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ABSTRACT 
The use of MPSoCs (multiprocessor systems·on-chip) is a clear 
tendency for embedded systems in the current days, especially for 
consumer markets. Applications are gl·owing in complexily, and 
multiprocessor platfomts can provide perlomtance a:nd Jlexibility. 
O n tJtc otJtcr hand, dcvclopcrs are looking for plnt:forms that hclp 
to copc with conllicting dcsign clcma.nds, such as low cncrgy 
consumption, reduced area, timing requirements, and tight time­
to-market. This paper proposes to move up the abstraction leve! to 
deal witlt tltis challenge, by oiTering a rniddleware to encapsulate 
platfonn details and preserving real-time properties. Task 
migration a11d a.llocation sctviccs are cmphasizcd in tJ1.is papcr, 
and initial rcsult.s iJt m.~k migra.6on are prcscntcd rutd cvaluatcd. 

1. INTRODUCTION 
Real-time embedded systems are expanding and 

growing in complexity, imposing multiprocessing 
resomces to face high pedonnance and low-energy 
requirements. MPSoC (Multiprocessor System on Chip) is 
becoming a widely adopt.ed design style, to achieve tight 
time-to-market design goals, provide tlexibility and 
programmability, and maximize design reuse. The use of a 
multiprocessor platfonn brings with il Lhe well known 
challenges from parallel and distributed systems [2], related 
to concurrency. Sometimes, thesc processors may have a 
fixed ISA (Instruction Sct Architecture); sometimes a mix 
of processor types is used, like RJSC+DSP, for example. 
Additionally, embedded systems impose restrictions to the 
solution, like limitation~ in CPU perfonnance, memory, 
and power consumplion. Therefore, solulions lhaL come 
frorn the clisu·ibuted syslerns conlexL should be cuslornized 
to be used for embedded applications. 

Developing appl ications for embedded multiprocessor 
arch.itectures requires a higher leve] programming model to 
reduce software development cosi. and ove...-dl l design time 
[3]. Such a rnodel reduces lhe arnount of architecture 
detail.s Lhal need lo be handled by applicaLion software 
designcrs a.nd thcn spceds up the dcsign proccss. Thc use 
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of a h.igher levei prograrnnúng rnodel will also allow 
concunent software/hardware design, thus reducing the 
overall dcsign time. 

On Lhe other hand, impr<lving the perforrnance of rhe 
overall system requires going through low levei 
prograrruning, exposing arctút.ectural properlies to the 
application levei. 

Since applications are p artitioned in processes and 
processors, a middleware could be LL~ed lo provide a high 
levei inLerface, hiding distribuLion a.~pects [ 4]. As a 
consequence, systern resources ~md application cornponenLs 
can be easily reused, sav ing time for a better application 
development. In a Lypical DRE (Distributed Real-time 
Ernbedded) syst.em, a middleware usually int.egrat.es 
reusable software components and decreases the cycle-tin1e 
and eff01t required to develop high-quality real-time and 
embedded applications and services [5). The middleware 
supp01t has not been investigated in the context of MPSoC 
applications, but only for DJRE systems. Nevertheless, in 
Lhe cont.exl ofMl)SoCs a rniddleware could also become an 
inleresting approach Lo raise the abstraclion levei, helping 
lo achieve shorler developrnenl times. Moreover, energy 
consumption is a kcy issue for embeddcd systems and a 
high abstr·action levei dcvclopment tools should also takc 
such issues into account. 

This paper describes a middleware Lo deal with 
distributed applicalions in an :MPSoC using a homogeneous 
ISA (Insbl.Jction Set Architecture) and abstracting 
inte1faces between HW -SW implementations and network 
communication as well. It also includes energy 
management services, which work transparently, integrated 
with high levei services. 

Dynamic task allocalion and rnigration has been shown 
to be a promising technique to ensme an adequate load 
balanci.ng among processing tmits in an :MPSoC [6](7], 
allowing the minimization of some metr·ics, such as 
execution time or power con<>umption. This work proposes 



 
 
 

to combine lhose allocation and migration services witJ1 
en<lrgy managemenl in a transparent way. 

The remaining of the paper is organized as follows. 
Section 2 gives an overview abouL tl1e developmenl 
platform. Thc proposcd middlcwarc is presented in Section 
3. Task allocation and migration services are described in 
Section 4. ln Section 5, experimental results are prcsentcd. 
Finally, in Scction 6 concluding remarks are draWll. 

2. H:u-dwar·e platfonn 
Figure I depicts the overall platform architecturc, 

w hich includes lhe ncLwork anel IJ1e processor. 

Figure I: General Platform Architecture 

2.1 Configur·able pr·ocessor· 
Ovcr lhe last ycars, Java has gaincd popularity as a 

suitable programming language for ernbedded anel real­
Lime sys tems clevelopmenl. The defmition of lhe Real-Time 
Speci fication for Java (RTSJ) standard [1) is the rnost 
promi.ncnt cxamplc of such popularization in the real-time 
domain. 

For lhis work, a customizable Java processor called 
FemtoJava [8] is used, which irnplements an execution 
engine for Java in hardware, lhrough a stack rnachine lhat 
is compatible wit11 the specification of lhe Java Virtual 
Machine (JVM). Different processor organizations are 
supportcd, such as multi-cyclc, pipeline, and VLIW [9). 
For t11e mulLi-cycle processor, used for t11e e»"J)erinlents Íll 

tl1is work, ali instructions are executed in 3, 4, 7, or 14 
cycles, because ll1e microconlroller is cacheless anel severa] 
instnJCtions are memory bound 

A compilcr lhat follows thc JVM specification is uscd. 
An environmcnt callcd Sashinlj [8] generates bot11 
customizcd codc for thc application software and the 
processor description and allows the synthesis of an ASJP 
(application-specific integrated processor). The generated 
code includes the VI [OL description of the customized 
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processor core (whose ISA cor1tams only instructioos used 
by the application software), as well as ROM (programs) 
and RAM (variables) memories and can be used to sirnulate 
andlor synthcsize thc targct application. Sashinli elinlinates 
aU unrcfercnccd mcthods and attributes, as well as the 
unused JVM instructions, automatically customizing and 
optirnizing the rmal hardware and software code. 

2.2 Communi(·ation infr·astr·ucture 
Networks-on-chip (1 O] have been proposed in recent 

ycars as a scalablc, high-bandwidth, and energy-efficient 
communication infrastructure for lvJPSoCs containing a 
large nw11bcr of cores. ln trus work, the nel\vork-on-clup 
(NoC) SoClN [11] is used Lo iuterconnect lhe processors 
inside l11e MPSoC. SoCl N is based on a llexible router, 
ca lled RaSoC. 

Comnnmication is bascd on message passing. 
Mcssages are sent in packct~, which are composed by flits. 
A llit (llow conlrol wlit) is lhe smallest wlit over which the 
llow control is perfonned. A flit also coi.J1cides with the 
physical chaimel word (or phil physical unit). 

SoCIN utilizes wormholc packct switching, so it uses 
small buffers in the routers, saving size and energy. The 
routing is XY, wllich is dcadlock free. Each routcr has 5 bi­
directional ports wit11 input buffer sizc of 4 phits. The phit 
size is 4 bytes. 

The router description provides parameters to perform 
fme adjustment m the NoC propenies, aiming at matching 
application rcquircmcnts as wcll as possible. The cost­
pcrformancc tradc-offs can bc cxplorcd by changing NoC 
parameters. 

SoCLN can support ol11er devices connected to the 
routers, besides processors. ln spite of tllat, this work 
considered only processors connected ilirough the network, 
using homogcncous ISA and privatc mem01y. Other 
rcscarch cff01t~ m our rcscarch group have been conducted 
Lo use heterogeueous processors aud shared memory, bul 
lhey wi ll not be d iscussed in lllis paper. 

3. Outlinc ofthc MPSoC Middlcwllrc 
This section presents lhe middleware proposed to 

fulftll t11e rcquircmcnt~ of a real-time and cmbedded system 
with encrgy rcstrictions. An lvJPSoC is assumed as lhe 
target hardware platfonn. 

Within t11c contcxt of this work, thc middlcware a.ims 
at prornoting software and hardware rcusc and includcs 
mechanisrns that help Lo express real-time requirernents and 
constraints. Those properties should be fulfilled having in 
mmd limitations in physical resources like energy, 
memory, and proccssor pcrfonnancc. 

The proposed architecrure allows a flexible and broad 
design space cxploration, by acting upon issues like 



 
 

hardware or software implementation of services and 
objccts and locality of objects in the nctwork. 

.Figur" 2 shows the proposed architecture, wlúch is 
organi:t.<ld in Lwo abstraclion leveis: structure and service 
leveis. The slruelure levei ofTen; lhe more elementary 
resources of thc middleware, namcly nctwork 
communication and multithread management. Using 
classical definitions, thi~ levei could be dcfincd as an 
RTOS. Howcvcr, to oflcr tlcxibility and enhance overall 
cfficicncy, RTOS-like capabilities a1·e inclu dcd in the 
mirldleware. The service levei offers a higher abstmction 
nnrl uses resonrces implement.ed nt. t.he structure levei. It 
offers oosic services, if one considers t.he complexit.y of a 
geuer.:~l purpo~e J.isLribuLed sy~lem. However, lhese 
services are sufficieullo supporl mulliprocessor embedded 
application dcsign, allowi.ng thc cxploration of different 
alTangcmcnts in thc allocation of tasks either at design time 
or at execution time. 

lL is import.anl lo high.lighl lhe moniloring and DVS 
(Dynamic Vollage Scaliug) services, al Lhe slructure levei. 
Those services are nol part of lhe original RTSJ startdard, 
but t.hcy wcrc dcfUlcd in thc middleware to suppott some 
facilitics at the serv ice levei. 

This paper discusses the t1.Sk migration and task 
allocation services i.n detail. A more generic view will be 
given for the other services. 

Middleware 

Figure 2: Middleware arctúleclure 

3.1 Real-time multithread management 
ln tJ1e context of t.his work, a thread is a synonym for a 

schedulable objecL and is abo called task. 
The ReaJ-Time Specification for Java (RTSJ) standard 

[I J dcfUles a sct of interfaces wd bchavioral specifications 
to allow the dcvelopment of real-time applications using 
the Java progranuning language. Among its major fcatures 
are: scheduling properties suitable for real-time 
applications wit.h provisions for periodic a.nd sporadic tasks 
and support for deatUines and CPU time budgets. 
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RTSJ allows the use of schedulable objects, which a1·e 
instances of classes til8t in1plement the so callcd 
Schcdulable interface, such as Real timeThread. lt aJso 
specifies a s"t of classes to slore pararnele~ tbat represenL a 
particular resource demand from one or more schedulable 
objccts. For examplc, the ReleaseParameters class 
(superclass from AperiodicParameters and 
PeriodicParamctcrs) includes severa! useful 
pa1<unetcrs for the spccifieation of real-time requ.iremcnts, 
such as cyclic activation and dcadlines. Morcover, it 
n rpports thc cxprcssion of thc following clements: absoluto 
and relativc time valucs, timcrs, pcriodic md apcriodic 
lasks, and schedul ing policies. 

i\long wit.h the Jnvn processar there is an API [1 3] that 
supportJ> the specifícation of concurrent tasks and allows 
lhe specificaliou of limi.ug con~lnsin(J;, implernenting a 
subsel of lhe RTSJ staudard. 

The scheduling structure coru;isls of 31'1 additional 
process that is in chargc of allocating the CPU for those 
application-processes tlwt are rcady to execute. exactly like 
in nn RTOS. i\pplication developers should choose the 
most suitable scheduling algorithm at design time. 
Therefore, a custornized scheduler is synthesized with the 
whole applicotion iulo Lhe em be<.kled target syslem. 

Currenlly, four scheduling algorilhm:; are available: 
EDF, RM, Fixed Priority (software wd hardware 
implementations). and Time-Triggered. 

3.1.1 Additiona!functions toRTSJ 
The so called fursction 'rnonitoriug ' aims a L measuring 

resources of the local processor, like available memory wd 
proccssor utilization. This function is offcrcd to the task 
allocation scrvicc to hclp its dccision when adding a new 
thrcad to a processar. 

A DVS (Dynamie Vol t~'lge ::>caling) f1mctiona.lity is 
added lo lhe scheduler~ aud allows the application lo acl 
upon lhe hardware for energy reduction pwposes in a 
transparcnt way. The use of DVS algoritlm1s, like thc 
cyclc-consCIV i.ng onc [151, o peru; spacc for energy 
rcduction at cxccution time. By using a DVS capability, tl1c 
schednler can manage tl1e local processar frequency to the 
lowest va lue able to match tl1e deadlines of the threads 
:'ldded lo lhe scl reduler. Frorn IJre de~igner's poinl.-of-view, 
it i~ enough lo u.~e a schedl!ler lhaL is able l.o rnamtge DVS 
resouroes. 

3.2 Nctwo•·k communication 
The communication API (COM-API) encapsulates 

transpon and datalink laycrs, providing an interface to Lhe 
application laycr 121. 

The communication system provides support to 
message exchange among applications running in different 



 
 

processors. The API allows applications to establish a 
communication channel through the network, which can be 
used to send and receive messages. The service allows the 
assignment of different priorities to messages anel can run 
in a multithread environment. From the application point­
ot~v iew, the system is able to open and close connections 
as well as to send and receive messages, being accessecl by 
differenl threads simultaneously. 

The COM-API works together wilh the RTSJ -Al'l, 
using processar features to pro v ide comnnmication v ia a 
network i.ntetface. RTSJ-API provides schedulable objects 
(for real-time threads) and relativc time objects. 

In orcler to of1er a larger design space to be explored in 
the development of application-specific systems, a 
hardware implementation of the conunun.ication service 
was also developed (18]. lt is encapsulated in a class called 
Hw'f'ransport and can be used in the same way as the 
software implementation (called Tr a nsport). The Java 
processor interacts wilh lhis communicalion block 
implementecl in hardware as with any other I/0 device. 

The differences whcn using hardware a:nd softwru·e 
implement.ations are transparent to the deve 1oper, since 
they are encapsulated in difl"erent classes that implement 
the same interface. 

3.3 Locality absta·action 
An import.ant demand for design space exploration in 

an MPSoC system is to allow the allocation of threads 
everywhere in Lhe nelwork, making this localiLy transparent 
Lo lhe application unLil run-Lime. This property requires an 
abslract locality mechanism irt order Lo allow access Lo 
other objects even when thei.r location is u.nk.nown at 
development time. Morcovcr, this mcchru1ism should bc 
integrated with the RTSJ-API in order to ofler temporal 
guru·ru1tees for messagc delive1y. 

A simpli fied rnechanisrn for rernote rnethod invocat.ion 
was proposed and implemented based on RMI from 
stru1dru·d Java (1 7]. A conceptual modification was 
introduced in this mcchanism using time bounds for its 
operations using RTSJ objects. A specific class to 
encapsulate real-time prope1ties was adcled 
(Real TimePa rameters) both in the client and in the 
se1ver sides. The tlu·ead (ConnectionHandler) that 
deals with connections on t.he server side is another 
componenllo bring predictability to RMI. This thread has 
real-time prope1t ies following RTSJ rules. This means that 
it will be schecluled accordi.ng to i.ts real-time prope1ties, 
like period ru1cl cleadline. The RTSJ API allows tl1e 
developer to choose a111ong diflerent scheduling policies, 
as already me.ntio.ned. 

Similarly, a maximum execulion Lime is defmed for Lhe 
Connection Handler tlu·ead at development time, 
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usi.ng a11 asy.ncluo.nous event mecllal1ism, as defmed by 
RTSJ. Thus, Lhe communication operations will nol violate 
the time rese1ved for the othe1· applicatio.n tlu·eads or tasks. 

3.4 Hardware-ob,ject implementation 
The boundary of the hardware/software partition plays 

an imporlar1t role in rneeling design constmints. This 
boundruy is oflen decided upon at lhe early slages of 
developmenl, leading to premature and i.nadequale design 
decisions. Moreover, it is hru·d to move this botmdruy at 
!ater stages. Better design decisions could be made at !ater 
stages in the development, when a better understanding of 
impacts of alternative hardware and software 
implementations emerges. This is only possible if the 
design process includes tools thal simplify lhe rnovernenl 
of cornponenlS' dep loyment fTom hardwru·e to software and 
vice-versa, by defin ing a unifo1111 programming model for 
both implernentations. 

Within the context of this work, a real-time thread can 
be implemented in two different ways. A software 
irnplernenl.ation is a Java C(>cie executed by tl'1e processor, 
as described in (13]. A hru·dware implemenlation execules 
autonomously, although con trolled by the processor. A 
hardware Lhread has its own Finite SLaLe Machine (FSM) 
ar1d can run in parallel with Lhe processor. 

A hardware component (HwTI - Hardware Thread 
Interface) is defined as an interface between the processor 
anel the hardware thread. Another hardware componenl 
must implemenL Lhe tlu·ead behav ior anel is called Hardware 
Thread Behavior (HwTB). HwTI is parL of the plalfonn, 
available Lo developers, while HwTB is part of Lhe 
applicatio.n and must be implementecl by developers using a 
hardwru·e clescription lru1guage. The proposed ru-dütectme 
is introduced in L 141, where it is better described 

The corrununication between Lhe application and lhe 
HwTB cornponent is managed in software, by an RTSJ 
compatible class. 

From lhe sofl:ware point-of-view, Lhe hardware thread 
is encapsulated by an o~ject that extend~ lhe 
Real timeThread class from RTSJ. So, the hardware 
thread will be controlled similarly to other threads 
implemented in software, by reu~ing schedulers already 
available in the RTSJ implementation. 

3.5 Encrgy manítgcmcnt 
A.n imp01tant clemru1d for MPSoC platfonns is energy 

managemenl, since most of them ru·e powcred by batteries. 
Low cnergy mcans a smaller batte1y, lower weight, lower 
cost, anel so on. 



 
 

Within the context of th.is work, low power and low 
cncrgy are providccl by hardware implemcnted objccts that 
can bc includccl as scrvices or as application componcnts. 
To rcach flcxibility, a DVS/DFS (Dynamic Voltagc Scaling 
I Dynamic Frequency Scaling) functionality is included in 
the task schedulers and exposed to be selected by 
application developers. The appl ication can define the 
scheduler Lo be used in each processor, lhus definir~g if 
DVS should be used or not. 

4. Task allocation and migr·ation 
Task al location and migration are services related to 

load balancing, and a homogeneous ISA is required. A task 
is allocated before it starts nmning and can be migrated 
d1lring il.s execution. 

4.1 Task migration 
Dynamic task allocation has been shown to be a 

prornising Lechrúque Lo oblain Joad balancirJg among 
processing mlits in an lVIPSoC (6] [7), allowing the 
mitlimization of some vaúables, like cxecution time or 
power consumption. To reach dynan1ic allocation, a 
migration t.ask mechanism is required. Two cases are 
possible: (1 ) when a new allocation is required in a set of 
nol-empLy processors, sorne t.asks could be rnoved Lo 
optimize Lhe new disbibulion; (2) when a set of lasks is 
finished, a new arr:mgernenl can be rnade to (>ptirnize the 
overall processors ' utilization. 

Ta.~k-migration approaches usually adopt shared­
memory as the communication model in an SMP 
(syrrunetrical mulLi-processing) envirorunent. This work 
considers an AMl~ (asyrnrnetrical rnulli-processing) rnodel, 
s ince prc>cessor~ hav e dedicaled loca I rnem ory resources. 
Although proccssors can havc diffcrcnt organizations, like 
pipclincs and multi-cycle oncs, they share a common ISA, 
and, thus, tasks can be assigned to diflcrent proccssors. For 
the adopted platform (a NoC), message exchangc is a 
natural choioe clue to its scalability. Howcver, a shru·ed­
memory model is also under investigation as a 
communication strategy, but it is not in the scope of this 
paper. 

To ofler task migration as a se1vice in the middlewru·e, 
ali communication operations should be submitted to the 
communication APL Moreover, these communications are 
submitted to the discipline of a periodic real-time thread 
with a pre-established maximum cost. These properties 
make lhe task migration service independenl from the 
underlyirJg nelwork and adequale LO be used in real-time 
applications. 
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ln the context of the adopted platform, a task is not 
bui!L at run-time, bul it is defmed at developmenL lime, 
together with its accessed objects. Thus, its address space is 
known a priori. The micldlcwru·e can only move quite 
independent t.asks. Currently, i f different tasks sha.re the 
sarne data, the application is supposed to take care of data 
coherence after migration. Some mechanisms to solve this 
siLuation are slill under invesligalion, since lhey introduce 
an irnport.anl overhead in lhe conunurrication. 

Figure 3 shows the class diagram of the itnplcmented 
service. The migration service is activated by another 
service, called task allocation, which decides which t.ask to 
move and its destination, based on restrictions, like 
processor or memory utilization, and on objectives, like 
load balancing. 

I 
ServertlarriõQl 

('la~o . ..ashim~ 

<5<>nc1Thrwc( lhread Rooltimolhrooo. <losiA:I:Iross · inl) bo<lron 
'"~-ThiBad() • -
IISendHmcle~J ""d 
11irA("~Hoodlél() 'oâd 

Figure 3: Task rnigration class diagram 

The MoveThread class conta.ins the public methocls 
sendTh cead () and rece.i. veThread () . 'fhey are 
used to activate task sending and -receiving services. They 
bol.h reblm FALSE if lhe service is nol available. When lhe 
sendTh cea d () rnethod is executed, an evenl handler 
(MvThreaclHa nd l er) is executed and configlll'ed to 
move lhe lask, wh.ich is passed as a pararneLer. The task is 
sliced into blocks, ru1d the fi.r:st one is sent. After that, each 
time ru1 ACK is received (from thc rcceivcr), an evcnt is 
generated and the next block is sent. The event handler 
follows the a.~ynchronous event management policy, 
defined by Asyn cEve n tMechanism. Although th.is 
procedu.re leads to ru1 increase in the latency of a migration, 
it ensures a balanced use of the processor, avoidittg any 
interference in other nmning real-time tasks. 

Task migralion rneans to send code (melhods) and 
attributes of the Real timeThreacl objectas well as the 



 
 

objects referred to in the Real timeThread. The stack is 
:1l~o ~ent. Being :1 s tnck machine, J:1va preserves lllsk 
variables in Lhe stack, ~uch lhaL Lhe task cont.ext i:; 
replicated when the stack is copied. This property make~ 
contexL copy easy, avoiiling Lhe use of checkpoinLs. ln 
othcr words, thc mcmory used by thc task is confmcd to the 
attributes of its classes and to thc stack, which contains 
method variables. 

For lhe adopted platfonn, lhe position of objects (code 
and auributes) i.t1 lhe memory is defmed by a posl­
compilation too!, which can set appropriate attributcs of the 
RealtimeThr e ad class. The stack position and sizc are 
known by lhe Real Lime Thread. The MoveThread 
clll~s obtains those values nt nm-time hefore moving the 
task. 

Thc migration se1vicc shot1ld bc activatcd in thc 
dcsti.t1ation too, as in lhe origin of thc migration, by 
invoki.ng thc r ecei veThread () mcthod. 

4.2 Task allocation 
Thc task allocation scrvicc consists i.n pointing out 

nodes for tasks in the network using a distribution function. 
ln 161 and [71 different distribution algoritluns were 
invcs tigated and some solutions were proposed. Thosc 
algnrithms have been fin;tly evaluated in a hig h abstrocLinn 
levei simulator and :1fterward~ implemented as part of the 
middleware. The role of lhe middleware is lo offer an 
interface lo t.he service, lhw making easy for lhe 
application developer lhe choice of a distribution 
algorithm. 

Each node of Ü1e nelwork should have an instance of 
the monitoring service (middlewnre stmcture levei), which 
is able to irúonn aboul tJ1e availability of resources 
(memory, processor time). 

Figure 4 shows tl1e class diagram for the task 
al locat.ion service. Firsl of al i, Lhe class 
Roa l ti me Th rcad, frorn RTSJ, is exl.ended, I}IUS 

creating an XtdHeal time'!'hread class. This ncw class 
has lhe properties ilie t.ask should irúonn to lhe allocal.ion 
scrvicc, as mcmory and proccssor utilization. In fact, for a 
pcriodic task, it is possiblc to obtai.n thc processar 
utilization by referring to RTSJ parnmeters, since a 
periodic Real tirnc'rhread knows its worst case 
execution ti.tuc (WCET) and the pcriod as wcll. Thc 
utilization is cqual to the WCET dividcd by the pcriod. 
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Allocalor 

'1.-.:IAIIC«ll>lllA>;i( lhroo:l -.rel1Too:J1 
..:~!«( t'bscM:ic-;o nE) 

Figure~: Task allocation class diagrarn 

Task distribution is implcmcnted by the classes 
Allocator and RcsourceBroker. The design pattem 
Stratcgy is uscd to offcr abstract acccss to d.iffcrcnt 
allocation algorithms. ln thc d.iagrrun providcd in Figure 4, 
Bin-Packing Bcst Fit (BP _BcstFit) and Bi.tt-Packi.ng Worst 
Fit (DP _ WorstFit) are shown to illustrate possible 
algoritluns, as proposed in 161. Thc findResource () 
metJ1od is implemenl.ed m U1e concreLe classes to perfom1 a 
scarch for a node to allocate a task. 

5. EXPERIMENTAL RESULTS 
For experimental verification, a Sy~temC simulator 

uses an RTL description of the Femto.Tava processor. The 
network is i.tnplernented as a TLM (trar!Saction-level) 
rnodel. 

The cxample prcsentcd in tlús paper is a dcmonstration 
of the tllsk migration service. Tn thi~ example, three 
synthetic ta~ks are executed in one proce~~or a.nd one ta.sk 
in auoU1er one. This example represenls fow· different 
applications thal do nol h<:tve cornrnunication between 
tltern. The tasks are perioJic and lhe rnigralion should nol 
jcopardizc their dcadli.ncs. Aftcr some time, onc task 
(Tas kC) migratcs from tltc first proccssor to tl1c sccond 
one. 

Thc A.syncEventMechanism pcriod was choscn 
such that lhe task thal mig rnl.es (TaskC) could do it 
~tween lwo conseculive execution periods. Figure 5 
shows lhe activation times for TaskC, where lhe x-axis 
rcprcscnts time in milliscconds. Thc flrst two executions 
occtJr at tltc origin proccssor, wh.ilc tl1e remai.ning oncs 
occur at the destination. The tJ1ird execution experiences 
lflteney dueto the migration t ime. One can ~ee that the task 
prompLly recovers its origiuai period (30 rns), as started ir1 
tlte origir1. The activation ti.tne of a RealllmeThread is 
part of its llttributes and is copied in the migrntion process. 



 

 

Thus, the scheduler in the destination can keep the original 
behavior of the task. 
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Figure 5: Activation time for a migratecL task 

The Lime required lo migrale a Lask can be evaluated 
from two differe11t points-of-view, as show11 i.t1 Table I. 
The fu'St li.t1e shows the computatio11al cost to migrate 
TaskC, it means, t.he real cost in processing the migration 
service. Thc cost grows linearly as the task size i11creases. 
The time values depe11d 011 the latc11cies i.tnposed by thc 
conununicatio11 service, provided by the stmctw·e layer. 
This throughput ca11 be optimized usi11g a hardware­
implemel1ted conununicatio11 service [18) or a processor 
with higher performance [9]. 

The migration does not occur in a conti.tmous flow, 
which could compromise the deadline of other tasks 
lUI111Íng On the contrary, the transmission is sliced in 
blocks co11trolled by the AsyncEventMechani s m fi·om 
RTSJ. ll i.tlcreases LoLallaLency observed by the user of t.he 
service, as shown Íl1 the second line in Table 1. In t.he 
origir1, it is the time clapsed si11oe the .sendThread () 
met.hod is i.tlvoked unt.il Lhe service finishes. ln t.he 
dest.ination, il is the time elapsed smce Lhe [rrsL b!ock starls 
to arrive until the .s ta r t ( ) of the Rea l timeThrea ct Íll 
Lhe desLinat.ion pmcessor. At both sides (origin and 
dest.ination), Lhe end of the service is b-ansparent L<> the 
user, i. c., thc mcthods that activate thc service do not rctai.t1 
the flow of the code that i.twokes them. The total latency 
grows following the period of the Lask t.haL i.mplement~ Lhe 
A.syncEventMechanism. 

T hl 1 T a e tme measures k f or tas mtgratton 
Origin node Destina.tion node 

Effective cost (ms) 3.27 3.93 

Totallatency (ms) 53.30 51.42 

Using Lhe rniddleware, developers save developrnenL 
time required L<> implernenl cap~bi lit.ies ~lready provided as 
services. Code provided to i.tnplcment HW-SW 
conunwücatio11, task migration, remote method i.tlvocatio11, 
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a11d so 011 ca11 be reused Íll ali projects. Table 2 shows the 
amotmt of memory used by some serv ices of the 
middleware compareci with a classical embeddcd 
applicatio11, an MP3 player. The table shows that the total 
mernory consumed hy t.he middleware is acceptable for real 
applications. 

T bl 2M a e : emorvusage 
Mlddleware component ROM RAM 

Remote method (server) 2139 Bytes 118 Bytes 

Task migration (origin) 2343 Bytes 81 Bytes 

COM-API (Pack49-Msg500) 4493 Bytes 6345Bytes 

API-RTSJ +DVS 4849 Bytes 242Bytes 

TOTAL (middleware) 13824 Bytes 6786Bytes 

Appllcatlon ROM RAM 

Mp3Piayer 41!548 Bytes 63702Bytes 

6. CONCLUSIONS 
Multiprocessor platfonns bring new challenges to the 

development of applicat.ions wilh high q~l ily, rn.atching 
real-time requirements anel keeping a Jow energy usage. 
This paper proposes lo f;;1ce t.his chaJ lenge using a 
middleware Lo abstracl plalfonn details and allowing 
developers to express real-time requirements. 

An MPSoC with homogeneous ISA is considered tor 
lask rnigration anel allocalion services. 

Prelimi.t1ary results 011 task migratio11 are presented and 
evaluated. Results show that this service presents an 
acceptable cost and ofl'ers an adequate abstraction for t.he 
application cleveloper. This service runs upon the structure 
levei ofthe middleware, which is similar to an RIOS. 

The 11ext step of this work is to validate and evaluate 
the task allocatio11 serv ice, based 011 algoritluns prev iously 
evaluated Íl1 [ 6] 
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