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ABSTRACT 

As the number of embedded applications is increasing, the current strategy of 
several companies is to launch a new platform within short periods, to execute the 
application set more efficiently, with low energy consumption. However, for each new 
platform deployment, new tool chains must come along, with additional libraries, 
debuggers and compilers. This strategy implies in high hardware redesign costs, breaks 
binary compatibility and results in a high overhead in the software development 
process. Therefore, focusing on area savings, low energy consumption, binary 
compatibility maintenance and mainly software productivity improvement, we propose 
the exploitation of Custom Reconfigurable Arrays for Multiprocessor System 
(CReAMS). CReAMS is composed of multiple adaptive reconfigurable systems to 
efficiently explore Instruction and Thread Level Parallelism (ILP and TLP) at hardware 
level, in a totally transparent fashion. Conceived as homogeneous organization, 
CReAMS shows a reduction of 37% in energy-delay product (EDP) compared to an 
ordinary multiprocessing platform when assuming the same chip area. When a variety 
of processor with different capabilities on exploiting ILP are coupled in a single die, 
conceiving CReAMS as a heterogeneous organization, performance improvements of 
up to 57% and energy savings of up to 36% are showed in comparison with the 
homogenous platform. In addition, the efficiency of the adaptability provided by 
CReAMS is demonstrated in a comparison to a multiprocessing system composed of 4-
issue Out-of-Order SparcV8 processors, 28% of performance improvements are shown 
considering a power budget scenario.  
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1 INTRODUCTION 

Industry competition in the current wide and expanding embedded market makes 
the design of a device increasingly complex. Nowadays, embedded systems are in a 
transition process from closed devices to a world in which the products have to run 
applications, previously unforeseen at design time, during their whole life cycle. Thus, 
companies are always enhancing the repository of applications to sustain their profit 
even after the product has been sold. Current cell phones, a clear example of devices 
that explore today´s convergence, are capable of downloading applications during the 
product life cycle. Android, Google´s software framework, in less than three years of 
existence offers 380,297 applications for downloading, while Apple´s platform, iOS, 
has three times as many applications as Android. Apple becomes the most valuable 
company of United States of America after four years of iPhone. The customers are 
attracted to have in their devices more and more applications such as games, text editors 
and VoIP communication interfaces. 

However, most embedded products are mobile and hence battery-powered. 
Hardware designers should cope with well-known design constraints such as energy 
consumption, chip area, process costs and processing capability. The strategy to embed 
different applications during the product life cycle produces new design challenges, 
which makes embedded platforms development even more difficult. Thus, the current 
embedded system design is not only constrained by the existing applications 
requirements. To reach a wider market, one should carefully conceive the design to 
cope with the requirements of the wide software repository that will be developed even 
after the product deployment.   

The fast deployment of embedded applications dynamically enlarges the range of 
different types of code that the platform should execute. Consequently, the life cycle of 
modern embedded products is getting increasingly small since the hardware platform 
was not originally built to handle such software heterogeneity. A few years ago, cell 
phones manufacturers launched a major product line per year, what was suitable to 
supply the performance required by the new applications launched during this period. 
The life cycle of a cell phone has shortened to achieve the requirements of the new 
applications (HENKEL, 2003), which implies in less revenue per new design due to the 
reduced product lifetime. However, companies try hard to stretch their product lines to 
amortize the costs and to increase the profits per design. Typically, companies use the 
natural life cycle of the applications in the market as a strategy to stretch the product life 
cycle and to avoid costs with frequent hardware redesigns. The application life cycle is 
divided into three phases (BRANDAO e WYNN, 2008): introduction, growth and 
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maturity. During the introduction phase, which reflects the time when the application is 
launched in the market (e.g. a new video decoding standard such as H.264). Due to the 
doubts about the consumer acceptance, the logical behavior of a new application is 
described using well-known high-level software languages (e.g. C++, Java and .NET), 
supported by the platform tool chain, which could possibly cause overload in some parts 
of the underlying platform. The general-purpose processor would be responsible for 
executing the new application. In this life cycle step, companies still avoid hardware 
costs, since the target platform is the very same of the previous product, or very close to 
it. After market consolidation, the growth and maturity phase start, thanks to the 
widespread use of the application in different products. At this time, a redesign of the 
hardware platform is mandatory to shrink the gap between the application and the 
hardware achieving better energy/performance execution.  

Generally, two approaches are used to supply the efficient execution of the latest 
embedded application. In the first approach, new instructions are added to the original 
instruction set architecture (ISA) of the platform. This approach aims at solving 
performance bottlenecks created by massive execution of certain application parts with 
well-defined behavior. For instance, this used to be the scenario of the last generation of 
embedded systems. After the profiling and evaluation phase, parts of applications that 
contain a similar behavior are implemented as specialized hardwired instructions. These 
instructions will extend the processor ISA to assist a delimited range of applications 
(GONZALEZ, 2000). Since multimedia applications and digital filters are massively 
used in the embedded systems field, current ARM processors have implemented DSP to 
efficiently execute, in terms of energy and performance, these kinds of applications.    

A second technique uses a more radical approach to close the gap between the 
hardware and the embedded application. Application Specific Instruction Set Processors 
(ASIPs) is a technique used to implement the entire logic behavior of the application in 
hardware. ASIP development can be considered better design solution than ISA 
extensions, since it provides higher energy savings and performance. Nowadays, such 
an approach is widely explored by the leading companies of the market. Open 
Multimedia Application Platform (OMAP), designed by Texas Instruments, comprises 
one or two ARM processors that are surrounded by several ASIPs (communication, 
graphics and audio standards), each one of them with its particular architectural 
characteristics to efficiently execute a restricted type of software. Companies usually 
employ ASIPs to obey the demand for new applications in the shortened design time 
scenario and to reach the performance requirements imposed by the market. 

However, the use of ASIPs causes frequent platform redesign that besides 
increasing costs in hardware deployment also affects software development process. 
While it is difficult to develop applications for the current platform where one can find 
up to 21 ASIPs. Such difficulty will increase in the coming decade since it is expected 
that 600 different ASIPs will be needed to cover the growing convergence of 
applications for the embedded devices (SEMICONDUCTORS, 2009). To soften such a 
complexity, hardware companies (e.g. OMAP and Nvidia) provide particular tool chains 
to support the software development process. This tools chain makes the 
implementation details of the platform transparent to the software designers, even in the 
presence of a great number of ASIPs. However, each release of a platform relies on tool 
chain modifications, since it must be aware of the existence of the underlying ASIPs. 
Thus, changes on both software and hardware are mandatory when ASIPs are employed 
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to supply the energy and performance efficiency demanded for the current embedded 
platforms.  

Despite the great advantages shown in the employment of some ISA extensions 
and ASIPs, such approaches rely on frequent hardware and software redesigns, which 
go against the current market trend on stretching the life cycle of a product line. These 
strategies attack only a very specific application class, failing to deliver the required 
performance while executing applications for those behaviors that have not been 
considered at design time. In addition, both ISA extensions and ASIP employed in the 
current platforms only explore instruction level parallelism (ILP). Aggressive ILP 
exploitation techniques no longer provide an advantageous tradeoff between the amount 
of transistors added and the extra speedup obtained (MAK, 1991) . 

Due to the aforementioned reasons, the foreseen scenario dictates the need for 
changes in the paradigm of the hardware platform development for embedded systems. 
Many advantages can be obtained by combining different processing elements into a 
single die. The execution time can clearly benefit since several different parts of the 
program could be executed concurrently in processing elements. In addition, the 
flexibility to combine different processing elements, in terms of performance, appears 
as a solution to the heterogeneous software execution problem. The hardware 
developers can select the set of processing elements that best fit with the heterogeneity 
running in their designs.  

Multiprocessing systems provide several advantages, and three of them highlight 
among all: performance, energy consumption and validation time. The life cycle of 
these devices has halved in comparison with products of last decade. Validation time 
appears as an important consumer electronics constraint that should be carefully 
handled. Researches explain that 70% of the design time is spent in the platform 
validation (ANANTARAMAN, SETH, et al., 2003), thus being an attractive point for 
time-to-market optimization. Considering this subject, the use of multiprocessing 
system softens the hard task to shrink time-to-market. Commonly, such an approach is 
built by the combination of validated processing elements that are aggregated into a 
single die as a puzzle game. Since each puzzle block reflects a validated processing 
element, the remaining design challenge is to assemble the different blocks. Actually, 
the designers should select a communication mechanism to connect the entire system, 
which eases the design process by the use of standard communication mechanisms such 
as buses or network on chips (NoC).  

Multiprocessing systems introduce a new parallel execution paradigm aiming to 
overcome the performance barrier created by the limits of instruction level parallelism. 
Nowadays, the software team should manually detect the parts of the program that could 
be executed in parallel. The hardware team is only responsible for the encapsulation 
process of a certain processing elements and for the communication infrastructure. 
When considering ILP exploitation, the complexity on extracting the parallelism moves 
to software team for multiprocessing chips, since there is no strong methodology that 
can support automatic software parallelization. The software team is responsible for the 
non-trivial task of spawning and distributing the code among the processing elements. 
Due to this reason, software productivity arises as the hardest challenge in a 
multiprocessing system design, since the applications should be launched as fast as 
possible to supply the demand of the market. The binary code of these applications 
should be as generic as possible to provide compatibility among different products and 
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platforms. In addition, the communication infrastructure should be efficient enough to 
smooth the latency of the inter-thread communication. 

The four quadrants plotted in the Figure 1 show the strengths and the weaknesses 
of the existing hardware strategies used to design a multiprocessor platform. This figure 
considers the organization and the architecture of the multiprocessing platforms. The 
main strategy used for leader companies in the market is building embedded platforms 
as illustrated in the lower left quadrant of the Figure 1. Such strategy could be area 
inefficient, since it relies on the employment of a particular ASIP to efficiently cover 
the execution of software with a restricted behavior in terms of ILP and TLP. Each 
release of a platform will not be transparent to the software developers, since together 
with a new platform, a new version of its tool chain with particular libraries and 
compilers must be provided. Besides the obvious deleterious effects on software 
productivity and compatibility for any new hardware upgrade, there will also be 
intrinsic costs of new hardware and software developments for every new product. 

 

Figure 1. Different Architectures and Organizations 

On the other hand, the upper right quadrant of the Figure 1 illustrates the 
multiprocessing systems that are composed of multiple copies of the same processors, in 
terms of architecture and organization. Typically, such strategy is employed in general-
purpose platforms where performance is mandatory. However, energy consumption is 
also getting relevant in this domain (e.g. it is necessary to reduce energy costs in 
datacenters). In order to cope with this drawback, the homogeneous architecture and 
heterogeneous organization, shown in the upper left quadrant of the Figure 1, has been 
emerging to provide better energy and area efficiency than the other two 
aforementioned platforms. This approach brings the cost of higher design validation 
time, since many different organizations of processors are used. However, it has the 
advantage of implementing a unique ISA, so the software development process is not 
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penalized. It is possible to generate assembly code using the very same tool chain for 
any platform version maintaining full binary compatibility for the already developed 
applications. However, the scheduling of the threads appears as an additional challenge 
when heterogeneous organization approach is used. Threads that have different levels of 
instruction level parallelism should be assigned to processors with different 
performance capabilities.   

Software partitioning is a key feature in multiprocessing environments. A 
computational powerful multiprocessing platform becomes useless if threads of a 
certain application show significant load unbalance ratio. Usually, it is given by the 
poor quality of the software partitioning, or by the nature of the application that does not 
provide a minimum thread level parallelism to be explored. Amdahl’s law shows that 
the speedup of a certain application is limited by its sequential part. Therefore, if an 
application needs 1 hour to execute, being 5 minutes sequential (almost 9% of entire 
application code), the maximum speedup provided for a multiprocessing system is 12 
times, no matter how many processing elements are available. 

Figure 2 shows the performance of some well-known embedded applications that 
were split in threads using a traditional shared-memory parallel programming language. 
As can be seen, the performance of these applications does not scale as the number of 
processors increases, when executed on a multiprocessor system composed of multiple 
copies of five-stage pipeline RISC processors. In the best case of the examples, even 
overlooking inter-thread communication costs, a speedup of nine times is achieved 
when 64 processors are used. Clearly, these embedded applications are good examples 
of Amdahl’s law, demonstrating that multiprocessing systems can fail to accelerate 
applications that have a meaningful sequential part. Since there is a limit of TLP for 
most applications (BLAKE, DRESLINSKI, et al., 2010), standalone TLP exploitation 
does not provide the energy and performance optimization demanded for current 
embedded designs. 

 

Figure 2. Speedup of homogeneous multiprocessing systems on embedded applications 

The ideal platform would have the hardware benefits from the third quadrant of 
Figure 1, with the ease for software development of the second quadrant, without any 
cost associated to new hardware development. It means that, the physical structure of 
the hardware could be homogenous, since chip area is no longer a drawback for billion 
transistor technologies. Nevertheless, it is mandatory that the costs, such as power and 
energy consumption, virtually must behave as a heterogeneous organization. However, 
this can only be achieved if the available hardware has the ability to be tuned for each 
different application or even program phase on the fly. Dynamic reconfigurable 
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architectures have already shown to be very attractive for embedded platforms, since 
they can adapt the fine grain parallelism exploitation (i.e. at instruction level) to the 
application requirements at run-time (CLARK, KUDLUR, et al., 2004) (LYSECKY, 
STITT e VAHID, 2004). However, besides having restricted thread level parallelism, 
embedded applications also exhibit limits of instruction level parallelism. Thus, gains in 
performance when such exploitation is employed tend to stagnate, even if a huge 
amount of resources is available in the reconfigurable accelerator. The “Single Dynamic 
Accelerator” bars of the Figure 2 illustrate the above claim. This assumption considers 
the performance of a dynamic reconfigurable architecture with an area equivalent to 
sixteen five-stage pipeline RISC processor. Although it is faster than a RISC processor 
executing a single thread, outperforming four processors on running the Fast Fourier 
Transform (FFT). The standalone ILP exploitation of the single dynamic accelerator 
does not provide an advantageous trade-off between area and performance if compared 
to the multithreaded version of the remaining benchmarks. Summarizing, this figure 
indicates that ILP as well as TLP alone do not provide meaningful area-performance 
tradeoff, considering a heterogeneous software environment. 

The state-of-art of the multiprocessing systems with both ILP and TLP exploitation 
is very divergent, if one considers the complexity of the processing element. At one side 
of the spectrum, there are multiprocessing systems composed of multiple copies of 
simple cores to better explore coarse grain parallelism of highly thread-based 
applications (HAMMOND, HUBBERT, et al., 2000) (ANDRE, BARROSO, et al., 
2000). At the other side, there are multiprocessor chips assembled with few complex 
superscalar/SMT processing elements, to explore applications where ILP exploration is 
mandatory. There is no consensus on the hardware logic distribution in a 
multiprocessing environment to explore the best of ILP and TLP together regarding a 
wide range of application classes. Considering the wide range of instruction level 
parallelism that current applications exhibit, there is a large design space to explore by 
creating platforms composed of processors with different capabilities on exploiting ILP. 
Despite the technology allows the encapsulation of billion transistors in a single chip, 
area could be saved and the performance of the homogeneous platform could be 
maintained by exploiting the diversity of computational capabilities of the 
heterogeneous organization. Such strategy relies on scheduling algorithm that would 
correlate the intrinsic characteristics of the threads, such as load unbalance and ILP, 
with the computational capability of the available processors. (KUMAR, FARKAS, et 
al., 2003) (KUMAR, JOUPPI e TULLSEN, 2006) 

Summarizing, an ideal multiprocessing system for embedded devices should be 
composed of replication of generic processing elements that could adapt to the 
particularities of the applications, throughout at the product life cycle. This platform 
should emulate the behavior, in terms of performance and energy, of the ASIPs that are 
successfully employed in the current embedded platforms. At the same time, in contrast 
to such platforms, the use of the same ISA for all processing elements is mandatory to 
increase software productivity by avoiding time spent on tool chain modifications, and 
to maintain the binary compatibility to the already developed applications. This ideal 
platform would be able to attack efficiently the whole spectrum of application 
behaviors: those that contain dominant thread level parallelism and those single 
threaded applications. However, the platform should be conceived as a heterogeneous 
organization to provide a best fitting between the heterogeneous characteristics that the 
applications exhibit and the necessary processing capability to execute them. Moreover, 
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the number of processing elements should be careful investigated. Since the overall 
system performance could be affected by inter-thread communication costs with the 
growth of processing elements. This way, the hypothesis is that by using such strategy 
one could reach a satisfactory tradeoff in terms of energy, performance and area, 
without extra software and hardware costs. 

1.1 Contributions 

Considering all motivations discussed before, the first goal of this work is focused 
on reinforcing, by the use of an analytical model, that the employment of a standalone 
level of parallelism exploration does not provide a meaningful energy-performance 
tradeoff when a heterogeneous application environment is handled. In addition, this 
study gives some clues about the ratio of hardware deployment in multiprocessing 
chips, in terms of fine and coarse grain parallelism exploitation, to achieve a balanced 
architecture in terms of area and performance. A Network-on-Chip is also modeled to 
investigate the impact of inter-thread communication latency over the gains obtained by 
thread level parallelism exploitation.  

In this scenario, we propose a platform based on Custom Reconfigurable Arrays 
for Multiprocessor System (CReAMS), by merging two different architectural concepts: 
reconfigurable architectures and multiprocessing systems. In the first step of this work, 
CReAMS is built as homogeneous on both architecture and organization. However, it 
virtually behaves as a homogeneous architecture with a heterogeneous organization. 
Thanks to its dynamic adaptive hardware, coupled to each basic processor, CReAMS 
takes advantage of the flexibility provided by the reconfigurable architecture.  

This system is capable of transparently explore (no changes in the binary code are 
necessary at all) the fine-grained parallelism of the individual threads, offering much 
greater ability to adapt to the ILP demands of the applications, while at the same time it 
makes the most of the available thread parallelism. The coarse-grained parallelism 
exploitation does not rely on special tools employment since it is explored by well-
known application programming interfaces (e.g. OpenMP and POSIX threads), making 
CReAMS execution independent of any particular software partitioning process. Thus, 
dynamically and in a transparent fashion it is possible to balance the best of both thread 
and instruction parallelism levels. This way, any kind of code, from those that present 
high TLP and low ILP to those that are exactly the opposite are accelerated. CReAMS 
achieves performance improvement, providing less energy consumption, but with the 
software productivity of a multiprocessor device based on homogeneous architecture. In 
addition, a single tool chain is used for the whole platform and for any new version 
launched, with full binary compatibility. 

Aiming at showing the potential of CReAMS platform on adapting to a wide 
range of software behaviors, we selected applications from general purpose (e.g. SPEC 
OMP2001), parallel (e.g. Splash2) and embedded benchmark suites (e.g. MiBench). The 
experimental setup was supported by simulation using the SparcV8 ISA model supplied 
by Simics instruction set accurate simulator (MAGNUSSON, CHRISTENSSON, et al., 
2002). CReAMS measurements were obtained through replication of cycle accurate 
simulators that model the behavior of the basic processing element of CReAMS, named 
as Dynamic Adaptive Processor (DAP). The cycle accurate simulators precisely 
calculate threads synchronization, as barriers and locks. CReAMS implements thread 
communication through shared-memory mechanism and, as already cited, supports the 
well-known application programming interfaces, which makes the thread spawning 



 

 

20 

 

process transparent to the hardware. Performance improvement and energy savings 
were demonstrated when comparing CReAMS to ordinary multiprocessing system 
composed of multiple copies of pipelined SparcV8 processors when considering the 
same chip area for both designs. 

Since very interesting performance and energy results were obtained, considering 
CReAMS as homogeneous organization platform, aiming at reducing the area occupied 
by CReAMS, we investigated the advantages of using DAPs with different processing 
capabilities, taking advantage of the heterogeneous organization. One of the motivations 
for such design space exploitation is the diversity of instruction level parallelism 
available in a heterogeneous application workload. Some threads may have larger 
amount of instruction level parallelism than others, which can be exploited by a DAP 
that can issue many instructions per cycle.  

However, the powerful DAP could be assigned to execute a certain thread that 
requires tiny ILP exploitation, consuming more power than a simpler core that would 
better matched to the characteristics of such thread. This wrong thread assignment could 
cause load-unbalanced execution, significantly affecting the overall execution time. 
Thus, DAPs with different processing capabilities bring a diversity of ILP opportunities 
to explore, opening room to achieve larger area savings and less power consumption 
than the homogeneous organization strategy. However, it also brings a need for a thread 
scheduling strategy that matches to the performance requirements of a certain thread to 
maintain the performance shown by the homogeneous DAPs. Thus, we developed a 
simple thread scheduling algorithm only to prove the need for a dynamic thread 
scheduling strategy when heterogeneous organizations are employed. The scheduling 
strategy assigns threads to DAPs with different ILP exploitation capabilities considering 
the number of executed instructions. As all DAPs have the same instruction set in the 
heterogeneous environment, the transparency offered by the homogeneous CReAMS in 
the software development process is not affected, which maintains the same software 
productivity. 

 Chapter 2 presents the related work, discussing issues related to reconfigurable 
architectures, multiprocessing systems based on heterogeneous architecture. We also 
describe the contribution and main novelty of this work, when comparing against these 
other studies. In Chapter 3, we first discuss, using an analytical model, the potential of 
standalone exploitation of the instruction and thread level parallelism. We model a 
multiprocessing architecture composed of several simple and homogeneous cores, and 
we compare it to the modeling of a superscalar architecture in terms of performance and 
energy. The impact of the communication infrastructure is also analytically modeled. 
After that, in the Chapter 4, we present the structure of the CReAMS platform. Chapter 
5 shows the methodology and tools employed to gather the results. The performance, 
energy and area results regarding the homogeneous organization of CReAMS are 
demonstrated in this Chapter. After, results considering CReAMS conceived as 
heterogeneous organization are shown. Finally, the performance of CReAMS is 
compared to a 4-issue Out-Of-Order SparcV8 multiprocessor. Chapter 6 discusses the 
future works and concludes this work. 
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2 RELATED WORK 

In this chapter, we review traditional works that explore reconfigurable fabric to 
accelerate single-threaded applications. After, we show some approaches that use 
multiprocessing systems in the commercial and academic field. Finally, the 
characteristics of many researches that employ reconfigurable architecture in a 
multiprocessing environment are shown. At the end of this section, we analyze our 
approach, linking its similarities/dissimilarities with the other researches that use the 
same strategy. 

2.1 Single-Threaded Reconfigurable Systems 

Although there is no common criteria over the classification of the single-threaded 
reconfigurable system, careful study with respect to coupling, granularity and 
reconfiguration type is presented in (HAUCK e COMPTON, 2002). 

In a reconfigurable architecture design, the choice of the coupling between the 
reconfigurable data path and the basic processor is crucial for performance. As can be 
seen in Figure 3, tightly coupled is the classification given for the reconfigurable fabric 
implemented as an additional functional unit (FU) of the processor. As the 
communication between both elements occurs only inside the chip, its high throughput 
is a benefit over the loosely coupled reconfigurable fabric. There are many sub-
classifications of loosely coupled fabrics. When the fabric is classified as co-processor, 
the data path is implemented outside the chip, as shown in Figure 3. Design constraints 
guides the coupling employment, when there is not enough silicon area to store the 
reconfigurable fabric, loosely coupled architectures are used, where an external bus is 
responsible for the communication between processor and reconfigurable fabric. 
Attached is the coupling strategy that connects the reconfigurable fabric between cache 
memory and the I/O interface. The communication cost is high, however, lower than the 
standalone strategy that connects the reconfigurable data path to the I/O interface. 

The size and complexity of the basic reconfigurable elements is referred to as the 
block’s granularity. For example, one could build a reconfigurable fabric as replications 
of one-bit width adders as a basic reconfigurable element. However, 32-bits width adder 
could be encapsulated as a black box building a coarser basic reconfigurable element. 
This latter design provides lower reconfiguration flexibility than the former, since usage 
of adders that need less than 32-bits width would always occupy a basic element. On the 
other hand, a simple controller is required as the granularity becomes coarser, so fewer 
bits are used to reconfigure the whole fabric. 
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Figure 3. Coupling setups (HAUCK e COMPTON, 2002) 

Static reconfiguration is exploited by several researches as strategy to extract, at a 
compile time, the most suitable parts of the application code to efficiently execute in the 
reconfigurable fabric. This strategy avoids any kind of execution time task by adding 
compilation phase to discover the suitable parts of the application code. However, it 
breaks the binary compatibility since it relies on some kind of source code modification. 
In addition, the time-to-market constraint can be affect as a new compilation phase is 
inserted.  

Many successful reconfigurable fabrics employ static reconfiguration. Processors 
like Chimaera (HAUCK, FRY, et al., 2004) have a tightly coupled reconfigurable array 
in the processor core, working as an additional functional unit, limited to combinational 
logic only. This simplifies the control logic and diminishes the communication overhead 
between the reconfigurable array and the rest of the system. Look-up-tables are used as 
a basic reconfigurable block, which lead to high reconfiguration costs, as in memory 
footprint as well as in reconfiguration time. The GARP machine (WAWRZYNEK, 
1997) is a MIPS compatible processor with a loosely coupled reconfigurable array. The 
communication is done using dedicated move instructions, as one also employs look-
up-tables as basic reconfigurable blocks the same design costs of Chimaera are 
produced by this approach. 

Piperench (GOLDSTEIN, SCHMIT, et al., 2000) proposes a pipeline-based 
reconfigurable fabric attached to the processor to reduce the reconfiguration/execution 
time of FPGAs. This approach use a technique, named as virtualization, to reduce area 
costs of the reconfigurable fabric. The upper side of this Figure (Figure 4(a)) shows an 
example of a Piperench execution without the virtualization technique. In this case, the 
application was divided in 5 parts and takes 7 cycles to be configured and executed, 
since no parallelism in the configuration/execution process is provided. The lower side 
of the Figure 4 shows the virtualization technique, 3 cycles are needed to execute the 
same application. The reuse of the same data path stage at different periods is the key 
factor to achieve high performance with low area.  

More recently, new reconfigurable architectures, very similar to the dataflow 
approaches, were proposed. For instance, the TRIPS is based on a hybrid von-
Neumann/dataflow architecture that combines an instance of coarse-grained, 
polymorphous grid processor cores with an adaptive on-chip memory system 
(SANKARALINGAM, NAGARAJAN, et al., 2004) . To better explore the application 
parallelism and utilize the available resources, TRIPS uses three different modes of 
execution, focusing on instruction-, data- or thread level parallelism. Wavescalar 
(SWANSON, 2007), in turn, totally abandons the program counter and the linear von-
Neumann execution model that could limit the amount of exploited parallelism. The 
major difference between this approach and the conventional systems is that there is no 
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central processing unit at all, which is replaced by many distributed processing nodes. 
In agreement with the previous examples, one can also refer to Molen (VASSILIADIS, 
WONG, et al., 2004). All cited approaches still rely on static reconfiguration to achieve 
code optimization and better resource utilization on applying reconfigurable logic. 

 

 

Figure 4. Virtualization process of Piperench (GOLDSTEIN, SCHMIT, et al., 2000) 

Concerned about the overheads created by the static reconfiguration process, Stitt 
(LYSECKY, STITT e VAHID, 2004) had a pioneering work on proposing the dynamic 
detection strategy to reconfigurable fabrics. The employment of dynamic detection 
techniques does not rely on code recompilation, providing software compatibility and 
maintaining the device time-to-market. Stitt et al. (LYSECKY, STITT e VAHID, 2004) 
presented the Warp Processing, which is based on a system that does dynamic 
partitioning using reconfigurable logic. Performance improvements are shown on 
applying such a technique to a set of popular embedded system benchmarks. It is 
composed of a microprocessor to execute the application software, another 
microprocessor where a simplified CAD algorithm runs, local memory and a dedicated 
simplified FPGA.  

In (CLARK, KUDLUR, et al., 2004) the Configurable Compute Array (CCA), 
which is a coarse-grained array tightly coupled to an ARM processor, is proposed. The 
feeding process of the CCA involves two steps: the discovery of which sub graphs are 
suitable for running on the CCA, and their replacement by microops in the instruction 
stream. Two alternative approaches are presented: static, where the sub graphs for the 
CCA are found at compile time, and dynamic. Dynamic discovering assumes the use of 
a trace cache to perform sub-graph discovery on the retiring instruction stream at run-
time.  

Even applying dynamic techniques Warp Processing and CCA present some 
drawbacks, though. First, significant memory resources are required for the kernels 
transformation. In the case of the Warp Processing, the use of an FPGA presents long 
latency and consumed area, being power inefficient. In the case of the CCA, some 
operations, such as memory accesses and shifts, are not supported at all. Then, usually 
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just the very critical parts of the software are optimized, limiting their field of 
application.  

In (BECK, RUTZIG, et al., 2008), Beck proposes a coupling of a reconfigurable 
system together with a special binary translation (BT) technique implemented in 
hardware, named Dynamic Instruction Merging (DIM). DIM is designed to detect and 
transform instruction groups for reconfigurable hardware execution. Therefore, this 
work proposes a complete dynamic nature of the reconfigurable array: besides being 
dynamic reconfigurable, the sequences of instructions to be executed on it are also 
detected and transformed to a data path’s configuration at run-time. 

As can be observed in Figure 5, this is done concurrently while the main processor 
fetches other instructions (Step 1). When a sequence of instructions is found, a binary 
translation is applied to it (Step 2). Thereafter, this configuration is saved in a special 
cache, and indexed by the memory address of the first detected instruction (Step 3). 

 

Figure 5. How the DIM system works (BECK, RUTZIG, et al., 2008) 

The next time the saved sequence is found (Step 4), the dependence analysis and the 
translation are no longer necessary: the BT mechanism loads the previously stored 
configuration from the special cache, the operands from the register file and memory 
(Step 5), and activates the reconfigurable hardware as functional unit (Step 6). Then, the 
array executes that configuration in hardware (including write back of the results) (Step 
7), instead of ordinary (not translated) processor instructions. Finally, the PC is updated, 
in order to continue the execution. This way, repetitive dependence analysis for the 
same sequence of instructions throughout program execution is avoided.  

The reconfigurable data path is tightly coupled to the processor, working as another 
ordinary functional unit in the pipeline. It is composed of coarse-grained functional 
units, as arithmetic and logic units and multipliers. A set of multiplexers are responsible 
for the routing. Because of the small context size and simple structure, the use of a 
coarse-grained data path is more suitable for this kind of dynamic technique. In this 
technique, both DIM engine and reconfigurable data path are designed to work in 
parallel to the processor and do not introduce any delay overhead or penalties for the 
critical path of the pipeline structure. 
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All the works explained in this subsection show the potential of transforming parts 
of the software to reconfigurable logic execution. Both dynamic and static approaches 
are still limited to optimize single-threaded applications, which narrow its field of 
application since, nowadays, due to the limited instruction level parallelism (MAK, 
1991) the performance will not increase at the same pace as the number of functional 
units increases as well.   

2.2 Multiprocessing Systems  

In the nineties, sophisticated architectural features that exploit instruction level 
parallelism, like aggressive out-of-order instruction execution, provided higher increase 
in the overall circuit complexity than performance improvements. Therefore, as the 
technology reached an integration of almost a billion of transistors in a single die in this 
decade, researchers started to explore thread level parallelism by integrating many 
processors in a single die.  

In the academic field, several researches address chip-multiprocessing subject. 
Hydra (HAMMOND, HUBBERT, et al., 2000) was one of the pioneering designs that 
integrated many processors within a single die. The authors argue that the cost in 
hardware of extracting parallelism from a single-threaded application is becoming 
prohibitive, and advocate the use of software support to extract thread level parallelism 
to allow hardware to be simple and fast. In addition, they discourage a complex single 
processor implementation in a billion-transistor design, since the wire delay increases as 
the technology scaling that makes the handling of long wires complex in pipeline-based 
designs. For instance, in the Pentium 4 design, the long wires distance adds two pipeline 
stages to the floating-point pipeline, so the FPU has to wait two whole clock cycles for 
the operands to arrive from the register file (PATTERSON e HENNESSY, 2010).  

The Hydra Chip Multiprocessor is composed of multiple copies of the same 
processors being homogeneous on both architecture and organization point of views. 
Hydra implementation contains eight processors being each of them capable of issuing 
two instructions per cycle. The choice for simple processor organization provides 
advantages over multiprocessing systems composed of complex processor since, besides 
allows a higher operating frequency of the chip, achieves larger number of processor in 
the same area. A performance comparison among Hydra design, 12-issue superscalar 
processor and 8-thread 12-issue simultaneous multithreading processor shown 
promising results for applications that could be parallelized into multiple threads, since 
Hydra uses relatively simple hardware than the compared architectures. However, 
disadvantages appear when applications contain code that cannot be multithreaded, 
Hydra is then slower than the compared architectures, because only one processor can 
be targeted to the task, and this processor does not have strong ability to extract 
instruction level parallelism.  

Piranha (ANDRE, BARROSO, et al., 2000), as Hydra, invests on the coupling of 
many simple single-issue in-order processors to massive explore thread level parallelism 
of commercial database and web server applications. The project makes available a 
complete platform composed of eight simple processor cores along with a complete 
cache hierarchy, memory controllers, coherence hardware, and network router all onto a 
single chip running at 500 MHz. Results around web server applications show that 
Piranha outperforms an aggressive out-of-order processor exploitation running at 1 GHz 
by over a factor of three times. As Hydra, the authors explicit declare that Piranha is a 
wrong design choice if the goal is to achieve performance improvements in applications 
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that have lack of sufficient thread-level parallelism due to the simple organization of 
their processors. 

Tullsen (KUMAR, TULLSEN, et al., 2004) demonstrates that there can be great 
advantage on providing a diversity of processing capabilities within a multiprocessing 
chip, allowing that architecture to adapt to the application requirements. A 
heterogeneous organization and homogeneous ISA multiprocessing chip is assembled 
with four different processors organization, each one with its particular power 
consumption and instruction level parallelism exploitation capability. To motivate the 
use of such an approach, a study over the SPEC2000 benchmark suite was done. It 
shows that applications have different execution phases and they require different 
amount of resources in these phases. On that account, several dynamic switching 
algorithms are employed to examine the limits of power and performance improvements 
possible in a heterogeneous multiprocessing organization environment. Huge energy 
reductions with little performance penalties are presented by only moving applications 
to a better-matched processor.  

For almost ten years now, multiprocessing systems are increasingly getting the 
general-purpose processor marketplace. Intel and AMD have been using this approach 
to speed up their high-end processors. In 2006, Intel has shipped its multiprocessor chip 
based on homogeneous architecture strategy. Intel Core Duo is composed of two 
processing elements that make communication among themselves through an on-chip 
cache memory. In this project, Intel has thought beyond the benefits of such a system 
employment and created an approach to increase the process yield. A new processor 
market line, named Intel Core Solo, was created aiming to increase the process yield by 
selling even Core Duo dies with manufacturing defects. In this way, Intel Core Solo has 
the very same two-core die as the Core Duo, but only one core is defect free.   

Recently, embedded processors are following the trend of high-end general-purpose 
processors coupling many processing elements, with the same architecture, on a single 
die. Early, due to the hard constraints of these designs and the few parallel applications 
that would benefit from several GPP, homogeneous multiprocessors were not suitable 
for this domain. However, the embedded software scenario is getting similar to a 
personal computer one due to the convergence of the applications to embedded device 
already discussed in the beginning of this work. ARM Cortex-A9 processor is the 
pioneer to employ homogeneous multiprocessing approach into embedded domain, 
coupling up to four Cortex-A9 cores into a single die. Each processing element uses 
powerful techniques for ILP exploration, as superscalar execution and SIMD instruction 
set extensions, which closes the gap between the embedded processor design and high-
end general-purpose processors. 

Texas Instrument strategy better illustrates the embedded domain trend to use 
multiprocessor systems. This heterogeneous architecture handles in hardware most 
widely used applications on embedded devices like multimedia and digital signal 
processing. In 2002, Texas Instruments has launched in the market an Innovator 
Development kit (IDK) targeting high performance and low power consumption for 
multimedia applications. IDK provides an easy design development, with open 
software, based on a customized hardware platform called open multimedia applications 
processor (OMAP). Since its launch, OMAP is a successful platform being used by the 
embedded market leaders like Nokia with its N90 cell phones series, Samsung OMNIA 
HD and Sony Ericsson IDOU. Currently, due to the large diversity found on the 
embedded consumer market, Texas Instruments has divided the OMAP family in two 
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different lines, covering different aspects. The high-end OMAP line supports the current  
sophisticated smart phones and powerful cell phone models, providing pre-integrated 
connectivity solutions for the latest technologies (3G, 4G, WLAN, Bluetooth and GPS), 
audio and video applications (WUXGA), including also high definition television. The 
low-end OMAP platforms cover down-market products providing older connectivity 
technologies (GSM/GPRS/EDGE) and low definition display (QVGA). 

Recently, Texas Instrument released one of its latest high-end products. The 
OMAP4440 covers the connectivity besides high-quality video, image and audio 
support. This mobile platform came to supply the need of the increasingly multimedia 
applications convergence in a single embedded device. This platform incorporates the 
dual-core ARM Cortex A9 MPCore providing higher mobile general-purpose 
computing performance. The power management technique available in the ARM 
Cortex A9 MPCore balances the power consumption with the performance 
requirements, activating only the cores that are needed for a particular execution. In 
addition, due to the high performance requirement of today smart phones, up to eight 
threads can be concurrently fired in the MPCore, since each core is composed of four 
single-cores Cortex A9. The single-core ARM Cortex A9 implements superscalar 
execution, SIMD instruction set and DSP extensions, showing almost the same 
processing power as a personal computer into an embedded mobile platform. Excluding 
the ARM Cortex MPCore, the remainder processing elements are dedicated to 
multimedia execution.  

In 2011, NVIDIA introduced the project named Kal-el (NVIDIA, 2011) mobile 
processor. This project is the first to encapsulate four processors in a single die for 
mobile computation. The main novelty introduced by this project is the Variable 
Symmetric Multiprocessing (vSMP) technology. vSMP introduces a fifth processor 
named “Companion Core” that executes tasks a low frequency for active standby mode, 
as mobile systems tend to keep in this mode for most time. All five processors are ARM 
Cortex-A9, but the companion core is built in a special low power silicon process. In 
addition, all cores can be enabled/disabled individually and when the active standby 
mode is on, only the “Companion Core” works, so battery life can significant improved. 
NVIDIA reports that the switching from the “Companion Core” to the regular cores are 
supported only by hardware and take less than 2 milliseconds being not perceptible to 
the end users. In comparison with Tegra 2 platform, vSMP achieves up to 61% of 
energy savings on running HD video playback. 

As OMAP, Samsung designs are focused on multimedia-based development. Their 
projects are very similar due to the increasing market demand for powerful multimedia 
platforms, which stimulates the designer to take the same decision to achieve efficient 
multimedia execution. Commonly, the integration of specific accelerators is used, since 
this reduces the design time avoiding validation and testing time. In 2008, Samsung  
launched the most powerful of the Mobile MPSoC family. At first, S3C6410 was a 
multimedia MPSoC like OMAP4440. However, after its deployment in the Apple 
iPhone 3G employment, it has become one of the most popular MPSoCs, shipping 3 
million units during the first life time month. After, Apple has developed iPhone 3GS, 
which assures better performance with lower power consumption. These benefits are 
supplied by the replacement of the S3C6410 architectures with the high-end S5PC100 
version. 

Following the multimedia-based multiprocessor trend, Samsung platforms are 
composed of several application specific accelerators building heterogeneous 
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multiprocessor architectures. S3C6410 and S5PC100 have a central general-purpose 
processing element, in both cases ARM-based, surrounded by several multimedia 
accelerators tightly targeted to DSP processing. Both platforms skeleton follow the 
same execution strategy, changing only the processing capability of their IP cores. 
Small platform changes are done from S3C6410 to S5PC100 aiming to increase the 
performance. More specifically, a 9-stage pipelined ARM 1176JZF-S core with SIMD 
extensions is replaced to a 13-stage superscalar-pipelined ARM Cortex A8 providing 
greater computation capability for general-purpose applications. Besides its double-
sized L1 cache compared to ARM1176JZF-S, ARM Cortex A8 also includes a 256KB 
L2 cache avoiding external memory accesses due L1 cache misses. NEON ARM 
technology is included in ARM Cortex A8 to provide flexible and powerful acceleration 
for intensive multimedia applications. Its SIMD based-execution accelerates multimedia 
and signal-processing algorithms such as video encode/decode, 2D/3D graphics, 
speech-processing, image processing at least twice better than the previous SIMD 
technology. However, these hardware changes provide mandatory tool chain 
modifications to support the use of the new dedicated hardware, which consequently 
breaks the binary compatibility since the software developers must change and 
recompile the application code. 

Regarding multimedia accelerators, both systems are able to provide suitable 
performance for any high-end mobile devices. However, S5PC100 includes the latest 
codec multimedia support using powerful accelerators. This strategy on changing some 
platform elements from S3C6410 to S5PC100 illustrates the growth and maturity phase 
of the functionality lifecycle discussed in the beginning of this work. In this phase, the 
electronic consumer market already has absorbed these functionalities, and their hard-
wired execution is mandatory for energy and performance efficiency. 

Other multiprocessing systems have already been released in the market, with 
different goal from the architectures discussed before. Sony, IBM and Toshiba have 
worked together to design the Cell Broadband Engine Architecture (CHEN, 
RAGHAVAN, et al., 2007). The Cell architecture combines a powerful central 
processor with eight SIMD-based processing elements. Aiming to accelerate a large 
range of application behaviors, the IBM PowerPC architecture is used as general 
purpose processor. In addition, this processor has the responsibility to manage the 
processing elements surrounding it. These processing elements, called synergistic 
processing elements (SPE), are built to support streaming applications with SIMD 
execution.  Each SPE has a local memory that only can be accessed by explicit and 
particular software directives. These facts make the software development for the Cell 
processor even more difficult, since the software team should be aware of this local 
memory, and manage it at the software level to better explore the SPE execution. 
Despite its high processing capability, the Cell processor does not yet have a large 
market acceptance because of the intrinsic difficulty to code software in order to use the 
SPEs. When it was launched, the Playstation console did not achieve a great part of the 
gaming entertainment marketplace, the game developers had not enough knowledge of 
the tool chain libraries to efficiently explore the complex Cell architecture, which 
implied in a restricted amount of games available in the market. 

Homogeneous multiprocessing system organization is also explored in the market, 
mainly for personal computers with general purpose processors, because of the huge 
amount of different applications that these processors have to face, and hence due to the 
difficult task to define specialized hardware accelerators. In 2005, Sun Microsystems 
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announced its first homogeneous multiprocessor design, composed of up to 8 
processing elements executing the SPARC V9 instruction set. UltraSparc T1, also called 
Niagara (JOHNSON e NAWATHE, 2007), is the first multithreaded homogeneous 
multiprocessor, and each processing element is able to execute four threads 
concurrently. In this way, Niagara can handle, at the same time, up to 32 threads. 
Recently, with the deployment of UltraSparc T2, this number has grown to 64 
concurrent threads. Niagara family targets massive data computation with distributed 
tasks, like the market for web servers, database servers and network file systems. 

Intel has announced its first multiprocessing system based on homogeneous 
organization prototyped with 80-cores, which is capable of executing 1 trillion floating-
point operations per second, while consuming 62 Watts (VANGAL, HOWARD, et al., 
2007). The company expects to launch this chip within the next 5 years in the market. 
Hence, the x86 instruction set architecture era could be broken, since their processing 
elements is based on the very long instruction word (VLIW) approach, letting to the 
compiler the responsibility for the parallelism exploration. The interconnection 
mechanism used on the 80-core uses a mesh network to communicate among its 
processing elements. However, even employing the mesh communication turns out to 
be difficult, due to the great amount of processing elements.  In this way, this ambitious 
project uses a 20 Mbytes stacked on-chip SRAM memory to improve the processing 
elements communication bandwidth.   

Graphic processing unit (GPU) is another multiprocessing system approach aiming 
at graphic-based software acceleration. However, this approach has been arising as a 
promise architecture also to improve general-purpose software. Intel Larrabee (SEILER, 
CARMEAN, et al., 2008) attacks both applications domain thanks to its CPU- and 
GPU- like architecture. In this project Intel has employed the assumption of energy 
efficiency by simple cores replication. Larrabee uses several P54C-based cores to 
explore general-purpose applications. In 1994, P54C was shipped in CMOS 0.6um 
technology reaching up to 100 MHz and does not include out-of-order superscalar 
execution. However, some modifications have been done in the P54C architecture, like 
supporting of SIMD execution aiming to provide more powerful graphic-based software 
execution. The SIMD Larrabee execution is similar to, but powerful than, the SSE 
technology available in the modern x86 processors. Each P54C is coupled to a 512-bit 
vector pipeline unit (VPU), capable of executing, in one processor cycle, 16 single 
precision floating-point operations. In addition, Larrabee employs a fixed-function 
graphics hardware that performs texture-sampling tasks like anisotropic filtering and 
texture decompression. However, in 2009, Intel discontinued Larrabee project.  

NVIDIA Tesla (LINDHOLM, NICKOLLS, et al., 2008) is another example of 
multiprocessing system based on the concept of a general-purpose graphic processor 
unit. Its massive-parallel computing architecture provides support to Compute Unified 
Device Architecture (CUDA) technology. CUDA, the NVIDIA´s computing engine, 
eases the parallel software development process by providing software extensions in its 
framework. In addition, CUDA provides permission to access the native instruction set 
and memory of the processing elements, turning the NVIDIA Tesla to a CPU-like 
architecture. Tesla architecture incorporates up to four multithreaded cores that 
communicate through a GDDR3 bus, which provides a huge data communication 
bandwidth. 
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Table 1. Summarized Commercial Multiprocessing Systems 

 

As discussed in the beginning of this work, multiprocessing systems employment is 
a consensus to current/next generation for both general and embedded processors, since 
aggressive exploration of instruction level parallelism of single-threaded applications 
does not provide an advantageous tradeoff between extra transistor usage and 
performance improvement. All multiprocessing system designs mentioned in this 
section somehow explore thread level parallelism. Summarizing all commercial 
multiprocessing system discussed before, Table 1 compares their main characteristics 
showing their differences depending on the target market domain. Heterogeneous 
architectures, like the OMAP, Samsung and Cell, incorporate several specialized 
processing elements to attack specific applications for highly constrained mobile or 
portable devices. These architectures have multimedia-based processing elements, 
following the trend of embedded systems. However, as mentioned before, software 
productivity is affected when such strategy is used, each new platform launching 
implies on tool chain modifications, like library description, to explore the execution of 
the coupled specialized hardware. In addition, this approach can be optimized for 
performance and area, but they are costly to design and not programmable, making 
upgradability a difficult task and they bring no benefit excluding the targeted 
applications. 

Unlike heterogeneous architectures, homogeneous ones aim at the general-purpose 
processing market, handling a wide range of applications behavior by replicating 
general-purpose processors. Commercial homogeneous architectures still use only 
homogeneous organizations, coupling several processing elements with the same ISA 
and the processing capability. Heterogeneous organizations have not been used on 
homogeneous architectures, since power management techniques, like DVFS, support 
the variable processing capability. However, most of these techniques are restricted to 
reduce only dynamic power, the circuit still consumes leakage power that is increasing 
with the technology scaling. Supposing a perfect power management that solves 
dynamic and leakage power, the homogeneous architecture and organization platform 
still relies on huge area overhead, what supports the need for homogeneous architecture 
and heterogeneous organization strategy.  

2.3 Multi-Threaded Reconfigurable Systems   

As the scope of this work is motivated by multiprocessing systems that use some 
kind of adaptability on exploiting instruction level parallelism, this sub-section only 

Architecture Organization Cores
Multithreaded 

Cores
Interconnection

OMAP4440 Heterogeneous Heterogeneous

2 ARM Cortex A9  

1 PowerVR graphics accelerator 

1 Image Signal Processor

No Integrated Bus

Samsung 

S3C6410/S5PC100 
Heterogeneous Heterogeneous

1 ARM1176JZF‐S 

5 Multimedia Accelerators
No Integrated Bus

Cell Heterogeneous Heterogeneous
1 PowerPC 

8 SPE
No Integrated Bus

Niagara Homogeneous Homogeneous 8 SPARC V9 ISA
Yes 

(4 threads)
Crossbar

Intel 

80‐Cores 
Homogeneous Homogeneous 80 VLIW  No Mesh

Intel 

Larrabee
Homogeneous Homogeneous

n P54C x86 cores

SIMD execution 
No Integrated Bus

NVIDIA 

Tesla (GeForce8800)
Homogeneous Homogeneous 128 Stream Processors

Yes 

(up to 768 threads)
 Network
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contemplates the state of the art researches that employ multiprocessing systems 
together with reconfigurable architectures.  

In (KOENIG, BAUER, et al., 2010), the authors propose KAHRISMA, a 
heterogeneous organization and architecture platform. Figure 6 shows KAHRISMA’s 
architecture overview, its multiple instruction set (RISC, 2- and 6-issue VLIW, and 
EPIC) coupling with fine- and coarse-grained reconfigurable encapsulated data path 
elements (EDPE) are the main novelty of this research. The resource allocation task is 
totally supported by a flexible software framework that, at compile time, analyzes the 
high-level C/C++ source code and builds an internal code representation. This code 
representation goes through an optimization process to eliminate dead code and constant 
propagation. After, the internal representation is used to identify/select parts of code that 
will implement custom instructions (CIs) to be executed in the reconfigurable arrays 
(FG- and CG-EDPE).  

The entire process considers that the amount of free hardware resources can vary at 
run time, since some parts of code could present greater number of parallel executing 
threads than others, so multiple implementations of custom instructions are provided. 
The runtime system is responsible for the best CI’s solution selection, which depends on 
the loading state of the architecture. Thus, the execution of a certain part of code can 
vary from RISC implementation (low performance) to the custom instruction 
implementation using FG- as well as CG-EDPEs (high performance). Speedups are 
shown in the execution of very intensive compute kernel from h.264 video encode-
decode standard on exploring multiple ISAs, when the multithread scenario is 
considered.  

However, this approach fails at several crucial constraints of the embedded systems. 
High memory usage is caused by multiple assembly generation of the same part of code, 
which could not always offer speedups due to the restricted amount of hardware 
resources at a certain time. KAHRISMA is able to optimize multi-threaded applications, 
however they also rely on compiler support, static profiling and a tool to associate the 
code or custom instructions to the different hardware components at design time. 
Despite inserting reconfigurable components in its platform, KAHRISMA maintains the 
main drawbacks of the current embedded multiprocessing systems (e.g. OMAP), since it 
maintains a mandatory time overhead on each platform change to produce custom 
instructions affecting the software productivity by breaking the binary compatibility. 



 

 

32 

 

 

Figure 6. KAHRISMA architecture overview (KOENIG, BAUER, et al., 2010) 

Considering a system with homogeneous architecture and heterogeneous 
organization, one can find the Thread Warping (TW) (STITT e VAHID, 2007), which 
extends the aforementioned Warp Processing system shown in the Section 2.1. Prior 
work has developed a CAD algorithm that dynamically remaps critical code regions of 
single-threaded applications from processor instructions to FPGA circuits using a 
runtime synthesis. The contribution of TW consists of integrating existing CAD 
algorithm in a framework capable of dynamically synthesizing many thread 
accelerators. Figure 7 overviews the TW architecture and shows how the acceleration 
process occurs. As can be seen, the TW is composed of four ARM11 microprocessors, a 
Xilinx Virtex IV FPGA and an On-Chip CAD hardware used to the synthesizing 
process.  

The thread creation process shown in the Step 1 of the Figure 7 is totally supported 
by an Application Programming Interface (API), so no source code modification is 
needed. However, changes in the operating system are mandatory to support the 
scheduling process. The operating system scheduler maintains a queue that stores the 
threads ready for execution. In addition, a structure, named schedulable resource list 
(SRL), holds the list of free resources. Thus, to trigger an execution of a thread, the 
operating system should check if the resource requirements of a certain ready thread 
match with the free resources in the SRL. An ARM11 is totally dedicated to run the 
operating system tasks needed to synchronize threads and to schedule their kernels in 
the FPGA (Step 2 of Figure 7).  

The framework, implemented in hardware, analyzes waiting threads, and utilizes on-
chip CAD tools to create custom accelerator circuits for executing in the FPGA (step 3). 
After some time, on average 22 minutes, the CAD tool finishes mapping the 
accelerators onto the FPGA and stores the custom accelerators circuits in a non-volatile 
library for future executions, named AccLib in the Figure 7. Assuming that the 
application has not finished during these 22 minutes, the operating system (OS) begins 
scheduling threads onto both FPGA accelerators and microprocessor cores (step 4). 
Since the area requirements of the existing accelerators could exceed the FPGA 
capacity, a greedy knapsack heuristic is used to generate a solution for the instantiation 
process of the accelerators in the FPGA.  
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Figure 7. Overview of Thread Warping execution process (STITT e VAHID, 2007) 

Despite its dynamic nature, that provides binary compatibility, there are several 
drawbacks in the Thread Warping proposal. First, the unacceptable latency on creating 
the CAD tool for applications those run less than 22 minutes. TW shows good speedups 
(502 times) when the initial execution of the applications is not considered. In other 
words, these results does not consider the period when the CAD tool is working to 
create the custom accelerator circuits. In the case of the custom instructions creation 
overhead is taken into account, all but one of the ten algorithms have shown 
performance loss. Summarizing, Thread Warping presents the same deficiency of the 
original work shown in the Section 2.1: only critical code regions are optimized, due to 
the high overhead in time and memory imposed by the dynamic detection hardware. 
Thus, TW only optimizes applications with few and very defined kernels, which 
narrows its field of application. The optimization of few kernels will very likely not 
satisfy the performance requirements of future embedded systems, where it is foreseen a 
high concentration of different software behaviors (SEMICONDUCTORS, 2009). 

 In (YAN, WU, et al., 2010), Yan proposes the coupling of many reconfigurable 
processing units based on FPGA to SparcV9 general-purpose processors. ISA 
extensions are done to support the reconfigurable processing units’ execution. However, 
the system can also work without using the accelerators in a backward-compatible 
manner. The reconfigurable architecture overview is show in the Figure 8. As it can be 
seen, a crossbar is employed to connect the reconfigurable processing units to the 
homogeneous SparcV9-based processors, which provides a low-latency parallel 
communication.  
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Figure 8. Blocks of the Reconfigurable Architecture (YAN, WU, et al., 2010) 

The Reconfigurable Processing Unit (RPU) is a data driven computing system, 
based on fine-grained reconfigurable logic structure similar to Xilinx Virtex-5. The 
RPU is composed of configurable logic block arrays to synthesize the logic; local buffer 
responsible for the communication between the RPU and the SparcV9 processors; 
configuration context that stores the already implemented custom instructions; and 
configuration selection multiplexer that selects the fetched custom instructions from the 
configuration context. As Thread Warping, this approach also employs an extra circuit 
to provide consistency and synchronization on data memory accesses. 

A software-hardware co-operative implementation is used to support the triggering 
of the reconfigurable executions. The execution is divided in four phases: configuring, 
pre-load, processing and post-store phase. The configuring phase starts when a special 
instruction, that request an RPU execution, arrives in the execution stage of the SparcV9 
processor. If the custom instruction is available at the configuration context, the pre-
load phase starts and an interruption is generated to notify the operating system 
scheduling to configure the RPU with the configuration context. In this phase, the data 
required for the computation also are loaded to the local buffer of the respective RPU. 
In the processing phase the data driven computing is done. Finally, some special 
instructions are fired to fetch the results from the local buffer and to return the execution 
process to the SparcV9 processor.  

This approach improves the performance over the software only execution by, on 
average, 2.4 times in an application environment composed of an encryption standard 
and an encode image algorithm. However, some implementation aspects make such an 
approach not viable to embedded domain, the binary compatibility is broken since a 
compilation phase is used to extend the original SparcV9 instruction set to support the 
RPU execution. The fine-grained reconfigurable structure relies on high reconfiguration 
overhead, which narrows the scope of such an approach to applications where very few 
kernels cover almost its whole execution time.       

Different from other approaches, in (SMIT, 2008) is presented a multiprocessing 
reconfigurable architecture focused on accelerating streaming DSP applications. The 
authors argue that is easier to control the reconfigurable architecture when handling 
such kind of applications since most of them can be specified as a data flow graph with 
streams of data items (the edges) flowing between computation kernels (the nodes). 
Annabelle SoC is presented in the Figure 9, its heterogeneous architecture and 
organization aggregates a traditional ARM926 that is surrounded by ASIC blocks (e.g. 
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Viterbi Decoder and DDC) and four-domain specific coarse-grained reconfigurable data 
path, named Montium cores. A network-on-chip infrastructure supports inter-Montium 
communication with higher bandwidth and multiple concurrent transmissions. The 
communication among the rest of the system elements is done through a 5-layer AMBA 
bus. As each processor operates independently, they need to be controlled separately, so 
the ARM926 processor controls the other cores by sending configuration messages to 
their network interface. Since the cores might not be running at the same clock speed as 
the NoC, the network interface synchronizes the data transfers. 

 

Figure 9. Block Diagram of Annabelle SoC (SMIT, 2008) 

 Figure 10 depicts the architecture of a single Montium Core that has five 16-bit 
width arithmetic and logic units interconnected by 10 local memories due to the high 
bandwidth required for DSP applications. An interesting point considered in this work is 
the locality of reference. In other words, the accesses on small and local memory is 
much more energy efficient than accessing a big and far distant memory because of 
increasing wire capacitance on recent nano-technologies. There is a communication and 
a configuration unit that provides the functionality to configure the Montium, to manage 
the memories by means of direct memory access (DMA) and to start/wait/reset the 
computation of the algorithm configured. Since the Montium core is based on a coarse-
grained reconfigurable architecture, the configuration memory is relatively small, on 
average, it occupies only 2.6 Kbytes. Because the configuration memory can be 
accessed as a RAM memory, the system allows dynamic partial reconfiguration. Results 
show that energy savings can be achieved by only exploiting locality of reference. In 
addition, this work supports the use of coarse-grained reconfigurable architectures by 
demonstrating lower reconfiguration time overhead. Despite the fact that Annabelle 
explores a reconfigurable fabric to accelerate streaming applications, this system still 
relies on heterogeneous ISA implementation by coupling ASICs to provide efficient 
energy-performance execution. Like OMAP, such an approach affects software 
productivity since each new platform requires tool chain modifications.   
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Figure 10. The Montium Core Architecture 

Studies on sharing reconfigurable fabric among general-purpose processors are 
shown in (WATKINS, CIANCHETTI e ALBONESI, 2008) (GARCIA e COMPTON, 
2008). These strategies are supported by the huge area overhead and non-concurrent 
utilization of the reconfigurable units by multiple processors. In (GARCIA e 
COMPTON, 2008), a reconfigurable fabric sharing approach focused on accelerating 
multithreaded applications is presented. This work exploits a type of parallelism named 
single program multiple data (SPMD), where each thread instantiation runs the same set 
of operations on different data. Multiple instantiations of the Xvid encoder are used to 
emulate such type of parallelism, acting as a digital video recorder to encode multiple 
video streams from different channels simultaneously. To avoid low utilization of 
reconfigurable hardware kernels, different threads share the already configured 
reconfigurable hardware kernels. For example, if two instances of Xvid are executing, a 
single physical copy of each reconfigurable hardware kernel could be shared, so both 
instances of Xvid can benefit from them. Although it does not specify any particular 
reconfigurable hardware design, the Xvid encoder instantiations are synthesized in a 
Xilinx Virtex-4 FPGA.  

First experiments show that sharing single physical copy of each reconfigurable 
hardware kernel among all Xvid instances performs very poorly due to the frequent 
contention on accessing the kernels. Thus, the authors conclude that not all kernels can 
be effectively shared, so they created a modified strategy to provide better kernels 
allocation. Such an approach uses the concept of virtual kernels to control the physical 
kernel allocation. The algorithm uses the following strategy. When an application 
attempts to access a virtual kernel, the controller first checks if any instance of the 
corresponding virtual kernel is already mapped to a physical kernel and if any other 
physical kernel is free. If multiple physical kernels are available, one of them will be 
reserved to execute the virtual kernel even if other physical kernel already is executing 
the same virtual kernel. This strategy eliminates the waiting for busy shared physical 
kernel increasing the combined throughput of Xvid encoder in a multiprocessor system 
by 95-130% over the software execution alone. 
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Watkins (WATKINS, CIANCHETTI e ALBONESI, 2008) proposes, as a first work, 
a shared specialized programmable logic (SPL) to decrease the large power and area 
costs of FPGA when a multiprocessing environment is considered. The main motivation 
to apply such an approach in multiprocessing systems is supported by intermittent used 
of the reconfigurable fabric. There are inevitably periods where one fabric is highly 
utilized while another lies largely or even completely idle. The motivation is produced 
through interesting experiments that show the poor utilization of the SPL’s rows on 
running applications of different domains in multiprocessing system composed of eight 
cores. These data are depicted in Figure 11. The leftmost bars for the individual 
benchmarks show the utilization of the fabric composed of 26-row configuration, which 
reflects twice the area of each core that the SPL is coupled. The utilization of seven SPL 
fabrics is less than 10%, and the average SPL utilization is only 7%.  

As can be seen in Figure 11, reducing each SPL to 12 rows (roughly the same area 
of the coupled core) increases SPL utilization for some benchmarks and greatly reduces 
the area occupied. However, this comes at a high cost: an 18% overall performance loss, 
since all benchmarks use more than 12 rows. The two rightmost bars of Figure 11 show 
a spatially shared SPL organization with a naive control policy that equally divides the 
rows of the SPL among all cores at all times. Thus, a SPL fabric configuration 
composed of 24 rows shared among four cores (fourth bar of AvgUtilization in Figure 
11) produces, on average, an utilization improvement of the fabrics, delivers the same 
performance of 26-row private configuration and still reduces the area and peak power 
cost by over four times. 

 

Figure 11. Fabric utilization considering many architecture organizations (WATKINS, 
CIANCHETTI e ALBONESI, 2008) 

The fine-grained reconfigurable cell of such an approach is shown in Figure 12 (a). 
The SPL fabric is tightly integrated to the processor working as an additional functional 
unit. The main components of a SPL cell are: a 4-input look-up table (4-LUT), a set of 
two 2-LUTs plus a fast carry chain to compute carry bits or other logic functions if carry 
calculation is not needed, barrel shifters to align data as necessary, flip-flops to store 
results of computations, and an interconnect network between each row. These b-bit 
cells are arranged in a row to form a c×b-bit row as shown in Figure 12 (b). Each cell in 
a row can perform a different operation and a number of these rows are grouped 
together to execute an application function. Each row completes the operation in a 
single SPL clock cycle.  
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Figure 12. (a) SPL cell architecture (b) Interconnection strategy (WATKINS, 
CIANCHETTI e ALBONESI, 2008) 

As explained before, each SPL row is dynamically shared among the cores. Two 
sharing strategies are used: spatial, where the shared fabric is physically partitioned 
among multiple cores (Figure 13(a)); or temporal, where the fabric is shared in a time 
multiplexed manner (Figure 13(b)). The spatial and temporal control policies bind the 
cores to particular SPL partitions, or pipeline time slots, based on runtime statistics. ISA 
extensions support the proposed sharing strategy. 

 

Figure 13. (a) Spatial sharing (b) Temporal sharing (WATKINS, CIANCHETTI e 
ALBONESI, 2008) 

The grain of the sharing is a challenge that arises when the spatial approach is 
considered. The finest grain (a row) requires a large number of intermediate 
multiplexers, but provides the highest flexibility on sharing allocation mechanism since 
each one can vary the number of rows by the finest grain. The authors argue, after an 
investigation, that splitting the fabric in power of two, one can achieve good 

(a) (b) 
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flexibility/utilization tradeoff. If, for instance, there are 9-16 sharers, the SPL will be 
split into sixteen partitions. The authors propose a merging of SPL partitions policy that 
is based on idle cycle counter and an idle count threshold value, which in the current 
implementation is 1000. For temporal sharing, the SPL scheduling strategy uses a cycle-
by-cycle round-robin algorithm to allocate the SPL fabric among the cores.  

The coupling of a single private 26-row SPL on a single in-order core shows 
interesting speedups on running a mixed application workload, demonstrating that the 
adaptability provided by the reconfigurable architecture is suitable for single-threaded 
applications. In addition, a CMP environment composed of eight copies of one-way out-
of-order cores and 26-row private SPL outperforms the 8-cores 4-way out-of-order chip 
multiprocessor. In addition, the latter consumes far more area and power than the 
former setup.   

When the spatial sharing policy is applied, 26-row shared SPL outperforms 6-row 
private SPL in most of the benchmarks, reducing energy-delay product by up to 33% 
with little performance degradation. Particularly, on running the crypt application, 
which requires a large number of rows, precisely 298 rows, the spatial sharing approach 
presents 100% of performance slowdown and a larger energy-delay penalty. The 
authors report that the temporal sharing outperforms spatial sharing for two reasons: all 
benchmarks but crypt need a maximum of 26 rows for all functions, making temporal 
sharing more suitable than spatial sharing policy, since there are no significant periods 
where the benchmarks make concurrent accesses to the SPL. 

In (ALBONESI e WATKINS, 2010) the previous explained work is extended, 
proposing hardware based fine-grained inter-core communication and barrier 
synchronization. Now, the entire system is named Reconfigurable Multicore 
Architecture for Parallel Processing (ReMAPP). The inter-core communication is 
established by the use of queues. The producing thread places data into the queue and 
the consuming thread reads data from the queue. Figure 14 summarizes the inter-thread 
communication. In the first step (Figure 14(a)), the producing thread place data into its 
input queue. Once all necessary data is loaded (Figure 14(b)), the consuming thread 
starts the execution in the SPL. As such an example, since the execution of the function 
does not occupy all SPL rows, the results are bypassed to the output queue of the 
consuming thread (Figure 14(c)). Finally, the consuming thread fetches data from the 
queue and stores it in the memory. A special table is used to maintain a mapping of the 
threads that stores, for each computation, its correspondent destination core. 

 

Figure 14. Thread Intercommunication steps (ALBONESI e WATKINS, 2010) 
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 The barrier synchronization mechanism is also based on tables. To determine that 
all threads have arrived at the barrier, each SPL maintains a table that contains 
information related to each activated barrier. Each table contains as many entries as 
cores attached to ReMAPP, as each thread could be participating of different barriers. 
The table keeps track of the total number of threads, the number of arrived threads, and 
the number of cores that are participating of such part of code execution. Special 
instructions, named SPL barrier instructions, are implemented to provide the 
synchronization. Thus, SPL barrier instructions must not be issued to the fabric until all 
participating cores have arrived at the respective barrier. To achieve this, all 
participating threads compare the number of arrived thread information with the 
participating cores information, when these numbers become equals means that all 
participants arrived in the correspondent barrier and the execution can be kept on.  

When compared to the single threaded SPL implementation, the SPL computation 
and communication mechanism using two threads improves the performance by 2 times 
and still provides better energy-delay product. In addition, performing barriers via 
ReMAPP significantly improves performance over software barriers by 9%, while 
achieving up to 62% better energy-delay product.  

Summarizing, there are several works exploring the adaptability provided by the 
reconfigurable fabric on accelerating multithreaded applications. However, their 
implementations bring particular aspects that affect, in some way, the development 
process of the embedded system. These aspects are the following: 

 Despite its heterogeneous architecture fashion that accelerates multithreaded 
applications, KAHRISMA relies on special tools to generate the binary code, 
which breaks the binary compatibility and affects the software productivity 
when platform changes are needed. 

 Despite its dynamic nature on detect/accelerate parts of the application code, 
Thread Warping relies on an unacceptable latency to perform this task, 
which restricts its employment to optimize applications with few and very 
defined kernels. 

 Despite good speedups shown on applying the strategy proposed in (YAN, 
WU, et al., 2010), such implementation breaks the binary compatibility and 
affects the software productivity when platform changes are needed. 
Moreover, such an approach relies on high reconfiguration overhead, which 
makes it feasible only to accelerate applications with few kernels. 

 Despite Annabelle demonstrates lower reconfiguration time, this work 
explores a reconfigurable fabric to accelerate only streaming applications and 
still relies on heterogeneous ISA implementation by coupling ASICs to 
provide efficient energy-performance execution. Like the commercial 
strategies such as OMAP, this approach affects software productivity since 
each new platform forces tool chain modifications.   

 Despite its great area saving with the employment of a shared reconfigurable 
fabric strategy, ReMAPP relies on compiler support, static profiling and a 
tool to associate the code or custom instructions to the different hardware 
components at design time, not maintaining binary compatibility and 
affecting software productivity. 
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2.4 The Proposed Approach 

In this work, we address the particular drawbacks of the aforementioned approaches 
by creating Custom Reconfigurable Arrays for Multiprocessor System (CReAMS) that:  

 Unlike all strategies presented in the Section 2.1, explores the adaptability of 
reconfigurable system to achieve performance in a multithreaded 
environment. Kal-el project provides dynamic changing on performance 
when switches from “Companion Core” to Regular Core occur. However, 
this work produces neither ILP nor TLP adaptability since all cores have the 
same architecture and organization.  

 Unlike (KOENIG, BAUER, et al., 2010) (SMIT, 2008), builds a 
homogeneous platform on both architecture and organization nature, which 
eases the software development process since a unique tool chain is provided 
for any new version launched. Neither source code modifications nor new 
library learning process is necessary to explore the processing capabilities of 
the newest inserted processing elements. 

 Unlike (KOENIG, BAUER, et al., 2010) (YAN, WU, et al., 2010) (SMIT, 
2008) (ALBONESI e WATKINS, 2010), does not rely in special and 
particular tool chain to extract thread-level parallelism and to prepare the 
platform for execution. Our approach employs well-known application 
programming interfaces (e.g. OpenMP), which, despite automatically 
extracting TLP in a friendly interface, are coupled to the most commercial or 
academic compilers (e.g. gcc and icc), what makes the software development 
and the binary generation process easier than the aforementioned approaches.   

 Unlike (ALBONESI e WATKINS, 2010) (STITT e VAHID, 2007) (YAN, 
WU, et al., 2010), instead of exploring the flexibility of fine-grained 
architectures, employs a coarse-grained reconfigurable fabric that reduces the 
reconfiguration time and memory footprint due to the low context overhead. 
This grain choice increases the field of applications, since it opens room to 
accelerate the entire application code. Fine-grained architectures provide 
high acceleration levels but its scope is narrowed to applications that have 
few kernels responsible for a large part of the execution time. 

 Unlike (WATKINS, CIANCHETTI e ALBONESI, 2008) (ALBONESI e 
WATKINS, 2010), instead of employing complex hardware design to share 
reconfigurable fabric among several processors to reduce area and power 
costs, proposes an heterogeneous organization platform, which can also 
achieve the same area savings and power consumption of the sharing 
policies. However, as will be shown, there are some applications that relies 
on a thread allocation strategy to achieve the same performance than the 
homogeneous organization, since there have been the best matching between 
the performance requirements of a certain thread and the different processing 
capabilities of the available processors.  

Table 2 summarizes the characteristics of the single and multi threaded 
reconfigurable architectures considering the requirements of the current embedded 
system designs. CReAMS provides benefits in all characteristics, its energy 
consumption will be explored in the rest of this work.  
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Table 2. Characteristics of Multi and Single Threaded Reconfigurable Architectures 

 
 

SW Behavior Coverage SW Productivity Design Time Energy Consumption

Piperench X X X V

Chimaera X X X V

GARP X X X V

TRIPS X X X V

Wavescalar X X X V

Molen X X X V

CCA X V V V

Warp  X V V V

DIM X V V V

KAHRISMA V X X V

Annabelle V X X V

ReMAPP V X X V

Thread Warping V X X V

CReAMS V V V ?M
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3 ANALYTICAL MODEL 

In this sub-section, we figure out the potential of single parallelism exploitation by 
modeling a multiprocessing architecture (MP-Multi-Processor). The considered 
architecture is composed of many simple and homogeneous cores without any 
capability to explore instruction level parallelism (ILP). This way we can elucidate the 
advantages of thread level parallelism (TLP) exploitation. We also compare its 
execution time (ET) to a high-end single processor (SHE – Single High-End) model, 
which is able to exploit only the ILP available in applications. First, we consider 
different amounts of fine- (instruction) and coarse- (thread) level parallelism available 
in the application code without any latency of the interconnection infrastructure 
modeled. This approach aims at investigating the performance potentials of both the 
aforementioned architectures. After, we create a latency modeling of a Network-on-
Chip to verify the impact of inter-thread communication over the multiprocessing 
systems. 

Considering a portion of a certain application code, we classify it in four different 
ways: 

 α – the instructions that can be executed in parallel in a single processor; 
 β – the instructions that cannot be executed in parallel in a single processor; 
 δ – the amount of instructions that can be distributed among the processors of 

the multiprocessor environment. 
 γ - the amount of instructions that cannot be split, and, therefore, must be 

executed in one of the processors among those in the multiprocessor 
environment. 

Figure 15 exemplifies how the previously stated classification, considering a certain 
application “A”, would be applied. In the example shown, when the application is 
executed in the multiprocessor system (Figure 15(a)), 70% of the application code can 
run in parallel at some degree (i.e., divided in threads) and executed on different cores at 
the same time, so δ = 0.7 and  γ = 0.3. On the other hand, when the very same 
application A is executed on the high-end single-processor (Figure 15(b)), 64% of the 
instructions can be executed in parallel at some degree, so α = 0.64 and  β = 0.36.  
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Figure 15. Modeling of the (a) Multiprocessor System and the (b) High-End Single-
Processor 

3.1 Performance Comparison 

Let us start with the basic equation relating execution time (ET) with the number of 
instructions, 

ܶܧ ൌ ݏ݊݅ݐܿݑݎݐݏ݊ܫ# ∗ ܫܲܥ ∗  (1)  ݈݁݉݅ܶ݁ܿݕܥ

where CPI is the mean number of cycles necessary to execute an instruction, and 
CycleTime is the clock period of the processor.  

This model does not consider information about cache accesses and performance of 
the disk. However, although simple, it can provide interesting performance clues on the 
potential of multiprocessing architectures and aggressive instruction level parallelism 
exploitation for a wide range of different applications classes. 

3.1.1  Low End Single Processor 

Based on equation (1), for a Low-End Single processor (SLE- Single Low End), the 
execution time can be termed as: 

ܧ ௌܶா ൌ ݏ݊݅ݐܿݑݎݐݏ݊ܫ# ∗ ሺ∝ ௌாܫܲܥ  ௌாሻܫܲܥߚ		 ∗ ݈݉݅ܶ݁ܿݕܥ ௌ݁ா	ሺ2ሻ 

 

Since the low-end processor is a single-issue processor, it cannot exploit ILP. 
Therefore, classifying instructions as either α or β as previously stated does not make 
sense. In this case, α is zero and β equal to one, but we will keep the notation and their 
meaning for comparison purposes. 

3.1.2 High End Single Processor 

In the case of a high-end ILP exploitation architecture, based on equation (1) and (2), 
one can state that the Execution Time of the High End Single Processor (ETSHE) is given 
by the following equation: 

ܧ ௌܶுா ൌ ݏ݊݅ݐܿݑݎݐݏ݊ܫ# ∗ ሺ∝ ௌுாܫܲܥ  ௌாሻܫܲܥ	ߚ	 ∗ ݈݉݅ܶ݁ܿݕܥ ௌ݁ுா	ሺ3ሻ 

The coefficients α and β refer to the percentage of instructions that can be executed 
in parallel or not (this way, α + β = 1), respectively. CycleTimeSHE represents the clock 
cycle time of the high-end single processor. 
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The CPISHE is usually smaller than 1, because a single high-end processor can exploit 
high levels of ILP, thanks to the replication of functional units, branch prediction, 
speculative execution, mechanisms to handle false data dependencies and so on. A 
typical value of CPISHE for a current high-end single processor is 0.62 (GUTHAUS, 
RINGENBERG, et al., 2002), which shows that more than one instruction can be issued 
and executed per cycle. The CPISHE, could also be written as ∝ ௌாܫܲܥ ⁄݁ݑݏݏ݅ , where 
issue is the number of instructions that can be issued in parallel to the functional units, 
when considering the average situation  (i.e., a High-End Single processor would have 
the same CPI as the CPI of a Low-End Processor divided by the mean number of 
instructions issued per cycle). Thus, based on equation (3), one gets: 

ܧ ௌܶுா ൌ ݏ݊݅ݐܿݑݎݐݏ݊ܫ# ∗ ൬
∝ ௌாܫܲܥ
݁ݑݏݏ݅

 ௌா൰ܫܲܥ	ߚ	 ∗ ݈݉݅ܶ݁ܿݕܥ ௌ݁ுா	ሺ4ሻ 

Having stated the equations to calculate the performance of both high-end and low-
end single processor models, now the potential of using a homogeneous multiprocessing 
architecture to exploit TLP is studied. We consider that such architecture is built by the 
replication of low-end processors (that do not exploit ILP), so that a large number of 
them can be integrated within the same die.  

If one considers that each application has a certain number of sequences of 
instructions that can be split (transformed to threads) to be executed on several 
processors, one could write the following equation, based on equations (1) and (2): 

ܧ ெܶ ൌ ݏ݊݅ݐܿݑݎݐݏ݊ܫ# ∗ ൬
ߜ
ܲ
 ൰ߛ	 ∗ ሺ	ܫܲܥߙௌா  ௌாሻܫܲܥߚ	 ∗  ሺ5ሻ	ெ݈݁݉݅ܶ݁ܿݕܥ

where δ is the amount of sequential code that can run in parallel (i.e. transformed 
into multithreaded code), while γ is the part of the code that must be executed 
sequentially (so no TLP is exploited). P is the number of low-end processors that is 
available in the chip. As can be observed in the second term of equation (5), because the 
single low-end processor is considered, the multiprocessor architecture does not exploit 
ILP (α = 0 and β = 1). Therefore, when one increases the number of processors P, only 
the portion of code that presents TLP (δ) will benefit from the extra processors. 

3.1.3 High-End Single Processor versus Homogeneous Multiprocessor Chip  

First, we compare the performance of the high-end single processor to the 
multiprocessor architecture disregarding the communication overhead among the 
threads. This scenario demonstrates the potential results of the multiprocessing systems 
against a superscalar processor. Since power is crucial in an embedded system design, 
we have chosen a certain total power budget as a fair performance factor to compare 
both designs. Thus, based on equations (3) and (5), one can consider the following 
equation: 

ܧ ௌܶுா

ܧ ெܶ
ൌ

ቂݏ݊݅ݐܿݑݎݐݏ݊ܫ ቀ∝
ௌாܫܲܥ
݁ݑݏݏ݅  ௌுாቃ݈݁݉݅ܶ݁ܿݕܥௌாቁܫܲܥߚ

ሾݏ݊݅ݐܿݑݎݐݏ݊ܫ	 ቀ
ߜ
ܲ  ቁߛ ሺ∝ ௌாܫܲܥ  ெሿ݈݁݉݅ܶ݁ܿݕܥௌாሻܫܲܥߚ	

	ሺ6ሻ 

If one considers that, in the model of the multiprocessor environment, a single low 
end processor is not capable of exploiting instruction level parallelism, and then ∝	ൌ 0	, 
one can reduce the equation 6 to: 
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ܧ ௌܶுா

ܧ ெܶ
ൌ

ቂݏ݊݅ݐܿݑݎݐݏ݊ܫ ቀ∝
ௌாܫܲܥ
݁ݑݏݏ݅  ௌுாቃ݈݁݉݅ܶ݁ܿݕܥௌாቁܫܲܥߚ

ሾݏ݊݅ݐܿݑݎݐݏ݊ܫ	 ቀ
ߜ
ܲ  ቁߛ ሺ0 ∗ ௌாܫܲܥ  	1 ∗ ெሿ݈݁݉݅ܶ݁ܿݕܥௌாሻܫܲܥ

	ሺ7ሻ 

and, by simplifying (7), one obtains 

ܧ ௌܶுா

ܧ ெܶ
ൌ
ቂݏ݊݅ݐܿݑݎݐݏ݊ܫ ቀ∝

ௌாܫܲܥ
݁ݑݏݏ݅  ௌுாቃ݈݁݉݅ܶ݁ܿݕܥௌாቁܫܲܥߚ

ሾݏ݊݅ݐܿݑݎݐݏ݊ܫ	 ቀ
ߜ
ܲ  ቁߛ ሺܫܲܥௌாሻ݈݁݉݅ܶ݁ܿݕܥெሿ

	ሺ8ሻ 

We are also considering that, as a homogeneous multiprocessor design is composed of 
several low-end processors with a very simple organization, those processors could run 
at much higher frequencies than a single and complex high-end processor. Therefore, 
we will assume that  

ሺ
1

ெ݈݁݉݅ܶ݁ܿݕܥ
ሻ ൌ ܭ ∗ ሺ

1
݈݉݅ܶ݁ܿݕܥ ௌ݁ுா

ሻ, ሺ9ሻ 

where K is the frequency adjustment factor to equal the power consumption of the 
homogeneous multiprocessor with the high-end single processor.  

By merging and simplifying equations (8) and (9), one gets: 

ܧ ௌܶுா

ܧ ெܶ
ൌ 

1
ߜ
ܲ  ߛ	

 
∝
ௌாܫܲܥ
݁ݑݏݏ݅  ௌாܫܲܥߚ	

ௌாܫܲܥ
ܭ	ሺ10ሻ 

According to equation (10), a machine based on a high-end single core will be faster 

than a multiprocessor-based machine if ቀ
ܧܪܵܶܧ

ܲܯܶܧ
ቁ ൏ 1. This equation also shows that, 

although the multiprocessor architecture with low-end simple processors could have a 
faster cycle time (by a factor of K), that factor alone is not enough to attain 
performance, as demonstrated in the second term in brackets of equation (10). Since the 
high-end processor can execute many instructions in parallel, better performance 
improvements can be obtained, as long as ILP is the dominant factor, instead of TLP.  

To better illustrate this point, let us imagine the extreme case: P=∞, meaning that 
infinite processors are available. In addition, if one considers that the multiprocessor 
design is composed of low end processors that do not exploit ILP and, therefore, ∝ ௌாܫܲܥ  

is always zero, it can be removed from the equation. Therefore, equation (10) reduces 
to: 

ܧ ௌܶுா

ܧ ெܶ
ൌ 

∝
ௌாܫܲܥ
݁ݑݏݏ݅  ௌாܫܲܥߚ	

ௌாܫܲܥߛ	
ܭ	ሺ11ሻ 

Let us consider that the execution of the very same application on both multiprocessor 
and single high-end architectures presents exactly the same amount of sequential code, 
so ߚ ൌ  In this case, the operating frequency (given by the K factor) will determine .ߛ	
which architecture runs faster if the issue width of the high-end superscalar processor 
also tends to infinite.  

In another example, if one applies equation 11 in a scenario where an application 
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presents 10% of sequential code (ߚ ൌ ߛ	 ൌ 0.1ሻ and it is executing on a four issue high-
end single processor, the operating frequency of the four issue high-end single processor 
should be 3.2 times (K=0.31) greater than the multiprocessor to achieve the same 
execution time. On the other hand, if that application now presents 90% of sequential 
code (ߚ ൌ ߛ	 ൌ 0.9ሻ, the high-end single processor should run only 20% (K=0.8) faster 
than the multiprocessor design. With these corner cases, one can conclude that when the 
applications are massively sequential, both architectures, operating at the same 
frequency, will present almost the same performance, regardless the number of 
processors in a multiprocessor system. For applications with huge amount of parallel 
code, complex single processors must run at higher frequencies than multiprocessors 
systems.  

3.1.4 Applying the Performance Modeling in Real Processors 

Given the analytical model, one can briefly experiment it with numbers based on real 
data. Let us consider a high-end single core: a 4-issue SPARC64 superscalar processor 
with CPI equal to 0.6 (GUTHAUS, RINGENBERG, et al., 2002); and a multiprocessor 
design composed of low-end single-issue TurboSPARC processors with CPI equal to 
1.3 (GUTHAUS, RINGENBERG, et al., 2002). A comparison between both 
architectures is done using the equations of the aforementioned analytical model. In 
addition, we consider that the TurboSPARC has 5,200,000 transistors (FUJITSU 
MICROELECTRONICS), and that the SPARC64 V design (DIEFENDORFF, 1999) 
requires 180,000,000 transistors to be implemented. For the multiprocessing design we 
add 37% of area overhead due to the intercommunication mechanism (INTEL, 2007). 
Therefore, aiming to make a fair performance comparison among the high-end single 
core and the multiprocessor system, we have devised an 18-Core design composed of 
low-end processors that has the same area of the 4-issue superscalar processor and 
consumes the same amount of power.  

 Figure 16 shows, in a logarithmic scale, the performance of the superscalar 
processor, when parameters α and β change, and the performance of the many in-order 
TurboSPARC cores, when the δ and γ and the number of processors (from 8 to 128) 
varies. The x-axis of Figure 16 represents the amount of the instruction- and thread- 
level parallelism in the application, considering that the α factor is only valid for the 
superscalar processor, while δ is valid for all the multiprocessing systems’ setups. 

The goal of this comparison is to demonstrate which technique better explores its 
particular parallelism type at different levels, considering six values for both ILP and 
TLP. For instance, δ=0.01 means that a hypothetic application only shows 1% of TLP 
available within its code (in the case of the multiprocessing systems). In the same way, 
when α=0.01, it is assumed that only 1% of the total number of instructions can be 
executed in parallel on the superscalar processor. In these experiments, we considered 
the same power budget for the high-end single core and the multiprocessor approaches. 
In order to normalize the power budget of both approaches we have tuned the 
adjustment factor K of equation 9. For that, we fixed the power consumption of the 4-
issue superscalar to use it as the reference, changing the operating frequency (K factor) 
of the remaining approaches to achieve the same power consumption.  

Thus, the operating frequency of the 8-Core multiprocessing system must be 3 times 
higher than the one of the 4-issue superscalar processor. For the 18-Core setup, the 
operating frequency must be a 25% higher than the reference value. Since a 
considerable number of cores is employed in the 48-Core setup, it must execute 2 times 
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slower than the superscalar processor to operate under the same power budget. Finally, 
the operating frequency of the 128-Core design must be 5.3 times lower than the 
superscalar. 

 

Figure 16. Multiprocessor system and Superscalar performance regarding a power 
budget using different ILP and TLP; α = δ is assumed. 

 

In the leftmost side of Figure 16, one considers any application that has a minimum 
amount of instruction (α=0.01) and thread (δ =0.01) level parallelism. In this case, the 
superscalar processor is slower than the 8- and 18- Core designs since the parallelism is 
insignificant, the higher operating frequency of both multiprocessing system is 
responsible for faster execution. Moreover, when the application shows higher 
parallelism levels (α>0.25 and δ>0.25), the 18- and 8-Core better handles the extra TLP 
available than the superscalar does with the ILP, presenting more performance 
improvements. So, considering only the 18- Core design, the multiprocessing system 
achieve better performance with the same area and power budget in the whole spectrum 
of parallelism available. 

However, as more cores are added in a multiprocessor design, the overall clock 
frequency tends to decrease, since the adjustment factor K must be decreased to respect 
the power budget. Therefore, the performance of applications that present low TLP 
(small δ) worsens when the number of cores increases. Applications with δ =0.01 in 
Figure 16 are good examples of this case: performance is significantly affected as the 
number of cores increases. As another representative example, even when almost the 
whole application presents high TLP (δ > 0.99), the 128-Core design takes longer than 
the other multiprocessor designs. Figure 16 concludes that the increasing on the number 
of cores not always produces a satisfactory tradeoff among energy, performance and 
area.  

3.1.5 Communication Modeling in Multiprocessing Systems  

As stated the heavy task to outperform the multiprocessing systems’ performance 
when considering a scenario where there is no communication among threads. Now, we 
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introduce this issue in the modeling to bring the analytical model closer from a real 
multiprocessor design. For this purpose, we use the communication strategy shown in 
(CHEN, LU, et al., 2009). The employment of a 2D-mesh NoC is supported by its 
higher scalability, energy efficiency and area overhead over buses and crossbar 
interconnections. According to (CHEN, LU, et al., 2009), the communication latency in 
a 2D-mesh NoC is divided in two parts: minimal latency and contention latency. The 
minimal latency is calculated by hop count, which means the distance of the two 
communication tasks within the NoC. The contention latency depends on the arbitration 
mechanism and the way that the routing is implemented. 

 As the amount of data stored in each processor varies for each application, we 
modeled the corner cases to state the best and worst case of the communication 
overhead. The best communication case is considered when the traffic of data is 
uniformly distributed among the NoC-nodes. On the other hand, when the traffic of data 
is concentrated in from/to a specific node, the worst case occurs. The latter strategy is 
named as centralized traffic and the former as distributed traffic. We use ݏܪݒ݃ܣ to 
model the minimal latency of both communication strategies, meaning the average 
number of hops performed by a single inter-thread communication. 	 

Distributed          ቐ
ݏܪ݃ݒܣ ൌ ଶ

ଷ
, ሺ12ሻ		݊݁ݒ݁	݄

ݏܪ݃ݒܣ ൌ 2 ቀ


ଷ
െ ଵ

ଷ
ቁ ሺ13ሻ		݀݀	݄				,

 

                          Centralized            ݏܪ݃ݒܣ ൌ మ

ାଵ
  (14) 

where ݄ ൌ √ܰ, being N the number of processor nodes. 

As we already stated the average number of hops for a single communication, now 
we can use this measurement to state the communication latency (CL),  

ܮܥ ൌ ݏܪݒ݃ܣ ∗ ݏ݊݅ݐܽܿ݅݊ݑ݉݉ܥ# ∗  	ሺ14ሻ	ே݁݉݅ݐ݈݁ܿݕܥ

where ݁݉݅ݐ݈݁ܿݕܥே	is the clock period of the Network-on-Chip, 
 is the total number of communications performed by the ݏ݊݅ݐܽܿ݅݊ݑ݉݉ܥ#
processors considering the whole application execution.  

Communications (#Communications) occurred in the execution of a certain 
application can be divided in: 

 ߝ – the portion of instructions that are data transfer (e.g. load and store 
instructions) and performs accesses in a local storage. It depends on δ that is 
the amount of instructions that can be distributed among the processors of the 
multiprocessor environment. Thus, ߝ ൌ 0.25  means that 25% of the 
instructions executed in parallel are data transfer accessing local storage.  

 ߠ – the portion of instructions that are data transfer (e.g. load and store 
instructions) and performs accesses in a remote storage. It depends on δ that is 
the amount of instructions that can be distributed among the processors of the 
multiprocessor environment. Thus, ߠ ൌ 0.25  means that 25% of the 
instructions executed in parallel are data transfer in a remote storage and 75% 
of the data transfer are in a local storage. 

To model the number of communications we need only ߠ, since ߝ	 does not produce 
traffic in the NoC. In this way, one can get 

ݏ݊݅ݐܿݑݎݐݏ݊ܫ# = ݏ݊݅ݐܽܿ݅݊ݑ݉݉ܥ# ∗ ߜ ∗  (15) ߠ
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To make simple the communication model, we will overlook the contention latency 
and assume that the routers take one clock cycle to route a data from the input to the 
output. 

Now, considering the communication latency (CL) on the multiprocessing system, 
one can get, based on the equation (5) and (15),  

ܧ ெܶ ൌ ݏ݊݅ݐܿݑݎݐݏ݊ܫ ൬
ߜ
ܲ
 ൰ߛ	 ሺ	ܫܲܥߙௌா  	ெ݈݁݉݅ܶ݁ܿݕܥ	ௌாሻܫܲܥߚ	  ݏܪݒ݃ܣ	

∗ ݏ݊݅ݐܽܿ݅݊ݑ݉݉ܥ# ∗  	ሺ16ሻ			ே݁݉݅ݐ݈݁ܿݕܥ

3.1.6 Applying the Performance Modeling in Real Processors considering the 
Communication Overhead  

We apply the same data presented in Section 3.1.4 on the analytical model 
considering the communication overhead. We create four different scenarios to show 
the communication overhead: ߠ ൌ ߠ ,0.16 ൌ 0.33, ߠ ൌ 0.66, ߠ ൌ 0.99, meaning that 
16%, 33%, 66% and 99% of the instructions executed in parallel produces data traffic in 
the NoC, respectively. We also considered the distributed and centralized modeling to 
calculated ݏܪݒ݃ܣ.  

In these experiments, we considered the same power budget for the high-end single 
core and the multiprocessor systems. In order to normalize the power budget of both 
approaches we have to tune again the operating frequency (K of equation 9 in the 
Section 3.1.4) of the multiprocessing systems to achieve the same power consumption 
since the power of the NoC should be considered. 

Thus, the operating frequency of the 8-Core multiprocessing system changes from 3 
times higher than the one of the 4-issue superscalar processor to 2.7 times. For the 18-
Core setup, the operating frequency changes from 25% higher to 13% higher than the 
superscalar processor. The operating frequency of 48-Core setup changes from 2 times 
slower than the superscalar processor to 2.2 times. Finally, the operating frequency of 
the 128-Core design changes from 5.3 times lower to 5.9 times slower than the 
superscalar processor. 

Figure 17 draws the execution time of all designs presented in Section 3.1.4 
considering  ߠ ൌ 0.16. When applications provide low levels of thread level parallelism 
(0.01 ൏ ߜ ൏ 0.25), the communication overhead does not affect the execution time. It 
can be notice by comparing Figure 16, where no communication is considered, with 
Figure 17. However, when the TLP increases (ߜ  0.25), the impact of the 
communication becomes more evident, the curves of the multiprocessing designs do not 
fall in the same pace as the curves shown in Figure 16, since more TLP means more 
communication. As expected, when the data is centralized in one processor, the impact 
in the execution time is greater than when it is distributed, since the average number of 
hops is greater in the former case. Even applying such small communication overhead 
some conclusions presented in the Section 3.1.4 changed, the 4-issue superscalar 
processor outperforms the 18-, 48- and  128- Core Designs when  ߜ  0.95 and  
application presents centralized data.    
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Figure 17.Execution time of different designs considering  ߠ ൌ 0.16 

The multiprocessing designs start losing steam when the communication overhead 
increases to 33%. The gains obtained by exploring higher thread level parallelism are 
hiding by the communication overhead. As can be seen in Figure 18, the 8-Core Design 
provides the same execution time regardless the available thread level parallelism (ߜ). 
Considering this degree of communication, the 4-issue superscalar processor achieves 
better execution time than all multiprocessing systems when ߜ  0.95 and data are 
centralized. The superscalar processor outperforms the 18-Core Design (both designs 
present the same area and power budget) when 50% of the application could be 
parallelized either in instructions or in threads. When data is uniformly distributed 
among the cores, with 33% of communication overhead, the 8-Core Design still 
compete with 4-issue superscalar processor. 

 

Figure 18. Execution time of different designs considering  ߠ ൌ 0.33 

When the communication overcome 66% of parallel instructions, multiprocessing 
systems with many cores (48- and 128) does not show more gains with the increasing 
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on the thread level parallelism (Figure 19), the curves becomes almost flat, meaning that 
applications with higher communication degree are not suitable even for many core 
designs. The scenario is more critical for 8- and 18-Core Designs, considering this 
communication degree, the increasing on thread level parallelism produces losses in 
performance. When 25% of the application would be parallelized either in instructions 
or in threads, the 4-issue superscalar processor outperforms the 18-Core Design. 
However, when 65% of parallelism is available in both levels, the superscalar processor 
outperforms the 8-Core Design. 

 

Figure 19. Execution time of different designs considering  ߠ ൌ 0.66 

Figure 20 shows a scenario where 99% of parallel instructions produce 
communication in the NoC. Although this scenario is unlikely, it was built only to show 
the potential of superscalar over the multiprocessing designs. As we had concluded 
above, the multiprocessing system composed of huge number of cores, due to the power 
budget assumption, are not feasible for applications based on high communication 
overhead. Considering the 8-Core Design, if applications have their code parallelized, 
either in instructions or in threads, up to 50%, regardless the communication overhead, 
the designer should decide for 8-Core Design instead of 4-issue superscalar processor. 
Parallelism higher than 50%, the designer should select the latter. However, if one 
considers designs with the same area and power budget, it means 4-issue superscalar 
versus 18-Core Design, the former outperforms the latter from 15% of parallelism 
available. 

 

Figure 20. Execution time of different designs considering  ߠ ൌ 0.99 
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3.2 Energy Comparison 

If superscalar processors present better performance than multiprocessing systems 
when communication is considered, when one measures energy consumption there is a 
completely new scenario: power in CMOS circuits is proportional to the switching 
capacitance, to the operating frequency and to the square of the power supply. In the 
simple energy model that we will present herein, we will assume that the power is 
dissipated only in the data path. This is overly optimistic in regards of dissipated power 
by a superscalar processor, but this can also give an idea of the lower bound of energy 
dissipation in high-end single processors.  

The power dissipated by a high-end single processor can be written as 

ௌܲுா ൎ ݁ݑݏݏ݅ ∗ ܥ ∗ ൬
1

ௌாܫܲܥ
൰ ∗ 	 ௌܸுா

ଶ 	ሺ17ሻ 

were C is the capacitance switching of the single issue processor, and VSHE is the 

voltage the processor is operating on. The term ቀ
ଵ

ூೄಹಶ
ቁ is included to consider the 

extra power required during the speculation process to sustain performance with a CPI 
smaller than 1. The energy of the high-end single processor is given by: 

ௌுாܧ ൌ ௌܲுா ∗ ௌܶுா. ሺ18ሻ 

and the power consumed by a homogeneous multiprocessing system is given by  

ெܲ ൎ ܲ ∗ ܥ ∗ ൬
1

ௌாܫܲܥ
൰ ∗ 	 ெܸ	

ଶ 	ሺ19ሻ 

As in the case of superscalar processor, the term considering the CPI of the single 

low-end processor  ቀ
ଵ

ூೄಽಶ
ቁ has been also included. The energy of the single low-end 

processor is given by  

ெܧ ൌ ெܲ ∗ ெܶ, ሺ20ሻ 

It is possible to term ESHE and EMP as: 

ௌுாܧ
ெܧ

ൌ 
1

ߜ
ܲ  ߛ	

 
∝
ௌாܫܲܥ
݁ݑݏݏ݅  ௌாܫܲܥߚ	

ௌாܫܲܥ
 ∗ ܭ ∗ ൦

݁ݑݏݏ݅ ∗ ܥ ∗ ቀ
1

ௌாܫܲܥ
ቁ ∗ 	 ௌܸுா

ଶ

ܥ ∗ ቀ
1

ௌாܫܲܥ
ቁ ∗ 	 ெܸ	

ଶ
൪	ሺ16ሻ 

simplifying (16), one gets 

ௌுாܧ
ெܧ

ൌ ቈ ௌܸுா
ଶ 	ሺ∝ 	݅݁ݑݏݏ ∗ ሻߚ
	 ெܸ	

ଶ ሺߜ  ሻߛܲ	
 ∗  ሺ21ሻ	ܭ

Equation (17) demonstrates that both approaches unnecessarily spend power when 
there is no ILP or TLP available since there is no power management technique 
modeled to reduce power supply ( ௌܸுா

ଶ 	and ெܸ
ଶ ).  

3.2.1 Applying the Energy Modeling in Real Processors 

Figure 21 shows the energy results considering the same power budget, as it was 
already done in the performance model. For this first experiment, we do not consider the 
communication overhead for the multiprocessing environment that will be modeled 
later. In addition, we only show the energy of 8- and 18-Core Designs, since the 
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conclusions of these setups are also valid for the rest of the setups.  

The high-end single processor organization spends higher energy than the 18-Core 
multiprocessor the same amount of energy when considering all levels of available 
parallelism since the latter is faster than the former in all cases (Figure 16). 

To obey the given power budget, the 8-Core multiprocessor  runs 3 times faster 
than 4-issue superscalar and the 18-Core multiprocessor. Thus, as the 8-Core Design 
present 3 times lower execution time than the 4-issue superscalar, the former spends 3 
times less energy. When the parallelism is more exposed the superscalar approaches to 
the 8-Core Design, since its execution time decreases. Multiprocessors composed of a 
significant number of cores present worst performance in applications with low/medium 
TLP (Figure 16). Consequently, in those cases and if no power management techniques 
are considered (e.g., cores are turned off when not used), energy consumption of such 
multiprocessor designs tend to be higher than those with fewer cores. As can be seen in 
Figure 21, the 8-Core multiprocessor consumes less energy than the 18-Core for 
low/medium TLP values (δ < 0.75).  However, when applications present greater thread 
level parallelism (δ > 0.9), the energy consumed by the 18-Core multiprocessor reaches 
the same values as the 8-Core design, thanks to the better usage of the available 
processors.  

 

Figure 21. Multiprocessing Systems and High-end single processor energy 
consumption; α = δ is assumed. 

3.2.2 Communication Modeling in Energy of Multiprocessing Systems 

The energy results shown in Figure 21 do not consider the communication produced 
by data transfer. The power dissipated by the Network on Chip is proportional to its 
capacitance, operating frequency, square of the power supply, power of one router and 
the number of routers. With these variables one can get, 

ேܲ ൎ ݏݎ݁ݐݑܴ# ∗ ܥ ∗ ோܲ௨௧ ∗ ேܸ	
ଶ 	ሺ22ሻ 

The energy of the NoC can be modeled as, 

ேܧ ൌ ேܲ ∗  (23) 	ܮܥ

0

2

4

6

8

10

12

14

16

18

20

22

24

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

En
e
rg
y

Parallelism Percentage (α or δ)



 

 

55 

 

being ܮܥ the communication latency modeled in Equation 14. 

The energy of the multiprocessing system, based on Equation 23 and 30, is given by,  

ெܧ ൌ ெܲ ∗ ெܶ 	 ேܲ ∗  ሺ24ሻ	ܮܥ

3.2.3 Applying the Energy Modeling in Real Processors considering the 
Communication Overhead for Multiprocessing Systems  

The energy consumption shown in Section 3.2.1 does not consider communication 
costs. Thus, we apply the equations shown in Section 3.2.2 using the same scenarios 
presented in Section 3.1.5, where we consider that the data traffic in the NoC is 
produced by 16%, 33%, 66% and 99% of the instructions executed in parallel.   

Figure 22 draws the energy consumption of the multiprocessing systems and the 4-
issue superscalar processor. As can be seen, the curve of the superscalar processor 
places above of the 18-Core and 8-Core designs up to 85% of parallelism, since the 
multiprocessing systems provide lower execution time than the superscalar processor 
(refer to Figure 17). As the parallelism grows, the superscalar decreases the energy 
consumption in a higher factor than the 18-Core due to its more efficient exploitation. 
Considering neither the centralized nor the distributed data schemes, the superscalar 
processor fails both in performance and in energy consumption in comparison to the 8-
Core design when 16% of communication is considered. 

 

Figure 22. Energy consumption of different designs considering  ߠ ൌ 0.16 

The scenario changes when the communication increases to 33% (Figure 23), the 
superscalar processor outperforms the 18-Core design and achieves better energy 
consumption when the parallelism reaches 50%. When the data traffic increases to 66% 
(Figure 24), the superscalar processor shows better performance and energy 
consumption than the 8-Core design after 25% of parallelism. Thus, we can conclude 
that, for a same area design, the employment of a 4-issue superscalar processor is more 
energy and performance efficient than a 18-Core design to execute the following 
scenario: an application that makes available 25% of TLP or ILP and more than 66% of 
its instructions executed in parallel produce inter-thread communication. However, in 
comparison with the 8-Core design, the employment of the superscalar processor is 
worthwhile only when the application provides higher than 65% and 75% of 
parallelism, for centralized and distributed communication approaches, respectively. 

 

0

2

4

6

8

10

12

14

16

18

20

22

24

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

En
e
rg
y

Parallelism Percentage (α or δ)

0

2

4

6

8

10

12

14

16

18

20

22

24

0.01 0.1 0.25 0.5 0.75 0.99

4‐issue Superscalar 8‐Cores MPSoC 18‐Cores MPSoC

En
e
rg
y

Parallelism Percentage (α or δ)

Centralized Distributed



 

 

56 

 

 

Figure 23. Energy consumption of different designs considering  ߠ ൌ0.33 

 

Figure 24. Energy consumption of different designs considering  ߠ ൌ0.66 

Figure 25 shows the worst scenario for the multiprocessing system, when 99% of the 
parallel instructions produce data traffic in the NoC. Here, one can conclude that, for a 
same chip area design, if an application can be parallelized up to 20%, the employment 
of the 18-Core Design is worthwhile than the superscalar in both performance and 
energy consumption when communication is centralized. This percentage increases to 
almost 25% when the data are uniformly distributed among the processors. The 8-Core 
design is more competitive, when an application is parallelized up to 50%. Besides 8-
Core design occupies less area, it produces better performance and energy consumption 
than the superscalar processor when the communication is centralized. This percentage 
increases to 55% when the data is distributed uniformly among processors. 

 

Figure 25. Energy consumption of different designs considering  ߠ ൌ0.99 

Summarizing, the best scenario for TLP exploitation (0% of communication (Figure 
16)) shows that the 8-Core and 18-Core design outperforms the superscalar processor in 
the whole spectrum of parallelism. On the other hand, when the worst scenario for TLP 
exploitation is applied (99% of communication), the superscalar processor provides 
better performance and energy when the parallelism is higher than 25% and 50%, for 
18-Core and 8-Core, respectively. Thus, the analytical model shows that the 
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performance of the multiprocessing systems, besides relying on TLP available in the 
application, it also heavily depends on the communication rate.  

One can conclude that the ideal approach would be the usage of a heterogeneous 
multiprocessor system to exploit both TLP and ILP, so it would be possible to balance 
the performance and energy of a wide range of application domains and would be 
possible to avoid the huge communication costs provided by designs based on many 
cores. To support such assumption, there is an additional tradeoff that must be 
considered, when more cores are included in the chip, the multiprocessor performance 
tends to worsen since the operating frequency must be decreased to respect the power 
budget limits. For instance, the 128-Core design takes longer execution time than the 
other multiprocessor designs in all levels of parallelism available (Figure 16) since its 
operating frequency is very low. 

Considering real applications, thread level parallelism exploitation is widespread 
employed to accelerate most multimedia applications used in the embedded devices 
thanks to their data independent iteration loops. However, even applications with high 
TLP could still obtain some performance improvement by also exploiting ILP. Hence, 
in a multiprocessor design, ILP techniques also should be investigated to conclude what 
is the best fit considering the particular design requirements. Hence, the analytical 
modeling indicates that heterogeneous multiprocessor system is necessary to balance the 
performance and energy of a wide range of application classes. Section 3.3 reinforces 
this trend by running a real embedded application over a multiprocessor environment 
only exploiting TLP, a superscalar processor and a multiprocessor environment 
exploiting both TLP and ILP. 

3.3 Example of a Application Parallelization Process in a 
Multiprocessing System  

We evaluate the performance of both superscalar and multiprocessor environments 
regarding an actual application execution. An 18-tap FIR filter is used as a benchmark 
to make this evaluation. The C-like description of the FIR filter employed in this 
experiment is illustrated in Figure 27. Superscalar machines explore the instruction level 
parallelism of such an application in a transparent way, working on its original binary 
code. Unlike the superscalar approach, to explore the potential of the multiprocessor 
architecture there is a need to make manual source code annotations in order to split the 
application code among many processors. In this way, some code highlights are shown 
in Figure 27 to simulate these annotations, indicating the necessary number of cores to 
explore the ideal thread level parallelism of each part of the FIR filter code. For 
instance, the first annotation considers a loop controlled for IMP_SIZE value, which 
depends on the number of FIR taps. In this case, 54 loop iterations are done since the 
experiment regards an 18-tap FIR filter. 

The OpenMP (MENON, 1998) programming language provides specific code 
directives to easily split loop iterations among processors. Using OpenMP directives, 
the ideal exploration of this loop is done through 54-Core multiprocessor design, each 
one being responsible for executing a loop iteration. However, when the amount of 
processors is lower than the number of loop iterations, OpenMP combines them in 
groups and distributes the tasks among the available resources. Hence, regarding the 
execution of 54 loop iterations in a 18-Cores multiprocessor design, OpenMP creates 18 
groups, each one composed of 3 iterations. Since the FIR code is made up of several 
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loops, almost the entire application can be parallelized, as shown in Figure 27. In 
general, DSP applications (ex: FFT and DCT) are loop-based which turns it suitable for 
OpenMP usage. However, despite OpenMP use, some loops still executing sequentially 
due to the data dependency among iterations. This fact is illustrated by the last loop of 
the FIR filter description, since the iterations of the loop that perform shifting in the 
array presents dependencies among each other.  

We evaluated the 18-tap FIR execution over three different architectures aiming to 
illustrate their performance impact on applying TLP and ILP exploration: a 4-issue 
superscalar SPARC V (SS); 6- 18- and 54- Core multiprocessor designs based on in-
order single-issue TurboSPARC cores, with no ILP exploration capabilities (MPIOC). 
Finally, in order to have a glimpse on the future, we imagined a 6- 18- and 54- Cores 
MPs based on a 4-issue Superscalar processor, able to explore both ILP and TLP 
(MPSS). We have gathered data about performance with a cycle accurate simulator 
(RUTZIG, BECK e CARRO, 2009). The execution time is measured in order to obtain 
their speedup over the baseline processor. It is important to point out that instruction 
and thread communication overhead has not been considered in this experiment.  

The results shown in Figure 26 reflect the speedup provided over a single in-order 
core performance running the sequential code version of the C-like description of the 
18-tap FIR filter presented in Figure 27. The leftmost bar shows the speedup provided 
for the ILP exploration of a 4-issue superscalar processor. In this case, the speedup of 
the superscalar processor over an in-order core is only 2.2 times showing that the FIR 
filter has neither high nor low ILP since a 4-issue superscalar processor could 
theoretically achieve up to 4 times the performance of an single-issue in-order core. 

 

Figure 26. Speedup provided in 18-tap FIR filter execution for Superscalar, MPSoC and 
a mix of both approaches   
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Figure 27.  C-like FIR Filter 

Regarding the multiprocessor designs composed of in-order cores, the 6-Core 
machine provides almost a linear speedup, decreasing the single in-order core execution 
time by 5.46 times. This behavior is maintained when more in-order cores are inserted. 
However, when the TLP of the 18-tap FIR filter is aggressively explored (54-MPIOC), a 
speedup of only 44.8 times is achieved, showing that even applications that are 
potentially suitable for TLP exploration suffer with the presence of sequential code 
parts.  

Amdahl´s Law shows that it is not sufficient to build architectures with a large 
number of processors, since most applications contain a certain amount of sequential 
code (WOO e LEE, 2008). Hence, there is a need to balance the number of processors 

#define NTAPS 18 
#define IMP_SIZE (3 * NTAPS) 
static const double h[NTAPS] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0 }; 
static double h2[2 * NTAPS], z[2 * NTAPS], imp[IMP_SIZE]; 
double output; 
int ii, state; 
 
     
    /* make impulse input signal */ 
    for (ii = 0; ii < IMP_SIZE; ii++) { 
        imp[ii] = 0; 
    } 
 
    imp[5] = 1.0; 
    /* create a SAMPLEd h */ 
    for (ii = 0; ii < NTAPS; ii++) { 
        h2[ii] = h2[ii + NTAPS] = h[ii]; 
    } 
 
    
    /* clear Z */ 
    for (ii = 0; ii < NTAPS; ii++) { 
        z[ii] = 0; 
    } 
 
    
    for (ii = 0; ii < IMP_SIZE; ii++) { 
     
        z[0] = imp[ii]; 
        output = 0; 

 

/* calc FIR */ 
          for (ii = 0; ii < IMP_SIZE; ii++) { 
                output += h[ii] * z[ii]; 
          } 
    
          /* shift delay line */ 
          for (ii = IMP_SIZE - 2; ii >= 0; ii--) { 
                 z[ii + 1] = z[ii]; 
          } 
          } 

54	Cores	

18	Cores	

18	Cores	

54	Cores	

54	Cores	
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with a suitable ILP exploration approach to achieve greater performance. The MPSS 
approach combines TLP with ILP exploration of 4-issue superscalar aiming to show that 
simple TLP extraction is not enough to achieve linear speedups even for applications 
with high TLP. Figure 26 illustrates the speedup of the MPSS approach. As can be seen, 
the performance of 6-MPSS on running 18-tap FIR filter is twice better than 6-MPIOC. 
The 6-MPSS takes advantage of the large room for ILP exploitation provided when the 
applications is split in only 6 threads. In this case, when the first loop of Figure 27 is 
split among the multiprocessor machine, each core receives 9 loop iterations that 
executed sequentially. However, when the number of cores increases, the sequential 
code decreases, making lower the room for the ILP optimization. Nevertheless, the 18-
tap FIR filter execution in 54-MPSS is 66% faster than the 54-MPIOC execution. 

Summarizing, some real applications could benefit for thread level parallelism 
exploration thanks to their loop-based behavior. However, even applications with high 
TLP could still obtain some performance improvement by also exploiting ILP. Hence, 
in a multiprocessor design ILP techniques also should be investigated to conclude what 
is the best fit considering the design requirements/constraints. Finally, one could 
conclude that replications of simple processing elements leaves a significant 
optimization possibility unexplored, indicating that mixed parallelism exploitation could 
be a possible solution to balance the performance when applications with different 
behaviors are considered. 
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4 CREAMS  

A general overview of the CReAMS platform is given in Figure 28 (a). The thread 
level parallelism is explored by replicating the number of Dynamic Adaptive Processors 
(DAPs) (in the example of the Figure 28 (a), by four DAPs). The communication among 
DAPs is done through an on-chip unified 512 KB 8-way set associative L2 shared 
cache. As mixed parallelism exploitation is mandatory when a heterogeneous software 
environment is considered, we extend the single-thread based reconfigurable 
architecture presented in (BECK, RUTZIG, et al., 2008) to handle multithreaded 
applications in CReAMS platform.  

4.1 Dynamic Adaptive Processor (DAP) 

We divided DAP in four blocks to better explain it, as illustrated in Figure 28(b). 
These blocks are discussed in the following sections. 

4.1.1 Processor Pipeline (Block 2) 

A SparcV8-Based architecture is used as the baseline processor to work together with 
the reconfigurable system. Its five stage pipeline reflects a traditional RISC execution 
flow (instruction fetch, decode, execution, data fetch and write back) that support its 
employment on embedded system. In addition, similarities to the processors used in 
well-known embedded platforms (e.g. OMAP) support the employment of SparcV8 
processor in this work, since all are based on RISC architectures (e.g. MIPS, ARM).  

4.1.2 Reconfigurable Data Path Structure (Block 1) 

Following the classifications shown in (HAUCK e COMPTON, 2002), the 
reconfigurable data path is coarse-grained and tightly coupled to the SparcV8 pipeline, 
avoiding external accesses to the memory, saving power and reducing the 
reconfiguration time. Because it is coarse-grained, the size of the memory necessary to 
keep each configuration is lower when compared to fine-grained data paths (e.g. 
FPGAs), since the basic processing elements are functional units that work at the word 
level (arithmetic and logic, memory access and multiplier).  As illustrated in the Figure 
28(b), the data path is organized as a matrix of rows and columns. The number of rows 
dictates the maximum instruction level parallelism that can be exploited, since 
instructions located at the same column are executed in parallel. For example, the 
illustrated data path (Block 1 of Figure 28(b)) is able to execute up to four arithmetic 
and logic operations, two memory accesses (two memory ports are available in the L1 
data cache) and one multiplication without true (read after write) dependences. The 
number of columns determines the maximum number of data dependent instructions 
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that can be stored in one configuration. Three columns of arithmetic and logic units 
(ALU) compose a level. A level does not affect the SparcV8 critical path (which, in this 
case, is given by the multiplier circuit). Therefore, up to three ALU instructions can be 
executed in the reconfigurable data path within one SparcV8 cycle, without affecting its 
original frequency (600 MHz). Memory accesses and multiplications take one 
equivalent SparcV8 cycle to perform their operations.  

We have coupled sleep transistors (SHI e HOWARD, 2006) to switch power on/off 
of each functional unit in the reconfigurable data path. The dynamic reconfiguration 
process is responsible for the sleep transistors management. Their states are stored in the 
reconfiguration memory, together with the reconfiguration data. Thus, for a given 
configuration, idle functional units are set to the off state, avoiding leakage or dynamic 
power dissipation, since the incoming bits do not produce switching activity in the 
disconnected circuit. Although the sleep transistors are bigger and in series to the 
regular transistors used to implement the data path circuit, they have been designed so 
that their delays do not significantly impact the critical path or the reconfiguration time. 

 

 
Figure 28.  (a) CReAMS architecture (b) DAP blocks 

The entire structure of the reconfigurable data path is totally combinational: there is 
no temporal barrier among the functional units. The only exception is for the entry and 
exit points. The entry point is used to keep the input context and the exit point is used to 
store the results, both structures are connected to the processor register file.  

The feeding of the input context with the necessary data is the first step to configure 
the data path before firing the data path execution. After that, results are stored in the 
output context registers through the exit point of the data path. The values stored in the 
output context are sent to the SparcV8 register file on demand. It means that if any 
value is produced at any data path level (a cycle of SparcV8 processor) and if it will not 
be changed in the subsequent levels, this value is written back in the cycle after that it 
was produced. In the current implementation, the SparcV8 register file has two 
write/read ports.  
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Figure 29. Interconnection mechanism  

The interconnection structure of the reconfigurable data path is shown in the Figure 29. 
The data that comes from the SparcV8 register file is stored in the register of the input 
context. For each register, a bus line propagates the value to the functional units. These 
bus lines are connected to the functional units through multiplexers that are responsible 
for choosing the correct value. Each functional unit has two multiplexers in their inputs 
that make the selection of the issuing operands. We call them input multiplexers. After the 
operation is completed, there is a multiplexer for each bus line that will choose which 
result will be bypassed through that bus line. These are the output multiplexers.  

The input and the output context size limits the number of instructions allocated in a 
single data path configuration, when all registers of the input context are already 
allocated, a new configuration should be created to hold the following instructions. On 
the other hand, a small input context size restricts the performance since a configuration 
is broken even if having available functional units. On the other hand, an increase in the 
size of the input context provides a huge overhead in the data path area, since each input 
register entails in one output multiplexer per data path column. For instance, in the data 
path presented in the Figure 28 (b), each additional input register aggregates nine output 
multiplexers in the data path structure. Moreover, each additional input register 
increases one input port in all input multiplexers of the reconfigurable data path. The 
interconnection structure also provides deleterious effects on energy consumption. Sleep 
transistors do not work in these components meaning that the data will be propagate 
over all interconnection structure due to the combinational fashion of the data path, 
which will spend power even when the functional units have not being used.  

4.1.3 Dynamic Detection Hardware (Block 4) 

The hardware responsible for code detection, named Dynamic Detection Hardware 
(DDH), is implemented as a 4-stage pipelined circuit to avoid the increasing on the 
original critical path of the SparcV8 processor. These four stages are the following: 
 Instruction Decode (ID) –The instruction is broken into operation, source operands 

and target operand. 

 Dependence Verification (DV) – on each data path´s column there is a bitmap 
responsible for storing the target operands of the already allocated instructions in the 
respective column, named as Write Bitmap (Figure 30). Thus, the source operands 
of each incoming instruction are compared to the target operands stored in the 
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bitmap of previously detected instructions to verify which column the current 
instruction should be allocated, according to their data dependencies. In this way, 
the dependence detection hardware spent only 8-bits width xor gate (supposing that 
the input context contain 8 registers) per each data path column. 

To better explain the process, it is presented in the left side of  Figure 30 an example 
of a code region detected by the DDH, in the right side of the same Figure is 
demonstrated its allocation inside of the reconfigurable data path. The first incoming 
instruction is always allocated at the highest functional unit of the leftmost data path 
column. In this process, the seventh bit of the write bitmap of such column is set since 
the R7 is the target operand of this instruction. 

  The dependence detection starts from the second instruction. In our example, the 
instruction number two reads R7 register that is written by previous instruction creating 
a read after write (RAW) dependence. The DDH detects it with a simple xor operation 
and allocates the instruction number two at the later column of instruction number one. 
In this process, the eighth bit of the second write bitmap is set since this instruction has 
the register R8 as the target operand. 

There is a true dependence between the third and the second instruction, so the third 
instruction should be allocated at the third column setting the sixth bit of the write 
bitmap of such a column.  

 Otherwise, the instruction number four does not present any data dependence with 
instruction number two and three but it has a RAW dependence with instruction number 
one. In this way, it can be allocated at the later column of instruction number one 
executing in parallel with the instruction number two and temporally before of 
instruction number three. The write bitmap of the second column is updated, since the 
target operand of the instruction number four is the R1 register. 

The instruction number five, a memory access operation, does not produce any data 
dependence to the previous instructions, so it is allocated at the leftmost load functional 
unit. As this kind of operation takes an entire processor cycle and covers three data path 
columns, the third bit of the write bitmap of the columns 1, 2 and 3 should be set to 
maintain the allocation consistency. 

The instruction number six depends on the result of the previous memory access 
(instruction number five), so that instruction must be allocated at the fourth column. As 
its target operand is the R4 register, the correspondent bit of the fourth write bitmap is 
set.  

The instruction number seven stores the value of the R4 register in the memory, as 
the previous instruction has this register as a target register, the instruction number 
seven should be allocated at a later column that provides a memory access functional 
unit available. 

Finally, the instruction number eight does not have any data dependence with the 
previous instruction, so it is allocated at the first data path column. As this operation 
takes an entire processor cycle and covers three data path columns, the second bit 
(correspondent bit of its target operand) of the write bitmap of the columns 1, 2 and 3 
are set.    
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Figure 30. Example of an allocation of a code region inside of the data path 

 Resource Allocation (RA) – In this stage, the data dependence is already solved and 
the correct data path column is known. Hence, the RA stage is responsible for 
verifying the resources availability in that column, linking the instruction operation 
to the correct type of functional unit. If there is no functional unit available at this 
column, the next column at the right side will be checked. This process is repeated 
until finding a free functional unit.  

 Update Tables (UT) – This stage configures the interconnection components of the 
reconfigurable data path to feed that functional unit with the correct source operands 
from the input context and to write the result in the correct register of the output 
context. After that, the bitmaps and tables are updated and the configuration is 
finished: their configuration bits are sent to the reconfiguration memory and the 
address cache is updated with the memory address of the first instruction detected in 
the configuration. 
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Figure 31. DAP acceleration process 

Figure 31 shows a simple example of how a DAP could dynamically accelerate a 
code segment of a single thread. The DAP works in four modes: probing, detecting, 
reconfiguring and accelerating. The flow is as follows: 

At the beginning of the time bar shown in Figure 31, the DAP searches for an already 
translated code segment to accelerate, comparing the address cache entries to the 
content of the program counter register. However, when the first loop iteration appears 
(i=0), the DDH detects that there is a new code segment to translate, and it changes to 
detecting mode.  

In the detecting mode, concomitantly with the instruction execution in the SparcV8 
pipeline, these instructions are also translated into a configuration by the DDH pipeline. 
The process does not stop when a branch instruction is found, since speculative 
execution is used. Thus, up to three basic blocks can compose a single configuration. 
When the second loop iteration is found (i=1), the DDH is still finishing the detection 
process that started when i=0. It takes few cycles to store the configuration bits into the 
reconfiguration memory, and to update the address cache with the memory address of 
the first detected instruction.  

Then, when the first instruction of the third loop iteration comes to the fetch stage of 
the SparcV8 pipeline (i=2), the probing mode detects a valid configuration in the 
reconfiguration memory: the program counter content was found in the address cache 
entry.  

After that, the DAP enters in the reconfiguring mode, where it feeds the 
reconfigurable data path with the necessary operands. For example, if 8 operands are 
needed, 4 cycles are necessary, since 2 read ports are available in the register file. In 
parallel with the operands fetch, the reconfiguration bits are also loaded from the 
reconfiguration memory. The reconfiguration memory is accessed on demand: at each 
clock cycle, only the necessary bits to configure a data path level are fetched, instead of 
fetching all the reconfiguration bits at once. This approach decreases the port width of 
the reconfiguration memory, which is one of the main sources of power consumption in 
memories (BERTICELLI LO, BECK, et al., 2010).  

Finally, the accelerating mode is activated and the next loop iterations (until the 99th) 
are efficiently executed, taking advantage of the reconfigurable logic. 

Figure 32 summarizes, by an activity diagram, the whole DDH´s process to create a 
configuration. The first step is the execution support verification. If there is no 
compatible functional unit to execute such an operation (e.g. division), the configuration 
is finished and the next instruction is a candidate to start a new configuration. On the 
other hand, if there is support, the data dependency among previously allocated 

for ( i=0 ; i<100 ; i++)
a[i] = b[i] + 1;
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instructions is verified (DV stage) and the correct functional unit within that column is 
defined. Then, the current configuration is sent to the reconfiguration memory. 

 

Figure 32. Activity Diagram of DIM process 

4.1.4 Storage Components (Block 3) 

Two storage components are part of the DAP acceleration process: address cache and 
reconfiguration memory. The address cache holds the memory address of the first 
instruction of every configuration built by the dynamic detection hardware. It is used to 
verify the existence of a configuration in the reconfiguration memory: an address cache 
hit indicates that a configuration was found. The address cache is implemented as a 4-
way set associative table containing 64 entries. The reconfiguration memory stores the 
routing bits and the necessary information to fire a configuration, such as the input and 
output contexts and the immediate values. 

Besides the two storage components explained before, the current DAP 
implementation has a private 32 KB 4-way set associative L1 data cache and a private 8 
KB 4-way set associative L1 instruction cache. According to our experiments, the same 
hit rate is achieved by the SparcV8 in the DAP compared to the standalone SparcV8 
using a quarter size of its 32KB L1 instruction cache. This happens because, as 
translated instructions are stored in the reconfiguration memory, the SparcV8 within the 
DAP has fewer memory accesses in the L1 instruction cache than the standalone 
SparcV8 processor. Thus, the impact of the additional area of the address cache and the 
reconfiguration memory in the DAP design is amortized. 
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5 RESULTS 

This section presents the methodology and the results regarding the proposed 
approach. Considering the results, first we show the comparison of CReAMS with a 
multiprocessing system composed of in-order scalar SparcV8 processors, which 
demonstrates the potential of the proposed approach. After, the impact of inter-thread 
communication over both CReAMS and multiprocessing systems composed with 
different number of processors is verified. In addition, a subsection is dedicated to show 
the results where CReAMS is conceived as heterogeneous organization. Finally, we 
compared the adaptability of CReAMS on exploiting ILP and TLP with a 
multiprocessing system composed of 4-issue Out-Of-Order Superscalar SparcV8 
processors. 

5.1 Methodology 

5.1.1 Benchmarks 

In order to measure the performance and energy efficiency of CReAMS considering 
a heterogeneous environment, benchmarks from different suites were selected to cover a 
wide range of behaviors in terms of type (i.e. TLP and ILP) and degree of existing 
parallelism. The scope is to mimic future complex embedded applications that will run 
in portable devices. From the parallel suites (WOO, OHARA, et al., 1995) (BIENIA, 
KUMAR, et al., 2008) (DORTA, RODRIGUEZ, et al., 2005), we have selected md, 
jacobi and lu that are, due to their nature, applications where TLP is dominant. Three 
SPEC OMPM2001 (DIXIT, 1993) applications (apsi, equake and ammp) were chosen 
to evaluate the CReAMS efficiency over originally single–threaded applications that 
were parallelized to take advantage of multiprocessing environments. Finally, we have 
selected four applications (susan edges, susan smoothing, susan corners and patricia) 
from the MiBench suite (GUTHAUS, RINGENBERG, et al., 2002), which reflects a 
traditional embedded scenario.  

The benchmarks were parallelized using OpenMP and POSIX threads. These 
libraries provide methods that discover, at run time, the number of processors of the 
underlying multiprocessor architecture, so they can take full advantage of the available 
resources even when the platform changes (e.g. processors are added), with no need for 
source code modifications and recompilation.  

We have done a study over the selected applications to characterize their potential on 
obtaining performance improvement when TLP or ILP exploration is applied. The mean 
basic block size characteristic gives us some clues about the limits of instruction level 
parallelism that the selected applications provide. In addition, the percentage of the 
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entire application code that are executed in parallel, when multithreaded application 
environment is considered, is an important metric to obtain the actual thread level 
parallelism available in the applications. This metric is also called load balancing. 
Considering the mean size of the basic blocks, Table 3 shows that some applications 
such as ammp, susan edges, susan corners and susan smoothing provide a wide room 
for ILP exploitation. However, equake, jacobi, patricia and apsi do not show great 
potential for performance improvement when ILP exploitation is applied due to their 
small mean basic block sizes. In addition, the data provided in Table 3 demonstrate that 
the selected workload is very heterogeneous in terms of load balancing, it contains 
applications that have perfect load balancing, such as susan smoothing, jacobi and md, 
being suitable for TLP exploitation. However, TLP exploitation is not appropriate for 
some applications such as equake, ammp and apsi since their instructions are poorly 
load balanced even when few threads are considered (4 threads). 

 
Table 3. Load balancing and mean basic block size of the selected applications

 

5.1.2 Simulation Environment 

For performance evaluation, we have used the scheme presented in Figure 33(a). In 
the following subsections we show the details about the tools and the whole simulation 
process. 

 

5.1.2.1 Simics Simulator 

The base platform is Simics (MAGNUSSON, CHRISTENSSON, et al., 2002), an 
instruction level simulator. It was created a new Simics environment that comprises a 
Linux Ubuntu operating system running over a single SparcV8 processor. The 
applications shown above were compiled inside of this environment to allow the 
simulation process. As OpenMP and Pthreads provide procedures that allow the choice 
of the number of spawning at run-time, even with a single SparcV8 in the platform we 
get simulations with different number of threads. Simics produces a sequential trace that 
comprises the instructions and data accesses of all threads. As these instructions are 
mixed in a single and sequential trace, there are marks at the beginning and the end of 
each portion of code indicating what instructions belongs to which thread. The whole 
Simics process reflects the box “Thread Trace/Tracker” of the Figure 33(a). 

equake 4.80

apsi 6.86

ammp 14.56

susan_e 16.60

patricia 5.04

susan_c 17.36

susan_s 12.10

swaptions 5.92

blackscholes 4.83

md 6.51

jacobi 6.94

lu 8.32

12.40 6.20 1.09

81.20

99.00

83.24

97.02

56.77 29.35

98.00

98.00

89.87

93.12

7.03

99.00

99.00

88.92

92.07

18.49

17.45

39.80

22.75

67.58

88.20

64 threads

0.92

1.10

4.80

6.41

34.94

83.16

0.90

1.12

12.50

74.52

Mean BB size

(#instr)

27.35

4 threads 8 threads

9.20

5.10

4.80

16 threads

10.32

24.90

13.45

49.18

77.13

99.00 99.00

99.00

95.04

97.02

Benchmark
Load Balancing (%)



 

 

71 

 

5.1.2.2 Splitter.py 

The simulator explained above sends the sequential trace for a python script, named 
as Splitter. This script is responsible for recognize the marks that informs what 
instructions belongs to which thread splitting these instructions in several buffers that 
contain instructions of each thread. In addition, this script is responsible for the dynamic 
thread scheduling shown in the Section 5.4. 

5.1.2.3 Mkfifo 

As both Simics and Splitter communicate in a producer-consumer way, a first-in 
first-out (FIFO) structure was inserted to achieve such communication. Mkfifo is a 
UNIX process that manages automatically a FIFO behavior. Thus, when a FIFO is full 
the producer (Simics) will stall and when a FIFO is empty the consumer (splitter.py) 
will stall allowing the proper simulation. In addition, the buffers referred in the splitter 
subsection are mkfifo processes, since their behaviors also reflects producer-consumer 
process. 

5.1.2.4 Dynamic Adapted Processor 

There is one timing simulator for each DAP (in the case of the CReAMS simulation) 
or for each standalone SparcV8 processor (when simulating the MPSparcV8).  The 
DAP consumes the instructions sent by the splitter for its correspondent buffer. Thus, 
each DAP simulates the instructions of a unique thread (in case of static scheduling). 
The DAP simulator implements synchronization mechanisms, such as locks and 
barriers. This way, the time spent with blocking synchronization and memory transfers 
is precisely calculated. DAP holds in a plain text file partial results about the 
performance, communications among the threads, energy and power consumption of the 
instructions executed between each barrier. Each DAP has its own plain text file. In 
addition, the DAP simulator is available in C++ and comprises more than 5000 code 
lines. 

5.1.2.5 Backward 

This process is activated in the end of the simulation. As the plain text file of each 
DAP contains, for each thread, partial results about performance, energy and power 
consumption of each barrier, the backward is responsible for joining these results 
providing overall performance, energy and power consumption results of the whole 
application simulation. 

 

5.1.3 VHDL descriptions 

We have described the entire CReAMS architecture in VHDL, including the power 
management technique using Sleep Transistors. The MPSparcV8 VHDL description 
was obtained from (GAISLER, 2006). The Synopsys Design and Power Compiler tools, 
using a CMOS 90nm technology, were employed to synthesize the VHDL descriptions 
to standard cell and gather data about power, operating frequency, critical path and area. 
We use the data gathered from VHDL descriptions to calibrate the DAP cycle accurate 
simulators to obtain the overall energy/power consumption. 

We assume for all experiments a perfect switching off/on for the processing elements 
of both CReAMS and MPSparcV8. It means that the processing elements do not 
consume energy in idle times. The power consumption of the reconfiguration memory, 
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the address cache, L1 and L2 memory cache were obtained with the CACTI 6.5 tool 
(WILTON e JOUPPI, 1996).  

 

 

Figure 33. (a) Simulation Flow (b) How the synchronization process is done 

5.1.4 How does the thread synchronization work? 

Figure 33 (b) shows how the DAP cycle accurate simulators make the 
synchronization process among the running threads. Let us suppose a dual DAP, 
CReAMS platform executing two threads, where barriers are responsible for DAPs 
synchronization. In our cycle accurate simulator, barriers are represented by “magic 
instructions” that are inserted in the trace when software synchronization points are 
executed in the binary code. Figure 33 (b) depicts the execution of two threads, the 
white box represents a regular instruction and the gray box means a barrier in the trace. 
As can be seen, there are three synchronization points in the example of the Figure 33. 
Let us suppose that each regular instruction takes one DAP cycle to execute. Thread #1 
takes four DAP cycles to reach the first barrier, while the thread #2 takes only one DAP 
cycle. After that, the thread #1 takes 6 cycles to reach the synchronization point two, 
while the thread #2 takes 4 DAP cycles. To get the third synchronization point, four and 
twelve cycles are taken for the thread #1 and thread #2, respectively. These partial 
performance results are stored by each DAP cycle-accurate simulator and joined when 
the execution of both threads ends. Thus, the simulation environment only takes into 
account, for the overall results, the longest thread execution time between barriers. In 
the example of the Figure 33(b), the longest execution time until the synchronization 
point one belongs to thread #1, which is also true for the second synchronization point. 
However, the thread #2 has the longest execution time in the third synchronization 
segment. The overall performance of the dual DAP CReAMS on executing the two 
threads depicted in Figure 33(b) is 22 cycles.  
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Figure 34. How the simulation handles synchronization from the software point of view 

 
Figure 34 depicts how the simulation handles synchronization from the software 

point of view. A simple example of how to parallelize an application with OpenMP 
(MENON, 1998) is shown in the left side of the same Figure. The example works as 
following. First, when the parallel region starts (line 5), each thread gets its thread 
identification number. After, each thread prints a message on the screen showing its 
thread identification number (Line 7). Finally, the master thread, th_id=0, prints the 
amount of threads that have participated of the application execution. Before doing this 
last printing, a barrier was inserted (line 8) to avoid the printing of this last message by 
the master thread before the printing of the other thread identification messages. In this 
case, threads that already reached the barrier will stay halted until that all threads arrive 
in this synchronization point.  

In the right side of the Figure 34 one can find how our simulation environment 
handles the software barrier explained above. When a certain thread reaches a barrier, 
the OpenMP library is accessed, so the procedure that processes the respective barrier is 
called. In this way, we have modified this procedure by inserting an assembly 
instruction in the C language, which we named as a “magic instruction”. When the DAP 
cycle accurate simulator reaches this “magic instruction” a barrier is recognized 
allowing the synchronization among threads to be accomplished.  

It is important to point out that we consider speculative execution, it means that a 
single configuration can contain up to 3 basic blocks. The speculative policy is based on 
bimodal branch predictor [6]. For each level of the tree of basic blocks, the counter must 
achieve the maximum or minimum value (indicating the way of the branch). In addition, 
interruptions and traps are not considered, since our experiments do not run operating 
system code. 

5.1.5 Organization of this Chapter 

The rest of this section is divided on four subsections that explore the main topics 
discussed in this work. In the first subsection, we show the potential of CReAMS 
employment comparing it against a multiprocessing system composed of simple 
processor, named as MPSparcV8. In this part, we do not consider the communication 
overhead provided by the applications. In the second subsection, we built the modeling 
of the Network-on-Chip shown in Section 3.1.5 in both CReAMS and MPSparcV8. 
Thus, we are able to explore different latency of the communication infrastructure to 
highlight the need for mixed and adaptable parallelism exploitation when this aspect is 
considered. In the third section, we present the heterogeneous CReAMS, where is 

#include <omp.h>
#include <stdio.h>
int main (int argc, char *argv[])  {

int th_id, nthreads; 
#pragma omp parallel private(th_id) {

th_id = omp_get_thread_num();
printf("Hello World from thread %d\n", th_id);
#pragma omp barrier
if ( th_id == 0 ) {

nthreads = omp_get_num_threads();
printf("There  are %d threads\n",nthreads);

}
} 

return 0;
}

Modified OpenMP library

Thread #1

Instruction Barrier

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
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encapsulated, in a single die, DAPs with different capabilities on exploiting instruction 
level parallelism. Finally, we present some studies comparing CReAMS against a 
multiprocessing system composed of 4-issue out-of-order superscalar SparcV8 
processors. 

 

5.2 The Potential of CReAMS 

 
In all experiments of this subsection, we have compared CReAMS to a 

multiprocessing platform built by replication of standalone SparcV8 processors, named 
MPSparcV8. The configurations of DAP and standalone SparcV8 processor used in this 
evaluation are shown in Table 4. Both CReAMS and MPSparcV8 have an on-chip 
unified 512 KB 8-way set associative L2 shared cache. 

 
Table 4. The configuration of both basic processors 

 

 
For the experiments, we have considered CReAMS setups with different number of 

DAPs (4, 8, 16 and 64 DAPs). The same was done with the MPSparcV8 system (4, 8, 
16 and 64 SparcV8s). Each DAP has a reconfigurable data path (Block 1 of the Section 
4.1.2) composed of 6 arithmetic and logic, 4 load/store and 2 multipliers units per 
column. The entire reconfigurable data path has 24 columns. A 48 KB reconfiguration 
memory, implemented as a DRAM memory, is able to store up to 64 configurations. 
The configurations are indexed by a 64-entries 4-way set associative Address Cache. As 
already discussed in Section 4.1.4, the DAP has one quarter less L1 I-Cache accesses 
than the SparcV8 processor. Thus, to avoid that the memory hierarchy bias the results in 
our favor, we reduced to 8KB the size of the DAP L1 I-Cache to achieve the same miss  
ratio in the main memory of the 32KB L1 I-Cache of the standalone SparcV8. In 
addition, in all experiments the number of spawning threads is equal to the number of 
DAPs available in the CReAMS platform.  

In this subsection, as we wanted to present the potential of the proposed approach, 
the inter-thread communication latency is overlooked. Since the baseline processors of 
both multiprocessing systems could be connected through any communication 
infrastructure, in this first part of results we disregarded it to avoid that a particular 
approach bias our comparison. Next subsection presents results considering a mesh 
Network on Chip as a communication infrastructure with different latencies. 

Table 5.  (a) Area (um2) of DAP and SparcV8 components 

  

L1 I‐Cache L1 D‐Cache Pipeline Frequency

DAP 8KB 4‐Way 32KB 4‐Way 5‐Stages 600MHz

Standalone SparcV8 32KB 4‐Way 32KB 4‐Way 5‐Stages 600Mhz

Processors Area (um2) DAP SparcV8

SparcV8 processor 247,615 247,615

Reconfigurable Data Path 3,298,602 ‐

32KB 4‐Way L1 I‐Cache ‐ 483,303

8KB 4‐Way L1 I‐Cache 130,980 ‐

32KB 4‐Way L1 D‐Cache 483,303 483,303

48 KB Reconfiguration Memory 688,255 ‐

128 Entries 4‐Way Address Cache 19,473 ‐

Total 4,868,228 1,214,221
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5.2.1  Considering the Same Chip Area 

 Table 5 shows the area, in um2, of a standalone SparcV8 and a DAP, including 
memories. As it can be seen, the area of a DAP design is almost four times bigger than 
the standalone SparcV8 processor. For the first experiment, we wanted to compare the 
performance and energy of MPSparcV8 and CReAMS considering the same chip area. 
Hence, we have built two comparison schemes: “Same Area #1” (Table 6 (a)): 
composed of 4 DAPs and 16 SparcV8 processors; and “Same Area #2” (Table 6 (b)): 
composed of 16 DAPs and 64 SparcV8 processors.  
Table 6. Area, in um2, of : (a) Same Area Chip scheme #1 (b) Same Area Chip scheme 

#2  

 

Table 7 shows the speedup obtained by MPSparcV8 and CReAMS over a standalone 
SparcV8 processor for all applications. The data of this table elucidate the heterogeneity 
of the selected applications in terms of instruction and thread level parallelism. 
Focusing only on MPSparcV8 speedup, where only TLP is exploited, one can conclude 
that md, jacobi, susan_e and susan_s contain massive thread level parallelism, since the 
speedup increases linearly as the number of cores increases. However, when the 
exploitation of instruction level parallelism is inserted by applying CReAMS, 
performance improvements are demonstrated in such an applications. These results 
reinforce the conclusion gathered from the analytical model in Section 3: even for high 
TLP-based applications, there is a need for finer grain parallelism exploitation to 
complement the TLP gains. When a huge amount of processors is available, 
MPSparcV8 presents small performance improvement on executing the rest of the 
applications, which supports CReAMS employment in a heterogeneous application 
environment where there is a diversity of thread and instruction level parallelism. 

Table 8 shows the execution time, in milliseconds, when running all benchmarks on 
both platforms. Under the same table, one can find the indicative arrows comparing the 
setups with the same area. As it can be seen, considering the “Same Area #1” scheme, 
CReAMS outperforms MPSparcV8 in six benchmarks (equake, apsi, ammp, susan 
edges, patricia and lu), even considering applications that contain massive TLP, such as 
lu and susan edges. ammp is the one that benefits most from being executed on 
CReAMS: it presents an execution time 41% smaller than MPSparcV8. This application 
contains several synchronization points required to maintain data consistency among the 
execution threads. In addition, as can be seen in Table 3, these synchronization points 
are very load unbalanced, which affects the speedup when thread level parallelism 
exploitation becomes more aggressive. In contrast, this application provides a wider 
room for performance improvements when instruction level parallelism exploitation is 
applied. As shown in Table 3, ammp has mean basic block size of 14.56 instructions, 
which elucidates its data flow nature. In addition, this application also has few and well-
defined kernels that contribute for the acceleration offered by DAP.  

 

(a) (b)

System Area 

(um2)

CReAMS

4 DAPs

MPSparcV8 

16 SparcV8

System Area 

(um2)

CReAMS

16 DAPs

MPSparcV8

64 SparcV8

Processors 19,472,912 19,427,537 Processors 77,891,647 77,710,146

512KB L2 Cache  15,118,865 15,118,865 512KB  L2 Cache  15,118,865 15,118,865

Total 34,591,777 34,546,402 Total 93,010,512 92,829,011
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Table 7. Speedup provided by MPSparcV8 and CReAMS over a standalone single 
SparcV8 processor

 

 
While ammp is the best application example for ILP exploitation and the worst for 

TLP, jacobi is the opposite. Its execution time decreases linearly as the number of 
processors increases when only TLP is applied, which means that their threads are 
completely synchronized which provides a perfect load balancing as shown in Table 3. 
Considering the instruction level parallelism exploitation, the small mean size of its 
basic blocks restricts the room for optimization when this strategy is applied. In this 
way, since the number of SparcV8 in the “Same Area #1” is four times bigger than 
DAP, the MPSparV8 design outperforms in 2.7 times CReAMS execution. However, 
considering all applications, CReAMS reduces the execution time by, on average, 36% 
in the “Same Area #1” scheme. 

Considering the “Same Area #2” scheme, the performance and energy gains provided 
by CReAMS over MPSparcV8 are more evident than the “Same Area #1” setup. As the 
number of cores increases, the level of TLP tends to stagnate. In this case, CReAMS 
outperforms MPSparcV8 in seven benchmarks (equake, apsi, ammp, susan_e, susan_c, 
patricia and lu). In this case, lu execution on CReAMS is 1.3 times faster in comparison 
to MPSparcV8. However, as already explained, since susan smoothing, md and jacobi 
have perfect load balancing among their threads (Table 3), the MPSparcV8 is faster than 
CReAMS. However, even in cases of applications that have massive TLP with perfect 
balance, the employment of CReAMS can be considered satisfactory since, as will be 
show later, energy savings are obtained.  

 

4SparcV8 8SparcV8 16SparcV8 64SparcV8 4DAPs 8DAPs 16DAPs 64DAPs

equake 1.57 1.74 1.86 1.93 2.11 2.34 2.48 2.58

apsi 1.59 1.77 1.87 1.92 2.02 2.25 2.37 2.43

ammp 1.42 1.51 1.58 2.02 2.69 2.95 3.15 4.38

susan_e 2.15 2.69 3.06 3.39 3.38 4.67 5.76 6.84

patricia 1.24 1.47 1.28 1.23 1.94 2.87 2.49 2.39

susan_c 2.98 4.60 6.29 8.77 4.59 7.77 11.90 19.88

susan_s 3.93 7.81 14.98 48.93 7.69 15.04 28.65 92.84

md 3.91 7.54 14.06 38.22 10.91 20.22 34.83 74.91

jacobi 3.92 7.78 15.24 50.97 5.57 11.00 21.41 69.74

lu 3.08 4.86 4.18 3.51 6.28 10.55 8.30 6.85

Average 2.58 4.18 6.44 16.09 4.72 7.97 12.13 28.28

Speedup

MPSparcV8 CReAMS

Same Area #1  Same Area #2  Same Peak Power Budget 
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Table 8. Execution time of MPSparcV8 and CReAMS 

 

Table 9 and Table 10 show, respectively, the average power dissipation and energy 
consumption of MPSparcV8 and CReAMS architectures. As can be seen in Table 10, 
besides providing 41% lower execution time than MPSparcV8 in the “Same Area #1” 
on running ammp, CReAMS also spends 32% less energy. As already explained, 
MPSparcV8 is faster than CReAMS in 2.7 times when executing jacobi in the “Same 
Area #1” scheme but it spends more energy. In this case, as can be seen in Table 9, 
CReAMS provides a higher factor on reducing average power than MPSparcV8 
provides in the execution time. In all applications, except patricia, CReAMS dissipates 
less average power than MPSparcV8 in the “Same Area #1” scheme. In this particular 
case, in patricia execution, the ILP exploitation process of CReAMS is not so energy 
efficient, there are a huge amount of configurations fetched from the reconfiguration 
memory. However, these configurations do not have significant performance gains on 
instruction level parallelism exploitation to dilute the energy spent to access the 
reconfiguration memory.     

The main sources of CReAMS energy savings are:  
 although more power is spent because of the DDH hardware and 

reconfigurable data path, total average power is reduced (refer to Table 7) 
since there are fewer memory accesses for instructions in the L1 instruction 
cache. Once they were translated to a data path configuration, they will 
reside in the reconfiguration memory. In addition, energy savings are also 
obtained in a single instruction memory access since, as already discussed, 
CReAMS has an instruction memory four times smaller than the 
MPSparcV8; 

 the reconfiguration strategy: considering the loop example of the Figure 9, 
the data path is only reconfigured once to execute 98 loop iterations, thus 
avoiding several accesses to reconfiguration memory; 

4SparcV8 8SparcV8 16SparcV8 64SparcV8 4DAPs 8DAPs 16DAPs 64DAPs

equake 1501 1349 1267 1216 1113 1006 947 910

apsi 9070 8149 7693 7502 7111 6412 6066 5914

ammp 13632 12794 12206 9589 7197 6545 6139 4418

susan_e 218.2 174.4 153.0 138.3 138.6 100.3 81.4 68.5

patricia 138.0 116.2 134.0 139.8 88.3 59.7 68.8 71.7

susan_c 68.95 44.70 32.68 23.44 44.77 26.43 17.27 10.34

susan_s 815.8 410.3 214.0 65.5 416.8 213.2 111.9 34.5

md 1.001 0.519 0.278 0.102 0.359 0.194 0.112 0.052

jacobi 354.1 178.6 91.2 27.3 249.5 126.3 64.9 19.9

lu 0.741 0.470 0.545 0.650 0.363 0.216 0.275 0.333

MPSparcV8 CReAMS

Execution Time (in ms)

Same Area #1  Same Area #2  Same Peak Power Budget 
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 shorter execution time: as CReAMS accelerates the code, it provides less 
energy consumption; 

 the use of sleep transistors avoids that idle functional units spend 
unnecessary power. 
 

Table 9. Average Power consumption of MPSparcV8 and CReAMS  

 

5.2.2 Considering the Power Budget 

Current embedded systems have severe power constraints, since most of them are 
battery dependent. This way, we have also evaluated the performance and energy of 
both platforms considering a peak power budget of 3 Watts for both platforms, which is 
limit value foreseen for the coming year batteries (SEMICONDUCTORS, 2009). The 
peak power of the standalone SparcV8 is 385.14 mWatts, while the DAP consumes 
699.33 mWatts. Therefore, we have compared the 8-SparcV8 MPSparcV8 against the 4-
DAP CReAMS setups, since both reach nearly 3 Watts of peak power. The 
performance, power and energy results of both platforms that consider the peak power 
budget scheme are linked by arrows under Table 7, Table 8, Table 9 and Table 10. 

As can be seen in Table 8, CReAMS outperforms MPSparcV8 in seven benchmarks 
(equake, apsi, ammp, susan_e, patricia, jacobi and lu). As in the Same Area schemes, 
ammp is the application that benefits the most from CReAMS when the same peak 
power budget is considered, achieving 43% shorter execution time and consuming 30% 
less energy (Table 10) than the MPSparcV8. Although susan smoothing presents an 
increasing on the execution time by only 1%, CReAMS spends 59% less energy than 
the MPSparcV8 for that application. Energy savings are possible because, although the 
peak power is the same in both architectures, CReAMS consumes lower average power 
(refer to Table 9), mainly thanks to the use of sleep transistors to turn off idle functional 
units of the reconfigurable data path. In addition, its energy efficient method of join 
several ordinary instructions into a single data path configuration produces an 

4SparcV8 8SparcV8 16SparcV8 64SparcV8 4DAPs 8DAPs 16DAPs 64DAPs

equake 130.0 167.5 178.5 231.9 136.5 172.8 180.7 179.2

apsi 130.9 156.4 171.8 182.7 125.8 149.4 163.7 153.1

ammp 106.0 135.3 139.4 139.4 105.3 146.6 152.9 152.9

susan_e 167.5 234.9 280.0 319.9 179.9 283.3 366.7 451.6

patricia 152.6 145.0 141.4 135.7 188.7 217.0 215.4 206.9

susan_c 216.6 407.2 587.6 841.7 257.4 538.3 871.5 1498.2

susan_s 266.2 608.5 1305.6 4350.1 239.9 548.7 1170.7 3917.5

md 281.3 633.3 1266.1 3671.8 516.0 1116.4 2063.7 4749.0

jacobi 279.9 647.9 1363.3 4855.5 279.1 643.8 1345.9 4671.7

lu 225.7 413.2 426.3 507.5 312.6 608.8 572.5 683.7

Average 195.7 354.9 586.0 1523.6 234.1 442.5 710.4 1666.4

Average Power (mW)

MPSparcV8 CReAMS

Same Area #1  Same Area #2  Same Peak Power Budget 
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advantageous tradeoff in replacing several instruction memory accesses by a single 
reconfiguration memory access. 

Table 10. Energy consumption of MPSparcV8 and CReAMS 

 

5.2.3 Energy-Delay Product 

We correlate the energy and the performance results of both platforms to make more 
evident CReAMS efficiency. The energy-delay product is shown in Table 11. The 
schemes with the same area are linked under this table. As explained in Section 5.2.1, 
CReAMS on running ammp saves 32% of the energy consumption and improves in 
41% the performance compared to the MPSparcV8 when the “Same Area #1” is 
considered. Thus, CReAMS provides a reduction in the energy-delay product of a factor 
of almost four on ammp execution.  

The gains on energy and performance provided by the “Same Area #2” scheme are 
greater than the first comparison shown above since the performance improvements, 
when only TLP is explored, loses steam with the increasing on the number of 
processors. In this case, CReAMS outperforms MPSparcV8 in seven benchmarks 
(equake, apsi, ammp, susan_e, susan_c, patricia and lu). In this case, the execution of lu 
in the CReAMS is 57% faster than in the MPSparcV8 and consumes 50% less energy 
when the “Same Area #2” scheme is considered, which reflects in a energy delay 
product reduction in the factor of five. As can be seen, the average reduction achieved 
by CReAMS in energy-delay product is about 76% considering the same area chip 
schemes. 

 

4SparcV8 8SparcV8 16SparcV8 64SparcV8 4DAPs 8DAPs 16DAPs 64DAPs

equake 195.1 226.0 226.2 281.9 151.9 173.9 171.2 163.1

apsi 1187 1275 1322 1371 894 958 993 905

ammp 1445 1732 1701 1336 758 960 939 675

susan_e 36.55 40.98 42.83 44.25 24.94 28.41 29.85 30.95

patricia 21.05 16.85 18.95 18.97 16.67 12.94 14.81 14.83

susan_c 14.93 18.20 19.20 19.73 11.53 14.23 15.05 15.48

susan_s 217.1 249.7 279.5 285.0 100.0 117.0 131.0 135.3

md 0.282 0.329 0.353 0.376 0.185 0.216 0.232 0.248

jacobi 99.1 115.7 124.3 132.3 69.6 81.3 87.3 93.1

lu 0.167 0.194 0.232 0.330 0.113 0.132 0.157 0.227

Average 321.7 367.4 373.4 349.0 202.7 234.6 238.1 203.4

Energy (mJ)

MPSparcV8 CReAMS

Same Area #1  Same Area #2  Same Peak Power Budget 
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Table 11. Energy-Delay product of MPSparcV8 and CReAMS 

 
 

As already explained, all but three (susan smoothing, md and jacobi) of the ten 
benchmarks present better performance in the CReAMS than MPSparcV8 considering 
the same chip area schemes. As can be noticed in Table 3, the threads of these three 
exceptions have a perfect load balancing which produces almost linear speedup with the 
increasing on the number of processors. However, even showing worst performance 
than MPSparcV8, CReAMS provides reductions in the energy-delay product on 
executing susan smoothing and md by 26% and 33%, respectively. Due to its massive 
TLP and perfect load balancing, jacobi is the only application where CReAMS does not 
provide gains neither in performance nor in energy considering the same chip area 
schemes. Using the energy-delay product evaluation, we demonstrated the CReAMS 
efficiency to dynamically adapt to the applications with different levels of parallelism, 
providing gains in performance or/and in energy consumption.  

5.3 The impact of Inter-thread Communication 

Up to now, the results shown in the previous subsection overlook the overhead on 
performance and energy consumption of the inter-thread communication. This 
subsection aims at including a Network-on-Chip infrastructure in both multiprocessing 
systems to demonstrate the impact of the communication latency over the results shown 
in the previous subsection. For that, we use the modeling of the mesh-NoC presented in 
the Section 3.1.5. We apply ݏܪݒ݃ܣ concept shown in the Section 3.1.5 to model the 
latency of a single inter-thread communication. Since threads can be arbitrarily 
allocated in the processors within the NoC, we applied the distributed and centralized 
approach to explore the impact of different data distribution in the infrastructure. In 
addition, to mimic a perfect communication approach, where there are only 
communications among the neighbors processors, we create the Ideal scenario, where 
the ݏܪݒ݃ܣ is equal to one. In addition, we assume that one hop takes one clock cycle 
and the NoC is running at the same frequency of the processors (600 MHz). The 

4SparcV8 8SparcV8 16SparcV8 64SparcV8 4DAPs 8DAPs 16DAPs 64DAPs

equake 293 305 287 343 169 175 162 149

apsi 10768 10386 10169 10282 6361 6143 6023 5355

ammp 19698 22155 20764 12814 5452 6282 5761 2984

susan_e 7.97 7.15 6.55 6.12 3.46 2.85 2.43 2.12

patricia 2.91 1.96 2.54 2.65 1.47 0.77 1.02 1.06

susan_c 1.0296 0.8134 0.6274 0.4624 0.5160 0.3761 0.2600 0.1600

susan_s 177.2 102.5 59.8 18.7 41.7 24.9 14.7 4.7

md 0.000282 0.000171 0.000098 0.000039 0.000066 0.000042 0.000026 0.000013

jacobi 35.1 20.7 11.3 3.6 17.4 10.3 5.7 1.9

lu 0.000124 0.000091 0.000127 0.000215 0.000041 0.000028 0.000043 0.000076

MPSparcV8 CReAMS

Energy‐Delay Product (J*1e‐3s)

Same Area #1  Same Area #2  Same Peak Power Budget 
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average number of hops of the distributed and centralized schemes was calculated as 
follows: 

Distributed          ቐ
ݏܪ݃ݒܣ ൌ ଶ

ଷ
, 		݊݁ݒ݁	݄

ݏܪ݃ݒܣ ൌ 2 ቀ


ଷ
െ ଵ

ଷ
ቁ 		݀݀	݄				,

 

                         Centralized            ݏܪ݃ݒܣ ൌ మ

ାଵ
   

                         Ideal                      ݏܪ݃ݒܣ ൌ 1 

where ݄ ൌ √ܰ, being N the number of processor nodes. 

Table 12 depicts the average number of hops for a single communication 
considering the methodology presented above. 

Table 12. Average number of hops for different multiprocessing systems 

 

 

5.3.1 Considering the Same Chip Area 

In the previous subsection, we compare CReAMS with the MPSparcV8 by using 
two different scenarios: same area and same power budget. In this section, we follow 
the same strategy, but now we should take into account the area occupied by the NoC 
and its power consumption. Hence, we have used the same comparison schemes: “Same 
Area #1” (Table 13 (b)): composed of 4 DAPs and 16 SparcV8 processors; and “Same 
Area #2” (Table 13 (b)): composed of 16 DAPs and 64 SparcV8 processors. Small 
changes have been done in the DAP configuration aiming at respecting the same chip 
area. Now, each DAP is composed of 24 columns, each column has 5 arithmetic and 
logic units, 3 load/store units and 2 multipliers. A 92 KB reconfiguration memory, 
implemented as a DRAM memory, is able to store up to 128 configurations. The area of 
both CReAMS and MPSparcV8 components are shown in Table 13 (a). 

Table 14 shows the execution time of both CReAMS and MPSparcV8 platforms 
when the designs, belong to the Same Area #1 scheme, are exposed to the 
communication latency presented above. As can be seen, even when considering  all 
communication latency schemes (Ideal, Distributed and Centralized), CReAMS still 
outperforming MPSparcV8 in six applications (equake, apsi, ammp, susan edges, 
patricia and lu). However, the gains in performance showed by CReAMS over 
MPSparcV8 increase from the previous subsection. When no communication latency is 
considered, ammp presents 41% smaller execution time than MPSparcV8. Considering 
the Same Area #1 and the Centralized schemes, performance improvements of 
CReAMS over MPSparcV8 grows to 45%. For the rest of benchmarks referred above, 
the gains on performance provided by CReAMS increases from 13%, 8%, 10%, 50% to 
36%, 27%, 13%, 60%, in equake, apsi, susan edges and lu, respectively. 

 

4 Proc 8 Proc 16 Proc 32 Proc 64 Proc

Distributed 1.33 1.88 2.66 3.77 5.33

Centralized 1.33 2.09 3.20 4.81 7.11

Ideal 1 1 1 1 1

Number of Hops



 

 

82 

 

Table 13. (a) Area of DAP and SParcV8 components (b) Same Area #1 Scheme (c) 
Same Area #2 scheme 

 

Table 14. Execution time (in ms) considering the Same Area #1 scheme for CReAMS 
and MPSparcV8 

 

In cases where MPSparcV8 outperforms CReAMS (susan corners, susan 
smoothing, md and jacobi), the communication latency affect more the former than the 
latter. The increasing on the number of processors makes communication more 
significant in the execution time. When the Centralized communication latency is 
considered, the execution time of CReAMS approximates to MPSparcV8. This fact is 
more evident in jacobi where performance gains of MPSparcV8 over CReAMS fall 
from 2.76 to 2.32 only due to the communication overhead. jacobi spends 41.5% of its 
execution time in data communication when 16-Core MPSparcV8 is considered, while 
in the 4-DAP CReAMS this percentage falls to 22.6%. Thus, for some applications, as 
shown in the previous section, TLP exploitation can provide performance improvements 
when the number of processor increases, but the gains can be sorely affected by the 
communication overhead. On average, the performance improvement of CReAMS over 

Processors Area (um2) DAP SparcV8 System Area (um2)
CReAMS

4 DAPs

SparcV8 MP

16 SparcV8

SparcV8 processor 247,615 247,615 Processors 20,235,180 19,427,537

Reconfigurable Data Path 2,800,914 ‐ 512KB 8‐Way L2 Cache  15,118,865 15,118,865

32KB 4‐Way L1 I‐Cache ‐ 483,303 NoC Routers 113,884 455,536

8KB 4‐Way L1 I‐Cache 130,980 ‐ Total 35,467,929 35,001,938

32KB 4‐Way L1 D‐Cache 483,303 483,303

92 KB Reconfiguration Memory 1,376,510 ‐

128 Entries 4‐Way Address Cache
19,473 ‐

System Area (um2)
CReAMS

16 DAPs

SparcV8 MP

64 SparcV8

Total 5,058,795 1,214,221 Processors 80,940,718 77,710,146

512KB 8‐Way L2 Cache  15,118,865 15,118,865

NoC Routers 455,536 1,822,144

Total 96,515,119 94,651,155

(a)

(b)

(c)

16SparcV8

Ideal

16SparcV8

Distrib.

16SparcV8

Central.

4DAPs

Ideal

4DAPs

Distrib.

4DAPs

Central.

equake 1366.09 1530.97 1583.73 1041.21 1079.33 1079.33

apsi 8350.71 9446.73 9797.45 7398.40 7667.47 7667.47

ammp 12897.11 14384.21 14860.09 7942.10 8246.90 8246.90

susan_e 159.88 171.54 175.27 149.56 154.65 154.65

patricia 196.83 212.15 217.05 109.08 112.76 112.76

susan_c 34.84 38.43 39.59 51.19 53.54 53.54

susan_s 237.29 276.03 288.43 492.79 519.68 519.68

md 0.30 0.34 0.36 0.44 0.47 0.47

jacobi 102.96 122.67 128.97 290.52 304.57 304.57

lu 0.61 0.71 0.74 0.43 0.46 0.46

Total Ex. Time 23346.61 26183.78 27091.68 17475.73 18139.85 18139.85

MPSparcV8 CReAMS

Execution Time (in ms)
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MPSparcV8 increases from 30% to 34% when the communication overhead is included 
in the Same Area #1 scheme.  

Table 15. Execution time (in ms) considering the Same Area #2 scheme for CReAMS 
and MPSparcV8 

 

Table 15 shows the execution time of the Same Area #2 scheme when the 
communication latency is considered for both CReAMS and MPSparcV8. Since the 
number of cores is larger in this comparison scheme, the communication overhead is 
more evident than in the Same Area #1. Therefore, CReAMS presents higher 
performance improvements over the MPSparcV8 in those applications where the TLP is 
restricted and the portion of the communication in the execution time is significant. 
Those are the cases of equake, ammp, apsi, susan edges, susan corners and lu where 
CReAMS provides lower execution time than MPparcV8 by 75%, 56%, 1.1 times, 73%, 
25% and 1.4 times, respectively. susan corners is the most appealing case, in the Same 
Area #1 scheme MPSparcV8 outperforms CReaMS by 25%, but due to the 
communication latency of  the 64 cores of MPSparcV8, CReAMS turn around this 
scenario and outperforms MPSparcV8 by 25%. 

As can be noticed on comparing Table 14 and Table 15, the execution time of 
equake, apsi, ammp, patricia and lu grows when the number of processors increases 
from 16 to 64 when considering MPSparcV8. This fact supports the conclusions 
presented by the Analytical Model in the Section 3.1.6, for some application the gains in 
performance by increasing the number of processors (exploiting TLP) are smaller than 
the overhead caused by the inter-thread communication for both Distributed and 
Centralized schemes. Meaning that, there are some cases where is not worthwhile the 
increasing on the number of processors, it is worth investing on more aggressive ILP 
exploitation. 

64SparcV8

Ideal

64SparcV8

Distrib.

64SparcV8

Central.

16DAPs

Ideal

16DAPs

Distrib.

16DAPs

Central.

equake 1309.44 1715.24 1881.72 860.26 1025.12 1077.87

apsi 8146.53 10940.09 12086.19 6277.66 7373.69 7724.42

ammp 12770.80 16750.42 18383.12 6718.75 8205.81 8681.68

susan_e 143.28 164.80 173.62 84.54 96.20 99.93

patricia 205.32 246.82 263.85 85.51 100.83 105.74

susan_c 24.35 28.47 30.29 19.30 22.90 24.05

susan_s 72.64 103.47 116.12 131.56 170.30 182.69

md 0.11 0.16 0.17 0.13 0.17 0.19

jacobi 32.07 53.05 61.66 75.70 95.41 101.72

lu 0.71 0.99 1.11 0.32 0.43 0.46

Total Ex. Time 22705.25 30003.51 32997.85 14253.74 17090.85 17998.75

MPSparcV8 CReAMS

Execution Time (in ms)
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Table 16. Energy (in mJoules) considering the Same Area #1 for CReAMS and 
MPSparcV8 

 

Table 16 and Table 17 show the energy consumption of CReAMS and MPSparcV8 
when the Same Area #1 and #2 are considered, respectively. The gains on energy 
consumption provided by CReAMS over the MPSparcV8 are due to the same reasons 
mentioned in the previous subsection. The power overhead introduced by the Network-
on-Chip is almost negligible in comparison with the power dissipated by the 
computation. While a router of the NoC spends 11.7 mWatts (MATOS, CONCATTO, 
et al., 2011) to transfer one package from a certain input to the target output, a SparcV8 
consumes 385.14 mWatts and a DAP consumes 696.75 mWatts. The power 
consumption of a DAP has a small variation from the previous subsection due to the 
changes on its configuration. As mentioned earlier, we decrease the number of ALUs 
and increase the number of slots in the reconfiguration memory aiming at respecting the 
Same Area schemes. 

However, when the Same Area #1 scheme is considered, CReAMS increases the 
energy gains over the MPSparcV8 in comparison with the results where communication 
is overlooked. Those are the cases of equake, apsi, ammp, patricia, md and lu where the 
energy gains increases from 48.92%, 47.77%, 124.54%, 13.72%, 90.44%, 104.81% to 
83.93%, 71.54%, 157.32%, 30.87%, 93.57%, 116.61%, respectively. CReAMS reduces 
the overall energy consumption by 52% on running all benchmarks in the Same Area #1 
scheme. 

 

 

16SparcV8

Ideal

16SparcV8

Distrib.

16SparcV8

Central.

4DAPs

Ideal

4DAPs

Distrib.

4DAPs

Central.

equake 226.72 227.54 227.80 123.73 123.85 123.85

apsi 1324.78 1329.83 1331.44 775.34 776.16 776.16

ammp 1690.02 1695.68 1697.49 658.87 659.68 659.68

susan_e 42.93 43.09 43.14 28.95 28.98 28.98

patricia 19.22 19.26 19.27 10.74 10.75 10.75

susan_c 19.25 19.34 19.37 12.91 12.93 12.93

susan_s 280.14 281.30 281.67 115.20 115.39 115.39

md 0.35 0.35 0.35 0.18 0.18 0.18

jacobi 124.63 125.20 125.39 80.06 80.15 80.15

lu 0.24 0.24 0.24 0.11 0.11 0.11

Total Energy 3728.29 3741.83 3746.17 1806.08 1808.17 1808.17

MPSparcV8 CReAMS

Energy (in mJoules)
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Table 17. Energy (in mJoules) considering the Same Area #2 for CReAMS and 
MPSparcV8 

 

The communication/computation ratio keeps constant with the increasing on the 
number of processor for the following benchmarks: susan smoothing, patricia, md, 
equake and apsi. This characteristic has a small increase, at most by 8%, in ammp, 
jacobi and falls, at most by 7%, in susan corners, susan edges and lu. However, as a 
single communication becomes more significant in our experiments by using different 
data traffic schemes (Ideal, Distributed and Centralized), the overall communication 
latency tends to produce a greater impact in the execution time. Moreover, as shown in 
Table 12, the impact of a single communication grows as well as the number of 
processors increases. Thus, the Same Area #2 scheme highlights the energy savings 
provided by CReAMS, since the energy spent by the routers becomes much more 
significant in 64-Processors MPSparcV8 than in 16-DAPs CReAMS. jacobi is the most 
affected by inter-thread communication, the computation/communication ratio in this 
benchmark is 17%, regardless of the number of processors. However, when the single 
communication latency increases (emulated by the Ideal, Distributed and Centralized 
scheme), this factor becomes significant in the overall execution time. For instance, 
considering the jacobi benchmark emulating the Distributed traffic scheme applied to 
the 64-Processor MPSparcV8, the inter-thread communication produces an overhead on 
its original execution time (disregarding communication) of 94% and considering the 
Centralized scheme by a factor of 1.2. On the other hand, when this application is 
running at 16-DAP CReAMS platform, these percentages fall to 48% and 58%, 
respectively. This means that, CReAMS spends 75% less energy than MPSparcV8, 51% 
of energy savings comes from faster computation and 24% comes from communication 
avoidance. On average, CReAMS achieves 96% of energy savings over MPSparcV8 
when the Centralized Scheme and the Same Area #2 scheme are considered, 59% comes 
from faster computation and 37% from communication avoidance. 

  

64SparcV8

Ideal

64SparcV8

Distrib.

64SparcV8

Central.

16DAPs

Ideal

16DAPs

Distrib.

16DAPs

Central.

equake 282.63 285.64 286.87 140.69 141.51 141.77

apsi 1373.18 1387.57 1393.47 863.41 868.45 870.07

ammp 1750.25 1766.24 1772.80 810.10 815.76 817.57

susan_e 44.36 44.83 45.03 27.92 28.08 28.13

patricia 19.25 19.35 19.39 9.64 9.67 9.68

susan_c 19.79 20.03 20.12 12.89 12.98 13.01

susan_s 285.78 288.99 290.30 112.90 114.06 114.43

md 0.38 0.39 0.39 0.17 0.17 0.17

jacobi 132.83 135.01 135.90 76.51 77.08 77.27

lu 0.33 0.34 0.34 0.12 0.12 0.12

Total Energy 3908.79 3948.37 3964.61 2054.35 2067.89 2072.22

MPSparcV8 CReAMS

Energy (in mJoules)
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5.3.2 Considering the Power Budget 

Similar to the previous subsection, a power budget is used to compare the 
performance and energy of both CReAMS and MPSparcV8, but now we consider the 
power consumption of the Network-on-Chip. We built setups for both platforms that 
spend 3 Watts. As the power consumption spent by a router (11.7 mW) is almost 
negligible in comparison with the processors, 696 mW by a DAP and 385 mW by a 
SparcV8, the number of processors of the previous comparison was maintained.   

Table 18 shows the execution time of both CReAMS and MPSparcV8 when the 
power budget of 3 Watts is considered. As can be seen, comparing Table 10 and Table 
18, the gains provided by CReAMS over MPSparcV8 increase when the inter-thread 
communication is introduced. The execution time of equake on both CReAMS and 
MPSparcV8 grows 25% due to the inter-thread communication. However, such 
increasing provides greater impact on the execution time of MPSparcV8 than CReAMS, 
since when the inter-thread communication latency is disregarded, the latter achieves 
21% smaller execution time than the former. Thus, considering inter-thread 
communication, gains on performance shown by CReAMS over MPSparcV8 increase 
to 44%. On average, CReAMS outperforms MPSparcV8 by 29% when inter-thread 
communication is overlooked and by 33% when this characteristic is introduced in the 
Same Power Budget scheme. 

Table 18. Execution time (in ms) of both CReAMS and MPSparcV8 considering a 
power budget  

 

Table 19 depicts the energy consumption of CReAMS and MPSparcV8 by applying 
the Same Power Budget scheme. For some benchmarks, the inter-thread communication 
enlarges the gains of CReAMS over MPSparcV8. Those cases are: equake, apsi, ammp, 
patricia, md and lu where CReAMS improves the energy saving over the MPSparcV8 
from 48.77%, 42.50%, 128.57%, 1.07%, 77.64%, 31.10% to 83.28%, 64.98%, 
163.55%, 16.16%, 80.16%, 102.71%, respectively. In other cases, reductions on the 
energy savings by CReAMS over the MPSparcV8 occurred when the communication is 
taken into account. However, it does not occur due to the inter-thread communication, 

8SparcV8

Ideal

8SparcV8

Distrib.

8SparcV8

Central.

4DAPs

Ideal

4DAPs

Distrib.

4DAPs

Central.

equake 1451.45 1542.00 1562.85 1041.21 1079.33 1079.33

apsi 8854.87 9480.46 9624.57 7398.40 7667.47 7667.47

ammp 13726.69 14552.44 14742.66 7942.10 8246.90 8246.90

susan_e 184.20 192.88 194.88 149.56 154.65 154.65

patricia 170.49 177.43 179.03 109.08 112.76 112.76

susan_c 48.49 51.86 52.63 51.19 53.54 53.54

susan_s 453.58 491.88 500.70 492.79 519.68 519.68

md 0.57 0.61 0.62 0.44 0.47 0.47

jacobi 200.50 219.88 224.35 290.52 304.57 304.57

lu 0.61 0.67 0.68 0.43 0.46 0.46

Total Ex. Time 25091.46 26710.10 27082.97 17475.73 18139.85 18139.85

MPSparcV8 CReAMS

Execution Time (in ms)
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the reason for such reduction is the size of the reconfiguration memory that was 
modified. For the inter-thread communication comparison, a DAP has a reconfiguration 
memory twice larger than previous subsection where the results do not consider such 
characteristic. As those benchmarks produce a large amount of accesses in the 
reconfiguration memory, and such accesses does not produce the required performance 
improvement for fully amortizing the increasing on the power spent by the new 
reconfiguration cache size, CReAMS becomes less energy efficient. However, on 
average, when the inter-thread communication is considered, CReAMS spends 31% less 
energy than disregarding such characteristics, it means 51.5% less energy consumption 
than MPSparcV8. 

Table 19. Energy (in mJoules) of both CReAMS and MPSparcV8 considering a power 
budget 

 

5.3.3 Energy-Delay Product 

Table 20 shows the energy-delay product of both CReaMS and MPSparcV8 
platforms for the Same Area #2 scheme. As can be seen, the conclusions remain the 
same of the Table 11, when CReAMS outperforms MPSparcV8 in all but one 
application, due to the perfect load balancing shown by jacobi. However, when the 
communication is considered, CReAMS diminished the losses on the energy-delay 
product on running such an application from 36% to only 6%. The rest of applications 
also provide better energy-delay product that increases, on average, from 81% to 88% 
better than the MPSparcV8 for the Same Area #2 scheme. 

 

8SparcV8

Ideal

8SparcV8

Distrib.

8SparcV8

Central.

4DAPs

Ideal

4DAPs

Distrib.

4DAPs

Central.

equake 226.48 226.90 227.00 123.73 123.85 123.85

apsi 1277.42 1279.92 1280.49 775.34 776.16 776.16

ammp 1734.87 1737.86 1738.55 658.87 659.68 659.68

susan_e 41.06 41.14 41.16 28.95 28.98 28.98

patricia 17.08 17.10 17.10 10.74 10.75 10.75

susan_c 19.77 19.81 19.82 12.91 12.93 12.93

susan_s 250.26 250.77 250.88 115.20 115.39 115.39

md 0.33 0.33 0.33 0.18 0.18 0.18

jacobi 116.02 116.28 116.34 80.06 80.15 80.15

lu 0.22 0.22 0.22 0.11 0.11 0.11

Total Energy 3683.52 3690.32 3691.89 1806.08 1808.17 1808.17

Energy (in mJoules)

MPSparcV8 CReAMS
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Table 20. Energy-Delay product of MPSparcV8 and CReAMS considering the Same 
Area #2 scheme 

 

Table 21. Energy-Delay product of MPSparcV8 and CReAMS considering the power 
budget  

 

Table 21 shows the energy delay product when the power budget scheme is applied 
for both CReaMS and MPSparcV8 considering the inter thread communication latency. 
As can be seen on comparing Table 21 and Table 11 that inter-thread communication 
changes the conclusions over the energy delay product measurements. When the inter-
thread communication is considered, CReAMS achieves better results in all 
benchmarks. As mentioned before, inter-thread communication sorely affects the 
execution time of jacobi, so CReAMS achieves better energy-delay product by 2% and 
6% considering the distributed and centralized scheme, respectively. Hence, one can 

64SparcV8

Ideal

64SparcV8

Distrib.

64SparcV8

Central.

16DAPs

Ideal

16DAPs

Distrib.

16DAPs

Central.

equake 370 490 540 121 145 153

apsi 11187 15180 16842 5420 6404 6721

ammp 22352 29585 32590 5443 6694 7098

susan_e 6.36 7.39 7.82 2.36 2.70 2.81

patricia 3.95 4.78 5.12 0.82 0.98 1.02

susan_c 0.48 0.57 0.61 0.25 0.30 0.31

susan_s 20.76 29.90 33.71 14.85 19.42 20.90

md 0.00004 0.00006 0.00007 0.00002 0.00003 0.00003

jacobi 4.26 7.16 8.38 5.79 7.35 7.86

lu 0.00024 0.00033 0.00037 0.00004 0.00005 0.00006

Total EDP 33944.64 45305.14 50026.81 11008.12 13273.46 14004.35

EnergyDelay

MPSparcV8 CReAMS

8SparcV8

Ideal

8SparcV8

Distrib.

8SparcV8

Central.

4DAPs

Ideal

4DAPs

Distrib.

4DAPs

Central.

equake 329 350 355 129 134 134

apsi 11311 12134 12324 5736 5951 5951

ammp 23814 25290 25631 5233 5440 5440

susan_e 7.56 7.93 8.02 4.33 4.48 4.48

patricia 2.91 3.03 3.06 1.17 1.21 1.21

susan_c 0.96 1.03 1.04 0.66 0.69 0.69

susan_s 113.51 123.35 125.62 56.77 59.97 59.97

md 0.00019 0.00020 0.00020 0.00008 0.00009 0.00009

jacobi 23.26 25.57 26.10 23.26 24.41 24.41

lu 0.00014 0.00015 0.00015 0.00005 0.00005 0.00005

Total EDP 35602.35 37935.06 38473.57 11184.04 11615.88 11615.88

EnergyDelay

MPSparcV8 CReAMS
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conclude that for the whole spectrum of application behaviors, even for high parallel 
applications, with almost perfect load balancing, CReAMS achieves either better 
performance or less energy consumption, and produces lower energy-delay product than 
MPSparcV8 when a power budget of 3 Watts is applied.     

5.4 Heterogeneous Organization CReAMS   

In this subsection we show the results considering CReAMS as heterogeneous 
organization. First, the methodology used to gather data about heterogeneity is shown. 
After, the same schemes applied in the previous sections are employed here to compare 
the performance, area, power and energy consumption of homogeneous versus 
heterogeneous CReAMS. 

5.4.1 Methodology 

We build three DAP configurations’, named as Small, Medium and Large, aiming at 
comparing the performance, area, energy and power consumption of both homogeneous 
and heterogeneous CReAMS, Table 22 (a) shows the number of components that 
composes each DAP. For the sake of the comparison, we refer to a homogeneous 
CReAMS design composed of small DAPs as HomoSmall CReAMS. The same 
terminology is used for Medium and Large CReAMS, so they are referred as 
HomoMedium and HomoLarge, respectively. For instance, a CReAMS composed of 
four small DAPs is referred as 4-HomoSmall CReAMS. Considering the exploitation of 
the design space of the heterogeneous organization, we encapsulate in the same chip the 
three DAP configurations to provide different levels of instruction level parallelism 
exploitation. Table 22 (b) shows the percentage of Small, Medium and Large DAPs that 
compose each heterogeneous CReAMS. For instance, 50% of the DAPs that compose 
the HeteroSmall CReAMS are SmallDAPS, 25% are MediumDAPs and 25% are 
LargeDAPs. Thus, If one would build a HeteroSmall CReAMS composed of eight 
DAPs,  four of them would be SmallDAPs, two MediumDAPs and two LargeDAPs, 
and this configuration is named as 8-HeteroSmall CReAMS. 

Table 22. (a) Different DAPs sizes (b) Percentage of DAPs that composes each 
Heterogeneous CReAMS 

 

Table 23 (a) depicts the area occupied by each component that composes the three 
DAP configurations. As can be seen, the data path and the reconfiguration memory are  
larger components. Particularly, the size of the reconfiguration memory grows due to 
the increasing on the number of functional units (refer to Table 22(a)) and to the 
enlargement on the number of slots to store configurations. Table 23 (b) shows the area 
occupied by the homogeneous and heterogeneous CReAMS designs. As can be seen, 
the area of N-DAP HeteroLarge CReAMS is almost the same of 2N-DAP HomoSmall 
CReAMS, where N is the baseline amount of DAPs. Thus, these configurations produce 
the Same Area #1 scheme. With this scheme, we wanted to provide some clues about 
which multiprocessing system is worth, those that are composed of larger number of 
DAPs that slightly explore ILP in a homogeneous fashion, or those that are composed of 

SmallDAP MediumDAP LargeDAP %SmallDAP %MediumDAP %LargeDAP

Number of Columns 9 15 24 HeteroSmall CReAMS 50 25 25

Number of ALU per Column 3 4 5 HeteroMedium CReAMS 25 50 25

Number of LD/ST per Column 2 2 3 HeteroLarge CReAMS 25 25 50

Number of Multipliers per Column 1 2 2

Reconfiguration Memory Slots 32 64 128

Input Context Size 8 12 24

(a)

(b)
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a smaller number of DAPs and explore the ILP in a heterogeneous fashion. On the other 
hand, we can notice in Table 23 (b) that the 2N-DAP HeteroSmall CReAMS has similar 
area of the N-DAP HomoLarge CReAMS, these configurations compose the Same Area 
#2 scheme. This scheme reflects quite the opposite of the Same Area #1, since now we 
wanted to verify if it is more efficient the coupling of a large number of DAPs with 
heterogeneous ILP exploitation or a small number of DAPs with an aggressive ILP 
exploitation. Figure 35 depicts an example of Same Area #1 and Same Area #2 
comparison schemes with N equal to four. 

Table 23. (a) Area of the components of the different DAP sizes (b) Area of the 
Homogeneous and Heterogeneous CReAMS setups 

 

 

Figure 35. Example of Same Area #1 (left) and Same Area #2 (right) comparison 
schemes 

Figure 36 shows the performance of N-DAP HeteroLarge CReAMS by applying the 
Same Area #1 scheme. The data provided in this figure is normalized to the 
performance of the 2N-DAP HomoSmall CReAMS. Thus, speedups and slowdown of 
2N-DAP HomoSmall CReAMS over its respective homogeneous CReAMS is given by 
numbers greater and smaller than one, respectively. As can be seen in this Figure, the 
heterogeneous CReAMS outperforms the homogeneous platform in those applications 
where there is a  lack of thread level parallelism and room for instruction level 
parallelism exploitation. equake and apsi, which present such behaviors, are the most 
benefited from heterogeneity by achieving 22% and 10% of performance improvement 
considering the same area designs and N equal to four. Moreover, as N increases such 
improvement increases as well due to the growth on the number of Large DAPs that 
explore ILP aggressively. When N is equal to 32, the heterogeneous outperforms the 
homogeneous CReAMS by 48% and 27% on running equake and apsi, respectively.      

On the other hand, applications that provide a massive thread level parallelism do 
not perform better in heterogeneous CReAMS, since to respect the same area schemes, 
such designs contain half the number of DAPs. Heterogenous CReAMS shows a 
slowdown of 53% over the homogeneous platform on running jacobi, susan smoothing 
and md. As already explained before, these applications have perfect load balancing and 
linearly improve their performance with the increasing on the number of DAPs. It is 
difficult to reach linear performance improvement by applying any instruction level 
parallelism exploitation and providing an area overhead by a factor of two. 

Processors Area (um2) SmallDAP MediumDAP LargeDAP  Area (um2) 4 DAPs 8 DAPs 16 DAPs 32 DAPs 64 DAPs

SparcV8 processor 247,615 247,615 247,615 HomoSmall 6,671,311 13,342,621 26,685,242 53,370,485 106,740,969

Reconfigurable Data Path 618,488 1,439,516 2,800,914 HomoMedium 11,118,070 22,236,140 44,472,281 88,944,561 177,889,122

8KB 4‐Way L1 I‐D‐Cache 614,283 614,283 614,283 HomoLarge 20,401,802 40,803,603 81,607,206 163,214,413 326,428,826

Reconfiguration Memory 185,997 430,159 1,389,695 HeteroLarge 14,648,246 29,296,492 58,592,984 117,185,968 234,371,936

4‐Way Address Cache 4,868 9,737 19,473 HeteroMedium 12,327,313 24,654,626 49,309,253 98,618,505 197,237,010

Total 1,671,251 2,741,310 5,071,979 HeteroSmall 11,215,623 22,431,246 44,862,493 89,724,986 179,449,972

(a) (b)

Large

Medium Small

Large
Small Small Small

Small Small Small

Small Small

Large
Medium

Small

Large

Medium

Small

Large

LargeLarge

Large

Same Area #1 Same Area #2

SmallSmall
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susan corners shows a irregular behavior on running at heterogeneous CReAMS 
organization. Up to N equal to sixteen, homogeneous outperforms heterogeneous 
CReAMS when the Same Area #1 scheme is applied. However, when N is equal to 32 
the heterogeneity achieves 20% of performance improvement over the homogeneous 
CReAMS. The sudden drop of the load balancing that occurs from 32 to 64 threads 
gives this gain. Thus, as some of the 64-Core HomoSmall CReAMS become idle and 
the working DAPs do not push up the performance by exploiting ILP, the 32-Core 
HeteroLarge achieves better execution time. The performance of patricia and lu follows 
the same behavior of susan corners, but the sudden drop of the load balancing starts 
with smaller number of threads. When N is equal to 8, heterogeneous organization 
shows a performance improvement of 27% and 23% over the homogeneous CReAMS 
on running lu and patricia. The gains on performance provided by heterogeneity 
increase to 58% in lu when N increases to 32, since its load balancing keeps dropping in 
the same pace as the number of DAPs grows. However, quite the opposite occurs in 
patricia execution, the gains provided by heterogeneous CReAMS falls up to 5% when 
N is equal to 32. The performance improvement provided by only exploiting TLP is 
irregular in this benchmark, when the number of threads increases from 4 to 8 
performance gains are shown. Thus, when 4-DAPs HeteroLarge is compared to 8-Core 
HomoSmall, the TLP exploitation of 8 DAPs provides larger gains than ILP. However, 
when the number of threads becomes in between 8 and 64, a significant load 
unbalancing occurs and the execution time increases in comparison with 8 threads. The 
losses on performance occur at the same pace as the number of threads grows. Thus, 
TLP loses steam and heterogeneous ILP provided by CReAMS achieves larger 
performance improvement. 

 

Figure 36. Relative Performance of HeteroLarge over HomoSmall CReAMS 
considering the SameArea #1 scheme 

Figure 37 shows the relative energy consumption of N-DAP HeteroLarge over 2N-
DAP HomoSmall. As can be seen, heterogeneous setups spend less energy than 
homogeneous CReAMS. Table 24 (a) shows the Thermal Design Power (TDP) of the 
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different DAPs configurations. Table 24 (b) presents the TDP of CReAMS conceived as 
heterogeneous and homogeneous organizations. Considering the Same Area #1 scheme, 
Table 24 (b) shows that the TDP of the N-DAP HeteroLarge CReAMS is 78% lower 
than 2N-DAP HomoSmall design. Thus, even showing 45% larger execution time than 
the homogenous CReAMS when running jacobi, the heterogeneous design achieves 5% 
of energy savings due to the lower power consumption.  

Table 24. (a) Thermal Design Power (TDP) of DAP configurations (b) TDP of 
heterogeneous and homogeneous CReAMS 

 

As shown in Section 5.2.1, CReAMS shows energy savings by avoiding fetches of 
instructions in the main memory. Thus, as DAP becomes larger, more instructions are 
packaged in a single configuration and more energy savings is produced. lu is the most 
benefited from this  characteristic, when N is equal to 4, the heterogeneous design spend 
13% less energy than homogeneous CReAMS. Besides showing 59% lower execution 
time on running lu when N grows to 32, the heterogeneous organization also reduces by 
37% the energy consumption in comparison with homogeneous CReAMS. On the other 
hand, md is the most harmed application by using heterogeneous CReAMS, its 
execution time increases 44%. However, 22% of energy savings are shown by replacing 
homogeneous CReAMS for heterogeneous considering designs with same areas, which 
reinforces the feasibility of the employment of heterogeneous CReAMS for embedded 
domain. For the Same Area #1 scheme and considering all applications, N-DAP 
HeteroLarge CReAMS outperforms 2N-DAP Homogeneous CReAMS by 4% and 
spends 5% less energy consumption.  

 

DAP  TDP (mWatts) TDP (mWatts) 4 DAPs 8 DAPs 16 DAPs 32 DAPs 64 DAPs

Small 532.86 HomoSmall 2,131 4,263 8,526 17,051 34,103

Medium 604.78 HomoMedium 2,419 4,838 9,676 19,353 38,706

Large 696.75 HomoLarge 2,787 5,574 11,148 22,296 44,592

HeteroLarge 2,531 5,062 10,125 20,249 40,498

HeteroMedium 2,439 4,878 9,757 19,513 39,027

HeteroSmall 2,367 4,734 9,469 18,938 37,876

(a)

(b)
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Figure 37. Relative Energy Consumption of HeteroLarge over HomoSmall CReAMS 
considering the Same Area #1 scheme 

Figure 38 shows the relative performance of the 2N-DAP HeteroSmall over N-DAP 
HomoLarge reflecting the Same Area #2 scheme. This scheme proposes a reverse 
comparison to the one that was done in the Same Area #1. Now, we wanted to verify the 
feasibility of heterogeneity where most of DAPs are not be able to explore aggressively 
instruction level parallelism (refer to Figure 35). Thus, in comparison with the Same 
Area #1 scheme, here we diminished the capability of exploiting ILP and increased the 
TLP in the heterogeneous CReAMS. On the other hand, we decrease the TLP and 
increase the ILP in the homogeneous CReAMS target to the comparison.  As can be 
seen in Figure 38, the TLP oriented applications, such as jacobi and susan smoothing, 
where in the Same Area #1 scheme are not benefit from heterogeneity, here show the 
opposite. The 2N-DAP HeteroSmall outperforms N-DAP HomoLarge in these 
applications, since the larger number of DAPs in the heterogeneous design provides 
better performance than the aggressive ILP exploitation available in the HomoLarge.  

Applications from SPEC OMP2001 (apsi, equake and ammp) present neither TLP 
nor ILP available in a massive degree. The behavior of SPEC OMP2011 applications 
represents the huge amount of sequential application already available in the market.  
Therefore, these applications reflect the difficult work to split already written code in 
threads, since they should be parallelized in threads over an existing sequential code. 
The heterogeneity provides better performance on those applications in both Same Area 
#1 and Same Area #2 schemes. It means that neither few cores with aggressive ILP 
exploitation nor many cores with tiny ILP exploitation in a homogeneous fashion are 
suitable for these applications. They demand a heterogeneous organization to give 
aggressive ILP exploitation for those threads that request it, and some cores to execute 
the parallel portion of their codes.  
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Figure 38. Relative Performance of HeteroLarge over HomoSmall CReAMS 
considering the Same Area #2 scheme 

Figure 39 depicts the energy consumption of both 2N-DAP HeteroSmall and N-
DAP HomoLarge. Comparing this Figure with Figure 37, one can notice that the energy 
savings provided by the heterogeneity in the Same Area #1 scheme overturn in losses 
when the Same Area #2 scheme is considered. The TDP of 2N-DAP HeteroSmall is 
69% bigger than the N-DAP HomoLarge (refer to Table 24 (b)). Thus, even achieving, 
on average, an execution time 52% lower on running jacobi, the heterogeneous 
CReAMS spends 10% more energy than the homogeneous design due to its bigger 
TDP. For all applications, the heterogeneous CReAMS design decreases 4% of the 
execution time dissipating 7% more energy. 

Figure 40 shows the relative Energy-Delay Product of Heterogeneous CReAMS 
organization over the homogeneous design when the Same Area #1 and #2 are 
considered. Analyzing this Figure, one can notice that the heterogeneity of the Same 
Area #1 scheme provides gains in the EDP metric. For instance, the heterogeneity 
reduces the EDP by a factor of 2.2 and 1.9 on running of lu and equake when the Same 
Area #1 scheme is considered. On average, considering all setups and applications, the 
heterogeneous CReAMS reduces 10% the EDP considering the Same Area #1 scheme. 
However, in the Same Area #2 scheme the heterogeneity increases the EDP in 4%. 
Thus, one can conclude that, for the applications considered in our experiments, it is 
mandatory building CReAMS as heterogeneous organization to achieve better energy 
delay product, but most of DAPs should have an aggressive ILP exploitation (Same 
Area #1). 
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Figure 39. Relative Energy Consumption of HeteroLarge over HomoSmall CReAMS 
considering the Same Area #2 scheme 

 

Figure 40. Relative Energy-Delay Product of HeteroLarge over HomoSmall CReAMS 
considering the Same Area #1 and #2 schemes 

Up to now, all results shown in this subsection consider that the threads are statically 
schedule in the DAPs meaning that once a thread starts running in a DAP, that thread 
will end its execution in the same DAP. However, such an approach is not suitable 
when heterogeneous organization is applied, since a certain thread that needs greater 
ILP exploitation could be scheduled in a Small DAP, which could affect the overall 
performance. Dynamic scheduling is employed to verify if the performance degradation 
occurred on applying heterogeneity shown in Figure 36 and Figure 38  is due to the 
poorly thread scheduling performed. The lightweight context switch when a changing 
on the scheduling occurs is an advantage provided by CReAMS. The configurations 
stored in the reconfiguration memory of the DAP do not migrate, since threads share the 
same memory address space and the configurations are indexed by the memory address 
of the first instruction, they can take advantage of the configurations built by other 
threads.      
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The algorithm developed for the scheduling contains instruction counters for each 
thread and decides, based on this data, the best thread scheduling. The changing on the 
scheduling is performed when all threads reach a certain barrier. In this moment, the 
algorithm schedules, to those DAPs that have aggressive ILP exploitation, threads 
which ran the largest number of instructions since the last barrier. The main goal of this 
exploitation is not employ the best scheduling algorithm, but it is verify if performance 
losses provided by the heterogeneous CReAMS are due to wrong thread scheduling. 

 

Figure 41. Relative Speedup of Dynamic over the Static Thread Scheduling considering 
the Same Area #1 scheme 

Figure 41 shows the relative performance of the dynamic scheduling scheme in 
comparison with the static approach when the Same Area #1 is considered. The main 
purpose of using OpenMP is parallelizing loop iterations. In general, when OpenMp is 
applied, each loop iteration becomes a thread. For instance, let us assume a certain 
application where loops are completely data flow, it means that no branch is used in the 
body of the loop, all threads will execute the same code. The implementation of the FIR 
filter (refer to Figure 27) reflects this behavior. In this scenario, if the DAP that presents 
lowest capability of exploiting ILP already achieves the maximum gains on exploiting 
the parallelism of the loop body, dynamic scheduling would not produce any 
performance improvement. As can be seen, susan smoothing, equake and apsi does not 
present any changes on their performance on applying the dynamic scheduling 
algorithm due to the fact mentioned before.  

On the other hand, one can notice that susan corners achieves performance 
improvement by applying dynamically scheduling. Analyzing Figure 36, one can 
conclude that there is no reason for 16-DAP HeteroLarge provides worst performance 
than 32-DAP HomoSmall on running susan corners, since as shown in Table 3, this 
application has large room for ILP exploitation and small room for TLP exploitation. 
Figure 41 shows that the reason for the performance losses demonstrated by 
heterogeneous CReAMS on running this application (Figure 36) are due to wrong 
thread scheduling. Performance losses of 3% on running this application in 8-DAP 
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HeteroLarge CReAMS become performance improvement of 13% over 16-DAP 
HomoSmall CReAMS when the dynamic scheduling is applied. The slowdown 
provided by 32-DAP HeteroLarge of 36% on running md is reduced to 30% by only 
scheduling dynamically its threads. As the algorithm used in dynamic scheduling is 
naïve, it produces performance losses for some applications, such as lu and susan edges, 
which emphasize our hypothesis to the need for a dynamic scheduling when using 
heterogeneous organizations together with a mixed application workload.  

 

Figure 42. Relative Speedup of Dynamic over the Static Thread Scheduling considering 
the Same Area #2 scheme 

Figure 42 shows the impact of dynamic scheduling in the Same Area #2 scheme. As 
occurred in the Same Area #1, dynamic scheduling does not produce any changes for 
some applications due to the same reasons mentioned before. susan corners and md 
benefit from the dynamic scheduling also in the Same Area #2 reinforcing to the need 
for a dynamic scheduling. Which also support our belief is the behavior of lu, ammp and 
susan edges in this Figure, as the dynamic algorithm produce some wrong scheduling, 
the performance of these applications are sorely affected since their threads are very 
heterogeneous in terms of need for ILP exploitation.  

5.5 CReAMS versus Out-Of-Order Superscalar SparcV8 

Up to now, we have compared CReAMS against single-issue SparcV8 
multiprocessing systems. Here, we wanted to verify the feasibility of CReAMS in 
comparison with a state-of-the-art processor in terms of ILP exploitation. Therefore, we 
coupled a simulator of an Out-Of-Order SparcV8 processor (KAVVADIAS, 2001) in 
the framework presented in Figure 33(a). For that, some modifications in the way that 
the instructions are decoded and the results are generated were necessary to couple such 
simulator in our framework. 

As there is no hardware implementation of a 4-issue OOO SparcV8 processor 
available in the market, we gathered data about performance in our framework based on 
the organization of a MIPS R10000 processors due to its similarities with SparcV8 ISA. 
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Besides the issue, other characteristics, such as width of reservation stations and reorder 
buffers, are modeled in the simulator based on the organization of MIPS R10000. To 
gather data about power consumption, we also apply data from the MIPS R10000. As 
such processor is only available at CMOS 0.35 um, a technology scaling to 90nm (the 
technology used on CReAMS implementation) is necessary to make a fair comparison. 
According to (HEINRICH, 1997), the 4-issue Out-of-Order MIPS R10000, 
implemented in CMOS 3.5 um, consumes 30 Watts at 3.3 Volts operating at 250 MHz. 
CReAMS was synthesized in a CMOS 90nm supplied by 1.0 Volt running at 600MHz. 
Let us scale the CMOS 3.5um to CMOS 90nm applying the power supply of the newest 
technology. As the power dissipated by certain circuit can be written as 

ܲ ൎ ݂ ∗ ܥ ∗ ܸଶ, 

  Let us scaling the power supply from 3.3 Volts to 1.0 Volts, the resulting power 
consumption is 2.75 Watts operating at 250MHz. Hence, to normalize the power 
consumption of both CReAMS and 4-issue OOO SparcV8 superscalar processor to 600 
MHz, a factor of 2.4 must be applied to OOO SparcV8 processor, resulting on 6.61 
Watts. Table 25 shows the TDP of different multiprocessing systems composed of 4-
issue out-of-order SparcV8 processors.  

Table 25. TDP of 4-issue Out-Of-Order SparcV8 multiprocessing system 

 

For comparison purpose, we create two different scenarios that consider power 
budget of 27 Watts and 53 Watts. As can be seen in Table 25 and Table 24(b), the 
power consumption of both 4-OOO SparcV8 superscalar processors and 32-DAP 
HomoLarge are similar, so these configurations compose the Power Budget #1 scheme. 
For the Power Budget #2 scheme, we compare 8-OOO SparcV8 superscalar processors 
with 64-DAP HomoLarge CReAMS, since their power consumptions are also very 
similar. CReAMS does not affect the power budget even if an error of 19% in our 
scaling process from CMOS 0.35 um to 90 nm occurs. 

For these experiments, we chosen a subset of the applications presented in the 
previous section. This subset is composed of applications that cover the whole spectrum 
of opportunities to exploit TLP and ILP. As can be seen, Table 3 shows that 
blackscholes, swaptions and jacobi have perfect load balancing, so suitable for TLP 
exploitation. On the other hand, they have tiny room for ILP exploitation, since their 
mean basic block sizes are small. susan corners shows quite the opposite, since it has a 
significant load unbalancing and provides higher mean basic block size. lu was selected 
to represent applications where neither room for ILP nor TLP is available to be 
explored.   

 

TDP (mWatts) 4‐OOO 8‐OOO 16‐OOO 32‐OOO 64‐OOO

4‐issue 26,494 52,987 105,975 211,950 423,900
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Table 26. Execution time of 4-issue OOO MPSparcV8 and CReAMS  

 

Table 26 shows the execution time of both CReAMS and 4-issue OOO MPSparcV8 
processor by applying the Power Budget #1 and #2 schemes. As can be seen, CReAMS 
outperforms the 4-issue OOO MPSparcV8 in all TLP-oriented applications when both 
Power Budget #1 and #2 are considered. 32-DAP HomoLarge CReAMS is 4.51, 3.26 
and 3.68 times faster than 4-core 4-issue OOO MPSparcV8 on running swaptions, 
blackscholes and jacobi, respectively. When the Power Budget grows to 53 Watts, the 
gains of 64-DAPs HomoLarge CReAMS over 8-Core 4-issue OOO MPSparcV8 remain 
almost in the same factors. lu runs 26% faster in CReAMS than a 4-issue OOO SparcV8 
considering a power budget of 27 Watts. However, when the power budget grows to 53 
Watts, the multiprocessing system composed of 4-issue OOO processors outperforms 
CReAMS by 24%. It is due to the huge load unbalancing that occurs by increasing the 
number of DAPs from 32 to 64 on that application, which affects the performance of 
CReAMS. However, it does not occur when the number of processors increases from 4 
to 8, thus gains of 4-issue OOO MPSparV8 come from TLP and ILP exploitation. Even 
when a wide room for ILP exploration is available, CReAMS outperforms the 4-issue 
OOO MPSparcV8, this is the case of susan corners where their basic block have 17 
instructions, on average. 32-DAP CReAMS outperforms the 4-Core 4-issue OOO 
MPSparcV8 by 28% when a power budget of 27 Watts is considered. When the power 
budget increases to 53 Watts, CReAMS still performs better than OOO MPSparcV8, 
showing an execution time 8.5% smaller.  

Table 26 presents the performance of the 32-DAP and 64-DAP HeteroLarge 
CReAMS when static scheduling is considered. We apply the same methodology used 
above to compare heterogeneous CReAMS and 4-issue OOO MPSparcV8. As can be 
seen, in comparison with the homogeneous setups, heterogeneous CReAMS presents 
smaller chip area (refer to Table 23(b)) and less power consumption (refer to Table 24). 
However, the heterogeneous CReAMS remain almost the same gains over the 4-issue 
OOO MPSparcV8 provided by the homogeneous setups, and still reduce the power cap 
from 27 Watts and 53 Watts to 20 Watts and 40 Watts for Power Budget #1 and #2 
schemes, respectively.  

Summarizing, CReAMS shows performance improvement of 28%  and 8.5% when 
a power budget #1 and #2 is applied, which shows that homogeneous CReAMS delivers 
higher performance per watt than a multiprocessing system based on 4-issue OOO 
superscalar processors. Moreover, the heterogeneous CReAMS outperforms the 
multiprocessing system based on OOO superscalar by a factor of 2.34, on average, and 
provides a power cap 33% lower.   

  

4SparcV8 8SparcV8 32DAPs 64DAPs 32DAPs 64DAPs

susan_c 16.448 11.221 12.838 10.344 13.783 10.916

swaptions 7.094 3.551 1.572 0.792 2.212 1.107

blackscholes 3.408 1.710 1.048 0.535 1.578 0.812

jacobi 123.841 62.245 33.665 19.233 41.864 23.299

lu 0.352 0.265 0.279 0.310 0.315 0.367

Total Ex. Time 151.142 78.992 49.402 31.214 59.750 36.500

4‐issue OOO MPSparcV8  Homogeneous CReAMS 

Execution Time (ms)

Heterogeneous CReAMS
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6 CONCLUSIONS AND FUTURE WORKS 

In this work, the design space exploration around thread and instruction level 
parallelism are investigated. In Chapter 2 we presented the related works, which 
elucidate and motivate the main goals of this proposal. In the Chapter 3, we discussed, 
using an analytical model, the limits of the TLP and ILP exploitation showing the 
necessity for mixed parallelism exploitation. In addition, the inter-thread 
communication cost is analytically studied. In order to cope with that, we have extended 
to a multiprocessing environment an already proposed reconfigurable architecture that 
transparently explores the instruction level parallelism of single-threaded applications.  

The employment of the reconfigurable architecture on a homogeneous 
organization multiprocessor system shows that an adaptable ILP exploitation is one 
requisite to achieve performance improvements with energy savings. However, the 
strategy of replicating the same processors produces a disadvantageous tradeoff between 
energy, area and performance. Since most of the processors become idle in great periods 
of the application execution by waiting for the thread that has greater period of 
sequential execution. Hence, we show performance improvements and energy savings 
by joining in the same chip DAPs with different capabilities on exploring instruction 
level parallelism. Considering that hypothesis, we demonstrate that the heterogeneous 
organization strategy can reduce substantially the power consumption of the system, 
while maintaining performance of the homogeneous approach with a mandatory 
overhead of a dynamic thread scheduling to match the thread requirements with the 
DAPs capabilities. Finally, we present performance improvements of CReAMS over a 
multiprocessing system composed of 4-issue Out-Of-Order processors when a power 
budget is considered. 

6.1 Future Works 

6.1.1 Scheduling Algorithm  

Considering the scheduling algorithm used to assign threads in a heterogeneous 
CReAMS organization. In this work, the scheduling process is implemented in 
software. Actually, there are several advantages for hardware implementation that is not 
only motivated by obtaining better performance than software, but aims to offer 
transparency to the operating system. The whole processor scheduling process is 
supported by the DAP’s hardware, that is responsible for the fine grain parallelism 
detection. Once the thread is executed, the DDH stores, as intrinsic information, the 
level of instruction level parallelism and the number of instructions executed by the 
thread. This information is useful for the next thread assignments done by the processor 
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appointer hardware. The identification of the threads in hardware is done through a 
special register within each DAP that holds the thread ID generated by the operating 
system. A special table, indexed by the thread ID, stores the appointment metrics that 
are gathered in the first execution of the threads. For the next executions, the core 
allocator hardware fetches these metrics from the special cache and allocates a DAP to 
execute it, considering the best matching between the processing capability and the 
required metrics. The main novelty of such an approach is the complete transparency 
offered to the operating system. The implementation of the thread allocation is 
supported by the DAP’s hardware, named Dynamic Detection Hardware (DDH), that is 
responsible for the fine-grain parallelism detection. 

6.1.2 Studies over TLP and ILP considering the Operating System 

Operating System is already present in the embedded systems, such as Android 
and iOS. The software layer added over the hardware cannot be overlooked since it 
brings a significant overhead to the system performance. However, as the code of the 
operating systems is split in threads, one can explore CReAMS to achieve performance 
improvements. In this work, only applications were explored, but one can investigate 
the efficiency of CReAMS to accelerate both application and operating system code. 
This measurement has a significant importance to verify how many DAPs are necessary 
to provide, in a concurrent way, threads of the operating system and the application. 
Moreover, one important question to be answered is: Is the heterogeneity also efficient 
in an environment where the operating system is present? 

6.1.3 Behavioral of CReAMS on a Multitask Environment 

In the multitask environment, there are many threads of different applications 
running at the same time in the chip multiprocessor. As shown in this work, applications 
behave in their own way and require different amount of resources to achieve efficient 
execution. This work can be extended by considering multitask environment, where 
many applications are running over a homogeneous/heterogeneous CReAMS. Such 
investigation approaches to the real scenario of current embedded systems, where 
operating systems provide multitask support. 

6.1.4 Automatic CReAMS generation 

In (RUTZIG, 2009), the authors propose an automatic tool, named ARISE, for 
generating an optimized reconfigurable data path considering the application execution. 
When many processors are encapsulated in a single die, an investigation of the amount 
of reconfigurable resources needed to produce the best performance on exploiting TLP 
and ILP is mandatory to reduce area occupied. Besides, this work shows that 
heterogeneous organization is efficient when area, power and performance are taken 
into account. However, there is no investigation of the best heterogeneity for a 
multiprocessor environment, which could be achieved by extending ARISE for 
CReAMS. 

6.1.5 Area reductions by applying the Data Path Virtualization Strategy 

Reductions on chip area will be also explored using a data path virtualization 
technique proposed in (BERTICELLI LO, BECK, et al., 2010). The authors propose a 
virtual execution using the DIM technique. Currently, the replication on the number of 
levels dictates the limits of the sequential execution in the reconfigurable data path. The 
results shown in Section 5 employ a reconfigurable data path composed of eight levels. 
However, to achieve the same performance results shown in this section, there is need 
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for only three data path levels by using the virtualization technique. In this technique, on 
each execution cycle a certain reconfigurable data path works in a specific mode that 
can be: reconfiguring, running or propagating results. To support the virtualization 
mode a finite state machine is necessary to control the switching of modes between the 
three levels. However, the chip area is extremely reduced, since there is no need for 
huge functional units and interconnection replication to execute configurations longer 
than 3 cycles. The employment of the data path virtualization does not affect the 
original performance, since the number of execution cycles is dictated by the width of a 
reconfiguration memory slot. Despite the huge area saving by avoiding replication of 
functional units, the virtualization does not produce any savings on the area and of the 
reconfiguration memory. Currently, this component is responsible for 15% of the total 
area spent in the DAP implementation, as the area of the data path is drastically reduced 
with the employment of the virtualization process this number becomes more 
significant, reaching almost 32% of the total chip area, which becomes a important 
point to investigate optimizations when heterogeneous CReAMS is considered. 

6.1.6 Boosting TLP performance with Heterogeneous Multithread CReAMS  

Simultaneous Multithreaded (SMT) processors already have shown an efficient 
strategy to obtain an advantageous tradeoff between performance improvements and 
area overhead. However, there are few works using the simultaneous multithread 
strategy in reconfigurable computing. These works use such an approach in a 
homogenous fashion, meaning that all processors have the same degree on exploiting 
ILP and TLP.  Heterogeneous multithread DAPs in the same CReAMS platform is a 
point to be investigated.  In a heterogeneous CReAMS platform, some DAPs have more 
functional units than others, so higher degree of SMT could be applied in those DAPs, 
achieving performance improvement with the low area overhead.  Such overhead comes 
from supporting the concurrent execution of multithreads in the DAP’ data path. 
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APPENDIX A 

Introdução 

Atualmente, a grande demanda por sistemas embarcados pelo mercado faz com que 
o projeto destes dispositivos torne-se cada vez mais complexo.Telefones celulares são 
capazes de embarcar aplicações durante seu tempo de vida, fato que torna o projeto de 
um hardware para um dispositivo atual um grande desafio visto que o mesmo deve ser 
capaz de executar eficientemente todos os comportamentos de software com baixo 
consumo de energia. 

No cenário embarcado atual, dois tipos de abordagens são utilizados para aumentar o 
desempenho de processadores embarcados: extensões no conjunto de instruções e a 
implantação de ASICs. A primeira abordagem tem como objetivo resolver alguns 
gargalos criados pela execução massiva de certas aplicações. Assim, quando é 
observado um montante de aplicações embarcadas que compartilham o mesmo 
comportamento, extensões no conjunto de instruções são realizadas para que este 
comportamento possa ser executado de forma eficiente em termos de desempenho e 
consumo de energia. ASICs são frequentemente utilizados em plataformas embarcadas 
para solucionar questões de desempenho de aplicações que já estão fortemente 
embarcadas e consomem um grande tempo de execução em software. Entretanto, tanto 
extensões no conjunto de instruções quanto ASICs afetam a produtividade de software, 
visto que para cada nova plataforma é necessário mudanças na ferramenta de geração de 
código e, conseqüentemente, a recompilação de todas as aplicações, possibilitando que 
estas aplicações explorem os novos recursos da plataforma. Este fato afeta o time-to-
market e aumenta o tempo de projeto do dispositivo embarcado, requisitos muito 
exigidos no neste domínio. 

Devido às razões explicitadas acima, é necessária uma mudança no paradigma de 
concepção de hardware para o mercado embarcado. A utilização de sistemas 
multiprocessados provêem diversas vantagens, o tempo de execução pode ser 
claramente beneficiado visto que diversas partes do programa podem ser executadas 
concorrentemente nos diversos processadores da plataforma. O tempo de validação 
destas plataformas é extremamente beneficiado visto que um único processador deve ser 
validado para posterior replicação. Em um sistema multiprocessado o projetista de 
hardware é responsável por encapsular o número máximo de elementos de 
processamento em um único chip. Por outro lado, o projetista de software é responsável 
pela árdua tarefa de distribuir o software entre os diversos elementos de processamento. 
Assim, produtividade de software surge como o principal desafio quando ambientes 
multiprocessados são considerados, visto que as aplicações devem ser lançadas no 
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mercado rapidamente e o código binário das mesmas deve ser genérico suficiente para 
ser executado em qualquer plataforma que seja lançada no futuro. Adicionalmente, o 
infraestrutura de interconexão entre os processadores deve ser suficientemente eficiente 
para que os ganhos em desempenho da execução paralela não seja afetado pelo processo 
de intercomunicação das threads. 

Assim, um sistema multiprocessado ideal para sistemas embarcados deve ser 
composto pela replicação de elementos de processamento, sendo que cada um destes 
elementos possam se adaptar as particularidades das aplicações, esta adaptação tem de 
ocorrer mesmo após a fabricação. A plataforma deve emular o comportamento, em 
termos de desempenho e energia, dos ASICs que estão sendo implementados com 
sucessos nas plataformas embarcadas atuais. No mesmo momento, o uso do mesmo 
conjunto de instruções para todos os elementos de processamento é mandatório para 
manter a produtividade de software e evitar a modificação das ferramentas que geram 
código e, conseqüentemente, a recompilação do código fonte para cada nova versão de 
plataforma. Esta plataforma deve atacar de forma eficiente todo o espectro de 
comportamento de aplicações: aquelas que contêm paralelismo em nível de threads 
massivo e as aplicações onde este paralelismo é inexistente. Ainda, a plataforma deve 
ser concebida com uma organização heterogênea para fornecer o melhor compromisso 
entre a heterogeneidade das aplicações e a área ocupada em chip pelo sistema 
multiprocessado. Por fim, o exato número de processadores deve ser investigado, visto 
que o desempenho do sistema concebido com muitos processadores pode ser afetado 
pelos custos providos pela comunicação entre threads. 

Objetivos 

Considerando todas as motivações demonstradas anteriormente, o primeiro objetivo 
deste trabalho é focado em reforçar, pelo uso de um modelo analítico, que a aplicação 
da exploração de paralelismo em um único nível não prove um compromisso vantajoso 
em relação ao desempenho obtido e a energia consumida pelo sistema. Ainda, este 
estudo fornece alguns rumos sobre a fatia de hardware que deve ser empregada para 
explorar o paralelismo em nível de instrução e thread. Um modelo de comunicação de 
uma rede em chip é criado para investigar o impacto da comunicação entre as threads. 

Neste cenário, é proposto uma plataforma baseada em Custom Reconfigurable 
Arrays for Multiprocessor System (CReAMS), pelo acoplamento de dois diferentes 
conceitos: arquiteturas reconfiguráveis e sistemas multiprocessados. Em um primeiro 
passo, CReAMS é concebido em uma organização homogênea. Entretanto, esta 
plataforma virtualmente se comporta como uma organização heterogênea devido a sua 
capacidade de se adaptar em tempo de execução.  

O sistema é capaz de explorar de forma transparente, ou seja, sem modificações no 
código binário original, o paralelismo em nível de instrução das threads em execução, 
oferecendo uma alta habilidade em se adaptar as demandas de paralelismo das 
diferentes aplicações. O paralelismo em nível de threads não depende de nenhuma 
ferramenta que faça investigação do código em tempo de projeto, visto que o 
paralelismo em nível de thread é explorado pelas interfaces de programação (OpenMP e 
Pthreads) conhecidas e suportadas pelos compiladores do mercado, tornando a execução 
de CReAMS independente de qualquer processo proprietário. Dinamicamente é possível 
balancear a melhor exploração do paralelismo em nível de instrução e thread.  Assim, 
qualquer tipo de código, tanto aquele que apresenta alto TLP e baixo TLP quanto o 
código que tem características inversas é acelerado. CReAMS prove menor consumo de 
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energia e mantém a produtividade de software  das organizações homogêneas. Um 
único conjunto de ferramenta é necessário para toda a plataforma e qualquer 
modificação no hardware não requer nenhuma modificação no código binário. 

CReAMS 

Um visão geral de CReAMS é apresentada na Figura 1. O paralelismo em nível de 
thread é explorado pela replicação de DAPs (Dynamic Adaptive Processors). A 
comunicação entre os DAPs é feita através de uma NoC com topologia mesh. 

 

Figura 1. (a) Organização de CReAMS (b) DAP 

DAP 

Um Dynamic Adaptive Processor é divido em quatro blocos ilustrados na Figura 1. 
Estes blocos são discutidos nas seções a seguir: 

Processor Pipeline 

Um processador baseado na arquitetura SparcV8 é utilizado como o processador 
base da plataforma. Este processador contém cinco estágios de pipeline, refletindo um 
processador RISC tradicional. 

Detector dinâmico em Hardware 

Uma das restrições impostas pelo projeto de um dispositivo embarcado é o tempo de 
projeto. A concorrência das empresas para disponibilizar no mercado o primeiro 
dispositivo com novas funcionalidades força o projeto embarcado ser cada vez mais 
curto. Assim, os projetistas devem utilizar técnicas que ajudem a modelagem e 
reaproveitamento do software já escrito para o dispositivo anterior. 

A tradução binária é largamente utilizada em processadores de propósito geral para 
prover compatibilidade de software.  Em (BECK, RUTZIG, et al., 2008), foi 
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demonstrado que a utilização da técnica de tradução binária também alcança ótimos 
resultados de desempenho e energia em um processador que executa o conjunto de 
instruções PISA (BURGER, 1997). Assim, para este estudo foi herdada a técnica 
aplicada neste último trabalho. 

A idéia básica do mecanismo é prover compatibilidade de software a partir da 
tradução binária de seqüências de instruções, em tempo de execução, para que as 
mesmas possam ser futuramente executadas num mecanismo mais eficiente, neste caso, 
em uma unidade funcional reconfigurável. 

Basicamente, o mecanismo avalia cada instrução executada pelo processador, 
agrupando-as em blocos chamados de configuração da unidade funcional reconfigurável 
(UFR). A cada instrução executada pelo processador é verificada a possibilidade da 
execução desta na unidade reconfigurável. Caso positivo, a mesma é alocada na 
configuração corrente da UFR. Ao final da construção de uma configuração da UFR, 
esta é armazenada em uma cache de reconfigurações, indexada pelo valor do contador 
de programa da primeira instrução. Quando este valor novamente for alcançado pelo 
contador de programa, o mecanismo reconfigurável é ativado seguindo os seguintes 
passos: 

 Efetua-se a busca da configuração, da seqüência de instruções em questão, na 
cache de reconfigurações; 

 Configura-se a UFR com os bits fornecidos pela cache; 

 Os valores dos registradores necessários para executar a configuração são 
carregados no contexto de entrada da UFR; 

 A execução é realizada na UFR; 

Após o término da execução na UFR o valor do contador de programa é atualizado, 
assim como os valores dos registradores modificados no banco de registradores. Do 
mesmo modo as escritas na memória de dados são realizadas. É importante destacar que 
enquanto o mecanismo reconfigurável está ativo o processador não realiza nenhuma 
operação.  

Diferentemente dos processadores superescalares, esta abordagem não realiza 
repetidas vezes, para a mesma seqüência de instruções, a verificação das dependências 
entre as instruções. A utilização da técnica de reuso de rastros (do inglês trace reuse) 
evita a repetição desta tarefa. Portanto, se não houver falha na cache de reconfiguração, 
o mecanismo de TB somente será aplicado uma única vez em cada seqüência de 
instruções. 

Em relação a mecanismos utilizados em outros sistemas reconfiguráveis, que 
somente aplicam as técnicas de reconfiguração em partes mais executadas da aplicação, 
a abordagem de TB descrita neste trabalho fornece uma maior flexibilidade. A aplicação 
inteira sofre análise do TB, não se limitando a apenas partes específicas da aplicação.  

O hardware de TB é composto basicamente por tabelas e mapas de bits que 
armazenam temporariamente dados da configuração corrente. O algoritmo é composto 
por seis tabelas e dois mapas de bits que serão especificadas a seguir: 

 Mapas de Escrita – a função deste mapa é armazenar o número do registrador 
de escrita de cada instrução alocada na UFR. Este mapa é utilizado na 
verificação das dependências entre as instruções no momento de alocação 
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das mesmas na arquitetura. Em cada linha da UFR existe um mapa de escrita, 
sendo o número de bits igual ao número de registradores existentes no 
contexto de entrada. Este mapa de bits não será armazenado na configuração 
final, pois não tem utilidade no momento da execução. 

 Mapas de Recurso – este mapa foi inserido no mecanismo para gerenciar a 
alocação de recursos na UFR. Assim, no momento da inserção de uma nova 
instrução em uma configuração, é realizada a busca por uma unidade 
funcional ociosa neste mapa. Analogamente ao mapa de escrita, os dados do 
mapa de recurso não serão inseridos na configuração. 

 Tabela de Contexto Atual – armazena uma referência a todos os registradores 
que serão utilizados pelas instruções executas por uma configuração. 

 Tabela de marcadores de contexto atual – faz a caracterização dos 
registradores da tabela de contexto atual, distinguindo entre registradores de 
leitura e de escrita. 

 Tabela de Contexto Inicial de Leitura – nesta tabela são inseridas as 
referências a todos os operandos de leitura armazenados na tabela de 
marcadores de contexto atual. A inserção é feita na posição correspondente à 
posição do operando na tabela de contexto atual. A função desta tabela é 
indicar quais os registradores devem ser carregados no contexto de entrada 
no inicio da execução. 

 Tabela de Imediatos – as instruções do tipo-I e do tipo-J trazem em seu corpo 
operandos imediatos. Para que estas possam ser executadas na UFR é 
necessário armazenar o valor destes operandos. Assim, a função desta tabela 
é armazenar os valores imediatos, para que no momento da execução, sejam 
carregados para o contexto de entrada. 

 Tabela de Leituras – a função desta tabela é armazenar quais registradores 
serão entradas de cada unidade funcional. Especificamente, os dados desta 
tabela serão inseridos, na hora da execução, nos bits de controle dos 
multiplexadores de entrada de cada unidade funcional. O modo que esta 
tabela indica os registradores é referenciando a posição dos mesmos na 
tabela de contexto inicial.  

 Tabela de Escrita – analogamente a tabela de leituras, a tabela de escrita 
armazena a referência para a coluna em que o recurso foi alocado na UFR. A 
definição da posição de escrita nesta tabela corresponde à mesma posição em 
que este operando está na tabela de contexto. Estes valores servirão como 
controle dos demultiplexadores alocados após as unidades funcionais, com o 
objetivo de realizar a escrita nos registradores do contexto de saída. 

A Figura 1 demonstra o hardware de tradução binária acoplado ao processador 
SparcV8. O hardware foi dividido em quatro estágios para não infringir o caminho 
crítico do processador. Os estágios que estão em cinza escuro são estágios do 
processador e os estágios que estão em cinza claro são estágios do hardware de TB. 
Cada instrução executada pelo processador é analisada pelo TB que realiza a alocação 
destas nas tabelas e mapas de bits que compõe o hardware de detecção. Abaixo é 
demonstrada a análise de execução de cada estágio do algoritmo.  
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 Decodificação (ID) – neste estágio é realizada a decodificação dos campos 
da instrução, estas informações servirão para identificar características como: 

o Grupo da Instrução: em qual grupo da unidade reconfigurável a 
instrução deve ser alocada. 

o Tipo e Função da Instrução: em qual unidade funcional do grupo a 
instrução deve ser alocada, além de qual função a unidade em questão 
deve desempenhar para executar a instrução. 

o Registradores de Leitura e Escrita: identificam quais são os 
registradores de leitura e escrita da instrução. 

o Operandos Imediatos: identifica, se a instrução possuir, operandos 
imediatos. 

 Dependência (DV) – após a instrução estar decodificada e seus campos 
identificados, o papel deste é verificar as dependências de dados existentes 
entre as instruções. Este trabalho será útil para o próximo estágio alocar as 
instruções nas unidades funcionais. Dependências de dados verdadeiras são 
bastante comuns entre instruções em um fluxo de execução, então se deve 
tomar o devido cuidado na execução destas garantindo a consistência dos 
dados.  

 Recursos (RA) – no estágio anterior são detectadas as dependências 
verdadeiras existentes no fluxo de execução entre as instruções. Neste 
estágio é verificada a disponibilidade de unidades funcionais na UFR e 
realizada a alocação de uma destas para que a instrução em questão possa ser 
executada. 

 Atualização de Tabelas e Mapas de Bits (UT) – neste estágio todas as tabelas 
e mapas demonstrados anteriormente são atualizados. Assim, a cada 
instrução adicionada à UFR, é realizada a atualização nas tabelas com as 
devidas informações necessárias para que a instrução seja executada. Deste 
modo, é garantido que, no momento da execução, a instrução seja alocada, 
executada e o seu resultado seja armazenado no registrador destino. Ao final 
da construção de uma configuração, todos os dados das tabelas necessárias 
serão empacotados, e a mesma será armazenada na cache de reconfigurações.  

A detecção de um bloco de instruções para montagem de uma configuração ocorre 
de forma seqüencial, em momento de execução. Entretanto, alguns fatores podem 
interromper a formação deste bloco e, conseqüentemente, a montagem de uma 
configuração. O primeiro fator são as instruções que não tem suporte de execução na 
UFR, exemplos destas são as instruções que realizam operações de divisão. No 
momento em que este tipo de instrução é encontrado pelo TB, a configuração corrente é 
concluída, e armazenada na cache de reconfigurações. Posteriormente, quando uma 
instrução com suporte de execução na UFR é encontrada, uma nova configuração é 
iniciada. 

Outro fator que interrompe a formação de uma configuração são as instruções de 
salto. Assim, a cada instrução de salto executada pelo processador a configuração 
corrente é concluída e uma nova configuração é iniciada. Em (BECK, RUTZIG, et al., 
2008) foi proposto um mecanismo de especulação de saltos, este cria árvores de 
execução que são utilizadas na formação das configurações da UFR.  
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A utilização de especulação possibilita a formação de configurações que ultrapassam 
a execução de instruções de salto, impactando diretamente no desempenho da execução 
da aplicação pela inclusão de um número maior de instruções em uma única 
configuração. O número de saltos executados em uma única configuração da UFR pode 
ser definido pelo projetista. Entretanto, a penalidade por erro de especulação é 
proporcional ao crescimento do nível especulado. 

Memória de Reconfiguração 

O sistema reconfigurável, fundamentalmente, explora três técnicas amplamente 
difundidas no meio científico: reconfigurabilidade, tradução binária e reuso. Esta última 
explora a natureza de execução do modelo Von-Neumann, onde o contador de programa 
é o elemento que dirige o fluxo de execução. Assim, a existência de um laço ou de 
saltos remete a repetição de certo trecho de código da aplicação. 

A abordagem proposta explora esta característica das aplicações, realizando 
tradução binária destes trechos de códigos e armazenando as configurações realizadas 
em uma cache, evitando a repetitiva análise de código realizada pelos processadores 
superescalares. 

Cada posição da cache de reconfigurações armazena dados necessários para a 
execução de uma configuração na UFR. Como já explicitado anteriormente, cada 
configuração armazena os bits necessários para controlar os multiplexadores e 
demultiplexadores, bits de controle das funções de cada unidade funcional, além dos 
dados imediatos contidos nas instruções. 

Na extração dos resultados de (BECK, RUTZIG, et al., 2008) o algoritmo de 
substituição FIFO (do inglês first in, first out) foi utilizado. Como contribuição para esta 
dissertação uma maior exploração desta característica foi realizada. Algoritmos 
tradicionais de substituição foram implementados; LRU (do inglês least recently used); 
LFU (do inglês least frequently used) e o algoritmo randômico. Em alguns casos o 
algoritmo LRU e FIFO obtiveram o mesmo número de faltas na cache. Entretanto, na 
maioria das aplicações o algoritmo FIFO demonstrou melhores resultados, ou seja, este 
algoritmo é capaz de abranger a região exata da execução temporal das configurações.  

Metodologia 

Para extrair resultados de desempenho, energia e potência do sistema proposto 
foram selecionadas algumas aplicações que refletem comportamentos distintos em 
relação ao paralelismo em nível de instrução e thread. Todas as aplicações foram 
paralelizadas com as interfaces de programação OpenMP e Pthreads.  

Um ambiente de simulação foi criado onde é agregado o simulador Simics, scripts 
realizados para este trabalho e um simulador desenvolvido que emula o comportamento 
de um DAP. Pontos de sincronização são precisamente calculados pelo ambiente de 
simulação que trabalha com precisão de ciclo. 

Para extração de dados de potência, área e caminho crítico, todos os componentes do 
DAP foram descritos em VHDL. O consumo de potência e a área dos componentes de 
memória foram extraídos com a ferramenta CACTI 6.5. 
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Resultados 

Os primeiros resultados demonstram a comparação de CReAMS e um sistema 
multiprocessado composto de processadores SparcV8, chamado MPSparcV8. Um DAP 
ocupa a área de quatro SparcV8. Assim, criou-se um cenário de comparação de 4-DAP 
CReAMS e 16-SparcV8, que refletem plataformas com a mesma área. Os resultados 
demonstraram que CReAMS produz um tempo de execução menor em 6 aplicações das 
10 simuladas. CReAMS prove um maior tempo de execução nas aplicações onde o TLP 
é massivo, visto que no cenário de mesma área CReAMS tem 4 vezes menos 
processador do que MPSparV8. Quando um cenário de mesma área é criado, onde o 
número de processadores é maior (16-DAP CReAMS e 64-SparcV8), CReAMS produz 
um tempo de execução menor do que MPSparcV8 em 7 aplicações, perdendo nas 
aplicações onde o TLP é extremamente massivo. O consumo de energia de CReAMS é 
menor em todas as aplicações visto que a arquitetura possui algumas abordagens que 
evita este consumo: menos acessos a memória de instrução, modo inteligente de 
reconfiguração da unidade funcional reconfigurável e a utilização de Sleep Transistors.  
Em média o tempo de execução é 30% menor em CReAMS consumindo menos 32% de 
energia do que o MPSparcV8. 

Nos resultados explicitados anteriormente o custo de comunicação entre as threads é 
desconsiderado. Assim, a latência de uma rede em chip com topologia mesh é modelada 
para verificar qual o impacto da comunicação em CReAMS e em MPSparcV8. Os 
resultados demonstraram que a interconexão afetou mais o MPSparcV8 do que 
CReAMS visto que o primeiro, em um cenário de mesma área, tem mais processadores 
do que CReAMS. Sem comunicação CReAMS produz um tempo 20% menor na 
execução da aplicação apsi do que MPSparcV8, quando a comunicação é considerada 
os ganhos aumentaram para 37%. O consumo de energia de CReAMS foi beneficiado 
em relação ao consumo de MPSParcV8, sem comunicação os ganhos do primeiro é de 
32% em relação ao segundo, quando comunicação é inserida os ganhos sobem para 
49%. Isto se dá pela maior latência de comunicação provida por um sistema 
multiprocessado que contém mais processadores. 

Resultados interessantes foram obtidos concebendo CReAMS com ouma 
organização homogênea, com o objetivo de reduzir ainda mais o consumo de energia, 
CReAMS foi concebida com uma organização heterogênea. Desta forma, três diferentes 
configurações de DAPs foram criadas e acopladas em um mesmo chip. Os resultados 
obtidos em um cenário com chips de mesma área demonstraram que organizações 
heterogêneas com menor exploração de TLP e maior exploração de ILP do que as 
homogêneas provem ganhos nas aplicações onde ILP é predominante e perdas onde o 
TLP é dominante. Ganhos de energia são obtidos pelas organizações heterogêneas visto 
que o seu Termal Design Power (TDP) é sempre menor do que o das organizações 
homogêneas.  

Entretanto, em outro cenário de comparação de mesma área, onde as organizações 
heterogêneas possuem maior nível de explorar TLP e menor nível de explorar ILP do 
que as homogêneas, a heterogeneidade mostrou-se mais eficiente em aplicações onde o 
TLP é massivo e também em aplicações onde o ILP é massivo. Conclui-se que os 
poucos processadores que possuem alta capacidade de explorar ILP já exploram 
significativamente este tipo de paralelismo. O consumo de energia das organizações 
heterogêneas é maior do que as homogêneas devido ao seu maior TDP. 
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A partir dos resultados obtidos na exploração das organizações heterogênea 
verificou-se a necessidade de inclusão de um escalonador dinâmico de threads no 
sistema multiprocessado. Algumas threads que necessitavam de grande exploração de 
ILP estavam alocadas em processadores que proviam fraca exploração deste nível de 
paralelismo, fazendo com que o tempo de execução de algumas aplicações fosse 
afetado. Assim, um escalonador que detectasse, em tempo de execução, a falha de 
alocação das threads e realocasse as mesmas para um processador com alto grau de 
exploração de ILP poderia diminuir as perdas providas pelas organizações heterogêneas. 
Os resultados demonstraram que um simples escalonador dinâmico de threads consegue 
diminuir o tempo de execução em até 15%, dado que prova a necessidade de 
escalonamento quando este tipo de organização é utilizada. 

Por fim, uma comparação de CReAMS com um sistema multiprocessado composto 
por processadores superescalares provido de execução fora-de-ordem foi realizada. 
Foram criados dois cenários de comparação, ambos com o mesmo orçamento de 
potência. No primeiro cenário foi comparado 4-OOO 4-issue MPSparcV8 e 32-DAP 
CReAMS. CReAMS se mostrou mais eficiente em todas as aplicações, em média o 
ganho foi de 3 vezes sobre a plataforma composta por quatro processadores 
superescalares. Em um segundo cenário, foi comparado 8-OOO 4-issue MPSparcV8 e 
64-DAP CReAMS. CReAMS também foi mais eficiente em todas as aplicações, e em 
média alcançou-se um tempo de execução 2.5 vezes menor. Estes dados mostram que 
CReAMS entrega mais desempenho por watt consumido do que um sistema 
multiprocessador composto de processadores 4-issue com execução fora de ordem.  

Conclusões 

Neste trabalho o espaço de projeto sobre o paralelismo em nível de instrução e 
thread é explorado. O uso de um modelo analítico demonstrou os limites de ambos os 
níveis de paralelismo e a necessidade de explorar ambos de forma conjunta. O mesmo 
modelo analítico mostrou o grande impacto que a comunicação entre threads produz em 
um sistema onde vários processadores são encapsulados em um mesmo chip. Levando 
as conclusões do modelo analítico em conta, foi proposto um sistema multiprocessado 
que agrega a exploração transparente de ILP por  arquitetura reconfigurável  com a 
produtividade de software provida pelas interfaces de programação OpenMP e Pthreads. 
Este sistema multiprocessado organizado homogeneamente demonstrou-se ganhos em 
desempenho e energia em comparação com um sistema multiprocessado tradicional que 
ocupa a mesma área em chip.  Após, a organização heterogênea deste sistema se 
demonstrou ainda mais eficiente em termos de desempenho e energia, alcançando 
resultados ainda mais significantes. A adaptabilidade em explorar o paralelismo em 
nível de instrução do sistema proposto se mostrou mais eficiente em termos de 
desempenho do que um sistema multiprocessado composto por processadores 
superescalares com execução fora de ordem levando em conta um mesmo orçamento de 
potência para ambas as plataformas. 

 

 

 

 


