution for Superscalar, MPSoC and
a mix of both approaches .. 58
Figure 27. C-like FIR Filter ... 59
Figure 28. (a) CReAMS architecture (b) DAP blocks .. 62
Figure 29. Interconnection mechanism .. 63
Figure 30. Example of an allocation of a code region inside of the data path 65
Figure 31. DAP acceleration process ... 66
Figure 32. Activity Diagram of DIM process .. 67
Figure 33. (a) Simulation Flow (b) How the synchronization process is done 72

8

Figure 34. How the simulation handles synchronization from the software point of view
 .. 73
Figure 35. Example of Same Area #1 (left) and Same Area #2 (right) comparison
schemes ... 90
Figure 36. Relative Performance of HeteroLarge over HomoSmall CReAMS
considering the SameArea #1 scheme .. 91
Figure 37. Relative Energy Consumption of HeteroLarge over HomoSmall CReAMS
considering the Same Area #1 scheme ... 93
Figure 38. Relative Performance of HeteroLarge over HomoSmall CReAMS
considering the Same Area #2 scheme ... 94
Figure 39. Relative Energy Consumption of HeteroLarge over HomoSmall CReAMS
considering the Same Area #2 scheme ... 95
Figure 40. Relative Energy-Delay Product of HeteroLarge over HomoSmall CReAMS
considering the Same Area #1 and #2 schemes .. 95
Figure 41. Relative Speedup of Dynamic over the Static Thread Scheduling considering
the Same Area #1 scheme ... 96
Figure 42. Relative Speedup of Dynamic over the Static Thread Scheduling considering
the Same Area #2 scheme ... 97

9

LIST OF TABLES

Table 1. Summarized Commercial Multiprocessing Systems .. 30
Table 2. Load balancing and mean basic block size of the selected applications 70
Table 3. The configuration of both basic processors .. 74
Table 4. (a) Area (um2) of DAP and SparcV8 components .. 74
Table 5. Area, in um2, of : (a) Same Area Chip scheme #1 (b) Same Area Chip scheme
#2 .. 75
Table 6. Speedup provided by MPSparcV8 and CReAMS over a standalone single
SparcV8 processor .. 76
Table 7. Execution time of MPSparcV8 and CReAMS ... 77
Table 8. Average Power consumption of MPSparcV8 and CReAMS 78
Table 9. Energy consumption of MPSparcV8 and CReAMS .. 79
Table 10. Energy-Delay product of MPSparcV8 and CReAMS 80
Table 11. Average number of hops for different multiprocessing systems 81
Table 12. (a) Area of DAP and SParcV8 components (b) Same Area #1 Scheme (c)
Same Area #2 scheme .. 82
Table 13. Execution time (in ms) considering the Same Area #1 scheme for CReAMS
and MPSparcV8 .. 82
Table 14. Execution time (in ms) considering the Same Area #2 scheme for CReAMS
and MPSparcV8 .. 83
Table 15. Energy (in mJoules) considering the Same Area #1 for CReAMS and
MPSparcV8 .. 84
Table 16. Energy (in mJoules) considering the Same Area #2 for CReAMS and
MPSparcV8 .. 85
Table 17. Execution time (in ms) of both CReAMS and MPSparcV8 considering a
power budget .. 86
Table 18. Energy (in mJoules) of both CReAMS and MPSparcV8 considering a power
budget ... 87
Table 19. Energy-Delay product of MPSparcV8 and CReAMS considering the Same
Area #2 scheme .. 88
Table 20. Energy-Delay product of MPSparcV8 and CReAMS considering the power
budget ... 88
Table 21. (a) Different DAPs sizes (b) Percentage of DAPs that composes each
Heterogeneous CReAMS ... 89
Table 22. (a) Area of the components of the different DAP sizes (b) Area of the
Homogeneous and Heterogeneous CReAMS setups ... 90
Table 23. (a) Thermal Design Power (TDP) of DAP configurations (b) TDP of
heterogeneous and homogeneous CReAMS .. 92

10

Table 24. TDP of 4-issue Out-Of-Order SparcV8 multiprocessing system 98
Table 25. Execution time of 4-issue OOO MPSparcV8 and CReAMS 99

ABSTRACT

As the number of embedded applications is increasing, the current strategy of
several companies is to launch a new platform within short periods, to execute the
application set more efficiently, with low energy consumption. However, for each new
platform deployment, new tool chains must come along, with additional libraries,
debuggers and compilers. This strategy implies in high hardware redesign costs, breaks
binary compatibility and results in a high overhead in the software development
process. Therefore, focusing on area savings, low energy consumption, binary
compatibility maintenance and mainly software productivity improvement, we propose
the exploitation of Custom Reconfigurable Arrays for Multiprocessor System
(CReAMS). CReAMS is composed of multiple adaptive reconfigurable systems to
efficiently explore Instruction and Thread Level Parallelism (ILP and TLP) at hardware
level, in a totally transparent fashion. Conceived as homogeneous organization,
CReAMS shows a reduction of 37% in energy-delay product (EDP) compared to an
ordinary multiprocessing platform when assuming the same chip area. When a variety
of processor with different capabilities on exploiting ILP are coupled in a single die,
conceiving CReAMS as a heterogeneous organization, performance improvements of
up to 57% and energy savings of up to 36% are showed in comparison with the
homogenous platform. In addition, the efficiency of the adaptability provided by
CReAMS is demonstrated in a comparison to a multiprocessing system composed of 4-
issue Out-of-Order SparcV8 processors, 28% of performance improvements are shown
considering a power budget scenario.

Keywords: Multiprocessors, Reconfigurable Architectures, Instruction and thread level
parallelism.

12

1 INTRODUCTION

Industry competition in the current wide and expanding embedded market makes
the design of a device increasingly complex. Nowadays, embedded systems are in a
transition process from closed devices to a world in which the products have to run
applications, previously unforeseen at design time, during their whole life cycle. Thus,
companies are always enhancing the repository of applications to sustain their profit
even after the product has been sold. Current cell phones, a clear example of devices
that explore today´s convergence, are capable of downloading applications during the
product life cycle. Android, Google´s software framework, in less than three years of
existence offers 380,297 applications for downloading, while Apple´s platform, iOS,
has three times as many applications as Android. Apple becomes the most valuable
company of United States of America after four years of iPhone. The customers are
attracted to have in their devices more and more applications such as games, text editors
and VoIP communication interfaces.

However, most embedded products are mobile and hence battery-powered.
Hardware designers should cope with well-known design constraints such as energy
consumption, chip area, process costs and processing capability. The strategy to embed
different applications during the product life cycle produces new design challenges,
which makes embedded platforms development even more difficult. Thus, the current
embedded system design is not only constrained by the existing applications
requirements. To reach a wider market, one should carefully conceive the design to
cope with the requirements of the wide software repository that will be developed even
after the product deployment.

The fast deployment of embedded applications dynamically enlarges the range of
different types of code that the platform should execute. Consequently, the life cycle of
modern embedded products is getting increasingly small since the hardware platform
was not originally built to handle such software heterogeneity. A few years ago, cell
phones manufacturers launched a major product line per year, what was suitable to
supply the performance required by the new applications launched during this period.
The life cycle of a cell phone has shortened to achieve the requirements of the new
applications (HENKEL, 2003), which implies in less revenue per new design due to the
reduced product lifetime. However, companies try hard to stretch their product lines to
amortize the costs and to increase the profits per design. Typically, companies use the
natural life cycle of the applications in the market as a strategy to stretch the product life
cycle and to avoid costs with frequent hardware redesigns. The application life cycle is
divided into three phases (BRANDAO e WYNN, 2008): introduction, growth and

14

maturity. During the introduction phase, which reflects the time when the application is
launched in the market (e.g. a new video decoding standard such as H.264). Due to the
doubts about the consumer acceptance, the logical behavior of a new application is
described using well-known high-level software languages (e.g. C++, Java and .NET),
supported by the platform tool chain, which could possibly cause overload in some parts
of the underlying platform. The general-purpose processor would be responsible for
executing the new application. In this life cycle step, companies still avoid hardware
costs, since the target platform is the very same of the previous product, or very close to
it. After market consolidation, the growth and maturity phase start, thanks to the
widespread use of the application in different products. At this time, a redesign of the
hardware platform is mandatory to shrink the gap between the application and the
hardware achieving better energy/performance execution.

Generally, two approaches are used to supply the efficient execution of the latest
embedded application. In the first approach, new instructions are added to the original
instruction set architecture (ISA) of the platform. This approach aims at solving
performance bottlenecks created by massive execution of certain application parts with
well-defined behavior. For instance, this used to be the scenario of the last generation of
embedded systems. After the profiling and evaluation phase, parts of applications that
contain a similar behavior are implemented as specialized hardwired instructions. These
instructions will extend the processor ISA to assist a delimited range of applications
(GONZALEZ, 2000). Since multimedia applications and digital filters are massively
used in the embedded systems field, current ARM processors have implemented DSP to
efficiently execute, in terms of energy and performance, these kinds of applications.

A second technique uses a more radical approach to close the gap between the
hardware and the embedded application. Application Specific Instruction Set Processors
(ASIPs) is a technique used to implement the entire logic behavior of the application in
hardware. ASIP development can be considered better design solution than ISA
extensions, since it provides higher energy savings and performance. Nowadays, such
an approach is widely explored by the leading companies of the market. Open
Multimedia Application Platform (OMAP), designed by Texas Instruments, comprises
one or two ARM processors that are surrounded by several ASIPs (communication,
graphics and audio standards), each one of them with its particular architectural
characteristics to efficiently execute a restricted type of software. Companies usually
employ ASIPs to obey the demand for new applications in the shortened design time
scenario and to reach the performance requirements imposed by the market.

However, the use of ASIPs causes frequent platform redesign that besides
increasing costs in hardware deployment also affects software development process.
While it is difficult to develop applications for the current platform where one can find
up to 21 ASIPs. Such difficulty will increase in the coming decade since it is expected
that 600 different ASIPs will be needed to cover the growing convergence of
applications for the embedded devices (SEMICONDUCTORS, 2009). To soften such a
complexity, hardware companies (e.g. OMAP and Nvidia) provide particular tool chains
to support the software development process. This tools chain makes the
implementation details of the platform transparent to the software designers, even in the
presence of a great number of ASIPs. However, each release of a platform relies on tool
chain modifications, since it must be aware of the existence of the underlying ASIPs.
Thus, changes on both software and hardware are mandatory when ASIPs are employed

15

to supply the energy and performance efficiency demanded for the current embedded
platforms.

Despite the great advantages shown in the employment of some ISA extensions
and ASIPs, such approaches rely on frequent hardware and software redesigns, which
go against the current market trend on stretching the life cycle of a product line. These
strategies attack only a very specific application class, failing to deliver the required
performance while executing applications for those behaviors that have not been
considered at design time. In addition, both ISA extensions and ASIP employed in the
current platforms only explore instruction level parallelism (ILP). Aggressive ILP
exploitation techniques no longer provide an advantageous tradeoff between the amount
of transistors added and the extra speedup obtained (MAK, 1991) .

Due to the aforementioned reasons, the foreseen scenario dictates the need for
changes in the paradigm of the hardware platform development for embedded systems.
Many advantages can be obtained by combining different processing elements into a
single die. The execution time can clearly benefit since several different parts of the
program could be executed concurrently in processing elements. In addition, the
flexibility to combine different processing elements, in terms of performance, appears
as a solution to the heterogeneous software execution problem. The hardware
developers can select the set of processing elements that best fit with the heterogeneity
running in their designs.

Multiprocessing systems provide several advantages, and three of them highlight
among all: performance, energy consumption and validation time. The life cycle of
these devices has halved in comparison with products of last decade. Validation time
appears as an important consumer electronics constraint that should be carefully
handled. Researches explain that 70% of the design time is spent in the platform
validation (ANANTARAMAN, SETH, et al., 2003), thus being an attractive point for
time-to-market optimization. Considering this subject, the use of multiprocessing
system softens the hard task to shrink time-to-market. Commonly, such an approach is
built by the combination of validated processing elements that are aggregated into a
single die as a puzzle game. Since each puzzle block reflects a validated processing
element, the remaining design challenge is to assemble the different blocks. Actually,
the designers should select a communication mechanism to connect the entire system,
which eases the design process by the use of standard communication mechanisms such
as buses or network on chips (NoC).

Multiprocessing systems introduce a new parallel execution paradigm aiming to
overcome the performance barrier created by the limits of instruction level parallelism.
Nowadays, the software team should manually detect the parts of the program that could
be executed in parallel. The hardware team is only responsible for the encapsulation
process of a certain processing elements and for the communication infrastructure.
When considering ILP exploitation, the complexity on extracting the parallelism moves
to software team for multiprocessing chips, since there is no strong methodology that
can support automatic software parallelization. The software team is responsible for the
non-trivial task of spawning and distributing the code among the processing elements.
Due to this reason, software productivity arises as the hardest challenge in a
multiprocessing system design, since the applications should be launched as fast as
possible to supply the demand of the market. The binary code of these applications
should be as generic as possible to provide compatibility among different products and

16

platforms. In addition, the communication infrastructure should be efficient enough to
smooth the latency of the inter-thread communication.

The four quadrants plotted in the Figure 1 show the strengths and the weaknesses
of the existing hardware strategies used to design a multiprocessor platform. This figure
considers the organization and the architecture of the multiprocessing platforms. The
main strategy used for leader companies in the market is building embedded platforms
as illustrated in the lower left quadrant of the Figure 1. Such strategy could be area
inefficient, since it relies on the employment of a particular ASIP to efficiently cover
the execution of software with a restricted behavior in terms of ILP and TLP. Each
release of a platform will not be transparent to the software developers, since together
with a new platform, a new version of its tool chain with particular libraries and
compilers must be provided. Besides the obvious deleterious effects on software
productivity and compatibility for any new hardware upgrade, there will also be
intrinsic costs of new hardware and software developments for every new product.

Figure 1. Different Architectures and Organizations

On the other hand, the upper right quadrant of the Figure 1 illustrates the
multiprocessing systems that are composed of multiple copies of the same processors, in
terms of architecture and organization. Typically, such strategy is employed in general-
purpose platforms where performance is mandatory. However, energy consumption is
also getting relevant in this domain (e.g. it is necessary to reduce energy costs in
datacenters). In order to cope with this drawback, the homogeneous architecture and
heterogeneous organization, shown in the upper left quadrant of the Figure 1, has been
emerging to provide better energy and area efficiency than the other two
aforementioned platforms. This approach brings the cost of higher design validation
time, since many different organizations of processors are used. However, it has the
advantage of implementing a unique ISA, so the software development process is not

GPP GPP

GPP
GPP

GPP

GPP GPP

ASIP1

D
S
P

Graphic
Accelerator

ASIP2G
P
P

Energy Consumption

St
re
n
gt
h
s

W
e
ak
n
e
ss
e
s

Stre
n
gth

s
W
e
akn

e
sse

s
St
re
n
gt
h
s

W
e
ak
n
e
ss
e
s

SW Productivity
Energy Consumption

GPP GPP

SW Productivity

Design Time

Energy Consumption

SW Productivity
Design Time

Design Time

Chip Area

SW Behavior CoverageSW Behavior Coverage

SW Behavior Coverage

Chip Area

Chip Area

Embedded MPSoCGeneral Purpose MPSoC

Homogeneous
Organization

Heterogeneous
Organization

Homogeneous
Architecture

Heterogeneous
Architecture

17

penalized. It is possible to generate assembly code using the very same tool chain for
any platform version maintaining full binary compatibility for the already developed
applications. However, the scheduling of the threads appears as an additional challenge
when heterogeneous organization approach is used. Threads that have different levels of
instruction level parallelism should be assigned to processors with different
performance capabilities.

Software partitioning is a key feature in multiprocessing environments. A
computational powerful multiprocessing platform becomes useless if threads of a
certain application show significant load unbalance ratio. Usually, it is given by the
poor quality of the software partitioning, or by the nature of the application that does not
provide a minimum thread level parallelism to be explored. Amdahl’s law shows that
the speedup of a certain application is limited by its sequential part. Therefore, if an
application needs 1 hour to execute, being 5 minutes sequential (almost 9% of entire
application code), the maximum speedup provided for a multiprocessing system is 12
times, no matter how many processing elements are available.

Figure 2 shows the performance of some well-known embedded applications that
were split in threads using a traditional shared-memory parallel programming language.
As can be seen, the performance of these applications does not scale as the number of
processors increases, when executed on a multiprocessor system composed of multiple
copies of five-stage pipeline RISC processors. In the best case of the examples, even
overlooking inter-thread communication costs, a speedup of nine times is achieved
when 64 processors are used. Clearly, these embedded applications are good examples
of Amdahl’s law, demonstrating that multiprocessing systems can fail to accelerate
applications that have a meaningful sequential part. Since there is a limit of TLP for
most applications (BLAKE, DRESLINSKI, et al., 2010), standalone TLP exploitation
does not provide the energy and performance optimization demanded for current
embedded designs.

Figure 2. Speedup of homogeneous multiprocessing systems on embedded applications

The ideal platform would have the hardware benefits from the third quadrant of
Figure 1, with the ease for software development of the second quadrant, without any
cost associated to new hardware development. It means that, the physical structure of
the hardware could be homogenous, since chip area is no longer a drawback for billion
transistor technologies. Nevertheless, it is mandatory that the costs, such as power and
energy consumption, virtually must behave as a heterogeneous organization. However,
this can only be achieved if the available hardware has the ability to be tuned for each
different application or even program phase on the fly. Dynamic reconfigurable

0 1 2 3 4 5 6 7 8 9 10

fft

susan
edges

susan
corners

Single Dynamic Accelerator 4 Processors 16 Processors 64 Processors

Speedup

Only ILP Exploitation Only TLP Exploitation

18

architectures have already shown to be very attractive for embedded platforms, since
they can adapt the fine grain parallelism exploitation (i.e. at instruction level) to the
application requirements at run-time (CLARK, KUDLUR, et al., 2004) (LYSECKY,
STITT e VAHID, 2004). However, besides having restricted thread level parallelism,
embedded applications also exhibit limits of instruction level parallelism. Thus, gains in
performance when such exploitation is employed tend to stagnate, even if a huge
amount of resources is available in the reconfigurable accelerator. The “Single Dynamic
Accelerator” bars of the Figure 2 illustrate the above claim. This assumption considers
the performance of a dynamic reconfigurable architecture with an area equivalent to
sixteen five-stage pipeline RISC processor. Although it is faster than a RISC processor
executing a single thread, outperforming four processors on running the Fast Fourier
Transform (FFT). The standalone ILP exploitation of the single dynamic accelerator
does not provide an advantageous trade-off between area and performance if compared
to the multithreaded version of the remaining benchmarks. Summarizing, this figure
indicates that ILP as well as TLP alone do not provide meaningful area-performance
tradeoff, considering a heterogeneous software environment.

The state-of-art of the multiprocessing systems with both ILP and TLP exploitation
is very divergent, if one considers the complexity of the processing element. At one side
of the spectrum, there are multiprocessing systems composed of multiple copies of
simple cores to better explore coarse grain parallelism of highly thread-based
applications (HAMMOND, HUBBERT, et al., 2000) (ANDRE, BARROSO, et al.,
2000). At the other side, there are multiprocessor chips assembled with few complex
superscalar/SMT processing elements, to explore applications where ILP exploration is
mandatory. There is no consensus on the hardware logic distribution in a
multiprocessing environment to explore the best of ILP and TLP together regarding a
wide range of application classes. Considering the wide range of instruction level
parallelism that current applications exhibit, there is a large design space to explore by
creating platforms composed of processors with different capabilities on exploiting ILP.
Despite the technology allows the encapsulation of billion transistors in a single chip,
area could be saved and the performance of the homogeneous platform could be
maintained by exploiting the diversity of computational capabilities of the
heterogeneous organization. Such strategy relies on scheduling algorithm that would
correlate the intrinsic characteristics of the threads, such as load unbalance and ILP,
with the computational capability of the available processors. (KUMAR, FARKAS, et
al., 2003) (KUMAR, JOUPPI e TULLSEN, 2006)

Summarizing, an ideal multiprocessing system for embedded devices should be
composed of replication of generic processing elements that could adapt to the
particularities of the applications, throughout at the product life cycle. This platform
should emulate the behavior, in terms of performance and energy, of the ASIPs that are
successfully employed in the current embedded platforms. At the same time, in contrast
to such platforms, the use of the same ISA for all processing elements is mandatory to
increase software productivity by avoiding time spent on tool chain modifications, and
to maintain the binary compatibility to the already developed applications. This ideal
platform would be able to attack efficiently the whole spectrum of application
behaviors: those that contain dominant thread level parallelism and those single
threaded applications. However, the platform should be conceived as a heterogeneous
organization to provide a best fitting between the heterogeneous characteristics that the
applications exhibit and the necessary processing capability to execute them. Moreover,

19

the number of processing elements should be careful investigated. Since the overall
system performance could be affected by inter-thread communication costs with the
growth of processing elements. This way, the hypothesis is that by using such strategy
one could reach a satisfactory tradeoff in terms of energy, performance and area,
without extra software and hardware costs.

1.1 Contributions

Considering all motivations discussed before, the first goal of this work is focused
on reinforcing, by the use of an analytical model, that the employment of a standalone
level of parallelism exploration does not provide a meaningful energy-performance
tradeoff when a heterogeneous application environment is handled. In addition, this
study gives some clues about the ratio of hardware deployment in multiprocessing
chips, in terms of fine and coarse grain parallelism exploitation, to achieve a balanced
architecture in terms of area and performance. A Network-on-Chip is also modeled to
investigate the impact of inter-thread communication latency over the gains obtained by
thread level parallelism exploitation.

In this scenario, we propose a platform based on Custom Reconfigurable Arrays
for Multiprocessor System (CReAMS), by merging two different architectural concepts:
reconfigurable architectures and multiprocessing systems. In the first step of this work,
CReAMS is built as homogeneous on both architecture and organization. However, it
virtually behaves as a homogeneous architecture with a heterogeneous organization.
Thanks to its dynamic adaptive hardware, coupled to each basic processor, CReAMS
takes advantage of the flexibility provided by the reconfigurable architecture.

This system is capable of transparently explore (no changes in the binary code are
necessary at all) the fine-grained parallelism of the individual threads, offering much
greater ability to adapt to the ILP demands of the applications, while at the same time it
makes the most of the available thread parallelism. The coarse-grained parallelism
exploitation does not rely on special tools employment since it is explored by well-
known application programming interfaces (e.g. OpenMP and POSIX threads), making
CReAMS execution independent of any particular software partitioning process. Thus,
dynamically and in a transparent fashion it is possible to balance the best of both thread
and instruction parallelism levels. This way, any kind of code, from those that present
high TLP and low ILP to those that are exactly the opposite are accelerated. CReAMS
achieves performance improvement, providing less energy consumption, but with the
software productivity of a multiprocessor device based on homogeneous architecture. In
addition, a single tool chain is used for the whole platform and for any new version
launched, with full binary compatibility.

Aiming at showing the potential of CReAMS platform on adapting to a wide
range of software behaviors, we selected applications from general purpose (e.g. SPEC
OMP2001), parallel (e.g. Splash2) and embedded benchmark suites (e.g. MiBench). The
experimental setup was supported by simulation using the SparcV8 ISA model supplied
by Simics instruction set accurate simulator (MAGNUSSON, CHRISTENSSON, et al.,
2002). CReAMS measurements were obtained through replication of cycle accurate
simulators that model the behavior of the basic processing element of CReAMS, named
as Dynamic Adaptive Processor (DAP). The cycle accurate simulators precisely
calculate threads synchronization, as barriers and locks. CReAMS implements thread
communication through shared-memory mechanism and, as already cited, supports the
well-known application programming interfaces, which makes the thread spawning

20

process transparent to the hardware. Performance improvement and energy savings
were demonstrated when comparing CReAMS to ordinary multiprocessing system
composed of multiple copies of pipelined SparcV8 processors when considering the
same chip area for both designs.

Since very interesting performance and energy results were obtained, considering
CReAMS as homogeneous organization platform, aiming at reducing the area occupied
by CReAMS, we investigated the advantages of using DAPs with different processing
capabilities, taking advantage of the heterogeneous organization. One of the motivations
for such design space exploitation is the diversity of instruction level parallelism
available in a heterogeneous application workload. Some threads may have larger
amount of instruction level parallelism than others, which can be exploited by a DAP
that can issue many instructions per cycle.

However, the powerful DAP could be assigned to execute a certain thread that
requires tiny ILP exploitation, consuming more power than a simpler core that would
better matched to the characteristics of such thread. This wrong thread assignment could
cause load-unbalanced execution, significantly affecting the overall execution time.
Thus, DAPs with different processing capabilities bring a diversity of ILP opportunities
to explore, opening room to achieve larger area savings and less power consumption
than the homogeneous organization strategy. However, it also brings a need for a thread
scheduling strategy that matches to the performance requirements of a certain thread to
maintain the performance shown by the homogeneous DAPs. Thus, we developed a
simple thread scheduling algorithm only to prove the need for a dynamic thread
scheduling strategy when heterogeneous organizations are employed. The scheduling
strategy assigns threads to DAPs with different ILP exploitation capabilities considering
the number of executed instructions. As all DAPs have the same instruction set in the
heterogeneous environment, the transparency offered by the homogeneous CReAMS in
the software development process is not affected, which maintains the same software
productivity.

 Chapter 2 presents the related work, discussing issues related to reconfigurable
architectures, multiprocessing systems based on heterogeneous architecture. We also
describe the contribution and main novelty of this work, when comparing against these
other studies. In Chapter 3, we first discuss, using an analytical model, the potential of
standalone exploitation of the instruction and thread level parallelism. We model a
multiprocessing architecture composed of several simple and homogeneous cores, and
we compare it to the modeling of a superscalar architecture in terms of performance and
energy. The impact of the communication infrastructure is also analytically modeled.
After that, in the Chapter 4, we present the structure of the CReAMS platform. Chapter
5 shows the methodology and tools employed to gather the results. The performance,
energy and area results regarding the homogeneous organization of CReAMS are
demonstrated in this Chapter. After, results considering CReAMS conceived as
heterogeneous organization are shown. Finally, the performance of CReAMS is
compared to a 4-issue Out-Of-Order SparcV8 multiprocessor. Chapter 6 discusses the
future works and concludes this work.

21

2 RELATED WORK

In this chapter, we review traditional works that explore reconfigurable fabric to
accelerate single-threaded applications. After, we show some approaches that use
multiprocessing systems in the commercial and academic field. Finally, the
characteristics of many researches that employ reconfigurable architecture in a
multiprocessing environment are shown. At the end of this section, we analyze our
approach, linking its similarities/dissimilarities with the other researches that use the
same strategy.

2.1 Single-Threaded Reconfigurable Systems

Although there is no common criteria over the classification of the single-threaded
reconfigurable system, careful study with respect to coupling, granularity and
reconfiguration type is presented in (HAUCK e COMPTON, 2002).

In a reconfigurable architecture design, the choice of the coupling between the
reconfigurable data path and the basic processor is crucial for performance. As can be
seen in Figure 3, tightly coupled is the classification given for the reconfigurable fabric
implemented as an additional functional unit (FU) of the processor. As the
communication between both elements occurs only inside the chip, its high throughput
is a benefit over the loosely coupled reconfigurable fabric. There are many sub-
classifications of loosely coupled fabrics. When the fabric is classified as co-processor,
the data path is implemented outside the chip, as shown in Figure 3. Design constraints
guides the coupling employment, when there is not enough silicon area to store the
reconfigurable fabric, loosely coupled architectures are used, where an external bus is
responsible for the communication between processor and reconfigurable fabric.
Attached is the coupling strategy that connects the reconfigurable fabric between cache
memory and the I/O interface. The communication cost is high, however, lower than the
standalone strategy that connects the reconfigurable data path to the I/O interface.

The size and complexity of the basic reconfigurable elements is referred to as the
block’s granularity. For example, one could build a reconfigurable fabric as replications
of one-bit width adders as a basic reconfigurable element. However, 32-bits width adder
could be encapsulated as a black box building a coarser basic reconfigurable element.
This latter design provides lower reconfiguration flexibility than the former, since usage
of adders that need less than 32-bits width would always occupy a basic element. On the
other hand, a simple controller is required as the granularity becomes coarser, so fewer
bits are used to reconfigure the whole fabric.

22

Figure 3. Coupling setups (HAUCK e COMPTON, 2002)

Static reconfiguration is exploited by several researches as strategy to extract, at a
compile time, the most suitable parts of the application code to efficiently execute in the
reconfigurable fabric. This strategy avoids any kind of execution time task by adding
compilation phase to discover the suitable parts of the application code. However, it
breaks the binary compatibility since it relies on some kind of source code modification.
In addition, the time-to-market constraint can be affect as a new compilation phase is
inserted.

Many successful reconfigurable fabrics employ static reconfiguration. Processors
like Chimaera (HAUCK, FRY, et al., 2004) have a tightly coupled reconfigurable array
in the processor core, working as an additional functional unit, limited to combinational
logic only. This simplifies the control logic and diminishes the communication overhead
between the reconfigurable array and the rest of the system. Look-up-tables are used as
a basic reconfigurable block, which lead to high reconfiguration costs, as in memory
footprint as well as in reconfiguration time. The GARP machine (WAWRZYNEK,
1997) is a MIPS compatible processor with a loosely coupled reconfigurable array. The
communication is done using dedicated move instructions, as one also employs look-
up-tables as basic reconfigurable blocks the same design costs of Chimaera are
produced by this approach.

Piperench (GOLDSTEIN, SCHMIT, et al., 2000) proposes a pipeline-based
reconfigurable fabric attached to the processor to reduce the reconfiguration/execution
time of FPGAs. This approach use a technique, named as virtualization, to reduce area
costs of the reconfigurable fabric. The upper side of this Figure (Figure 4(a)) shows an
example of a Piperench execution without the virtualization technique. In this case, the
application was divided in 5 parts and takes 7 cycles to be configured and executed,
since no parallelism in the configuration/execution process is provided. The lower side
of the Figure 4 shows the virtualization technique, 3 cycles are needed to execute the
same application. The reuse of the same data path stage at different periods is the key
factor to achieve high performance with low area.

More recently, new reconfigurable architectures, very similar to the dataflow
approaches, were proposed. For instance, the TRIPS is based on a hybrid von-
Neumann/dataflow architecture that combines an instance of coarse-grained,
polymorphous grid processor cores with an adaptive on-chip memory system
(SANKARALINGAM, NAGARAJAN, et al., 2004) . To better explore the application
parallelism and utilize the available resources, TRIPS uses three different modes of
execution, focusing on instruction-, data- or thread level parallelism. Wavescalar
(SWANSON, 2007), in turn, totally abandons the program counter and the linear von-
Neumann execution model that could limit the amount of exploited parallelism. The
major difference between this approach and the conventional systems is that there is no

23

central processing unit at all, which is replaced by many distributed processing nodes.
In agreement with the previous examples, one can also refer to Molen (VASSILIADIS,
WONG, et al., 2004). All cited approaches still rely on static reconfiguration to achieve
code optimization and better resource utilization on applying reconfigurable logic.

Figure 4. Virtualization process of Piperench (GOLDSTEIN, SCHMIT, et al., 2000)

Concerned about the overheads created by the static reconfiguration process, Stitt
(LYSECKY, STITT e VAHID, 2004) had a pioneering work on proposing the dynamic
detection strategy to reconfigurable fabrics. The employment of dynamic detection
techniques does not rely on code recompilation, providing software compatibility and
maintaining the device time-to-market. Stitt et al. (LYSECKY, STITT e VAHID, 2004)
presented the Warp Processing, which is based on a system that does dynamic
partitioning using reconfigurable logic. Performance improvements are shown on
applying such a technique to a set of popular embedded system benchmarks. It is
composed of a microprocessor to execute the application software, another
microprocessor where a simplified CAD algorithm runs, local memory and a dedicated
simplified FPGA.

In (CLARK, KUDLUR, et al., 2004) the Configurable Compute Array (CCA),
which is a coarse-grained array tightly coupled to an ARM processor, is proposed. The
feeding process of the CCA involves two steps: the discovery of which sub graphs are
suitable for running on the CCA, and their replacement by microops in the instruction
stream. Two alternative approaches are presented: static, where the sub graphs for the
CCA are found at compile time, and dynamic. Dynamic discovering assumes the use of
a trace cache to perform sub-graph discovery on the retiring instruction stream at run-
time.

Even applying dynamic techniques Warp Processing and CCA present some
drawbacks, though. First, significant memory resources are required for the kernels
transformation. In the case of the Warp Processing, the use of an FPGA presents long
latency and consumed area, being power inefficient. In the case of the CCA, some
operations, such as memory accesses and shifts, are not supported at all. Then, usually

24

just the very critical parts of the software are optimized, limiting their field of
application.

In (BECK, RUTZIG, et al., 2008), Beck proposes a coupling of a reconfigurable
system together with a special binary translation (BT) technique implemented in
hardware, named Dynamic Instruction Merging (DIM). DIM is designed to detect and
transform instruction groups for reconfigurable hardware execution. Therefore, this
work proposes a complete dynamic nature of the reconfigurable array: besides being
dynamic reconfigurable, the sequences of instructions to be executed on it are also
detected and transformed to a data path’s configuration at run-time.

As can be observed in Figure 5, this is done concurrently while the main processor
fetches other instructions (Step 1). When a sequence of instructions is found, a binary
translation is applied to it (Step 2). Thereafter, this configuration is saved in a special
cache, and indexed by the memory address of the first detected instruction (Step 3).

Figure 5. How the DIM system works (BECK, RUTZIG, et al., 2008)

The next time the saved sequence is found (Step 4), the dependence analysis and the
translation are no longer necessary: the BT mechanism loads the previously stored
configuration from the special cache, the operands from the register file and memory
(Step 5), and activates the reconfigurable hardware as functional unit (Step 6). Then, the
array executes that configuration in hardware (including write back of the results) (Step
7), instead of ordinary (not translated) processor instructions. Finally, the PC is updated,
in order to continue the execution. This way, repetitive dependence analysis for the
same sequence of instructions throughout program execution is avoided.

The reconfigurable data path is tightly coupled to the processor, working as another
ordinary functional unit in the pipeline. It is composed of coarse-grained functional
units, as arithmetic and logic units and multipliers. A set of multiplexers are responsible
for the routing. Because of the small context size and simple structure, the use of a
coarse-grained data path is more suitable for this kind of dynamic technique. In this
technique, both DIM engine and reconfigurable data path are designed to work in
parallel to the processor and do not introduce any delay overhead or penalties for the
critical path of the pipeline structure.

25

All the works explained in this subsection show the potential of transforming parts
of the software to reconfigurable logic execution. Both dynamic and static approaches
are still limited to optimize single-threaded applications, which narrow its field of
application since, nowadays, due to the limited instruction level parallelism (MAK,
1991) the performance will not increase at the same pace as the number of functional
units increases as well.

2.2 Multiprocessing Systems

In the nineties, sophisticated architectural features that exploit instruction level
parallelism, like aggressive out-of-order instruction execution, provided higher increase
in the overall circuit complexity than performance improvements. Therefore, as the
technology reached an integration of almost a billion of transistors in a single die in this
decade, researchers started to explore thread level parallelism by integrating many
processors in a single die.

In the academic field, several researches address chip-multiprocessing subject.
Hydra (HAMMOND, HUBBERT, et al., 2000) was one of the pioneering designs that
integrated many processors within a single die. The authors argue that the cost in
hardware of extracting parallelism from a single-threaded application is becoming
prohibitive, and advocate the use of software support to extract thread level parallelism
to allow hardware to be simple and fast. In addition, they discourage a complex single
processor implementation in a billion-transistor design, since the wire delay increases as
the technology scaling that makes the handling of long wires complex in pipeline-based
designs. For instance, in the Pentium 4 design, the long wires distance adds two pipeline
stages to the floating-point pipeline, so the FPU has to wait two whole clock cycles for
the operands to arrive from the register file (PATTERSON e HENNESSY, 2010).

The Hydra Chip Multiprocessor is composed of multiple copies of the same
processors being homogeneous on both architecture and organization point of views.
Hydra implementation contains eight processors being each of them capable of issuing
two instructions per cycle. The choice for simple processor organization provides
advantages over multiprocessing systems composed of complex processor since, besides
allows a higher operating frequency of the chip, achieves larger number of processor in
the same area. A performance comparison among Hydra design, 12-issue superscalar
processor and 8-thread 12-issue simultaneous multithreading processor shown
promising results for applications that could be parallelized into multiple threads, since
Hydra uses relatively simple hardware than the compared architectures. However,
disadvantages appear when applications contain code that cannot be multithreaded,
Hydra is then slower than the compared architectures, because only one processor can
be targeted to the task, and this processor does not have strong ability to extract
instruction level parallelism.

Piranha (ANDRE, BARROSO, et al., 2000), as Hydra, invests on the coupling of
many simple single-issue in-order processors to massive explore thread level parallelism
of commercial database and web server applications. The project makes available a
complete platform composed of eight simple processor cores along with a complete
cache hierarchy, memory controllers, coherence hardware, and network router all onto a
single chip running at 500 MHz. Results around web server applications show that
Piranha outperforms an aggressive out-of-order processor exploitation running at 1 GHz
by over a factor of three times. As Hydra, the authors explicit declare that Piranha is a
wrong design choice if the goal is to achieve performance improvements in applications

26

that have lack of sufficient thread-level parallelism due to the simple organization of
their processors.

Tullsen (KUMAR, TULLSEN, et al., 2004) demonstrates that there can be great
advantage on providing a diversity of processing capabilities within a multiprocessing
chip, allowing that architecture to adapt to the application requirements. A
heterogeneous organization and homogeneous ISA multiprocessing chip is assembled
with four different processors organization, each one with its particular power
consumption and instruction level parallelism exploitation capability. To motivate the
use of such an approach, a study over the SPEC2000 benchmark suite was done. It
shows that applications have different execution phases and they require different
amount of resources in these phases. On that account, several dynamic switching
algorithms are employed to examine the limits of power and performance improvements
possible in a heterogeneous multiprocessing organization environment. Huge energy
reductions with little performance penalties are presented by only moving applications
to a better-matched processor.

For almost ten years now, multiprocessing systems are increasingly getting the
general-purpose processor marketplace. Intel and AMD have been using this approach
to speed up their high-end processors. In 2006, Intel has shipped its multiprocessor chip
based on homogeneous architecture strategy. Intel Core Duo is composed of two
processing elements that make communication among themselves through an on-chip
cache memory. In this project, Intel has thought beyond the benefits of such a system
employment and created an approach to increase the process yield. A new processor
market line, named Intel Core Solo, was created aiming to increase the process yield by
selling even Core Duo dies with manufacturing defects. In this way, Intel Core Solo has
the very same two-core die as the Core Duo, but only one core is defect free.

Recently, embedded processors are following the trend of high-end general-purpose
processors coupling many processing elements, with the same architecture, on a single
die. Early, due to the hard constraints of these designs and the few parallel applications
that would benefit from several GPP, homogeneous multiprocessors were not suitable
for this domain. However, the embedded software scenario is getting similar to a
personal computer one due to the convergence of the applications to embedded device
already discussed in the beginning of this work. ARM Cortex-A9 processor is the
pioneer to employ homogeneous multiprocessing approach into embedded domain,
coupling up to four Cortex-A9 cores into a single die. Each processing element uses
powerful techniques for ILP exploration, as superscalar execution and SIMD instruction
set extensions, which closes the gap between the embedded processor design and high-
end general-purpose processors.

Texas Instrument strategy better illustrates the embedded domain trend to use
multiprocessor systems. This heterogeneous architecture handles in hardware most
widely used applications on embedded devices like multimedia and digital signal
processing. In 2002, Texas Instruments has launched in the market an Innovator
Development kit (IDK) targeting high performance and low power consumption for
multimedia applications. IDK provides an easy design development, with open
software, based on a customized hardware platform called open multimedia applications
processor (OMAP). Since its launch, OMAP is a successful platform being used by the
embedded market leaders like Nokia with its N90 cell phones series, Samsung OMNIA
HD and Sony Ericsson IDOU. Currently, due to the large diversity found on the
embedded consumer market, Texas Instruments has divided the OMAP family in two

27

different lines, covering different aspects. The high-end OMAP line supports the current
sophisticated smart phones and powerful cell phone models, providing pre-integrated
connectivity solutions for the latest technologies (3G, 4G, WLAN, Bluetooth and GPS),
audio and video applications (WUXGA), including also high definition television. The
low-end OMAP platforms cover down-market products providing older connectivity
technologies (GSM/GPRS/EDGE) and low definition display (QVGA).

Recently, Texas Instrument released one of its latest high-end products. The
OMAP4440 covers the connectivity besides high-quality video, image and audio
support. This mobile platform came to supply the need of the increasingly multimedia
applications convergence in a single embedded device. This platform incorporates the
dual-core ARM Cortex A9 MPCore providing higher mobile general-purpose
computing performance. The power management technique available in the ARM
Cortex A9 MPCore balances the power consumption with the performance
requirements, activating only the cores that are needed for a particular execution. In
addition, due to the high performance requirement of today smart phones, up to eight
threads can be concurrently fired in the MPCore, since each core is composed of four
single-cores Cortex A9. The single-core ARM Cortex A9 implements superscalar
execution, SIMD instruction set and DSP extensions, showing almost the same
processing power as a personal computer into an embedded mobile platform. Excluding
the ARM Cortex MPCore, the remainder processing elements are dedicated to
multimedia execution.

In 2011, NVIDIA introduced the project named Kal-el (NVIDIA, 2011) mobile
processor. This project is the first to encapsulate four processors in a single die for
mobile computation. The main novelty introduced by this project is the Variable
Symmetric Multiprocessing (vSMP) technology. vSMP introduces a fifth processor
named “Companion Core” that executes tasks a low frequency for active standby mode,
as mobile systems tend to keep in this mode for most time. All five processors are ARM
Cortex-A9, but the companion core is built in a special low power silicon process. In
addition, all cores can be enabled/disabled individually and when the active standby
mode is on, only the “Companion Core” works, so battery life can significant improved.
NVIDIA reports that the switching from the “Companion Core” to the regular cores are
supported only by hardware and take less than 2 milliseconds being not perceptible to
the end users. In comparison with Tegra 2 platform, vSMP achieves up to 61% of
energy savings on running HD video playback.

As OMAP, Samsung designs are focused on multimedia-based development. Their
projects are very similar due to the increasing market demand for powerful multimedia
platforms, which stimulates the designer to take the same decision to achieve efficient
multimedia execution. Commonly, the integration of specific accelerators is used, since
this reduces the design time avoiding validation and testing time. In 2008, Samsung
launched the most powerful of the Mobile MPSoC family. At first, S3C6410 was a
multimedia MPSoC like OMAP4440. However, after its deployment in the Apple
iPhone 3G employment, it has become one of the most popular MPSoCs, shipping 3
million units during the first life time month. After, Apple has developed iPhone 3GS,
which assures better performance with lower power consumption. These benefits are
supplied by the replacement of the S3C6410 architectures with the high-end S5PC100
version.

Following the multimedia-based multiprocessor trend, Samsung platforms are
composed of several application specific accelerators building heterogeneous

28

multiprocessor architectures. S3C6410 and S5PC100 have a central general-purpose
processing element, in both cases ARM-based, surrounded by several multimedia
accelerators tightly targeted to DSP processing. Both platforms skeleton follow the
same execution strategy, changing only the processing capability of their IP cores.
Small platform changes are done from S3C6410 to S5PC100 aiming to increase the
performance. More specifically, a 9-stage pipelined ARM 1176JZF-S core with SIMD
extensions is replaced to a 13-stage superscalar-pipelined ARM Cortex A8 providing
greater computation capability for general-purpose applications. Besides its double-
sized L1 cache compared to ARM1176JZF-S, ARM Cortex A8 also includes a 256KB
L2 cache avoiding external memory accesses due L1 cache misses. NEON ARM
technology is included in ARM Cortex A8 to provide flexible and powerful acceleration
for intensive multimedia applications. Its SIMD based-execution accelerates multimedia
and signal-processing algorithms such as video encode/decode, 2D/3D graphics,
speech-processing, image processing at least twice better than the previous SIMD
technology. However, these hardware changes provide mandatory tool chain
modifications to support the use of the new dedicated hardware, which consequently
breaks the binary compatibility since the software developers must change and
recompile the application code.

Regarding multimedia accelerators, both systems are able to provide suitable
performance for any high-end mobile devices. However, S5PC100 includes the latest
codec multimedia support using powerful accelerators. This strategy on changing some
platform elements from S3C6410 to S5PC100 illustrates the growth and maturity phase
of the functionality lifecycle discussed in the beginning of this work. In this phase, the
electronic consumer market already has absorbed these functionalities, and their hard-
wired execution is mandatory for energy and performance efficiency.

Other multiprocessing systems have already been released in the market, with
different goal from the architectures discussed before. Sony, IBM and Toshiba have
worked together to design the Cell Broadband Engine Architecture (CHEN,
RAGHAVAN, et al., 2007). The Cell architecture combines a powerful central
processor with eight SIMD-based processing elements. Aiming to accelerate a large
range of application behaviors, the IBM PowerPC architecture is used as general
purpose processor. In addition, this processor has the responsibility to manage the
processing elements surrounding it. These processing elements, called synergistic
processing elements (SPE), are built to support streaming applications with SIMD
execution. Each SPE has a local memory that only can be accessed by explicit and
particular software directives. These facts make the software development for the Cell
processor even more difficult, since the software team should be aware of this local
memory, and manage it at the software level to better explore the SPE execution.
Despite its high processing capability, the Cell processor does not yet have a large
market acceptance because of the intrinsic difficulty to code software in order to use the
SPEs. When it was launched, the Playstation console did not achieve a great part of the
gaming entertainment marketplace, the game developers had not enough knowledge of
the tool chain libraries to efficiently explore the complex Cell architecture, which
implied in a restricted amount of games available in the market.

Homogeneous multiprocessing system organization is also explored in the market,
mainly for personal computers with general purpose processors, because of the huge
amount of different applications that these processors have to face, and hence due to the
difficult task to define specialized hardware accelerators. In 2005, Sun Microsystems

29

announced its first homogeneous multiprocessor design, composed of up to 8
processing elements executing the SPARC V9 instruction set. UltraSparc T1, also called
Niagara (JOHNSON e NAWATHE, 2007), is the first multithreaded homogeneous
multiprocessor, and each processing element is able to execute four threads
concurrently. In this way, Niagara can handle, at the same time, up to 32 threads.
Recently, with the deployment of UltraSparc T2, this number has grown to 64
concurrent threads. Niagara family targets massive data computation with distributed
tasks, like the market for web servers, database servers and network file systems.

Intel has announced its first multiprocessing system based on homogeneous
organization prototyped with 80-cores, which is capable of executing 1 trillion floating-
point operations per second, while consuming 62 Watts (VANGAL, HOWARD, et al.,
2007). The company expects to launch this chip within the next 5 years in the market.
Hence, the x86 instruction set architecture era could be broken, since their processing
elements is based on the very long instruction word (VLIW) approach, letting to the
compiler the responsibility for the parallelism exploration. The interconnection
mechanism used on the 80-core uses a mesh network to communicate among its
processing elements. However, even employing the mesh communication turns out to
be difficult, due to the great amount of processing elements. In this way, this ambitious
project uses a 20 Mbytes stacked on-chip SRAM memory to improve the processing
elements communication bandwidth.

Graphic processing unit (GPU) is another multiprocessing system approach aiming
at graphic-based software acceleration. However, this approach has been arising as a
promise architecture also to improve general-purpose software. Intel Larrabee (SEILER,
CARMEAN, et al., 2008) attacks both applications domain thanks to its CPU- and
GPU- like architecture. In this project Intel has employed the assumption of energy
efficiency by simple cores replication. Larrabee uses several P54C-based cores to
explore general-purpose applications. In 1994, P54C was shipped in CMOS 0.6um
technology reaching up to 100 MHz and does not include out-of-order superscalar
execution. However, some modifications have been done in the P54C architecture, like
supporting of SIMD execution aiming to provide more powerful graphic-based software
execution. The SIMD Larrabee execution is similar to, but powerful than, the SSE
technology available in the modern x86 processors. Each P54C is coupled to a 512-bit
vector pipeline unit (VPU), capable of executing, in one processor cycle, 16 single
precision floating-point operations. In addition, Larrabee employs a fixed-function
graphics hardware that performs texture-sampling tasks like anisotropic filtering and
texture decompression. However, in 2009, Intel discontinued Larrabee project.

NVIDIA Tesla (LINDHOLM, NICKOLLS, et al., 2008) is another example of
multiprocessing system based on the concept of a general-purpose graphic processor
unit. Its massive-parallel computing architecture provides support to Compute Unified
Device Architecture (CUDA) technology. CUDA, the NVIDIA´s computing engine,
eases the parallel software development process by providing software extensions in its
framework. In addition, CUDA provides permission to access the native instruction set
and memory of the processing elements, turning the NVIDIA Tesla to a CPU-like
architecture. Tesla architecture incorporates up to four multithreaded cores that
communicate through a GDDR3 bus, which provides a huge data communication
bandwidth.

30

Table 1. Summarized Commercial Multiprocessing Systems

As discussed in the beginning of this work, multiprocessing systems employment is
a consensus to current/next generation for both general and embedded processors, since
aggressive exploration of instruction level parallelism of single-threaded applications
does not provide an advantageous tradeoff between extra transistor usage and
performance improvement. All multiprocessing system designs mentioned in this
section somehow explore thread level parallelism. Summarizing all commercial
multiprocessing system discussed before, Table 1 compares their main characteristics
showing their differences depending on the target market domain. Heterogeneous
architectures, like the OMAP, Samsung and Cell, incorporate several specialized
processing elements to attack specific applications for highly constrained mobile or
portable devices. These architectures have multimedia-based processing elements,
following the trend of embedded systems. However, as mentioned before, software
productivity is affected when such strategy is used, each new platform launching
implies on tool chain modifications, like library description, to explore the execution of
the coupled specialized hardware. In addition, this approach can be optimized for
performance and area, but they are costly to design and not programmable, making
upgradability a difficult task and they bring no benefit excluding the targeted
applications.

Unlike heterogeneous architectures, homogeneous ones aim at the general-purpose
processing market, handling a wide range of applications behavior by replicating
general-purpose processors. Commercial homogeneous architectures still use only
homogeneous organizations, coupling several processing elements with the same ISA
and the processing capability. Heterogeneous organizations have not been used on
homogeneous architectures, since power management techniques, like DVFS, support
the variable processing capability. However, most of these techniques are restricted to
reduce only dynamic power, the circuit still consumes leakage power that is increasing
with the technology scaling. Supposing a perfect power management that solves
dynamic and leakage power, the homogeneous architecture and organization platform
still relies on huge area overhead, what supports the need for homogeneous architecture
and heterogeneous organization strategy.

2.3 Multi-Threaded Reconfigurable Systems

As the scope of this work is motivated by multiprocessing systems that use some
kind of adaptability on exploiting instruction level parallelism, this sub-section only

Architecture Organization Cores
Multithreaded

Cores
Interconnection

OMAP4440 Heterogeneous Heterogeneous

2 ARM Cortex A9

1 PowerVR graphics accelerator

1 Image Signal Processor

No Integrated Bus

Samsung

S3C6410/S5PC100
Heterogeneous Heterogeneous

1 ARM1176JZF‐S

5 Multimedia Accelerators
No Integrated Bus

Cell Heterogeneous Heterogeneous
1 PowerPC

8 SPE
No Integrated Bus

Niagara Homogeneous Homogeneous 8 SPARC V9 ISA
Yes

(4 threads)
Crossbar

Intel

80‐Cores
Homogeneous Homogeneous 80 VLIW No Mesh

Intel

Larrabee
Homogeneous Homogeneous

n P54C x86 cores

SIMD execution
No Integrated Bus

NVIDIA

Tesla (GeForce8800)
Homogeneous Homogeneous 128 Stream Processors

Yes

(up to 768 threads)
 Network

31

contemplates the state of the art researches that employ multiprocessing systems
together with reconfigurable architectures.

In (KOENIG, BAUER, et al., 2010), the authors propose KAHRISMA, a
heterogeneous organization and architecture platform. Figure 6 shows KAHRISMA’s
architecture overview, its multiple instruction set (RISC, 2- and 6-issue VLIW, and
EPIC) coupling with fine- and coarse-grained reconfigurable encapsulated data path
elements (EDPE) are the main novelty of this research. The resource allocation task is
totally supported by a flexible software framework that, at compile time, analyzes the
high-level C/C++ source code and builds an internal code representation. This code
representation goes through an optimization process to eliminate dead code and constant
propagation. After, the internal representation is used to identify/select parts of code that
will implement custom instructions (CIs) to be executed in the reconfigurable arrays
(FG- and CG-EDPE).

The entire process considers that the amount of free hardware resources can vary at
run time, since some parts of code could present greater number of parallel executing
threads than others, so multiple implementations of custom instructions are provided.
The runtime system is responsible for the best CI’s solution selection, which depends on
the loading state of the architecture. Thus, the execution of a certain part of code can
vary from RISC implementation (low performance) to the custom instruction
implementation using FG- as well as CG-EDPEs (high performance). Speedups are
shown in the execution of very intensive compute kernel from h.264 video encode-
decode standard on exploring multiple ISAs, when the multithread scenario is
considered.

However, this approach fails at several crucial constraints of the embedded systems.
High memory usage is caused by multiple assembly generation of the same part of code,
which could not always offer speedups due to the restricted amount of hardware
resources at a certain time. KAHRISMA is able to optimize multi-threaded applications,
however they also rely on compiler support, static profiling and a tool to associate the
code or custom instructions to the different hardware components at design time.
Despite inserting reconfigurable components in its platform, KAHRISMA maintains the
main drawbacks of the current embedded multiprocessing systems (e.g. OMAP), since it
maintains a mandatory time overhead on each platform change to produce custom
instructions affecting the software productivity by breaking the binary compatibility.

32

Figure 6. KAHRISMA architecture overview (KOENIG, BAUER, et al., 2010)

Considering a system with homogeneous architecture and heterogeneous
organization, one can find the Thread Warping (TW) (STITT e VAHID, 2007), which
extends the aforementioned Warp Processing system shown in the Section 2.1. Prior
work has developed a CAD algorithm that dynamically remaps critical code regions of
single-threaded applications from processor instructions to FPGA circuits using a
runtime synthesis. The contribution of TW consists of integrating existing CAD
algorithm in a framework capable of dynamically synthesizing many thread
accelerators. Figure 7 overviews the TW architecture and shows how the acceleration
process occurs. As can be seen, the TW is composed of four ARM11 microprocessors, a
Xilinx Virtex IV FPGA and an On-Chip CAD hardware used to the synthesizing
process.

The thread creation process shown in the Step 1 of the Figure 7 is totally supported
by an Application Programming Interface (API), so no source code modification is
needed. However, changes in the operating system are mandatory to support the
scheduling process. The operating system scheduler maintains a queue that stores the
threads ready for execution. In addition, a structure, named schedulable resource list
(SRL), holds the list of free resources. Thus, to trigger an execution of a thread, the
operating system should check if the resource requirements of a certain ready thread
match with the free resources in the SRL. An ARM11 is totally dedicated to run the
operating system tasks needed to synchronize threads and to schedule their kernels in
the FPGA (Step 2 of Figure 7).

The framework, implemented in hardware, analyzes waiting threads, and utilizes on-
chip CAD tools to create custom accelerator circuits for executing in the FPGA (step 3).
After some time, on average 22 minutes, the CAD tool finishes mapping the
accelerators onto the FPGA and stores the custom accelerators circuits in a non-volatile
library for future executions, named AccLib in the Figure 7. Assuming that the
application has not finished during these 22 minutes, the operating system (OS) begins
scheduling threads onto both FPGA accelerators and microprocessor cores (step 4).
Since the area requirements of the existing accelerators could exceed the FPGA
capacity, a greedy knapsack heuristic is used to generate a solution for the instantiation
process of the accelerators in the FPGA.

33

Figure 7. Overview of Thread Warping execution process (STITT e VAHID, 2007)

Despite its dynamic nature, that provides binary compatibility, there are several
drawbacks in the Thread Warping proposal. First, the unacceptable latency on creating
the CAD tool for applications those run less than 22 minutes. TW shows good speedups
(502 times) when the initial execution of the applications is not considered. In other
words, these results does not consider the period when the CAD tool is working to
create the custom accelerator circuits. In the case of the custom instructions creation
overhead is taken into account, all but one of the ten algorithms have shown
performance loss. Summarizing, Thread Warping presents the same deficiency of the
original work shown in the Section 2.1: only critical code regions are optimized, due to
the high overhead in time and memory imposed by the dynamic detection hardware.
Thus, TW only optimizes applications with few and very defined kernels, which
narrows its field of application. The optimization of few kernels will very likely not
satisfy the performance requirements of future embedded systems, where it is foreseen a
high concentration of different software behaviors (SEMICONDUCTORS, 2009).

 In (YAN, WU, et al., 2010), Yan proposes the coupling of many reconfigurable
processing units based on FPGA to SparcV9 general-purpose processors. ISA
extensions are done to support the reconfigurable processing units’ execution. However,
the system can also work without using the accelerators in a backward-compatible
manner. The reconfigurable architecture overview is show in the Figure 8. As it can be
seen, a crossbar is employed to connect the reconfigurable processing units to the
homogeneous SparcV9-based processors, which provides a low-latency parallel
communication.

34

Figure 8. Blocks of the Reconfigurable Architecture (YAN, WU, et al., 2010)

The Reconfigurable Processing Unit (RPU) is a data driven computing system,
based on fine-grained reconfigurable logic structure similar to Xilinx Virtex-5. The
RPU is composed of configurable logic block arrays to synthesize the logic; local buffer
responsible for the communication between the RPU and the SparcV9 processors;
configuration context that stores the already implemented custom instructions; and
configuration selection multiplexer that selects the fetched custom instructions from the
configuration context. As Thread Warping, this approach also employs an extra circuit
to provide consistency and synchronization on data memory accesses.

A software-hardware co-operative implementation is used to support the triggering
of the reconfigurable executions. The execution is divided in four phases: configuring,
pre-load, processing and post-store phase. The configuring phase starts when a special
instruction, that request an RPU execution, arrives in the execution stage of the SparcV9
processor. If the custom instruction is available at the configuration context, the pre-
load phase starts and an interruption is generated to notify the operating system
scheduling to configure the RPU with the configuration context. In this phase, the data
required for the computation also are loaded to the local buffer of the respective RPU.
In the processing phase the data driven computing is done. Finally, some special
instructions are fired to fetch the results from the local buffer and to return the execution
process to the SparcV9 processor.

This approach improves the performance over the software only execution by, on
average, 2.4 times in an application environment composed of an encryption standard
and an encode image algorithm. However, some implementation aspects make such an
approach not viable to embedded domain, the binary compatibility is broken since a
compilation phase is used to extend the original SparcV9 instruction set to support the
RPU execution. The fine-grained reconfigurable structure relies on high reconfiguration
overhead, which narrows the scope of such an approach to applications where very few
kernels cover almost its whole execution time.

Different from other approaches, in (SMIT, 2008) is presented a multiprocessing
reconfigurable architecture focused on accelerating streaming DSP applications. The
authors argue that is easier to control the reconfigurable architecture when handling
such kind of applications since most of them can be specified as a data flow graph with
streams of data items (the edges) flowing between computation kernels (the nodes).
Annabelle SoC is presented in the Figure 9, its heterogeneous architecture and
organization aggregates a traditional ARM926 that is surrounded by ASIC blocks (e.g.

35

Viterbi Decoder and DDC) and four-domain specific coarse-grained reconfigurable data
path, named Montium cores. A network-on-chip infrastructure supports inter-Montium
communication with higher bandwidth and multiple concurrent transmissions. The
communication among the rest of the system elements is done through a 5-layer AMBA
bus. As each processor operates independently, they need to be controlled separately, so
the ARM926 processor controls the other cores by sending configuration messages to
their network interface. Since the cores might not be running at the same clock speed as
the NoC, the network interface synchronizes the data transfers.

Figure 9. Block Diagram of Annabelle SoC (SMIT, 2008)

 Figure 10 depicts the architecture of a single Montium Core that has five 16-bit
width arithmetic and logic units interconnected by 10 local memories due to the high
bandwidth required for DSP applications. An interesting point considered in this work is
the locality of reference. In other words, the accesses on small and local memory is
much more energy efficient than accessing a big and far distant memory because of
increasing wire capacitance on recent nano-technologies. There is a communication and
a configuration unit that provides the functionality to configure the Montium, to manage
the memories by means of direct memory access (DMA) and to start/wait/reset the
computation of the algorithm configured. Since the Montium core is based on a coarse-
grained reconfigurable architecture, the configuration memory is relatively small, on
average, it occupies only 2.6 Kbytes. Because the configuration memory can be
accessed as a RAM memory, the system allows dynamic partial reconfiguration. Results
show that energy savings can be achieved by only exploiting locality of reference. In
addition, this work supports the use of coarse-grained reconfigurable architectures by
demonstrating lower reconfiguration time overhead. Despite the fact that Annabelle
explores a reconfigurable fabric to accelerate streaming applications, this system still
relies on heterogeneous ISA implementation by coupling ASICs to provide efficient
energy-performance execution. Like OMAP, such an approach affects software
productivity since each new platform requires tool chain modifications.

36

Figure 10. The Montium Core Architecture

Studies on sharing reconfigurable fabric among general-purpose processors are
shown in (WATKINS, CIANCHETTI e ALBONESI, 2008) (GARCIA e COMPTON,
2008). These strategies are supported by the huge area overhead and non-concurrent
utilization of the reconfigurable units by multiple processors. In (GARCIA e
COMPTON, 2008), a reconfigurable fabric sharing approach focused on accelerating
multithreaded applications is presented. This work exploits a type of parallelism named
single program multiple data (SPMD), where each thread instantiation runs the same set
of operations on different data. Multiple instantiations of the Xvid encoder are used to
emulate such type of parallelism, acting as a digital video recorder to encode multiple
video streams from different channels simultaneously. To avoid low utilization of
reconfigurable hardware kernels, different threads share the already configured
reconfigurable hardware kernels. For example, if two instances of Xvid are executing, a
single physical copy of each reconfigurable hardware kernel could be shared, so both
instances of Xvid can benefit from them. Although it does not specify any particular
reconfigurable hardware design, the Xvid encoder instantiations are synthesized in a
Xilinx Virtex-4 FPGA.

First experiments show that sharing single physical copy of each reconfigurable
hardware kernel among all Xvid instances performs very poorly due to the frequent
contention on accessing the kernels. Thus, the authors conclude that not all kernels can
be effectively shared, so they created a modified strategy to provide better kernels
allocation. Such an approach uses the concept of virtual kernels to control the physical
kernel allocation. The algorithm uses the following strategy. When an application
attempts to access a virtual kernel, the controller first checks if any instance of the
corresponding virtual kernel is already mapped to a physical kernel and if any other
physical kernel is free. If multiple physical kernels are available, one of them will be
reserved to execute the virtual kernel even if other physical kernel already is executing
the same virtual kernel. This strategy eliminates the waiting for busy shared physical
kernel increasing the combined throughput of Xvid encoder in a multiprocessor system
by 95-130% over the software execution alone.

37

Watkins (WATKINS, CIANCHETTI e ALBONESI, 2008) proposes, as a first work,
a shared specialized programmable logic (SPL) to decrease the large power and area
costs of FPGA when a multiprocessing environment is considered. The main motivation
to apply such an approach in multiprocessing systems is supported by intermittent used
of the reconfigurable fabric. There are inevitably periods where one fabric is highly
utilized while another lies largely or even completely idle. The motivation is produced
through interesting experiments that show the poor utilization of the SPL’s rows on
running applications of different domains in multiprocessing system composed of eight
cores. These data are depicted in Figure 11. The leftmost bars for the individual
benchmarks show the utilization of the fabric composed of 26-row configuration, which
reflects twice the area of each core that the SPL is coupled. The utilization of seven SPL
fabrics is less than 10%, and the average SPL utilization is only 7%.

As can be seen in Figure 11, reducing each SPL to 12 rows (roughly the same area
of the coupled core) increases SPL utilization for some benchmarks and greatly reduces
the area occupied. However, this comes at a high cost: an 18% overall performance loss,
since all benchmarks use more than 12 rows. The two rightmost bars of Figure 11 show
a spatially shared SPL organization with a naive control policy that equally divides the
rows of the SPL among all cores at all times. Thus, a SPL fabric configuration
composed of 24 rows shared among four cores (fourth bar of AvgUtilization in Figure
11) produces, on average, an utilization improvement of the fabrics, delivers the same
performance of 26-row private configuration and still reduces the area and peak power
cost by over four times.

Figure 11. Fabric utilization considering many architecture organizations (WATKINS,
CIANCHETTI e ALBONESI, 2008)

The fine-grained reconfigurable cell of such an approach is shown in Figure 12 (a).
The SPL fabric is tightly integrated to the processor working as an additional functional
unit. The main components of a SPL cell are: a 4-input look-up table (4-LUT), a set of
two 2-LUTs plus a fast carry chain to compute carry bits or other logic functions if carry
calculation is not needed, barrel shifters to align data as necessary, flip-flops to store
results of computations, and an interconnect network between each row. These b-bit
cells are arranged in a row to form a c×b-bit row as shown in Figure 12 (b). Each cell in
a row can perform a different operation and a number of these rows are grouped
together to execute an application function. Each row completes the operation in a
single SPL clock cycle.

38

Figure 12. (a) SPL cell architecture (b) Interconnection strategy (WATKINS,
CIANCHETTI e ALBONESI, 2008)

As explained before, each SPL row is dynamically shared among the cores. Two
sharing strategies are used: spatial, where the shared fabric is physically partitioned
among multiple cores (Figure 13(a)); or temporal, where the fabric is shared in a time
multiplexed manner (Figure 13(b)). The spatial and temporal control policies bind the
cores to particular SPL partitions, or pipeline time slots, based on runtime statistics. ISA
extensions support the proposed sharing strategy.

Figure 13. (a) Spatial sharing (b) Temporal sharing (WATKINS, CIANCHETTI e
ALBONESI, 2008)

The grain of the sharing is a challenge that arises when the spatial approach is
considered. The finest grain (a row) requires a large number of intermediate
multiplexers, but provides the highest flexibility on sharing allocation mechanism since
each one can vary the number of rows by the finest grain. The authors argue, after an
investigation, that splitting the fabric in power of two, one can achieve good

(a) (b)

39

flexibility/utilization tradeoff. If, for instance, there are 9-16 sharers, the SPL will be
split into sixteen partitions. The authors propose a merging of SPL partitions policy that
is based on idle cycle counter and an idle count threshold value, which in the current
implementation is 1000. For temporal sharing, the SPL scheduling strategy uses a cycle-
by-cycle round-robin algorithm to allocate the SPL fabric among the cores.

The coupling of a single private 26-row SPL on a single in-order core shows
interesting speedups on running a mixed application workload, demonstrating that the
adaptability provided by the reconfigurable architecture is suitable for single-threaded
applications. In addition, a CMP environment composed of eight copies of one-way out-
of-order cores and 26-row private SPL outperforms the 8-cores 4-way out-of-order chip
multiprocessor. In addition, the latter consumes far more area and power than the
former setup.

When the spatial sharing policy is applied, 26-row shared SPL outperforms 6-row
private SPL in most of the benchmarks, reducing energy-delay product by up to 33%
with little performance degradation. Particularly, on running the crypt application,
which requires a large number of rows, precisely 298 rows, the spatial sharing approach
presents 100% of performance slowdown and a larger energy-delay penalty. The
authors report that the temporal sharing outperforms spatial sharing for two reasons: all
benchmarks but crypt need a maximum of 26 rows for all functions, making temporal
sharing more suitable than spatial sharing policy, since there are no significant periods
where the benchmarks make concurrent accesses to the SPL.

In (ALBONESI e WATKINS, 2010) the previous explained work is extended,
proposing hardware based fine-grained inter-core communication and barrier
synchronization. Now, the entire system is named Reconfigurable Multicore
Architecture for Parallel Processing (ReMAPP). The inter-core communication is
established by the use of queues. The producing thread places data into the queue and
the consuming thread reads data from the queue. Figure 14 summarizes the inter-thread
communication. In the first step (Figure 14(a)), the producing thread place data into its
input queue. Once all necessary data is loaded (Figure 14(b)), the consuming thread
starts the execution in the SPL. As such an example, since the execution of the function
does not occupy all SPL rows, the results are bypassed to the output queue of the
consuming thread (Figure 14(c)). Finally, the consuming thread fetches data from the
queue and stores it in the memory. A special table is used to maintain a mapping of the
threads that stores, for each computation, its correspondent destination core.

Figure 14. Thread Intercommunication steps (ALBONESI e WATKINS, 2010)

40

 The barrier synchronization mechanism is also based on tables. To determine that
all threads have arrived at the barrier, each SPL maintains a table that contains
information related to each activated barrier. Each table contains as many entries as
cores attached to ReMAPP, as each thread could be participating of different barriers.
The table keeps track of the total number of threads, the number of arrived threads, and
the number of cores that are participating of such part of code execution. Special
instructions, named SPL barrier instructions, are implemented to provide the
synchronization. Thus, SPL barrier instructions must not be issued to the fabric until all
participating cores have arrived at the respective barrier. To achieve this, all
participating threads compare the number of arrived thread information with the
participating cores information, when these numbers become equals means that all
participants arrived in the correspondent barrier and the execution can be kept on.

When compared to the single threaded SPL implementation, the SPL computation
and communication mechanism using two threads improves the performance by 2 times
and still provides better energy-delay product. In addition, performing barriers via
ReMAPP significantly improves performance over software barriers by 9%, while
achieving up to 62% better energy-delay product.

Summarizing, there are several works exploring the adaptability provided by the
reconfigurable fabric on accelerating multithreaded applications. However, their
implementations bring particular aspects that affect, in some way, the development
process of the embedded system. These aspects are the following:

 Despite its heterogeneous architecture fashion that accelerates multithreaded
applications, KAHRISMA relies on special tools to generate the binary code,
which breaks the binary compatibility and affects the software productivity
when platform changes are needed.

 Despite its dynamic nature on detect/accelerate parts of the application code,
Thread Warping relies on an unacceptable latency to perform this task,
which restricts its employment to optimize applications with few and very
defined kernels.

 Despite good speedups shown on applying the strategy proposed in (YAN,
WU, et al., 2010), such implementation breaks the binary compatibility and
affects the software productivity when platform changes are needed.
Moreover, such an approach relies on high reconfiguration overhead, which
makes it feasible only to accelerate applications with few kernels.

 Despite Annabelle demonstrates lower reconfiguration time, this work
explores a reconfigurable fabric to accelerate only streaming applications and
still relies on heterogeneous ISA implementation by coupling ASICs to
provide efficient energy-performance execution. Like the commercial
strategies such as OMAP, this approach affects software productivity since
each new platform forces tool chain modifications.

 Despite its great area saving with the employment of a shared reconfigurable
fabric strategy, ReMAPP relies on compiler support, static profiling and a
tool to associate the code or custom instructions to the different hardware
components at design time, not maintaining binary compatibility and
affecting software productivity.

41

2.4 The Proposed Approach

In this work, we address the particular drawbacks of the aforementioned approaches
by creating Custom Reconfigurable Arrays for Multiprocessor System (CReAMS) that:

 Unlike all strategies presented in the Section 2.1, explores the adaptability of
reconfigurable system to achieve performance in a multithreaded
environment. Kal-el project provides dynamic changing on performance
when switches from “Companion Core” to Regular Core occur. However,
this work produces neither ILP nor TLP adaptability since all cores have the
same architecture and organization.

 Unlike (KOENIG, BAUER, et al., 2010) (SMIT, 2008), builds a
homogeneous platform on both architecture and organization nature, which
eases the software development process since a unique tool chain is provided
for any new version launched. Neither source code modifications nor new
library learning process is necessary to explore the processing capabilities of
the newest inserted processing elements.

 Unlike (KOENIG, BAUER, et al., 2010) (YAN, WU, et al., 2010) (SMIT,
2008) (ALBONESI e WATKINS, 2010), does not rely in special and
particular tool chain to extract thread-level parallelism and to prepare the
platform for execution. Our approach employs well-known application
programming interfaces (e.g. OpenMP), which, despite automatically
extracting TLP in a friendly interface, are coupled to the most commercial or
academic compilers (e.g. gcc and icc), what makes the software development
and the binary generation process easier than the aforementioned approaches.

 Unlike (ALBONESI e WATKINS, 2010) (STITT e VAHID, 2007) (YAN,
WU, et al., 2010), instead of exploring the flexibility of fine-grained
architectures, employs a coarse-grained reconfigurable fabric that reduces the
reconfiguration time and memory footprint due to the low context overhead.
This grain choice increases the field of applications, since it opens room to
accelerate the entire application code. Fine-grained architectures provide
high acceleration levels but its scope is narrowed to applications that have
few kernels responsible for a large part of the execution time.

 Unlike (WATKINS, CIANCHETTI e ALBONESI, 2008) (ALBONESI e
WATKINS, 2010), instead of employing complex hardware design to share
reconfigurable fabric among several processors to reduce area and power
costs, proposes an heterogeneous organization platform, which can also
achieve the same area savings and power consumption of the sharing
policies. However, as will be shown, there are some applications that relies
on a thread allocation strategy to achieve the same performance than the
homogeneous organization, since there have been the best matching between
the performance requirements of a certain thread and the different processing
capabilities of the available processors.

Table 2 summarizes the characteristics of the single and multi threaded
reconfigurable architectures considering the requirements of the current embedded
system designs. CReAMS provides benefits in all characteristics, its energy
consumption will be explored in the rest of this work.

42

Table 2. Characteristics of Multi and Single Threaded Reconfigurable Architectures

SW Behavior Coverage SW Productivity Design Time Energy Consumption

Piperench X X X V

Chimaera X X X V

GARP X X X V

TRIPS X X X V

Wavescalar X X X V

Molen X X X V

CCA X V V V

Warp X V V V

DIM X V V V

KAHRISMA V X X V

Annabelle V X X V

ReMAPP V X X V

Thread Warping V X X V

CReAMS V V V ?M
u
lt
i T
h
re
ad
ed

Embedded Systems Requirements

Si
n
gl
e
Th
re
ad
ed

St
a
ti
c

D
yn
a
m
ic

St
a
ti
c

D
yn
a
m
ic

43

3 ANALYTICAL MODEL

In this sub-section, we figure out the potential of single parallelism exploitation by
modeling a multiprocessing architecture (MP-Multi-Processor). The considered
architecture is composed of many simple and homogeneous cores without any
capability to explore instruction level parallelism (ILP). This way we can elucidate the
advantages of thread level parallelism (TLP) exploitation. We also compare its
execution time (ET) to a high-end single processor (SHE – Single High-End) model,
which is able to exploit only the ILP available in applications. First, we consider
different amounts of fine- (instruction) and coarse- (thread) level parallelism available
in the application code without any latency of the interconnection infrastructure
modeled. This approach aims at investigating the performance potentials of both the
aforementioned architectures. After, we create a latency modeling of a Network-on-
Chip to verify the impact of inter-thread communication over the multiprocessing
systems.

Considering a portion of a certain application code, we classify it in four different
ways:

 α – the instructions that can be executed in parallel in a single processor;
 β – the instructions that cannot be executed in parallel in a single processor;
 δ – the amount of instructions that can be distributed among the processors of

the multiprocessor environment.
 γ - the amount of instructions that cannot be split, and, therefore, must be

executed in one of the processors among those in the multiprocessor
environment.

Figure 15 exemplifies how the previously stated classification, considering a certain
application “A”, would be applied. In the example shown, when the application is
executed in the multiprocessor system (Figure 15(a)), 70% of the application code can
run in parallel at some degree (i.e., divided in threads) and executed on different cores at
the same time, so δ = 0.7 and γ = 0.3. On the other hand, when the very same
application A is executed on the high-end single-processor (Figure 15(b)), 64% of the
instructions can be executed in parallel at some degree, so α = 0.64 and β = 0.36.

44

Figure 15. Modeling of the (a) Multiprocessor System and the (b) High-End Single-
Processor

3.1 Performance Comparison

Let us start with the basic equation relating execution time (ET) with the number of
instructions,

ܶܧ ൌ ݏ݊݅ݐܿݑݎݐݏ݊ܫ# ∗ ܫܲܥ ∗ (1) ݈݁݉݅ܶ݁ܿݕܥ

where CPI is the mean number of cycles necessary to execute an instruction, and
CycleTime is the clock period of the processor.

This model does not consider information about cache accesses and performance of
the disk. However, although simple, it can provide interesting performance clues on the
potential of multiprocessing architectures and aggressive instruction level parallelism
exploitation for a wide range of different applications classes.

3.1.1 Low End Single Processor

Based on equation (1), for a Low-End Single processor (SLE- Single Low End), the
execution time can be termed as:

ܧ ௌܶா ൌ ݏ݊݅ݐܿݑݎݐݏ݊ܫ# ∗ ሺ∝ ௌாܫܲܥ ௌாሻܫܲܥߚ		 ∗ ݈݉݅ܶ݁ܿݕܥ ௌ݁ா	ሺ2ሻ

Since the low-end processor is a single-issue processor, it cannot exploit ILP.
Therefore, classifying instructions as either α or β as previously stated does not make
sense. In this case, α is zero and β equal to one, but we will keep the notation and their
meaning for comparison purposes.

3.1.2 High End Single Processor

In the case of a high-end ILP exploitation architecture, based on equation (1) and (2),
one can state that the Execution Time of the High End Single Processor (ETSHE) is given
by the following equation:

ܧ ௌܶுா ൌ ݏ݊݅ݐܿݑݎݐݏ݊ܫ# ∗ ሺ∝ ௌுாܫܲܥ ௌாሻܫܲܥ	ߚ	 ∗ ݈݉݅ܶ݁ܿݕܥ ௌ݁ுா	ሺ3ሻ

The coefficients α and β refer to the percentage of instructions that can be executed
in parallel or not (this way, α + β = 1), respectively. CycleTimeSHE represents the clock
cycle time of the high-end single processor.

γ

Application “A”
T1

S1
T3
T4

ParallelCode (δ)

SequentialCode (γ)

Application “A”

T2

S2
S3
T5
T6
T7

δ

δ

δ

γ

I
1

I
2

I
3

I
4

I
5

I
6

I
7

I
9

I
1
0

I
1
1

I
1
2

I
1
3

I
1
4

I
1
5

I
1
6

I
1
7

I
1
8

I
1
9

I
2
0

I
2
1

I
2
2

I
2
3

I
2
4

I
2
5

I
2
6

ParallelCode (α)

SequentialCode (β)

MultiprocessorModeling High‐EndSingle‐ProcessorModeling

((

45

The CPISHE is usually smaller than 1, because a single high-end processor can exploit
high levels of ILP, thanks to the replication of functional units, branch prediction,
speculative execution, mechanisms to handle false data dependencies and so on. A
typical value of CPISHE for a current high-end single processor is 0.62 (GUTHAUS,
RINGENBERG, et al., 2002), which shows that more than one instruction can be issued
and executed per cycle. The CPISHE, could also be written as ∝ ௌாܫܲܥ ⁄݁ݑݏݏ݅ , where
issue is the number of instructions that can be issued in parallel to the functional units,
when considering the average situation (i.e., a High-End Single processor would have
the same CPI as the CPI of a Low-End Processor divided by the mean number of
instructions issued per cycle). Thus, based on equation (3), one gets:

ܧ ௌܶுா ൌ ݏ݊݅ݐܿݑݎݐݏ݊ܫ# ∗ ൬
∝ ௌாܫܲܥ
݁ݑݏݏ݅

 ௌா൰ܫܲܥ	ߚ	 ∗ ݈݉݅ܶ݁ܿݕܥ ௌ݁ுா	ሺ4ሻ

Having stated the equations to calculate the performance of both high-end and low-
end single processor models, now the potential of using a homogeneous multiprocessing
architecture to exploit TLP is studied. We consider that such architecture is built by the
replication of low-end processors (that do not exploit ILP), so that a large number of
them can be integrated within the same die.

If one considers that each application has a certain number of sequences of
instructions that can be split (transformed to threads) to be executed on several
processors, one could write the following equation, based on equations (1) and (2):

ܧ ெܶ ൌ ݏ݊݅ݐܿݑݎݐݏ݊ܫ# ∗ ൬
ߜ
ܲ
 ൰ߛ	 ∗ ሺ	ܫܲܥߙௌா ௌாሻܫܲܥߚ	 ∗ ሺ5ሻ	ெ݈݁݉݅ܶ݁ܿݕܥ

where δ is the amount of sequential code that can run in parallel (i.e. transformed
into multithreaded code), while γ is the part of the code that must be executed
sequentially (so no TLP is exploited). P is the number of low-end processors that is
available in the chip. As can be observed in the second term of equation (5), because the
single low-end processor is considered, the multiprocessor architecture does not exploit
ILP (α = 0 and β = 1). Therefore, when one increases the number of processors P, only
the portion of code that presents TLP (δ) will benefit from the extra processors.

3.1.3 High-End Single Processor versus Homogeneous Multiprocessor Chip

First, we compare the performance of the high-end single processor to the
multiprocessor architecture disregarding the communication overhead among the
threads. This scenario demonstrates the potential results of the multiprocessing systems
against a superscalar processor. Since power is crucial in an embedded system design,
we have chosen a certain total power budget as a fair performance factor to compare
both designs. Thus, based on equations (3) and (5), one can consider the following
equation:

ܧ ௌܶுா

ܧ ெܶ
ൌ

ቂݏ݊݅ݐܿݑݎݐݏ݊ܫ ቀ∝
ௌாܫܲܥ
݁ݑݏݏ݅ ௌுாቃ݈݁݉݅ܶ݁ܿݕܥௌாቁܫܲܥߚ

ሾݏ݊݅ݐܿݑݎݐݏ݊ܫ	 ቀ
ߜ
ܲ ቁߛ ሺ∝ ௌாܫܲܥ ெሿ݈݁݉݅ܶ݁ܿݕܥௌாሻܫܲܥߚ	

	ሺ6ሻ

If one considers that, in the model of the multiprocessor environment, a single low
end processor is not capable of exploiting instruction level parallelism, and then ∝	ൌ 0	,
one can reduce the equation 6 to:

46

ܧ ௌܶுா

ܧ ெܶ
ൌ

ቂݏ݊݅ݐܿݑݎݐݏ݊ܫ ቀ∝
ௌாܫܲܥ
݁ݑݏݏ݅ ௌுாቃ݈݁݉݅ܶ݁ܿݕܥௌாቁܫܲܥߚ

ሾݏ݊݅ݐܿݑݎݐݏ݊ܫ	 ቀ
ߜ
ܲ ቁߛ ሺ0 ∗ ௌாܫܲܥ 	1 ∗ ெሿ݈݁݉݅ܶ݁ܿݕܥௌாሻܫܲܥ

	ሺ7ሻ

and, by simplifying (7), one obtains

ܧ ௌܶுா

ܧ ெܶ
ൌ
ቂݏ݊݅ݐܿݑݎݐݏ݊ܫ ቀ∝

ௌாܫܲܥ
݁ݑݏݏ݅ ௌுாቃ݈݁݉݅ܶ݁ܿݕܥௌாቁܫܲܥߚ

ሾݏ݊݅ݐܿݑݎݐݏ݊ܫ	 ቀ
ߜ
ܲ ቁߛ ሺܫܲܥௌாሻ݈݁݉݅ܶ݁ܿݕܥெሿ

	ሺ8ሻ

We are also considering that, as a homogeneous multiprocessor design is composed of
several low-end processors with a very simple organization, those processors could run
at much higher frequencies than a single and complex high-end processor. Therefore,
we will assume that

ሺ
1

ெ݈݁݉݅ܶ݁ܿݕܥ
ሻ ൌ ܭ ∗ ሺ

1
݈݉݅ܶ݁ܿݕܥ ௌ݁ுா

ሻ, ሺ9ሻ

where K is the frequency adjustment factor to equal the power consumption of the
homogeneous multiprocessor with the high-end single processor.

By merging and simplifying equations (8) and (9), one gets:

ܧ ௌܶுா

ܧ ெܶ
ൌ

1
ߜ
ܲ ߛ	

∝
ௌாܫܲܥ
݁ݑݏݏ݅ ௌாܫܲܥߚ	

ௌாܫܲܥ
ܭ	ሺ10ሻ

According to equation (10), a machine based on a high-end single core will be faster

than a multiprocessor-based machine if ቀ
ܧܪܵܶܧ

ܲܯܶܧ
ቁ ൏ 1. This equation also shows that,

although the multiprocessor architecture with low-end simple processors could have a
faster cycle time (by a factor of K), that factor alone is not enough to attain
performance, as demonstrated in the second term in brackets of equation (10). Since the
high-end processor can execute many instructions in parallel, better performance
improvements can be obtained, as long as ILP is the dominant factor, instead of TLP.

To better illustrate this point, let us imagine the extreme case: P=∞, meaning that
infinite processors are available. In addition, if one considers that the multiprocessor
design is composed of low end processors that do not exploit ILP and, therefore, ∝ ௌாܫܲܥ

is always zero, it can be removed from the equation. Therefore, equation (10) reduces
to:

ܧ ௌܶுா

ܧ ெܶ
ൌ

∝
ௌாܫܲܥ
݁ݑݏݏ݅ ௌாܫܲܥߚ	

ௌாܫܲܥߛ	
ܭ	ሺ11ሻ

Let us consider that the execution of the very same application on both multiprocessor
and single high-end architectures presents exactly the same amount of sequential code,
so ߚ ൌ In this case, the operating frequency (given by the K factor) will determine .ߛ	
which architecture runs faster if the issue width of the high-end superscalar processor
also tends to infinite.

In another example, if one applies equation 11 in a scenario where an application

47

presents 10% of sequential code (ߚ ൌ ߛ	 ൌ 0.1ሻ and it is executing on a four issue high-
end single processor, the operating frequency of the four issue high-end single processor
should be 3.2 times (K=0.31) greater than the multiprocessor to achieve the same
execution time. On the other hand, if that application now presents 90% of sequential
code (ߚ ൌ ߛ	 ൌ 0.9ሻ, the high-end single processor should run only 20% (K=0.8) faster
than the multiprocessor design. With these corner cases, one can conclude that when the
applications are massively sequential, both architectures, operating at the same
frequency, will present almost the same performance, regardless the number of
processors in a multiprocessor system. For applications with huge amount of parallel
code, complex single processors must run at higher frequencies than multiprocessors
systems.

3.1.4 Applying the Performance Modeling in Real Processors

Given the analytical model, one can briefly experiment it with numbers based on real
data. Let us consider a high-end single core: a 4-issue SPARC64 superscalar processor
with CPI equal to 0.6 (GUTHAUS, RINGENBERG, et al., 2002); and a multiprocessor
design composed of low-end single-issue TurboSPARC processors with CPI equal to
1.3 (GUTHAUS, RINGENBERG, et al., 2002). A comparison between both
architectures is done using the equations of the aforementioned analytical model. In
addition, we consider that the TurboSPARC has 5,200,000 transistors (FUJITSU
MICROELECTRONICS), and that the SPARC64 V design (DIEFENDORFF, 1999)
requires 180,000,000 transistors to be implemented. For the multiprocessing design we
add 37% of area overhead due to the intercommunication mechanism (INTEL, 2007).
Therefore, aiming to make a fair performance comparison among the high-end single
core and the multiprocessor system, we have devised an 18-Core design composed of
low-end processors that has the same area of the 4-issue superscalar processor and
consumes the same amount of power.

 Figure 16 shows, in a logarithmic scale, the performance of the superscalar
processor, when parameters α and β change, and the performance of the many in-order
TurboSPARC cores, when the δ and γ and the number of processors (from 8 to 128)
varies. The x-axis of Figure 16 represents the amount of the instruction- and thread-
level parallelism in the application, considering that the α factor is only valid for the
superscalar processor, while δ is valid for all the multiprocessing systems’ setups.

The goal of this comparison is to demonstrate which technique better explores its
particular parallelism type at different levels, considering six values for both ILP and
TLP. For instance, δ=0.01 means that a hypothetic application only shows 1% of TLP
available within its code (in the case of the multiprocessing systems). In the same way,
when α=0.01, it is assumed that only 1% of the total number of instructions can be
executed in parallel on the superscalar processor. In these experiments, we considered
the same power budget for the high-end single core and the multiprocessor approaches.
In order to normalize the power budget of both approaches we have tuned the
adjustment factor K of equation 9. For that, we fixed the power consumption of the 4-
issue superscalar to use it as the reference, changing the operating frequency (K factor)
of the remaining approaches to achieve the same power consumption.

Thus, the operating frequency of the 8-Core multiprocessing system must be 3 times
higher than the one of the 4-issue superscalar processor. For the 18-Core setup, the
operating frequency must be a 25% higher than the reference value. Since a
considerable number of cores is employed in the 48-Core setup, it must execute 2 times

48

slower than the superscalar processor to operate under the same power budget. Finally,
the operating frequency of the 128-Core design must be 5.3 times lower than the
superscalar.

Figure 16. Multiprocessor system and Superscalar performance regarding a power
budget using different ILP and TLP; α = δ is assumed.

In the leftmost side of Figure 16, one considers any application that has a minimum
amount of instruction (α=0.01) and thread (δ =0.01) level parallelism. In this case, the
superscalar processor is slower than the 8- and 18- Core designs since the parallelism is
insignificant, the higher operating frequency of both multiprocessing system is
responsible for faster execution. Moreover, when the application shows higher
parallelism levels (α>0.25 and δ>0.25), the 18- and 8-Core better handles the extra TLP
available than the superscalar does with the ILP, presenting more performance
improvements. So, considering only the 18- Core design, the multiprocessing system
achieve better performance with the same area and power budget in the whole spectrum
of parallelism available.

However, as more cores are added in a multiprocessor design, the overall clock
frequency tends to decrease, since the adjustment factor K must be decreased to respect
the power budget. Therefore, the performance of applications that present low TLP
(small δ) worsens when the number of cores increases. Applications with δ =0.01 in
Figure 16 are good examples of this case: performance is significantly affected as the
number of cores increases. As another representative example, even when almost the
whole application presents high TLP (δ > 0.99), the 128-Core design takes longer than
the other multiprocessor designs. Figure 16 concludes that the increasing on the number
of cores not always produces a satisfactory tradeoff among energy, performance and
area.

3.1.5 Communication Modeling in Multiprocessing Systems

As stated the heavy task to outperform the multiprocessing systems’ performance
when considering a scenario where there is no communication among threads. Now, we

0.0001

0.001

0.01

0.1

1

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

48‐Cores MPSoC 128‐Cores MPSoC

Ex
e
cu
ti
o
n
 T
im

e
 (l
o
g)

Parallelism Percentage (α or δ)

49

introduce this issue in the modeling to bring the analytical model closer from a real
multiprocessor design. For this purpose, we use the communication strategy shown in
(CHEN, LU, et al., 2009). The employment of a 2D-mesh NoC is supported by its
higher scalability, energy efficiency and area overhead over buses and crossbar
interconnections. According to (CHEN, LU, et al., 2009), the communication latency in
a 2D-mesh NoC is divided in two parts: minimal latency and contention latency. The
minimal latency is calculated by hop count, which means the distance of the two
communication tasks within the NoC. The contention latency depends on the arbitration
mechanism and the way that the routing is implemented.

 As the amount of data stored in each processor varies for each application, we
modeled the corner cases to state the best and worst case of the communication
overhead. The best communication case is considered when the traffic of data is
uniformly distributed among the NoC-nodes. On the other hand, when the traffic of data
is concentrated in from/to a specific node, the worst case occurs. The latter strategy is
named as centralized traffic and the former as distributed traffic. We use ݏܪݒ݃ܣ to
model the minimal latency of both communication strategies, meaning the average
number of hops performed by a single inter-thread communication. 	

Distributed ቐ
ݏܪ݃ݒܣ ൌ ଶ

ଷ
, ሺ12ሻ		݊݁ݒ݁	݄

ݏܪ݃ݒܣ ൌ 2 ቀ

ଷ
െ ଵ

ଷ
ቁ ሺ13ሻ		݀݀	݄				,

 Centralized ݏܪ݃ݒܣ ൌ మ

ାଵ
 (14)

where ݄ ൌ √ܰ, being N the number of processor nodes.

As we already stated the average number of hops for a single communication, now
we can use this measurement to state the communication latency (CL),

ܮܥ ൌ ݏܪݒ݃ܣ ∗ ݏ݊݅ݐܽܿ݅݊ݑ݉݉ܥ# ∗ 	ሺ14ሻ	ே݁݉݅ݐ݈݁ܿݕܥ

where ݁݉݅ݐ݈݁ܿݕܥே	is the clock period of the Network-on-Chip,
 is the total number of communications performed by the ݏ݊݅ݐܽܿ݅݊ݑ݉݉ܥ#
processors considering the whole application execution.

Communications (#Communications) occurred in the execution of a certain
application can be divided in:

 ߝ – the portion of instructions that are data transfer (e.g. load and store
instructions) and performs accesses in a local storage. It depends on δ that is
the amount of instructions that can be distributed among the processors of the
multiprocessor environment. Thus, ߝ ൌ 0.25 means that 25% of the
instructions executed in parallel are data transfer accessing local storage.

 ߠ – the portion of instructions that are data transfer (e.g. load and store
instructions) and performs accesses in a remote storage. It depends on δ that is
the amount of instructions that can be distributed among the processors of the
multiprocessor environment. Thus, ߠ ൌ 0.25 means that 25% of the
instructions executed in parallel are data transfer in a remote storage and 75%
of the data transfer are in a local storage.

To model the number of communications we need only ߠ, since ߝ	 does not produce
traffic in the NoC. In this way, one can get

ݏ݊݅ݐܿݑݎݐݏ݊ܫ# = ݏ݊݅ݐܽܿ݅݊ݑ݉݉ܥ# ∗ ߜ ∗ (15) ߠ

50

To make simple the communication model, we will overlook the contention latency
and assume that the routers take one clock cycle to route a data from the input to the
output.

Now, considering the communication latency (CL) on the multiprocessing system,
one can get, based on the equation (5) and (15),

ܧ ெܶ ൌ ݏ݊݅ݐܿݑݎݐݏ݊ܫ ൬
ߜ
ܲ
 ൰ߛ	 ሺ	ܫܲܥߙௌா 	ெ݈݁݉݅ܶ݁ܿݕܥ	ௌாሻܫܲܥߚ	 ݏܪݒ݃ܣ	

∗ ݏ݊݅ݐܽܿ݅݊ݑ݉݉ܥ# ∗ 	ሺ16ሻ			ே݁݉݅ݐ݈݁ܿݕܥ

3.1.6 Applying the Performance Modeling in Real Processors considering the
Communication Overhead

We apply the same data presented in Section 3.1.4 on the analytical model
considering the communication overhead. We create four different scenarios to show
the communication overhead: ߠ ൌ ߠ ,0.16 ൌ 0.33, ߠ ൌ 0.66, ߠ ൌ 0.99, meaning that
16%, 33%, 66% and 99% of the instructions executed in parallel produces data traffic in
the NoC, respectively. We also considered the distributed and centralized modeling to
calculated ݏܪݒ݃ܣ.

In these experiments, we considered the same power budget for the high-end single
core and the multiprocessor systems. In order to normalize the power budget of both
approaches we have to tune again the operating frequency (K of equation 9 in the
Section 3.1.4) of the multiprocessing systems to achieve the same power consumption
since the power of the NoC should be considered.

Thus, the operating frequency of the 8-Core multiprocessing system changes from 3
times higher than the one of the 4-issue superscalar processor to 2.7 times. For the 18-
Core setup, the operating frequency changes from 25% higher to 13% higher than the
superscalar processor. The operating frequency of 48-Core setup changes from 2 times
slower than the superscalar processor to 2.2 times. Finally, the operating frequency of
the 128-Core design changes from 5.3 times lower to 5.9 times slower than the
superscalar processor.

Figure 17 draws the execution time of all designs presented in Section 3.1.4
considering ߠ ൌ 0.16. When applications provide low levels of thread level parallelism
(0.01 ൏ ߜ ൏ 0.25), the communication overhead does not affect the execution time. It
can be notice by comparing Figure 16, where no communication is considered, with
Figure 17. However, when the TLP increases (ߜ 0.25), the impact of the
communication becomes more evident, the curves of the multiprocessing designs do not
fall in the same pace as the curves shown in Figure 16, since more TLP means more
communication. As expected, when the data is centralized in one processor, the impact
in the execution time is greater than when it is distributed, since the average number of
hops is greater in the former case. Even applying such small communication overhead
some conclusions presented in the Section 3.1.4 changed, the 4-issue superscalar
processor outperforms the 18-, 48- and 128- Core Designs when ߜ 0.95 and
application presents centralized data.

51

Figure 17.Execution time of different designs considering ߠ ൌ 0.16

The multiprocessing designs start losing steam when the communication overhead
increases to 33%. The gains obtained by exploring higher thread level parallelism are
hiding by the communication overhead. As can be seen in Figure 18, the 8-Core Design
provides the same execution time regardless the available thread level parallelism (ߜ).
Considering this degree of communication, the 4-issue superscalar processor achieves
better execution time than all multiprocessing systems when ߜ 0.95 and data are
centralized. The superscalar processor outperforms the 18-Core Design (both designs
present the same area and power budget) when 50% of the application could be
parallelized either in instructions or in threads. When data is uniformly distributed
among the cores, with 33% of communication overhead, the 8-Core Design still
compete with 4-issue superscalar processor.

Figure 18. Execution time of different designs considering ߠ ൌ 0.33

When the communication overcome 66% of parallel instructions, multiprocessing
systems with many cores (48- and 128) does not show more gains with the increasing

0.001

0.01

0.1

1

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

48‐Cores MPSoC 128‐Cores MPSoC

Ex
e
cu
ti
o
n
 T
im

e
 (l
o
g)

Parallelism Percentage (α or δ)

0.001

0.01

0.1

1

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

48‐Cores MPSoC 128‐Cores MPSoC
Ex
e
cu
ti
o
n
 T
im

e
 (l
o
g)

Parallelism Percentage (α or δ)

Centralized Distributed

0.001

0.01

0.1

1

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

48‐Cores MPSoC 128‐Cores MPSoC

Ex
e
cu
ti
o
n
 T
im

e
 (l
o
g)

Parallelism Percentage (α or δ)

0.001

0.01

0.1

1

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

48‐Cores MPSoC 128‐Cores MPSoC

Ex
e
cu
ti
o
n
 T
im

e
 (l
o
g)

Parallelism Percentage (α or δ)

Centralized Distributed

0.001

0.01

0.1

1

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

48‐Cores MPSoC 128‐Cores MPSoC

Ex
e
cu
ti
o
n
 T
im

e
 (l
o
g)

Parallelism Percentage (α or δ)

0.001

0.01

0.1

1

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

48‐Cores MPSoC 128‐Cores MPSoC

Ex
e
cu
ti
o
n
 T
im

e
 (l
o
g)

Parallelism Percentage (α or δ)

Centralized Distributed

52

on the thread level parallelism (Figure 19), the curves becomes almost flat, meaning that
applications with higher communication degree are not suitable even for many core
designs. The scenario is more critical for 8- and 18-Core Designs, considering this
communication degree, the increasing on thread level parallelism produces losses in
performance. When 25% of the application would be parallelized either in instructions
or in threads, the 4-issue superscalar processor outperforms the 18-Core Design.
However, when 65% of parallelism is available in both levels, the superscalar processor
outperforms the 8-Core Design.

Figure 19. Execution time of different designs considering ߠ ൌ 0.66

Figure 20 shows a scenario where 99% of parallel instructions produce
communication in the NoC. Although this scenario is unlikely, it was built only to show
the potential of superscalar over the multiprocessing designs. As we had concluded
above, the multiprocessing system composed of huge number of cores, due to the power
budget assumption, are not feasible for applications based on high communication
overhead. Considering the 8-Core Design, if applications have their code parallelized,
either in instructions or in threads, up to 50%, regardless the communication overhead,
the designer should decide for 8-Core Design instead of 4-issue superscalar processor.
Parallelism higher than 50%, the designer should select the latter. However, if one
considers designs with the same area and power budget, it means 4-issue superscalar
versus 18-Core Design, the former outperforms the latter from 15% of parallelism
available.

Figure 20. Execution time of different designs considering ߠ ൌ 0.99

0.001

0.01

0.1

1

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

48‐Cores MPSoC 128‐Cores MPSoC

Ex
e
cu
ti
o
n
 T
im

e
 (l
o
g)

Parallelism Percentage (α or δ)

0.001

0.01

0.1

1

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

48‐Cores MPSoC 128‐Cores MPSoC

Ex
e
cu
ti
o
n
 T
im

e
 (l
o
g)

Parallelism Percentage (α or δ)

Centralized Distributed

0.001

0.01

0.1

1

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

48‐Cores MPSoC 128‐Cores MPSoC

Ex
e
cu
ti
o
n
 T
im

e
 (l
o
g)

Parallelism Percentage (α or δ)

0.001

0.01

0.1

1

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

48‐Cores MPSoC 128‐Cores MPSoC

Ex
e
cu
ti
o
n
 T
im

e
 (l
o
g)

Parallelism Percentage (α or δ)

Centralized Distributed

53

3.2 Energy Comparison

If superscalar processors present better performance than multiprocessing systems
when communication is considered, when one measures energy consumption there is a
completely new scenario: power in CMOS circuits is proportional to the switching
capacitance, to the operating frequency and to the square of the power supply. In the
simple energy model that we will present herein, we will assume that the power is
dissipated only in the data path. This is overly optimistic in regards of dissipated power
by a superscalar processor, but this can also give an idea of the lower bound of energy
dissipation in high-end single processors.

The power dissipated by a high-end single processor can be written as

ௌܲுா ൎ ݁ݑݏݏ݅ ∗ ܥ ∗ ൬
1

ௌாܫܲܥ
൰ ∗ 	 ௌܸுா

ଶ 	ሺ17ሻ

were C is the capacitance switching of the single issue processor, and VSHE is the

voltage the processor is operating on. The term ቀ
ଵ

ூೄಹಶ
ቁ is included to consider the

extra power required during the speculation process to sustain performance with a CPI
smaller than 1. The energy of the high-end single processor is given by:

ௌுாܧ ൌ ௌܲுா ∗ ௌܶுா. ሺ18ሻ

and the power consumed by a homogeneous multiprocessing system is given by

ெܲ ൎ ܲ ∗ ܥ ∗ ൬
1

ௌாܫܲܥ
൰ ∗ 	 ெܸ	

ଶ 	ሺ19ሻ

As in the case of superscalar processor, the term considering the CPI of the single

low-end processor ቀ
ଵ

ூೄಽಶ
ቁ has been also included. The energy of the single low-end

processor is given by

ெܧ ൌ ெܲ ∗ ெܶ, ሺ20ሻ

It is possible to term ESHE and EMP as:

ௌுாܧ
ெܧ

ൌ
1

ߜ
ܲ ߛ	

∝
ௌாܫܲܥ
݁ݑݏݏ݅ ௌாܫܲܥߚ	

ௌாܫܲܥ
 ∗ ܭ ∗ ൦

݁ݑݏݏ݅ ∗ ܥ ∗ ቀ
1

ௌாܫܲܥ
ቁ ∗ 	 ௌܸுா

ଶ

ܥ ∗ ቀ
1

ௌாܫܲܥ
ቁ ∗ 	 ெܸ	

ଶ
൪	ሺ16ሻ

simplifying (16), one gets

ௌுாܧ
ெܧ

ൌ ቈ ௌܸுா
ଶ 	ሺ∝ 	݅݁ݑݏݏ ∗ ሻߚ
	 ெܸ	

ଶ ሺߜ ሻߛܲ	
 ∗ ሺ21ሻ	ܭ

Equation (17) demonstrates that both approaches unnecessarily spend power when
there is no ILP or TLP available since there is no power management technique
modeled to reduce power supply (ௌܸுா

ଶ 	and ெܸ
ଶ).

3.2.1 Applying the Energy Modeling in Real Processors

Figure 21 shows the energy results considering the same power budget, as it was
already done in the performance model. For this first experiment, we do not consider the
communication overhead for the multiprocessing environment that will be modeled
later. In addition, we only show the energy of 8- and 18-Core Designs, since the

54

conclusions of these setups are also valid for the rest of the setups.

The high-end single processor organization spends higher energy than the 18-Core
multiprocessor the same amount of energy when considering all levels of available
parallelism since the latter is faster than the former in all cases (Figure 16).

To obey the given power budget, the 8-Core multiprocessor runs 3 times faster
than 4-issue superscalar and the 18-Core multiprocessor. Thus, as the 8-Core Design
present 3 times lower execution time than the 4-issue superscalar, the former spends 3
times less energy. When the parallelism is more exposed the superscalar approaches to
the 8-Core Design, since its execution time decreases. Multiprocessors composed of a
significant number of cores present worst performance in applications with low/medium
TLP (Figure 16). Consequently, in those cases and if no power management techniques
are considered (e.g., cores are turned off when not used), energy consumption of such
multiprocessor designs tend to be higher than those with fewer cores. As can be seen in
Figure 21, the 8-Core multiprocessor consumes less energy than the 18-Core for
low/medium TLP values (δ < 0.75). However, when applications present greater thread
level parallelism (δ > 0.9), the energy consumed by the 18-Core multiprocessor reaches
the same values as the 8-Core design, thanks to the better usage of the available
processors.

Figure 21. Multiprocessing Systems and High-end single processor energy
consumption; α = δ is assumed.

3.2.2 Communication Modeling in Energy of Multiprocessing Systems

The energy results shown in Figure 21 do not consider the communication produced
by data transfer. The power dissipated by the Network on Chip is proportional to its
capacitance, operating frequency, square of the power supply, power of one router and
the number of routers. With these variables one can get,

ேܲ ൎ ݏݎ݁ݐݑܴ# ∗ ܥ ∗ ோܲ௨௧ ∗ ேܸ	
ଶ 	ሺ22ሻ

The energy of the NoC can be modeled as,

ேܧ ൌ ேܲ ∗ (23) 	ܮܥ

0

2

4

6

8

10

12

14

16

18

20

22

24

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

En
e
rg
y

Parallelism Percentage (α or δ)

55

being ܮܥ the communication latency modeled in Equation 14.

The energy of the multiprocessing system, based on Equation 23 and 30, is given by,

ெܧ ൌ ெܲ ∗ ெܶ 	 ேܲ ∗ ሺ24ሻ	ܮܥ

3.2.3 Applying the Energy Modeling in Real Processors considering the
Communication Overhead for Multiprocessing Systems

The energy consumption shown in Section 3.2.1 does not consider communication
costs. Thus, we apply the equations shown in Section 3.2.2 using the same scenarios
presented in Section 3.1.5, where we consider that the data traffic in the NoC is
produced by 16%, 33%, 66% and 99% of the instructions executed in parallel.

Figure 22 draws the energy consumption of the multiprocessing systems and the 4-
issue superscalar processor. As can be seen, the curve of the superscalar processor
places above of the 18-Core and 8-Core designs up to 85% of parallelism, since the
multiprocessing systems provide lower execution time than the superscalar processor
(refer to Figure 17). As the parallelism grows, the superscalar decreases the energy
consumption in a higher factor than the 18-Core due to its more efficient exploitation.
Considering neither the centralized nor the distributed data schemes, the superscalar
processor fails both in performance and in energy consumption in comparison to the 8-
Core design when 16% of communication is considered.

Figure 22. Energy consumption of different designs considering ߠ ൌ 0.16

The scenario changes when the communication increases to 33% (Figure 23), the
superscalar processor outperforms the 18-Core design and achieves better energy
consumption when the parallelism reaches 50%. When the data traffic increases to 66%
(Figure 24), the superscalar processor shows better performance and energy
consumption than the 8-Core design after 25% of parallelism. Thus, we can conclude
that, for a same area design, the employment of a 4-issue superscalar processor is more
energy and performance efficient than a 18-Core design to execute the following
scenario: an application that makes available 25% of TLP or ILP and more than 66% of
its instructions executed in parallel produce inter-thread communication. However, in
comparison with the 8-Core design, the employment of the superscalar processor is
worthwhile only when the application provides higher than 65% and 75% of
parallelism, for centralized and distributed communication approaches, respectively.

0

2

4

6

8

10

12

14

16

18

20

22

24

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

En
e
rg
y

Parallelism Percentage (α or δ)

0

2

4

6

8

10

12

14

16

18

20

22

24

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

En
e
rg
y

Parallelism Percentage (α or δ)

Centralized Distributed

56

Figure 23. Energy consumption of different designs considering ߠ ൌ0.33

Figure 24. Energy consumption of different designs considering ߠ ൌ0.66

Figure 25 shows the worst scenario for the multiprocessing system, when 99% of the
parallel instructions produce data traffic in the NoC. Here, one can conclude that, for a
same chip area design, if an application can be parallelized up to 20%, the employment
of the 18-Core Design is worthwhile than the superscalar in both performance and
energy consumption when communication is centralized. This percentage increases to
almost 25% when the data are uniformly distributed among the processors. The 8-Core
design is more competitive, when an application is parallelized up to 50%. Besides 8-
Core design occupies less area, it produces better performance and energy consumption
than the superscalar processor when the communication is centralized. This percentage
increases to 55% when the data is distributed uniformly among processors.

Figure 25. Energy consumption of different designs considering ߠ ൌ0.99

Summarizing, the best scenario for TLP exploitation (0% of communication (Figure
16)) shows that the 8-Core and 18-Core design outperforms the superscalar processor in
the whole spectrum of parallelism. On the other hand, when the worst scenario for TLP
exploitation is applied (99% of communication), the superscalar processor provides
better performance and energy when the parallelism is higher than 25% and 50%, for
18-Core and 8-Core, respectively. Thus, the analytical model shows that the

0

2

4

6

8

10

12

14

16

18

20

22

24

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

En
e
rg
y

Parallelism Percentage (α or δ)

0

2

4

6

8

10

12

14

16

18

20

22

24

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

En
e
rg
y

Parallelism Percentage (α or δ)

Centralized Distributed

0

2

4

6

8

10

12

14

16

18

20

22

24

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

En
e
rg
y

Parallelism Percentage (α or δ)

0

2

4

6

8

10

12

14

16

18

20

22

24

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

En
e
rg
y

Parallelism Percentage (α or δ)

Centralized Distributed

0

4

8

12

16

20

24

28

32

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

En
e
rg
y

Parallelism Percentage (α or δ)

0

4

8

12

16

20

24

28

32

36

40

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

En
e
rg
y

Parallelism Percentage (α or δ)

Centralized Distributed

57

performance of the multiprocessing systems, besides relying on TLP available in the
application, it also heavily depends on the communication rate.

One can conclude that the ideal approach would be the usage of a heterogeneous
multiprocessor system to exploit both TLP and ILP, so it would be possible to balance
the performance and energy of a wide range of application domains and would be
possible to avoid the huge communication costs provided by designs based on many
cores. To support such assumption, there is an additional tradeoff that must be
considered, when more cores are included in the chip, the multiprocessor performance
tends to worsen since the operating frequency must be decreased to respect the power
budget limits. For instance, the 128-Core design takes longer execution time than the
other multiprocessor designs in all levels of parallelism available (Figure 16) since its
operating frequency is very low.

Considering real applications, thread level parallelism exploitation is widespread
employed to accelerate most multimedia applications used in the embedded devices
thanks to their data independent iteration loops. However, even applications with high
TLP could still obtain some performance improvement by also exploiting ILP. Hence,
in a multiprocessor design, ILP techniques also should be investigated to conclude what
is the best fit considering the particular design requirements. Hence, the analytical
modeling indicates that heterogeneous multiprocessor system is necessary to balance the
performance and energy of a wide range of application classes. Section 3.3 reinforces
this trend by running a real embedded application over a multiprocessor environment
only exploiting TLP, a superscalar processor and a multiprocessor environment
exploiting both TLP and ILP.

3.3 Example of a Application Parallelization Process in a
Multiprocessing System

We evaluate the performance of both superscalar and multiprocessor environments
regarding an actual application execution. An 18-tap FIR filter is used as a benchmark
to make this evaluation. The C-like description of the FIR filter employed in this
experiment is illustrated in Figure 27. Superscalar machines explore the instruction level
parallelism of such an application in a transparent way, working on its original binary
code. Unlike the superscalar approach, to explore the potential of the multiprocessor
architecture there is a need to make manual source code annotations in order to split the
application code among many processors. In this way, some code highlights are shown
in Figure 27 to simulate these annotations, indicating the necessary number of cores to
explore the ideal thread level parallelism of each part of the FIR filter code. For
instance, the first annotation considers a loop controlled for IMP_SIZE value, which
depends on the number of FIR taps. In this case, 54 loop iterations are done since the
experiment regards an 18-tap FIR filter.

The OpenMP (MENON, 1998) programming language provides specific code
directives to easily split loop iterations among processors. Using OpenMP directives,
the ideal exploration of this loop is done through 54-Core multiprocessor design, each
one being responsible for executing a loop iteration. However, when the amount of
processors is lower than the number of loop iterations, OpenMP combines them in
groups and distributes the tasks among the available resources. Hence, regarding the
execution of 54 loop iterations in a 18-Cores multiprocessor design, OpenMP creates 18
groups, each one composed of 3 iterations. Since the FIR code is made up of several

58

loops, almost the entire application can be parallelized, as shown in Figure 27. In
general, DSP applications (ex: FFT and DCT) are loop-based which turns it suitable for
OpenMP usage. However, despite OpenMP use, some loops still executing sequentially
due to the data dependency among iterations. This fact is illustrated by the last loop of
the FIR filter description, since the iterations of the loop that perform shifting in the
array presents dependencies among each other.

We evaluated the 18-tap FIR execution over three different architectures aiming to
illustrate their performance impact on applying TLP and ILP exploration: a 4-issue
superscalar SPARC V (SS); 6- 18- and 54- Core multiprocessor designs based on in-
order single-issue TurboSPARC cores, with no ILP exploration capabilities (MPIOC).
Finally, in order to have a glimpse on the future, we imagined a 6- 18- and 54- Cores
MPs based on a 4-issue Superscalar processor, able to explore both ILP and TLP
(MPSS). We have gathered data about performance with a cycle accurate simulator
(RUTZIG, BECK e CARRO, 2009). The execution time is measured in order to obtain
their speedup over the baseline processor. It is important to point out that instruction
and thread communication overhead has not been considered in this experiment.

The results shown in Figure 26 reflect the speedup provided over a single in-order
core performance running the sequential code version of the C-like description of the
18-tap FIR filter presented in Figure 27. The leftmost bar shows the speedup provided
for the ILP exploration of a 4-issue superscalar processor. In this case, the speedup of
the superscalar processor over an in-order core is only 2.2 times showing that the FIR
filter has neither high nor low ILP since a 4-issue superscalar processor could
theoretically achieve up to 4 times the performance of an single-issue in-order core.

Figure 26. Speedup provided in 18-tap FIR filter execution for Superscalar, MPSoC and
a mix of both approaches

0

10

20

30

40

50

60

70

80

SS 6‐MPIOC 18‐MPIOC 54‐MPIOC 6‐MPSS 18‐MPSS 54‐MPSS

2.2
6.0

17.3

44.8

13.3

37.1

74.9

Sp
ee
d
u
p

Architectures

59

Figure 27. C-like FIR Filter

Regarding the multiprocessor designs composed of in-order cores, the 6-Core
machine provides almost a linear speedup, decreasing the single in-order core execution
time by 5.46 times. This behavior is maintained when more in-order cores are inserted.
However, when the TLP of the 18-tap FIR filter is aggressively explored (54-MPIOC), a
speedup of only 44.8 times is achieved, showing that even applications that are
potentially suitable for TLP exploration suffer with the presence of sequential code
parts.

Amdahl´s Law shows that it is not sufficient to build architectures with a large
number of processors, since most applications contain a certain amount of sequential
code (WOO e LEE, 2008). Hence, there is a need to balance the number of processors

#define NTAPS 18
#define IMP_SIZE (3 * NTAPS)
static const double h[NTAPS] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
static double h2[2 * NTAPS], z[2 * NTAPS], imp[IMP_SIZE];
double output;
int ii, state;

 /* make impulse input signal */
 for (ii = 0; ii < IMP_SIZE; ii++) {
 imp[ii] = 0;
 }

 imp[5] = 1.0;
 /* create a SAMPLEd h */
 for (ii = 0; ii < NTAPS; ii++) {
 h2[ii] = h2[ii + NTAPS] = h[ii];
 }

 /* clear Z */
 for (ii = 0; ii < NTAPS; ii++) {
 z[ii] = 0;
 }

 for (ii = 0; ii < IMP_SIZE; ii++) {

 z[0] = imp[ii];
 output = 0;

/* calc FIR */
 for (ii = 0; ii < IMP_SIZE; ii++) {
 output += h[ii] * z[ii];
 }

 /* shift delay line */
 for (ii = IMP_SIZE - 2; ii >= 0; ii--) {
 z[ii + 1] = z[ii];
 }
 }

54	Cores	

18	Cores	

18	Cores	

54	Cores	

54	Cores	

60

with a suitable ILP exploration approach to achieve greater performance. The MPSS
approach combines TLP with ILP exploration of 4-issue superscalar aiming to show that
simple TLP extraction is not enough to achieve linear speedups even for applications
with high TLP. Figure 26 illustrates the speedup of the MPSS approach. As can be seen,
the performance of 6-MPSS on running 18-tap FIR filter is twice better than 6-MPIOC.
The 6-MPSS takes advantage of the large room for ILP exploitation provided when the
applications is split in only 6 threads. In this case, when the first loop of Figure 27 is
split among the multiprocessor machine, each core receives 9 loop iterations that
executed sequentially. However, when the number of cores increases, the sequential
code decreases, making lower the room for the ILP optimization. Nevertheless, the 18-
tap FIR filter execution in 54-MPSS is 66% faster than the 54-MPIOC execution.

Summarizing, some real applications could benefit for thread level parallelism
exploration thanks to their loop-based behavior. However, even applications with high
TLP could still obtain some performance improvement by also exploiting ILP. Hence,
in a multiprocessor design ILP techniques also should be investigated to conclude what
is the best fit considering the design requirements/constraints. Finally, one could
conclude that replications of simple processing elements leaves a significant
optimization possibility unexplored, indicating that mixed parallelism exploitation could
be a possible solution to balance the performance when applications with different
behaviors are considered.

61

4 CREAMS

A general overview of the CReAMS platform is given in Figure 28 (a). The thread
level parallelism is explored by replicating the number of Dynamic Adaptive Processors
(DAPs) (in the example of the Figure 28 (a), by four DAPs). The communication among
DAPs is done through an on-chip unified 512 KB 8-way set associative L2 shared
cache. As mixed parallelism exploitation is mandatory when a heterogeneous software
environment is considered, we extend the single-thread based reconfigurable
architecture presented in (BECK, RUTZIG, et al., 2008) to handle multithreaded
applications in CReAMS platform.

4.1 Dynamic Adaptive Processor (DAP)

We divided DAP in four blocks to better explain it, as illustrated in Figure 28(b).
These blocks are discussed in the following sections.

4.1.1 Processor Pipeline (Block 2)

A SparcV8-Based architecture is used as the baseline processor to work together with
the reconfigurable system. Its five stage pipeline reflects a traditional RISC execution
flow (instruction fetch, decode, execution, data fetch and write back) that support its
employment on embedded system. In addition, similarities to the processors used in
well-known embedded platforms (e.g. OMAP) support the employment of SparcV8
processor in this work, since all are based on RISC architectures (e.g. MIPS, ARM).

4.1.2 Reconfigurable Data Path Structure (Block 1)

Following the classifications shown in (HAUCK e COMPTON, 2002), the
reconfigurable data path is coarse-grained and tightly coupled to the SparcV8 pipeline,
avoiding external accesses to the memory, saving power and reducing the
reconfiguration time. Because it is coarse-grained, the size of the memory necessary to
keep each configuration is lower when compared to fine-grained data paths (e.g.
FPGAs), since the basic processing elements are functional units that work at the word
level (arithmetic and logic, memory access and multiplier). As illustrated in the Figure
28(b), the data path is organized as a matrix of rows and columns. The number of rows
dictates the maximum instruction level parallelism that can be exploited, since
instructions located at the same column are executed in parallel. For example, the
illustrated data path (Block 1 of Figure 28(b)) is able to execute up to four arithmetic
and logic operations, two memory accesses (two memory ports are available in the L1
data cache) and one multiplication without true (read after write) dependences. The
number of columns determines the maximum number of data dependent instructions

62

that can be stored in one configuration. Three columns of arithmetic and logic units
(ALU) compose a level. A level does not affect the SparcV8 critical path (which, in this
case, is given by the multiplier circuit). Therefore, up to three ALU instructions can be
executed in the reconfigurable data path within one SparcV8 cycle, without affecting its
original frequency (600 MHz). Memory accesses and multiplications take one
equivalent SparcV8 cycle to perform their operations.

We have coupled sleep transistors (SHI e HOWARD, 2006) to switch power on/off
of each functional unit in the reconfigurable data path. The dynamic reconfiguration
process is responsible for the sleep transistors management. Their states are stored in the
reconfiguration memory, together with the reconfiguration data. Thus, for a given
configuration, idle functional units are set to the off state, avoiding leakage or dynamic
power dissipation, since the incoming bits do not produce switching activity in the
disconnected circuit. Although the sleep transistors are bigger and in series to the
regular transistors used to implement the data path circuit, they have been designed so
that their delays do not significantly impact the critical path or the reconfiguration time.

Figure 28. (a) CReAMS architecture (b) DAP blocks

The entire structure of the reconfigurable data path is totally combinational: there is
no temporal barrier among the functional units. The only exception is for the entry and
exit points. The entry point is used to keep the input context and the exit point is used to
store the results, both structures are connected to the processor register file.

The feeding of the input context with the necessary data is the first step to configure
the data path before firing the data path execution. After that, results are stored in the
output context registers through the exit point of the data path. The values stored in the
output context are sent to the SparcV8 register file on demand. It means that if any
value is produced at any data path level (a cycle of SparcV8 processor) and if it will not
be changed in the subsequent levels, this value is written back in the cycle after that it
was produced. In the current implementation, the SparcV8 register file has two
write/read ports.

DAPDAP DAP DAP

CReAMS

DF WBEXIDIF

UTRADVID
600 Mhz

Tables
P
C
 C
o
n
f#
n

…
P
C
 C
o
n
f#
2

P
C
C
o
n
f#
1

PC

=
R
e
co
n
fi
gu
ra
ti
o
n

M
e
m
o
ry

Col.#1 Col.#n

Row #1

Row #n

1

2

3

4

Input
Context

Output
Context

RF

.............................

....................

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

Load
Load

Multiplier

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

Load
Load

Multiplier

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

Load
Load

Multiplier

(a)

(b)

Level

SHARED L2

L1

IC
ac
h
e

L1

D
C
ac
h
e

63

Figure 29. Interconnection mechanism

The interconnection structure of the reconfigurable data path is shown in the Figure 29.
The data that comes from the SparcV8 register file is stored in the register of the input
context. For each register, a bus line propagates the value to the functional units. These
bus lines are connected to the functional units through multiplexers that are responsible
for choosing the correct value. Each functional unit has two multiplexers in their inputs
that make the selection of the issuing operands. We call them input multiplexers. After the
operation is completed, there is a multiplexer for each bus line that will choose which
result will be bypassed through that bus line. These are the output multiplexers.

The input and the output context size limits the number of instructions allocated in a
single data path configuration, when all registers of the input context are already
allocated, a new configuration should be created to hold the following instructions. On
the other hand, a small input context size restricts the performance since a configuration
is broken even if having available functional units. On the other hand, an increase in the
size of the input context provides a huge overhead in the data path area, since each input
register entails in one output multiplexer per data path column. For instance, in the data
path presented in the Figure 28 (b), each additional input register aggregates nine output
multiplexers in the data path structure. Moreover, each additional input register
increases one input port in all input multiplexers of the reconfigurable data path. The
interconnection structure also provides deleterious effects on energy consumption. Sleep
transistors do not work in these components meaning that the data will be propagate
over all interconnection structure due to the combinational fashion of the data path,
which will spend power even when the functional units have not being used.

4.1.3 Dynamic Detection Hardware (Block 4)

The hardware responsible for code detection, named Dynamic Detection Hardware
(DDH), is implemented as a 4-stage pipelined circuit to avoid the increasing on the
original critical path of the SparcV8 processor. These four stages are the following:
 Instruction Decode (ID) –The instruction is broken into operation, source operands

and target operand.

 Dependence Verification (DV) – on each data path´s column there is a bitmap
responsible for storing the target operands of the already allocated instructions in the
respective column, named as Write Bitmap (Figure 30). Thus, the source operands
of each incoming instruction are compared to the target operands stored in the

R
a

R
b

R
c

R
d

R
a

R
b

R
c

R
d

A
LU

O
u
tp
u
t C

o
n
te
xt

In
p
u
t C

o
n
te
xt

Input Muxes

Output Muxes
Bus Lines

64

bitmap of previously detected instructions to verify which column the current
instruction should be allocated, according to their data dependencies. In this way,
the dependence detection hardware spent only 8-bits width xor gate (supposing that
the input context contain 8 registers) per each data path column.

To better explain the process, it is presented in the left side of Figure 30 an example
of a code region detected by the DDH, in the right side of the same Figure is
demonstrated its allocation inside of the reconfigurable data path. The first incoming
instruction is always allocated at the highest functional unit of the leftmost data path
column. In this process, the seventh bit of the write bitmap of such column is set since
the R7 is the target operand of this instruction.

 The dependence detection starts from the second instruction. In our example, the
instruction number two reads R7 register that is written by previous instruction creating
a read after write (RAW) dependence. The DDH detects it with a simple xor operation
and allocates the instruction number two at the later column of instruction number one.
In this process, the eighth bit of the second write bitmap is set since this instruction has
the register R8 as the target operand.

There is a true dependence between the third and the second instruction, so the third
instruction should be allocated at the third column setting the sixth bit of the write
bitmap of such a column.

 Otherwise, the instruction number four does not present any data dependence with
instruction number two and three but it has a RAW dependence with instruction number
one. In this way, it can be allocated at the later column of instruction number one
executing in parallel with the instruction number two and temporally before of
instruction number three. The write bitmap of the second column is updated, since the
target operand of the instruction number four is the R1 register.

The instruction number five, a memory access operation, does not produce any data
dependence to the previous instructions, so it is allocated at the leftmost load functional
unit. As this kind of operation takes an entire processor cycle and covers three data path
columns, the third bit of the write bitmap of the columns 1, 2 and 3 should be set to
maintain the allocation consistency.

The instruction number six depends on the result of the previous memory access
(instruction number five), so that instruction must be allocated at the fourth column. As
its target operand is the R4 register, the correspondent bit of the fourth write bitmap is
set.

The instruction number seven stores the value of the R4 register in the memory, as
the previous instruction has this register as a target register, the instruction number
seven should be allocated at a later column that provides a memory access functional
unit available.

Finally, the instruction number eight does not have any data dependence with the
previous instruction, so it is allocated at the first data path column. As this operation
takes an entire processor cycle and covers three data path columns, the second bit
(correspondent bit of its target operand) of the write bitmap of the columns 1, 2 and 3
are set.

65

Figure 30. Example of an allocation of a code region inside of the data path

 Resource Allocation (RA) – In this stage, the data dependence is already solved and
the correct data path column is known. Hence, the RA stage is responsible for
verifying the resources availability in that column, linking the instruction operation
to the correct type of functional unit. If there is no functional unit available at this
column, the next column at the right side will be checked. This process is repeated
until finding a free functional unit.

 Update Tables (UT) – This stage configures the interconnection components of the
reconfigurable data path to feed that functional unit with the correct source operands
from the input context and to write the result in the correct register of the output
context. After that, the bitmaps and tables are updated and the configuration is
finished: their configuration bits are sent to the reconfiguration memory and the
address cache is updated with the memory address of the first instruction detected in
the configuration.

r1
r2
r3
r4
r5
r6
r7
r8

1 2 3

ALU 4 ALU

ALU ALU ALU

ALU ALU ALU

Load
5

8

6 ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

Load
Load

Multiplier

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

Load
7

Multiplier

CodeRegion

(1) ADD r5,r8,r7
(2) SUB r7,r6,r8
(3) ADD r8,r6,r6
(4)ADDU r2,r7,r1
(5)LW r3,8
(6)SUBU r3,r7,r4
(7)SW r4,4
(8) MUL r3,r5,r2 0

0

0

Write Bitmap

0

0

1

1 1 1
1 11

0

1 0

1

0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0

1 0

0 0
00

0
0
0

Col.1 Col.9.............................

Processor
Cycle

66

Figure 31. DAP acceleration process

Figure 31 shows a simple example of how a DAP could dynamically accelerate a
code segment of a single thread. The DAP works in four modes: probing, detecting,
reconfiguring and accelerating. The flow is as follows:

At the beginning of the time bar shown in Figure 31, the DAP searches for an already
translated code segment to accelerate, comparing the address cache entries to the
content of the program counter register. However, when the first loop iteration appears
(i=0), the DDH detects that there is a new code segment to translate, and it changes to
detecting mode.

In the detecting mode, concomitantly with the instruction execution in the SparcV8
pipeline, these instructions are also translated into a configuration by the DDH pipeline.
The process does not stop when a branch instruction is found, since speculative
execution is used. Thus, up to three basic blocks can compose a single configuration.
When the second loop iteration is found (i=1), the DDH is still finishing the detection
process that started when i=0. It takes few cycles to store the configuration bits into the
reconfiguration memory, and to update the address cache with the memory address of
the first detected instruction.

Then, when the first instruction of the third loop iteration comes to the fetch stage of
the SparcV8 pipeline (i=2), the probing mode detects a valid configuration in the
reconfiguration memory: the program counter content was found in the address cache
entry.

After that, the DAP enters in the reconfiguring mode, where it feeds the
reconfigurable data path with the necessary operands. For example, if 8 operands are
needed, 4 cycles are necessary, since 2 read ports are available in the register file. In
parallel with the operands fetch, the reconfiguration bits are also loaded from the
reconfiguration memory. The reconfiguration memory is accessed on demand: at each
clock cycle, only the necessary bits to configure a data path level are fetched, instead of
fetching all the reconfiguration bits at once. This approach decreases the port width of
the reconfiguration memory, which is one of the main sources of power consumption in
memories (BERTICELLI LO, BECK, et al., 2010).

Finally, the accelerating mode is activated and the next loop iterations (until the 99th)
are efficiently executed, taking advantage of the reconfigurable logic.

Figure 32 summarizes, by an activity diagram, the whole DDH´s process to create a
configuration. The first step is the execution support verification. If there is no
compatible functional unit to execute such an operation (e.g. division), the configuration
is finished and the next instruction is a candidate to start a new configuration. On the
other hand, if there is support, the data dependency among previously allocated

for (i=0 ; i<100 ; i++)
a[i] = b[i] + 1;

Detecting Mode

Probing Mode

Accelerating Mode

i=0 i=2i=1 i=99

Reconfiguring Mode

67

instructions is verified (DV stage) and the correct functional unit within that column is
defined. Then, the current configuration is sent to the reconfiguration memory.

Figure 32. Activity Diagram of DIM process

4.1.4 Storage Components (Block 3)

Two storage components are part of the DAP acceleration process: address cache and
reconfiguration memory. The address cache holds the memory address of the first
instruction of every configuration built by the dynamic detection hardware. It is used to
verify the existence of a configuration in the reconfiguration memory: an address cache
hit indicates that a configuration was found. The address cache is implemented as a 4-
way set associative table containing 64 entries. The reconfiguration memory stores the
routing bits and the necessary information to fire a configuration, such as the input and
output contexts and the immediate values.

Besides the two storage components explained before, the current DAP
implementation has a private 32 KB 4-way set associative L1 data cache and a private 8
KB 4-way set associative L1 instruction cache. According to our experiments, the same
hit rate is achieved by the SparcV8 in the DAP compared to the standalone SparcV8
using a quarter size of its 32KB L1 instruction cache. This happens because, as
translated instructions are stored in the reconfiguration memory, the SparcV8 within the
DAP has fewer memory accesses in the L1 instruction cache than the standalone
SparcV8 processor. Thus, the impact of the additional area of the address cache and the
reconfiguration memory in the DAP design is amortized.

Start New
Configuration

Check Data
Dependency

Check FU

Go to next
Column

Allocate

Break
Configuration

Is a supported
instruction?

No

Yes FU available?

Are there more
instructions?

No

Yes

Yes

Are there more
Columns?

No

Yes

No

68

69

5 RESULTS

This section presents the methodology and the results regarding the proposed
approach. Considering the results, first we show the comparison of CReAMS with a
multiprocessing system composed of in-order scalar SparcV8 processors, which
demonstrates the potential of the proposed approach. After, the impact of inter-thread
communication over both CReAMS and multiprocessing systems composed with
different number of processors is verified. In addition, a subsection is dedicated to show
the results where CReAMS is conceived as heterogeneous organization. Finally, we
compared the adaptability of CReAMS on exploiting ILP and TLP with a
multiprocessing system composed of 4-issue Out-Of-Order Superscalar SparcV8
processors.

5.1 Methodology

5.1.1 Benchmarks

In order to measure the performance and energy efficiency of CReAMS considering
a heterogeneous environment, benchmarks from different suites were selected to cover a
wide range of behaviors in terms of type (i.e. TLP and ILP) and degree of existing
parallelism. The scope is to mimic future complex embedded applications that will run
in portable devices. From the parallel suites (WOO, OHARA, et al., 1995) (BIENIA,
KUMAR, et al., 2008) (DORTA, RODRIGUEZ, et al., 2005), we have selected md,
jacobi and lu that are, due to their nature, applications where TLP is dominant. Three
SPEC OMPM2001 (DIXIT, 1993) applications (apsi, equake and ammp) were chosen
to evaluate the CReAMS efficiency over originally single–threaded applications that
were parallelized to take advantage of multiprocessing environments. Finally, we have
selected four applications (susan edges, susan smoothing, susan corners and patricia)
from the MiBench suite (GUTHAUS, RINGENBERG, et al., 2002), which reflects a
traditional embedded scenario.

The benchmarks were parallelized using OpenMP and POSIX threads. These
libraries provide methods that discover, at run time, the number of processors of the
underlying multiprocessor architecture, so they can take full advantage of the available
resources even when the platform changes (e.g. processors are added), with no need for
source code modifications and recompilation.

We have done a study over the selected applications to characterize their potential on
obtaining performance improvement when TLP or ILP exploration is applied. The mean
basic block size characteristic gives us some clues about the limits of instruction level
parallelism that the selected applications provide. In addition, the percentage of the

70

entire application code that are executed in parallel, when multithreaded application
environment is considered, is an important metric to obtain the actual thread level
parallelism available in the applications. This metric is also called load balancing.
Considering the mean size of the basic blocks, Table 3 shows that some applications
such as ammp, susan edges, susan corners and susan smoothing provide a wide room
for ILP exploitation. However, equake, jacobi, patricia and apsi do not show great
potential for performance improvement when ILP exploitation is applied due to their
small mean basic block sizes. In addition, the data provided in Table 3 demonstrate that
the selected workload is very heterogeneous in terms of load balancing, it contains
applications that have perfect load balancing, such as susan smoothing, jacobi and md,
being suitable for TLP exploitation. However, TLP exploitation is not appropriate for
some applications such as equake, ammp and apsi since their instructions are poorly
load balanced even when few threads are considered (4 threads).

Table 3. Load balancing and mean basic block size of the selected applications

5.1.2 Simulation Environment

For performance evaluation, we have used the scheme presented in Figure 33(a). In
the following subsections we show the details about the tools and the whole simulation
process.

5.1.2.1 Simics Simulator

The base platform is Simics (MAGNUSSON, CHRISTENSSON, et al., 2002), an
instruction level simulator. It was created a new Simics environment that comprises a
Linux Ubuntu operating system running over a single SparcV8 processor. The
applications shown above were compiled inside of this environment to allow the
simulation process. As OpenMP and Pthreads provide procedures that allow the choice
of the number of spawning at run-time, even with a single SparcV8 in the platform we
get simulations with different number of threads. Simics produces a sequential trace that
comprises the instructions and data accesses of all threads. As these instructions are
mixed in a single and sequential trace, there are marks at the beginning and the end of
each portion of code indicating what instructions belongs to which thread. The whole
Simics process reflects the box “Thread Trace/Tracker” of the Figure 33(a).

equake 4.80

apsi 6.86

ammp 14.56

susan_e 16.60

patricia 5.04

susan_c 17.36

susan_s 12.10

swaptions 5.92

blackscholes 4.83

md 6.51

jacobi 6.94

lu 8.32

12.40 6.20 1.09

81.20

99.00

83.24

97.02

56.77 29.35

98.00

98.00

89.87

93.12

7.03

99.00

99.00

88.92

92.07

18.49

17.45

39.80

22.75

67.58

88.20

64 threads

0.92

1.10

4.80

6.41

34.94

83.16

0.90

1.12

12.50

74.52

Mean BB size

(#instr)

27.35

4 threads 8 threads

9.20

5.10

4.80

16 threads

10.32

24.90

13.45

49.18

77.13

99.00 99.00

99.00

95.04

97.02

Benchmark
Load Balancing (%)

71

5.1.2.2 Splitter.py

The simulator explained above sends the sequential trace for a python script, named
as Splitter. This script is responsible for recognize the marks that informs what
instructions belongs to which thread splitting these instructions in several buffers that
contain instructions of each thread. In addition, this script is responsible for the dynamic
thread scheduling shown in the Section 5.4.

5.1.2.3 Mkfifo

As both Simics and Splitter communicate in a producer-consumer way, a first-in
first-out (FIFO) structure was inserted to achieve such communication. Mkfifo is a
UNIX process that manages automatically a FIFO behavior. Thus, when a FIFO is full
the producer (Simics) will stall and when a FIFO is empty the consumer (splitter.py)
will stall allowing the proper simulation. In addition, the buffers referred in the splitter
subsection are mkfifo processes, since their behaviors also reflects producer-consumer
process.

5.1.2.4 Dynamic Adapted Processor

There is one timing simulator for each DAP (in the case of the CReAMS simulation)
or for each standalone SparcV8 processor (when simulating the MPSparcV8). The
DAP consumes the instructions sent by the splitter for its correspondent buffer. Thus,
each DAP simulates the instructions of a unique thread (in case of static scheduling).
The DAP simulator implements synchronization mechanisms, such as locks and
barriers. This way, the time spent with blocking synchronization and memory transfers
is precisely calculated. DAP holds in a plain text file partial results about the
performance, communications among the threads, energy and power consumption of the
instructions executed between each barrier. Each DAP has its own plain text file. In
addition, the DAP simulator is available in C++ and comprises more than 5000 code
lines.

5.1.2.5 Backward

This process is activated in the end of the simulation. As the plain text file of each
DAP contains, for each thread, partial results about performance, energy and power
consumption of each barrier, the backward is responsible for joining these results
providing overall performance, energy and power consumption results of the whole
application simulation.

5.1.3 VHDL descriptions

We have described the entire CReAMS architecture in VHDL, including the power
management technique using Sleep Transistors. The MPSparcV8 VHDL description
was obtained from (GAISLER, 2006). The Synopsys Design and Power Compiler tools,
using a CMOS 90nm technology, were employed to synthesize the VHDL descriptions
to standard cell and gather data about power, operating frequency, critical path and area.
We use the data gathered from VHDL descriptions to calibrate the DAP cycle accurate
simulators to obtain the overall energy/power consumption.

We assume for all experiments a perfect switching off/on for the processing elements
of both CReAMS and MPSparcV8. It means that the processing elements do not
consume energy in idle times. The power consumption of the reconfiguration memory,

72

the address cache, L1 and L2 memory cache were obtained with the CACTI 6.5 tool
(WILTON e JOUPPI, 1996).

Figure 33. (a) Simulation Flow (b) How the synchronization process is done

5.1.4 How does the thread synchronization work?

Figure 33 (b) shows how the DAP cycle accurate simulators make the
synchronization process among the running threads. Let us suppose a dual DAP,
CReAMS platform executing two threads, where barriers are responsible for DAPs
synchronization. In our cycle accurate simulator, barriers are represented by “magic
instructions” that are inserted in the trace when software synchronization points are
executed in the binary code. Figure 33 (b) depicts the execution of two threads, the
white box represents a regular instruction and the gray box means a barrier in the trace.
As can be seen, there are three synchronization points in the example of the Figure 33.
Let us suppose that each regular instruction takes one DAP cycle to execute. Thread #1
takes four DAP cycles to reach the first barrier, while the thread #2 takes only one DAP
cycle. After that, the thread #1 takes 6 cycles to reach the synchronization point two,
while the thread #2 takes 4 DAP cycles. To get the third synchronization point, four and
twelve cycles are taken for the thread #1 and thread #2, respectively. These partial
performance results are stored by each DAP cycle-accurate simulator and joined when
the execution of both threads ends. Thus, the simulation environment only takes into
account, for the overall results, the longest thread execution time between barriers. In
the example of the Figure 33(b), the longest execution time until the synchronization
point one belongs to thread #1, which is also true for the second synchronization point.
However, the thread #2 has the longest execution time in the third synchronization
segment. The overall performance of the dual DAP CReAMS on executing the two
threads depicted in Figure 33(b) is 22 cycles.

Thread Tracer /Tracker
Th
re
ad

 #
1

splitter.py

DAP
#1

DAP
#2

DAP
#3

DAP
#4

Results Accounting

Th
re
ad

 #
2

Th
re
ad

 #
3

Th
re
ad

 #
4

A
p
p
li
ca
ti
o
n

In
st
ru
ct
io
n
s

Performance/Energy Instruction Barrier

1

1

2

2

3

3

Thread #1 Thread #2

(a) (b)

73

Figure 34. How the simulation handles synchronization from the software point of view

Figure 34 depicts how the simulation handles synchronization from the software

point of view. A simple example of how to parallelize an application with OpenMP
(MENON, 1998) is shown in the left side of the same Figure. The example works as
following. First, when the parallel region starts (line 5), each thread gets its thread
identification number. After, each thread prints a message on the screen showing its
thread identification number (Line 7). Finally, the master thread, th_id=0, prints the
amount of threads that have participated of the application execution. Before doing this
last printing, a barrier was inserted (line 8) to avoid the printing of this last message by
the master thread before the printing of the other thread identification messages. In this
case, threads that already reached the barrier will stay halted until that all threads arrive
in this synchronization point.

In the right side of the Figure 34 one can find how our simulation environment
handles the software barrier explained above. When a certain thread reaches a barrier,
the OpenMP library is accessed, so the procedure that processes the respective barrier is
called. In this way, we have modified this procedure by inserting an assembly
instruction in the C language, which we named as a “magic instruction”. When the DAP
cycle accurate simulator reaches this “magic instruction” a barrier is recognized
allowing the synchronization among threads to be accomplished.

It is important to point out that we consider speculative execution, it means that a
single configuration can contain up to 3 basic blocks. The speculative policy is based on
bimodal branch predictor [6]. For each level of the tree of basic blocks, the counter must
achieve the maximum or minimum value (indicating the way of the branch). In addition,
interruptions and traps are not considered, since our experiments do not run operating
system code.

5.1.5 Organization of this Chapter

The rest of this section is divided on four subsections that explore the main topics
discussed in this work. In the first subsection, we show the potential of CReAMS
employment comparing it against a multiprocessing system composed of simple
processor, named as MPSparcV8. In this part, we do not consider the communication
overhead provided by the applications. In the second subsection, we built the modeling
of the Network-on-Chip shown in Section 3.1.5 in both CReAMS and MPSparcV8.
Thus, we are able to explore different latency of the communication infrastructure to
highlight the need for mixed and adaptable parallelism exploitation when this aspect is
considered. In the third section, we present the heterogeneous CReAMS, where is

#include <omp.h>
#include <stdio.h>
int main (int argc, char *argv[]) {

int th_id, nthreads;
#pragma omp parallel private(th_id) {

th_id = omp_get_thread_num();
printf("Hello World from thread %d\n", th_id);
#pragma omp barrier
if (th_id == 0) {

nthreads = omp_get_num_threads();
printf("There are %d threads\n",nthreads);

}
}

return 0;
}

Modified OpenMP library

Thread #1

Instruction Barrier

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)

74

encapsulated, in a single die, DAPs with different capabilities on exploiting instruction
level parallelism. Finally, we present some studies comparing CReAMS against a
multiprocessing system composed of 4-issue out-of-order superscalar SparcV8
processors.

5.2 The Potential of CReAMS

In all experiments of this subsection, we have compared CReAMS to a

multiprocessing platform built by replication of standalone SparcV8 processors, named
MPSparcV8. The configurations of DAP and standalone SparcV8 processor used in this
evaluation are shown in Table 4. Both CReAMS and MPSparcV8 have an on-chip
unified 512 KB 8-way set associative L2 shared cache.

Table 4. The configuration of both basic processors

For the experiments, we have considered CReAMS setups with different number of

DAPs (4, 8, 16 and 64 DAPs). The same was done with the MPSparcV8 system (4, 8,
16 and 64 SparcV8s). Each DAP has a reconfigurable data path (Block 1 of the Section
4.1.2) composed of 6 arithmetic and logic, 4 load/store and 2 multipliers units per
column. The entire reconfigurable data path has 24 columns. A 48 KB reconfiguration
memory, implemented as a DRAM memory, is able to store up to 64 configurations.
The configurations are indexed by a 64-entries 4-way set associative Address Cache. As
already discussed in Section 4.1.4, the DAP has one quarter less L1 I-Cache accesses
than the SparcV8 processor. Thus, to avoid that the memory hierarchy bias the results in
our favor, we reduced to 8KB the size of the DAP L1 I-Cache to achieve the same miss
ratio in the main memory of the 32KB L1 I-Cache of the standalone SparcV8. In
addition, in all experiments the number of spawning threads is equal to the number of
DAPs available in the CReAMS platform.

In this subsection, as we wanted to present the potential of the proposed approach,
the inter-thread communication latency is overlooked. Since the baseline processors of
both multiprocessing systems could be connected through any communication
infrastructure, in this first part of results we disregarded it to avoid that a particular
approach bias our comparison. Next subsection presents results considering a mesh
Network on Chip as a communication infrastructure with different latencies.

Table 5. (a) Area (um2) of DAP and SparcV8 components

L1 I‐Cache L1 D‐Cache Pipeline Frequency

DAP 8KB 4‐Way 32KB 4‐Way 5‐Stages 600MHz

Standalone SparcV8 32KB 4‐Way 32KB 4‐Way 5‐Stages 600Mhz

Processors Area (um2) DAP SparcV8

SparcV8 processor 247,615 247,615

Reconfigurable Data Path 3,298,602 ‐

32KB 4‐Way L1 I‐Cache ‐ 483,303

8KB 4‐Way L1 I‐Cache 130,980 ‐

32KB 4‐Way L1 D‐Cache 483,303 483,303

48 KB Reconfiguration Memory 688,255 ‐

128 Entries 4‐Way Address Cache 19,473 ‐

Total 4,868,228 1,214,221

75

5.2.1 Considering the Same Chip Area

 Table 5 shows the area, in um2, of a standalone SparcV8 and a DAP, including
memories. As it can be seen, the area of a DAP design is almost four times bigger than
the standalone SparcV8 processor. For the first experiment, we wanted to compare the
performance and energy of MPSparcV8 and CReAMS considering the same chip area.
Hence, we have built two comparison schemes: “Same Area #1” (Table 6 (a)):
composed of 4 DAPs and 16 SparcV8 processors; and “Same Area #2” (Table 6 (b)):
composed of 16 DAPs and 64 SparcV8 processors.
Table 6. Area, in um2, of : (a) Same Area Chip scheme #1 (b) Same Area Chip scheme

#2

Table 7 shows the speedup obtained by MPSparcV8 and CReAMS over a standalone
SparcV8 processor for all applications. The data of this table elucidate the heterogeneity
of the selected applications in terms of instruction and thread level parallelism.
Focusing only on MPSparcV8 speedup, where only TLP is exploited, one can conclude
that md, jacobi, susan_e and susan_s contain massive thread level parallelism, since the
speedup increases linearly as the number of cores increases. However, when the
exploitation of instruction level parallelism is inserted by applying CReAMS,
performance improvements are demonstrated in such an applications. These results
reinforce the conclusion gathered from the analytical model in Section 3: even for high
TLP-based applications, there is a need for finer grain parallelism exploitation to
complement the TLP gains. When a huge amount of processors is available,
MPSparcV8 presents small performance improvement on executing the rest of the
applications, which supports CReAMS employment in a heterogeneous application
environment where there is a diversity of thread and instruction level parallelism.

Table 8 shows the execution time, in milliseconds, when running all benchmarks on
both platforms. Under the same table, one can find the indicative arrows comparing the
setups with the same area. As it can be seen, considering the “Same Area #1” scheme,
CReAMS outperforms MPSparcV8 in six benchmarks (equake, apsi, ammp, susan
edges, patricia and lu), even considering applications that contain massive TLP, such as
lu and susan edges. ammp is the one that benefits most from being executed on
CReAMS: it presents an execution time 41% smaller than MPSparcV8. This application
contains several synchronization points required to maintain data consistency among the
execution threads. In addition, as can be seen in Table 3, these synchronization points
are very load unbalanced, which affects the speedup when thread level parallelism
exploitation becomes more aggressive. In contrast, this application provides a wider
room for performance improvements when instruction level parallelism exploitation is
applied. As shown in Table 3, ammp has mean basic block size of 14.56 instructions,
which elucidates its data flow nature. In addition, this application also has few and well-
defined kernels that contribute for the acceleration offered by DAP.

(a) (b)

System Area

(um2)

CReAMS

4 DAPs

MPSparcV8

16 SparcV8

System Area

(um2)

CReAMS

16 DAPs

MPSparcV8

64 SparcV8

Processors 19,472,912 19,427,537 Processors 77,891,647 77,710,146

512KB L2 Cache 15,118,865 15,118,865 512KB L2 Cache 15,118,865 15,118,865

Total 34,591,777 34,546,402 Total 93,010,512 92,829,011

76

Table 7. Speedup provided by MPSparcV8 and CReAMS over a standalone single
SparcV8 processor

While ammp is the best application example for ILP exploitation and the worst for

TLP, jacobi is the opposite. Its execution time decreases linearly as the number of
processors increases when only TLP is applied, which means that their threads are
completely synchronized which provides a perfect load balancing as shown in Table 3.
Considering the instruction level parallelism exploitation, the small mean size of its
basic blocks restricts the room for optimization when this strategy is applied. In this
way, since the number of SparcV8 in the “Same Area #1” is four times bigger than
DAP, the MPSparV8 design outperforms in 2.7 times CReAMS execution. However,
considering all applications, CReAMS reduces the execution time by, on average, 36%
in the “Same Area #1” scheme.

Considering the “Same Area #2” scheme, the performance and energy gains provided
by CReAMS over MPSparcV8 are more evident than the “Same Area #1” setup. As the
number of cores increases, the level of TLP tends to stagnate. In this case, CReAMS
outperforms MPSparcV8 in seven benchmarks (equake, apsi, ammp, susan_e, susan_c,
patricia and lu). In this case, lu execution on CReAMS is 1.3 times faster in comparison
to MPSparcV8. However, as already explained, since susan smoothing, md and jacobi
have perfect load balancing among their threads (Table 3), the MPSparcV8 is faster than
CReAMS. However, even in cases of applications that have massive TLP with perfect
balance, the employment of CReAMS can be considered satisfactory since, as will be
show later, energy savings are obtained.

4SparcV8 8SparcV8 16SparcV8 64SparcV8 4DAPs 8DAPs 16DAPs 64DAPs

equake 1.57 1.74 1.86 1.93 2.11 2.34 2.48 2.58

apsi 1.59 1.77 1.87 1.92 2.02 2.25 2.37 2.43

ammp 1.42 1.51 1.58 2.02 2.69 2.95 3.15 4.38

susan_e 2.15 2.69 3.06 3.39 3.38 4.67 5.76 6.84

patricia 1.24 1.47 1.28 1.23 1.94 2.87 2.49 2.39

susan_c 2.98 4.60 6.29 8.77 4.59 7.77 11.90 19.88

susan_s 3.93 7.81 14.98 48.93 7.69 15.04 28.65 92.84

md 3.91 7.54 14.06 38.22 10.91 20.22 34.83 74.91

jacobi 3.92 7.78 15.24 50.97 5.57 11.00 21.41 69.74

lu 3.08 4.86 4.18 3.51 6.28 10.55 8.30 6.85

Average 2.58 4.18 6.44 16.09 4.72 7.97 12.13 28.28

Speedup

MPSparcV8 CReAMS

Same Area #1 Same Area #2 Same Peak Power Budget

77

Table 8. Execution time of MPSparcV8 and CReAMS

Table 9 and Table 10 show, respectively, the average power dissipation and energy
consumption of MPSparcV8 and CReAMS architectures. As can be seen in Table 10,
besides providing 41% lower execution time than MPSparcV8 in the “Same Area #1”
on running ammp, CReAMS also spends 32% less energy. As already explained,
MPSparcV8 is faster than CReAMS in 2.7 times when executing jacobi in the “Same
Area #1” scheme but it spends more energy. In this case, as can be seen in Table 9,
CReAMS provides a higher factor on reducing average power than MPSparcV8
provides in the execution time. In all applications, except patricia, CReAMS dissipates
less average power than MPSparcV8 in the “Same Area #1” scheme. In this particular
case, in patricia execution, the ILP exploitation process of CReAMS is not so energy
efficient, there are a huge amount of configurations fetched from the reconfiguration
memory. However, these configurations do not have significant performance gains on
instruction level parallelism exploitation to dilute the energy spent to access the
reconfiguration memory.

The main sources of CReAMS energy savings are:
 although more power is spent because of the DDH hardware and

reconfigurable data path, total average power is reduced (refer to Table 7)
since there are fewer memory accesses for instructions in the L1 instruction
cache. Once they were translated to a data path configuration, they will
reside in the reconfiguration memory. In addition, energy savings are also
obtained in a single instruction memory access since, as already discussed,
CReAMS has an instruction memory four times smaller than the
MPSparcV8;

 the reconfiguration strategy: considering the loop example of the Figure 9,
the data path is only reconfigured once to execute 98 loop iterations, thus
avoiding several accesses to reconfiguration memory;

4SparcV8 8SparcV8 16SparcV8 64SparcV8 4DAPs 8DAPs 16DAPs 64DAPs

equake 1501 1349 1267 1216 1113 1006 947 910

apsi 9070 8149 7693 7502 7111 6412 6066 5914

ammp 13632 12794 12206 9589 7197 6545 6139 4418

susan_e 218.2 174.4 153.0 138.3 138.6 100.3 81.4 68.5

patricia 138.0 116.2 134.0 139.8 88.3 59.7 68.8 71.7

susan_c 68.95 44.70 32.68 23.44 44.77 26.43 17.27 10.34

susan_s 815.8 410.3 214.0 65.5 416.8 213.2 111.9 34.5

md 1.001 0.519 0.278 0.102 0.359 0.194 0.112 0.052

jacobi 354.1 178.6 91.2 27.3 249.5 126.3 64.9 19.9

lu 0.741 0.470 0.545 0.650 0.363 0.216 0.275 0.333

MPSparcV8 CReAMS

Execution Time (in ms)

Same Area #1 Same Area #2 Same Peak Power Budget

78

 shorter execution time: as CReAMS accelerates the code, it provides less
energy consumption;

 the use of sleep transistors avoids that idle functional units spend
unnecessary power.

Table 9. Average Power consumption of MPSparcV8 and CReAMS

5.2.2 Considering the Power Budget

Current embedded systems have severe power constraints, since most of them are
battery dependent. This way, we have also evaluated the performance and energy of
both platforms considering a peak power budget of 3 Watts for both platforms, which is
limit value foreseen for the coming year batteries (SEMICONDUCTORS, 2009). The
peak power of the standalone SparcV8 is 385.14 mWatts, while the DAP consumes
699.33 mWatts. Therefore, we have compared the 8-SparcV8 MPSparcV8 against the 4-
DAP CReAMS setups, since both reach nearly 3 Watts of peak power. The
performance, power and energy results of both platforms that consider the peak power
budget scheme are linked by arrows under Table 7, Table 8, Table 9 and Table 10.

As can be seen in Table 8, CReAMS outperforms MPSparcV8 in seven benchmarks
(equake, apsi, ammp, susan_e, patricia, jacobi and lu). As in the Same Area schemes,
ammp is the application that benefits the most from CReAMS when the same peak
power budget is considered, achieving 43% shorter execution time and consuming 30%
less energy (Table 10) than the MPSparcV8. Although susan smoothing presents an
increasing on the execution time by only 1%, CReAMS spends 59% less energy than
the MPSparcV8 for that application. Energy savings are possible because, although the
peak power is the same in both architectures, CReAMS consumes lower average power
(refer to Table 9), mainly thanks to the use of sleep transistors to turn off idle functional
units of the reconfigurable data path. In addition, its energy efficient method of join
several ordinary instructions into a single data path configuration produces an

4SparcV8 8SparcV8 16SparcV8 64SparcV8 4DAPs 8DAPs 16DAPs 64DAPs

equake 130.0 167.5 178.5 231.9 136.5 172.8 180.7 179.2

apsi 130.9 156.4 171.8 182.7 125.8 149.4 163.7 153.1

ammp 106.0 135.3 139.4 139.4 105.3 146.6 152.9 152.9

susan_e 167.5 234.9 280.0 319.9 179.9 283.3 366.7 451.6

patricia 152.6 145.0 141.4 135.7 188.7 217.0 215.4 206.9

susan_c 216.6 407.2 587.6 841.7 257.4 538.3 871.5 1498.2

susan_s 266.2 608.5 1305.6 4350.1 239.9 548.7 1170.7 3917.5

md 281.3 633.3 1266.1 3671.8 516.0 1116.4 2063.7 4749.0

jacobi 279.9 647.9 1363.3 4855.5 279.1 643.8 1345.9 4671.7

lu 225.7 413.2 426.3 507.5 312.6 608.8 572.5 683.7

Average 195.7 354.9 586.0 1523.6 234.1 442.5 710.4 1666.4

Average Power (mW)

MPSparcV8 CReAMS

Same Area #1 Same Area #2 Same Peak Power Budget

79

advantageous tradeoff in replacing several instruction memory accesses by a single
reconfiguration memory access.

Table 10. Energy consumption of MPSparcV8 and CReAMS

5.2.3 Energy-Delay Product

We correlate the energy and the performance results of both platforms to make more
evident CReAMS efficiency. The energy-delay product is shown in Table 11. The
schemes with the same area are linked under this table. As explained in Section 5.2.1,
CReAMS on running ammp saves 32% of the energy consumption and improves in
41% the performance compared to the MPSparcV8 when the “Same Area #1” is
considered. Thus, CReAMS provides a reduction in the energy-delay product of a factor
of almost four on ammp execution.

The gains on energy and performance provided by the “Same Area #2” scheme are
greater than the first comparison shown above since the performance improvements,
when only TLP is explored, loses steam with the increasing on the number of
processors. In this case, CReAMS outperforms MPSparcV8 in seven benchmarks
(equake, apsi, ammp, susan_e, susan_c, patricia and lu). In this case, the execution of lu
in the CReAMS is 57% faster than in the MPSparcV8 and consumes 50% less energy
when the “Same Area #2” scheme is considered, which reflects in a energy delay
product reduction in the factor of five. As can be seen, the average reduction achieved
by CReAMS in energy-delay product is about 76% considering the same area chip
schemes.

4SparcV8 8SparcV8 16SparcV8 64SparcV8 4DAPs 8DAPs 16DAPs 64DAPs

equake 195.1 226.0 226.2 281.9 151.9 173.9 171.2 163.1

apsi 1187 1275 1322 1371 894 958 993 905

ammp 1445 1732 1701 1336 758 960 939 675

susan_e 36.55 40.98 42.83 44.25 24.94 28.41 29.85 30.95

patricia 21.05 16.85 18.95 18.97 16.67 12.94 14.81 14.83

susan_c 14.93 18.20 19.20 19.73 11.53 14.23 15.05 15.48

susan_s 217.1 249.7 279.5 285.0 100.0 117.0 131.0 135.3

md 0.282 0.329 0.353 0.376 0.185 0.216 0.232 0.248

jacobi 99.1 115.7 124.3 132.3 69.6 81.3 87.3 93.1

lu 0.167 0.194 0.232 0.330 0.113 0.132 0.157 0.227

Average 321.7 367.4 373.4 349.0 202.7 234.6 238.1 203.4

Energy (mJ)

MPSparcV8 CReAMS

Same Area #1 Same Area #2 Same Peak Power Budget

80

Table 11. Energy-Delay product of MPSparcV8 and CReAMS

As already explained, all but three (susan smoothing, md and jacobi) of the ten
benchmarks present better performance in the CReAMS than MPSparcV8 considering
the same chip area schemes. As can be noticed in Table 3, the threads of these three
exceptions have a perfect load balancing which produces almost linear speedup with the
increasing on the number of processors. However, even showing worst performance
than MPSparcV8, CReAMS provides reductions in the energy-delay product on
executing susan smoothing and md by 26% and 33%, respectively. Due to its massive
TLP and perfect load balancing, jacobi is the only application where CReAMS does not
provide gains neither in performance nor in energy considering the same chip area
schemes. Using the energy-delay product evaluation, we demonstrated the CReAMS
efficiency to dynamically adapt to the applications with different levels of parallelism,
providing gains in performance or/and in energy consumption.

5.3 The impact of Inter-thread Communication

Up to now, the results shown in the previous subsection overlook the overhead on
performance and energy consumption of the inter-thread communication. This
subsection aims at including a Network-on-Chip infrastructure in both multiprocessing
systems to demonstrate the impact of the communication latency over the results shown
in the previous subsection. For that, we use the modeling of the mesh-NoC presented in
the Section 3.1.5. We apply ݏܪݒ݃ܣ concept shown in the Section 3.1.5 to model the
latency of a single inter-thread communication. Since threads can be arbitrarily
allocated in the processors within the NoC, we applied the distributed and centralized
approach to explore the impact of different data distribution in the infrastructure. In
addition, to mimic a perfect communication approach, where there are only
communications among the neighbors processors, we create the Ideal scenario, where
the ݏܪݒ݃ܣ is equal to one. In addition, we assume that one hop takes one clock cycle
and the NoC is running at the same frequency of the processors (600 MHz). The

4SparcV8 8SparcV8 16SparcV8 64SparcV8 4DAPs 8DAPs 16DAPs 64DAPs

equake 293 305 287 343 169 175 162 149

apsi 10768 10386 10169 10282 6361 6143 6023 5355

ammp 19698 22155 20764 12814 5452 6282 5761 2984

susan_e 7.97 7.15 6.55 6.12 3.46 2.85 2.43 2.12

patricia 2.91 1.96 2.54 2.65 1.47 0.77 1.02 1.06

susan_c 1.0296 0.8134 0.6274 0.4624 0.5160 0.3761 0.2600 0.1600

susan_s 177.2 102.5 59.8 18.7 41.7 24.9 14.7 4.7

md 0.000282 0.000171 0.000098 0.000039 0.000066 0.000042 0.000026 0.000013

jacobi 35.1 20.7 11.3 3.6 17.4 10.3 5.7 1.9

lu 0.000124 0.000091 0.000127 0.000215 0.000041 0.000028 0.000043 0.000076

MPSparcV8 CReAMS

Energy‐Delay Product (J*1e‐3s)

Same Area #1 Same Area #2 Same Peak Power Budget

81

average number of hops of the distributed and centralized schemes was calculated as
follows:

Distributed ቐ
ݏܪ݃ݒܣ ൌ ଶ

ଷ
, 		݊݁ݒ݁	݄

ݏܪ݃ݒܣ ൌ 2 ቀ

ଷ
െ ଵ

ଷ
ቁ 		݀݀	݄				,

 Centralized ݏܪ݃ݒܣ ൌ మ

ାଵ

 Ideal ݏܪ݃ݒܣ ൌ 1

where ݄ ൌ √ܰ, being N the number of processor nodes.

Table 12 depicts the average number of hops for a single communication
considering the methodology presented above.

Table 12. Average number of hops for different multiprocessing systems

5.3.1 Considering the Same Chip Area

In the previous subsection, we compare CReAMS with the MPSparcV8 by using
two different scenarios: same area and same power budget. In this section, we follow
the same strategy, but now we should take into account the area occupied by the NoC
and its power consumption. Hence, we have used the same comparison schemes: “Same
Area #1” (Table 13 (b)): composed of 4 DAPs and 16 SparcV8 processors; and “Same
Area #2” (Table 13 (b)): composed of 16 DAPs and 64 SparcV8 processors. Small
changes have been done in the DAP configuration aiming at respecting the same chip
area. Now, each DAP is composed of 24 columns, each column has 5 arithmetic and
logic units, 3 load/store units and 2 multipliers. A 92 KB reconfiguration memory,
implemented as a DRAM memory, is able to store up to 128 configurations. The area of
both CReAMS and MPSparcV8 components are shown in Table 13 (a).

Table 14 shows the execution time of both CReAMS and MPSparcV8 platforms
when the designs, belong to the Same Area #1 scheme, are exposed to the
communication latency presented above. As can be seen, even when considering all
communication latency schemes (Ideal, Distributed and Centralized), CReAMS still
outperforming MPSparcV8 in six applications (equake, apsi, ammp, susan edges,
patricia and lu). However, the gains in performance showed by CReAMS over
MPSparcV8 increase from the previous subsection. When no communication latency is
considered, ammp presents 41% smaller execution time than MPSparcV8. Considering
the Same Area #1 and the Centralized schemes, performance improvements of
CReAMS over MPSparcV8 grows to 45%. For the rest of benchmarks referred above,
the gains on performance provided by CReAMS increases from 13%, 8%, 10%, 50% to
36%, 27%, 13%, 60%, in equake, apsi, susan edges and lu, respectively.

4 Proc 8 Proc 16 Proc 32 Proc 64 Proc

Distributed 1.33 1.88 2.66 3.77 5.33

Centralized 1.33 2.09 3.20 4.81 7.11

Ideal 1 1 1 1 1

Number of Hops

82

Table 13. (a) Area of DAP and SParcV8 components (b) Same Area #1 Scheme (c)
Same Area #2 scheme

Table 14. Execution time (in ms) considering the Same Area #1 scheme for CReAMS
and MPSparcV8

In cases where MPSparcV8 outperforms CReAMS (susan corners, susan
smoothing, md and jacobi), the communication latency affect more the former than the
latter. The increasing on the number of processors makes communication more
significant in the execution time. When the Centralized communication latency is
considered, the execution time of CReAMS approximates to MPSparcV8. This fact is
more evident in jacobi where performance gains of MPSparcV8 over CReAMS fall
from 2.76 to 2.32 only due to the communication overhead. jacobi spends 41.5% of its
execution time in data communication when 16-Core MPSparcV8 is considered, while
in the 4-DAP CReAMS this percentage falls to 22.6%. Thus, for some applications, as
shown in the previous section, TLP exploitation can provide performance improvements
when the number of processor increases, but the gains can be sorely affected by the
communication overhead. On average, the performance improvement of CReAMS over

Processors Area (um2) DAP SparcV8 System Area (um2)
CReAMS

4 DAPs

SparcV8 MP

16 SparcV8

SparcV8 processor 247,615 247,615 Processors 20,235,180 19,427,537

Reconfigurable Data Path 2,800,914 ‐ 512KB 8‐Way L2 Cache 15,118,865 15,118,865

32KB 4‐Way L1 I‐Cache ‐ 483,303 NoC Routers 113,884 455,536

8KB 4‐Way L1 I‐Cache 130,980 ‐ Total 35,467,929 35,001,938

32KB 4‐Way L1 D‐Cache 483,303 483,303

92 KB Reconfiguration Memory 1,376,510 ‐

128 Entries 4‐Way Address Cache
19,473 ‐

System Area (um2)
CReAMS

16 DAPs

SparcV8 MP

64 SparcV8

Total 5,058,795 1,214,221 Processors 80,940,718 77,710,146

512KB 8‐Way L2 Cache 15,118,865 15,118,865

NoC Routers 455,536 1,822,144

Total 96,515,119 94,651,155

(a)

(b)

(c)

16SparcV8

Ideal

16SparcV8

Distrib.

16SparcV8

Central.

4DAPs

Ideal

4DAPs

Distrib.

4DAPs

Central.

equake 1366.09 1530.97 1583.73 1041.21 1079.33 1079.33

apsi 8350.71 9446.73 9797.45 7398.40 7667.47 7667.47

ammp 12897.11 14384.21 14860.09 7942.10 8246.90 8246.90

susan_e 159.88 171.54 175.27 149.56 154.65 154.65

patricia 196.83 212.15 217.05 109.08 112.76 112.76

susan_c 34.84 38.43 39.59 51.19 53.54 53.54

susan_s 237.29 276.03 288.43 492.79 519.68 519.68

md 0.30 0.34 0.36 0.44 0.47 0.47

jacobi 102.96 122.67 128.97 290.52 304.57 304.57

lu 0.61 0.71 0.74 0.43 0.46 0.46

Total Ex. Time 23346.61 26183.78 27091.68 17475.73 18139.85 18139.85

MPSparcV8 CReAMS

Execution Time (in ms)

83

MPSparcV8 increases from 30% to 34% when the communication overhead is included
in the Same Area #1 scheme.

Table 15. Execution time (in ms) considering the Same Area #2 scheme for CReAMS
and MPSparcV8

Table 15 shows the execution time of the Same Area #2 scheme when the
communication latency is considered for both CReAMS and MPSparcV8. Since the
number of cores is larger in this comparison scheme, the communication overhead is
more evident than in the Same Area #1. Therefore, CReAMS presents higher
performance improvements over the MPSparcV8 in those applications where the TLP is
restricted and the portion of the communication in the execution time is significant.
Those are the cases of equake, ammp, apsi, susan edges, susan corners and lu where
CReAMS provides lower execution time than MPparcV8 by 75%, 56%, 1.1 times, 73%,
25% and 1.4 times, respectively. susan corners is the most appealing case, in the Same
Area #1 scheme MPSparcV8 outperforms CReaMS by 25%, but due to the
communication latency of the 64 cores of MPSparcV8, CReAMS turn around this
scenario and outperforms MPSparcV8 by 25%.

As can be noticed on comparing Table 14 and Table 15, the execution time of
equake, apsi, ammp, patricia and lu grows when the number of processors increases
from 16 to 64 when considering MPSparcV8. This fact supports the conclusions
presented by the Analytical Model in the Section 3.1.6, for some application the gains in
performance by increasing the number of processors (exploiting TLP) are smaller than
the overhead caused by the inter-thread communication for both Distributed and
Centralized schemes. Meaning that, there are some cases where is not worthwhile the
increasing on the number of processors, it is worth investing on more aggressive ILP
exploitation.

64SparcV8

Ideal

64SparcV8

Distrib.

64SparcV8

Central.

16DAPs

Ideal

16DAPs

Distrib.

16DAPs

Central.

equake 1309.44 1715.24 1881.72 860.26 1025.12 1077.87

apsi 8146.53 10940.09 12086.19 6277.66 7373.69 7724.42

ammp 12770.80 16750.42 18383.12 6718.75 8205.81 8681.68

susan_e 143.28 164.80 173.62 84.54 96.20 99.93

patricia 205.32 246.82 263.85 85.51 100.83 105.74

susan_c 24.35 28.47 30.29 19.30 22.90 24.05

susan_s 72.64 103.47 116.12 131.56 170.30 182.69

md 0.11 0.16 0.17 0.13 0.17 0.19

jacobi 32.07 53.05 61.66 75.70 95.41 101.72

lu 0.71 0.99 1.11 0.32 0.43 0.46

Total Ex. Time 22705.25 30003.51 32997.85 14253.74 17090.85 17998.75

MPSparcV8 CReAMS

Execution Time (in ms)

84

Table 16. Energy (in mJoules) considering the Same Area #1 for CReAMS and
MPSparcV8

Table 16 and Table 17 show the energy consumption of CReAMS and MPSparcV8
when the Same Area #1 and #2 are considered, respectively. The gains on energy
consumption provided by CReAMS over the MPSparcV8 are due to the same reasons
mentioned in the previous subsection. The power overhead introduced by the Network-
on-Chip is almost negligible in comparison with the power dissipated by the
computation. While a router of the NoC spends 11.7 mWatts (MATOS, CONCATTO,
et al., 2011) to transfer one package from a certain input to the target output, a SparcV8
consumes 385.14 mWatts and a DAP consumes 696.75 mWatts. The power
consumption of a DAP has a small variation from the previous subsection due to the
changes on its configuration. As mentioned earlier, we decrease the number of ALUs
and increase the number of slots in the reconfiguration memory aiming at respecting the
Same Area schemes.

However, when the Same Area #1 scheme is considered, CReAMS increases the
energy gains over the MPSparcV8 in comparison with the results where communication
is overlooked. Those are the cases of equake, apsi, ammp, patricia, md and lu where the
energy gains increases from 48.92%, 47.77%, 124.54%, 13.72%, 90.44%, 104.81% to
83.93%, 71.54%, 157.32%, 30.87%, 93.57%, 116.61%, respectively. CReAMS reduces
the overall energy consumption by 52% on running all benchmarks in the Same Area #1
scheme.

16SparcV8

Ideal

16SparcV8

Distrib.

16SparcV8

Central.

4DAPs

Ideal

4DAPs

Distrib.

4DAPs

Central.

equake 226.72 227.54 227.80 123.73 123.85 123.85

apsi 1324.78 1329.83 1331.44 775.34 776.16 776.16

ammp 1690.02 1695.68 1697.49 658.87 659.68 659.68

susan_e 42.93 43.09 43.14 28.95 28.98 28.98

patricia 19.22 19.26 19.27 10.74 10.75 10.75

susan_c 19.25 19.34 19.37 12.91 12.93 12.93

susan_s 280.14 281.30 281.67 115.20 115.39 115.39

md 0.35 0.35 0.35 0.18 0.18 0.18

jacobi 124.63 125.20 125.39 80.06 80.15 80.15

lu 0.24 0.24 0.24 0.11 0.11 0.11

Total Energy 3728.29 3741.83 3746.17 1806.08 1808.17 1808.17

MPSparcV8 CReAMS

Energy (in mJoules)

85

Table 17. Energy (in mJoules) considering the Same Area #2 for CReAMS and
MPSparcV8

The communication/computation ratio keeps constant with the increasing on the
number of processor for the following benchmarks: susan smoothing, patricia, md,
equake and apsi. This characteristic has a small increase, at most by 8%, in ammp,
jacobi and falls, at most by 7%, in susan corners, susan edges and lu. However, as a
single communication becomes more significant in our experiments by using different
data traffic schemes (Ideal, Distributed and Centralized), the overall communication
latency tends to produce a greater impact in the execution time. Moreover, as shown in
Table 12, the impact of a single communication grows as well as the number of
processors increases. Thus, the Same Area #2 scheme highlights the energy savings
provided by CReAMS, since the energy spent by the routers becomes much more
significant in 64-Processors MPSparcV8 than in 16-DAPs CReAMS. jacobi is the most
affected by inter-thread communication, the computation/communication ratio in this
benchmark is 17%, regardless of the number of processors. However, when the single
communication latency increases (emulated by the Ideal, Distributed and Centralized
scheme), this factor becomes significant in the overall execution time. For instance,
considering the jacobi benchmark emulating the Distributed traffic scheme applied to
the 64-Processor MPSparcV8, the inter-thread communication produces an overhead on
its original execution time (disregarding communication) of 94% and considering the
Centralized scheme by a factor of 1.2. On the other hand, when this application is
running at 16-DAP CReAMS platform, these percentages fall to 48% and 58%,
respectively. This means that, CReAMS spends 75% less energy than MPSparcV8, 51%
of energy savings comes from faster computation and 24% comes from communication
avoidance. On average, CReAMS achieves 96% of energy savings over MPSparcV8
when the Centralized Scheme and the Same Area #2 scheme are considered, 59% comes
from faster computation and 37% from communication avoidance.

64SparcV8

Ideal

64SparcV8

Distrib.

64SparcV8

Central.

16DAPs

Ideal

16DAPs

Distrib.

16DAPs

Central.

equake 282.63 285.64 286.87 140.69 141.51 141.77

apsi 1373.18 1387.57 1393.47 863.41 868.45 870.07

ammp 1750.25 1766.24 1772.80 810.10 815.76 817.57

susan_e 44.36 44.83 45.03 27.92 28.08 28.13

patricia 19.25 19.35 19.39 9.64 9.67 9.68

susan_c 19.79 20.03 20.12 12.89 12.98 13.01

susan_s 285.78 288.99 290.30 112.90 114.06 114.43

md 0.38 0.39 0.39 0.17 0.17 0.17

jacobi 132.83 135.01 135.90 76.51 77.08 77.27

lu 0.33 0.34 0.34 0.12 0.12 0.12

Total Energy 3908.79 3948.37 3964.61 2054.35 2067.89 2072.22

MPSparcV8 CReAMS

Energy (in mJoules)

86

5.3.2 Considering the Power Budget

Similar to the previous subsection, a power budget is used to compare the
performance and energy of both CReAMS and MPSparcV8, but now we consider the
power consumption of the Network-on-Chip. We built setups for both platforms that
spend 3 Watts. As the power consumption spent by a router (11.7 mW) is almost
negligible in comparison with the processors, 696 mW by a DAP and 385 mW by a
SparcV8, the number of processors of the previous comparison was maintained.

Table 18 shows the execution time of both CReAMS and MPSparcV8 when the
power budget of 3 Watts is considered. As can be seen, comparing Table 10 and Table
18, the gains provided by CReAMS over MPSparcV8 increase when the inter-thread
communication is introduced. The execution time of equake on both CReAMS and
MPSparcV8 grows 25% due to the inter-thread communication. However, such
increasing provides greater impact on the execution time of MPSparcV8 than CReAMS,
since when the inter-thread communication latency is disregarded, the latter achieves
21% smaller execution time than the former. Thus, considering inter-thread
communication, gains on performance shown by CReAMS over MPSparcV8 increase
to 44%. On average, CReAMS outperforms MPSparcV8 by 29% when inter-thread
communication is overlooked and by 33% when this characteristic is introduced in the
Same Power Budget scheme.

Table 18. Execution time (in ms) of both CReAMS and MPSparcV8 considering a
power budget

Table 19 depicts the energy consumption of CReAMS and MPSparcV8 by applying
the Same Power Budget scheme. For some benchmarks, the inter-thread communication
enlarges the gains of CReAMS over MPSparcV8. Those cases are: equake, apsi, ammp,
patricia, md and lu where CReAMS improves the energy saving over the MPSparcV8
from 48.77%, 42.50%, 128.57%, 1.07%, 77.64%, 31.10% to 83.28%, 64.98%,
163.55%, 16.16%, 80.16%, 102.71%, respectively. In other cases, reductions on the
energy savings by CReAMS over the MPSparcV8 occurred when the communication is
taken into account. However, it does not occur due to the inter-thread communication,

8SparcV8

Ideal

8SparcV8

Distrib.

8SparcV8

Central.

4DAPs

Ideal

4DAPs

Distrib.

4DAPs

Central.

equake 1451.45 1542.00 1562.85 1041.21 1079.33 1079.33

apsi 8854.87 9480.46 9624.57 7398.40 7667.47 7667.47

ammp 13726.69 14552.44 14742.66 7942.10 8246.90 8246.90

susan_e 184.20 192.88 194.88 149.56 154.65 154.65

patricia 170.49 177.43 179.03 109.08 112.76 112.76

susan_c 48.49 51.86 52.63 51.19 53.54 53.54

susan_s 453.58 491.88 500.70 492.79 519.68 519.68

md 0.57 0.61 0.62 0.44 0.47 0.47

jacobi 200.50 219.88 224.35 290.52 304.57 304.57

lu 0.61 0.67 0.68 0.43 0.46 0.46

Total Ex. Time 25091.46 26710.10 27082.97 17475.73 18139.85 18139.85

MPSparcV8 CReAMS

Execution Time (in ms)

87

the reason for such reduction is the size of the reconfiguration memory that was
modified. For the inter-thread communication comparison, a DAP has a reconfiguration
memory twice larger than previous subsection where the results do not consider such
characteristic. As those benchmarks produce a large amount of accesses in the
reconfiguration memory, and such accesses does not produce the required performance
improvement for fully amortizing the increasing on the power spent by the new
reconfiguration cache size, CReAMS becomes less energy efficient. However, on
average, when the inter-thread communication is considered, CReAMS spends 31% less
energy than disregarding such characteristics, it means 51.5% less energy consumption
than MPSparcV8.

Table 19. Energy (in mJoules) of both CReAMS and MPSparcV8 considering a power
budget

5.3.3 Energy-Delay Product

Table 20 shows the energy-delay product of both CReaMS and MPSparcV8
platforms for the Same Area #2 scheme. As can be seen, the conclusions remain the
same of the Table 11, when CReAMS outperforms MPSparcV8 in all but one
application, due to the perfect load balancing shown by jacobi. However, when the
communication is considered, CReAMS diminished the losses on the energy-delay
product on running such an application from 36% to only 6%. The rest of applications
also provide better energy-delay product that increases, on average, from 81% to 88%
better than the MPSparcV8 for the Same Area #2 scheme.

8SparcV8

Ideal

8SparcV8

Distrib.

8SparcV8

Central.

4DAPs

Ideal

4DAPs

Distrib.

4DAPs

Central.

equake 226.48 226.90 227.00 123.73 123.85 123.85

apsi 1277.42 1279.92 1280.49 775.34 776.16 776.16

ammp 1734.87 1737.86 1738.55 658.87 659.68 659.68

susan_e 41.06 41.14 41.16 28.95 28.98 28.98

patricia 17.08 17.10 17.10 10.74 10.75 10.75

susan_c 19.77 19.81 19.82 12.91 12.93 12.93

susan_s 250.26 250.77 250.88 115.20 115.39 115.39

md 0.33 0.33 0.33 0.18 0.18 0.18

jacobi 116.02 116.28 116.34 80.06 80.15 80.15

lu 0.22 0.22 0.22 0.11 0.11 0.11

Total Energy 3683.52 3690.32 3691.89 1806.08 1808.17 1808.17

Energy (in mJoules)

MPSparcV8 CReAMS

88

Table 20. Energy-Delay product of MPSparcV8 and CReAMS considering the Same
Area #2 scheme

Table 21. Energy-Delay product of MPSparcV8 and CReAMS considering the power
budget

Table 21 shows the energy delay product when the power budget scheme is applied
for both CReaMS and MPSparcV8 considering the inter thread communication latency.
As can be seen on comparing Table 21 and Table 11 that inter-thread communication
changes the conclusions over the energy delay product measurements. When the inter-
thread communication is considered, CReAMS achieves better results in all
benchmarks. As mentioned before, inter-thread communication sorely affects the
execution time of jacobi, so CReAMS achieves better energy-delay product by 2% and
6% considering the distributed and centralized scheme, respectively. Hence, one can

64SparcV8

Ideal

64SparcV8

Distrib.

64SparcV8

Central.

16DAPs

Ideal

16DAPs

Distrib.

16DAPs

Central.

equake 370 490 540 121 145 153

apsi 11187 15180 16842 5420 6404 6721

ammp 22352 29585 32590 5443 6694 7098

susan_e 6.36 7.39 7.82 2.36 2.70 2.81

patricia 3.95 4.78 5.12 0.82 0.98 1.02

susan_c 0.48 0.57 0.61 0.25 0.30 0.31

susan_s 20.76 29.90 33.71 14.85 19.42 20.90

md 0.00004 0.00006 0.00007 0.00002 0.00003 0.00003

jacobi 4.26 7.16 8.38 5.79 7.35 7.86

lu 0.00024 0.00033 0.00037 0.00004 0.00005 0.00006

Total EDP 33944.64 45305.14 50026.81 11008.12 13273.46 14004.35

EnergyDelay

MPSparcV8 CReAMS

8SparcV8

Ideal

8SparcV8

Distrib.

8SparcV8

Central.

4DAPs

Ideal

4DAPs

Distrib.

4DAPs

Central.

equake 329 350 355 129 134 134

apsi 11311 12134 12324 5736 5951 5951

ammp 23814 25290 25631 5233 5440 5440

susan_e 7.56 7.93 8.02 4.33 4.48 4.48

patricia 2.91 3.03 3.06 1.17 1.21 1.21

susan_c 0.96 1.03 1.04 0.66 0.69 0.69

susan_s 113.51 123.35 125.62 56.77 59.97 59.97

md 0.00019 0.00020 0.00020 0.00008 0.00009 0.00009

jacobi 23.26 25.57 26.10 23.26 24.41 24.41

lu 0.00014 0.00015 0.00015 0.00005 0.00005 0.00005

Total EDP 35602.35 37935.06 38473.57 11184.04 11615.88 11615.88

EnergyDelay

MPSparcV8 CReAMS

89

conclude that for the whole spectrum of application behaviors, even for high parallel
applications, with almost perfect load balancing, CReAMS achieves either better
performance or less energy consumption, and produces lower energy-delay product than
MPSparcV8 when a power budget of 3 Watts is applied.

5.4 Heterogeneous Organization CReAMS

In this subsection we show the results considering CReAMS as heterogeneous
organization. First, the methodology used to gather data about heterogeneity is shown.
After, the same schemes applied in the previous sections are employed here to compare
the performance, area, power and energy consumption of homogeneous versus
heterogeneous CReAMS.

5.4.1 Methodology

We build three DAP configurations’, named as Small, Medium and Large, aiming at
comparing the performance, area, energy and power consumption of both homogeneous
and heterogeneous CReAMS, Table 22 (a) shows the number of components that
composes each DAP. For the sake of the comparison, we refer to a homogeneous
CReAMS design composed of small DAPs as HomoSmall CReAMS. The same
terminology is used for Medium and Large CReAMS, so they are referred as
HomoMedium and HomoLarge, respectively. For instance, a CReAMS composed of
four small DAPs is referred as 4-HomoSmall CReAMS. Considering the exploitation of
the design space of the heterogeneous organization, we encapsulate in the same chip the
three DAP configurations to provide different levels of instruction level parallelism
exploitation. Table 22 (b) shows the percentage of Small, Medium and Large DAPs that
compose each heterogeneous CReAMS. For instance, 50% of the DAPs that compose
the HeteroSmall CReAMS are SmallDAPS, 25% are MediumDAPs and 25% are
LargeDAPs. Thus, If one would build a HeteroSmall CReAMS composed of eight
DAPs, four of them would be SmallDAPs, two MediumDAPs and two LargeDAPs,
and this configuration is named as 8-HeteroSmall CReAMS.

Table 22. (a) Different DAPs sizes (b) Percentage of DAPs that composes each
Heterogeneous CReAMS

Table 23 (a) depicts the area occupied by each component that composes the three
DAP configurations. As can be seen, the data path and the reconfiguration memory are
larger components. Particularly, the size of the reconfiguration memory grows due to
the increasing on the number of functional units (refer to Table 22(a)) and to the
enlargement on the number of slots to store configurations. Table 23 (b) shows the area
occupied by the homogeneous and heterogeneous CReAMS designs. As can be seen,
the area of N-DAP HeteroLarge CReAMS is almost the same of 2N-DAP HomoSmall
CReAMS, where N is the baseline amount of DAPs. Thus, these configurations produce
the Same Area #1 scheme. With this scheme, we wanted to provide some clues about
which multiprocessing system is worth, those that are composed of larger number of
DAPs that slightly explore ILP in a homogeneous fashion, or those that are composed of

SmallDAP MediumDAP LargeDAP %SmallDAP %MediumDAP %LargeDAP

Number of Columns 9 15 24 HeteroSmall CReAMS 50 25 25

Number of ALU per Column 3 4 5 HeteroMedium CReAMS 25 50 25

Number of LD/ST per Column 2 2 3 HeteroLarge CReAMS 25 25 50

Number of Multipliers per Column 1 2 2

Reconfiguration Memory Slots 32 64 128

Input Context Size 8 12 24

(a)

(b)

90

a smaller number of DAPs and explore the ILP in a heterogeneous fashion. On the other
hand, we can notice in Table 23 (b) that the 2N-DAP HeteroSmall CReAMS has similar
area of the N-DAP HomoLarge CReAMS, these configurations compose the Same Area
#2 scheme. This scheme reflects quite the opposite of the Same Area #1, since now we
wanted to verify if it is more efficient the coupling of a large number of DAPs with
heterogeneous ILP exploitation or a small number of DAPs with an aggressive ILP
exploitation. Figure 35 depicts an example of Same Area #1 and Same Area #2
comparison schemes with N equal to four.

Table 23. (a) Area of the components of the different DAP sizes (b) Area of the
Homogeneous and Heterogeneous CReAMS setups

Figure 35. Example of Same Area #1 (left) and Same Area #2 (right) comparison
schemes

Figure 36 shows the performance of N-DAP HeteroLarge CReAMS by applying the
Same Area #1 scheme. The data provided in this figure is normalized to the
performance of the 2N-DAP HomoSmall CReAMS. Thus, speedups and slowdown of
2N-DAP HomoSmall CReAMS over its respective homogeneous CReAMS is given by
numbers greater and smaller than one, respectively. As can be seen in this Figure, the
heterogeneous CReAMS outperforms the homogeneous platform in those applications
where there is a lack of thread level parallelism and room for instruction level
parallelism exploitation. equake and apsi, which present such behaviors, are the most
benefited from heterogeneity by achieving 22% and 10% of performance improvement
considering the same area designs and N equal to four. Moreover, as N increases such
improvement increases as well due to the growth on the number of Large DAPs that
explore ILP aggressively. When N is equal to 32, the heterogeneous outperforms the
homogeneous CReAMS by 48% and 27% on running equake and apsi, respectively.

On the other hand, applications that provide a massive thread level parallelism do
not perform better in heterogeneous CReAMS, since to respect the same area schemes,
such designs contain half the number of DAPs. Heterogenous CReAMS shows a
slowdown of 53% over the homogeneous platform on running jacobi, susan smoothing
and md. As already explained before, these applications have perfect load balancing and
linearly improve their performance with the increasing on the number of DAPs. It is
difficult to reach linear performance improvement by applying any instruction level
parallelism exploitation and providing an area overhead by a factor of two.

Processors Area (um2) SmallDAP MediumDAP LargeDAP Area (um2) 4 DAPs 8 DAPs 16 DAPs 32 DAPs 64 DAPs

SparcV8 processor 247,615 247,615 247,615 HomoSmall 6,671,311 13,342,621 26,685,242 53,370,485 106,740,969

Reconfigurable Data Path 618,488 1,439,516 2,800,914 HomoMedium 11,118,070 22,236,140 44,472,281 88,944,561 177,889,122

8KB 4‐Way L1 I‐D‐Cache 614,283 614,283 614,283 HomoLarge 20,401,802 40,803,603 81,607,206 163,214,413 326,428,826

Reconfiguration Memory 185,997 430,159 1,389,695 HeteroLarge 14,648,246 29,296,492 58,592,984 117,185,968 234,371,936

4‐Way Address Cache 4,868 9,737 19,473 HeteroMedium 12,327,313 24,654,626 49,309,253 98,618,505 197,237,010

Total 1,671,251 2,741,310 5,071,979 HeteroSmall 11,215,623 22,431,246 44,862,493 89,724,986 179,449,972

(a) (b)

Large

Medium Small

Large
Small Small Small

Small Small Small

Small Small

Large
Medium

Small

Large

Medium

Small

Large

LargeLarge

Large

Same Area #1 Same Area #2

SmallSmall

91

susan corners shows a irregular behavior on running at heterogeneous CReAMS
organization. Up to N equal to sixteen, homogeneous outperforms heterogeneous
CReAMS when the Same Area #1 scheme is applied. However, when N is equal to 32
the heterogeneity achieves 20% of performance improvement over the homogeneous
CReAMS. The sudden drop of the load balancing that occurs from 32 to 64 threads
gives this gain. Thus, as some of the 64-Core HomoSmall CReAMS become idle and
the working DAPs do not push up the performance by exploiting ILP, the 32-Core
HeteroLarge achieves better execution time. The performance of patricia and lu follows
the same behavior of susan corners, but the sudden drop of the load balancing starts
with smaller number of threads. When N is equal to 8, heterogeneous organization
shows a performance improvement of 27% and 23% over the homogeneous CReAMS
on running lu and patricia. The gains on performance provided by heterogeneity
increase to 58% in lu when N increases to 32, since its load balancing keeps dropping in
the same pace as the number of DAPs grows. However, quite the opposite occurs in
patricia execution, the gains provided by heterogeneous CReAMS falls up to 5% when
N is equal to 32. The performance improvement provided by only exploiting TLP is
irregular in this benchmark, when the number of threads increases from 4 to 8
performance gains are shown. Thus, when 4-DAPs HeteroLarge is compared to 8-Core
HomoSmall, the TLP exploitation of 8 DAPs provides larger gains than ILP. However,
when the number of threads becomes in between 8 and 64, a significant load
unbalancing occurs and the execution time increases in comparison with 8 threads. The
losses on performance occur at the same pace as the number of threads grows. Thus,
TLP loses steam and heterogeneous ILP provided by CReAMS achieves larger
performance improvement.

Figure 36. Relative Performance of HeteroLarge over HomoSmall CReAMS
considering the SameArea #1 scheme

Figure 37 shows the relative energy consumption of N-DAP HeteroLarge over 2N-
DAP HomoSmall. As can be seen, heterogeneous setups spend less energy than
homogeneous CReAMS. Table 24 (a) shows the Thermal Design Power (TDP) of the

0.4

0.6

0.8

1.0

1.2

1.4

1.6

ja
co
b
i

su
sa
n
_
c

su
sa
n
_
s

su
sa
n
_
e

p
at
ri
ci
a

m
d lu

e
q
u
a
ke

a
m
m
p

ap
si

4‐Core HeteroLarge vs 8‐Core HomoSmall 8‐Core HeteroLarge vs 16‐Core HomoSmall

16‐Core HeteroLarge vs 32‐Core HomoSmall 32‐Core HeteroLarge vs 64‐Core HomoSmall

R
e
la
ti
ve

P
e
rf
o
rm

an
ce

H
e
te
ro
ge
n
e
o
u
s
 G
ai
n
s

92

different DAPs configurations. Table 24 (b) presents the TDP of CReAMS conceived as
heterogeneous and homogeneous organizations. Considering the Same Area #1 scheme,
Table 24 (b) shows that the TDP of the N-DAP HeteroLarge CReAMS is 78% lower
than 2N-DAP HomoSmall design. Thus, even showing 45% larger execution time than
the homogenous CReAMS when running jacobi, the heterogeneous design achieves 5%
of energy savings due to the lower power consumption.

Table 24. (a) Thermal Design Power (TDP) of DAP configurations (b) TDP of
heterogeneous and homogeneous CReAMS

As shown in Section 5.2.1, CReAMS shows energy savings by avoiding fetches of
instructions in the main memory. Thus, as DAP becomes larger, more instructions are
packaged in a single configuration and more energy savings is produced. lu is the most
benefited from this characteristic, when N is equal to 4, the heterogeneous design spend
13% less energy than homogeneous CReAMS. Besides showing 59% lower execution
time on running lu when N grows to 32, the heterogeneous organization also reduces by
37% the energy consumption in comparison with homogeneous CReAMS. On the other
hand, md is the most harmed application by using heterogeneous CReAMS, its
execution time increases 44%. However, 22% of energy savings are shown by replacing
homogeneous CReAMS for heterogeneous considering designs with same areas, which
reinforces the feasibility of the employment of heterogeneous CReAMS for embedded
domain. For the Same Area #1 scheme and considering all applications, N-DAP
HeteroLarge CReAMS outperforms 2N-DAP Homogeneous CReAMS by 4% and
spends 5% less energy consumption.

DAP TDP (mWatts) TDP (mWatts) 4 DAPs 8 DAPs 16 DAPs 32 DAPs 64 DAPs

Small 532.86 HomoSmall 2,131 4,263 8,526 17,051 34,103

Medium 604.78 HomoMedium 2,419 4,838 9,676 19,353 38,706

Large 696.75 HomoLarge 2,787 5,574 11,148 22,296 44,592

HeteroLarge 2,531 5,062 10,125 20,249 40,498

HeteroMedium 2,439 4,878 9,757 19,513 39,027

HeteroSmall 2,367 4,734 9,469 18,938 37,876

(a)

(b)

93

Figure 37. Relative Energy Consumption of HeteroLarge over HomoSmall CReAMS
considering the Same Area #1 scheme

Figure 38 shows the relative performance of the 2N-DAP HeteroSmall over N-DAP
HomoLarge reflecting the Same Area #2 scheme. This scheme proposes a reverse
comparison to the one that was done in the Same Area #1. Now, we wanted to verify the
feasibility of heterogeneity where most of DAPs are not be able to explore aggressively
instruction level parallelism (refer to Figure 35). Thus, in comparison with the Same
Area #1 scheme, here we diminished the capability of exploiting ILP and increased the
TLP in the heterogeneous CReAMS. On the other hand, we decrease the TLP and
increase the ILP in the homogeneous CReAMS target to the comparison. As can be
seen in Figure 38, the TLP oriented applications, such as jacobi and susan smoothing,
where in the Same Area #1 scheme are not benefit from heterogeneity, here show the
opposite. The 2N-DAP HeteroSmall outperforms N-DAP HomoLarge in these
applications, since the larger number of DAPs in the heterogeneous design provides
better performance than the aggressive ILP exploitation available in the HomoLarge.

Applications from SPEC OMP2001 (apsi, equake and ammp) present neither TLP
nor ILP available in a massive degree. The behavior of SPEC OMP2011 applications
represents the huge amount of sequential application already available in the market.
Therefore, these applications reflect the difficult work to split already written code in
threads, since they should be parallelized in threads over an existing sequential code.
The heterogeneity provides better performance on those applications in both Same Area
#1 and Same Area #2 schemes. It means that neither few cores with aggressive ILP
exploitation nor many cores with tiny ILP exploitation in a homogeneous fashion are
suitable for these applications. They demand a heterogeneous organization to give
aggressive ILP exploitation for those threads that request it, and some cores to execute
the parallel portion of their codes.

0.8

0.9

1.0

1.1

1.2

1.3

1.4

ja
co
b
i

su
sa
n
_c

su
sa
n
_s

su
sa
n
_e

p
at
ri
ci
a

m
d lu

e
q
u
ak
e

am
m
p

ap
si

4‐Core HeteroLarge vs 8‐Core HomoSmall 8‐Core HeteroLarge vs 16‐Core HomoSmall

16‐Core HeteroLarge vs 32‐Core HomoSmall 32‐Core HeteroLarge vs 64‐Core HomoSmall
R
e
la
ti
ve

En
e
rg
y
C
o
m
su
n
p
ti
o
m

H
e
te
ro
ge
n
e
o
s
 S
av
in
gs

94

Figure 38. Relative Performance of HeteroLarge over HomoSmall CReAMS
considering the Same Area #2 scheme

Figure 39 depicts the energy consumption of both 2N-DAP HeteroSmall and N-
DAP HomoLarge. Comparing this Figure with Figure 37, one can notice that the energy
savings provided by the heterogeneity in the Same Area #1 scheme overturn in losses
when the Same Area #2 scheme is considered. The TDP of 2N-DAP HeteroSmall is
69% bigger than the N-DAP HomoLarge (refer to Table 24 (b)). Thus, even achieving,
on average, an execution time 52% lower on running jacobi, the heterogeneous
CReAMS spends 10% more energy than the homogeneous design due to its bigger
TDP. For all applications, the heterogeneous CReAMS design decreases 4% of the
execution time dissipating 7% more energy.

Figure 40 shows the relative Energy-Delay Product of Heterogeneous CReAMS
organization over the homogeneous design when the Same Area #1 and #2 are
considered. Analyzing this Figure, one can notice that the heterogeneity of the Same
Area #1 scheme provides gains in the EDP metric. For instance, the heterogeneity
reduces the EDP by a factor of 2.2 and 1.9 on running of lu and equake when the Same
Area #1 scheme is considered. On average, considering all setups and applications, the
heterogeneous CReAMS reduces 10% the EDP considering the Same Area #1 scheme.
However, in the Same Area #2 scheme the heterogeneity increases the EDP in 4%.
Thus, one can conclude that, for the applications considered in our experiments, it is
mandatory building CReAMS as heterogeneous organization to achieve better energy
delay product, but most of DAPs should have an aggressive ILP exploitation (Same
Area #1).

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

ja
co
b
i

su
sa
n
_
c

su
sa
n
_
s

su
sa
n
_
e

p
at
ri
ci
a

m
d lu

eq
u
ak
e

am
m
p

ap
si

8‐Core HeteroSmall vs 4‐Core HomoLarge 16‐Core HeteroSmall vs 8‐Core HomoLarge

32‐Core HeteroSmall vs 16‐Core HomoLarge 64‐Core HeteroSmall vs 32‐Core HomoLarge

H
e
te
ro
g
en

e
o
u
s
 G
ai
n
s

R
el
at
iv
e
P
e
rf
o
rm

an
ce

95

Figure 39. Relative Energy Consumption of HeteroLarge over HomoSmall CReAMS
considering the Same Area #2 scheme

Figure 40. Relative Energy-Delay Product of HeteroLarge over HomoSmall CReAMS
considering the Same Area #1 and #2 schemes

Up to now, all results shown in this subsection consider that the threads are statically
schedule in the DAPs meaning that once a thread starts running in a DAP, that thread
will end its execution in the same DAP. However, such an approach is not suitable
when heterogeneous organization is applied, since a certain thread that needs greater
ILP exploitation could be scheduled in a Small DAP, which could affect the overall
performance. Dynamic scheduling is employed to verify if the performance degradation
occurred on applying heterogeneity shown in Figure 36 and Figure 38 is due to the
poorly thread scheduling performed. The lightweight context switch when a changing
on the scheduling occurs is an advantage provided by CReAMS. The configurations
stored in the reconfiguration memory of the DAP do not migrate, since threads share the
same memory address space and the configurations are indexed by the memory address
of the first instruction, they can take advantage of the configurations built by other
threads.

0.6

0.7

0.8

0.9

1.0

1.1

1.2

ja
co
b
i

su
sa
n
_
c

su
sa
n
_
s

su
sa
n
_
e

p
at
ri
ci
a

m
d lu

eq
u
ak
e

am
m
p

ap
si

8‐Core HeteroSmall vs 4‐Core HomoLarge 16‐Core HeteroSmall vs 8‐Core HomoLarge

32‐Core HeteroSmall vs 16‐Core HomoLarge 64‐Core HeteroSmall vs 32‐Core HomoLarge
R
e
la
ti
ve

En
e
rg
y
C
o
m
su
n
p
ti
o
m

H
et
er
o
g
en

eo
u
s
 S
a
vi
n
gs

0.5

0.7

0.9

1.1

1.3

1.5

1.7

ja
co
b
i

su
sa
n
_c

su
sa
n
_s

su
sa
n
_e

p
at
ri
ci
a

m
d lu

e
q
u
ak
e

am
m
p

a
p
si

8‐Core HeteroSmall vs 4‐Core HomoLarge 16‐Core HeteroSmall vs 8‐Core HomoLarge

32‐Core HeteroSmall vs 16‐Core HomoLarge 64‐Core HeteroSmall vs 32‐Core HomoLarge

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

ja
co
b
i

su
sa
n
_c

su
sa
n
_s

su
sa
n
_e

p
at
ri
ci
a

m
d lu

e
q
u
ak
e

am
m
p

a
p
si

4‐Core HeteroLarge vs 8‐Core HomoSmall 8‐Core HeteroLarge vs 16‐Core HomoSmall

16‐Core HeteroLarge vs 32‐Core HomoSmall 32‐Core HeteroLarge vs 64‐Core HomoSmall

R
e
la
ti
ve

En
e
rg
y‐
D
e
la
y
P
ro
d
u
ct

H
e
te
ro
ge
n
e
o
s
 S
av
in
gs

SameArea #1 SameArea #2

96

The algorithm developed for the scheduling contains instruction counters for each
thread and decides, based on this data, the best thread scheduling. The changing on the
scheduling is performed when all threads reach a certain barrier. In this moment, the
algorithm schedules, to those DAPs that have aggressive ILP exploitation, threads
which ran the largest number of instructions since the last barrier. The main goal of this
exploitation is not employ the best scheduling algorithm, but it is verify if performance
losses provided by the heterogeneous CReAMS are due to wrong thread scheduling.

Figure 41. Relative Speedup of Dynamic over the Static Thread Scheduling considering
the Same Area #1 scheme

Figure 41 shows the relative performance of the dynamic scheduling scheme in
comparison with the static approach when the Same Area #1 is considered. The main
purpose of using OpenMP is parallelizing loop iterations. In general, when OpenMp is
applied, each loop iteration becomes a thread. For instance, let us assume a certain
application where loops are completely data flow, it means that no branch is used in the
body of the loop, all threads will execute the same code. The implementation of the FIR
filter (refer to Figure 27) reflects this behavior. In this scenario, if the DAP that presents
lowest capability of exploiting ILP already achieves the maximum gains on exploiting
the parallelism of the loop body, dynamic scheduling would not produce any
performance improvement. As can be seen, susan smoothing, equake and apsi does not
present any changes on their performance on applying the dynamic scheduling
algorithm due to the fact mentioned before.

On the other hand, one can notice that susan corners achieves performance
improvement by applying dynamically scheduling. Analyzing Figure 36, one can
conclude that there is no reason for 16-DAP HeteroLarge provides worst performance
than 32-DAP HomoSmall on running susan corners, since as shown in Table 3, this
application has large room for ILP exploitation and small room for TLP exploitation.
Figure 41 shows that the reason for the performance losses demonstrated by
heterogeneous CReAMS on running this application (Figure 36) are due to wrong
thread scheduling. Performance losses of 3% on running this application in 8-DAP

0.8

0.9

1.0

1.1

1.2

ja
co
b
i

su
sa
n
_c

su
sa
n
_
s

su
sa
n
_e

p
at
ri
ci
a

m
d lu

eq
u
ak
e

am
m
p

ap
si

4‐Core HeteroLarge 8‐Core HeteroLarge 16‐Core HeteroLarge 32‐Core HeteroLarge

D
yn
am

ic

G
ai
n
s
o
ve
r
St
at
ic

R
e
la
ti
ve

P
e
rf
o
rm

an
ce

97

HeteroLarge CReAMS become performance improvement of 13% over 16-DAP
HomoSmall CReAMS when the dynamic scheduling is applied. The slowdown
provided by 32-DAP HeteroLarge of 36% on running md is reduced to 30% by only
scheduling dynamically its threads. As the algorithm used in dynamic scheduling is
naïve, it produces performance losses for some applications, such as lu and susan edges,
which emphasize our hypothesis to the need for a dynamic scheduling when using
heterogeneous organizations together with a mixed application workload.

Figure 42. Relative Speedup of Dynamic over the Static Thread Scheduling considering
the Same Area #2 scheme

Figure 42 shows the impact of dynamic scheduling in the Same Area #2 scheme. As
occurred in the Same Area #1, dynamic scheduling does not produce any changes for
some applications due to the same reasons mentioned before. susan corners and md
benefit from the dynamic scheduling also in the Same Area #2 reinforcing to the need
for a dynamic scheduling. Which also support our belief is the behavior of lu, ammp and
susan edges in this Figure, as the dynamic algorithm produce some wrong scheduling,
the performance of these applications are sorely affected since their threads are very
heterogeneous in terms of need for ILP exploitation.

5.5 CReAMS versus Out-Of-Order Superscalar SparcV8

Up to now, we have compared CReAMS against single-issue SparcV8
multiprocessing systems. Here, we wanted to verify the feasibility of CReAMS in
comparison with a state-of-the-art processor in terms of ILP exploitation. Therefore, we
coupled a simulator of an Out-Of-Order SparcV8 processor (KAVVADIAS, 2001) in
the framework presented in Figure 33(a). For that, some modifications in the way that
the instructions are decoded and the results are generated were necessary to couple such
simulator in our framework.

As there is no hardware implementation of a 4-issue OOO SparcV8 processor
available in the market, we gathered data about performance in our framework based on
the organization of a MIPS R10000 processors due to its similarities with SparcV8 ISA.

0.7

0.8

0.9

1.0

1.1

1.2

ja
co
b
i

su
sa
n
_c

su
sa
n
_s

su
sa
n
_e

p
at
ri
ci
a

m
d lu

eq
u
ak
e

am
m
p

ap
si

8‐Core HeteroSmall 16‐Core HeteroSmall 32‐Core HeteroSmall 64‐Core HeteroSmall

R
e
la
ti
ve

P
er
fo
rm

a
n
ce

D
yn
am

ic

G
ai
n
s
o
ve
r
St
at
ic

98

Besides the issue, other characteristics, such as width of reservation stations and reorder
buffers, are modeled in the simulator based on the organization of MIPS R10000. To
gather data about power consumption, we also apply data from the MIPS R10000. As
such processor is only available at CMOS 0.35 um, a technology scaling to 90nm (the
technology used on CReAMS implementation) is necessary to make a fair comparison.
According to (HEINRICH, 1997), the 4-issue Out-of-Order MIPS R10000,
implemented in CMOS 3.5 um, consumes 30 Watts at 3.3 Volts operating at 250 MHz.
CReAMS was synthesized in a CMOS 90nm supplied by 1.0 Volt running at 600MHz.
Let us scale the CMOS 3.5um to CMOS 90nm applying the power supply of the newest
technology. As the power dissipated by certain circuit can be written as

ܲ ൎ ݂ ∗ ܥ ∗ ܸଶ,

 Let us scaling the power supply from 3.3 Volts to 1.0 Volts, the resulting power
consumption is 2.75 Watts operating at 250MHz. Hence, to normalize the power
consumption of both CReAMS and 4-issue OOO SparcV8 superscalar processor to 600
MHz, a factor of 2.4 must be applied to OOO SparcV8 processor, resulting on 6.61
Watts. Table 25 shows the TDP of different multiprocessing systems composed of 4-
issue out-of-order SparcV8 processors.

Table 25. TDP of 4-issue Out-Of-Order SparcV8 multiprocessing system

For comparison purpose, we create two different scenarios that consider power
budget of 27 Watts and 53 Watts. As can be seen in Table 25 and Table 24(b), the
power consumption of both 4-OOO SparcV8 superscalar processors and 32-DAP
HomoLarge are similar, so these configurations compose the Power Budget #1 scheme.
For the Power Budget #2 scheme, we compare 8-OOO SparcV8 superscalar processors
with 64-DAP HomoLarge CReAMS, since their power consumptions are also very
similar. CReAMS does not affect the power budget even if an error of 19% in our
scaling process from CMOS 0.35 um to 90 nm occurs.

For these experiments, we chosen a subset of the applications presented in the
previous section. This subset is composed of applications that cover the whole spectrum
of opportunities to exploit TLP and ILP. As can be seen, Table 3 shows that
blackscholes, swaptions and jacobi have perfect load balancing, so suitable for TLP
exploitation. On the other hand, they have tiny room for ILP exploitation, since their
mean basic block sizes are small. susan corners shows quite the opposite, since it has a
significant load unbalancing and provides higher mean basic block size. lu was selected
to represent applications where neither room for ILP nor TLP is available to be
explored.

TDP (mWatts) 4‐OOO 8‐OOO 16‐OOO 32‐OOO 64‐OOO

4‐issue 26,494 52,987 105,975 211,950 423,900

99

Table 26. Execution time of 4-issue OOO MPSparcV8 and CReAMS

Table 26 shows the execution time of both CReAMS and 4-issue OOO MPSparcV8
processor by applying the Power Budget #1 and #2 schemes. As can be seen, CReAMS
outperforms the 4-issue OOO MPSparcV8 in all TLP-oriented applications when both
Power Budget #1 and #2 are considered. 32-DAP HomoLarge CReAMS is 4.51, 3.26
and 3.68 times faster than 4-core 4-issue OOO MPSparcV8 on running swaptions,
blackscholes and jacobi, respectively. When the Power Budget grows to 53 Watts, the
gains of 64-DAPs HomoLarge CReAMS over 8-Core 4-issue OOO MPSparcV8 remain
almost in the same factors. lu runs 26% faster in CReAMS than a 4-issue OOO SparcV8
considering a power budget of 27 Watts. However, when the power budget grows to 53
Watts, the multiprocessing system composed of 4-issue OOO processors outperforms
CReAMS by 24%. It is due to the huge load unbalancing that occurs by increasing the
number of DAPs from 32 to 64 on that application, which affects the performance of
CReAMS. However, it does not occur when the number of processors increases from 4
to 8, thus gains of 4-issue OOO MPSparV8 come from TLP and ILP exploitation. Even
when a wide room for ILP exploration is available, CReAMS outperforms the 4-issue
OOO MPSparcV8, this is the case of susan corners where their basic block have 17
instructions, on average. 32-DAP CReAMS outperforms the 4-Core 4-issue OOO
MPSparcV8 by 28% when a power budget of 27 Watts is considered. When the power
budget increases to 53 Watts, CReAMS still performs better than OOO MPSparcV8,
showing an execution time 8.5% smaller.

Table 26 presents the performance of the 32-DAP and 64-DAP HeteroLarge
CReAMS when static scheduling is considered. We apply the same methodology used
above to compare heterogeneous CReAMS and 4-issue OOO MPSparcV8. As can be
seen, in comparison with the homogeneous setups, heterogeneous CReAMS presents
smaller chip area (refer to Table 23(b)) and less power consumption (refer to Table 24).
However, the heterogeneous CReAMS remain almost the same gains over the 4-issue
OOO MPSparcV8 provided by the homogeneous setups, and still reduce the power cap
from 27 Watts and 53 Watts to 20 Watts and 40 Watts for Power Budget #1 and #2
schemes, respectively.

Summarizing, CReAMS shows performance improvement of 28% and 8.5% when
a power budget #1 and #2 is applied, which shows that homogeneous CReAMS delivers
higher performance per watt than a multiprocessing system based on 4-issue OOO
superscalar processors. Moreover, the heterogeneous CReAMS outperforms the
multiprocessing system based on OOO superscalar by a factor of 2.34, on average, and
provides a power cap 33% lower.

4SparcV8 8SparcV8 32DAPs 64DAPs 32DAPs 64DAPs

susan_c 16.448 11.221 12.838 10.344 13.783 10.916

swaptions 7.094 3.551 1.572 0.792 2.212 1.107

blackscholes 3.408 1.710 1.048 0.535 1.578 0.812

jacobi 123.841 62.245 33.665 19.233 41.864 23.299

lu 0.352 0.265 0.279 0.310 0.315 0.367

Total Ex. Time 151.142 78.992 49.402 31.214 59.750 36.500

4‐issue OOO MPSparcV8 Homogeneous CReAMS

Execution Time (ms)

Heterogeneous CReAMS

100

101

6 CONCLUSIONS AND FUTURE WORKS

In this work, the design space exploration around thread and instruction level
parallelism are investigated. In Chapter 2 we presented the related works, which
elucidate and motivate the main goals of this proposal. In the Chapter 3, we discussed,
using an analytical model, the limits of the TLP and ILP exploitation showing the
necessity for mixed parallelism exploitation. In addition, the inter-thread
communication cost is analytically studied. In order to cope with that, we have extended
to a multiprocessing environment an already proposed reconfigurable architecture that
transparently explores the instruction level parallelism of single-threaded applications.

The employment of the reconfigurable architecture on a homogeneous
organization multiprocessor system shows that an adaptable ILP exploitation is one
requisite to achieve performance improvements with energy savings. However, the
strategy of replicating the same processors produces a disadvantageous tradeoff between
energy, area and performance. Since most of the processors become idle in great periods
of the application execution by waiting for the thread that has greater period of
sequential execution. Hence, we show performance improvements and energy savings
by joining in the same chip DAPs with different capabilities on exploring instruction
level parallelism. Considering that hypothesis, we demonstrate that the heterogeneous
organization strategy can reduce substantially the power consumption of the system,
while maintaining performance of the homogeneous approach with a mandatory
overhead of a dynamic thread scheduling to match the thread requirements with the
DAPs capabilities. Finally, we present performance improvements of CReAMS over a
multiprocessing system composed of 4-issue Out-Of-Order processors when a power
budget is considered.

6.1 Future Works

6.1.1 Scheduling Algorithm

Considering the scheduling algorithm used to assign threads in a heterogeneous
CReAMS organization. In this work, the scheduling process is implemented in
software. Actually, there are several advantages for hardware implementation that is not
only motivated by obtaining better performance than software, but aims to offer
transparency to the operating system. The whole processor scheduling process is
supported by the DAP’s hardware, that is responsible for the fine grain parallelism
detection. Once the thread is executed, the DDH stores, as intrinsic information, the
level of instruction level parallelism and the number of instructions executed by the
thread. This information is useful for the next thread assignments done by the processor

102

appointer hardware. The identification of the threads in hardware is done through a
special register within each DAP that holds the thread ID generated by the operating
system. A special table, indexed by the thread ID, stores the appointment metrics that
are gathered in the first execution of the threads. For the next executions, the core
allocator hardware fetches these metrics from the special cache and allocates a DAP to
execute it, considering the best matching between the processing capability and the
required metrics. The main novelty of such an approach is the complete transparency
offered to the operating system. The implementation of the thread allocation is
supported by the DAP’s hardware, named Dynamic Detection Hardware (DDH), that is
responsible for the fine-grain parallelism detection.

6.1.2 Studies over TLP and ILP considering the Operating System

Operating System is already present in the embedded systems, such as Android
and iOS. The software layer added over the hardware cannot be overlooked since it
brings a significant overhead to the system performance. However, as the code of the
operating systems is split in threads, one can explore CReAMS to achieve performance
improvements. In this work, only applications were explored, but one can investigate
the efficiency of CReAMS to accelerate both application and operating system code.
This measurement has a significant importance to verify how many DAPs are necessary
to provide, in a concurrent way, threads of the operating system and the application.
Moreover, one important question to be answered is: Is the heterogeneity also efficient
in an environment where the operating system is present?

6.1.3 Behavioral of CReAMS on a Multitask Environment

In the multitask environment, there are many threads of different applications
running at the same time in the chip multiprocessor. As shown in this work, applications
behave in their own way and require different amount of resources to achieve efficient
execution. This work can be extended by considering multitask environment, where
many applications are running over a homogeneous/heterogeneous CReAMS. Such
investigation approaches to the real scenario of current embedded systems, where
operating systems provide multitask support.

6.1.4 Automatic CReAMS generation

In (RUTZIG, 2009), the authors propose an automatic tool, named ARISE, for
generating an optimized reconfigurable data path considering the application execution.
When many processors are encapsulated in a single die, an investigation of the amount
of reconfigurable resources needed to produce the best performance on exploiting TLP
and ILP is mandatory to reduce area occupied. Besides, this work shows that
heterogeneous organization is efficient when area, power and performance are taken
into account. However, there is no investigation of the best heterogeneity for a
multiprocessor environment, which could be achieved by extending ARISE for
CReAMS.

6.1.5 Area reductions by applying the Data Path Virtualization Strategy

Reductions on chip area will be also explored using a data path virtualization
technique proposed in (BERTICELLI LO, BECK, et al., 2010). The authors propose a
virtual execution using the DIM technique. Currently, the replication on the number of
levels dictates the limits of the sequential execution in the reconfigurable data path. The
results shown in Section 5 employ a reconfigurable data path composed of eight levels.
However, to achieve the same performance results shown in this section, there is need

103

for only three data path levels by using the virtualization technique. In this technique, on
each execution cycle a certain reconfigurable data path works in a specific mode that
can be: reconfiguring, running or propagating results. To support the virtualization
mode a finite state machine is necessary to control the switching of modes between the
three levels. However, the chip area is extremely reduced, since there is no need for
huge functional units and interconnection replication to execute configurations longer
than 3 cycles. The employment of the data path virtualization does not affect the
original performance, since the number of execution cycles is dictated by the width of a
reconfiguration memory slot. Despite the huge area saving by avoiding replication of
functional units, the virtualization does not produce any savings on the area and of the
reconfiguration memory. Currently, this component is responsible for 15% of the total
area spent in the DAP implementation, as the area of the data path is drastically reduced
with the employment of the virtualization process this number becomes more
significant, reaching almost 32% of the total chip area, which becomes a important
point to investigate optimizations when heterogeneous CReAMS is considered.

6.1.6 Boosting TLP performance with Heterogeneous Multithread CReAMS

Simultaneous Multithreaded (SMT) processors already have shown an efficient
strategy to obtain an advantageous tradeoff between performance improvements and
area overhead. However, there are few works using the simultaneous multithread
strategy in reconfigurable computing. These works use such an approach in a
homogenous fashion, meaning that all processors have the same degree on exploiting
ILP and TLP. Heterogeneous multithread DAPs in the same CReAMS platform is a
point to be investigated. In a heterogeneous CReAMS platform, some DAPs have more
functional units than others, so higher degree of SMT could be applied in those DAPs,
achieving performance improvement with the low area overhead. Such overhead comes
from supporting the concurrent execution of multithreads in the DAP’ data path.

104

105

7 PUBLICATIONS

7.1 Book Chapters

1. Wong, Stephan, Carro, Luigi, RUTZIG, Mateus Beck, MATOS, D. M., GIORGI,
R., Puzovic, N, Kaxiras, S., DESOLI, G., GAI, P., CINTRA, M., MCKEE, S. A.,
ZAKS, A.

ERA – Embedded Reconfigurable Architectures In: Reconfigurable Computing:
From FPGAs to Hardware/Software Codesign.1 ed.New York : Springer, 2011, v.1, p.
239-260.

2. CARRO, L., RUTZIG, Mateus Beck
Multi-Core System on Chip In: Handbook of Signal Processing Systems.1 ed.New

York : Springer, 2010, v.1, p. 485-514.

7.2 Journals

1. Rutzig, Mateus B., Beck, Antonio C. S., Madruga, Felipe, Alves, Marco A.,
Freitas, Henrique C., Maillard, Nicolas, Navaux, Philippe O. A., Carro, Luigi, RUTZIG,
Mateus Beck

Boosting Parallel Applications Performance on Applying DIM Technique in a
Multiprocessing Environment. International Journal of Reconfigurable Computing
(Print). , v.2011, p.1 - 13, 2011.

7.3 Conferences

1. RUTZIG, Mateus Beck, BECK FILHO, Antonio Carlos Schneider, CARRO, L.
CReAMS: An Embedded Multiprocessor Platform In: International Symposium on

Applied Reconfigurable Computing, 2011, Belfast.

2. FAJARDO JUNIOR, J., RUTZIG, Mateus Beck, BECK FILHO, Antonio Carlos

Schneider, CARRO, L.
A Dynamically Reconfigurable Architecture with a Two-Level Binary Translation

Mechanism In: 5th Workshop on Reconfigurable Computing, 2011, Heraklion.

3. JUNQUEIRA, A., RUTZIG, Mateus Beck, ITTURRIET, F. P., CARRO, L.
A Reconfigurable Fabric Supporting Full C/C++ Input In: International Workshop

on Reconfigurable Communication-centric Systems-on-Chip, 2011, Montpellier.

106

4. FAJARDO JUNIOR, J., RUTZIG, Mateus Beck, BECK FILHO, Antonio Carlos
Schneider, CARRO, L.

A Transparent and Adaptable Multiple-ISA Embedded System In: Engineering of
Reconfigurable Systems and Algorithms, 2011, Las Vegas.

5. FAJARDO JUNIOR, J., RUTZIG, Mateus Beck, BECK FILHO, Antonio Carlos

Schneider, CARRO, L.
Towards an Adaptable Multiple-ISA Reconfigurable Processor In: International

Symposium on Applied Reconfigurable Computing, 2011, Belfast.

6. LO, T.B., BECK FILHO, A.C.S., RUTZIG, Mateus Beck, CARRO, L.
A Low-Energy Approach for Context Memory in Reconfigurable Systems In: IEEE

International Parallel And Distributed Processing Symposium (IPDPS) - Reconfigurable
Architectures Workshop (RAW), 2010, 2010, Atlanta.

7. LO, T.B., BECK FILHO, Antonio Carlos Schneider, RUTZIG, Mateus Beck
Decreasing the Impact of the Context Memory on Reconfigurable Architectures In:

HiPEAC Workshop on Reconfigurable Computing, 2010, Pisa.

8. SILVA, M.G., HECKTHEUER, B., MATTOS, J. C. B., BECK FILHO, A.C.S.,

RUTZIG, Mateus Beck, CARRO, L.
Floating point unit implementation for a reconfigurable architecture In: South

Symposium on Microelectronics, 2010, Porto Alegre.

9. SILVA, M.G., HECKTHEUER, B., MATTOS, J. C. B., BECK FILHO, A.C.S.,

RUTZIG, Mateus Beck, CARRO, L.
Implementação de uma Unidade de Ponto Flutuante para uma Arquitetura

Reconfigurável. In: XVI IBERCHIP Workshop, 2010, Foz do Iguagu.

10. RUTZIG, Mateus Beck, MADRUGA, F.L., COSTA, H., BECK FILHO, A.C.S.,

MAILLARD, N, B., NAVAUX, P.O.A.
TLP and ILP exploitation through Reconfigurable Multiprocessing System In: IEEE

International Parallel And Distributed Processing Symposium (IPDPS) - Reconfigurable
Architectures Workshop (RAW), 2010, Atlanta.

11. FERREIRA, R.S., LAURE, M., BECK FILHO, A.C.S., LO, T.B., RUTZIG,

Mateus Beck, CARRO, L.
A Low Cost and Adaptable Routing Network for Reconfigurable Systems In: IEEE

International Parallel And Distributed Processing Symposium (IPDPS) - Reconfigurable
Architectures Workshop (RAW), 2009,, 2009, Roma.

12. RUTZIG, Mateus Beck, BECK FILHO, A.C.S., CARRO, L.
Dynamically Adapted Low Power ASIPs In: International Workshop on

Reconfigurable Computing, 2009, 2009, Karlsruhe.

107

REFERENCES

ALBONESI, D.; WATKINS, M. A. ReMAP A Reconfigurable Heterogeneous
Multicore Architecture. PROCEEDINGS OF 43RD ANNUAL IEEE/ACM
INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE. Washington:
ACM. 2010. p. 497-508.

ANANTARAMAN, A. et al. Virtual simple architecture (VISA) exceeding the
complexity limit in safe real-time systems. PROCEEDINGS OF 30TH ANNUAL
INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE. New York:
ACM. 2003. p. 350-361.

ANDRE, L. et al. Piranha a scalable architecture based on single-chip multiprocessing.
SIGARCH Comput. Archit. News 28. New York: ACM. 2000. p. 282-293.

BECK, A. C. S. et al. Transparent reconfigurable acceleration for heterogeneous
embedded applications. PROCEEDINGS OF DESIGN, AUTOMATION AND TEST
IN EUROPE. New York: ACM. 2008. p. 1208-1213.

BERTICELLI LO, T. et al. A low-energy approach for context memory in
reconfigurable systems. PROCEEDINGS OF 17TH RECONFIGURABLE
ARCHITECTURES WORKSHOP. [S.l.]: [s.n.]. 2010. p. 19-23.

BIENIA, C. et al. The PARSEC benchmark suite: characterization and architectural
implications. PROCEEDINGS OF 17TH INTERNATIONAL CONFERENCE ON
PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES. New York:
ACM. 2008. p. 72-81.

BLAKE, G. et al. Evolution of thread-level parallelism in desktop applications.
SIGARCH Comput. Archit. News 38. New York: ACM. 2010. p. 302-313.

BRANDAO, R.; WYNN, M. Product Lifecycle Management Systems and Business
Process Improvement – A Report on Case Study Research. [S.l.]: [s.n.]. 2008. p. 113--
118.

CHEN, T. et al. Cell broadband engine architecture and its first implementation: a
performance view. IBM J. Res. Dev. 51. [S.l.]: [s.n.]. 2007. p. 559-572.

CHEN, X. et al. Speedup analysis of data-parallel applications on Multi-core NoCs.
PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ASIC. [S.l.]: [s.n.].
2009. p. 105-108.

CLARK, N. et al. Application-Specific Processing on a General-Purpose Core via
Transparent Instruction Set Customization. PROCEEDINGS OF 37TH ANNUAL
IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE.
Washington: ACM. 2004. p. 30-40.

108

DIEFENDORFF, K. Hal Makes Sparcs Fly. [S.l.]. 1999.

DIXIT, K. M. The SPEC benchmarks. In Computer benchmarks. [S.l.]: Elsevier. 1993.
p. 149-163.

DORTA, A. J. et al. The OpenMP Source Code Repository. PROCEEDINGS OF 13TH
EUROMICROCONFERENCE ON PARALLEL, DISTRIBUTED AND NETWORK-
BASED PROCESSING. Washington: IEEE Computer Society. 2005. p. 244-250.

FUJITSU MICROELECTRONICS, I. New TurboSPARC Processor Sets New
Performance Level For Low-End, Mid-Range Workstations. [S.l.].

GAISLER. Gaisler, 2006. Disponivel em: <http://www.gaisler.com>. Acesso em: 12
December 2010.

GARCIA, P.; COMPTON, K. Kernel sharing on reconfigurable multiprocessor systems.
PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ICECE
TECHNOLOGY. [S.l.]: IEEE. 2008. p. 225.

GOLDSTEIN, S. C. et al. PipeRench: A Reconfigurable Architecture and Compiler.
Computer 33, Los Alamitos, April 2000. 70-77.

GONZALEZ, R. E. Xtensa: a configurable and extensible processor. IEEE Micro, v.
20, n. 2, p. 60-70, March 2000.

GUTHAUS, M. R. et al. MiBench: A free, commercially representative embedded
benchmark suite. PROCEEDINGS OF IEEE INTERNATIONAL WORKSHOP ON
WORKLOAD CHARACTERIZATION. [S.l.]: [s.n.]. 2002.

HAMMOND, L. et al. The Stanford Hydra CMP. IEEE Micro 20, Los Alamitos,
March 2000. 71-84.

HAUCK, K.; COMPTON, K. Reconfigurable computing: a survey of systems and
software. ACM Comput. Surv. 34. New York: ACM. 2002. p. 171-210.

HAUCK, S. et al. The chimaera reconfigurable functional unit. IEEE Trans. Very Large
Scale Integr. Syst. Piscataway: ACM. 2004. p. 206-217.

HEINRICH, J. MIPS R1000 User Manual. MIPS R1000 User Manual, 1997.
Disponivel em: <http://techpubs.sgi.com/library/manuals/2000/007-2490-001/pdf/007-
2490-001.pdf>.

HENKEL, J. Closing the SoC design gap. Computer, v. 36, p. 119--121, 2003.

INTEL. Inside an 80-core chip: the on-chip communication and memory bandwidth
solution, 2007. Disponivel em:
<http://blogs.intel.com/research/2007/07/inside_the_terascale_many_core.php>. Acesso
em: 15 March 2011.

JOHNSON, T.; NAWATHE, U. An 8-core, 64-thread, 64-bit power efficient sparc soc
(niagara2). PROCEEDINGS OF 2007 INTERNATIONAL SYMPOSIUM ON
PHYSICAL DESIGN. New York: ACM. 2007. p. 2-7.

KAVADIAS, S. Limited Priority-Thread Based Sharing of Simultaneous
MultiThreaded Processor Resources. Master dissertation of. [S.l.]: [s.n.].

KAVVADIAS, S. A Trace Driven Configurable SparcV8 ISA Simulator, 2001.
Disponivel em:

109

<http://www.ics.forth.gr/~kavadias/SMT_Page/trace_driven_configurable_simulator.ht
m>. Acesso em: 6 May 2010.

KOENIG, R. et al. KAHRISMA: A Novel Hypermorphic Reconfigurable-Instruction-
SetMulti-grained-Array Architecture. PROCEEDINGS OF DESIGN, AUTOMATION
& TEST IN EUROPE CONFERENCE. [S.l.]: [s.n.]. 2010. p. 819-824.

KUMAR, R. et al. Single-ISA heterogeneous multi-core architectures: the potential for
processor power reduction. PROCEEDINGS OF 36TH ANNUAL IEEE/ACM
INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE. [S.l.]: [s.n.]. 2003.
p. 81 - 92.

KUMAR, R. et al. Single-ISA Heterogeneous Multi-Core Architectures for
Multithreaded Workload Performance. SIGARCH Comput. Archit. News 32. New
York: ACM. 2004. p. 64-80.

KUMAR, R.; JOUPPI, N. P.; TULLSEN, D. M. Core architecture optimization for
heterogeneous chip multiprocessors. PROCEEDINGS OF THE 15TH
INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND
COMPILATION TECHNIQUES. [S.l.]: [s.n.]. 2006.

LINDHOLM, E. et al. NVIDIA Tesla: A Unified Graphics and Computing
Architecture. IEEE Micro 28. [S.l.]: IEEE. 2008. p. 39-55.

LYSECKY, R.; STITT, G.; VAHID, F. Warp Processors. PROCEEDINGS OF 41ST
ANNUAL DESIGN AUTOMATION CONFERENCE. New York: ACM. 2004. p. 659-
681.

MAGNUSSON, P. S. et al. Simics: A Full System Simulation Platform. Computer 35.
Los Alamitos: ACM. 2002. p. 50-58.

MAK, J. . Limits of instruction-level parallelism. PROCEEDINGS OF
INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR
PROGRAMMING LANGUAGES AND OPERATING SYSTEMS. New York: ACM.
1991.

MATOS, D. et al. A NOC closed-loop performance monitor and adapter.
Microprocessors and Microsystems, 2011. 1-10.

MENON, L. OpenMP: An Industry-Standard API for Shared-Memory Programming.
IEEE Comput. Sci. Eng. 5. Los Alamitos: IEEE. 1998. p. 46-55.

NVIDIA. Whitepaper of Variable SMP, 2011. Disponivel em:
<http://www.nvidia.com/content/PDF/tegra_white_papers/tegra-whitepaper-
0911b.pdf>. Acesso em: 15 December 2011.

PATTERSON, D.; HENNESSY, J. Computer Organization and Design. [S.l.]:
Elsevier, 2010.

RUTZIG, M. B. B. F. A. C. S. . C. L. Dynamically Adapted Low Power ASIPs.
PROCEEDINGS OF INTERNATIONAL WORKSHOP ON RECONFIGURABLE
COMPUTING. [S.l.]: [s.n.]. 2009. p. 110-122.

RUTZIG, M. B.; BECK, A. C.; CARRO, L. Dynamically Adapted Low Power ASIPs.
PROCEEDINGS OF 5TH INTERNATIONAL WORKSHOP ON
RECONFIGURABLE COMPUTING: ARCHITECTURES, TOOLS AND
APPLICATIONS. Berlin: Springer-Verlag. 2009. p. 110-122.

110

SANKARALINGAM, K. et al. TRIPS: A polymorphous architecture for exploiting
ILP, TLP, and DLP. ACM Trans. Archit. Code Optim., New York, March 2004. 62-
93.

SEILER, L. et al. Larrabee: a many-core x86 architecture for visual computing. ACM
SIGGRAPH 2008 Papers. Los Angeles: ACM. 2008. p. 1-15.

SEMICONDUCTORS, I. T. R. F. ITRS. ITRS, 2009. Disponivel em:
<http://www.itrs.net/>. Acesso em: 12 Maio 2010.

SHI, K.; HOWARD, D. Challenges in Sleep Transistor Design and Implementation in
Low-Power Designs. [S.l.]: [s.n.]. 2006. p. 113 – 116.

SMIT, G. J. M. Multi-core Architectures and Streaming Applications. PROCEEDINGS
OF INTERNATIONAL WORKSHOP ON SYSTEM LEVEL INTERCONNECT
PREDICTION. New York: ACM. 2008. p. 35-42.

STITT, G.; VAHID, F. Thread warping: a framework for dynamic synthesis of thread
accelerators. PROCEEDINGS OF ACM INTERNATIONAL CONFERENCE ON
HARDWARE/SOFTWARE CODESIGN AND SYSTEM SYNTHESIS. New York:
ACM. 2007. p. 93-98.

SWANSON, S. The WaveScalar architecture. ACM Trans. Comput. Syst., New York,
May 2007. 54.

VANGAL, S. et al. An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm CMOS.
PROCEEDINGS OF SOLID-STATE CIRCUITS CONFERENCE. [S.l.]: IEEE
explorer. 2007. p. 98-589.

VASSILIADIS, S. et al. The MOLEN Polymorphic Processor. IEEE Trans. Comput.,
Washington, November 2004. 1363-1375.

WATKINS, M. A.; CIANCHETTI, M. J.; ALBONESI, D. H. Shared reconfigurable
architectures for CMPS. PROCEEDINGS OF INTERNATIONAL CONFERENCE ON
FIELD PROGRAMMABLE LOGIC AND APPLICATION. [S.l.]: IEEE. 2008. p. 299 -
304.

WAWRZYNEK, J. R. H. Garp: a MIPS processor with a reconfigurable coprocessor.
PROCEEDINGS OF IEEE SYMPOSIUM ON FPGA-BASED CUSTOM
COMPUTING MACHINES. Washington: ACM. 1997.

WILTON, S. J. E.; JOUPPI, N. P. CACTI: an enhanced cache access and cycle time
model. IEEE Journal of Solid-State Circuits, May 1996. 677-688.

WOO, D. H.; LEE, H. Extending Amdahl's Law for Energy-Efficient Computing in the
Many-Core Era. Computer, December 2008. 24-31.

WOO, S. C. et al. The SPLASH-2 programs: characterization and methodological
considerations. PROCEEDINGS OF ANNUAL INTERNATIONAL SYMPOSIUM ON
COMPUTER ARCHITECTURE. New York: ACM. 1995. p. 24-36.

YAN, L. et al. A Reconfigurable Processor Architecture Combining Multi-core and
Reconfigurable Processing Unit. PROCEEDINGS OF IEEE INTERNATIONAL
CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY. West
Yorkshire: [s.n.]. 2010. p. 2897-2903.

111

APPENDIX A

Introdução

Atualmente, a grande demanda por sistemas embarcados pelo mercado faz com que
o projeto destes dispositivos torne-se cada vez mais complexo.Telefones celulares são
capazes de embarcar aplicações durante seu tempo de vida, fato que torna o projeto de
um hardware para um dispositivo atual um grande desafio visto que o mesmo deve ser
capaz de executar eficientemente todos os comportamentos de software com baixo
consumo de energia.

No cenário embarcado atual, dois tipos de abordagens são utilizados para aumentar o
desempenho de processadores embarcados: extensões no conjunto de instruções e a
implantação de ASICs. A primeira abordagem tem como objetivo resolver alguns
gargalos criados pela execução massiva de certas aplicações. Assim, quando é
observado um montante de aplicações embarcadas que compartilham o mesmo
comportamento, extensões no conjunto de instruções são realizadas para que este
comportamento possa ser executado de forma eficiente em termos de desempenho e
consumo de energia. ASICs são frequentemente utilizados em plataformas embarcadas
para solucionar questões de desempenho de aplicações que já estão fortemente
embarcadas e consomem um grande tempo de execução em software. Entretanto, tanto
extensões no conjunto de instruções quanto ASICs afetam a produtividade de software,
visto que para cada nova plataforma é necessário mudanças na ferramenta de geração de
código e, conseqüentemente, a recompilação de todas as aplicações, possibilitando que
estas aplicações explorem os novos recursos da plataforma. Este fato afeta o time-to-
market e aumenta o tempo de projeto do dispositivo embarcado, requisitos muito
exigidos no neste domínio.

Devido às razões explicitadas acima, é necessária uma mudança no paradigma de
concepção de hardware para o mercado embarcado. A utilização de sistemas
multiprocessados provêem diversas vantagens, o tempo de execução pode ser
claramente beneficiado visto que diversas partes do programa podem ser executadas
concorrentemente nos diversos processadores da plataforma. O tempo de validação
destas plataformas é extremamente beneficiado visto que um único processador deve ser
validado para posterior replicação. Em um sistema multiprocessado o projetista de
hardware é responsável por encapsular o número máximo de elementos de
processamento em um único chip. Por outro lado, o projetista de software é responsável
pela árdua tarefa de distribuir o software entre os diversos elementos de processamento.
Assim, produtividade de software surge como o principal desafio quando ambientes
multiprocessados são considerados, visto que as aplicações devem ser lançadas no

112

mercado rapidamente e o código binário das mesmas deve ser genérico suficiente para
ser executado em qualquer plataforma que seja lançada no futuro. Adicionalmente, o
infraestrutura de interconexão entre os processadores deve ser suficientemente eficiente
para que os ganhos em desempenho da execução paralela não seja afetado pelo processo
de intercomunicação das threads.

Assim, um sistema multiprocessado ideal para sistemas embarcados deve ser
composto pela replicação de elementos de processamento, sendo que cada um destes
elementos possam se adaptar as particularidades das aplicações, esta adaptação tem de
ocorrer mesmo após a fabricação. A plataforma deve emular o comportamento, em
termos de desempenho e energia, dos ASICs que estão sendo implementados com
sucessos nas plataformas embarcadas atuais. No mesmo momento, o uso do mesmo
conjunto de instruções para todos os elementos de processamento é mandatório para
manter a produtividade de software e evitar a modificação das ferramentas que geram
código e, conseqüentemente, a recompilação do código fonte para cada nova versão de
plataforma. Esta plataforma deve atacar de forma eficiente todo o espectro de
comportamento de aplicações: aquelas que contêm paralelismo em nível de threads
massivo e as aplicações onde este paralelismo é inexistente. Ainda, a plataforma deve
ser concebida com uma organização heterogênea para fornecer o melhor compromisso
entre a heterogeneidade das aplicações e a área ocupada em chip pelo sistema
multiprocessado. Por fim, o exato número de processadores deve ser investigado, visto
que o desempenho do sistema concebido com muitos processadores pode ser afetado
pelos custos providos pela comunicação entre threads.

Objetivos

Considerando todas as motivações demonstradas anteriormente, o primeiro objetivo
deste trabalho é focado em reforçar, pelo uso de um modelo analítico, que a aplicação
da exploração de paralelismo em um único nível não prove um compromisso vantajoso
em relação ao desempenho obtido e a energia consumida pelo sistema. Ainda, este
estudo fornece alguns rumos sobre a fatia de hardware que deve ser empregada para
explorar o paralelismo em nível de instrução e thread. Um modelo de comunicação de
uma rede em chip é criado para investigar o impacto da comunicação entre as threads.

Neste cenário, é proposto uma plataforma baseada em Custom Reconfigurable
Arrays for Multiprocessor System (CReAMS), pelo acoplamento de dois diferentes
conceitos: arquiteturas reconfiguráveis e sistemas multiprocessados. Em um primeiro
passo, CReAMS é concebido em uma organização homogênea. Entretanto, esta
plataforma virtualmente se comporta como uma organização heterogênea devido a sua
capacidade de se adaptar em tempo de execução.

O sistema é capaz de explorar de forma transparente, ou seja, sem modificações no
código binário original, o paralelismo em nível de instrução das threads em execução,
oferecendo uma alta habilidade em se adaptar as demandas de paralelismo das
diferentes aplicações. O paralelismo em nível de threads não depende de nenhuma
ferramenta que faça investigação do código em tempo de projeto, visto que o
paralelismo em nível de thread é explorado pelas interfaces de programação (OpenMP e
Pthreads) conhecidas e suportadas pelos compiladores do mercado, tornando a execução
de CReAMS independente de qualquer processo proprietário. Dinamicamente é possível
balancear a melhor exploração do paralelismo em nível de instrução e thread. Assim,
qualquer tipo de código, tanto aquele que apresenta alto TLP e baixo TLP quanto o
código que tem características inversas é acelerado. CReAMS prove menor consumo de

113

energia e mantém a produtividade de software das organizações homogêneas. Um
único conjunto de ferramenta é necessário para toda a plataforma e qualquer
modificação no hardware não requer nenhuma modificação no código binário.

CReAMS

Um visão geral de CReAMS é apresentada na Figura 1. O paralelismo em nível de
thread é explorado pela replicação de DAPs (Dynamic Adaptive Processors). A
comunicação entre os DAPs é feita através de uma NoC com topologia mesh.

Figura 1. (a) Organização de CReAMS (b) DAP

DAP

Um Dynamic Adaptive Processor é divido em quatro blocos ilustrados na Figura 1.
Estes blocos são discutidos nas seções a seguir:

Processor Pipeline

Um processador baseado na arquitetura SparcV8 é utilizado como o processador
base da plataforma. Este processador contém cinco estágios de pipeline, refletindo um
processador RISC tradicional.

Detector dinâmico em Hardware

Uma das restrições impostas pelo projeto de um dispositivo embarcado é o tempo de
projeto. A concorrência das empresas para disponibilizar no mercado o primeiro
dispositivo com novas funcionalidades força o projeto embarcado ser cada vez mais
curto. Assim, os projetistas devem utilizar técnicas que ajudem a modelagem e
reaproveitamento do software já escrito para o dispositivo anterior.

A tradução binária é largamente utilizada em processadores de propósito geral para
prover compatibilidade de software. Em (BECK, RUTZIG, et al., 2008), foi

DAPDAP DAP DAP

CReAMS

DF WBEXIDIF

UTRADVID
600 Mhz

Tables

P
C
 C
o
n
f#
n

…
P
C
 C
o
n
f#
2

P
C
C
o
n
f#
1

PC

=

R
e
co
n
fi
gu
ra
ti
o
n

M
e
m
o
ry

Col.#1 Col.#n

Row #1

Row #n

1

2

3

4

Input
Context

Output
Context

RF

.............................

....................

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

Load
Load

Multiplier

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

Load
Load

Multiplier

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

Load
Load

Multiplier

(a)

(b)

Level

SHARED L2

L1

IC
ac
h
e

L1

D
C
ac
h
e

114

demonstrado que a utilização da técnica de tradução binária também alcança ótimos
resultados de desempenho e energia em um processador que executa o conjunto de
instruções PISA (BURGER, 1997). Assim, para este estudo foi herdada a técnica
aplicada neste último trabalho.

A idéia básica do mecanismo é prover compatibilidade de software a partir da
tradução binária de seqüências de instruções, em tempo de execução, para que as
mesmas possam ser futuramente executadas num mecanismo mais eficiente, neste caso,
em uma unidade funcional reconfigurável.

Basicamente, o mecanismo avalia cada instrução executada pelo processador,
agrupando-as em blocos chamados de configuração da unidade funcional reconfigurável
(UFR). A cada instrução executada pelo processador é verificada a possibilidade da
execução desta na unidade reconfigurável. Caso positivo, a mesma é alocada na
configuração corrente da UFR. Ao final da construção de uma configuração da UFR,
esta é armazenada em uma cache de reconfigurações, indexada pelo valor do contador
de programa da primeira instrução. Quando este valor novamente for alcançado pelo
contador de programa, o mecanismo reconfigurável é ativado seguindo os seguintes
passos:

 Efetua-se a busca da configuração, da seqüência de instruções em questão, na
cache de reconfigurações;

 Configura-se a UFR com os bits fornecidos pela cache;

 Os valores dos registradores necessários para executar a configuração são
carregados no contexto de entrada da UFR;

 A execução é realizada na UFR;

Após o término da execução na UFR o valor do contador de programa é atualizado,
assim como os valores dos registradores modificados no banco de registradores. Do
mesmo modo as escritas na memória de dados são realizadas. É importante destacar que
enquanto o mecanismo reconfigurável está ativo o processador não realiza nenhuma
operação.

Diferentemente dos processadores superescalares, esta abordagem não realiza
repetidas vezes, para a mesma seqüência de instruções, a verificação das dependências
entre as instruções. A utilização da técnica de reuso de rastros (do inglês trace reuse)
evita a repetição desta tarefa. Portanto, se não houver falha na cache de reconfiguração,
o mecanismo de TB somente será aplicado uma única vez em cada seqüência de
instruções.

Em relação a mecanismos utilizados em outros sistemas reconfiguráveis, que
somente aplicam as técnicas de reconfiguração em partes mais executadas da aplicação,
a abordagem de TB descrita neste trabalho fornece uma maior flexibilidade. A aplicação
inteira sofre análise do TB, não se limitando a apenas partes específicas da aplicação.

O hardware de TB é composto basicamente por tabelas e mapas de bits que
armazenam temporariamente dados da configuração corrente. O algoritmo é composto
por seis tabelas e dois mapas de bits que serão especificadas a seguir:

 Mapas de Escrita – a função deste mapa é armazenar o número do registrador
de escrita de cada instrução alocada na UFR. Este mapa é utilizado na
verificação das dependências entre as instruções no momento de alocação

115

das mesmas na arquitetura. Em cada linha da UFR existe um mapa de escrita,
sendo o número de bits igual ao número de registradores existentes no
contexto de entrada. Este mapa de bits não será armazenado na configuração
final, pois não tem utilidade no momento da execução.

 Mapas de Recurso – este mapa foi inserido no mecanismo para gerenciar a
alocação de recursos na UFR. Assim, no momento da inserção de uma nova
instrução em uma configuração, é realizada a busca por uma unidade
funcional ociosa neste mapa. Analogamente ao mapa de escrita, os dados do
mapa de recurso não serão inseridos na configuração.

 Tabela de Contexto Atual – armazena uma referência a todos os registradores
que serão utilizados pelas instruções executas por uma configuração.

 Tabela de marcadores de contexto atual – faz a caracterização dos
registradores da tabela de contexto atual, distinguindo entre registradores de
leitura e de escrita.

 Tabela de Contexto Inicial de Leitura – nesta tabela são inseridas as
referências a todos os operandos de leitura armazenados na tabela de
marcadores de contexto atual. A inserção é feita na posição correspondente à
posição do operando na tabela de contexto atual. A função desta tabela é
indicar quais os registradores devem ser carregados no contexto de entrada
no inicio da execução.

 Tabela de Imediatos – as instruções do tipo-I e do tipo-J trazem em seu corpo
operandos imediatos. Para que estas possam ser executadas na UFR é
necessário armazenar o valor destes operandos. Assim, a função desta tabela
é armazenar os valores imediatos, para que no momento da execução, sejam
carregados para o contexto de entrada.

 Tabela de Leituras – a função desta tabela é armazenar quais registradores
serão entradas de cada unidade funcional. Especificamente, os dados desta
tabela serão inseridos, na hora da execução, nos bits de controle dos
multiplexadores de entrada de cada unidade funcional. O modo que esta
tabela indica os registradores é referenciando a posição dos mesmos na
tabela de contexto inicial.

 Tabela de Escrita – analogamente a tabela de leituras, a tabela de escrita
armazena a referência para a coluna em que o recurso foi alocado na UFR. A
definição da posição de escrita nesta tabela corresponde à mesma posição em
que este operando está na tabela de contexto. Estes valores servirão como
controle dos demultiplexadores alocados após as unidades funcionais, com o
objetivo de realizar a escrita nos registradores do contexto de saída.

A Figura 1 demonstra o hardware de tradução binária acoplado ao processador
SparcV8. O hardware foi dividido em quatro estágios para não infringir o caminho
crítico do processador. Os estágios que estão em cinza escuro são estágios do
processador e os estágios que estão em cinza claro são estágios do hardware de TB.
Cada instrução executada pelo processador é analisada pelo TB que realiza a alocação
destas nas tabelas e mapas de bits que compõe o hardware de detecção. Abaixo é
demonstrada a análise de execução de cada estágio do algoritmo.

116

 Decodificação (ID) – neste estágio é realizada a decodificação dos campos
da instrução, estas informações servirão para identificar características como:

o Grupo da Instrução: em qual grupo da unidade reconfigurável a
instrução deve ser alocada.

o Tipo e Função da Instrução: em qual unidade funcional do grupo a
instrução deve ser alocada, além de qual função a unidade em questão
deve desempenhar para executar a instrução.

o Registradores de Leitura e Escrita: identificam quais são os
registradores de leitura e escrita da instrução.

o Operandos Imediatos: identifica, se a instrução possuir, operandos
imediatos.

 Dependência (DV) – após a instrução estar decodificada e seus campos
identificados, o papel deste é verificar as dependências de dados existentes
entre as instruções. Este trabalho será útil para o próximo estágio alocar as
instruções nas unidades funcionais. Dependências de dados verdadeiras são
bastante comuns entre instruções em um fluxo de execução, então se deve
tomar o devido cuidado na execução destas garantindo a consistência dos
dados.

 Recursos (RA) – no estágio anterior são detectadas as dependências
verdadeiras existentes no fluxo de execução entre as instruções. Neste
estágio é verificada a disponibilidade de unidades funcionais na UFR e
realizada a alocação de uma destas para que a instrução em questão possa ser
executada.

 Atualização de Tabelas e Mapas de Bits (UT) – neste estágio todas as tabelas
e mapas demonstrados anteriormente são atualizados. Assim, a cada
instrução adicionada à UFR, é realizada a atualização nas tabelas com as
devidas informações necessárias para que a instrução seja executada. Deste
modo, é garantido que, no momento da execução, a instrução seja alocada,
executada e o seu resultado seja armazenado no registrador destino. Ao final
da construção de uma configuração, todos os dados das tabelas necessárias
serão empacotados, e a mesma será armazenada na cache de reconfigurações.

A detecção de um bloco de instruções para montagem de uma configuração ocorre
de forma seqüencial, em momento de execução. Entretanto, alguns fatores podem
interromper a formação deste bloco e, conseqüentemente, a montagem de uma
configuração. O primeiro fator são as instruções que não tem suporte de execução na
UFR, exemplos destas são as instruções que realizam operações de divisão. No
momento em que este tipo de instrução é encontrado pelo TB, a configuração corrente é
concluída, e armazenada na cache de reconfigurações. Posteriormente, quando uma
instrução com suporte de execução na UFR é encontrada, uma nova configuração é
iniciada.

Outro fator que interrompe a formação de uma configuração são as instruções de
salto. Assim, a cada instrução de salto executada pelo processador a configuração
corrente é concluída e uma nova configuração é iniciada. Em (BECK, RUTZIG, et al.,
2008) foi proposto um mecanismo de especulação de saltos, este cria árvores de
execução que são utilizadas na formação das configurações da UFR.

117

A utilização de especulação possibilita a formação de configurações que ultrapassam
a execução de instruções de salto, impactando diretamente no desempenho da execução
da aplicação pela inclusão de um número maior de instruções em uma única
configuração. O número de saltos executados em uma única configuração da UFR pode
ser definido pelo projetista. Entretanto, a penalidade por erro de especulação é
proporcional ao crescimento do nível especulado.

Memória de Reconfiguração

O sistema reconfigurável, fundamentalmente, explora três técnicas amplamente
difundidas no meio científico: reconfigurabilidade, tradução binária e reuso. Esta última
explora a natureza de execução do modelo Von-Neumann, onde o contador de programa
é o elemento que dirige o fluxo de execução. Assim, a existência de um laço ou de
saltos remete a repetição de certo trecho de código da aplicação.

A abordagem proposta explora esta característica das aplicações, realizando
tradução binária destes trechos de códigos e armazenando as configurações realizadas
em uma cache, evitando a repetitiva análise de código realizada pelos processadores
superescalares.

Cada posição da cache de reconfigurações armazena dados necessários para a
execução de uma configuração na UFR. Como já explicitado anteriormente, cada
configuração armazena os bits necessários para controlar os multiplexadores e
demultiplexadores, bits de controle das funções de cada unidade funcional, além dos
dados imediatos contidos nas instruções.

Na extração dos resultados de (BECK, RUTZIG, et al., 2008) o algoritmo de
substituição FIFO (do inglês first in, first out) foi utilizado. Como contribuição para esta
dissertação uma maior exploração desta característica foi realizada. Algoritmos
tradicionais de substituição foram implementados; LRU (do inglês least recently used);
LFU (do inglês least frequently used) e o algoritmo randômico. Em alguns casos o
algoritmo LRU e FIFO obtiveram o mesmo número de faltas na cache. Entretanto, na
maioria das aplicações o algoritmo FIFO demonstrou melhores resultados, ou seja, este
algoritmo é capaz de abranger a região exata da execução temporal das configurações.

Metodologia

Para extrair resultados de desempenho, energia e potência do sistema proposto
foram selecionadas algumas aplicações que refletem comportamentos distintos em
relação ao paralelismo em nível de instrução e thread. Todas as aplicações foram
paralelizadas com as interfaces de programação OpenMP e Pthreads.

Um ambiente de simulação foi criado onde é agregado o simulador Simics, scripts
realizados para este trabalho e um simulador desenvolvido que emula o comportamento
de um DAP. Pontos de sincronização são precisamente calculados pelo ambiente de
simulação que trabalha com precisão de ciclo.

Para extração de dados de potência, área e caminho crítico, todos os componentes do
DAP foram descritos em VHDL. O consumo de potência e a área dos componentes de
memória foram extraídos com a ferramenta CACTI 6.5.

118

Resultados

Os primeiros resultados demonstram a comparação de CReAMS e um sistema
multiprocessado composto de processadores SparcV8, chamado MPSparcV8. Um DAP
ocupa a área de quatro SparcV8. Assim, criou-se um cenário de comparação de 4-DAP
CReAMS e 16-SparcV8, que refletem plataformas com a mesma área. Os resultados
demonstraram que CReAMS produz um tempo de execução menor em 6 aplicações das
10 simuladas. CReAMS prove um maior tempo de execução nas aplicações onde o TLP
é massivo, visto que no cenário de mesma área CReAMS tem 4 vezes menos
processador do que MPSparV8. Quando um cenário de mesma área é criado, onde o
número de processadores é maior (16-DAP CReAMS e 64-SparcV8), CReAMS produz
um tempo de execução menor do que MPSparcV8 em 7 aplicações, perdendo nas
aplicações onde o TLP é extremamente massivo. O consumo de energia de CReAMS é
menor em todas as aplicações visto que a arquitetura possui algumas abordagens que
evita este consumo: menos acessos a memória de instrução, modo inteligente de
reconfiguração da unidade funcional reconfigurável e a utilização de Sleep Transistors.
Em média o tempo de execução é 30% menor em CReAMS consumindo menos 32% de
energia do que o MPSparcV8.

Nos resultados explicitados anteriormente o custo de comunicação entre as threads é
desconsiderado. Assim, a latência de uma rede em chip com topologia mesh é modelada
para verificar qual o impacto da comunicação em CReAMS e em MPSparcV8. Os
resultados demonstraram que a interconexão afetou mais o MPSparcV8 do que
CReAMS visto que o primeiro, em um cenário de mesma área, tem mais processadores
do que CReAMS. Sem comunicação CReAMS produz um tempo 20% menor na
execução da aplicação apsi do que MPSparcV8, quando a comunicação é considerada
os ganhos aumentaram para 37%. O consumo de energia de CReAMS foi beneficiado
em relação ao consumo de MPSParcV8, sem comunicação os ganhos do primeiro é de
32% em relação ao segundo, quando comunicação é inserida os ganhos sobem para
49%. Isto se dá pela maior latência de comunicação provida por um sistema
multiprocessado que contém mais processadores.

Resultados interessantes foram obtidos concebendo CReAMS com ouma
organização homogênea, com o objetivo de reduzir ainda mais o consumo de energia,
CReAMS foi concebida com uma organização heterogênea. Desta forma, três diferentes
configurações de DAPs foram criadas e acopladas em um mesmo chip. Os resultados
obtidos em um cenário com chips de mesma área demonstraram que organizações
heterogêneas com menor exploração de TLP e maior exploração de ILP do que as
homogêneas provem ganhos nas aplicações onde ILP é predominante e perdas onde o
TLP é dominante. Ganhos de energia são obtidos pelas organizações heterogêneas visto
que o seu Termal Design Power (TDP) é sempre menor do que o das organizações
homogêneas.

Entretanto, em outro cenário de comparação de mesma área, onde as organizações
heterogêneas possuem maior nível de explorar TLP e menor nível de explorar ILP do
que as homogêneas, a heterogeneidade mostrou-se mais eficiente em aplicações onde o
TLP é massivo e também em aplicações onde o ILP é massivo. Conclui-se que os
poucos processadores que possuem alta capacidade de explorar ILP já exploram
significativamente este tipo de paralelismo. O consumo de energia das organizações
heterogêneas é maior do que as homogêneas devido ao seu maior TDP.

119

A partir dos resultados obtidos na exploração das organizações heterogênea
verificou-se a necessidade de inclusão de um escalonador dinâmico de threads no
sistema multiprocessado. Algumas threads que necessitavam de grande exploração de
ILP estavam alocadas em processadores que proviam fraca exploração deste nível de
paralelismo, fazendo com que o tempo de execução de algumas aplicações fosse
afetado. Assim, um escalonador que detectasse, em tempo de execução, a falha de
alocação das threads e realocasse as mesmas para um processador com alto grau de
exploração de ILP poderia diminuir as perdas providas pelas organizações heterogêneas.
Os resultados demonstraram que um simples escalonador dinâmico de threads consegue
diminuir o tempo de execução em até 15%, dado que prova a necessidade de
escalonamento quando este tipo de organização é utilizada.

Por fim, uma comparação de CReAMS com um sistema multiprocessado composto
por processadores superescalares provido de execução fora-de-ordem foi realizada.
Foram criados dois cenários de comparação, ambos com o mesmo orçamento de
potência. No primeiro cenário foi comparado 4-OOO 4-issue MPSparcV8 e 32-DAP
CReAMS. CReAMS se mostrou mais eficiente em todas as aplicações, em média o
ganho foi de 3 vezes sobre a plataforma composta por quatro processadores
superescalares. Em um segundo cenário, foi comparado 8-OOO 4-issue MPSparcV8 e
64-DAP CReAMS. CReAMS também foi mais eficiente em todas as aplicações, e em
média alcançou-se um tempo de execução 2.5 vezes menor. Estes dados mostram que
CReAMS entrega mais desempenho por watt consumido do que um sistema
multiprocessador composto de processadores 4-issue com execução fora de ordem.

Conclusões

Neste trabalho o espaço de projeto sobre o paralelismo em nível de instrução e
thread é explorado. O uso de um modelo analítico demonstrou os limites de ambos os
níveis de paralelismo e a necessidade de explorar ambos de forma conjunta. O mesmo
modelo analítico mostrou o grande impacto que a comunicação entre threads produz em
um sistema onde vários processadores são encapsulados em um mesmo chip. Levando
as conclusões do modelo analítico em conta, foi proposto um sistema multiprocessado
que agrega a exploração transparente de ILP por arquitetura reconfigurável com a
produtividade de software provida pelas interfaces de programação OpenMP e Pthreads.
Este sistema multiprocessado organizado homogeneamente demonstrou-se ganhos em
desempenho e energia em comparação com um sistema multiprocessado tradicional que
ocupa a mesma área em chip. Após, a organização heterogênea deste sistema se
demonstrou ainda mais eficiente em termos de desempenho e energia, alcançando
resultados ainda mais significantes. A adaptabilidade em explorar o paralelismo em
nível de instrução do sistema proposto se mostrou mais eficiente em termos de
desempenho do que um sistema multiprocessado composto por processadores
superescalares com execução fora de ordem levando em conta um mesmo orçamento de
potência para ambas as plataformas.

