Middleware for MPSoC Real-Time Embedded Applications:
Task Migration and Allocation Services

Elias Teodoro Silva Jr' ‘2; Carlos Eduardo Pereira1‘3; Flavio Rech Wagner1

nstitute of Informatics, Federal University of Rio Grande do Sul, Brazil
{etsilvajr, flavio}@infufrgs. br
g e . v s . ;
“Federal Center of Technological Fducation of Ceard, Brazil
elias(@cefetce.br
SElectrical Engineering Department, Federal University of Rio Grande do Sul, Brazil
cpereiral@ece.ufrgs. br

ABSTRACT

The use of MP3oCs (multiprocessor systems-on-chip) is a clear
tendency for embedded systems in the current days, especially for
consumer markets. Applications are growing m complexity, and
multiprocessor platforms can provide performance and fexability.
On the other hand, developers are looking for platforms that help
to cope with conflicting design demands, such as low energy
consumption, reduced area, timing requirements, and tight time-
to-market. This paper proposes to move up the abstraction level to
deal with this challenge, by offering a middleware o encapsulate
platform details and preserving real-time properties. Task
migration and allocation services are emphasized in this paper,
and initial results in task migration are presented and evalnated.

1. INTRODUCTION

Real-time embedded systems are expanding and
growing 11 complexity, imposing multiprocessing
resowrces to face high performance and low-energy
requirements. MPSoC (Multiprocessor System on Chip) is
becoming a widely adopted design style, to achieve tight
time-to-market design goals, provide flexibility and
programmability, and maximize design reuse. The use of a
multiprocessor platform brmgs with 1t the well known
challenges from parallel and distributed systems [2], related
to concurrency. Sometimes, these processors may have a
fixed ISA (Instruction Set Architecture); sometimes a mix
of processor types is used, like RISC+DSP, for example.
Additionally, embedded systems impose restrictions to the
solution, like limitations in CPU performance, memory,
and power consumption. Therelore, solutions that come
from the chstributed systems context should be customized

to be used for embedded applications.

Developing applications for embedded multiprocessor
architectures requires a higher level programming model to
reduce software development cost and overall design time
[3]. Such a model reduces the amount ol architecture
details that need to be handled by apphecation software

designers and then speeds up the design process. The use

45

of a ligher level programming model will also allow
concurrent software/hardware design, thus reducing the
overall design time.

On the other hand, improving the performance of the
overall system requires going through low level
programming, exposing architectural properties to the
application level.

Since applications are partitioned in processes and
processors, a middleware could be used to provide a lngh
level interface, hiding distribution aspects [4]. As a
consequence, system resources and applhication components
can be easily reused, saving time for a better application
development. In a typical DRE (Distributed Real-lime
Embedded) system, a middleware usually mlegrates
reusable software components and decreases the cycle-time
and effort required to develop high-quality real-time and
embedded applications and services [5]. The middleware
support has not been investigated in the context of MPSoC
applications, but only for DRE systems. Nevertheless, in
the context of MPSoCs a middleware could also become an
mteresting approach to raise the abstraction level, helping
to achieve shorter development times. Moreover, energy
consumption it a key issue for embedded systems and a
high abstraction level development tools should also take
such issues into account.

This paper describes a middleware to deal wiath
distnbuted applications in an MPSoC using a homogeneous
ISA (Instruction Set Architecture) and abstracting
interfaces between HW-SW implementations and network
communication as well. It also includes energy
management services, which work transparently, integrated
with high level services.

Dynamie task allocation and migration has been shown
to be a promising technique to ensure an adequate load
balancing among processing units in an MPSoC [6][7],
allowing the minimization of some metrics, such as
execution time or power consumption. This work proposes

to combine those allocation and migration services with
energy management in a transparent way.

The remaining of the paper is organized as follows.
Section 2 1
platform. The proposed middleware is presented in Section
3. Task allocation and migration services are described in
Section 4. In Section 5, experimental results are presented.
Finally, in Section 6 concluding remarks are drawn.

gives an overview about the development

2. Hardware platform
Figure 1 depicts the overall platform architecture,
which includes the network and the processor.

d;
Processor Output
Architecture acK Interface|
Py
l ackT data ack| data
4

It
Interface| 3¢

Figure 1: General Platform Architecture

2.1 Configurable processor

Over the last years, Java has gamned popularity as a
suitable programming language for embedded and real-
time systems development. The definition of the Real-Time
Specification for Java (RTSJ) standard [1] is the most
prominent example of such popularization in the real-time
domain.

For this work, a customizable Java processor called
Femtolava [8] i1s used, which implements an execution
engine for Java in hardware, through a stack machine that
is compatible with the specification of the Java Virtual
Machine (JVM). Different processor organizations are
supported, such as multi-cycle, pipeline. and VLIW [9].
For the multi-cycle processor, used for the experiments in
this work, all instructions are executed in 3, 4, 7, or 14
cycles, because the microcontroller 1s cacheless and several
instructions are memory bound.

A compiler that follows the JVM specification is used.
An environment called Sashimi [8] generates both
customized code for the application software and the
processor description and allows the synthesis of an ASIP
{application-specific integrated processor). The generated
code includes the VHDIL description of the customized

46

processor core (whose ISA contains only instructions used
by the application software), as well as ROM (programs)
and RAM (variables) memories and can be used to simulate
and/or synthesize the target application. Sashimi eliminates
all unreferenced methods and attributes, as well as the
unused JVM instructions, automatically customizing and
optimizing the final hardware and software code.

2.2 Communication infrastructure

Networks-on-chip [10] have been proposed in recent
years as a scalable, high-bandwidth, and energy-efficient
communication mnfrastructure for MPSoCs containing a
large number of cores. In this work, the network-on-chip
(NoC) SoCIN [11] 1s used to interconnect the processors
mside the MPSoC. SoCIN 1s based on a flexible router,
called RaSoC.

Communication 1s based on message passing.
Messages are sent in packets, which are composed by flits.
A flit (flow control unit) is the smallest unit over which the
flow control is performed. A flit also coincides with the
physical channel word (or phit — physical umt).

SoCIN utilizes wormhole packet switching, so it uses
small buffers in the routers, saving size and energy. The
routing is XY, which is deadlock free. Each router has 5 bi-
directional ports with input buffer size of 4 phits. The phit
size 1s 4 bytes.

The router description provides parameters to perform
fine adjustment in the NoC properties, aiming at matching
application requirements as well as possible. The cost-
performance trade-ofts can be explored by changing NoC
parameters.

SoCIN can support other devices commected to the
routers, besides processors. In spite of that, this work
considered only processors connected through the network,
using homogeneous ISA and private memory. Other
research efforts in our research group have been conducted
to use helerogeneous processors and shared memory, but
they will not be discussed in this paper.

3. Outline of the MPSoC Middleware

This section presents the middleware proposed to
fulfill the requirements of a real-time and embedded system
with energy restrictions. An MPSoC is assumed as the
target hardware platform.

Within the context of this work, the middleware aims
at promoting software and hardware reuse and includes
mechanisms that help to express real-time requirements and
constraints. Those properties should be fulfilled having n
mind limitations in physical resources like energy,
memory, and processor performance.

The proposed architecture allows a flexible and broad
design space exploration, by acting upon issues like

hardware or software implementation of services and
objects and locality of objects in the network.

Figure 2 shows the proposed archilecture, which 1s
orgamzed m two abstraction levels: structure and service
levels. The structure level offers the more elementary
resources of the middleware, namely network
communication and multithread management. Using
classical definitions, this level could be defined as an
RTOS. However, to offer flexibility and enhance overall
efficiency, RTOS-like capabilities are imcluded in the
middleware. The service level offers a higher abstraction
and uses resources implemented at the structure level. Tt
offers basic services, if one considers the complexity of a
general purpose distributed system. However, these
services are sullicient to support multiprocessor embedded
application design, allowing the exploration of different
arrangements in the allocation of tasks either at design time
or at execution time.

It 1s 1mportant to highlight the momitoring and DVS
(Dynamic Voltage Scaling) services, al the structure level.
Those services are not part of the origmal RTSJ standard,
but they were defined in the middleware to support some
facilities at the service level.

This paper discusses the task migration and task
allocation services in detail. A more generic view will be
given [or the other services.

Mideleware

Senice Level

Hardware Remote Task Task

Object Ohject Migration Allocation

Structure Level

RTSJ (Task Manager,

Network | Scheduler)
Communication
Momlenng [OVS

Figure 2: Middleware architecture

3.1 Real-time multithread management

In the context of this work, a thread is a synonym for a
schedulable object and is also called task.

The Real-Tune Specilication for Java (RTS]) standard
[1] defines a set of mnterfaces and behavioral specifications
to allow the development of real-time applications using
the Java programming language. Among its major features
are: scheduling properties suitable for real-time
applications with provisions for periodic and sporadic tasks
and support for deadlines and CPU time budgels.

47

RTST allows the use of schedulable objects, which are
mmstances of classes that implement the so called
Schedulable interface, such as RealtimeThread. It also
specifies a sel of classes Lo slore paramelers thal represent a
particular resource demand from one or more schedulable
objects. For example, the ReleaseParameters class
(superclass [rom AperiodicParameters and
PeriodicParameters) includes several useful
parameters for the specification of real-time requirements,
such as cyclic activation and deadlines. Moreover, it
supports the expression of the fellowing elements: absolute
and relative time values, timers, periodic and apericdic
tasks, and scheduling pohcies.

Along with the Java processor there is an API [13] that
supports the specification of concurrent tasks and allows
the specilicaion of tumng constramts, mplementing a
subset of the RTSJ standard.

The scheduling structure consists of an additional
process that is in charge of allocating the CPU for those
application-processes that are ready to execute, exactly like
in an RTOS. Application developers should choose the
most suitable scheduling algorithm at design time.
Therefore, a customized scheduler is synthesized with the
whole apphcation into the embedded target system.

Currently, [our scheduling algorithms are available:
EDF, RM, Fixed Priority (software and hardware
implementations), and Time-Triggered.

3.1.1 Additional functions to R1:SJ

The so called function ‘monitoring” aims al measuring
resources of the local processor, like available memory and
processor utilization. This function is offered to the task
allocation service to help its decision when adding a new
thread to a processor.

A DVS (Dynamic Voltage Scaling) functionality is
added to the schedulers and allows the application to act
upon the hardware for energy reduction purposes m a
transparent way. The use of DVS algorithms, like the
cycle-conserving one [15], opens space for energy
reduction at execution time. By using a DVS capability, the
scheduler can manage the local processor frequency to the
lowest value able to match the deadlines of the threads
added to the scheduler. From the designer’s point-ol-view,
it 1s enough to use a scheduler that is able to manage DVS
TES0Urces.

3.2 Network communication

The communication API (COM-API) encapsulates
transport and datalink layers, providing an interface to the
application layer [2].

The communication system provides support to
message exchange among applications running in different

processors. The ATI allows applications to establish a
communication channel through the network, which can be
used to send and receive messages. The service allows the
assignment of different priorities to messages and can mun
in a multithread environment. From the application point-
of-view, the system is able to open and close connections
as well as to send and receive messages, being accessed by
different threads simultaneously.

The COM-APL works together with the RTSJ-API,
using processor features to provide communication via a
network interface. RTSI-API provides schedulable objects
{for real-time threads) and relative time objects.

In order to offer a larger design space to be explored in
the development of application-specific systems, a
hardware implementation of the communication service
was also developed [18]. It 15 encapsulated in a class called
Hwlransport and can be used in the same way as the
software implementation (called Transport). The Java
processor interacts with this commumcation block
implemented in hardware as with any other I/O device.

The differences when using hardware and software
implementations are transparent to the developer, since
they are encapsulated in different classes that implement
the same interface.

3.3 Locality abstraction

An important demand for design space exploration in
an MPSoC system is to allow the allocation of threads
everywhere m the network, making this localily transparent
to the application until run-tme. This properly requires an
abstract localty mechamsm in order to allow access o
other objects even when their location is unknown at
development time. Moreover, this mechanism should be
integrated with the RTSJ-API in order to offer temporal
guarantees for message delivery.

A simphfied mechamsm for remote method mvocation
was proposed and implemented based on RMI from
standard Java [17]. A conceptual modification was
introduced in this mechanism using time bounds for its
operations using RTSJ objects. A specific class to
encapsulate real-time properties was added
(RealTimeParameters) both in the client and in the
server sides. The thread (ConnectionHandler) that
deals with comnections on the server side 15 another
component to bring predictability to RMI. This thread has
real-time properties following RTST rules. This means that
it will be scheduled according to its real-time properties,
like period and deadline. The RTS] API allows the
developer to choose among different scheduling policies,
as already mentioned.

Sumilarly, a maximum execution time 1s deflined for the
ConnectionHandler thread at development time,

48

using an asynchronous event mechanism, as defined by
RTSI. Thus, the communication operations will not violate
the tine reserved for the other application threads or tasks.

3.4 Hardware-object implementation

The boundary of the hardware/software partition plays
an unportant role m meetmg design constramts. This
boundary 15 often decided upon at the early slages of
development, leading Lo premature and nadequate design
decisions. Moreover, it is hard to move this boundary at
later stapes. Better design decisions could be made at later
stages in the development, when a better understanding of
impacts of alternative hardware and software
implementations emerges. This is only possible if the
design process includes tools that simplify the movement
of components” deployment from hardware to software and
vice-versa, by defining a uniform programming model for
both implementations.

Within the context of this work, a real-time thread can
be implemented in two different ways. A software
implementation 1s a Java code execuled by the processor,
as described i [13]. A hardware implementation executes
autonomously, although controlled by the processor. A
hardware thread has its own Finile State Machine (FSM)
and can run n parallel with the processor.

A hardware component (IIwTI — Ilardware Thread
Interface) 1s defined as an interface between the processor
and the hardware thread. Another hardware component
must implement the thread behavior and is called Hardware
Thread Behavior (HwTIB). HwTI is part of the platform,
avallable to developers, wlile HwIB 15 part of the
application and must be implemented by developers using a
hardware description language. The proposed architecture
1s introduced in | 14|, where it is better described.

The communication between the application and the
HwTB component is managed in software, by an RTSJT
compatible class.

From the software point-of-view, the hardware thread
15 encapsulated by object that
FealtimeThread class from RTSI. So, the hardware
thread will be controlled similarly to other threads
implemented in software, by reusing schedulers already
available in the RTSI implementation.

an extends the

3.5 Energy management

An important demand for MPSoC platforms is energy
management, since most of them are powered by batteries.
Low energy means a smaller battery, lower weight, lower
cost, and so on.

Within the context of this work, low power and low
energy are provided by hardware implemented objects that
can be included as services or as application components.
To reach flexibility, a DVS/DFS (Dynamic Voltage Scaling
/ Dynamic Frequency Scaling) functionality is included in
the task schedulers and exposed to be selected by
application developers. The application can define the
scheduler to be used m each processor, thus defiming 1f
DV should be used or not.

4. Task allocation and migration

Task allocation and migration are services related to
load balancing, and a homogeneous ISA 1s required. A task
is allocated before it starts running and can be migrated
during 1ts execution.

4.1 Task migration

Dynamic task allocation has been shown to be a
promising technique to obtain load balancing among
processing units in an MPSoC [6] [7], allowing the
minimization of some variables, like execution time or
power consumption. To reach dynamic allocation, a
migration task mechanism is required Two cases are
possible: (1) when a new allocation is required in a set of
not-emply processors, some lasks could be moved to
optimize the new distribution; (2) when a setl of tasks 1s
fimshed, a new arrangement can be made to optimize the
overall processors” utilization.

Task-migration approaches usually adopt shared-
memory as the communication model in an SMP
(symmelrical mulli-processing) environment. This work
considers an AMP (asymmetrical multi-processing) model,
since processors have dedhcated local memory resources.
Although processors can have different organizations, like
pipelines and multi-cycle ones, they share a common ISA,
and, thus, tasks can be assigned to different processors. For
the adopted platform (a NoC), message exchange Is a
natural choice due to its scalability. However, a shared-
memory model is also under investigation as a
communication strategy, but it is not in the scope of this
paper.

To offer task migration as a service in the middleware,
all communication operations should be submitted to the
communication APl. Moreover, these communications are
submitted to the discipline of a periodic real-time thread
with a pre-established maximum cost. These properties
make the task migration service mdependent from the
underlying network and adequate to be used m real-time
applications.

49

In the context of the adopted platform, a task is not
buill at run-time, but it 1s defined at development tme,
together with its accessed objects. Thus, its address space is
known a priori. The middleware can only move quite
independent tasks. Currently, if different tasks share the
same data, the application is supposed to take care of data
coherence after migration. Some mechanisms to solve this
situation are stll under mvestigation, smee they mtroduce
an unportant overhead in the communication.

Figure 3 shows the class diagram of the implemented
service. The migration service is activated by another
service, called task allocation, which decides which task to
move and its destination, based on restrictions, like
processor or memory ulilization, and on objectives, like

load balancing.

AsyncEvertHander AsyncEventsiMechanism
(=aito.sashirm realtime) (=aito.sashimi.realtime)
7)
ServerNaming v ThreadHandler AsyncEvent
(saito.sashimi.miRT)| ‘ (saito.sashimi.realtime)
MoveThread

+sendThread thread - RealimeThread, destAddress @ int) - boolean
+recenaThread() : bodlean

#sendHender() . void

frecensHandlen) wod

| I

Transport ‘ ReattineThread ‘ MvThcEvent ‘

{saito.sashimi ApiConi {saito.sashir.realti

Figure 3: Task migration class diagram

The MoveThread class contains the public methods
sendThread ()
used to activate task sending and -receiving services. They
both return FALSE 1f the service 1s not available. When the

and receiveThread(). They are

sendThread () method 15 executed, an event handler
(MvThreadHandler) is executed and configured to
move the task, which 1s passed as a parameter. The lask 15
sliced into blocks, and the first one is sent. After that, each
time an ACK is received (from the receiver), an event is
generated and the next block is sent. The event handler
follows the asynchronous event management policy,
defined by AsyncEventMechanism. Although this
procedure leads to an increase in the latency of a migration,
it ensures a balanced use of the processor, avoiding any
interference n other running real-time tasks.

Task mugration means to send code (methods) and
attributes of the RealtimeThread object as well as the

objects referred to in the Real timeThread. The stack is
also sent. Being a stack machine, Java preserves task
variables in the stack, such that the task context is
replicated when the stack is copied. This property makes
context copy easy, avolding the use of checkpomnts. In
other words, the memory used by the task is confined to the
attributes of its classes and to the stack, which contains
method variables.

For the adopted platform, the position of objects (code
and altnbutes) m the memory 15 defined by a post-
compilation tool, which can set appropriate attributes of the
RealtimeThread class. The stack position and size are
known by the RealtimeThread. The MoveThread
class obtains those values at run-time before moving the
task.

The migration service should be activated in the
destination too, as in the origin of the migration, by
invoking the receiveThread () method.

4.2 Task allocation

The task allocation service consists in pointing out
nodes for tasks in the network using a distribution function.
In [6] and [7] different distribution algorithms were
investigated and some solutions were proposed. Those
algorithms have been firstly evaluated m a high abstraction
level simulator and afterwards implemented as part of the
middleware. The role of the middleware is to offer an
interface lo the service, thus making easy for the
application developer the choice of a distribution
algorithm.

Each node of the network should have an mstance of
the momnitoring service (middleware structure level), which
is able to inform about the availability of resources
{memory, processor Ume).

Figure 4 shows the class diagram for the task
allocation of all
RealtimeThread, RTSJ, 15 extended,
creating an XtdRealtimeThread class. This new class
has the properties the task should mform to the allocation
service, as memory and processor utilization. In fact, for a
periodic task, it is possible to obtain the processor
utilization by referring to RTSI parameters, since a
periodic RealtimeThread knows its worst case
execution time (WCET) and the period as well. The
utilization is equal to the WCET divided by the period.

service. First the class

from thus

50

MWF XtdRealtime Thread
rgeRequiraments()
| Allocator
HinclAliceatonHost thread | XcReatineTheesd | AllocRe quirements
+dlloc{ HostAddress - nt)
L
ResourceBroler i
. HodProperties
HinciRe: | AliocReq gl +getRiesources!)
iy
BP_BedFit BP_WordFit

Figure 4: Task allocation class diagram

Task distribution is implemented by the classes
Allocator and ResourceBroker. The design pattern
Strategy is used to offer abstract access to different
allocation algorithms. In the diagram provided in Figure 4,
Bin-Packing Best Fit (BP BestFit) and Bin-Packing Worst
Fit (BP Worstl'it) are shown to illustrate possible
algorithms, as proposed i [6]. The findRescurce ()
method 1s implemented in the concrele classes to perform a
search for a node to allocate a task.

5. EXPERIMENTAL RESULTS

For experimental verification, a SystemC simulator
uses an RTL description of the Femtolava processor. The
network 1s implemented as a TLM (transaction-level)

model.

The example presented in this paper is a demonstration
of the task migration service. In this example, three
synthetic tasks are executed in one processor and one task
m another one. This example represents fowr different
applications that do not have commumnication belween
them. The tasks are periodic and the migration should not
jeopardize their deadlines. After some time, one task
(TaskC) migrates from the first processor to the second
Or1e.

The AsyncEventMechanism period was chosen
such that the task that migrates (TaskC) could do 1t
between two conseculive execution periods. Figure 5
shows the activation times for TaskC, where the x-axis
represents time in milliseconds. The first two executions
occur at the origin processor, while the remaining ones
occur at the destination. The third execution experiences
latency due to the migration time. One can see that the task
promptly recovers 1ts orgmal period (30 ms), as started m
the ongm. The activation tune of a RealtimeThread 1s
part of its attributes and 1s copied in the migration process.

Thus, the scheduler in the destination can keep the original
behavior of the task.

B9 56

373 33.73 344 12344

T T T T T 1

40.00 G000 80,00 10000 12000 14000

time {ms)

000 20.00

Figure 5: Activation time for a migrated task

The time required to migrale a task can be evaluated
from two different points-of-view. as shown in Table 1.
The first line shows the computational cost to migrate
Task(, it means, the real cost in processing the migration
service. The cost grows linearly as the task size increases.
The time values depend on the latencies imposed by the
communication service, provided by the structure layer.
This throughput can be optimized using a hardware-
implemented communication service [18] or a processor
with higher performance [9].

The migration does not occur in a continuous flow,
which could compromise the deadline of other tasks
runming. On the centrary, the transmission 1s sliced in
blocks controlled by the AsynckEventMechanism from
RTSI. It increases total latency observed by the user of the
service, as shown m the second line m Table 1. In the
origin, it is the time elapsed since the sendThread ()
method 15 mvoked untl the service [imshes. In the
destination, 1t 1s the time elapsed since the [irst block starts
to arrive until the start () of the RealtimeThread in
the destination processor. At both sides (orgin and
destination), the end of the service 1s transparent to the
user, i.e., the methods that activate the service do not retain
the flow of the code that invokes them. The total latency
grows following the period of the task that implements the
AsyncEventMechanism,

Table 1: Time measures for task migration

Origin node | Destination node
Effective cost (ms) 3.27 3583
Total latency (ms) 53.30 51.42

Using the middleware, developers save development
time required to implement capabihiies already provided as
services. Code provided to implement HW-SW
communication, task migration, remote method invocation,

51

and so on can be reused in all projects. Table 2 shows the
amount of memory used by some services of the
middleware compared with a classical embedded
application, an MP3 player. The table shows that the total
memory consumed by the middleware is acceptable for real
applications.

Table 2: Memory usage

Middleware component ROM RAM

Remote method (server) 2139 Bytes 118 Bytes
Task migration (origin) 2343 Bytes 81 Bytes
COM-API {Pack49-Msg500) 4493 Bytes 6345 Bytes
API-RTSJ +DVS 4849 Bytes 242 Bytes
TOTAL (middleware) 13824 Bytes 6786 Bytes
Application ROM RAM

Mp3Player 48548 Bytes | 63702 Bytes

6. CONCLUSIONS

Multiprocessor platforms bring new challenges to the
development of apphcations with ligh quality, matching
real-time requirements and keeping a low energy usage.
This paper proposes o face this challenge using a
middleware (o abstract platform details and allowing
developers to express real-time requirements.

An MPSoC with homogeneous ISA is considered for
task migration and allocation services.

Preliminary results on task migration are presented and
evaluated. Results show that this service presents an
acceptable cost and offers an adequate abstraction for the
application developer. This service runs upon the structure
level of the middleware, which is similar to an RTOS.

The next step of this work is to validate and evaluate
the task allocation service, based on algorithms previously
evaluated in [6)].

REFERENCES

[11 Bollella, (i.; Gosling, J.; Broggol, B. The Real-Time
Specification for Java. 2001. <http://www.rtj.org/rtsj-
V1.0.pdf>

Martin, G. Overview of the MPSoC Design Challenge. 1n:

Design Automation Conference, DAC, 2006, San Francisco
p. 274-279.

21
[3] Jerraya, A.A ., Bouchhima, A and Pétrot, ¥. Programming
models and HW-SW Inferfaces Abstraction for Multi-
Processor SoC. In: Design Automation Conference, DAC,
2006, San Francisco, p. 280-285.

Bemstein, P.A . Middleware: A Model for Distributed Svstem
Serviges. Communications of the ACM, New York, vol.3,
n.2, p.86-97, Feb. 1996.

Schmidt, D.C. Middleware Techniques and Optimizations
Jor Realtime, Embedded Systems. In: International
Sympogium on System Synthesis, 1999, San Jose, CA, p. 12-
16.

Wronski, F.; Brido, EW ., Wagner, F.R. Evaluating Energy-
aware Task Allocation Strategies for MPSoCs. In: IFIP TC-
10 Working Conference on Distributed and Parallel
Embedded Systems, DIPES, 2006, Braga, p. 215-224.

Acquaviva, A. et al. Assessing Task Migration Impact on
Embedded Soft Real-Time Streaming Multimedia
Applications. EURASIP Journal on Embedded Systems,
New York, v. 2008, n.2, p.1-15, Apr. 2008.

Ito, 5.A ., Carro, L., Jacoby, B.P. Making Java Work for
Microcomtroller Applications. IEEE Design & Test of
Computers, v. 18, n. 5, p. 100-110, Sept/Oct. 2001,

Beck Filho, A.C.S.; Camro, L. Low Power Java Processor for
Embedded Applications. In: IFIP VLSI-SOC, 2003,
Darmstadt, p. 239-244.
[10] Bemuim, L.; Demicheli, G. Networks on Chip: A New SeC
Paradigm. IEEE Computer, v.35, .1, p. 490-304, Jan. 2002,
[11] Zeferino, C.A; Susin, AA. SeCIN: A parametric and
sealable network-on-chip. In: Symposium on Integrated
Circuits and Systems Design, SBCCI, 2003. Los Alamitos:
IEEE Computer, 2003, p. 169-174.

[6

(71

(8

(91

52

[12] Silva Jr., ET.; Freitas, EP.; Wagner, F.R ; Carvalho, F.C.,
Perewra, C.E. Java Framework for Distributed Real-Time
Embedded Systems, In: 9th IEEE 1SORC, Gyeongju, Korea,
2006, p. 85-92.

[13] Wehrmeister, M A ; Becker, L.B. and Pereira, CE.
Optimizing Real-Time Embedded Systems Development
Using a RTSJF-based API. In: ITRES 2004, Proceedings
Springer LNCS, Cyprus, October 2004, p. 292-302.

[14] Silva Ir., ET.; Andrews, D.; Pereira, C.E. and Wagner, F.R.
An Infrastructure for Hardware-Software Co-design of
Embedded Real-Time Java Applications. In: 11th IEEE
ISORC, Orlando, USA, 2008,

[15] Pillai, P. and Shin, K.G. Real-Time Dvnamic Voltage Scaling
Jor Low-Power Embedded Operating Systems. In Proc. of the
18th ACM Symp. on Operating Systems Principles, 2001, p.
89-102.

[16] Spurt, M. and Butazzo, G. Efficiente aperiodic service under
earliest deadline scheduling. In: IEEE Real-Time Systems
Symposium, RTSS, 1994,

[17] Grosso, W. Java RAL. (Y Reilly Media, 2001.572 p.

[18] Silva Jr, E.T.; Wagner, I'.R.; Freitas, E.P.; Kunz, L. and
Perewra, C.E. Hardware Support in a Middleware for
Distributed and Real-Time Embedded Applications. Jourmal

of Integrated Cirenits and Systems, v. 2, n.1, p. 38-44, Mar.
2007.

