Comparative Studies of WC-Co and WC-Co-Ni Composites Obtained by Conventional Powder Metallurgy

Vinícius Martins, Wilson Corrêa Rodrigues, Peterson Luiz Ferrandini, Denis Jardim Villarinho, Gerhard Hans Knörnschild, Lírio Schaeffer

Laboratório de Transformação Mecânica – LatTM, Centro de Tecnologia, Universidade de Federal do Rio Grande do Sul – UFRGS, Av. Bento Gonçalves, nº. 9500, CEP 91501-970, Porto Alegre, RS, Brazil
Laboratório de Processos Eletroquímicos e Corrosão – Eletrocorr, Universidade de Federal do Rio Grande do Sul – UFRGS, Av. Bento Gonçalves, nº. 9500, CEP 91501-970, Porto Alegre, RS, Brazil

Received: March 18, 2011; Revised: May 9, 2011

The present work reports a comparative study of cemented carbides of compositions WC-6Co, WC-10Co, WC-20Co, WC-6Co-6Ni, and WC-12Ni-6Co. The purpose was to study the powder metallurgical production process of these compositions starting from a commercial WC-6Co powder, obtaining the desired compositions by mass balance with pure Co and pure Ni powders. During the process steps mixing, milling, compacting and sintering the powders were described by its apparent density, green density, shrinkage and sintered density. Lower densities were observed in composites with higher binder content. The process was monitored by scanning electron microscopy and EDS analysis to evaluate the homogeneity of the powders, to detect contaminations by the process and to characterize the microstructure of the sintered materials. A finer microstructure was found when the binder contained Ni. Potentiodynamic polarization tests in sulfuric acid revealed pseudo-passive behavior for all the tested hard metals.

Keywords: powder metallurgy, hard metal, WC-Co, WC-Co-Ni

1. Introduction

Hard metals are essentially composed of WC particles incorporated in a Co matrix. Their characteristics are high hardness and wear resistance, resistance to compression, tenacity and thermal stability. The properties are defined by the combination of the properties of the carbides and of the matrix. Other carbide forming elements, present in many hard metals, are Ti, Ta, V, Nb. The addition of small quantities of these elements has the function to inhibit WC grain growth during sintering. WC dissolves in the Co matrix during sintering and precipitates again at other carbide particles during cooling. In this way particle coarsening occurs since small carbides dissolve preferentially and reprecipitate at greater particles. Together with the grain growth the morphology of the carbides changes. The carbon content is another important aspect which modifies the properties of hard metals. The carbon content has to be between 6.15 and 6.20 wt. (%), in the matrix phase between 0.10 and 0.18 wt. (%). Higher carbon contents cause reprecipitation of carbon as free graphite.

The role of Co in hard metals is to form a ductile matrix for the carbide particles. During liquid phase sintering it permits to obtain material of high density. Commercial hard metals have a Co content between 3 and 25 wt. (%). Due to the excellent wettability of WC by the liquid phase considerable contraction is observed during sintering at about 1300 °C. Solidification of Co occurs at about 1275 °C; during subsequent cooling about 4 wt. (%) of WC is retained in solution. At room temperature the dissolved WC in the Co binder is less than 1 wt. (%).

Nickel, a ductile metal, is sometimes added to modify the binder composition. The most important aim of this modification with Ni is to improve the corrosion resistance of the hard metal.

In the present work the powder metallurgical production of WC-CoNi composites is documented, using as raw material a commercial WC-6Co powder. The influence of Ni on the different production steps is monitored by electron microscopy and EDS analysis. The influence of Ni on the electrochemical behavior is examined by voltammetric curves.

2. Materials and Methods

Commercial WC-6%Co powder with purity of 99% and granulometry of -325 Mesh was delivered by Alfa Aesar. Powders of the pure metals, Co and Ni, (99% purity, ~400 Mesh) were also delivered by Alfa Aesar.

Composites with the desired composition were obtained by mixing the commercial WC-6Co powder with the pure metal powders. Using mass balance calculations the necessary quantities of Co and Ni were determined, which have to be added to 100 g of WC-6Co in order to obtain the following materials: 90WC-10Co, 80WC-20Co, 94WC-6Co, 88WC-6Co-6Ni, 82WC-6Co-12Ni. The calculated quantities of Co and Ni are listed in Table 1.

The powder mixture was prepared in two steps: At first the powder components were put in an attritor mill and mixed one hour at 100 rpm in ethyl alcohol under argon atmosphere. In the second step the powder mixture was homogenized during 30 minutes in a Y-mixer with the addition of 1.5 wt. (%) zinc stearate as lubricant.
After mixing the powders were pressed in a cylindrical matrix with a compacting pressure of 200 MPa.

Sintering was performed under argon atmosphere in a tubular furnace with electronic control and precision of +/-1 °C. A sintering cycle consisted of heating up to 580 °C at 5.8 °C/min, holding the temperature at 580 °C for 20 minutes. In the following heating continued with 8 °C/min up to the sintering temperature, which was held for 60 minutes. Afterwards the furnace was cooled down at a rate of 6 °C/min.

The following sintering temperatures were applied: WC-6Co at 1450 °C; WC-10Co at 1420 °C; WC-6Co-6Ni at 1400 °C; WC-6Co-12Ni and WC-20Co at 1360 °C.

The different steps of powder processing were monitored by scanning electron microscopy and EDS-analysis, in order to evaluate homogeneity of the mixture and to identify possible powder contamination. Voltammetric experiments were fulfilled using a potentiostat with computer based data acquisition and control and a conventional three-electrode-cell. The counter electrode was made of platinum wire. The reference electrode was AgCl/Ag and connected to the cell by a salt bridge and a Haber-Luggin capillary.

The samples were cleaned with ethyl alcohol in an ultrasonic bath and mounted in a PTFE holder, which exposed the front side of the cylindrical samples and permitted electrical contact at the back side. Tests were performed in 1N H₂SO₄ solution at room temperature. The solution was open to air. The scan rate was 10 mV/min. The start potential was –0.5 V(SHE).

Table 1. Mass of Co and Ni added to 100 g of commercial WC-6Co composite to obtain hard metals of defined compositions.

<table>
<thead>
<tr>
<th>Hard metal</th>
<th>Addition of Ni (g)</th>
<th>Addition of Co (g)</th>
<th>Total mass of Co (g)</th>
<th>Total mass of Ni (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC-6Co</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>WC-10Co</td>
<td>0</td>
<td>4.5</td>
<td>10.5</td>
<td>0</td>
</tr>
<tr>
<td>WC-6Co-6Ni</td>
<td>6.4</td>
<td>0.4</td>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td>WC-6Co-12Ni</td>
<td>14</td>
<td>1</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>WC-20Co</td>
<td>0</td>
<td>17.5</td>
<td>23.5</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 1. a) Micrograph of WC-6Co-powder. b) EDS of selected area in Figure 1a.
Figure 2. a) Micrograph of pure Co-powder. b) Micrograph of pure Ni-powder.

Figure 3. a) Micrograph of WC-10Co. b) Micrograph of WC-20Co.

Figure 4. a) Micrograph of WC-6Co-6Ni. b) Micrograph of WC-6Co-12Ni.
3.4. Sintered hard metals

After the sintering treatment described above, the density of the sintered hard metals was determined by Arquimedes’ principle, in accordance with the MPIF-95 norm (Table 4). With increasing binder phase contents lower relative densities were determined. Also, the comparison of WC-6Co-12Ni and WC-20Co indicates that Ni in the binder phase lowers the relative density.

Volumetric and linear contractions of the hard metal are compared in Table 5. Radial contraction was smaller than axial contraction, since the latter is more strongly influenced by variations of compacting pressure, temperature and duration of sintering.

Sintered alloys were studied by scanning electron microscopy, which revealed the microstructure better than light microscopy with Murakami attack. Electron microscopic studies showed that sintering of the WC-6Co and WC-10Co powders (Figure 5) led to a homogeneous distribution of the carbide particles and the Co binder phase. Diffusion between carbides and grain growth was observed. Small islands of Co are present in the WC-10Co material. EDS analysis showed only the presence of elements from the raw materials. No sign of contamination by the production process was detected (Figure 6). This applies to all compositions studied.

The microstructure of the Ni-containing samples differs from the Ni-free ones (Figure 7). A finer and more homogeneous distribution

<table>
<thead>
<tr>
<th>Table 2. Apparent density of the hard metals.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition of hard metal</td>
</tr>
<tr>
<td>WC-6%Co</td>
</tr>
<tr>
<td>WC-10%Co</td>
</tr>
<tr>
<td>WC-6%Co6Ni</td>
</tr>
<tr>
<td>WC-6%Co12Ni</td>
</tr>
<tr>
<td>WC-20%Co</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3. Green density of the compacted hard metals.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
</tr>
<tr>
<td>WC-6Co</td>
</tr>
<tr>
<td>WC-10Co</td>
</tr>
<tr>
<td>WC-6Co-6Ni</td>
</tr>
<tr>
<td>WC-6Co-12Ni</td>
</tr>
<tr>
<td>WC-20%Co</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4. Density of sintered hard metals.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition of hard metals</td>
</tr>
<tr>
<td>WC-6Co</td>
</tr>
<tr>
<td>WC-10Co</td>
</tr>
<tr>
<td>WC-6Co-6Ni</td>
</tr>
<tr>
<td>WC-6Co-12Ni</td>
</tr>
<tr>
<td>WC-20Co</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 5. Volumetric and linear contraction of the hard metals.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition of hard metal</td>
</tr>
<tr>
<td>WC-6Co</td>
</tr>
<tr>
<td>WC-10Co</td>
</tr>
<tr>
<td>WC-6Co-6Ni</td>
</tr>
<tr>
<td>WC-6Co-12Ni</td>
</tr>
<tr>
<td>WC-20Co</td>
</tr>
</tbody>
</table>
of carbides and of Ni and Co binder was found, especially in the WC-6Co-6Ni material (Figure 7a). No distinction between Co and Ni binder could be made, nor could be detected islands of Co or Ni, despite of a total binder content of 12%. Small islands of binder phase were found in WC-6Co-12Ni. Growth of carbide particle up to more than 10 μm can be observed in some parts of the specimen (Figure 7b).

The sintered WC-20Co shows islands of Co and growth of carbide particles, some of them reaching about 10 μm (Figure 8). Due to the higher binder content WC particles are completely surrounded by Co.

3.5. Electrochemical behavior

Potentiodynamic tests in H₂SO₄ were performed in order to get an overview of the electrochemical behavior of the sintered hard metals. Figure 9 compares the curves as a function of the Co-binder content. The cathodic curves are nearly identical for the three compositions studied. The same observation was made with respect to the anodic Tafel lines. Therefore the corrosion potentials of the three hard metals are similar. At higher anodic potentials WC20Co reaches a
current density plateau of about 10 mA.cm$^{-2}$. With lower Co content the current density in the anodic potential region becomes smaller. However, WC10Co showed a lower current density than WC6Co, which indicates that other parameter than the binder content might have an influence. This question is also controversially discussed in the literature. Some works report lower current densities with lower binder content11, while others found that the binder content has no influence12. Also, others report that the current density depends on the carbide grain size13.

Figure 10 compares hard metals with different Ni contents. The cathodic curves show a small influence of the Ni content. The anodic curves, however, are shifted to higher potentials with growing Ni content. Therefore, the corrosion potential is also shifted to higher potentials and the corrosion current density becomes smaller with growing Ni content. At higher anodic potentials current densities remain high in all examined materials. Transpassive behavior begins above approximately +1 V.

4. Conclusions

The powder metallurgical production route of WC-Co and WC-CoNi hard metals, starting from a commercial WC-6Co powder, gave satisfactory results for the analysed compositions: WC-10Co, WC-20Co, WC-6Co-6Ni and WC-6Co-12Ni. A homogeneous distribution of the added Co and Ni powders was found, showing that the mixing, milling, compacting and sintering procedures were performed with adequate parameters. No contamination with elements other than the constituents of the raw materials was detected by EDS analysis.

A comparison of sintered density and sintering temperature of the examined alloys shows that sintering temperature is the main factor which determinines the density. The highest sintered density was obtained with the commercial WC-6Co powder which was sintered at the highest temperature. In the case of WC-6Co the different production process of the commercial material might also have an influence on the results. The comparison of WC-6Co-12Ni and WC-20Co indicates that Ni in the binder phase tends to lower the relative density.

Carbide grain growth was observed in all sintered materials, however, a finer distribution of the constituents, WC particles and Co-Ni binder phase, was found in the composition WC-6Co-6Ni.

In the potentiodynamic corrosion tests in sulfuric acid all materials showed a behavior described sometimes as “pseudo-passive”14, which means that the current density in the passive range remains high due to non-adherent, non-protecting corrosion products. The Ni-containing hard metals showed a shift of the anodic curve of metal dissolution, indicating a decrease of the corrosion current density with growing Ni content in the binder.

Acknowledgements

The authors gratefully acknowledge financial support by FINEP and by IMER Usinagem Porto Alegre - RS.

References

2. Rodrigues MF, Bobrovitchii GS, Quintainilha R, Cândido R, Silva G and
 Filgueira M. Sinterização da Liga WC10Co Por Altas Pressões.
3. Thümmler F and Oberacker R. An introduction to powder metallurgy.
4. Schäfer F, Kolaska H and Grewe H. Hartmetalwerkzeuge im Bergbau:
 Pulvermetallurgie der Hartmetalle. Deutschland: FPM-Fachverband
5. Gomes UU, Buriti AC and Silva AGP. Computer Modelling of WC
 Crystallite Cross Section Distribution in WC-Co Hardmetal Grade. In:
 Powder Metallurgy World Congress; 1998; Granada, Espanha.
 25/12/2010.
7. Machado FAL, Filgueira M, Esquef I, Vargas H and Faria Junior RT.
 Caracterização térmica, estrutural e mecânica da liga de Metal duro
 WC-10 % Co. In: Anais do 17º Congresso Brasileiro de Engenharia e
 Ciência dos Materiais – CBECIMat; 2006, Foz do Iguaçu, Brasil.
 Foz do Iguazu: IPEN; 2006.
 Properties and Selection Nonferrous Alloys and Special Purpose
11. Chiaverini V. Metalurgia do pó. 4th ed. São Paulo, Brasil:
12. Paganini PP. Síntese e caracterização de trocadores iônicos inorgânicos
 a base de óxidos mistos estanho-titânio para utilização na recuperação
 de cádmio e níquel e estudos fotoluminescentes. [Dissertação]. São Paulo:
 Instituto de Pesos e Medidas; 2007.
13. Human AM and Exner HE. Electrochemical Behavior of Tungsten-
 Carbide Hard Metals.
 http://dx.doi.org/10.1016/0921-5093(95)10137-3
14. Human AM and Exner HE. The relationship between electrochemical
 behaviour and in-service corrosion of WC based cemented carbides,
 International Journal of Refractory Metals and Hard Materials; 1997,
15. Tomlinson WJ G and Ayerst J. Anodic polarization and corrosion of
 http://dx.doi.org/10.1007/BF01174495
16. Suthriruangwong S, Mori G and Kösters R. Passivity and pseudopassivity
 of cemented carbides. International Journal of Refractory Metals and