

Middleware for MPSoC Real-Time Embedded Applications:
Task Migration and Allocation Services

Elias Teodoro Silva Jr1
·
2

; Carlos Eduardo Pereira 1•
3

; Flávio Rech Wagner1

1Jnstitute oflnformatics, Federal University ofRio Grande do Sul, Brazil
{ etsilvajr, jlavio}@infufi·gs. br

2Federal Center ojtechnological Education ofCeará, Brazil
elias@cefetce.br

3Electrical Engineering Department, Federal University o.fRio Grande do Sul, Brazil
cpereira@ece.ufi'gs.br

ABSTRACT
The use of MPSoCs (multiprocessor systems·on-chip) is a clear
tendency for embedded systems in the current days, especially for
consumer markets. Applications are gl·owing in complexily, and
multiprocessor platfomts can provide perlomtance a:nd Jlexibility.
O n tJtc otJtcr hand, dcvclopcrs are looking for plnt:forms that hclp
to copc with conllicting dcsign clcma.nds, such as low cncrgy
consumption, reduced area, timing requirements, and tight time­
to-market. This paper proposes to move up the abstraction leve! to
deal witlt tltis challenge, by oiTering a rniddleware to encapsulate
platfonn details and preserving real-time properties. Task
migration a11d a.llocation sctviccs are cmphasizcd in tJ1.is papcr,
and initial rcsult.s iJt m.~k migra.6on are prcscntcd rutd cvaluatcd.

1. INTRODUCTION
Real-time embedded systems are expanding and

growing in complexity, imposing multiprocessing
resomces to face high pedonnance and low-energy
requirements. MPSoC (Multiprocessor System on Chip) is
becoming a widely adopt.ed design style, to achieve tight
time-to-market design goals, provide tlexibility and
programmability, and maximize design reuse. The use of a
multiprocessor platfonn brings with il Lhe well known
challenges from parallel and distributed systems [2], related
to concurrency. Sometimes, thesc processors may have a
fixed ISA (Instruction Sct Architecture); sometimes a mix
of processor types is used, like RJSC+DSP, for example.
Additionally, embedded systems impose restrictions to the
solution, like limitation~ in CPU perfonnance, memory,
and power consumplion. Therefore, solulions lhaL come
frorn the clisu·ibuted syslerns conlexL should be cuslornized
to be used for embedded applications.

Developing appl ications for embedded multiprocessor
arch.itectures requires a higher leve] programming model to
reduce software development cosi. and ove...-dl l design time
[3]. Such a rnodel reduces lhe arnount of architecture
detail.s Lhal need lo be handled by applicaLion software
designcrs a.nd thcn spceds up the dcsign proccss. Thc use

45

of a h.igher levei prograrnnúng rnodel will also allow
concunent software/hardware design, thus reducing the
overall dcsign time.

On Lhe other hand, impr<lving the perforrnance of rhe
overall system requires going through low levei
prograrruning, exposing arctút.ectural properlies to the
application levei.

Since applications are p artitioned in processes and
processors, a middleware could be LL~ed lo provide a high
levei inLerface, hiding distribuLion a.~pects [4]. As a
consequence, systern resources ~md application cornponenLs
can be easily reused, sav ing time for a better application
development. In a Lypical DRE (Distributed Real-time
Ernbedded) syst.em, a middleware usually int.egrat.es
reusable software components and decreases the cycle-tin1e
and eff01t required to develop high-quality real-time and
embedded applications and services [5). The middleware
supp01t has not been investigated in the context of MPSoC
applications, but only for DJRE systems. Nevertheless, in
Lhe cont.exl ofMl)SoCs a rniddleware could also become an
inleresting approach Lo raise the abstraclion levei, helping
lo achieve shorler developrnenl times. Moreover, energy
consumption is a kcy issue for embeddcd systems and a
high abstr·action levei dcvclopment tools should also takc
such issues into account.

This paper describes a middleware Lo deal with
distributed applicalions in an :MPSoC using a homogeneous
ISA (Insbl.Jction Set Architecture) and abstracting
inte1faces between HW -SW implementations and network
communication as well. It also includes energy
management services, which work transparently, integrated
with high levei services.

Dynamic task allocalion and rnigration has been shown
to be a promising technique to ensme an adequate load
balanci.ng among processing tmits in an :MPSoC [6](7],
allowing the minimization of some metr·ics, such as
execution time or power con<>umption. This work proposes

to combine lhose allocation and migration services witJ1
en<lrgy managemenl in a transparent way.

The remaining of the paper is organized as follows.
Section 2 gives an overview abouL tl1e developmenl
platform. Thc proposcd middlcwarc is presented in Section
3. Task allocation and migration services are described in
Section 4. ln Section 5, experimental results are prcsentcd.
Finally, in Scction 6 concluding remarks are draWll.

2. H:u-dwar·e platfonn
Figure I depicts the overall platform architecturc,

w hich includes lhe ncLwork anel IJ1e processor.

Figure I: General Platform Architecture

2.1 Configur·able pr·ocessor·
Ovcr lhe last ycars, Java has gaincd popularity as a

suitable programming language for ernbedded anel real­
Lime sys tems clevelopmenl. The defmition of lhe Real-Time
Speci fication for Java (RTSJ) standard [1) is the rnost
promi.ncnt cxamplc of such popularization in the real-time
domain.

For lhis work, a customizable Java processor called
FemtoJava [8] is used, which irnplements an execution
engine for Java in hardware, lhrough a stack rnachine lhat
is compatible wit11 the specification of lhe Java Virtual
Machine (JVM). Different processor organizations are
supportcd, such as multi-cyclc, pipeline, and VLIW [9).
For t11e mulLi-cycle processor, used for t11e e»"J)erinlents Íll

tl1is work, ali instructions are executed in 3, 4, 7, or 14
cycles, because ll1e microconlroller is cacheless anel severa]
instnJCtions are memory bound

A compilcr lhat follows thc JVM specification is uscd.
An environmcnt callcd Sashinlj [8] generates bot11
customizcd codc for thc application software and the
processor description and allows the synthesis of an ASJP
(application-specific integrated processor). The generated
code includes the VI [OL description of the customized

46

processor core (whose ISA cor1tams only instructioos used
by the application software), as well as ROM (programs)
and RAM (variables) memories and can be used to sirnulate
andlor synthcsize thc targct application. Sashinli elinlinates
aU unrcfercnccd mcthods and attributes, as well as the
unused JVM instructions, automatically customizing and
optirnizing the rmal hardware and software code.

2.2 Communi(·ation infr·astr·ucture
Networks-on-chip (1 O] have been proposed in recent

ycars as a scalablc, high-bandwidth, and energy-efficient
communication infrastructure for lvJPSoCs containing a
large nw11bcr of cores. ln trus work, the nel\vork-on-clup
(NoC) SoClN [11] is used Lo iuterconnect lhe processors
inside l11e MPSoC. SoCl N is based on a llexible router,
ca lled RaSoC.

Comnnmication is bascd on message passing.
Mcssages are sent in packct~, which are composed by flits.
A llit (llow conlrol wlit) is lhe smallest wlit over which the
llow control is perfonned. A flit also coi.J1cides with the
physical chaimel word (or phil physical unit).

SoCIN utilizes wormholc packct switching, so it uses
small buffers in the routers, saving size and energy. The
routing is XY, wllich is dcadlock free. Each routcr has 5 bi­
directional ports wit11 input buffer sizc of 4 phits. The phit
size is 4 bytes.

The router description provides parameters to perform
fme adjustment m the NoC propenies, aiming at matching
application rcquircmcnts as wcll as possible. The cost­
pcrformancc tradc-offs can bc cxplorcd by changing NoC
parameters.

SoCLN can support ol11er devices connected to the
routers, besides processors. ln spite of tllat, this work
considered only processors connected ilirough the network,
using homogcncous ISA and privatc mem01y. Other
rcscarch cff01t~ m our rcscarch group have been conducted
Lo use heterogeueous processors aud shared memory, bul
lhey wi ll not be d iscussed in lllis paper.

3. Outlinc ofthc MPSoC Middlcwllrc
This section presents lhe middleware proposed to

fulftll t11e rcquircmcnt~ of a real-time and cmbedded system
with encrgy rcstrictions. An lvJPSoC is assumed as lhe
target hardware platfonn.

Within t11c contcxt of this work, thc middlcware a.ims
at prornoting software and hardware rcusc and includcs
mechanisrns that help Lo express real-time requirernents and
constraints. Those properties should be fulfilled having in
mmd limitations in physical resources like energy,
memory, and proccssor pcrfonnancc.

The proposed architecrure allows a flexible and broad
design space cxploration, by acting upon issues like

hardware or software implementation of services and
objccts and locality of objects in the nctwork.

.Figur" 2 shows the proposed architecture, wlúch is
organi:t.<ld in Lwo abstraclion leveis: structure and service
leveis. The slruelure levei ofTen; lhe more elementary
resources of thc middleware, namcly nctwork
communication and multithread management. Using
classical definitions, thi~ levei could be dcfincd as an
RTOS. Howcvcr, to oflcr tlcxibility and enhance overall
cfficicncy, RTOS-like capabilities a1·e inclu dcd in the
mirldleware. The service levei offers a higher abstmction
nnrl uses resonrces implement.ed nt. t.he structure levei. It
offers oosic services, if one considers t.he complexit.y of a
geuer.:~l purpo~e J.isLribuLed sy~lem. However, lhese
services are sufficieullo supporl mulliprocessor embedded
application dcsign, allowi.ng thc cxploration of different
alTangcmcnts in thc allocation of tasks either at design time
or at execution time.

lL is import.anl lo high.lighl lhe moniloring and DVS
(Dynamic Vollage Scaliug) services, al Lhe slructure levei.
Those services are nol part of lhe original RTSJ startdard,
but t.hcy wcrc dcfUlcd in thc middleware to suppott some
facilitics at the serv ice levei.

This paper discusses the t1.Sk migration and task
allocation services i.n detail. A more generic view will be
given for the other services.

Middleware

Figure 2: Middleware arctúleclure

3.1 Real-time multithread management
ln tJ1e context of t.his work, a thread is a synonym for a

schedulable objecL and is abo called task.
The ReaJ-Time Specification for Java (RTSJ) standard

[I J dcfUles a sct of interfaces wd bchavioral specifications
to allow the dcvelopment of real-time applications using
the Java progranuning language. Among its major fcatures
are: scheduling properties suitable for real-time
applications wit.h provisions for periodic a.nd sporadic tasks
and support for deatUines and CPU time budgets.

47

RTSJ allows the use of schedulable objects, which a1·e
instances of classes til8t in1plement the so callcd
Schcdulable interface, such as Real timeThread. lt aJso
specifies a s"t of classes to slore pararnele~ tbat represenL a
particular resource demand from one or more schedulable
objccts. For examplc, the ReleaseParameters class
(superclass from AperiodicParameters and
PeriodicParamctcrs) includes severa! useful
pa1<unetcrs for the spccifieation of real-time requ.iremcnts,
such as cyclic activation and dcadlines. Morcover, it
n rpports thc cxprcssion of thc following clements: absoluto
and relativc time valucs, timcrs, pcriodic md apcriodic
lasks, and schedul ing policies.

i\long wit.h the Jnvn processar there is an API [1 3] that
supportJ> the specifícation of concurrent tasks and allows
lhe specificaliou of limi.ug con~lnsin(J;, implernenting a
subsel of lhe RTSJ staudard.

The scheduling structure coru;isls of 31'1 additional
process that is in chargc of allocating the CPU for those
application-processes tlwt are rcady to execute. exactly like
in nn RTOS. i\pplication developers should choose the
most suitable scheduling algorithm at design time.
Therefore, a custornized scheduler is synthesized with the
whole applicotion iulo Lhe em be<.kled target syslem.

Currenlly, four scheduling algorilhm:; are available:
EDF, RM, Fixed Priority (software wd hardware
implementations). and Time-Triggered.

3.1.1 Additiona!functions toRTSJ
The so called fursction 'rnonitoriug ' aims a L measuring

resources of the local processor, like available memory wd
proccssor utilization. This function is offcrcd to the task
allocation scrvicc to hclp its dccision when adding a new
thrcad to a processar.

A DVS (Dynamie Vol t~'lge ::>caling) f1mctiona.lity is
added lo lhe scheduler~ aud allows the application lo acl
upon lhe hardware for energy reduction pwposes in a
transparcnt way. The use of DVS algoritlm1s, like thc
cyclc-consCIV i.ng onc [151, o peru; spacc for energy
rcduction at cxccution time. By using a DVS capability, tl1c
schednler can manage tl1e local processar frequency to the
lowest va lue able to match tl1e deadlines of the threads
:'ldded lo lhe scl reduler. Frorn IJre de~igner's poinl.-of-view,
it i~ enough lo u.~e a schedl!ler lhaL is able l.o rnamtge DVS
resouroes.

3.2 Nctwo•·k communication
The communication API (COM-API) encapsulates

transpon and datalink laycrs, providing an interface to Lhe
application laycr 121.

The communication system provides support to
message exchange among applications running in different

processors. The API allows applications to establish a
communication channel through the network, which can be
used to send and receive messages. The service allows the
assignment of different priorities to messages anel can run
in a multithread environment. From the application point­
ot~v iew, the system is able to open and close connections
as well as to send and receive messages, being accessecl by
differenl threads simultaneously.

The COM-API works together wilh the RTSJ -Al'l,
using processar features to pro v ide comnnmication v ia a
network i.ntetface. RTSJ-API provides schedulable objects
(for real-time threads) and relativc time objects.

In orcler to of1er a larger design space to be explored in
the development of application-specific systems, a
hardware implementation of the conunun.ication service
was also developed (18]. lt is encapsulated in a class called
Hw'f'ransport and can be used in the same way as the
software implementation (called Tr a nsport). The Java
processor interacts wilh lhis communicalion block
implementecl in hardware as with any other I/0 device.

The differences whcn using hardware a:nd softwru·e
implement.ations are transparent to the deve 1oper, since
they are encapsulated in difl"erent classes that implement
the same interface.

3.3 Locality absta·action
An import.ant demand for design space exploration in

an MPSoC system is to allow the allocation of threads
everywhere in Lhe nelwork, making this localiLy transparent
Lo lhe application unLil run-Lime. This property requires an
abslract locality mechanism irt order Lo allow access Lo
other objects even when thei.r location is u.nk.nown at
development time. Morcovcr, this mcchru1ism should bc
integrated with the RTSJ-API in order to ofler temporal
guru·ru1tees for messagc delive1y.

A simpli fied rnechanisrn for rernote rnethod invocat.ion
was proposed and implemented based on RMI from
stru1dru·d Java (1 7]. A conceptual modification was
introduced in this mcchanism using time bounds for its
operations using RTSJ objects. A specific class to
encapsulate real-time prope1ties was adcled
(Real TimePa rameters) both in the client and in the
se1ver sides. The tlu·ead (ConnectionHandler) that
deals with connections on t.he server side is another
componenllo bring predictability to RMI. This thread has
real-time prope1t ies following RTSJ rules. This means that
it will be schecluled accordi.ng to i.ts real-time prope1ties,
like period ru1cl cleadline. The RTSJ API allows tl1e
developer to choose a111ong diflerent scheduling policies,
as already me.ntio.ned.

Similarly, a maximum execulion Lime is defmed for Lhe
Connection Handler tlu·ead at development time,

48

usi.ng a11 asy.ncluo.nous event mecllal1ism, as defmed by
RTSJ. Thus, Lhe communication operations will nol violate
the time rese1ved for the othe1· applicatio.n tlu·eads or tasks.

3.4 Hardware-ob,ject implementation
The boundary of the hardware/software partition plays

an imporlar1t role in rneeling design constmints. This
boundruy is oflen decided upon at lhe early slages of
developmenl, leading to premature and i.nadequale design
decisions. Moreover, it is hru·d to move this botmdruy at
!ater stages. Better design decisions could be made at !ater
stages in the development, when a better understanding of
impacts of alternative hardware and software
implementations emerges. This is only possible if the
design process includes tools thal simplify lhe rnovernenl
of cornponenlS' dep loyment fTom hardwru·e to software and
vice-versa, by defin ing a unifo1111 programming model for
both implernentations.

Within the context of this work, a real-time thread can
be implemented in two different ways. A software
irnplernenl.ation is a Java C(>cie executed by tl'1e processor,
as described in (13]. A hru·dware implemenlation execules
autonomously, although con trolled by the processor. A
hardware Lhread has its own Finite SLaLe Machine (FSM)
ar1d can run in parallel with Lhe processor.

A hardware component (HwTI - Hardware Thread
Interface) is defined as an interface between the processor
anel the hardware thread. Another hardware componenl
must implemenL Lhe tlu·ead behav ior anel is called Hardware
Thread Behavior (HwTB). HwTI is parL of the plalfonn,
available Lo developers, while HwTB is part of Lhe
applicatio.n and must be implementecl by developers using a
hardwru·e clescription lru1guage. The proposed ru-dütectme
is introduced in L 141, where it is better described

The corrununication between Lhe application and lhe
HwTB cornponent is managed in software, by an RTSJ
compatible class.

From lhe sofl:ware point-of-view, Lhe hardware thread
is encapsulated by an o~ject that extend~ lhe
Real timeThread class from RTSJ. So, the hardware
thread will be controlled similarly to other threads
implemented in software, by reu~ing schedulers already
available in the RTSJ implementation.

3.5 Encrgy manítgcmcnt
A.n imp01tant clemru1d for MPSoC platfonns is energy

managemenl, since most of them ru·e powcred by batteries.
Low cnergy mcans a smaller batte1y, lower weight, lower
cost, anel so on.

Within the context of th.is work, low power and low
cncrgy are providccl by hardware implemcnted objccts that
can bc includccl as scrvices or as application componcnts.
To rcach flcxibility, a DVS/DFS (Dynamic Voltagc Scaling
I Dynamic Frequency Scaling) functionality is included in
the task schedulers and exposed to be selected by
application developers. The appl ication can define the
scheduler Lo be used in each processor, lhus definir~g if
DVS should be used or not.

4. Task allocation and migr·ation
Task al location and migration are services related to

load balancing, and a homogeneous ISA is required. A task
is allocated before it starts nmning and can be migrated
d1lring il.s execution.

4.1 Task migration
Dynamic task allocation has been shown to be a

prornising Lechrúque Lo oblain Joad balancirJg among
processing mlits in an lVIPSoC (6] [7), allowing the
mitlimization of some vaúables, like cxecution time or
power consumption. To reach dynan1ic allocation, a
migration t.ask mechanism is required. Two cases are
possible: (1) when a new allocation is required in a set of
nol-empLy processors, sorne t.asks could be rnoved Lo
optimize Lhe new disbibulion; (2) when a set of lasks is
finished, a new arr:mgernenl can be rnade to (>ptirnize the
overall processors ' utilization.

Ta.~k-migration approaches usually adopt shared­
memory as the communication model in an SMP
(syrrunetrical mulLi-processing) envirorunent. This work
considers an AMl~ (asyrnrnetrical rnulli-processing) rnodel,
s ince prc>cessor~ hav e dedicaled loca I rnem ory resources.
Although proccssors can havc diffcrcnt organizations, like
pipclincs and multi-cycle oncs, they share a common ISA,
and, thus, tasks can be assigned to diflcrent proccssors. For
the adopted platform (a NoC), message exchangc is a
natural choioe clue to its scalability. Howcver, a shru·ed­
memory model is also under investigation as a
communication strategy, but it is not in the scope of this
paper.

To ofler task migration as a se1vice in the middlewru·e,
ali communication operations should be submitted to the
communication APL Moreover, these communications are
submitted to the discipline of a periodic real-time thread
with a pre-established maximum cost. These properties
make lhe task migration service independenl from the
underlyirJg nelwork and adequale LO be used in real-time
applications.

49

ln the context of the adopted platform, a task is not
bui!L at run-time, bul it is defmed at developmenL lime,
together with its accessed objects. Thus, its address space is
known a priori. The micldlcwru·e can only move quite
independent t.asks. Currently, i f different tasks sha.re the
sarne data, the application is supposed to take care of data
coherence after migration. Some mechanisms to solve this
siLuation are slill under invesligalion, since lhey introduce
an irnport.anl overhead in lhe conunurrication.

Figure 3 shows the class diagram of the itnplcmented
service. The migration service is activated by another
service, called task allocation, which decides which t.ask to
move and its destination, based on restrictions, like
processor or memory utilization, and on objectives, like
load balancing.

I
ServertlarriõQl

('la~o . ..ashim~

<5<>nc1Thrwc(lhread Rooltimolhrooo. <losiA:I:Iross · inl) bo<lron
'"~-ThiBad() • -
IISendHmcle~J ""d
11irA("~Hoodlél() 'oâd

Figure 3: Task rnigration class diagram

The MoveThread class conta.ins the public methocls
sendTh cead () and rece.i. veThread () . 'fhey are
used to activate task sending and -receiving services. They
bol.h reblm FALSE if lhe service is nol available. When lhe
sendTh cea d () rnethod is executed, an evenl handler
(MvThreaclHa nd l er) is executed and configlll'ed to
move lhe lask, wh.ich is passed as a pararneLer. The task is
sliced into blocks, ru1d the fi.r:st one is sent. After that, each
time ru1 ACK is received (from thc rcceivcr), an evcnt is
generated and the next block is sent. The event handler
follows the a.~ynchronous event management policy,
defined by Asyn cEve n tMechanism. Although th.is
procedu.re leads to ru1 increase in the latency of a migration,
it ensures a balanced use of the processor, avoidittg any
interference in other nmning real-time tasks.

Task migralion rneans to send code (melhods) and
attributes of the Real timeThreacl objectas well as the

objects referred to in the Real timeThread. The stack is
:1l~o ~ent. Being :1 s tnck machine, J:1va preserves lllsk
variables in Lhe stack, ~uch lhaL Lhe task cont.ext i:;
replicated when the stack is copied. This property make~
contexL copy easy, avoiiling Lhe use of checkpoinLs. ln
othcr words, thc mcmory used by thc task is confmcd to the
attributes of its classes and to thc stack, which contains
method variables.

For lhe adopted platfonn, lhe position of objects (code
and auributes) i.t1 lhe memory is defmed by a posl­
compilation too!, which can set appropriate attributcs of the
RealtimeThr e ad class. The stack position and sizc are
known by lhe Real Lime Thread. The MoveThread
clll~s obtains those values nt nm-time hefore moving the
task.

Thc migration se1vicc shot1ld bc activatcd in thc
dcsti.t1ation too, as in lhe origin of thc migration, by
invoki.ng thc r ecei veThread () mcthod.

4.2 Task allocation
Thc task allocation scrvicc consists i.n pointing out

nodes for tasks in the network using a distribution function.
ln 161 and [71 different distribution algoritluns were
invcs tigated and some solutions were proposed. Thosc
algnrithms have been fin;tly evaluated in a hig h abstrocLinn
levei simulator and :1fterward~ implemented as part of the
middleware. The role of lhe middleware is lo offer an
interface lo t.he service, lhw making easy for lhe
application developer lhe choice of a distribution
algorithm.

Each node of Ü1e nelwork should have an instance of
the monitoring service (middlewnre stmcture levei), which
is able to irúonn aboul tJ1e availability of resources
(memory, processor time).

Figure 4 shows tl1e class diagram for the task
al locat.ion service. Firsl of al i, Lhe class
Roa l ti me Th rcad, frorn RTSJ, is exl.ended, I}IUS

creating an XtdHeal time'!'hread class. This ncw class
has lhe properties ilie t.ask should irúonn to lhe allocal.ion
scrvicc, as mcmory and proccssor utilization. In fact, for a
pcriodic task, it is possiblc to obtai.n thc processar
utilization by referring to RTSJ parnmeters, since a
periodic Real tirnc'rhread knows its worst case
execution ti.tuc (WCET) and the pcriod as wcll. Thc
utilization is cqual to the WCET dividcd by the pcriod.

50

Allocalor

'1.-.:IAIIC«ll>lllA>;i(lhroo:l -.rel1Too:J1
..:~!«(t'bscM:ic-;o nE)

Figure~: Task allocation class diagrarn

Task distribution is implcmcnted by the classes
Allocator and RcsourceBroker. The design pattem
Stratcgy is uscd to offcr abstract acccss to d.iffcrcnt
allocation algorithms. ln thc d.iagrrun providcd in Figure 4,
Bin-Packing Bcst Fit (BP _BcstFit) and Bi.tt-Packi.ng Worst
Fit (DP _ WorstFit) are shown to illustrate possible
algoritluns, as proposed in 161. Thc findResource ()
metJ1od is implemenl.ed m U1e concreLe classes to perfom1 a
scarch for a node to allocate a task.

5. EXPERIMENTAL RESULTS
For experimental verification, a Sy~temC simulator

uses an RTL description of the Femto.Tava processor. The
network is i.tnplernented as a TLM (trar!Saction-level)
rnodel.

The cxample prcsentcd in tlús paper is a dcmonstration
of the tllsk migration service. Tn thi~ example, three
synthetic ta~ks are executed in one proce~~or a.nd one ta.sk
in auoU1er one. This example represenls fow· different
applications thal do nol h<:tve cornrnunication between
tltern. The tasks are perioJic and lhe rnigralion should nol
jcopardizc their dcadli.ncs. Aftcr some time, onc task
(Tas kC) migratcs from tltc first proccssor to tl1c sccond
one.

Thc A.syncEventMechanism pcriod was choscn
such that lhe task thal mig rnl.es (TaskC) could do it
~tween lwo conseculive execution periods. Figure 5
shows lhe activation times for TaskC, where lhe x-axis
rcprcscnts time in milliscconds. Thc flrst two executions
occtJr at tltc origin proccssor, wh.ilc tl1e remai.ning oncs
occur at the destination. The tJ1ird execution experiences
lflteney dueto the migration t ime. One can ~ee that the task
prompLly recovers its origiuai period (30 rns), as started ir1
tlte origir1. The activation ti.tne of a RealllmeThread is
part of its llttributes and is copied in the migrntion process.

Thus, the scheduler in the destination can keep the original
behavior of the task.

I,, I... IT« I.,.
' i ' ' i

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00

time(ms)

-
Figure 5: Activation time for a migratecL task

The Lime required lo migrale a Lask can be evaluated
from two differe11t points-of-view, as show11 i.t1 Table I.
The fu'St li.t1e shows the computatio11al cost to migrate
TaskC, it means, t.he real cost in processing the migration
service. Thc cost grows linearly as the task size i11creases.
The time values depe11d 011 the latc11cies i.tnposed by thc
conununicatio11 service, provided by the stmctw·e layer.
This throughput ca11 be optimized usi11g a hardware­
implemel1ted conununicatio11 service [18) or a processor
with higher performance [9].

The migration does not occur in a conti.tmous flow,
which could compromise the deadline of other tasks
lUI111Íng On the contrary, the transmission is sliced in
blocks co11trolled by the AsyncEventMechani s m fi·om
RTSJ. ll i.tlcreases LoLallaLency observed by the user of t.he
service, as shown Íl1 the second line in Table 1. In t.he
origir1, it is the time clapsed si11oe the .sendThread ()
met.hod is i.tlvoked unt.il Lhe service finishes. ln t.he
dest.ination, il is the time elapsed smce Lhe [rrsL b!ock starls
to arrive until the .s ta r t () of the Rea l timeThrea ct Íll
Lhe desLinat.ion pmcessor. At both sides (origin and
dest.ination), Lhe end of the service is b-ansparent L<> the
user, i. c., thc mcthods that activate thc service do not rctai.t1
the flow of the code that i.twokes them. The total latency
grows following the period of the Lask t.haL i.mplement~ Lhe
A.syncEventMechanism.

T hl 1 T a e tme measures k f or tas mtgratton
Origin node Destina.tion node

Effective cost (ms) 3.27 3.93

Totallatency (ms) 53.30 51.42

Using Lhe rniddleware, developers save developrnenL
time required L<> implernenl cap~bi lit.ies ~lready provided as
services. Code provided to i.tnplcment HW-SW
conunwücatio11, task migration, remote method i.tlvocatio11,

51

a11d so 011 ca11 be reused Íll ali projects. Table 2 shows the
amotmt of memory used by some serv ices of the
middleware compareci with a classical embeddcd
applicatio11, an MP3 player. The table shows that the total
mernory consumed hy t.he middleware is acceptable for real
applications.

T bl 2M a e : emorvusage
Mlddleware component ROM RAM

Remote method (server) 2139 Bytes 118 Bytes

Task migration (origin) 2343 Bytes 81 Bytes

COM-API (Pack49-Msg500) 4493 Bytes 6345Bytes

API-RTSJ +DVS 4849 Bytes 242Bytes

TOTAL (middleware) 13824 Bytes 6786Bytes

Appllcatlon ROM RAM

Mp3Piayer 41!548 Bytes 63702Bytes

6. CONCLUSIONS
Multiprocessor platfonns bring new challenges to the

development of applicat.ions wilh high q~l ily, rn.atching
real-time requirements anel keeping a Jow energy usage.
This paper proposes lo f;;1ce t.his chaJ lenge using a
middleware Lo abstracl plalfonn details and allowing
developers to express real-time requirements.

An MPSoC with homogeneous ISA is considered tor
lask rnigration anel allocalion services.

Prelimi.t1ary results 011 task migratio11 are presented and
evaluated. Results show that this service presents an
acceptable cost and ofl'ers an adequate abstraction for t.he
application cleveloper. This service runs upon the structure
levei ofthe middleware, which is similar to an RIOS.

The 11ext step of this work is to validate and evaluate
the task allocatio11 serv ice, based 011 algoritluns prev iously
evaluated Íl1 [6]

REFERENCES
[I l Bollclla, G.; Gosl ing, J; Brosgol, B. Thc Real-Time

Specification for Java. 2001. <http://www.J\i .org/rtsj­
Vl.O.pdf>.

[2] Martin, U. Overview ofthe MPSoC Design Chal!enge. ln:
Dcsign Automation Confcrcnce, DAC, 2006, San Francisco,
p. 274-279

[3] JeJTaya, A.A.; Bouchlrima, A . and Pétrot, f . Programming
mode/s and H W-SW interfaces Abstraclionfor Multi­
ProcessorSoC. ln: Ocsign Automation Confcrcncc, DAC,
2006, San FnUlcisco, p. 280-285.

[4) Bemslein, P.A. Middleware: A Modeljor Dislributed Syslem
Services. Communications ofUte ACM, New York, vol.3,
n.2, p.86-97, Fcb. 1996.

[5) Schmidt, D.C. Middleware Techniques and Optimizations
for Realtime, Embedded Syslems. ln: lntcrnational
Symposium on Systcm Synthcsis, 1999, San Jose, CA, p. 12-
16.

[6] Wronski, F.; Brião, E.W.; Wagner, F.R. Evalualing Energy­
aware Task Allocation Strategiesfor MPSoCs. ln: IFTPTC-
1 O Working Conference on Distributed and Parallel
Embedded Systems, DIPES, 2006, Braga, p. 2 15-224.

(7) Acquaviva, A. et al. Assessing Task Migrationlmpact on
Embedded Soft Real-Time Streaming Multimedia
Application.l'. EURASIP Journal on Embedded Syslems,
Ncw York, v. 2008, n.2, p. l -15, Apr. 2008

(8) !lo, S.A., Oarro, L., Jacobi, R.P. Making Java Work.for
Microcontroller Applicotions. IEEE Design & Tesl of
Computers, v. 18, n. 5, p. 100-110, Sept/Oct. 2001.

[9) Beck Filho, A.C.S .; Cano, L. Low Power Java Processor .for
EmbeddedApplications. ln IFIP VLSI -SOC, 2003,
Darmstadt, p. 239-244.

fi O) Benini, L.; Demicheli, O. Networks onChip: A New SoC
Paradi~;,'711. IEEE Compu ler, v.35, n .l, p. 490-504, Jan. 2002.

[11) Zeferino, C .A.; Susin, A.A. SoCJN: Aparametric and
scalable network-on-chip. ln : Symposium on lnlegraled
Circuits anel Systcms l)csign, S BCCI, 2003. l, os Alamit.os:
IEEE Computcr, 2003 p. 169-174.

52

[12] Silva Jr., E.T.; Freitas, E.P.; Wagner, F.R.; Catvallto, F.C.;
Pereira, C.E. Java Framework.for Dislri/:ruted Real-Time
Embedded Systems, ln: 9th IEEE ISüRC, Gycongju, Korea,
2006, p. 85-92

(13] Wehrmeister, M.A.; Bcckcr, L.B. and Pereira, C. E.
Optimizing Real-Time Embedded Systems Development
Using a RTSJ-based API. ln: JTRES 2004, Proceedings
Springer LNCS, Cyprus, October 2004, p. 292-302.

(14) S ilva Jr., E.T.; Andrews, D.; Pereira, C. E. anel Wagner, F.R.
An Infrastrncturefor Hardware-Software Co-design of
Embedded Reai-TimeJavaApplications. ln: I I th IEEE
ISO R C, Orlando, USA, 2008.

[15] Pillai, P. and Shin, K.G. Real-Time Dynamic Voltage Sca/ing
.for Low-Power Embedded Operaling Systerns. ln Proc. ofl.he
18th ACM Symp. on Operating Systems Principies, 2001, p.
89-102.

[16] S puri, M. and Bulazzo, O. !!/]i ciente aperiodic service under
em·liest deadline scheduling. ln: IEEE Real-Time Systems
Symposium, RTSS, 1994.

(17] Grosso, W . .lava RMI. O'Rei] ly Media, 200 1.572 p.

[18) Silva Jr, E.T.; Wagner, F.R.; Freitas, E.P.; KW1Z, L. and
Pereira, C. E. Hardware Supporl in a Middleware.for
Dislribuled and Real-Time Embedded Applications. Joumal
o f lntegrnted Circuits and !Systems, v. '2, n.l, p. :38-44, 'Mar.
2007.

