

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Seminário do Programa de Pós-Graduação em Engenharia Química

VIII-OKTOBERFÓRUM - PPGEQ

20, 21 E 22 DE OUTUBRO DE 2009

DESENVOLVIMENTO DE CATALISADORES E SUA APLICAÇÃO NA SÍNTESE DE FISCHER-TROPSCH

Guilherme de Souza¹, Oscar W. Perez-Lopez¹

¹ ProCat – Laboratório de Processos Catalíticos
Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul (UFRGS)
R. Eng. Luis Englert, s/n. Campus Central. CEP: 90040-040 - Porto Alegre - RS - BRASIL,
E-MAIL: {gdesouza, perez}@enq.ufrgs.br

Resumo: Foi avaliada a performance de catalisadores Fe-Al e Mg-Fe co-precipitados modificados com Cu e Co aplicados à Síntese de Fischer-Tropsch. Os ensaios catalíticos foram realizados em um reator tubular de leito fixo, sob pressão de 0,18MPa, temperatura de 573K, carga de 500mg e vazão de alimentação de 10mL.min⁻¹ da mistura H₂/CO (razão 2:1) diluída em 40mL.min⁻¹ de N₂. A reação foi conduzida por um período de 6h. Os produtos foram analisados on-line em GC com detectores TCD e FID. Os resultados mostram que há um aumento na área superficial, na atividade e melhoria na seletividade (C3+) da FTS com a adição de pequenas quantidades de Co e Cu. A ativação com H₂ compromete especialmente o desempenho das amostras contendo Cu devido à sinterização deste metal. As amostras do grupo Fe-Al apresentam maior tendência à formação de produtos com cadeias mais longas, mas observa-se uma maior tendência à desativação por deposição de coque. O aumento da quantidade de Cu prejudica a seletividade da reação. A conversão de CO das amostras do grupo Mg-Fe também é comprometida, enquanto que os resultados dos testes com as amostras do grupo Fe-Al não apontaram claramente uma tendência.

Palavras-chave: combustíveis líquidos; Fischer-Tropsch; óxidos mistos.

1. Introdução

No processo GTL (Gas To Liquids), há a formação de hidrocarbonetos líquidos a partir do gás de síntese (H2 e CO), usualmente gerado a partir da reforma catalítica do gás natural (SOUZA et al., 2008). Este processo, também chamado de síntese de Fischer-Tropsch (FTS), tem atraído novamente a atenção dos pesquisadores por ser uma alternativa energética frente ao esgotamento das reservas de petróleo e aos picos no preço do barril de petróleo atingidos recentemente. Outros fatores incentivadores incluem a otimização dos catalisadores e do projeto dos reatores desta tecnologia, os benefícios ambientais decorrentes da redução das emissões atmosféricas, o aumento das reservas de gás natural conhecidas e a viabilidade para exploração de pequenas e remotas reservas deste gás (VOSLOO, 2001; FEIO et al., 2008; DRY, 2002).

Os catalisadores amplamente utilizados na reação FTS dividem-se em catalisadores à base de cobalto e à base de ferro. Este último grupo de catalisadores requer temperaturas mais elevadas pelo fato de os sítios ativos deste metal apresentarem menor atividade quando comparados aos do Co, mas o seu baixo custo torna a sua utilização atrativa. Para melhorar a performance destes catalisadores, geralmente são adicionadas pequenas

quantidades de metais mais nobres, tais como Cu e Ru (HAYAKAWA, TANAKA & FUJIMOTO, 2006; BAHOME *et al.*, 2007). Além destes, também são adicionados componentes alcalinos como K, Mg, Ca e La cuja basicidade influencia a adsorção dos reagentes nos sítios ativos, melhorando a atividade da reação FTS e a seletividade a cadeias mais longas (NAKHAEI POUR *et al.*, 2008).

Um recente trabalho realizado em nosso laboratório mostrou que baixa acidez e elevadas áreas superficiais são obtidas pela co-precipitação de Mg-Fe na razão molar 67:33 (KRUSE & PEREZ-LOPEZ, 2008), mas não há referências de testes de catalisadores com composição semelhante na síntese de Fischer-Tropsch.

Catalisadores Fe-Al co-precipitados, também estudados em nosso laboratório (AZAMBUJA & PEREZ-LOPEZ, 2007), mostraram elevada atividade na reação modelo do etanol, mas testes aplicados à reação FT ainda não foram feitos. A elevada acidez destas amostras pode ser diminuída pela aplicação de metais alcalinos ou metais mais nobres.

O objetivo do presente trabalho é avaliar o desempenho dos grupos de catalisadores Mg-Fe e Fe-Al co-precipitados visando à obtenção de combustíveis líquidos. Nestes grupos incluem-se os catalisadores com

adição de Co e Cu, sendo este último com diferentes quantidades.

2. Materiais e Métodos

2.1. Preparação dos catalisadores

Os catalisadores foram preparados por coprecipitação contínua dos nitratos dos metais, usando como agente precipitante uma solução de carbonato de sódio para os catalisadores do grupo Mg-Fe e uma solução equimolar de carbonato de sódio e hidróxido de sódio para as amostras do grupo Fe-Al. A co-preciptação foi realizada em um reator CSTR encamisado mantendo-se constantes o pH e a temperatura do sistema, mostrado na Figura1.

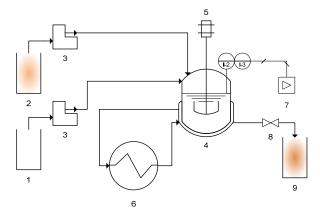


Figura 1. Representação do sistema de co-precipitação. 1) Solução contendo o agente precipitante; 2) Solução contendo a mistura de nitratos; (3) Bombas peristálticas; (4) Reator CSTR encamisado; (5) Agitador mecânico; (6) Banho termostatizado; (7) pHmetro; (8) Válvula de saída; (9) Coleta da solução.

A etapa foi sucedida pela cristalização, em que a mistura foi agitada na respectiva temperatura de coprecipitação por 1h. A mistura foi então filtrada à vácuo, após a qual ocorreu a secagem em estufa a 80°C por 24h. O material foi moído à granulometria desejada, sendo esta porção submetida a tratamento térmico mediante fluxo contínuo de ar sintético a 50mL.min⁻¹ a 400°C por 12h.

2.2. Ensaios catalíticos

Os testes de atividade foram realizados em um reator tubular de leito fixo de vidro, sob pressão de 0,18MPa, carga de 500mg e vazão de alimentação de 10mL.min⁻¹ da mistura H_2/CO , diluída em $40mL.min^{-1}$ de N_2 . A razão molar H₂/CO da mistura utilizada foi de 2:1. A reação foi conduzida por um período de 6h. Os produtos foram analisados on-line em GC Varian 3600CX com coluna empacotada Porapak Q e com detectores de condutividade térmica (TCD) e ionização de chama (FID), sendo usado N₂ como gás de arraste. Foram feitos ensaios catalíticos a 300°C com etapa de ativação "in situ" a 400°C com H₂ diluído (10% v/v) por 4h. Também foram feitos ensaios na mesma temperatura, mas sem a etapa de ativação para o grupo de catalisadores contendo Cu e para a amostra do grupo Mg-Fe contendo Co (auto-ativação a 5°C.min⁻¹). Para verificar o efeito da temperatura sobre a FTS, foi feito um teste a 280°C.

2.3. Caracterização

A área superficial dos catalisadores foi medida utilizando o método de BET por adsorção de N_2 a -196°C em um equipamento multipropósito. As medições foram precedidas por tratamento térmico a 250°C por 1h.

As análises termogravimétricas (TGA) e térmica diferencial (DTA), bem como os ensaios de redução (TPR-H₂) e oxidação (TPO) a temperatura programada foram realizados em uma termobalança TA modelo SDT600 com taxa de aquecimento de 10°C.min⁻¹.

3. Resultados e Discussão

A composição nominal das amostras preparadas e os respectivos valores de área superficial específica obtidos pelo método BET são apresentados na Tabela 1.

Tabela 1. Composição nominal e área superficial específica das amostras dos catalisadores.

Amostra		S_{BET}				
Amostra	Al	Co	Cu	Fe	Mg	(m^2/g)
FeAl	33	0	0	67	0	34
CoFeAl	33	11	0	56	0	143
Cu11FeAl	33	0	11	56	0	109
Cu22FeAl	33	0	22	45	0	170
Cu33FeAl	33	0	33	34	0	197
MgFe	0	0	0	33	67	78
CoMgFe	0	11	0	33	56	111
Cu11MgFe	0	0	11	33	56	140
Cu22MgFe	0	0	22	33	45	113
Cu33MgFe	0	0	33	33	34	121

A razão molar entre os metais Fe-Al e Mg-Fe utilizada se baseou em estudos anteriores feitos em nosso laboratório (AZAMBUJA & PEREZ-LOPEZ, 2007; KRUSE & PEREZ-LOPEZ, 2008).

Conforme mostra a Tabela 1, nas amostras de ambos os grupos é observado um aumento da área superficial com a adição de uma pequena quantidade de um terceiro metal.

Esse aumento na área superficial é maior para as amostras do grupo Fe-Al. A combinação dos dois cátions trivalentes não possibilita a formação de estruturas de óxidos mistos destes metais, resultando em uma baixa área superficial. A adição de metais bivalentes (Cu²⁺ e Co²⁺) resulta na formação de óxidos mistos, propiciando a formação de uma estrutura com maior porosidade, aumentando sensivelmente a área superficial dos catalisadores do grupo.

Segundo Wan *et al.* (2008), a adição de Cu provavelmente proporciona uma melhor dispersão de Fe₂O₃, de forma que a elevação da área superficial de catalisadores que contenham estes metais (Fe e Cu) pode ser atribuída à formação de partículas menores.

Ao contrário da amostra FeAl, o catalisador MgFe possui uma combinação de metais com diferentes valências (Mg²+ e Fe³+). A presença de um metal alcalino terroso diminui a elevada acidez do material conferida pelo Fe, formando uma estrutura similar a das hidrotalcitas, com maior área superficial do que a obtida para a amostra FeAl. Como já existem óxidos mistos na estrutura da amostra MgFe, a adição de outros metais bivalentes não modifica essa estrutura da mesma forma como ocorre nas amostras do grupo Fe-Al, proporcionando um aumento moderado na área superficial. A adição de elevadas quantidades de cobre resulta na diminuição da área superficial específica das amostras do grupo Mg-Fe.

As TGAs das amostras do grupo FeAl e das amostras do grupo Mg-Fe são mostradas na Figura 2 e na Figura 3, respectivamente. A perda de massa que ocorre em temperaturas até 100°C está associada à perda de umidade, enquanto que os picos presentes na faixa de temperaturas entre 150 e 450°C se relacionam à decomposição dos compostos hidroxicarbonatos.

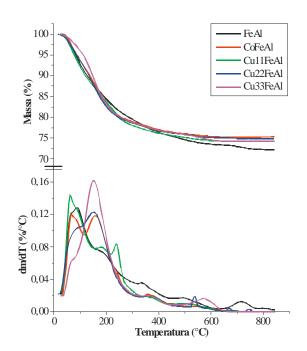


Figura 2. Curvas de TGA das amostras do grupo Fe-Al.

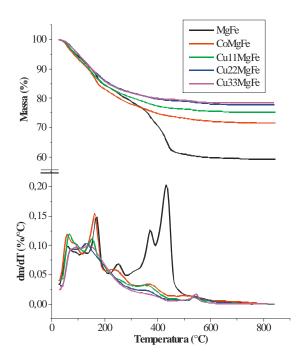


Figura 3. Curvas de TGA das amostras do grupo Mg-Fe.

As DTAs das amostras do grupo Fe-Al e do grupo Mg-Fe com diferentes quantidades de Cu são apresentadas respectivamente na Figura 4 e na Figura 5. As curvas de DTA destas amostras vêm acompanhadas das correspondentes variações percentuais de massa com a temperatura vistas nas TGAs.

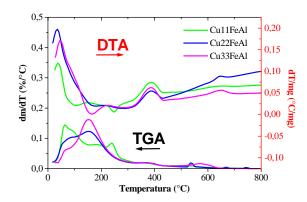


Figura 4. Curvas de DTA das amostras Cu-Fe-Al.

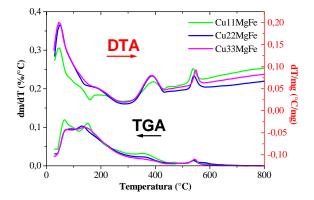


Figura 5. Curvas de DTA das amostras Cu-Mg-Fe.

O acompanhamento das mudanças de temperatura associadas à variação de massa dessas amostras mostra novamente os dois principais processos nas mesmas faixas de temperatura observadas nas curvas de TGA.

No entanto, as amostras Cu-Mg-Fe apresentam um pico na temperatura de 550°C, cuja magnitude não permite a sua associação à perda de massa na temperatura correspondente. Assim, essa variação térmica se associa a algum fenômeno físico que ocorre nesta temperatura, possivelmente uma mudança de fase ou cristalização. Para as amostras Cu-Fe-Al, há uma variação térmica similar, de menor intensidade, na temperatura de 650°C.

A Figura 6 e a Figura 7 mostram respectivamente os perfis de consumo de H_2 com a temperatura obtidos nos ensaios de TPR para as amostras calcinadas do grupo Fe-Al e do grupo Mg-Fe.

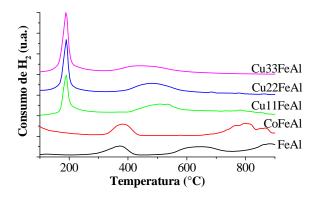


Figura 6. Perfis de TPR-H₂ das amostras do grupo Fe-Al.

A amostra FeAl apresenta um pico na faixa entre 300 e 425°C referente à redução de Fe_2O_3 a Fe_3O_4 . Os dois picos que ocorrem em temperaturas superiores a 550°C relacionam-se a outras transformações envolvendo os óxidos de Fe, possivelmente havendo a redução Fe_3O_4 a FeO e, posteriormente, a formação de Fe^0 .

O primeiro pico de consumo da amostra CoFeAl ocorre em faixa de temperatura $350-425^{\circ}\text{C}$, sugerindo a redução de CoO e de Fe₂O₃. O consumo de H₂ que ocorre a temperaturas superiores a 700°C deve se relacionar com a redução envolvendo os óxidos mistos de Co e Al (CoAl₂O₄).

As amostras CuFeAl apresentam dois picos de redução bem definidos. O primeiro, localizado em temperaturas inferiores (150-215°C) está relacionado à redução de óxido de cobre. Este pico apresenta maior intensidade com o aumento da quantidade de cobre das amostras. Na faixa 350-550°C, há apenas um pico que está relacionado às transições do estado de oxidação do ferro e à redução dos óxidos mistos de cobre.

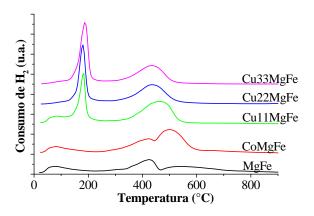


Figura 7. Perfis de TPR-H₂ das amostras do grupo Mg-Fe.

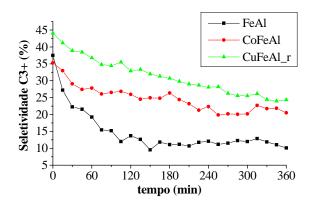
Conforme mostra a Figura 7, a amostra MgFe apresentou dois picos de redução. Na região entre 350 e 450°C, o consumo de H_2 provavelmente está relacionado à redução de Fe_2O_3 a Fe_3O_4 . Acima de 450°C e até 700°C ocorre a passagem para estados de oxidação inferiores, mas não há evidência de passagem para a fase metálica (Fe^0) .

A amostra CoMgFe apresenta perfil com dois picos mais nítidos. O primeiro é similar ao apresentado pela amostra MgFe na faixa 350 - 450°C, também relacionado à redução do óxido de ferro. Outras transformações envolvendo óxidos de ferro e a redução dos óxidos mistos de cobalto estão representadas no segundo pico, localizado entre 450 e 600°C.

Similarmente ao perfil observado para as amostras CuFeAl, as amostras CuMgFe apresentam um pico na faixa 150-215°C associado à redução de óxido de cobre e outro (350-550°C) relacionado às transformações envolvendo os óxidos de ferro e à redução dos óxidos mistos de cobre.

Os resultados de atividade e seletividade do grupo Fe-Al são apresentados na Tabela 2. Além disso, também consta a perda percentual de massa por oxidação de coque por TPO dos catalisadores após a reação.

Tabela 2. Conversão e seletividade do grupo Fe-Al após 6h de reação e perda de massa associada à oxidação de carbono (TPO).

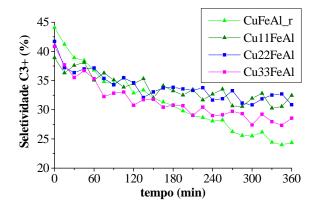

Amostra		% Selet	% CO	$\Delta m_{\rm C}$		
Amostra	C1	C2	C3	C4+	Conv.	(%)
FeAl	65,5	24,4	10,1	0,0	3,7	3,3
CoFeAl	55,0	24,5	14,6	5,9	7,8	5,4
CuFeAl_ra	49,4	26,2	15,9	8,5	6,6	6,0
Cu11FeAl	40,0	27,5	19,7	12,8	21,7	13,7
Cu22FeAl	41,4	27,7	19,5	11,4	17,8	10,7
Cu33FeAl	45,0	26,4	17,9	10,7	18,2	14,3

^a Amostra Cu11FeAl ativada com H₂ a 400°C por 4h.

400°C por 4h, uma vez que a redução dos estados de oxidação dos óxidos mistos se inicia aproximadamente nesta temperatura. As amostras contendo diferentes quantidades de cobre foram auto-ativadas com a própria mistura reacional até a temperatura de reação (5°C.min⁻¹).

Observa-se na Tabela 2 que a adição dos metais Co e Cu às amostras FeAl provoca um aumento significativo na conversão de CO e favorece a seletividade para formação de compostos com cadeias carbônicas mais longas. Comparando os resultados das amostras CoFeAl e CuFeAl_r, se observa que a primeira, pela elevada atividade própria dos sítios do metal Co, atinge maiores conversões de CO. No entanto, a adição de Cu proporciona uma melhoria na atividade - efeito similar ao observado para catalisadores Cu-Fe/Al₂O₃ (PANSANGA *et al.*, 2007) - além de um sensível deslocamento no espectro de produtos a cadeias mais longas.

A variação do percentual dos produtos com cadeias maiores que C3 formados (C3+) durante os ensaios de atividade catalítica das amostras do grupo Fe-Al ativadas com H_2 é mostrada na Figura 8. Há uma variação muito grande na seletividade para produtos C3+ formados pela amostra FeAl. A adição do terceiro metal diminui essa variação dos produtos C3+ ao longo do tempo, sendo que a amostra CoFeAl apresentou a menor faixa de variação.


Figura 8. Perfil de produtos C3+ formados durante a reação FTS das amostras do grupo Fe-Al ativadas com H_2 .

Comparando o efeito da ativação na conversão de monóxido de carbono e no espectro de produtos das amostras CuFeAl_r e Cu11FeAl, observa-se uma conversão de monóxido de carbono muito maior para a amostra auto-ativada. Este resultado mostra que a ativação a 400°C comprometeu a performance destes catalisadores devido à sinterização do cobre, uma vez que a sua redução à forma metálica ocorre a temperaturas inferiores, conforme mostram os perfis de TPR-H₂.

A avaliação dos resultados das amostras auto-ativadas com diferentes quantidades de cobre permite inferir que o aumento do teor de cobre prejudica a formação de cadeias maiores. Os resultados de atividade não mostram uma tendência definida, embora se observe maior conversão de CO para a amostra com menor teor de cobre (Tabela 2).

O perfil de produtos C3+ formados durante os ensaios de atividade catalítica das amostras do grupo Fe-Al auto-

ativadas é mostrado na Figura 9. O perfil da amostra CuFeAl_r foi incluído para facilitar a visualização do efeito da etapa de redução sobre a variação dos produtos C3+ formados durante a FTS.

Figura 9. Perfil de produtos C3+ formados durante a reação FTS das amostras do grupo Fe-Al auto-ativadas.

A Figura 9 mostra que os produtos C3+ das amostras auto-ativadas contendo cobre variam em uma faixa mais estreita de seletividade quando comparadas à amostra CuFeAl_r. Apesar de as amostras Cu11FeAl e Cu22FeAl apresentarem um comportamento semelhante, a amostra Cu33FeAl apresentou uma maior faixa de seletividade. Essa maior variação da amostra Cu33FeAl sugere que o aumento do teor de cobre diminui a tendência à formação dos produtos de interesse no decorrer da reação.

Os resultados de atividade, de seletividade e das TPOs das amostras do grupo Mg-Fe são apresentados na Tabela 3.

Tabela 3. Conversão e seletividade do grupo Mg-Fe após 6h de reação e perda de massa associada à oxidação de carbono (TPO).

reação e perda de massa associada a oxidação de carbono (11 o).							
Amostra		% Selet	% CO	$\Delta m_{\rm C}$			
Amostra	C1	C2	C3	C4+	Conv.	(%)	
MgFe	67,4	21,9	10,7	0,0	5,4	1,5	
CoMgFe_r ^a	53,8	24,2	16,0	6,0	7,9	2,4	
CuMgFe_rb	59,3	22,6	12,8	5,3	7,0	0,1	
Co11MgFe	47,3	25,0	16,8	10,9	19,2	8,3	
Cu11MgFe	60,3	20,8	12,1	6,8	17,8	10,3	
Cu22MgFe	61,3	20,0	11,9	6,8	11,4	4,6	
Cu33MgFe	70,7	15,7	7,7	5,9	8,6	1,4	

^a Amostra Co11MgFe ativada com H₂ a 400°C por 4h.

O efeito de melhoria de performance verificado nas amostras FeAl também foi observado quando adicionados Cu e Co às amostras MgFe, como mostram os resultados da Tabela 3. No entanto, a amostra CoMgFe_r, além da maior atividade, apresenta maior tendência à formação de cadeias mais longas do que a amostra CuMgFe r. O

^b Amostra Cu11MgFe ativada com H₂ a 400°C por 4h.

principal efeito do Cu para estas amostras consiste na baixa tendência à desativação por deposição de coque, revelado pelos ensaios de TPO.

O efeito prejudicial da ativação com H₂ sobre os catalisadores Mg-Fe contendo Cu é verificado comparando os resultados das amostras CuMgFe_r e Cu11MgFe. O espectro dos produtos permanece inalterado, mas a conversão de CO aumenta com a auto-ativação. Entretanto, este aumento de atividade é acompanhado por maior formação de carbono na superfície dos catalisadores.

O mesmo efeito de aumento da conversão de CO é observado comparando os resultados das amostras Co11MgFe e CoMgFe_r. Adicionalmente, a auto-ativação aumentou a tendência à formação de produtos com cadeias mais longas, diferindo do comportamento apresentado pela amostra Cu11MgFe no que se refere à seletividade.

O percentual de produtos C3+ formados no decorrer da reação para as amostras Mg-Fe ativadas com H_2 é mostrado na Figura 9. Na Figura 9 também consta o perfil das amostras Cu11MgFe e Co11MgFe auto-ativadas.

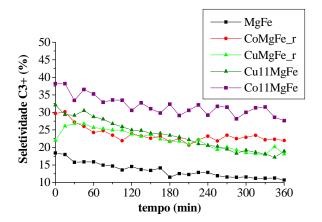


Figura 10. Perfil de produtos C3+ formados durante a reação FTS das amostras do grupo Mg-Fe ativadas com H_2 e das amostras Cu11MgFe e Co11MgFe auto-ativadas.

A Figura 10 mostra que, apesar de o espectro de produtos ser deslocado para a formação de produtos com maior cadeia carbônica, a faixa de variação dos produtos C3+ das amostras do grupo Mg-Fe ativadas com H_2 permanece aproximadamente igual quando são adicionados outros metais.

A auto-ativação não modifica a faixa de variação da seletividade para C3+ da amostra contendo Co, mas ocorre um aumento do intervalo de variação para a amostra Cu11MgFe.

Os resultados das reações auto-ativadas envolvendo as amostras MgFe com diferentes quantidades de cobre mostram que o aumento do teor de Cu prejudica tanto a conversão de CO quanto a seletividade da reação, havendo a formação de cadeias menores (Tabela 3).

A variação da seletividade para os produtos C3+ durante os ensaios de atividade catalítica das amostras auto-ativadas do grupo Mg-Fe é mostrada na Figura 11.

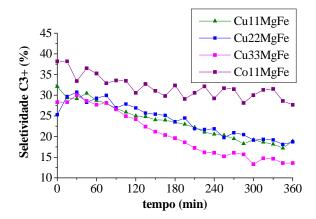
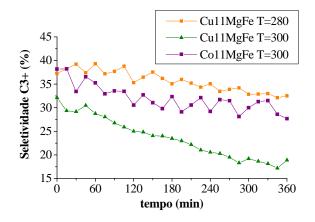


Figura 11. Perfil de produtos C3+ formados durante a reação FTS das amostras do grupo Mg-Fe auto-ativadas.

De forma análoga ao verificado para o grupo Fe-Al, a amostra Cu33MgFe apresenta a maior variação na seletividade C3+ no decorrer da reação. Assim, o aumento do teor de cobre parece ser acompanhado por uma menor tendência à formação dos produtos com maiores cadeias no decorrer da reação.

Para avaliar o efeito da temperatura sobre a FTS, foi realizado um teste a 280°C com a amostra Cu11MgFe auto-ativada. A Tabela 4 reproduz os resultados do teste desta amostra, permitindo a sua comparação com as amostras que apresentaram os resultados mais interessantes do grupo Mg-Fe.

Tabela 4. Conversão e seletividade da amostra Co11MgFe e de amostras Cu11MgFe a diferentes temperaturas após 6h de reação e perda de massa associada à oxidação de carbono (TPO).


Amostra		% Selet	% CO	$\Delta m_{\rm C}$		
Amostra	C1	C2	C3	C4+	Conv.	(%)
$Cu11MgFe$ $T_R = 280^{\circ}C$	41,9	25,6	19,5	13,0	15,7	8,3
$Cu11MgFe$ $T_R = 300^{\circ}C$	60,3	20,8	12,1	6,8	17,8	10,3
$Co11MgFe$ $T_R = 300^{\circ}C$	47,3	25,0	16,8	10,9	19,2	8,3

Conforme reportado na literatura (QIN et al., 2009; RAHIMPOUR & ELEKAEI, 2009), há uma diminuição da conversão de CO acompanhada por uma alteração no espectro dos produtos com a diminuição da temperatura da reação, favorecendo a formação de cadeias carbônicas maiores. Apesar de haver uma redução na atividade, a Tabela 4 mostra que o forte impacto sobre o espectro de produtos formados pela amostra Cu11MgFe torna a sua reação nesta temperatura inferior mais atrativa. A comparação dos resultados também permite afirmar que a amostra possui boa estabilidade térmica.

O teste com a amostra Cu11MgFe na temperatura de 280°C também qualifica o desempenho da amostra Co11MgFe. Esta última, mesmo com teste conduzido a

temperatura superior – que lhe confere uma maior atividade – demonstra a mesma tendência à desativação por deposição de coque, além de fornecer uma distribuição de produtos não muito distante. Além disso, conforme mostra a Figura 12, a variação da seletividade a C3+ para a amostra Co11MgFe se aproxima do apresentado pela amostra Cu11MgFe a 280°C.

Pelos resultados apresentados, conclui-se que a amostra Co11MgFe auto-ativada é a amostra que apresenta os melhores resultados do grupo Mg-Fe, quando comparada às demais na mesma temperatura de reação.

Figura 12. Perfil de produtos C3+ formados durante a reação FTS das amostras auto-ativadas Co11MgFe e Cu11MgFe, esta última conduzida nas temperaturas 280 e 300°C.

Comparando os resultados de seletividade dos dois grupos estudados, o grupo Fe-Al apresenta uma maior tendência à formação de cadeias carbônicas mais longas.

Em relação à atividade, o grupo Fe-Al apresenta conversões de CO próximas das obtidas pelo grupo Mg-Fe, à exceção das amostras auto-ativadas contendo Cu. Neste último conjunto de amostras, as do grupo Fe-Al apresentam conversões de CO maiores. No entanto, parte desta maior atividade está associada à indesejada formação de maior quantidade de material carbonáceo em sua superfície. Assim, os dados de TPO também sugerem uma maior tendência à desativação por deposição de coque para estas amostras.

Não há referências sobre testes destes catalisadores aplicados à FTS nas mesmas condições operacionais. Pansanga *et al.* (2007) obteve espectros de produtos similares aos obtidos para as amostras FeAl contendo Cu, utilizando catalisadores Cu-Fe/Al₂O₃ com mesma pressão, mas a temperaturas menores (280°C). No entanto, a probabilidade de crescimento das cadeias obtida pelo autor após 6h de reação foi inferior, mesmo tendo utilizado temperaturas menores. Essa comparação mostra o bom desempenho deste grupo de catalisadores.

4. Conclusão

Os catalisadores apresentam um aumento significativo em sua área superficial e em sua atividade quando há adição de um terceiro metal. Também se verifica um sensível deslocamento para formação de produtos com cadeias carbônicas mais longas.

A ativação com H_2 das amostras contendo Co e Cu resulta na sinterização destes metais, comprometendo seu desempenho. O Cu é o metal mais afetado pela sinterização por reduzir em faixa de temperatura inferior à própria temperatura da reação.

O aumento da quantidade de cobre diminui a seletividade da reação para os dois grupos. A atividade das amostras do grupo Mg-Fe também diminui com o aumento do teor de Cu. Os resultados de atividade obtidos para o mesmo conjunto de amostras do grupo Fe-Al sugerem um efeito similar.

As amostras do grupo Fe-Al apresentam maior tendência de formação de produtos com maiores cadeias. Em relação à atividade, apresentam valores próximos, excetuando as amostras auto-ativadas contendo Cu. Nestas, as amostras do grupo Fe-Al apresentaram valores mais elevados.

Os resultados de TPO indicam que as amostras do grupo Fe-Al, devido à maior acidez que apresentam, formam maior quantidade de material carbonáceo em sua superfície, sugerindo uma maior tendência à desativação por deposição de coque.

5. Referências

AZAMBUJA, C.; PEREZ-LOPEZ, O. W. Desenvolvimento de catalisadores à base de cobalto e ferro para o processo GTL. In: Salão de Iniciação Científica, 19., 2007, Porto Alegre, Livro de Resumos.

BAHOME, M. C.; JEWELL, L. L.; PADAYACHY, K.; HILDEBRANDT, D.; GLASSER, D.; DATYE, A. K.; COVILLE, N. J. Fe-Ru small particle bimetallic catalysts supported on carbon nanotubes for use in Fischer-Tröpsch synthesis. *Applied Catalysis A: General*, v. 328, p. 243–251, 2007.

DRY, M. E. The Fischer-Tropsch process: 1950-2000. *Catalysis Today*, v. 71, p. 227–241, 2002.

FEIO, L.S.F.; HORI, C.E.; MATTOS, L.V.; ZANCHET, D., NORONHA, F.B.; BUENO, J.M.C. Partial oxidation and autothermal reforming of methane on Pd/CeO2-Al₂O₃ catalysts. *Applied Catalysis A: General*, v. 348, p. 183-192, 2008.

HAYAKAWA, H.; TANAKA, H.; FUJIMOTO, K. Studies on precipitated iron catalysts for Fischer-Tropsch synthesis. *Applied Catalysis A: General*, v. 310, p. 24–30, 2006.

KRUSE, A.; PEREZ-LOPEZ, O. W. Desidrogenação do etilbenzeno sobre catalisadores tipo óxidos mistos. In: CONGRESSO BRASILEIRO DE ENGENHARIA QUÍMICA, 17., 2008, Recife, Anais.

NAKHAEI POUR, A; SHAHRI, S. M. K.; BOZORGZADEH, H. R.; ZAMANI, Y.; TAVASOLI, A.; MARVAST, M. A. Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer-Tropsch synthesis. *Applied Catalysis A: General*, v. 348, p. 201–208, 2008.

- PANSANGA, K.; Lohitharn, N.; Chien, A. C. Y.; Lotero, E.; Panpranot, J.; Praserthdam, P.; Goodwin Jr, J. G. Copper-modified alumina as a support for iron Fischer—Tropsch synthesis catalysts. *Applied Catalysis A: General*, v. 332, p. 130–137, 2007.
- QIN, S.; ZHANG, C.; XU, J.; WU, B.; XIANG, H.; LI, Y. Effect of Mo addition on precipitated Fe catalysts for Fischer–Tropsch synthesis. *Journal of Molecular Catalysis A: Chemical*, v. 304, p. 128–134, 2009.
- RAHIMPOUR, M. R.; ELEKAEI, H. A comparative study of combination of Fischer-Tropsch synthesis reactors with hydrogen-permselective membrane in GTL technology. *Fuel Processing Technology*, v. 90, p. 747-761, 2009.
- SOUZA, A. E. A. M.; MACIEL, L. J. L.; KNOECHELMANN, A.; LIMA FILHO, N. M.; ABREU, C. A. M. Comparative evaluation between steam and autothermal reforming of methane processes to produce syngas. *Brazilian Journal of Petroleum and Gas*, v. 2, p. 27-35, 2008.
- VOSLOO, A. C. Fischer-Tropsch: a futuristic view. *Fuel Processing Technology*, v. 71, p. 149-155, 2001.
- WAN, H.; WU, B.; ZHANG, C.; XIANG, H.; LI, Y. Promotional effects of Cu and K on precipitated iron-based catalysts for Fischer-Tropsch synthesis. *Journal of Molecular Catalysis A: Chemical*, v. 283, p. 33-42, 2008.