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ABSTRACT

Over the Web, distributed and heterogeneous sources with structured and related
content form rich repositories of information commonly referred to as dataspaces.
To provide access to this heterogeneous data, information integration systems have
traditionally relied on the availability of a mediated schema, along with mappings
between this schema and the schema of the source schemas.

On dataspaces, where sources are plentiful, autonomous and extremely volatile,
a system based on the existence of a pre-defined mediated schema and mapping
information presents several drawbacks. Notably, the cost of keeping the mappings
up to date as new sources are found or existing sources change can be prohibitively
high.

We propose a novel querying architecture that requires neither a mediated schema
nor source mappings, which is based mainly on indexing mechanisms and on-the-fly
rewriting algorithms. Our indexes are designed for data that is represented as rela-
tions, and are able to capture the structure of the sources, their instances and the
connections between them.

In the absence of a mediated schema, the user formulates structured queries based
on what she expects to find. These queries are rewritten using a best-effort approach:
the proposed rewriting algorithms compare a user query against the source schemas
and produces a set of rewritings based on the matches found.

Based on this architecture, two different querying approaches are tested. Exper-
iments show that the indexing and rewriting algorithms are scalable, i.e., able to
handle a very large number of structured Web sources; and that support simple, yet
expressive queries that exploit the inherent structure of the data.

Keywords: Dataspaces, Data Integration, Search Engine, Indexing, Query Rewrit-
ing.
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1 INTRODUCTION

From data produced by Web services and published from online databases to
Web tables, the volume of structured data on the Web has grown considerably in
the recent past. Additionally, there is a lot of distributed resources related to the
same universe of discourse, and they often present overlapping information about
the same object.

Recent literature refers to these structured Web sources as Dataspaces (HALEVY;
FRANKLIN; MAIER, 2006; FRANKLIN; HALEVY; MAIER, 2005). A simple way
to define a dataspace is as a set of structured and autonomous information sources
that address a specific need and contain (implicit/explicit) connections among them.

In contrast to unstructured (textual) documents, the presence of structure en-
ables rich queries to be posed against dataspaces. This creates new opportunities
for mining, correlating and integrating information from an unprecedented number
of disparate sources (AGRAWAL et al., 2008).

Existing approaches to data integration, however, are very limited when it comes
to dataspaces. Consider, for example, information mediators (WIEDERHOLD,
1997). These systems define an integrated global schema and pre-defined map-
pings that connect this schema with the ones of the sources. Based on the map-
pings, queries over the global schema are translated into queries over the information
sources. This process is best known as query rewriting (ULLMAN, 1997; HALEVY,
2000; BOYD et al., 2004; FRIEDMAN; LEVY; MILLSTEIN, 1999).

Clearly, it would not be feasible to manually create and maintain such a system
for thousands (or even hundreds) of sources. Because new sources are constantly
added and existing sources modified (both content and structure), keeping track of
sources as they change and updating mapping information and global schema can
be prohibitively expensive. Besides, it is unlikely that a single integrated schema
would be suitable for all users and information needs.

Although solutions have been proposed to amortize the cost of integration, either
through mass collaboration (MCCANN et al., 2005) or by using a peer to peer
architecture (TATARINOV et al., 2003), there is still a need to create and maintain
mappings for data to be included in the integration system.

In an orthogonal direction, search engines are also considered for the dataspace
environment. Search engines are highly used to perform keyword search over Web
documents, where information is modelled as bag of words and queried through
simple keyword-based interfaces (BRIN; PAGE, 1998).

When it comes to dataspaces, specialized search engines are required in order
to handle structure. So far, related work accomplished to use search engines as a
mean to reduce maintenance cost, which represents one of the greatest problems
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when dealing with a multitude of sources. However, they are still not able to use
the structure meaningfully. For example, the query expressiveness is limited and
tend to follow the keyword based model, in which queries are simple collections of
terms.

In this thesis we propose a new approach to integration designed to deal with the
scale and dynamic nature of structured Web sources. Our goal is to provide users
the ability to query and integrate a large number of structured sources available on
the Web on the fly, merging the query expressiveness of data integration systems to
the flexibility of dataspace integration systems.

From this merging, three important features in our approach arise:

• There is no global schema: Instead of posing queries over a global schema, a
user formulates queries based on her knowledge of the domain and on what
she expects to find. The queries can be refined as the user explores and learns
more about the information sources.

• Mappings are derived automatically: Instead of requiring mappings to be pre-
defined, a user query is rewritten into queries over the sources based on cor-
respondences (automatically) identified between attributes in the query and
attributes in sources.

• Queries are structured: Queries are more than the simple lists of keywords
from traditional search engines. By exploring the structure of the sources, our
approach allows users to pose meaningful queries and consequently achieve
higher quality answers.

To handle the problem properly, we have built the Eidos architecture. One of
the main premisses of the architecture is to treat each individual data source as a
relation. To support this idea, our underlying model is based on three interconnected
entities: relations, attributes and values. Relationships between these entities are
captured in specialized indexes. In addition, the indexes capture associations across
relations, i.e., relations that share attributes and values.

Using proper wrappers, contents of the sources are extracted as relations and
stored in the indexes. Furthermore, the associations between sources (relations)
are discovered using a simplistic but straightforward approach - by linking relations
that share homonym attributes, and having at least one value in common for these
shared attributes.

Based on the indexes, it is possible to express queries with predicates. Rewriting
mechanisms of Eidos are responsible for finding the sources that best fit the user
requests, compute the answers and even produce results that correlate information
from multiple sources, which enables on-the-fly integration at an unprecedented
scale.

As expected, this best-effort approach cannot give guarantees of coverage (i.e.,
that all answers are retrieved) or even that the returned answers are ‘correct’. In
this thesis, we investigate the consequences of working with unprecise integrations
systems as a way to find structured information on the Web.

This work is structured as follows:
Chapter 2 discusses concepts that apply to data integration systems in general,

such as mediators, wrappers, levels of heterogeneity, different mapping strategies
and characterization of the data sources.
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Chapter 3 focus on the problem of integrating dataspaces. First, it is shown why
traditional data integration system fail to support a large corpus of volatile source
efficiently. Next, we show approaches that do not depend on pre-defined mappings.
Special attention is dedicated to works that are search-engine based.

Chapter 4 presents the proposed Eidos architecture. The components that com-
pose the architecture are described, and those responsible for indexing and query
rewriting are highlighted, as they represent the major contribution of the thesis. It
is shown that the architecture is flexible, and allows components to be replaced in
order to easily adapt the system to different realities, such as new types of data
sources or new querying capabilities.

Chapter 5 shows one of the proposed querying approaches, in which the user is
able to perform Select-Project-Join queries. We describe the indexing and querying
components of the Eidos architecture necessary to support this type of query.

Chapter 6 shows the other proposed querying approach, in which the user specify
selection predicates only - joins are not declared in the query. It is up to the querying
algorithm to decide if the query can be answered by combining information from
multiple sources. This chapter discusses how the indexing and rewriting components
are adapted in order to support this type of query.

As a proof of concept, we built a system that supports queries over large vol-
umes of (real) structured Web information sources. We focused on data that is
structured as relations and whose schema (i.e., attribute names) and contents can
be extracted automatically. Chapters 7 and 8 describe this implementation and
discuss experimental results that indicate that our indexing and query rewriting al-
gorithms are both effective and scalable. We also compare our work with one found
in the literature that is most similar to ours in nature: use indexes to seamlessly
query structured sources on the Web.

Finally, Chapter 9 brings the concluding remarks. It is important to state that
the use of a best-effort approach represents a paradigm shift to data integration,
which deserves a new look and the adaptation of concepts that so far applied to pre-
cise querying mechanisms only. Therefore, we finish this chapter discussing relevant
topics that still need to be addressed in future work.
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2 INFORMATION INTEGRATION

Until recently, information systems were mostly used by applications dedicated
to handle information in a well-defined and controlled context. Examples include
industrial applications (like ERP and CRM) and simple applications suitable for
home users and small companies. In such cases, the relational database technology
is able to handle most of the problems smoothly.

The advent of the Internet represents a mark as to what to expect from infor-
mation systems. The volume of distributed information published on the Web by
unrelated users introduced a challenge that so far did not received much attention:
The problem of integrating information from independent data sources.

The change of perspective lead researches in the quest of new approaches that are
able to handle distributed information, and terms like autonomy and heterogeneity
were introduced as parts of the challenges. Heterogeneity refers to sets of schemas
that are not designed according to a common model/schema. Autonomy refers to
the source being capable of modifying itself without the permission of a central
authority.

Autonomy can occur in different levels, and data integration systems can be
classified according to the level of autonomy of its data sources. At one end are the
integration systems that do not allow the sources to change neither its content nor
its schema. This configuration is found mostly in data replication solutions, where
data needs to be distributed in several nodes, and changes to a node need to be
replicated (or at least accessible) to the others.

Communication occur between a master node and slave nodes. The master node
(the central authority) is allowed to modify data and the slave nodes are periodically
updated by the master. Some extensions consider nodes that act either as master
and slaves (PACITTI; SIMON, 2000). This architecture provides better autonomy,
since several nodes are allowed to modify its own data. Another advantage of having
multiple masters is that nodes can operate off-line: the nodes are updated when the
data link becomes available.

Data replication has many usages, such as improving availability of information,
in the case of node failures, and achieving load balancing, in case of high number
of concomitant accesses (ENSLOW, 1978). Moreover, replication solutions are gen-
erally applied over databases that are designed to solve a specific problem. For
this reason, architectures that support replication usually work with homogeneous
sources, where there is a common schema and access policies.

A higher degree of autonomy is achieved by federated databases (SHETH; LAR-
SON, 1990). A database of this kind is composed by a federation of independent
data sources, in which each of them operates according to its own policies, and
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there is no central authority responsible for accessing/updating information. The
important aspect of this architecture is that the sources continue to operate the
same way as when they were not part of the federation. Besides, data sources can
be heterogeneous.

Federated databases can be loosely coupled or tightly coupled. In a loosely
coupled setting, the location of the sources must be explicitly provided inside the
command language responsible for accessing/updating the data. Additionally, the
user must be aware that different sources may have different schemas, and construct
the commands using the proper elements of each source. The term multi-database
refers to this concept (KENT, 1991). Some databases management systems (like
Oracle) have multi-database support, which enables the user to query and even
update information from sources that are part of the federation. In order to access
distributed sources, the user build SQL commands and indicates the location of each
table. It is then up to the multi-database to coordinate the command execution,
and to control operations like join (in query commands) and transaction atomicity
(in update commands).

In tightly coupled federated databases, the local schemas are integrated as a
unified global schema. Queries are performed over the global schema, regardless
of the individual elements of the local schemas. This increases transparency, since
the user does not need to know the location of the sources or the structure of the
information. This kind of database is commonly referred to as information (or data)
integration systems (CALVANESE et al., 1998).

Information integration systems must provide mechanism that allow users to
access data sources in a transparent fashion, where the data sources can be au-
tonomous and heterogeneous. There are several applications for data integration,
such as corporative integration, data warehouses, data mining, distributed access to
sources on the Web, Hidden Web, access to legacy systems, and data exchange, just
to name a few (HALEVY, 2001; CALÌ et al., 2002).

Figure 2.1 shows, in a simplified manner, the typical design of a data inte-
gration architecture. This architecture is composed by a set of local schemas, a
global (mediated) schema and mappings between the local schemas and the global
schema (BOYD et al., 2004; LENZERINI, 2002). The global schema represents the
querying interface, that is, the user interacts with the system by posing queries over
the global schema (HALEVY, 2001; MANOLESCU; FLORESCU; KOSSMANN,
2001). Note the presence of wrappers in the architecture of the system. This com-
ponent, as the name suggests, wraps a data source so all communications in or out
the source are intercepted and adapted by it.

There are some variants of this design, such as mapping the local sources among
themselves, but the principle remains the same. Given a query, the system uses the
mappings between the global schema and the local schemas in order to send this
global query to the relevant sources. The mappings are also used so this global query
can be translated into a query that uses the constructs of the local schemas. The
problem of translating the global query into sub-queries that use the schema of the
sources is known as query rewriting. The terms query processing, query answering
and query reformulation also refer to the same problem.

One of the main challenges in integration systems is precisely the one of integrat-
ing the sources properly. This particular problem comprises many related subjects
that need to be handled, such as the development of wrappers, the implications of
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Figure 2.1: Typical architecture of data integration systems

having materialized views or not, the reconciliation of schemas (which involves prob-
lems such as schema matching and data cleaning), and the query processing itself.
Putting it all together is a daunting task that very easily ends up with the creation of
a complex architecture. In what follows, an overview of the most important subjects
is presented.

2.1 Integration Architecture

2.1.1 Mediators/Topology

In the world of information integration, the mediator is the module which con-
tains the administrative and technical knowledge to create integrated views of in-
formation that is distributed in several sources (WIEDERHOLD, 1997). From the
architectural point of view, a mediator is composed by a global schema, which is the
front end that expose the information to the outside world, and components that
are dedicated to query processing.

Mediators can be classified as vertical or horizontal, according to the range of
domains they support. Vertical mediators are specialized in a single domain, and
thus provide access to a limited number of sources. On the other hand, horizontal
mediators reach several different domains, and consequently provide access to a
larger number of sources.

The obvious limitation of a mediator is that processes such as maintenance and
query processing require more computational resources as the number of registered
data sources increases. More recently, peer-to-peer (P2P) systems have been pro-
posed as more scalable alternatives than the mediator architecture. Instead of using
a centralized approach where data sources are mapped into a global schema, in
a P2P architecture, there is a network of interconnected mediators (peers), where
mappings are provided between the schemas of the peers (Figure 2.2).

In this approach, a user poses queries using the schema of its own peer. Queries
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Figure 2.2: Network of interconnected mediators

over one peer can obtain relevant data from any reachable peer in the network.
The mappings are traversed by reformulating a query at a peer into queries on
its neighbors (TATARINOV et al., 2003; OOI et al., 2003). This is an interesting
approach to build a horizontal service, in which the computational resources are
distributed across the several mediators that compose the hierarchy.

2.1.2 Wrappers and Extractors

The concept of wrapper was first used in (WIEDERHOLD, 1997). As Figure 2.1
shows, a wrapper acts as an abstraction layer between the global schema and the
sources, allowing the integration system to work with sources that are modelled
using different paradigms. Given a user query, defined in terms of the integration
system’s query language, it is up to the wrapper to adapt the query considering
the model of the local schema. The result of the query, described in terms of the
source, also needs to be adapted to the format expected by the integration system.
In software engineering, a similar concept is present under the name of the adapter
design pattern.

The major benefit of wrappers is that they completely isolate the system from the
sources. New types of data source are supported with no changes to the integration
system, as long as it is possible to build a wrapper that maps the two languages
properly.

Differently than wrappers, extractors are used to transform a data source into
a different type of representation. They are usually employed to transform data
sources that are unstructured (or whose structure is hard to understand) into a
more interpretable structured data format.

For instance, some Web sites expose information in a tabular format. This is
achieved by writing HTML code that is rendered by a browser in a tabular fashion.
In some cases, this structure can be easily inferred by a extractor, when the tables
are built using the proper HTML constructs, such as <tr> and <td>. However,
when other constructs are used, the process of identifying rows and cells becomes
more complex.

It is important to note the difference between an extractor and a wrapper. The
wrapper resolves the structure differences between the communicating sides, and it
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assumes that the local data sources are structured. It is up to the extractor to reveal
the structure of a data source, so the information underneath it can be processed.
In some cases, extractors are built as part of wrappers (GRUSER et al., 1998).
However, extractors can also be built to be used in isolation, if necessary.

2.2 Levels of Heterogeneity

There is a great number of data sources published over the Web, in many different
formats. One of the primary goals of an integration system is to provide access to
as many of them as possible. This goal is hard to achieve, considering the sources
are highly heterogeneous. Several factors contribute to form heterogeneous data
sources, such as the ones listed below:

Format/model: Data sources can expose information in different formats / mod-
els. Examples include media (MPEG, WMV,...), hyper-media (HTML, PDF),
text (CSV, XML), and data storage models (relational, hierarchical, object-
oriented, ...).

Structure: Even when the same model is used, differences can occur at the struc-
tural level. For instance, two documents could be described in XML model,
and still, the structure of the elements can differ considerably, such as the
name of the elements and the way the information is nested.

Semantic: This level of heterogeneity occurs when a universal concept is not uni-
formly represented across data sources. This category can be sub-divided as
follows:

Naming Heterogeneity: Comprises homonymous and synonymous prob-
lems. Homonymy occurs when the same name is used to represent dif-
ferent concepts, and synonymy occurs when different names are used to
represent the same concept.

Structure Heterogeneity: This problem happens when the relationships
among concepts change from data source to data source. For example,
when two concepts from different schemas contain different parents.

Domain Heterogeneity: data sources use different values as possible in-
stances for a given concept.

The issue of heterogeneity also reaches the query language, which represent the
means by which access to the sources is granted. The language is usually a sub-
product of the data model. For instance, SQL is the language adopted by relational
databases, whereas OQL is the standard language for object-oriented databases.

Observe that the presented levels of heterogeneity exist not only among the
sources, but also between an integration system and the sources. Naturally, the
global schema differs than the local schemas, both structurally and semantically.
Besides, integration systems are normally built based on a data model whose con-
structs follow a proprietary vocabulary. For instance, in the integration system
Tsimmis (one of the earliest ever built), data is described in the proprietary OEM
format, which is a self-descriptive format capable of modelling objects. Additionally,
queries are defined in a proprietary rule-base language called MSL (CHAWATHE
et al., 1994).
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2.3 Mapping

2.3.1 Schema Matching

In order to create the mapping between a global and a local schemas, they first
need to be matched to one another. In other words, it is necessary to determine
which elements from one schema correspond to elements in the other schema.

The task of manually defining the matches can be too time consuming, when
there is a magnitude of schemas that need to be integrated. To prevent this huge
amount of labor, (semi)automatic match techniques are used. These techniques
are generally called matchers. A matcher suggests a list of matches, along with a
similarity score that determines the confidence of each match. It is up to the user
to ultimately define which of the suggested matches are correct.

Matchers can be classified in several ways (RAHM; BERNSTEIN, 2001). In this
thesis we divide them as coarse/fine grained, local/historical, schema/instance based
and single/composed.

In fine grained matching, the matcher compares properties of the finer grained
elements of the schemas, such as their names and data types. In coarse grained
matching, the matcher compares elements according to the structure that surrounds
them. The general idea is that two elements are similar if other elements in their
surroundings are considered similar.

Schema based matchers are those that rely on schema information in order to find
the matches. Conversely, instance based matchers analyze the instance level, that is,
the values that are structured according to the underlying schema. This category can
also be sub-divided into fine/coarse grained, where a fine grained instance matcher
compares individual values, and a coarse grained instance matcher compares lists of
values, such as records (BILKE; NAUMANN, 2005).

Historical matchers differ from local matchers in that they exploit information
of previously stored matching information. In this sort of strategy, matches are
considered transitive. For example, consider elements A,B and C, from three dif-
ferent schemas. If A matches B, and B matches C, there is a chance that A and C
also match. Many historical matchers are based on machine learning techniques,
where the learning algorithms are trained with a corpus of previously matched
schemas (DOAN; DOMINGOS; HALEVY, 2003).

A matcher that implements one of the above described strategies is called a
single matcher. Usually, the quality of the match is improved when a composition
of single matchers is used. Inside a composition, weights indicate the relevance of
a single matcher. The final similarity score is computed as the sum of the single
matchers similarity score multiplied by their weights. Some works are dedicated into
finding good matchers composition by automatically distributing weights. Usually
the distribution is achieved by machine learning (MARIE; GAL, 2008).

The work of (DO; RAHM, 2002) presents a framework that handles matchers
compositions. Inside the framework, it is possible to add matchers and to indicate
how they are integrated in order to obtain a final similarity score. The tool is useful
to visually test new matchers and new types of compositions.

2.3.2 Schema Mapping

The schema matching focus on the problem of finding which elements of different
schemas correspond to each other. On the other hand, the schema mapping involves
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additional aspects that are not addressed by the matchers, mainly those that are
present in ETL (Extract-transform-load) processes.

An ETL process comprehends three different phases (YAN et al., 2001): Extract-
ing information from a source, transforming the extracted information according to
a target format, and loading the transformed data as instances of the target schema.
Common usages of ETL is to load information into a datawarehouse and to exchange
information in e-commerce applications.

Considering the general integration system’s architecture, the steps of ETL can
be divided into those that take place inside the wrapper / extractor (the extraction)
and those that take place inside the mediator (the transformation and load).

In the extraction phase, as already stated, one of the problems is to recover the
data as a readable format. Another interesting problem is the automatic generation
of queries, when a query language is available. For example, the work of Miller, Haas
and Hernández shows that, when extracting information from relational databases,
there can be multiple ways to join relations in a SQL query. They also present
heuristics that help determining how to choose the better joining path (MILLER;
HAAS; HERNáNDEZ, 2000).

In the transformation phase, information from the source need to be adapted to
fit the format expected in the output. For one-to-one mappings, the most common
transformations involves the applications of masks, such as when date/monetary
values need to be represented in a different format. For one-to-many and many-
to-one mappings, the transformations usually involve splitting a source value into
multiple targets and aggregating multiple source values into a single target, respec-
tively. While some of the transformations rules are easy to discover automatically,
such as conversion masks, more complex rules, such as those based on conditions,
require human intervention in order to be defined.

The loading phase faces the same challenges encountered in the extraction phase.
For example, considering the target is a relational database, and that multiple target
relations need to be feeded by source data, one of the problems is to correctly
determine which target paths should be used, that is, which foreign key relations
need to be created. In a integration system, the target is the format used by the
system to deliver the results of a query to the user.

2.3.3 Mapping strategies

A mapping strategy defines the direction in which two schemas are mapped to
each other. Considering the scenario in which a global schema (the schema of the
mediator) is mapped to the local schemas, two main mapping strategies emerge:
Global as View (GAV (ULLMAN, 1997)) and Local as View (LAV (HALEVY,
2000)).

2.3.3.1 GAV

In GAV, the local schemas are considered the source of the information. Elements
of the global schema contain a script (GAV mapping) that indicates how to extract,
from the local schemas, information that conform to the global definitions. In other
words, elements of the global schema are views over elements of the local schemas.

Figure 2.3 illustrates an hypothetical use of GAV mappings. In the general case,
information is represented as relations, in both local and global schemas. Observe
that each relation in the global schema can map to one or more relations in the local
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schemas.

Figure 2.3: Hypothetical GAV mappings

Figure 2.4 shows a less abstract example, in which GAV mappings associate the
global relations movie and director with the local sources schema1 and schema2.
To simplify, the mappings are described as conjunctive queries, using the Datalog
notation (CERI; GOTTLOB; TANCA, 1989).

The first mapping creates a one to one relationship between relations. Conversely,
the second mapping shows a more elaborated case. In this case, the global relation
director is given by a join between two local relations.

movie(title, year) :- schema1(title, year, director)

director(title, name, country) :- schema1(title, year, name),
schema2(name, country)

Figure 2.4: GAV mappings described as datalog rules

Given a query over the global schema, GAV mappings are used in order to brake
the query down into local queries that conform to the local schemas. The process
responsible for finding the local queries that correspond to the global query is known
as query rewriting (HALEVY, 2001).

Query rewriting under GAV is relatively easy. Basically, elements of the query
are replaced by their respective mapping script, in a operation called unfolding.
For example, Figure 2.5 describes the query rewriting process, considering the map-
pings described in Figure 2.4. At the top, the query over the global schema appears,
described in datalog notation. The unfolded version of the query is described be-
low. The underscore identifies variables that are not part of the mappings and are
therefore not relevant to the query.
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Figure 2.5: Unfolding of a query using GAV mappings

Observe that the source relation schema2 appears twice, in a redundant self-join.
In this case, it is possible to apply a minimization technique to simplify the query,
as indicated in the Figure.

Query minimization involves removing subgoals of a query while keeping the same
set of answers. It was proven that finding a minimal query is an NP-complete prob-
lem (CHANDRA; MERLIN, 1977) with respect to the number of subgoals. Since
queries usually contain few subgoals, the time required to perform the minimization
is not significant.

2.3.3.2 LAV

In LAV (Local as View), the global schema is considered the source of the in-
formation. Elements of the local schemas contain a script (LAV mapping) that
indicates how to extract, from the global schema, information that conforms to
the local definitions. In other words, elements of the local schema are views over
elements of the global schema.

Figure 2.6 illustrates an hypothetical use of LAV mappings. Observe that each
relation in local schemas can map to one or more relations in the global schema.

The figure 2.7 shows a less abstract example, in which LAV mappings associate
the global relations movie and schedule with the local sources schema1, schema2
and schema3.

Note that in the LAV definition of schema1 the distinguished variable director
is not used in the body of the view. In LAV, this only means that the source exposes
more attributes than the ones described in the global schema.

In the LAV definition of schema2, there is a selection predicate indicating that
this source contains movies released after 2000. When choosing the views that can
answer a user query, this knowledge allows the rewriting algorithm to filter out views
if the selection predicates of the query are inconsistent with the predicates of the
view. This type of inference could not be made in a pure GAV approach.

The third view definition uses two global relations. This kind of construction
makes the query rewriting problem harder to solve than in GAV. Frequently a user
query can be rewritten in many ways, which can be exponential to the number of
subgoals of the query and to the number of views that are mapped to the subgoals
of the query (HALEVY, 2001).

Some rewriting algorithms are known for their ability to handle a large num-
ber of views. One of them, called Bucket, is used in Information Manifold sys-
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Figure 2.6: Hypothetical LAV mappings

schema1(title, year, director, genre) :- movie(title, year, genre)

schema2(title, year, genre) :- movie(title, year, genre),
year >= 2000

schema3(title, year, room, time) :- movie(title, year, genre),
schedule(title, room, time)

Figure 2.7: LAV mappings described as datalog rules

tem (LEVY; RAJARAMAN; ORDILLE, 1996). The algorithm Inverse Rules was
developed and used in the InfoMaster system (DUSCHKA; GENESERETH, 1997).
In (POTTINGER; HALEVY, 2001) another algorithm is presented(MiniCon), but
not applied to any particular system. Experiments show that the performance of
the MiniCom algorithm is superior than the other two (POTTINGER; HALEVY,
2001).

As mentioned, query rewriting in LAV is harder than query rewriting in GAV.
On the other hand, LAV favors the extensibility of the system: adding a new source
requires only the addition of a rule to define the source, and the global schema needs
no change. In such a scenario, the maintenance of the integration system can be
decentralized, since the owner of the sources is in charge of providing the required
LAV mappings, without ever caring about changes in the global schema.

Observe that a mapping strategy is a way to define ETL steps. In the provided
examples, it is easy to identify the extraction and the loading parts. The transfor-
mation phase is suppressed, since no transformation rule was provided. However,
transformation rules can be defined inside a mapping.

It is important to remark though that some transformations are irreversible.
For instance, target values that are the result of a multiplication of two source
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values cannot be decomposed into the original source values. With this respect,
GAV strategy is said to be more expressive, since there is no need to reverse the
computation of a target value.

2.3.3.3 Other Mapping Strategies

From the GAV and LAV approaches, several others have emerged, like BAV and
GLAV. The new strategies were created as an effort to combine the best of both
worlds: the query unfolding capability of GAV and the flexible maintenance of LAV.

Both as View(BAV (BOYD et al., 2004)) combines the GAV and LAV approaches
by using reversible mappings. The mappings are created as a consequence of a step
that transforms one schema into another. The originality of this proposal is that
the global schema relations can be defined as views over the sources and the source
relations can be defined as views over the global schema.

One of the key benefits of BAV is that any querying mechanism that is used in
GAV or LAV can also be used in BAV. Besides, this approach overcomes the limi-
tations that are inherent to GAV, such as the inability to handle the local schemas
evolution, and the limitations inherent to LAV, such as the inability to handle the
global schema evolution.

Global Local as View(GLAV (FRIEDMAN; LEVY; MILLSTEIN, 1999; MAD-
HAVAN; HALEVY, 2003)) is an extension of LAV where the header of the views
may be a conjunction of predicates. Additionally, the header may contain variables
that are not in the body of the view.

In Both Global Local as View(BGLaV (XU; EMBLEY, 2004)), the approach is
to map the sources to a pre-defined global schema, which is specified regardless of
the sources. The query rewriting is based on unfolding techniques.

2.4 Ontologies and Catalogs

There has been a lot of research on the information integration area with a leading
focus of bringing more semantics to the mappings between the global schema and
the mediator. Specially important is the use of ontologies to this end. Ontologies
are special types of schemas that not only capture the structure of the data, but
provide additional/hidden knowledge related to the data (NOY, 2004).

By defining the global schema and/or local schemas with ontologies, it is possible
to create more meaningful mapping definitions, which leverages the source selection
during query rewriting (SICILIA, 2005). Besides, ontologies allow users to submit
requests using richer query languages.

In parallel with ontologies, source catalogs also improve source selection (LEVY;
RAJARAMAN; ORDILLE, 1996). Information from a catalog guide the query
rewriting algorithms by stating if a given source is relevant to a specific query.
Common meta-information found in a catalog include:

Logical contents informs which domains are encompassed by the source (movies,
books) and which ranges of values can be found (e.g. year < 2000)

Capabilities informs which kinds of query are supported, and which attributes
accept (or even demand) filters. For example, some Web Services can only be
accessed if determined filters are provided.
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Completeness informs if the source contains all existing information.

Reliability informs if the source can be trusted.

Additionally, statistics about the sources give approximate indicators for items
like update frequency, availability and latency. Besides, these items enable the use of
more concrete measurements than statistics. For example, availability and latency
can be measured by the number of mirrors and the locality, respectively.

2.5 Open World Assumption and Closed World Assumption

Data sources can be classified according to the amount of data that they cover.
There are three possibilities: they can be exact, complete or sound (incomplete). A
data source is exact if it contains exactly all data that is part of the universe, not
less and not more. A data source is complete if it contains at least all data that is
part of the universe. The data source is sound if it does not contain all data that is
part of the universe (ABITEBOUL; DUSCHKA, 1998).

The universe of data that is reached by an integration system can be classified
as Open World Assumption (OWA) and Closed World Assumption (CWA).

In the scenario known as closed world, it is supposed that all sources are exact or
complete. When a closed world is assumed, the answer to a query contains all data
that is expected, at least for the context of the given application. This is typically
the case of database systems, in which the data that is stored is the only information
that matters.

Conversely, if a system is running in an open world, a query may not return all
data that is expected. This is typically the case of integration systems that allow
the access to arbitrary, and therefore sound, data sources. For instance, if a query
asks for movies released before 1950, the answer obtained by an integration system
is just a subset of all possible answers.

The querying of incomplete(sound) databases is a subject of research, in which
the goal is to determine for which types of queries there exist a precise answer (IMIE-
LINSKI; LIPSKI JR., 1984). To exemplify, non-monotonic queries are untractable
if the sources are incomplete. Non-Monotonic queries are those in which tuples can
be removed from the answer by the addition of a tuple in one of the relations used
in the query, such as queries that use the negation operator.

For example, a query that joins tables movie and rate in order to discover which
movies are not ranked with 5 stars is non-monotonic. If the movie "Star Wars"exists
the movie relation and does not exist in the rate relation, it would be part of the
answer. However, it cannot be assumed that it is not a 5 star movie just because
this information is not stated in the rate relation.

The notion of certain answers is used as a formalism to determine which tuples
are relevant as answers of a query, according to the available sources (ABITEBOUL;
DUSCHKA, 1998). Given a set of sources and a query over this set, a tuple is a
certain answer if it is a certain answer to any possible extension of each source. In
the example above, Star Wars in an uncertain answer, since it would not be part of
the answer if the relation rate contained a tuple that rates the movie with 5 stars.

It is important to remark that incomplete databases refer to missing information
in general. The example above shows a case in which a tuple is not stated in a
relation. Other cases are possible, such as tuples with null values for one of its
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attributes. Under Open World, it is impossible to say if the null value indicates that
there exist no information for the attribute or if the information is unknown.

2.6 Query Containment

The concepts of query containment and equivalence (CHEKURI; RAJARAMAN,
1997) are important in the context of LAV integration systems, where queries are
answered using rewritings over views (HALEVY, 2001). In this case, it is important
to check if a rewriting brings more or less tuples than the query asked for.

We say that a query Q1 is contained in the Q2, denoted by Q1 ⊆ Q2, if the
answers to Q1 are a subset of the answers to Q2 for any database instance. The
query Q1 is equivalent to Q2, denoted as Q1 ≡ Q2, if and only if Q1 ⊆ Q2 and
Q2 ⊆ Q1. In such cases, the answers of Q1 are equal the answers of Q2.

The problem of finding equivalent rewritings is mainly addressed in database
systems processes, such as query optimization (GOLDSTEIN; LARSON, 2001). In
this case, the purpose is to check if there are views that can substitute relations
of the query, as a way to speed up the query execution. Another usage of equiva-
lent rewritings is to keep the data physical layer independent from the data logical
layer (TSATALOS; SOLOMON; IOANNIDIS, 1996).

Observe that equivalent rewritings only exist in closed worlds, like databases,
since this is the only scenario in which it can be assumed that all (relevant)data
is reachable. In open worlds, rewritings can only be contained, never equivalent.
Additionally, information is spread over a multitude of autonomous sources, and
there is the need to build rewritings that reach all such sources. This problem is
known in the literature as the Maximally contained Rewriting Problem (HALEVY,
2001).

2.7 Chapter Remarks

This chapter describes an overview of the data integration field. Several topics
related to this problem are presented, including conceptual definitions, architectural
issues and general challenges.

Among other things, it is shown that integration systems are build under a solid
foundation formed by mediated schemas and pre-defined mappings. Conversely,
the work proposed in this thesis follows the opposite direction, in which mapping
information cannot be taken from granted. Nevertheless, the notions related to
data integration are useful for understanding the problems that are inherent to the
querying of structured and heterogeneous sources on the Web, and may also suggest
possible solutions for the common challenges.

For example, schema matching techniques used to consolidate mappings between
global and local schemas provide opportune insights about how to automatically dis-
cover data sources that may contain answers to user queries. Similarly, the existence
of consolidated mappings lead to quality related terms, such as query containment
and certain answers. When mappings are absent, caring about these issues is at
least not as important, since query answers are unprecise by nature. The awareness
of this lack of precision is important, as it enables the creation of proper algorithms,
whose aim is not at enforcing that answers are correct, but rather delivering a large
number of answers as efficiently as possible.



27

Through the rest of the thesis, we show how the fundamentals introduced in this
chapter participate in the creation of our querying mechanisms, from the definition
of the overall architecture to the implementation of the indexing and rewriting al-
gorithms. In addition, data integration topics are included in several possibilities of
future work.
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3 THE NO-SCHEMA APPROACH TO DATA IN-
TEGRATION

The previous chapter presents a conceptual overview of the data integration sub-
ject, and briefly discusses the challenges that arise in this context. In this chapter,
we introduce a novel aspect of integration, which appears in the world of dataspaces.

The problem of providing seamless access to structured data has already been
addressed by a number of different works. Salles et al. (VAZ SALLES et al., 2007)
classifies integration systems into two different categories: schema-first approach
(SFA) and no-schema approach (NSA).

SFA assumes that the sources of information are integrated into a global schema
along with mappings that connect this schema to the schema of the sources, as
discussed in the previous chapter. In the other direction, NSA assumes that a
global schema is not available.

Schema-first approaches are suitable to handle controlled data sources. How-
ever, they are limited when considering dataspaces. A dataspace can be seen as a
collection of distributed, heterogeneous and partially unstructured data (HALEVY;
FRANKLIN; MAIER, 2006), like those that are integrated through a global schema.
What distinguishes dataspaces is the large number of sources available. This term
become popular very recently, when researches started to notice that the Web is
full of structured and autonomous sources that publish information about the same
concepts of the world.

Next section shows why SFA is limited when it comes to dataspaces. Next, we
present NSA works that are able to accommodate the particularities of dataspaces
more smoothly.

3.1 Schema-First Approaches - Motivating Example

Traditionally, SFA considers a global schema mapped to the sources, using
GAV/LAV rules or variations. To illustrate how a dataspace is handled by a system
based on pre-defined mappings, consider the data sources described in Figure 3.1.
Suppose that initially only the relations on the left are available.

A global schema could be easily created in order to integrate these sources. Say
this schema is initially composed by a single relation, formed by the relation movie
with attributes title and year.

Considering the GAV strategy, the mapping of this relation is represented as a
union of queries, as demonstrated below:
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Figure 3.1: Available data sources in two different moments

movies(title, year) :- Source1(title, year)
movies(title, year) :- Source2(title, year)

As already mentioned, the benefit of GAV is that the rewriting is just a matter
of unfolding (ULLMAN, 1997). However, adding new sources may require changes
to the definition of the global schema. For instance, if the new relation Source3

becomes available, the definition of movies needs to be modified to include the new
source.

In contrast to GAV, LAV favors the extensibility of the system. In order to map
source Source3, all it takes is to create a new LAV mapping, as described below.
Additionally, the task of creating the mapping can be delegated to the administra-
tors of the sources.

Source3(title, year) :- movies(title, year)

It is true that the LAV strategy is easier to maintain. However, this kind of
mapping does not entirely prevent modifications to the global schema. For exam-
ple, consider the new state of Source1 (Figure 3.1). Observe that a new attribute
is represented (award), and it is currently not supported by the global schema.
Consequently, it is not possible to reach information about the awards received by
movies.

For exploring and integrating information sources on the Web, expecting the
existence of a pre-defined global schema is not practical. To define a global schema,
one first needs to know about which sources are available. And on dataspaces, there
are too many of them. It is unfeasible to model a universal global schema that
contains constructs for every possible concept of the real world.

Besides, creating mappings and maintaining them as sources evolve and the
global schema changes can be expensive and time consuming. This effort is required
and justified for applications that are mostly static, cater to well-defined information
needs, and integrate a relatively small number of sources. This is not the case on
the Web, where the sources are not only plentiful, but also too volatile, which would
require the mappings to be constantly updated.

In an attempt to improve scalability of schema-first approaches, recent ap-
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proaches have been proposed to amortize the cost of integration, such as for example,
peer-to-peer systems (TATARINOV et al., 2003) and community-based information
integration systems (MCCANN et al., 2005). In the former, users provide mappings
between peers, whereas in the latter, users collaborate in the creation of mappings
between the sources and the global schema. However, their efficacy to the problem of
integrating dataspaces is not yet conclusive. Additionally, the necessity to maintain
the global schema remains in both of them.

3.2 NSA (No-Schema Approaches)

NSA assumes that a global schema is not available. In other words, the user
needs to formulate queries with no knowledge of which concepts are modelled and
how they are connected. The challenge is to translate user queries into queries that
conform to the local schemas without the help of predefined mappings. The cost to
maintain mappings is the greatest problem when dealing with integration systems.
Therefore, the absence of mappings makes of NSA an interesting idea to the world
of dataspaces.

Next sections present recent works that follow this direction. Section 3.2.1
shows approaches that perform keyword search over relational databases, where
the database schema is unknown. Section 3.2.2 shows an approach that simulates
a global schema by grouping the sources as a universal relation. Pay as you go
approaches are discussed in Section 3.2.3. Finally, Section 3.2.4 presents approaches
that replace the global schema by indexes that capture the structure of the sources.

3.2.1 Keyword Search over Relational Databases

This section presents solutions that adopt keyword search to retrieve information
stored in relational databases. It is assumed that the user has no knowledge about
the underlying database. When the user poses a query, the system derives an SQL
query from the keywords provided. It is possible to apply this idea to dataspaces, if
we consider Web sources as collections of relational databases.

In general, these approaches represent the database as a graph whose nodes are
connected based on foreign key relationships. Two possibilities emerge: instance-
level graph (HULGERI; NAKHE, 2002) and schema-level graph (HRISTIDIS; PA-
PAKONSTANTINOU, 2002).

In the instance-level graph, the nodes are tuples of the database. Given a query,
keywords are mapped to nodes in the graph. Each subset of the graph that links all
of the selected tuples become an individual answer. Results are then presented as
nested information, according to the connections between the tuples.

In the schema-level graph, the nodes refer to elements of the database schema.
Like the instance level counterpart, keywords of a query map to nodes in the graph.
Then, each subset of the graph that links all of the selected nodes derives a query
that contains some answers.

In BANKS, for example, information is viewed as a graph of tuples connected by
foreign key relationships (HULGERI; NAKHE, 2002). The keywords of the queries
are matched against the tuples, and the subgraphs that contain all matched tuples
are present as possible answers.

Originally designed to relational databases(in the close-world-assumption sense),
these approaches could be extended to Web information. However, it is not clear if
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and how they would be suitable to the large amount of information available on the
Web, specially considering that foreign key relationships are unknown.

According to (HULGERI; NAKHE, 2002), it is possible to keep only a lightweight
graph in main memory, delegating the remaining information to secondary storage.
However, they do not report any kind of experiments over large data sets.

3.2.2 Universal Relation

The universal relation was also considered for the problem of querying multiple
structured Web sources. Generally speaking, a database is virtually flattened as
a single relation with a large number of attributes. This relation provides a user
friendly interface where queries can be expressed without navigation (no joins need
to be provided). It is up to the universal relation to infer which of the original
relations need to be accessed, and how they have to be joined (MAIER; ULLMAN;
VARDI, 1984).

Implementations of the universal relation, such as SUR (Structured Universal
relation) proposes interfaces to query dynamic Web content from multiple sources
(e.g., content publish by Web services and online databases). SUR was developed as
the infrastructure to support webbases that are designed for well-defined domains
(e.g., cars, jobs, houses). SUR requires experts in each domain to specify compatibil-
ity constraints for relations as well as concept hierarchies for attributes (DAVULCU
et al., 1999).

Querying the universal relation is simpler than querying a database scheme,
since it is not required to inform foreign key predicates when querying two or more
related relations. However, when asking for attributes from different source relations,
there may be more than one possible way to produce valid queries, each using
different joins between the relations. This problem is formally defined in (FAGIN;
MENDELZON; ULLMAN, 1982) as the presence of cycles in the hyper-graph that
represents the join dependencies of the relations. Another drawback of universal
relations is that they assume that every attribute has a unique name. Queries
over the universal relation using non-unique attribute names would be ambiguous
otherwise.

Moreover, it is expected that experts help in the process of mapping the SUR
to the sources. Clearly, this is hard to achieve if the system needs to support a
magnitude of sources that needs to be added on the fly.

3.2.3 Pay as You Go

There are also pay-as-you-go approaches that lie in-between the SFA and the
NSA. Works of this kind start with few mapping information and evolve over time,
taking user feedback into account (TALUKDAR; IVES; PEREIRA, 2010). Madha-
vant et al (MADHAVAN et al., 2007) states some architectural issues that need to
be addressed in such a scenario.

One of the ideas behind pay-as-you-go strategies is to use probabilistic models,
where an automatically created global schema is connected to the sources through
probabilistic mappings. These mappings (and their probabilities) evolve as the user
interacts with the system, which is why architectures of this kind are considered as
self-configuring data integration systems (DAS SARMA; DONG; HALEVY, 2008;
KHALID et al., 2010).

Salles et al. (VAZ SALLES et al., 2007) provides a concrete framework that
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supports dataspace enhancing by adding relationships among the data. Madhavant
et al (MADHAVAN et al., 2007) also discuss how the index of a dataspace can be
improved in a pay as you go fashion, where user feedback plays an important role to
enrich the information of the indexes. The same ideas could be applied to our work
as well. As will be discussed later, we present rewritings to a query individually.
Hence, it would be possible for the user to mark an incorrect rewriting, and leave it
up to the system to learn from that information.

3.2.4 Query Answering through Indexing

Some approaches use specialized indexes that store information about the Web
sources. Considering a source as a collection of columns and records, the source
indexing is responsible to store both data (the records) and the metadata (the
columns). During querying, the terms of a query are identified in the indexes. Next,
a correlation algorithm is used to locate the sources that might provide relevant
answers.

Compared to the previous ideas presented in this chapter, these approaches are
more dataspace oriented, since they are designed to handle the volatile nature of
Web data - the maintenance cost is reduced by replacing the manual work of experts
by a more automatic process of indexing.

In what follows, we present two works related to ours. Both treat Web sources
as relations and propose indexing strategies to capture the structure of the sources.
Additionally, the proposed indexes are accompanied by algorithms that find relevant
answers to user queries.

3.2.4.1 WebTables

To support queries over relations on the Web, (CAFARELLA et al., 2008) pro-
posed a search engine called WebTables. This search engine is based on an inverted
list that connects keywords to the tables in which they appear. Queries are expressed
by keywords and the result of the search are pages whose inner tables contain terms
that appear as keywords in the query. In order to effectively find the most relevant
information first, the results are ranked according to a set of features, as described
later in the section.

Figure 3.2 shows the index populated with the contents of Table_1 and Table_2.
The square brackets indicate the offset of the keyword inside the table.

There are some similarities between this index and the ones used by traditional
search engines. The later also relies on inverted lists, which connect keywords to
the document id where the keywords can be found. Besides, there is an offset along
with the document id. This offset determine the distance of the keyword from the
beginning of the document. In the work of Cafarella, the offset is a two-dimensional
value that describes where in the table the keyword can be found. For instance,
according to Figure 3.2, the keyword ’2004’ can be found in the third row/third
column of Table_1 and the forth row/second column of Table_2.

Not only values, but metadata is stored in the index. Observe that some of the
entries of Figure 3.2 refer to the names of the column tables. For example, accord-
ing to the index, the keyword ’DATE’(a column name) can be found in the first
row/second column of Table_2.
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Figure 3.2: WebTables index populated with the contents of Table_1 and Table_2

Searching and Ranking
The search algorithm uses the same principles of searching in regular search

engines. For conjunctive queries with multiple keywords, the search engine steps
through the keywords inverted lists in parallel, testing to see where they share a
table. For disjunctive queries with multiple keywords, the result is the union of
tables found inside the keywords inverted lists.

The offset can also be explored in a similar manner. While regular search engines
use the offset to find adjacent terms, the WebTables offset opens the possibility to
use spatial operators. For example, operators like samecol and samerow could be
used in order to return results only if the search terms appear respectively in cells
in the same column or in cells of the same row of the table.

The ranking of the results is based on the set of features described below.

• Number of rows in table

• Presence of a table header

• Number of null values inside table

• Presence of searched keywords on header (column names)

• Presence of searched keywords on leftmost column

• Presence of searched keywords on second-to-leftmost column

• Presence of searched keywords on any table cell

The relevance of each feature was estimated through experimentation. The re-
sults show that the best features are 1) presence of searched keywords on header and
2) Presence of searched keywords on leftmost column. The former indicates that
attribute labels are a strong indicator of the tables meaning. The latter indicates
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that values in the leftmost column are usually the most representative, providing a
useful summary of the contents of a data row.

During the keyword search, information about these two features can be ex-
tracted from the index offset. Offsets of the format [1,*] indicate the keyword ap-
pears on the header, while offsets of the format [*,1] indicate the keyword appears
in the leftmost column.

Besides the mentioned set of ranking features, the authors propose a metric based
on the schema coherence score. A schema is considered coherent if its attributes are
all tightly related to one another. The experiments show that using this information
for ranking outperforms the approach that is based only on the features presented
above.

The coherence score between two attributes is given by the Pointwise Mutual
Information (PMI), which is a information often used in computational linguistics
and web text research (CHURCH; HANKS, 1990; ETZIONI et al., 2004; TURNEY,
2001). To compute the PMI between attributes a and b, some probabilistic infor-
mation are required: p(a) and p(b), which indicate the probability of finding the
attributes a and b in the schema corpus, respectively; and p(a,b), which indicate
the probability of finding both attributes together in the schema corpus.

These probabilities are easily derived from the attribute correlation statistics
database (ACSDb). The ACSDb is simple. It contains a set of pairs of the form(R,c),
where R is a schema and c counts the number of times this schema appears in the
corpus.

As detailed by the authors, information from the ACSDb is useful for many
applications. In the paper, besides ranking of results, they also show applications for
schema auto completion, attribute synonym finding and navigation through related
schemas. As a drawback of this approach, structure is not taken into account for
the purpose of answering structured queries. Consequently, selection predicates are
not allowed, and the results are limited to information encountered on single tables.

3.2.4.2 ATIL and AAIL

Dong and Halevy (DONG; HALEVY, 2007) propose a solution that is able to
perform queries with structure. The indexing is based on keywords that point to
a list of instances where the keywords can be found. The index can be enriched
with hierarchical information (terms that can substitute a keyword) and association
labels, so that information from multiple sources can be combined in the result. The
following sections further describe this approach.

Data Model
Data is modelled as a set of triples. Each triple is either of the form (instance,

attribute, value) or of the form (instance, association, instance). An instance is a
real-world object composed by attributes (and its respective values). An associa-
tion is a relationship between two instances, and it is represented by a role. Also,
associations are assumed to be directional.

Figure 3.3 illustrates how information sources Table_1 and Table_2 are repre-
sented in this model. The information of the sources is structured as tables, but the
model can be applied over any type of schema composed by attributes and values.

The set of triples (the bottom of Figure 3.3) was extracted from the information
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Figure 3.3: Example that illustrates how relations are modelled in (DONG;
HALEVY, 2007)

sources using techniques adapted from (GUBANOV; BERNSTEIN, 2006; ETZIONI
et al., 2008). We only illustrate the triples that correspond to the marked rows of
the tables. Note that each row represents an instance. For clarity, we identified the
instances by the concatenation of the source name and position inside the source.

Besides the relation between attributes and values, the extraction is also re-
sponsible for detecting the associations between the instances, which may be hard
to derive automatically. In the example given, it is hard even for a human to de-
termine the association between Table_1 and Table_2, since the tables are not
normalized with respect to each other. The limitations of automatically inferring
the associations is not discussed in the paper.

Query Language
Two types of queries are supported: Predicate Queries and Neighborhood Queries.
A predicate query contains a list of predicates, where a predicate is composed

by a verb (either an attribute name or an association name) and a list of keywords.
For instance, a query asking for Tarantino movies in 2005 can be represented as:
(Director ‘Tarantino‘), (Year ‘2005‘).

A neighborhood query is simply a list of keywords. A neighborhood query is
just a fancy name for plain keyword queries, and they indicate that the language
support queries without predicates.

Indexing and Querying
Both values and structure of the sources are captured using extended inverted

lists. Two main inverted lists were proposed (ATIL and AAIL), each designed for
a specific kind of query. In general, they connect keywords to the list of instances
where the keywords can be found.

In ATIL, the keyword is a concatenation of a value and its attribute. Figure 3.4
shows how this index works. In the keyword values, the string "//" is a marker
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reserved for indexing purposes. The square brackets that accompany each instance
indicate the number of occurrences of the keyword inside the instance. In the ex-
ample given, none of the indexed keywords contain a number of occurrences greater
than one. Just to demonstrate a different situation, say that the title attribute of
instance Table_1#2 contains ’The Aviator - The Movie’. In this case, the keyword
’the//title’ would have a number of occurrences equal to two for that instance.

Figure 3.4: The indexes ATIL and AAIL populated with the contents of Table_1
and Table_2

To answer a predicate query, each predicate is looked up in the ATIL. The
returned instances need to satisfy at least one predicate in the query. An instance
satisfies a predicate if it contains at least one of the keywords of the predicate.
For example, the query (title ’The Aviator’), needs two index lookups (The//title
and Aviator//title). The returned instances would be Table_1#2 (there is a match
for keywords ’The’ and ’Aviator’), Table_1#3(there is a match for keyword ’The’)
and Table_2#3 (there is a match for keywords ’The’ and ’Aviator’). Answering a
neighborhood query uses the same principle, only the attribute part in the ATIL is
ignored.

The authors comment about the possibility of dealing with conjunction of predi-
cates, but do not explore this feature in the paper. Considering conjunctive queries,
the query (genre ’Biography’),(title ’The Aviator’) would return only Table_1#3,
since it is the only one that satisfies both predicates.

The AAIL is an extension of the ATIL that includes keywords formed by a
concatenation of a value and its association (the "role"in the model). Figure 3.4
shows the additional entries that are considered by the AAIL.

With this extension, a larger number of queries can be answered, i.e. those that
are described using the association names represented in the model, such as (genre
’Biography’), (Awards ’5’).

Another interesting idea is to think of the indexed terms as part of an hierar-
chy of concepts, and to use this information in the index. Two types of hierarchies
are considered: sub-property type (e.g., director being a sub-property of crew) and
sub-field type (e.g., year being a sub-field of movie). No distinction is made about
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the types, they can be mixed in the same hierarchy. Several hierarchy-aware indexes
were proposed (Dup-ATIL, Hier-ATIL, Hybrid-ATIL). In here, we demonstrate the
Hybrid-ATIL, which subsumes the others as for the optimizations/benefits intro-
duced.

Figure 3.5 shows part of the Hybrid-ATIL on the right. The year attribute is
indexed according to the hierarchy in the left of the Figure.

Figure 3.5: The Hibrid Atil populated with the contents of Table_1 and Table_2

In Hybrid-ATIL, the hierarchy becomes part of the keyword, as the second and
third row indicate. This makes it possible for hierarchical queries to be answered,
such as (release/date ’2004’).

The first row is called a summary row, because it shadows rows 2 and 3. Note the
extra "//"at the end. Summary rows improve index search for queries like (release
’2004’), by stoping the search after a summary row is found (no additional entries
need to be accessed). Note that the second row could also be a summary row by
shadowing the third row. In this case, the summarization would start at the second
hierarchy level. The number of hierarchy level that can contain summaries is a
parameter of the indexation algorithm.

3.3 Chapter Remarks

This chapter discusses ways to implement no-schema approaches, where the ulti-
mate goal is to integrate data sources with the less possible effort. We call attention
to the fact that some of these approaches do contain a global schema, like the uni-
versal relation and pay-as-you-go approaches. Still they are classified as no-schema
attempts because the schema is generated automatically.

According to current works, the universal relation was not considered as a general
purpose solution for querying on the Web. The application of this solution seems
to be appropriate for single domains, with a small number of relations. As for
pay-as-you-go approaches, experiments are also restricted to single domains, and
mostly dedicated to discovering one-to-one mappings - cases involving joins are not
considered. Keyword search over relations is also limited, as the original idea applies
to relational databases, which contains a restricted number of relations.

Indexes based on inverted list appears as a recent attempt to handle querying
over large and distribute structured data sets. Usually explored in the context
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of keyword based search engines, indexes are easy to build, maintain and access.
Besides, they are suitable data structures able to accommodate the diversity and
volume of data found on the Web. Along this path, related work reaches a point
where rich models of interconnected sources are possible to represent as indexes.
However, it is still not clear how these models are created automatically. Moreover,
querying capabilities still need improvements, such as the ability to answer predicate
queries.



39

4 SYSTEM ARCHITECTURE

In order to query dataspaces, we envision structured search engines that support
simple, yet expressive queries, which allows users to explore Web information, dis-
cover useful information sources and their relationships. The no-schema approach
is adopted. Therefore, considering that data relationships are most of the time im-
plicit (they are not declared anywhere), part of the problem involves finding these
associations in order to deliver more useful information to the user.

Figure 4.1 shows our architecture, which we named Eidos1. Three layers compose
the architecture. The data layer intermediates communications between the sources
and the rest of the system. The Mediator layer contains components responsible for
the integration itself. It is sub-divided into the Rewriter Layer, which subsumes the
components dedicated to the rewriting process.

The components depicted in the Figure are presented in the next sections. Spe-
cial attention is dedicated to the components of the Rewriter Layer, which represent
the focus of this thesis.

4.1 Crawler

The Crawler is a Mediator Layer component responsible for finding relevant
structured Web sources. Similar to a traditional search engine, such as Google and
Yahoo!, we use a Web crawler to locate structured information on the Web and
index them into the Eidos repository. The system can be set to periodically crawl
the Web to update the index as well as to discover new information sources. The
information will then be immediately available to the users.

Because structured information is sparsely distributed on the Web, we use a
focused crawler for this task (BARBOSA; FREIRE, 2007a). The crawler uses tem-
plates to guide the crawling. Templates indicate whether a given document should
be considered for indexing and even as a source of additional documents to crawl
(such as page links).

Several templates are possible. For instance, the crawler can focus on files of a
given type, like HTML or XML. Also, more sophisticated templates can be provided,
such as those that are based on the contents of documents. Details about the
patterns that guide the focused crawling can be found in the Experiments Chapter.

1The name is a reference to the term used by Plato to indicate that the shape of things is not
always associated to their outside appearance.
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Figure 4.1: High-level architecture of Eidos

4.2 Wrappers and Sources

The internal data model used by the Eidos architecture follows the relational
paradigm. Requests that start from the Rewriter or the Query Processor are ex-
pressed as Select-Project-Join SQL queries. Besides, answers are delivered as tuples.

Given this, and considering that sources may be heterogeneous (and even semi-
structured), wrappers are necessary in order to make the data available to the sys-
tem, by abstracting each source as one or more virtual relations.

Wrappers are activated in two different moments: indexing and querying. During
indexing, the crawler selects a source and asks for the wrapper to compute virtual
relations out of it. The computed relations are then stored in the repository. During
querying, the query processor asks the wrapper to answer an SQL query over a
selected source. The wrapper then computes the virtual relations in order to answer
the issued query, and delivers the tuples obtained as answer.

A virtual relation is composed by a schema t, a list of attributes {c1, ..., cn} and
a list of tuples. To understand the concept of tuple, consider that the extension
of a virtual relation t = {c1, ..., cn} is E(t) = {DOM(c1), ..., DOM(cn))}, where
DOM(c) denotes the domain of attribute c. Given this, a tuple τ of t is a list of
domain values {d1, ..., dn} such that di ∈ DOM(ci), where ci ∈ t. To simplify, we use
the terms wrapped relations(or wrapped sources) and wrapped attributes to refer
to the virtual relations and attributes that are constructed by a wrapper.

The relational model was chosen to be part of the architecture because relations
provide a natural representation for a significant number of structured Web sources.
One particularly interesting example are HTML Tables. A recent study reports that
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there are over 144 million relations published as HTML tables in Google’s index.
Besides, several works in the literature show how to extract lists of records that

are present in HTML tables (COHEN; HURST; JENSEN, 2002) and even other
kinds of HTML constructs. Other sources(e.g. web services, free text, XML,...) can
also be wrapped as relations, using correct and sufficient abstractions (LAENDER
et al., 2002; DALVI; KUMAR; SOLIMAN, 2011). For example, a simple approach to
wrap XML is to consider that every non-leaf element is a relation, and the hierarchy
of non-leaf elements indicates foreign key constraints (KAPPEL; KAPSAMMER;
RETSCHITZEGGER, 2004). Observe that additionally to other (semi-)structured
sources, relational databases are natively supported by Eidos. In this case, the
wrapper serves merely as an interface to the underlying database. The wrapping of
relational databases is discussed in the next section.

4.3 Subscriber and Publisher

Similarly to wrappers, subscribers are data layer components. They are able to
wrap a source as one or more virtual relations, which enables the subscribed source
to communicate with the mediator. The difference is that subscribed sources register
themselves into the system, while wrapped sources need to be crawled. This type
of component is useful for sources that are not reachable by the crawler, such as
relational databases.

Another difference is that wrappers are server-side components. Communication
between wrappers and the sources occur over the Internet. On the other hand, a
subscriber sits next to the registered source, which makes of it the only client-side
component. Therefore, for the mediator to access the source, the subscriber needs
to be installed and resident in the machine where the sources are located.

The publisher is the Mediator Layer component that registers the sources wrapped
by a subscriber. The registration occurs by selecting the information that needs to
be made available to others. To exemplify, in the case of relational databases, the
user could publish the relations of interest only, instead of publishing all of them.
Additionally, the subscriber can be set to periodically register itself, so the indexed
information is more up to date.

Google’s Fusion Tables is a product that uses a subscriber related approach.
However, instead of keeping the source in the client, the user needs to upload it
into Google’s index, and associate it with keywords that indicate the contents of
the source (GONZALEZ et al., 2010). Compared to this approach, our solution is
more dataspace-oriented, since wrappers are able to capture the structure of the
sources, which is more meaningful then keywords. Besides, it takes the concept of
information sources one step further, by allowing anything to be published, as long
as appropriated wrappers are available.

4.4 Query Processor

The query processor receives relational queries from the Rewriter Layer. Re-
ceived queries are composed by a set of relations, where each relation may come
from a different source. It is up to the query Processor to break the query into sub-
queries according to the involved relations, forward the sub-queries to the identified
sources, combine the tuples from each sub-query as a single result, and return the
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resulting tuples to the query interface.
This is very similar to the problem of answering queries over multi-databases,

and faces the same challenges, such as those related to query plan optimizations.
For instance, consider the query below:

SELECT
s1.title, s1.genre, s1.director, s2.awards

FROM
source1 s1, source2 s2

WHERE
s1.title = s2.title and s1.year < 2000

Sources 1 and 2 are distributed, so it is not possible to answer the query with a
single select. Instead, the query processor needs to separate the constructs related to
attributes of source1 in one select statement, and constructs related to attributes of
source2 in another statement. Query plans for distributed queries can be represented
as a relational algebra tree that joins the statements that are particular to each
distributed source. In order to build efficient plans, part of the problem involves
pushing operators down in the tree and using advanced join algorithms to combine
the data from different sources.

Multi-database querying is a classical problem in the field, with many years of
research. Therefore, it is not our goal to develop new solutions to a well known
problem. Instead, we employ the state of the art techniques, which have proven
to be efficient (KOSSMANN, 2000). This enforces the decision of using the rela-
tional paradigm as our underlying data model. By treating queries as SQL and
sources as relations, we start from a solid foundation with consolidated techniques,
some of which are useful to our goal, such as those needed by the Query Processor
component.

4.5 Query Rewriting

The Rewriter layer is the core of the Eidos architecture, as it contains the com-
ponents that form the general rewriting mechanism. These components are isolated
from the other Mediator components, which makes it possible to change the rewrit-
ing strategy without interfering with the rest of the architecture.

Three components are available. The Indexer is activated during indexing time.
It receives information from the crawler and the publisher (virtual relations from
the sources) and decides how to store it into the Index.

The other two components are activated during querying time. The Query parser
receives a structured conjunctive query and transform it into a format expected by
the Rewriter. On its turn, the Rewriter is responsible for finding queries that use the
available sources. As presented earlier, the queries may englobe distributed wrapped
relations. The relations are selected based on the information provided by the index.

The focus of this thesis is dedicated to the components of the rewriter layer. The
next two chapters present details about two approaches we have proposed. Each
approach handles the problem in different ways, providing specific languages for
structured conjunctive queries, and complementary index and rewriting algorithms.
These components are designed according to the architecture of Figure 4.1, so they
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can be easily coupled as part of the Mediator.
In this section, we present general information that apply to the rewriting idea

as a whole. The two rewriting approaches detailed in the next chapters follow the
principles stated below.

Considering that the sources of interest are distributed over the Web and belong
to autonomous sites, our work falls into the Open World Assumption (OWA) cat-
egory. Among other things, this means that the answer to a query may be spread
over a large number of independent sources.

In this context, there may be many possible ways to answer a user query, each
of them using a different set of sources and yielding different answers as the result.
We call each individual way to answer a query a Rewriting.

Our goal is to reach the larger number of rewritings possible. One possibility
would be to provide the answer as a union over all computed rewritings. However, we
decided to present to the user each rewriting in isolation. Several reasons motivate
this decision:

1. Depending on the size of the data set, the cost for computing all answers
becomes prohibitive. Besides, the user would normally focus on the first results
only.

2. It is easier to relate the resulting tuples to their respective sources. Knowing
the provenance of the tuples helps to identify the best sources of information.

3. It is possible to associate a specific rewriting to answers understood as irrele-
vant by a user and ignore all answers that come from this rewriting.

4. It is possible to conceive a feedback mechanism, where the user is able to
inform that the answers of a specific rewriting are not correct. Based on
this information, the system could adapt the rewriting in order to enhance
accuracy.

A example that helps to illustrate these reasons is shown in Figure 4.2. The query
asks for names of movies and their awards (for clarity, the example shows a query
described in natural language). The list shows answers from three rewritings, with
two tuples each. Tuples from r1 refer to known movies and awards, so the user may
assume that all tuples from this rewriting can be trusted. Tuples from r2 also refer
to known movies. However, the award information is related to the amount, not the
title. In such cases, the user may still be interested in this rewriting, since it is at least
partially correct. On the other hand, tuples from r3 clearly refer to another domain
- the data shows rewards given to employees as a proof of recognition. Intuitively
the user can ignore all other tuples that are grouped under this rewriting.

The main goal of our architecture is to integrate heterogeneous, autonomous
and distributes sources, and to allow users to access them through a single querying
interface, which are characteristics of a typical data integration system.

However, the example of Figure 4.2 shows an important aspect about the pro-
posed system, and that we emphasize here: rewritings are found based on an in-
ference mechanism, and not on pre-defined mapping information. Consequently,
answers of queries are uncertain by nature.
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Figure 4.2: Abstract example that shows possible answers of rewritings

This fact represents a gap that distinguishes our architecture from traditional
integration systems, which are built under the notion that all answers obtained are
correct. Therefore, our approach cannot be classified as a pure integration system.

Instead, we consider our architecture as a mix of a data integration system and a
search engine. In search engines, like Google, the users are aware that answers may
be incorrect, and have to deal with it properly, by analyzing the results and adapting
the queries if desired. This is exactly the expected behavior in our case too. The
main difference is that traditional search engines aim at answering keyword based
queries and present results as lists of documents, whereas we support structured
queries and results as lists of tuples.

It is important to notice that the theory of query answering adopted by integra-
tion systems does not fully apply here. For instance, query containment is a subject
that arises when LAV mappings are used. Since Eidos has no pre-defined mappings,
it makes no sense to check for containment. When the systems computes n rewrit-
ings for a query, the union of these n rewritings does not represent a maximally
contained rewriting. Instead, they solely represent the sum of collections of tuples,
where one given collection may be more relevant to the user than the other.

The concept of certain answers is also irrelevant to our goal. It is useful to
determine untractable classes of queries for incomplete databases. Integration sys-
tems use this knowledge to limit the support to queries that are tractable, such
as conjunctive queries. In our cases, answers are already known to be unprecise.
There is no need to limit the querying capability, since any type of query will deliver
uncertain answers.

However, as Figure 4.1 shows, we did restrict the support to conjunctive queries.
This decision was made just as a way to define the boundary of our work, and not
based on tractability issues (as they do not apply). This is not a significant limitation
though, since conjunctive queries are expressible enough, as they represent the most
common form of relational queries (CHEKURI; RAJARAMAN, 1997).

4.6 Running Example

Figure 4.3 shows the data sources that will serve as the basis for running ex-
amples discussed throughout the thesis. The sources are presented as relations,
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where information is exposed as a set of tuples. Note that the original model of the
sources is irrelevant to our discussion. We start from the assumption that wrappers
are available to expose the concrete information as sets of relations.

Figure 4.3: Data sources transformed into wrapped relations

The dotted rectangle groups sources that come from the same location. For
instance, for HTML documents, the location could be the Web site, while for a
relational table it corresponds to its respective relational database.

All sources contain information about movies, except S4, which brings informa-
tion about books. In fact, sources S3 and S4 belong to the same location and group
information related to Isaac Asimov works in general (books and movies based on
books). This variation in the domain shows one of the expectations of our work,
which is to be able to integrate information from similar domains.

Also, observe that some objects have information spread over different sources,
and some sources that contain complementary data come from different locations.
For instance, some attributes of the movie Casablanca are exposed in S2, while
others are exposed in S5. It is easy to see that the same object is represented in
different wrapped relations, since they have the same value for the attribute title.

The existence of heterogeneous, distributed and correlated sources represent
some of the aspects found on dataspaces. In the next two chapters we investi-
gate approaches that are able to bring this information to the surface and allow
users to express structured queries over it.
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5 QUERY ANSWERING IN THE PRESENCE OF
JOIN PREDICATES

In this chapter we show how to access dataspaces through an interface that
accepts queries with joins. With this type of query, the user explicitly defines the
relations of interest, along with the necessary join conditions. To support queries
with joins, we create particular indexing and rewriting components of the Eidos
architecture. Together, these components are responsible for two main processes:
1) find which wrapped sources map to the relations of the user queries, and 2) use
them accordingly in order to find the answers.

The remainder of the chapter is organized as follows. In Section 5.1, we present
the query language that allows users to ask queries with joins. In Section 5.2,
we present the index component, which involves the structure of the index and
the mapping functions that populate the index with information from the sources.
Section 5.3 discusses several algorithms that belong to the rewriting component.
These algorithms access the indexes in order to find rewritings to user queries.

5.1 Query Language

As explained earlier, we need a language that allows the user to explicitly declare
joins. Also, Chapter 4 described that the Eidos architecture only accepts query
languages restricted to conjunctions of predicates. Therefore, in order to satisfy the
Eidos architecture restrictions, and to provide support for joins, we let the user pose
select-project-join(SPJ) queries described in SQL.

This class of queries is relatively easy to express. Besides, they represent a large
part of queries issued on relational databases. For instance, take the SQL query
described below. This query is asking for movies in the twentieth century that re-
ceived an award:

SELECT
m.title, m.genre, a.award

FROM
movie m, award a

WHERE
m.title = a.title and m.year >= "1900"and m.year < "2000"

Although our query interface accepts conjunctive queries in SQL, for clarity we
explain the concepts and components of our work using the Datalog notation. In
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Datalog, a SPJ query has the following form:

h(X) : −g1(X1), ..., gn(Xn), f1, ..., fm

A query has two parts, divided by the symbol ":-". The part in the left of the
symbol is called header. The header, identified by the atom h(X), represents the
projection part of the query. The part in the right of the symbol is called body. The
atoms in the body represented by each of the g(X) are called relation subgoals.

A relation subgoal refer to a relation. The arguments of type X = {x1, ..., xn}
refer to the attributes of the relations, and are all variables (constants are irrelevant
to our discussion).

In order for the query to be safe, it is required that X ⊆ X1 ∪ · · · ∪Xn, that is,
the variables of the header must be also in at least one of the subgoals.

To complete, each fi is a comparison subgoal in the form α θ ν, where α is a
variable that appears in a relation subgoal, ν is a constant and θ is an operator that
accepts 6=, =, >, >=, <, <=.

In datalog, the SQL query presented earlier is represented as:

h(title,genre,award) :- movie(title,genre,year),
award(title,award),
year >= 1900, year < 2000

The variables of the header represent the attributes of the select clause. The
body is composed by four subgoals, where two of them correspond to relations and
the others are comparison subgoals.

Variables that are present in multiple subgoals are called shared variables. They
correspond to either join variables, when they appear in more than one relation
subgoal (like title) or selection variables, when they appear in selection subgoals
(like year). Variables that are not shared are called local.

Additionally, variables that appear in the header are called distinguished vari-
ables. Variables that are not distinguished are said to be existential.

5.2 Proposed Indexes

In this section we present several indexes that store information from the wrapped
relations. In addition, we explain the mapping rules responsible for extracting in-
formation from the wrapped relations into the repository. The wrapped relations
presented in Figure 4.3 (S1 to S6) are used to exemplify the mapping process.

5.2.1 A Index

The A index([A]ttribute index) is composed by a list of indexed attributes A =
{a1, ..., an}.

Alone, this index does not help in the rewriting process. All it can do is answer
the question of weather the variables of the user queries exist in wrapped relations
or not, without identifying which are the relations. However, its structure compose
the foundation of more meaningful indexing structures, as will be described later.

A wrapped relation is mapped to the A index according to Definition 1.
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Figure 5.1: ATa index populated with the contents of sources S1 to S6

Definition 1 (A Mapping)
Consider the wrapped attribute c ∈ t. Given this, let mapA(c) = a be a function
that maps c to an indexed attribute a.

The function mapA computes the map based on the name of the wrapped at-
tribute. Several techniques can be used, such as a combination of string matching
and lexicons. Our purpose is not to discuss the possibilities, but to show that they
exist. For instance, one function could map the wrapped attributes title and film to
the same canonized indexed attribute movie. To simplify, in this work we determine
that homonymous wrapped attributes map to the same indexed attribute.

5.2.2 ATa Index

The ATa index([A]ttribute-[Ta]ble index) extends the A index with the list of
indexed relations R = {r1, ..., rn}. Furthermore, rel(a) = Rx is the function that
returns the list of relations that contain a, where Rx ∈ R.

The goal of the ATa is to allow relation lookups. Given a query, it provides the
location of the relations that contain the variables of the relation subgoals.

A wrapped relation is mapped to the ATa index according to Definition 2.

Definition 2 (ATa Mapping)
The ATa Mapping extends the A Mapping to support the relation level of the ATa.
Provided that, consider the wrapped attribute c ∈ t. Given this, mapR(c, t) = r is
the function that maps the wrapped relation t to the indexed relation r. Furthermore,
considering the maps mapA(c) = a and mapR(c, t) = r, then r ∈ rel(a).

To illustrate the mapping, Figure 5.1 shows the ATa populated with the contents
of the sources from S1 to S6. Basically, ATa is an inverted list that allows naviga-
tion from the attribute to the relation level. For clarity, the index is presented in
the Figure as a table. The physical implementation can be achieved in multiple
ways (BAEZA-YATES; RIBEIRO-NETO, 1999), such as a sorted array, a prefix
B-tree or a Patricia trie. Alternatively, compression techniques could be used to
shrink the index and reduce the storage requirements (HERSH, 2001).

5.2.3 ATaVa Index

The ATaVa index([A]ttribute-[Ta]ble-[Va]lue) extends the ATa with the triple
(D, V, I).
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The element D = {d1, ..., dn} denotes the list of data types of each pair (a, r)
such that a ∈ A and r ∈ rel(a). Complementarily, the function dty(a, r) = dx,
where dx ∈ D, returns the data type for a specific pair (a, r).

In addition, V = {v1, ..., vn} is the list of indexed values of each pair a, r. The
function val(a, r) = Vx, where Vx ∈ V , is the function that returns the list of indexed
values related to the pair (a, r).

Finally, I = {i1, ..., in} contains the tuple identification of each triple a, r, v. This
identification is the vertical coordinate of a value v inside a indexed relation r, for
attribute a. The function ide(a, r, v) = i, where i ∈ I, returns the respective tuple
identification.

A wrapped relation is mapped to the ATaVa index according to Definition 3.

Definition 3 (ATaVa Mapping)
The ATaVa Mapping extends the ATa Mapping to support the values level of the
ATaVa. Provided that, consider the wrapped attribute c ∈ t and the domain value
d ∈ DOM(c) that belongs to the tuple τ of table t. Given this, let mapV (c, t, d) = v
be a function that maps the domain value d to the indexed value v. Furthermore,
considering the maps mapA(c) = a, mapR(c, t) = r and mapV (c, t, d) = v, then
v ∈ val(a, r). Finally, ide(a, r, v) and dty(a, r) are given by the functions ide(τ) and
dty(DOM(c)), respectively.

The computation of ide(τ) must be provided by the Wrapper module, since the
result depends on how the wrapper extracts information from the underlying data
model of the wrapped source. For instance, considering HTML tables, the wrapper
could extract one tuple for each record enclosed by the tag <tr>. In this case, the
function ide(τ) could return the order of the record inside the table as the identifier.
A similar approach can be used for indexing relational tables. Even though relational
tuples have no particular order inside a relation, queries over the relation will return
the tuples in a specific order, even if arbitrary. In indexing time, relation wrappers
can submits queries to obtain the tuples, and then use the result set order as the
tuple identification.

The data type of an attribute dty(DOM(c)) is also related to the underlying
data model of the wrapped source. For some sources, like relational tables, the data
type can be obtained directly. For other sources, like Web data, this information
is normally not defined, but can be easily discovered through a template based
approach. For instance, FOCIH also has a library of regular-expression recognizers
for values in common formats (EMBLEY et al., 1999).

To illustrate the mapping process, Figure 5.2 shows the ATaVa populated with
the contents of the sources s1 and s3. The dashed part indicates information that
is new, if compared to the ATa. As its predecessor, the ATaVa index also provides
the location of the relations that contain the query variables. However, there is a
new level of information concerning the tuples of the wrapped relations.

The value inside the square brackets identifies the tuple from which the specified
value can be obtained. For this mapping, we assume that the wrapper uses the order
presented in Figure 4.3 as the tuple identification.

As the Figure shows, two data types appear in the index (String and Integer),
which can be easily inferred from the sources using a simple template. We do not
constraint the list of data types allowed. Implementations of the index can define
the data types as it see fits, and use them accordingly.
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Figure 5.2: ATaVa index populated with the contents of the sources S1 and S3

The values level is useful for answering queries with arithmetic comparisons,
since it helps locating relations that are able to satisfy the selection predicates.
Additionally, the tuple identification can be used when the query has multiple se-
lection predicates, as it enables the process of verifying whether any specific tuple
of a relation is able to satisfy all predicates. Finally, data types add semantic to
the process of resolving query predicates, by allowing the rewriting algorithms to
compare values according to their respective data type.

5.2.4 TAt Index

The TAt index([T]able [At]tribute) is a tuple (Rtat, Atat), such that Rtat =
{rtat

1 , ..., rtat
n } is the list of indexed relations and Atat = {atat

1 , ..., atat
n } is the list

of indexed attributes.
Furthermore, attr(rtat) = Atat

x is the function that returns the list of attributes
of rtat, where Atat

x ∈ Atat.
A wrapped source is mapped to the TAt index according to Definition 4.

Definition 4 (TAt Mapping)
Consider the wrapped column c ∈ t. Given this, let mapR(t) = rtat be a function that
maps t to an indexed relation rtat. Additionally, the function mapAtat(t, c) = atat

maps the wrapped attribute c to the indexed attribute atat, such that atat ∈ attr(rtat).

To illustrate the mapping, Figure 5.3 shows the TAt populated with the contents
of the sources s1 to s6. TAt is an inverted list that allows navigation from the relation
to the attribute level. In this sense, it is orthogonal to ATa/ATaVa, which offers a
navigation in the opposite direction.

TAt allows attribute lookups. Together with the relation lookups of ATa, these
two indexes accelerate the process of finding rewritings, as the next Sections demon-
strate.

It is possible to merge the ATa/ATaVa with the TAt as follows: Consider the
column c ∈ t, and the maps: mapA(c) = a, mapR(c, t) = r, mapRtat(t) = rtat and
mapAtat(t, c) = atat and . Given this, the two entries a and atat are turned into one.
Additionally, a direct association is created from r to rtat.

Figure 5.4 shows the index merge of the sources s1 and s3, represented as a
graph (information about the values are omitted for the sake of clarity). The index
is a bipartite graph with directed edges connecting relations and attributes. The
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Figure 5.3: TAt index populated with the contents of sources S1 to S6

Figure 5.4: Merging the ATa/ATaVa with the TAt. The index is a bipartite graph
connecting relations and attributes

advantage of this arrangement is that the lookups can start either at the attribute
level or the relation level. Dashed nodes indicate the entry points of the merged
index.

5.3 Query Rewriting

In what follows, we present a series of examples that illustrate the proposed
rewriting algorithms. Given a query, we show how to access the indexes in order to
find the sources that are able to provide meaningful answers.

To start, consider Example 1. The query is composed by a single subgoal with
two variables.

Example 1: Find the title and year of movies.
Q1:h(title, year) :- movie(title, year)
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To answer this query, we need to find the possible rewritings. To our goal, a
rewriting of a conjunctive query q

h(X) : −g1(X1), ..., gn(Xn), f1, ..., fm

is another conjunctive query w

hi(X i) : −gi
1(X

i
1), ..., g

i
n(X i

n), f i
1, ..., f

i
m

whose subgoals refer to wrapped relations.
Moreover, every subgoal of q must be mapped to a subgoal of w. In other words,

every subgoal of the query needs to be covered by a relation found on the Web. We
call this mapping Table Match. A table match indicates that the variables of the
subgoal are covered by the attributes of the matched relation.

For queries with a single relation subgoal, such as in Example 1, there will be a
rewriting for each table match found for the subgoal. Rewriting algorithms traverse
the indexes in order to find the wrapped relations that are able to form table matches.
We call this process Table Search.

Additionally, we make a distinction between complete and partial table matches.
In a complete table match, every variable is covered. In a partial table match, some
of the variables are left uncovered. First, we explain how to support rewritings that
use complete table matches.

5.3.1 Table Search Algorithm: Table Scan

A naïve table search approach to find complete table matches is described in
Algorithm 1. The Table Scan strategy performs a scan over all indexed relations,
and creates table matches for every relation that covers all variables of the sub-
goal. TAt lookups indicate whether a query variable is indexed as an attribute of
the given relation. Attributes that cover the subgoal variables are added into the
corresponding table match.

In the example given, four table matches are created, for sources S2, S3, S4 and
S5. Each of them forms a rewriting, as presented below.

Rewriting 1: h(title, year) :- S2(title, year, _)
Rewriting 2: h(title, year) :- S3(title, year)
Rewriting 3: h(title, year) :- S4(title, _, year)
Rewriting 4: h(title, year) :- S5(title, _, year)

For each rewriting, the subgoals of the original query are replaced by their re-
spective matched relations, and the query variables are replaced by the matched
attributes. Also, unmatched attributes of the wrapped relations become local vari-
ables (award, pub and genre). The underscore sign indicates this fact.

Observe that rewriting 4 is a false positive, since the answers reveal information
about books instead of movies. This is a natural consequence of the lack of pre-
defined mappings between a global schema and the sources. Index lookups can
lead to false positives (in the case of homonyms) or false negatives (in the case of
synonyms).

Although it is conceivable that a user may want to integrate information about
books and movies, in some cases, these rewritings are not desirable. Tuning the
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tableScan(Subgoal g)
1: //list of table matches
2: TM ← {} //Initially empty
3: for every r of Rtat do {//iterating through relations using TAt}
4: findMatch(g, r, TM)
5: end for

findMatch(Subgoal g, IndexedRelation r, TableMatches TM)
1: tm← {} //new table match
2: for every variable x of g do
3: if (x ∈ attr(r)) then {//performing a TAt lookup}
4: add into tm the respective attribute that covers x
5: else
6: Return with no match between g and r
7: end if
8: end for
9: add tm to TM

Algorithm 1: Table Scan Algorithm - finds wrapped relations that cover all vari-
ables of a relation subgoal

rewriting component to better match a user’s preference is a problem we plan to
study in future work.

5.3.2 Incomplete Rewritings

The previous algorithm is able to find table matches only if all variables of the
subgoal are covered. When the subgoal contains many variables, the number of
table matches tends to decrease, if we consider that the number of variables of a
query is inversely proportional to the number of relations that are likely to provide
a full coverage.

We address this problem by allowing incomplete rewritings. By incomplete we
mean rewritings that do not cover all variables of the queries. In order to support
this, the variables are classified as required or optional. Required variables always
need to be covered whereas optional variables may remain uncovered. Given a
subgoal g, the functions req(g) and opt(g) returns the required and optional variables
of g, respectively, where g = req(g) ∪ opt(g).

The existence of optional variables demands the computation of partial table
matches, where only the required variables need to be matched. Rewritings that are
formed based on partial table matches are called incomplete.

To define which variables are required, one possibility is to let the user make this
decision. In this case, the query language would have to be extended to support
this feature. Instead, we propose an approach that defines required and optional
variables based on information already expressed in the query.

A variable is considered required if:

• it is a selection variable, or

• it is a shared variable, or

• other than shared variables, it is the only distinguished variable of a subgoal,
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where the subgoal is not associative. An associative subgoal is one whose
shared variables join any other two subgoal.

Selection variables are required because they restrict the query to a specific
set of answers, those that are more relevant to the user. If a selection variable
is left uncovered, that filter predicate can not be applied over the answers, and
consequently the results can not reflect exactly what the user was expecting.

Shared variables are required because they are needed to perform the join con-
ditions stated in the query. Queries with joins are discussed later.

The third type of required variable consider distinguished variables - those that
are delivered to the user as results. Distinguished variables are required in spe-
cial circumstances, when it is possible to realize that the subgoal is useless if that
particular variable is not covered.

Figure 5.5 shows some examples of queries and their required variables. Observe
that all selection and shared variables are required. Also, observe that not all dis-
tinguished variables are required. For instance, the first and second queries are very
much alike, but the distinguished variable a is required only in the first, where it is
the only distinguished variable of the subgoal.

In the fifth query, neither of the distinguished variables c or d are required. When
the subgoal contains more than one distinguished variable, we take a less restrictive
approach and set them as optional. Based on the same rule, the third query contains
only optional variables.

Another example is given in the last query. In this case, variable d is the only
distinguished variable of subgoal2, and yet, it is not considered required. The reason
is that the variable d belongs to an associative subgoal. When associative goals are
present, we assume that their main goal is to act as a bridge between other subgoals,
and therefore, distinguished variables that come from these kind of subgoal are not
considered required.

The rules that define required variables were created based on an intuition about
the importance of each variable in the query processing and how they would affect
the quality of the answers. Generally speaking, the approach can be extended to
include other rules or even to suppress some. In fact, one possibility would be to
consider entire subgoals as required or optional. Discussions about the impact of
such changes are left for future work.

To demonstrate the creation of incomplete rewritings, consider Example 2.

Example 2: Find the title and genre of movies released before the year 2009.
Q2: h(title, genre) :- movie(title, genre, year), year < 2009

This example shows a query that contains a selection variable (year), which
becomes the only required variable of the query. Therefore, in order to answer Q2,
we need to find wrapped relations that cover at least the year variable. Algorithm 2
shows how this is accomplished. It is an extension of Algorithm 1 that changes the
definition of the method findMatch.

Similarly to the previous case, four table matches are created, for sources S2, S3,
S4 and S5. Each of them generates a rewriting, as presented below:
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h(a):-subgoal1(a,b), b = 2
required variables: a,b

h(a,b):-subgoal1(a,b), b = 2
required variables: b

h(a,b):-subgoal1(a,b)
required variables: –

h(a,c):-subgoal1(a,b), subgoal2(b,c)
required variables: a,b,c

h(a,c,d):-subgoal1(a,b), subgoal2(b,c,d)
required variables: a,b

h(a,c,d):-subgoal1(a,b), subgoal2(b,c,d), c = 2
required variables: a,b,c

h(a,b,e):-subgoal1(a,b), subgoal2(b,c), subgoal3(c,e)
required variables: a,b,c,e

h(a,d,e):-subgoal1(a,b), subgoal2(b,c,d), subgoal3(c,e)
required variables: a,b,c,e

Figure 5.5: Examples of queries and their required variables

w1 : h(title, genre) :- S2(title, year, _), year < 2009
w2 : h(title, genre) :- S3(title, year), year < 2009
w3 : h(title, genre) :- S4(title, _, year), year < 2009
w4 : h(title, genre) :- S5(title, genre, year), year < 2009

Observe that the table match for S5 is the only one that covers all variables of the
query. The other three fail to return the genre. Nevertheless, this incompleteness
does not invalidate the rewritings, since the missing information is not needed for
selecting the tuples (no filter or join condition depends on this variable).

5.3.3 Ranking

Ranking strategies are recommended when a query contains many possible rewrit-
ings. In our approach, the ranking is given by a similarity function based on the
number of covered variables: the larger the number of covered variables, the more
relevant is the wrapped relation.

The similarity is measured between a subgoal g = {x1, ..., xn} and a wrapped
relation t = {c1, ..., cj}, using Equation 5.1. Let |g| be the number of variables of g.
Additionally, cover(t, x) returns 1 if the relation t covers variable x, and 0 otherwise.

sim(g, t) =

∑n
i=1 cover(t, xi) ∗ sel(xi)

|g|
(5.1)
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findMatch(Subgoal g, IndexedRelation r, TableMatches TM)
1: ptm← {}
2: for every variable x of g do
3: if (x ∈ attr(r)) then {//performing a TAt lookup}
4: add into ptm the respective attribute that covers x
5: else if x ∈ req(g) then
6: Return with no match between g and r
7: end if
8: end for
9: add ptm to TM

Algorithm 2: Adapted Table Scan Algorithm - finds wrapped relations that cover
all required variables of a relation subgoal

The equation returns a normalized score between zero and one. Observe that
the size of the subgoal is used as the normalization factor. Another possibility is to
use the size of the relation instead. In this case, relations with a large number of
attributes would get a lower score.

The function sel(x) computes the selectivity of an attribute. This selectivity -
given by Equation 5.2 - measures the inverse proportion of how often each attribute
appears in the corpus of indexed relations. When relations cover the same amount
of variables, this information helps to determine which relations should get a better
score.

sel(a) = 1− |rel(a)|
|Rtat|

(5.2)

The selectivity of the indexed attributes is presented in Table 5.1. Observe that
the selectivity of title is zero, since it appears in all indexed relations. According
to Equation 5.1, any attribute that appear in less relations will be considered more
relevant than title. Another possibility is to do the opposite, and consider that the
attributes that appear in larger number of relations are more relevant to the user.

Attribute Selectivity Factor
Title 0
Year 0.33
Genre 0.66
Award 0.66
Pub 0.84

Table 5.1: Selectivity of the indexed attributes

To illustrate the ranking, take Example 3 presented next:

Example 3: Find the title, genre, year and award of movies.
Q3: h(title, genre, year, award) :- movie(title, genre, year, award)

Since no required variables are provided, six rewritings are produced in this case,
since all six indexed relations cover at least one variable of the query. Table 5.2 shows
how these rewritings are ranked according to Equation 5.1.
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List of rewritings Score
1 h(title,genre,year,award) :- S5(title, genre, year) 0.25
2 h(title,genre,year,award) :- S2(title, year, award) 0.25
3 h(title,genre,year,award) :- S1(title, genre) 0.16
4 h(title,genre,year,award) :- S6(title, award) 0.16
5 h(title,genre,year,award) :- S3(title, year) 0.08
6 h(title,genre,year,award) :- S4(title, pub, year) 0.08

Table 5.2: Ranking based on the rewritings of query Q3

It is important to remark that relations that cover the exact same variables (or
whose participant attributes have the same selectivity) will still receive the same
ranking. We understand that additional ranking criteria is needed. Some natural
possibilities include the number of records of the matched relations and the rele-
vance of the Web source (e.g., the pagerank) from where the relation was extracted.
Moreover, indexed attributes could match query variables by similarity. In this case,
it is possible to extend the function cover(t, x) to take the similarity into account.

5.3.4 Table Search Algorithm: Pivot Table Scan

This variation of the Table Scan Strategy narrows the table search by scanning
only a specific list of relations. This list is formed by all relations that cover one
determined variable of the query, which we name pivot. Algorithm 3 shows how to
adapt the method tableScan in order to achieve this goal.

tableScan(Subgoal g)
1: //list of table matches
2: TM ← {} //Initially empty
3: pivot← NULL //Initially empty
4: for every variable x of req(g) do
5: if (x ∈ A) then {//performing a ATa lookup}
6: if (pivot = NULL or sel(pivot) > sel(x) then
7: pivot← x
8: end if
9: end if

10: end for
11: for every relation r of rel(pivot) do {//iterating through relations using ATa}
12: findMatch(g, r, TM)
13: end for
Algorithm 3: Pivot Table Scan - reduces the number of relations that need to be
processed

As the algorithm shows, ATa is used to find relations that cover the pivot vari-
able(line 11). Observe that relations that do not cover the pivot are not processed
in the next step, and will not form rewritings. This is not a problem because the
pivot is always a required variable. Therefore, only relations that cover this variable
can be part of rewritings. Moreover, if the subgoal has more than one required
variable, the pivot is the one whose selectivity is higher, which reduces the number
of relations that needs to be processed.



58

To illustrate the use of a pivot, consider Example 4.

Example 4: Find the title of movies released before the year 2009.
Q4: h(title) :- movie(title, year), year < 2009

In Example 4, both title and year are required, the former for being the only
distinguished variable of the subgoal and the latter for being a selection variable. In
this case, year is chosen as the pivot because its source selectivity is higher.

This approach is limited to the existence of required variables in the subgoal,
since only them can become pivots. If all variables are optional, taking one of them
as the pivot would prevent the algorithm from finding any rewriting where that
specific variable is not covered. Likewise, if a required variable exists, taking a
optional variable as the pivot would prevent the algorithm from finding rewritings
where that required variable is covered but the optional variable is not.

5.3.5 Table Search Algorithm: Table Intersection

Basically, the Table Intersection strategy uses ATa to find the lists of relations
that cover each variable of the subgoal. Then, these lists are combined to find the
rewritings.

Algorithm 4 describes how this approach works. For each required variable, a
list of table matches is computed. These lists are then incrementally combined by
intersecting table matches that refer to the same indexed relation. Algorithm 5
explains how the intersection works.

After all intersections are performed, the final list contains table matches that
cover all required variables. The table matches are also updated to include the op-
tional variables. If there are no required variables, the list of table matches contains
all relations that cover at least one optional variable.

Algorithm 5 presents the auxiliary method that enables the pair-wise intersection
of lists in general. The method is also used in Algorithms 6 and 8, as detailed later.
We do no go into details about how the intersection operation itself is performed,
as many possibilities emerge (Merge-join, Hash join, etc...). However, we do make
a remark that some intersection algorithms can explore the attribute selectivity in
order to improve the search. For example, in merge joins, performance is better
when the smaller list is traversed in the outer loop.

Additionally, in pair-wise intersection, a more general improvement is achieved
by intersecting smaller lists first. For instance, consider Figure 5.6. It shows the
intersection process for a query where title, genre and year are required variables.
Observe that, if the relations that contain genre and year are intersected first, the
intermediary result is smaller, which reduces the time required in the next step.

5.3.6 Rewriting Check for Queries without Joins

The presence of selection subgoals in a query restricts the universe of interest of
the user. Even if a wrapped relation covers all variables of a subgoal, it may not
satisfy the provided filter predicates. For example, consider the query below.

Example 5: Find romance movies released before 1950.
Q5 h(title):- movie(title,genre,year), year < 1950, genre = ’romance’
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tableScan(Subgoal g)
1: TM ← {} //list of table matches
2: for every variable x of req(g) do
3: if (x ∈ A) then {//performing a ATa lookup}
4: TMaux ← {}
5: for every relation r of rel(x) do {//iterating through relations using ATa}
6: create tmr

7: add into tmr the respective attribute that covers x
8: add tmr into TMaux

9: end for
10: if (not intersect(TM, TMaux) then
11: //Error - no relation covers all required variables.
12: end if
13: else
14: //Error - required variable not found.
15: end if
16: end for
17: for every variable x of opt(g) do
18: if (x ∈ A) then
19: for every relation r of rel(x) do
20: if (|req(S)| == 0) then
21: create ωr

22: add tmr into TM
23: else
24: get tmr from TM
25: end if
26: add into tmr the respective attribute that covers x
27: end for
28: end if
29: end for
Algorithm 4: Table Intersection Algorithm - based on the intersection of the
relations lists that cover each required variable

The only relation that covers all required variables of query Q5 is S5. However,
in order for this relation to fully satisfy the selection predicates, both predicates
should be satisfied for the same tuples. In this case, there is no overlap between the
tuples that satisfy predicate year < 1950 (tuple two) and the tuples that satisfy
predicate genre = Romance (tuple one). Consequently, this rewriting produces no
answers, and is irrelevant to the user. In this work, we call these Empty Rewritings.

In order to prevent empty rewritings from being produced, we apply a rewrit-
ing check to each computed rewriting, as described in Algorithm 6. Assume that
the algorithm uses a list validTuplesr for every relation r that participate of the
rewriting. This list contains all tuples that satisfy the predicates that apply to r.

Given a selection predicate over a relation r, an auxiliary list filterList is pop-
ulated with the tuples of r that satisfy this predicate. This is repeated to every
selection predicate of the query. Auxiliary lists that refer to the same relation are
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intersect(ref List list1, List list2)
1: if list1 == {} then
2: list1← list2
3: else
4: list1← list1 ∩ list2
5: end if
6: if list1 == {} then
7: return false//the intersection is empty.
8: else
9: return true

10: end if
Algorithm 5: Auxiliary intersection method used by Algorithms 4, 6, 8

Figure 5.6: Intersection of lists: using smaller lists in one step reduces the amount
of work in the next step

intersected. The result of the intersection is incrementally computed and stored in
validTuplesr. If this list becomes empty, it means that the relation does not contain
tuples that satisfy all of the respective selection predicates.

The checkF ilter function builds a list of tuples that satisfy one specific selec-
tion subgoal, where tuples are uniquely identified by the function ide(a, r, v). This
pseudo-code can be improved with more efficient implementations. For instance, we
can assume that val(a, r) retrieves ordered values, and then perform the comparisons
in logarithmic time. Besides, the data type may be used to indicate the semantic of
the comparison predicates. For example, since year is a numeric value in the index,
the values could be compared as numbers, which could return different results as it
would if the values were compared as dates or plain strings. The semantic of the
data type comparisons is an implementation detail and as such is not discussed in
this work.

5.3.7 Early Check

In some situations, it is possible to identify relations that cannot satisfy the
selection subgoals of the query before the rewritings are produced. For instance,
consider Example 6.
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checkRewriting(Rewriting w)
1: //check the filters
2: for every relation subgoal g of w do
3: checkFilters(w,g)
4: end for

checkFilters(Rewriting w, Subgoal g)
1: r ← indexed relation that was matched to g
2: for every matched variable x of g do
3: a← indexed attribute that was matched to x
4: for every filter f of w where f.α = x do
5: filterList ← checkFilter(f,a,r)
6: if (not intersect(validTuplesr, filterList)) then
7: //Error - the relation does not cover all of its respective selection vari-

ables.
8: end if
9: end for

10: end for
checkFilter(Filter f, IndexedAttribute a, IndexedRelation r)
1: filterList← {} //list of tuples that satisfy the filter f
2: for each value v of val(a, r) do {//iterating through values using ATaVa}
3: if (v satisfies filter f) then
4: add ide(a, r, v) into filterList
5: end if
6: end for
7: return filterList
Algorithm 6: Rewriting Check - Identifies rewritings that produce no answers

Example 6: Find the title and genre of movies released in the 90’s.
Q6 h(title,genre):- movie(title,genre,year), year >= 1990, year < 2000

Four of the indexed relations cover the required variable year. However, only
two of them contains movies released in the nineties(S4,S5).

Relations that fail to satisfy the year predicates are identified before the rewrit-
ings are produced, in a process called selection check. This early check is able to
identify relations that cannot provide any answer, and ignore them when producing
the rewritings.

Pivot Table Scan and Table Intersection can perform this check when they search
for indexed relations that contain a specific attribute. Algorithm 7 shows how to
find the relevant relations. In order to enable this check, Pivot Table Scan and
Table Intersection should replace the calls for rel(a), that retrieves all relations that
contain a, to calls for relationLookup(a).

It is important to remark that two checks are available: the early check and
the rewriting check. The former only applies when the rewriting contains selection
subgoals. Conversely, rewriting checks are useful in two different situations:

when joins are present In this case, we need to check if at least one tuple from
the relation subgoals satisfies the join conditions. This is not an early check
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relationLookup(IndexedAttribute a)
1: relations ← {}
2: for every relation r of rel(a) do {//iterating through relations using ATa}
3: allF iltersList← {} //list of values that satisfy all filters of a
4: for every filter f of the query where f.α = a do
5: filterList = ← checkFilter(f,a,r)
6: checkIntersection(allF iltersList, filterList)
7: end for
8: if (|allFiltersList| > 0) then
9: add r into relations

10: end if
11: end for
12: return relations

Algorithm 7: Relation lookup that performs the selection check

because the join information exists only after the rewritings are produced.
More about this check is presented in Section 5.3.8.1.

when more than one variable of a relation subgoal is a selection variable
In other words, more than one filter apply over the same set of tuples. For
instance, the query of Example 5 contains two selection variables of the same
subgoal (year and genre).

If none of these conditions hold, the early check suffices. Otherwise, only the
rewriting check is able to determine if a rewriting is empty or not. Despite of
that, when selection subgoals are provided, the early check can always be used in
conjunction with the rewriting check, as it helps pruning irrelevant relations, and
consequently, reducing the size of the problem.

5.3.8 Rewriting Queries with Joins

The queries presented so far are composed by a single relation subgoal. In this
section we present an approach that supports queries with multiple relation subgoals.

This is accomplished by the M-Bucket algorithm. The name of the algorithm is
as a reference to the use of buckets. The concept of bucket was already employed in
past work, for the problem of generating rewritings from LAV mappings (The Bucket
Algorithm, described in (LEVY; RAJARAMAN; ORDILLE, 1996), was proposed
as a rewriting algorithm for the Information Manifold system).

The steps of the M-Bucket algorithm are described below:

1. For each relation subgoal g in the query, create a bucket.

2. Add an entry in the bucket for every wrapped relation from where tuples of g
can be possibly retrieved, i.e, relations that are matched with g.

3. Remove relations that only cover shared variables, when the subgoal is not
associative.

4. Rank the entries of each bucket.
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Figure 5.7: Buckets populated with relations that match subgoals movie and award

5. Generate rewritings as conjunctive queries by combining one entry from each
bucket.

6. Simplify the rewritings, eliminating irrelevant subgoals

7. Remove rewritings that produce no answers (rewriting check)

8. Bind the selection predicates variables of the user query to their respective
variables of the rewritings.

To illustrate the algorithm, consider Example 7, which contains more than one
relation subgoal.

Example 7: Find the title, genre, nominations and awards of movies released
in the 20th century.

Q7 h(title,genre,nom.,award) :- movie(title,genre,year),
award(title,nom.,award),
year>=1900, year<=2000

Given query Q7, two buckets are created, one for movie and one for award.
Then, the buckets are populated with relevant wrapped relations. This information
can be retrieved from any of the algorithms described earlier (Table Scan, Pivot
Table Scan, Table Intersection).

Figure 5.7 shows, in the left part, the buckets populated with the matched re-
lations. The subgoal for movie contains relations that cover the required variables
title and year, and the subgoal for award contains relations that cover the required
variable title.

In the right, Figure 5.7 shows the buckets after the third step of the algorithm.
The relations removed from the award bucket are unable to contribute with answers,
since they only cover the shared variable title.

In the next step, the entries of each bucket are ranked. The rank is obtained
based on the number of attributes covered and the attribute selectivity, as explained
in Section 5.3.3. To simplify the explanation, the entries of Figure 5.7 are already
ordered accordingly.

In the fifth step, each entry of a bucket is combined with each entry of the
other bucket. The result is a cartesian product that contains every possible way
to rewrite the original query using the relations available. Figure 5.8 shows the
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rewritings generated based on the final contents of the buckets. The underscore
symbol indicate local existential variables that are not important to the query.

Q7 h(title, genre,
nom., award):- movie(title, genre, year), award(title, nom., award)

Rewriting 1: S5(title, genre, year), S2(title, _, award)
Rewriting 2: S5(title, genre, year), S6(title, award)
Rewriting 3: S2(title, year, _), S2(title, _, award)
Rewriting 4: S2(title, year, _), S6(title, award)
Rewriting 5: S3(title, year), S2(title, _, award)
Rewriting 6: S3(title, year), S6(title, award)
Rewriting 7: S4(title, _, year), S2(title, _, award)
Rewriting 8: S4(title, _, year), S6(title, award)

Figure 5.8: Rewritings of the user query asking for awarded movies (Q7)

Observe that the ordering of the buckets performed during the forth step leads
to ordered rewritings, where rewritings that cover more variables appear first. We
remark that the ranking can be obtained in different ways, and even after the carte-
sian product is performed. For instance, it would be possible to use ranking criteria
that refer to the rewriting as a whole. An interesting possibility is to set a higher
ranking for rewritings that come from the same location(such as the same Web page
or database).

After the rewritings are produced in step 5, the algorithm proceeds by perform-
ing a simplification (step 6) and a rewriting check (step 7). The simplification shows
how to remove subgoals from a rewriting without loosing meaningful information
in the answers. Section 5.3.8.2 shows how to apply this simplification over rewrit-
ing 3 of Figure 5.8. The rewriting check identifies rewritings that are not able to
satisfy the query predicates (such as the ones marked with a stripe in Figure 5.8).
Section 5.3.8.1 shows how this check is performed in the presence of join predicates.

Finally, the last step simply adds the selection subgoals into the rewritings, and
replaces the query variables used in the selection with their corresponding matched
attributes.

We finish this section with Example 8, which shows a case where two relation
subgoals refer to the same real world entity (worker).

Example 8: Find the name and the place of birth of the director and the lead
actor of the movie Titanic.

Q8 h(director,birthPlace1,
actor,birthPlace2) :- movie(title,director,actor),

workers(director,birthPlace1),
workers(actor, birthPlace2),
title = "Titanic"

In this case, the M-Bucket algorithm creates one bucket for each subgoal, re-
gardless of whether it is repeated or not. Consequently, the rewritings may bring
tuples of worker from different sources, for each instantiation of the same entity.
At first, it seems that data from a given entity should always come from the same



65

source. However, rewritings that bring data from different sources may contribute
with different (and perhaps more) results.

To illustrate, consider that two wrapped relations match worker, and that one
of them contains data about directors while the other contains data about actors. If
the two worker subgoals match the same wrapped source, the rewriting produced
would be empty. If the worker subgoals are allowed to match different wrapped
relations, the m-bucket algorithm is able to find a non-empty rewriting.

5.3.8.1 Rewriting Check for Queries with Joins

A rewriting check determines whether a rewriting is able to produce answers that
satisfy the query predicates. We have already presented a limited version of the check
in Algorithm 6, where only selection predicates are processed. In this section we
show how to extend the algorithm in order to check if a rewriting satisfies both
selection and join predicates at the same time.

Algorithm 8 shows how the joins are checked. Since the selection predicate
check was already discussed, it is omitted from the specification (line 2). Just as
the previous version, a list of valid tuples exist for every relation r that participate
of the rewriting (validTuplesr). The function intersect updates this list during
the join check(Line 20), as it is updated during the selection check presented in
Algorithm 6. If it becomes empty at any time, it means that no tuple of r satisfies
all of the predicates (filters and joins) at the same time. For consistency sake, the
lists of the selection predicates are intersected first. This measure prevents dangling
tuples, from instances that were joined before the selection predicate had the chance
to remove them.

ATaVa lookups (val(a, r)) provide the information used to perform the join check.
Observe that the values of the attributes that participate of the join are compared
by the equality operator. Another approach would be to compare the values by
similarity. This similarity operator could also be apply during the selection check, for
example, by using fuzzy quantifiers, as described in (KACPRZYK; ZIóLKOWSKI,
1986).

5.3.8.2 Query Simplification

Rewritings produced by the M-Bucket algorithm may contain duplicated sub-
goals, which refer to the same wrapped relation. In some cases, such rewritings
can be simplified by removing the repeated occurrences of the subgoal, or, in other
words, by folding the subgoals into one.

Query folding can be applied whenever the duplicated subgoals share variables,
and the shared variables appear in the same position in their respective subgoals
(i.e., the duplicated relations are self-joined by the same attribute). Take for in-
stance rewriting 3:

h(title,genre,nomination,award) :- S2(title, year, _), S2(title, _, award),
year>=1900, year<=2000

In this case, the wrapped relation S2 is self-joined by title. To fold the occur-
rences of S2, variables that appear in the same position are replaced by a unified
variable in the folded subgoal. Besides, occurrences of the old variables throughout
the rewriting are also replaced by their respective unified variable.
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checkRewriting(Rewriting w)
1: //check the filters
2: //...
3: //check the joins
4: for every shared variable x of w do
5: for every pair of subgoals gi and gj of w that contain x do
6: ri ← indexed relation mapped to gi

7: rj ← indexed relation mapped to gj

8: ai ← indexed attribute mapped to gi.x
9: aj ← indexed attribute mapped to gj.x

10: auxListi ← {} //list of values of ri that satisfy the join
11: auxListj ← {} //list of values of rj that satisfy the join
12: for each value va of val(ai, ri) do {//iterating through values using ATaVa}
13: for each value vb of val(aj, rj) do
14: if (va == vb) then
15: add ide(ai, ri, va) into auxListi
16: add ide(aj, rj, vb) into auxListj
17: end if
18: end for
19: end for
20: if (not intersect(validTuplesri, auxListi)) or (not intersect(validTuplesrj,

auxListj)) then
21: //Error - the rewriting does not cover all predicates of the query.
22: end if
23: end for
24: end for

Algorithm 8: Rewriting check for selection and join predicates.

After the folding, the new representation of rewriting 3 is

h(titleu,genre,nomination,awardu) :- S2(titleu, yearu, awardu),
yearu>=1900, yearu<=2000

We call this process Query Simplification, not minimization. This distinction
is important since the folding of the duplicated subgoals does not minimize the
query. Query minimization techniques ensure that the folded query is equivalent
to the unfolded one. In this scenario, we do not have sufficient information to
determine equivalence: there is neither global schema nor detailed information about
the sources (e.g., the functional dependencies among them).

Even though we cannot safely affirm that the same tuples are generated after
the folding, we demonstrate that, in most cases, the simplification generates the ex-
pected tuples. This conclusion is based on a behavior observed in relational queries,
which is described in the statement below.

Relational Join Statement: Whenever two relations are joined in a query, at
least one of the join sides is a primary key.

This statement is related to the composition of the answer. If none of the join
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sides represents a primary key, the answers produced could have a many-many rela-
tionship between tuples from the two relations (tuples that do not satisfy the forth
normal form). However, the users are normally interested in 1-1 compositions(where
one tuple from one side relate to only one tuple from the other side) or 1-n compo-
sitions(where multiple tuples from one side relate to only one tuple from the other
side).

Therefore, assuming that one of the sides of the join is always a primary key,
we can intuitively deduce that, when a relation is self-joined by the same attribute,
this attribute is the primary key. Consequently, we can ensure that the tuples that
result from the join englobe all tuples that exist in the relation, and this means that
the join is not necessary.

One good reason to apply the simplification is related to performance. The time
required to process the rewriting is reduced, as less joins need to be computed.
Another reason is related to the answer itself, and its possible incompatibility with
the Relational Join Statement.

To explain, consider rewriting 3 (Figure 5.8). Depending on the extension of S2,
the folded version of the rewriting could bring different results than the unfolded
one. The reason is related to the impossibility of affirming that title is a primary
key in S2. This is particularly true for unconstrained Web data, where attributes
may present repeated values along the wrapped relation, even those that apparently
serve as primary keys. If some tuples of S2 contain the same values for title, the
result after a self-join would not be in the forth normal form. The simplified version
of the query does not present this problem.

Summing up, the reasoning behind our simplification is that relational queries
normally bring answers that satisfy the forth normal form. However, even in seldom
cases where the user is interested in a many-to-many result, it is possible to affirm
that the folded version of the rewriting is at least contained in the unfolded version.
That is, using the folded version, the user will get at least a subset of the desired
answers.

Next example shows an interesting case of our simplification that deserves at-
tention. Consider the query below.

Example 9: Find the title, director and actors of movies.
Q9 h(title,director,actor):- movie1(title,director), movie2(title,actor)

Complementarily, suppose that the wrapped relation movies(title, cast) exposes
the title and cast of movies. A mapping approach based on a thesaurus could match
cast with both director and actor variables, and the following rewriting could be
produced:

h(title,director,actor) :- movies(title, director), movies(title, actor)

According to our simplification approach, the duplicated subgoals can be folded
as one, as indicated below:

h(titleu,directoru,directoru) :- movies(titleu, directoru)

After the variables are unified, the variable directoru appears twice in the header.
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In this case, it indicates that both director and actor information can be found under
the same wrapped attribute (cast).

Currently, we count on a simple mapping function that matches query variables
with indexed attributes of the same name, so Example 9 could not be solved as
demonstrated. However, it is possible to extend this function to obtain better results.
Possibilities include name similarity techniques and the canonization of the indexed
attributes.

Another idea is to explore the Relational Join statement even further, and pos-
sibly discover other kinds of simplifications, or even discover cases where a rewriting
can be invalidated. For instance, the joins of a rewriting can be analyzed in con-
junction to find out if they all satisfy the statement at the same time.

5.3.9 Query Answering using the Indexes

Rewritings are composed by relation subgoals, which refer to sources available
on the Web. During the query answering, the sources of a rewriting are accessed
through wrappers. These wrappers extract information from the sources into virtual
relations, which are used by the query processor component. In this section, we
discuss the possibility of creating virtual relations without accessing the sources,
using information stored in the indexes.

Virtual relations of these kind are built based on its respective subgoal and the
contents of the index. The attributes of the virtual relation are the variables of
the subgoal. The other attributes of the wrapped source that are not demanded
by the subgoal are not necessary. Additionally, it is possible to define which tuples
of the Web source should be added to the virtual relation. One idea is to consider
only the tuples that satisfy the predicates of the query. Algorithm 8, responsible for
detecting empty rewritings, shows how to identify these tuples(the list validTuplesr

contains the tuples of r that satisfy the respective predicates).
By selecting only the necessary attributes and tuples, these virtual relations

assume a reduced size, if compared to the original wrapped source. As a consequence,
the Query Processor takes less time the compute the final answer, since it works with
less information.

Interestingly, virtual relations created based on the index enables query answer-
ing without ever accessing the real sources. As a direct benefit, this approach allows
rewritings to be answered even when the original source is unavailable. Additionally,
query processing is faster, since it works with reduced relations and because there
is no network latency involved to fetch the data.

5.4 Chapter Remarks

This chapter demonstrates one of the proposed solutions to the querying of struc-
tured and heterogeneous sources on the Web. To support this idea, we describe
indexes that are able to match query subgoals with wrapped relations, along with
table search algorithms that access the indexes in order to find the rewritings.

Furthermore, the concept of optional variables is introduced as a way to find
additional rewritings to a query. We show how to decide which variables are optional,
and how this information can be used. Besides, a ranking strategy is provided to
determine which of the rewritings are deemed more relevant.

We also discuss optimization techniques, such as the elimination of relations that
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are not able to satisfy the query predicates, and the query simplification used when
the query contains multiple subgoals.

To finish this chapter, we highlight the importance of the data structures that
compose the indexes, as they allow the creation of most of the algorithms and
techniques described above. Extremely relevant is the usage of the values level,
present in the AVaTa. Based on the information of this index, it is possible to
perform powerful computations, such as the rewriting check and the query answering
without ever having to access the real Web source.
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6 QUERY REWRITING IN THE ABSENCE OF
JOIN PREDICATES

The previous chapter shows components of the Eidos architecture that support
queries with join predicates. The ability to express this kind of predicate represents
a powerful tool, since the user is given the choice to explore Web Data in a flexible
way. However, the expressiveness of this approach can also be seen as a burden.
Users with no knowledge about the local schemas may experience difficulties when
trying to build a query with joins.

In this chapter, we show how to remove the join complexity out of the query
and add it into the rewriting components of the Eidos Architecture. Given join-less
queries, it is up to the rewriter to discover if it is possible to find answers by joining
information from different wrapped relations.

This chapter is organized as follows. Section 6.1 presents the query language
that supports our idea. Section 6.2 presents extensions of the index that improve
the rewriting process. Finally, Section 6.3 presents the algorithms that are able to
find rewritings for the user queries.

6.1 Query Language.

Last chapter proposed the usage of SPJ queries as a mean to let the user define
join conditions. Conversely, in this chapter we show a different approach that does
not demand the declaration os joins. To support that, we define a query language
that extends the traditional keyword-based interfaces with structural semantics. A
query is defined as a list of attributes, followed by a (optional) list of selection pred-
icates. An example is provided below:

Example 1: Find the title and year of movies released after 1990.
Q1 → title year [year > 1990]

The variables involved in brackets are the (optional) selection predicates, whereas
the remaining variables are projection predicates (variables that need to be returned
as part of the answer).

Join predicates are not supported by the language. However, it is possible to
unfold these simple queries into rewritings that span several wrapped relations. To
exemplify, Table 6.1 shows queries and rewritings based on the relations of Figure 4.3.

The first case shows a rewriting composed by a single relation subgoal. This
kind of rewriting is called single-relation rewriting. On the other hand, the second
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case shows a rewriting composed by more than one relation subgoal. These are
called multi-relation rewritings. Given a query such as one of those, the goal of
the rewriting algorithms is to find out whether it is possible to answer it using
single-relation and/or multi-relation rewritings.

Query Possible Rewriting

Qx title year Rx1(title,year) :- S3(title, year)
Qy title genre award Ry1(title,genre,award) :- S1(title,genre),S6(title,award)

Table 6.1: Examples of queries unfolded into rewritings that can span several
wrapped relations

6.2 The AVaTa Index

The indexes described in Chapter 5 (ATa, ATaVa, TAt) are useful for discovering
which relations contains the variables of queries. This section presents a comple-
mentary index (AVaTa) that is important in the context of join-less queries.

The AVaTa index([A]ttribute-[Va]lue-[Ta]ble) extends the A Index with the qua-
druple (U, V,R, I).

The element U = {u1, ..., un} is the list of uniqueness factors. Furthermore,
unq(a) = u is the function that returns the uniqueness factor of a, where u ∈ U .
This information indicates the probability of each attribute having unique values
inside a relation.

The element V = {v1, ..., vn} is the list of indexed values. Furthermore, val(a) =
Vx, where Vx ∈ V is the function that returns the list of values that are used as
instances of a.

In addition, R = {r1, ..., rn} is the list of indexed relations of each pair (a, v).
The function rel(a, v) = Rx, where Rx ∈ R, is the function that returns the list of
indexed relations related to the pair (a, v).

Finally, I = {i1, ..., in} contains the tuple identification of each triple (a, v, r).
This identification is the vertical coordinate of a value v inside a indexed relation
r, for attribute a. The function ide(a, v, r) = i, where i ∈ I, returns the respective
tuple identification.

Tuples from a wrapped source are mapped to the AVaTa according to Defini-
tion 5.

Definition 5 (AVaTa Mapping)
The AVaTa Mapping extends the A Mapping to support the values/relations level of
the AVaTa. Consider the wrapped attribute c ∈ t and the domain value d ∈ DOM(c)
that belongs to the tuple τ of table t. Given this, let mapV (c, d) = v be a function
that maps the domain value d to the indexed value v, and mapR(c, d, t) = r be the
function that maps the wrapped relation t to the indexed relation r. Furthermore,
considering the maps mapA(c) = a, mapV (c, d) = v and mapR(c, d, t) = r, then
v ∈ val(a), r ∈ rel(a, v) and |rel(a, v)| must be greater than one. Finally, ide(a, v, r)
is given by the function ide(τ).

As explained in Section 5.2.3, the computation of ide(τ) is provided by the
Wrapper module, and it depends on how the wrapper extracts information from the
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Figure 6.1: AVaTa index populated with the contents of sources S1 to S6

underlying data model of the wrapped source. Observe that the same function is
used in both ATaVa and AVaTa, so the tuple identification across the indexes is
consistent.

Moreover, the uniqueness factor of an attribute (unq(a)) is given by Equation 6.1.
The equation computes the result over all relations that contain a wrapped attribute
mapped to the indexed attribute a. In the equation, repeatedV alueCount(t, c)
returns the number of repeated (non empty) values that appear in attribute c of
table t. For example, the repeated value count of attribute year in S2 and S3 is
respectively 1 and 0. On the other hand, totalV alueCount(t, c) returns the total
number of (non empty) values that appear in attribute c of table t. For example,
the total value count of attribute award in S2 and S6 is respectively 1 and 2. The
uniqueness factor is a normalized value between 0 and 1. The higher the value, the
greater is the probability of the attribute having unique values inside a relation.

unq(a) =
n∑

k=1

totalV alueCount(tk, c)− repeatedV alueCount(tk, c)

totalV alueCount(tk, c)
(6.1)

where n is the number of wrapped relations that contain c and mapA(c) = a.

To exemplify the mapping, Figure 6.1 shows the AVaTa populated with the
contents of sources from S1 to S6. Only two attributes appear: title and year.
These are the attributes that appear in more than one relation with the same value,
as described in the AVaTa Mapping definition (|rel(a, v)| greater than one).

The value inside the square brackets identifies the tuple from which the specified
value can be obtained, similarly to the ATaVa. The tuple identification helps in the
process of checking rewritings that contain both join and filter predicates. Another
useful information is the uniqueness factor. In the example given, it shows that title
is more likely to be unique inside the relations than year. Our ranking strategy
explores this factor in order to determine the relevance of rewritings. More about
the check and the ranking is presented in Sections 6.3.5 and 6.3.6, respectively.

Attributes that appear in AVaTa are called join attributes. Join attributes act
as associations between otherwise disconnected relations. This information is useful
for discovering multi-relation rewritings, since it provides the location of relations
that contain complementary data.

Observe that both ATaVa and AVaTa can be put together in the same index,
sharing the first level. In this case, the second level would be composed by two dif-
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ferent structures: indexed relations(the ATaVa component) and indexed values(the
AVaTa component). Experiments in Chapter 7 show how this combination of in-
dexes(and others) affect the memory consumption of the repository.

6.3 Query Rewriting

In what follows, we present a series of examples that illustrate the proposed
rewriting algorithms for join-less queries. Special attention is dedicated to the pro-
cess of finding multi-relation rewritings, where we start with a naïve solution and
continue with more scalable approaches. It is also shown how the AVaTa is able to
reduce the search space required to find relations that contain complementary data.

To start, consider Example 2. The query is composed by two projection predi-
cates and no selection predicates.

Example 2: Find the title and year of movies.
Q2: title year

Observe that join-less queries naturally map to SPJ queries that contain a single
relation subgoal. For instance, a SPJ query that corresponds to Q2 is shown below:

Q2: h(title,year) :- movie(title,year)

Similarly, selection predicates are also easily mapped to selection subgoals in
SPJ queries. For instance, consider Example 3 below, composed by one projection
predicate and one selection predicate.

Example 3: Find movies released after 2003.
Q3: title [year > 2003]

One SPJ query that corresponds to Q3 is shown below:

Q3: h(title) :- movie(title,year), year > 2003

Any query in our keyword language can be expressed as a conjunction of selection
subgoals and one relation subgoal. By treating them as such, it is possible to find
rewritings using the search algorithms detailed in Chapter 5, such as Table Scan or
Pivot Table Scan.

The definition of required variables is similar to the one described in Chapter 5,
for queries that may contain joins. However, since now queries are join-less, shared
variables are not considered. In this case, a variable is required if:

• it is a selection variable, or

• it is the only distinguished variable of the subgoal.

In query Q2, both variables are optional, which leads to six rewritings, one for
each of the wrapped relations. On the other hand, Q3 has two required variable
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(title and year), which leads to four rewritings, using sources S2, S3, S4 and S5.
Observe that an early check helps pruning relations that do not satisfy the selection
predicate of Q3, which would remove relations S2 and S5. In addition, if the query
contained selection predicates over distinct variables, such as [year > 2003] [genre
= Drama], the rewriting check would also need to be performed.

6.3.1 Multi-Relation Rewritings

In this section we show how to find rewritings that join information from multiple
wrapped relations.

To illustrate the approach, consider the wrapped relations of Figure 6.2. Observe
that only the schema information is informed. For now, tuples are irrelevant to our
discussion.

S1(title,genre,year)
S2(title,director,year)
S3(title,genre)
S4(title,genre)

Figure 6.2: Wrapped relations used to find multi-relation rewritings

Given these relations, suppose a user submits the query described below:

Example 4: Find the title, director, genre and year of movies.
Q4: title director genre year

Observe that all wrapped relations are incomplete with respect to the query. The
table search algorithms would find four partial table matches, since none of them
is able to cover all query variables. However, it is possible to find combinations of
these relations that provide a full coverage. Used in multi-relation rewritings, these
combinations may produce more complete answers.

Join attributes are important in the generation of multi-relation rewritings. Re-
call that a join attribute is an attribute that belongs to the AVaTa index. They are
the only attributes that appear in different wrapped relations with the same con-
tent. Multi-relation rewritings that do not contain any join attribute are irrelevant,
since the join would produce empty result sets. Therefore, our purpose is to find
multi-relation rewritings where the shared variable is a join attribute.

To create multi-relation rewritings, we first identify the partial table matches (re-
lations that do not cover all variables of the query). Then, the incomplete relations
are separated into join lists (JLs).

A JL is a list that clusters together relations that cover the same join attribute.
Besides the join attribute, relations of a JL also need to cover at least another
variable of the query.

For Example 4, suppose that just title is a join attribute. In this case, a single
JL is produced, with all relations of Figure 6.2, since they all cover title and at least
one of the remaining variables genre, year or director.

The general idea is to combine entries of the JL in order to find rewritings. By
combining relations it is possible to increase the number of covered variables. For
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example, the combination of S1 and S2 can be transformed into a rewriting that
provides a full coverage, as presented below:

h(title, director, genre, year) : −S1(title, genre, year), S2(title, director, _)

The transformation of a combination into a rewriting occurs as follows. Each
relation that compose the combination is turned into a relation subgoal (S1 and
S2). Additionally, attributes that match variables of the query are transformed into
variables of the rewriting (title,director,genre,year). The join attribute of the JL
becomes the only join variable (title).

If two or more attributes (from different relations) cover the same variable of the
query(other than the one used as the join variable), only one of them will cover the
variable in the rewriting. That is the case for variable year, covered by attribute
of S1 and S2. When this situation happens, we assume that the content of the
attributes in the different relations is the same - for tuples that represent the same
object - and arbitrarily select one of them. In the case above, the year attribute
of S1 was selected. The respective attribute in S2 is treated as a local existential
variable, represented by an underscore.

Other solutions are possible. For instance, if two or more attributes (from differ-
ent relations) covers the same variable of the query, and the variable is distinguished,
an idea would be to return all attributes instead of only one. This solution is in-
teresting in cases where the content of the attributes differ, so the user receives all
different contents as part of the answer.

Given a JL, many combinations form rewritings, using the transformation process
described above. To our goal, not all of them are valid. In order to be valid, a
rewriting needs to be both complete and minimal.

A minimal rewriting is one that produces different results if any of its relation
subgoals are removed (non minimal rewritings are more time consuming since the
number of relations that need to be joined is larger). As a general rule, a combination
cannot form a valid rewriting if one or more relations could be removed and the
rewriting would still cover all variables of the query.

A complete rewriting is one that covers all query variables. It is semantically
equivalent to the AND operator of traditional keyword-based query languages. As a
general rule, a combination cannot form a valid rewriting if its relations together do
not cover all variables of the query. This restriction simplifies the process of finding
the combinations. The support for incomplete multi-relation rewriting is left for
future work.

Next sections show strategies that find valid rewritings. These strategies traverse
the entries of a JL in different ways in order to find combination of relations that
are both complete and minimal.

6.3.2 Combination Algorithm: Naïve

The Naïve algorithm finds valid rewritings using a simple combination strategy.
First, we define the complement of each relation of the JL. The complement is a
signature that is composed by the variables of the query that are not covered by the
relation.

For instance, the JL created from query Q4 is composed by S1[director], S2[genre],
S3[director,year], S4[director,year], where the attributes inside the square brackets
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represent the complement of each relation. In the running example, relation S1 does
not cover director, S2 does not cover genre and S3 and S4 do not cover director
and year.

Algorithm 9 shows how the Naïve strategy works. Basically, the entries(relations)
of the JL are processed sequentially, and every possible combination of entries is
created.

findV alidPaths1(JoinList JL)
1: C ← {}//list of combinations
2: for every relation ri of JL do
3: create combination c
4: add relation ri to combination c
5: add combination c to the list C
6: findV alidPaths2(JL,i,c,C)
7: end for
8: checkCombinations(C)

findV alidPaths2(JoinList JL, Number x, Combination c, List C)
1: for every relation ri of JL, where i > x do
2: create combination cnew

3: cnew ← c
4: add relation ri to combination cnew

5: add combination cnew to the list C
6: findV alidPaths2(JL, i, cnew, C)
7: end for

Algorithm 9: The Naïve Algorithm - The valid rewriting check is performed after
all possible combinations of relations is formed.

Table 6.2 presents the list with the 15 possible combinations created for Q4. For
lack of space, attributes names are abbreviated. The number of combinations for a
list with n elements can be computed according to Equation 6.2. Observe that the
number of combinations grows exponentially as the number of elements increase.

Total # of combinations =
n∑

k=1

n!

k!(n− k)!
(6.2)

As Table 6.2 indicates, some of the combinations are not valid (not complete and
minimal). It is possible to check if a combination c = {r1..rj} is invalid if at least
one of two conditions holds:

• the intersection of the complements of c is not empty (e.g., the combination
S1,S3). This means that not all variables are covered, so the rewriting is
incomplete.

• the intersection of the complements of cx is the same as the intersection of
the complements of cy, where cx <> cy, for any cx ∈ c and cy ∈ c (e.g., the
combination S1,S2,S3). This means that the rewriting has redundant subgoals.

After all combinations are created, Algorithm 9 finds out which of the rewritings
do not satisfy these conditions (Line 8). Algorithm 10 shows how to implement this
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Combination Missing redundant Valid
Variables subgoals

S1(t, g, y) d ×
S1(t, g, y), S2(t, d, y)

√

S1(t, g, y), S2(t, d, y), S3(t, g) S3 ×
S1(t, g, y), S2(t, d, y), S3(t, g), S4(t, g) S3,S4 ×
S1(t, g, y), S2(t, d, y), S4(t, g) S4 ×
S1(t, g, y), S3(t, g) d ×
S1(t, g, y), S3(t, g), S4(t, g) d ×
S1(t, g, y), S4(t, g) d ×
S2(t, g, y) g ×
S2(t, d, y), S3(t, g)

√

S2(t, d, y), S3(t, g), S4(t, g) S4 ×
S2(t, d, y), S4(t, g)

√

S3(t, g) d,y ×
S3(t, g), S4(t, g) d,y ×
S4(t, g) d,y ×

Table 6.2: Combinations found for a JL composed by the four relations of Figure 6.2.
For lack of space, attributes names are abbreviated.

verification in a simplified manner. As indicated, the complements of a combination
are intersected incrementally. The function getComp(r) returns the complement of
a relation r. If the intersection becomes empty before the last relation is processed,
it means that the second condition fails. If the intersection becomes empty after the
last relation is processed, both conditions are satisfied.

After the verification, three combination are considered valid. Each of them is
turned into a multi-relation rewriting, as presented below.

Rewriting 1: h(title,director,genre,year) :- S1(title, genre, year),
S2(title, director, _)

Rewriting 2: h(title,director,genre,year) :- S2(title, director, year),
S3(title, genre)

Rewriting 3: h(title,director,genre,year) :- S2(title, director, year),
S4(title, genre)

Since title is the join attribute, the relations are joined based on the content of
this attribute. Observe that the Naïve strategy does not assure that any tuples will
result from the join, so the rewriting check is necessary.

6.3.3 Combination Algorithm: Stream-Driven

The way in which the Naïve Algorithm accesses the entries of a JL can be
visualized as a walk in a tree, where each of the combinations form a path from the
root node to the leaf node. Figure 6.3 shows the "trace"of the processing, as the
Algorithm steps from one relation to the other. For lack of space, the name of the
attributes is represented in the abbreviated form.

This brute-force backtracking approach ends up accessing branches of this vir-
tual tree that cannot form valid combinations (e.g., the path /S1/S3/S4 is neither
complete nor minimal). The Stream-Driven Algorithm reduces the number of node
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checkCombinations(List C)
1: for every combination c of C do
2: checkCombination(c)
3: end for

checkCombination(Combination c)
1: MV ← {} //missing variables
2: for every relation r of c do
3: MV ←MV ∩ getComp(r)
4: if MV == {} then
5: if r is the last relation of c then
6: return true //this combination is valid
7: else
8: return false //this combination is invalid
9: end if

10: end if
11: end for

Algorithm 10: The algorithm that performs the valid rewriting check

visits by removing some of the invalid paths, which prevents the subtree underneath
the removed path from being processed.

To describe this idea, consider the path p = {r1..rj}, composed by relations of a
JL. Given this, the relation rj+1 (where rj+1 is the relation that succeeds rj in the
JL) is not traversed if:

• the complements intersection of p is already empty. This means that the path
traversed so far is already a complete rewriting, and it makes no sense to
continue along this path. For example, the path /S1/S2.

• the complements intersection of r1 to rj+1 is the same as the complements
intersection of r1 to rj. In other words, the last relation of the path does not
reduce the intersection. This means that one of the nodes along the path leads
to a non-minimal rewriting. For example, the path /S1/S3.

Algorithm 11 shows how to detect invalid paths while the combination of relations
is performed. Paths that are already valid or that contain unneeded relations are
interrupted, and a new path is processed.

The benefit of this approach is depicted in Figure 6.3. The branches of the tree
indicated with the dotted rectangle are not processed (they are not event formed),
which reduces the search space without loosing any valid rewriting.

It is important to state that not all invalid paths are eliminated using this algo-
rithm. Therefore, it is necessary to run the check described in Algorithm 10 after
all rewritings are computed, as in the Naïve strategy. Moreover, a rewriting check
is required to verify if the formed rewritings are empty. However, the number of
rewritings that need to go through these checks tends to be much smaller if compared
to the Naïve strategy.

6.3.4 Combination Algorithm: Template-Driven

In real cases, several wrapped relations will miss the same attributes of the query.
In other words, their complements will be the same. Relations that contain the same
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Figure 6.3: Trace of combinations left by the Naïve strategy. For lack of space, the
name of the attributes is represented in the abbreviated form.

complement cannot be part of the same combination, since they would lead to non-
minimal rewritings. The Template-Driven approach explores this fact by applying a
summarization technique that groups these relations. The overall goal is to reduce
the search space in order to find the rewritings.

Given a query, a pre-processing step groups relations with the same complement
within a single entry in a JL. Consequently, there will be no more than one entry
with the exact same complement. In this case, the size of the JL tends to be small,
since it is no longer related to the number of relations, but to the number of possible
different complements. The combination equation presented earlier(Equation 6.2)
gives the number of possible different complements for a query with n+1 attributes.
For instance, having a query with five attributes (one attribute that is fixed (the
join attribute) and four other attributes), in the worst case there would be 24 entries
(combination of one,two,three and four attributes).

To describe this approach, consider Example 5, and the data sources presented
in Table 6.3. Also, assume that title is the only join attribute of the index.

Example 5: Find the title, director and genre of movies.
Q5: title director genre

As Table 6.3 shows, despite the number of relations, there are only two different
complements (with respect to query Q5), which is in fact the maximum number of
possible complements, provided that only two non-join attributes are part of the
query. By grouping relations with the same complement, the number of entries in
the JL reduces 80%.

After the JL with the grouped relations is generated, a template tree is build
over it. This tree contains paths that lead to valid combinations - all other paths
are ignored. The creation of this tree can be performed using Algorithm 11 as a
basis. Line 4 (where the combination is validated) would have to be replace by a
routine that reads the selected path and adds it to the template tree.

Figure 6.4 shows a comparison between full trees - that consider all possible
combinations - and the optimized template trees, for Examples 4 and 5. For lack
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findV alidPaths1(JoinList JL)
1: C ← {}//list of combinations
2: for every relation ri of JL do
3: create combination c
4: add ri to c
5: findV alidPaths2(JL,i,c,C)
6: end for

findV alidPaths2(JoinList JL, Number x, Combination c, List C)
1: for every relation ri of JL, where i > x do
2: cnew ← c ∩ getComp(ri)
3: if (cnew == {}) then
4: add cnew to C //combination is valid
5: else if (cnew − c == {}) then
6: //combination does not reduce intersection(not minimal)
7: else
8: //only in this case the sub-paths are processed
9: findV alidPaths2(JL, i, cnew, C)

10: end if
11: end for
Algorithm 11: The Stream-Driven Algorithm - The valid rewriting check is per-
formed while the combinations of relations is performed.

of space, the name of the attributes is represented in the abbreviated form. As
illustrated, the trees in the left side contain paths that lead to invalid combinations,
whereas all paths in the right side are valid.

Algorithm 12 shows how to form combinations using the template tree. The tree
is traversed in a left-to-right, breath-first walk. The path from a root to each of the
leafs leads to a group of valid combinations, where each combination comes from
the cartesian product of the relations that are part of each node.

One positive aspect of template trees is that, although built in memory, they are
considerably smaller then their respective Naïve/Streamed versions, as the examples
show. Another benefit of the Template-Driven approach is that the summarization
decreases the number of validity checks (check if complete and minimal) that need
to be performed, and this improvement can be meaningful when dealing with a large
number of relations. However, rewriting checks are still necessary.

6.3.5 Smart Join Lists

A join list clusters relations that share values for a given join attribute. However,
it does not indicate which relations share the same value. When one of the com-
bination algorithms(Naive, Stream or Template) process a JL, it is very likely that
most of the combinations formed lead to empty rewritings that do not satisfy the
join predicates. In this section, we show how to optimize the combination process
by using smart join lists.

Instead of a single large JL for each join attribute, smart JLs are created for
the same join attribute. As opposed to the large JL, smart JLs tend to be small.
Besides, relations from a smart JL provide one guarantee: they all share the same
value for the join attribute.
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Relation Schema Complement with respect to Q5

S1(title,genre) director
S2(title,director,year) genre
S3(title,genre) director
S4(title,genre,award) director
S5(title,genre,award) director
S6(title,director,award) genre
S7(title,director,award) genre
S8(title,director) genre
S9(title,genre,year) director
S10(title,director) genre

Table 6.3: Data sources used to describe the Template-Driven strategy

Figure 6.4: Comparison of full trees and template trees. For lack of space, the name
of the attributes is represented in the abbreviated form.

Algorithm 13 shows how to break a join list into smart JLs. Given a join at-
tribute, AVaTa lookups provide the values that appear under this attribute in dif-
ferent relations. A smart JL can be associated with each of these values. Given a
value, a list is created with the relations that are indexed under the value(val(a, v))
and that appear in the original JL. If the list contains more than one entry, it is
transformed into a smart JL.

To illustrate the creation of smart JLs, consider Example 7. Additionally, con-
sider the wrapped relations presented in Figure 4.3.

Example 7: Find the title, genre and year of movies.
Q7: title genre year.

Given Example 7, a table search is able to find one wrapped relation that covers
all variables of the query(S5). For additional (complete)rewritings, information from
multiple sources need to be joined.
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findCombinations()
1: C ← {}//list of combinations
2: for every root node ni of the template tree do
3: for every relation r ∈ ni do
4: create combination c
5: add relation r to combination c
6: findCombinations(ni, c)
7: end for
8: end for

findCombinations(Node n, Combination c, List C)
1: if (n is a leaf node) then
2: add combination c to list C //combination is valid
3: end if
4: for every child node ni of n do
5: for every relation r ∈ ni do
6: create combination cnew

7: add relation r to cnew

8: findCombinations(ni, cnew, C)
9: end for

10: end for
Algorithm 12: The algorithm that finds valid combinations from a template tree

Two join attributes are available for Q7, as presented in the AVaTa index of
Figure 6.1 (title and year). Choosing title, a join list would be composed by relations
(S1, S2, S3,S4), which are the incomplete relations that cover the join attribute and
another variable of the query.

According to the AVaTa, movies that are overlapped by title can be found at
(S2,S5), (S5,S6) and (S3, S4, S6). From these possibilities, relations that do not
appear in the original JL are removed. Consequently, the resulting lists contain
one entry in the first case(S2), no entries in the second and two entries in the
third(S3, S4).

Recall that rewritings are produced by combining relations from a JL. Therefore,
join lists with less than two relations are irrelevant, since they do not have enough
entries to generate combinations. In the example given, only the third case contains
the minimum number of relations. The resulting smart JL (S3,S4) is half the size of
the original one (S1, S2, S3,S4).

This approach presents drawbacks and benefits. A drawback is that is does not
prevent duplicated rewritings from being produced. It can happen when relations
share more than one value with each other. In this case, they would be part of
more than one smart JLs. If these relations form a rewriting in one smart JL, they
will form the same rewriting in all other smart JLs. One idea to prevent duplicate
rewritings is to keep track of all produced rewritings so that duplicated ones are not
allowed.

On the benefits side, the advantage of breaking the JL into smaller ones is deeply
related to the data distribution of the indexed relations. If shared values are scarcely
distributed in the available sources, the reduction of the join list tends to be consid-
erable. The experiments in Chapter 7 show how this approach reacts in real cases,
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joinListBreaker(JoinList JL)
1: a← join attribute of the JL
2: R← list of relations of the JL
3: JoinLists← {} //list of the smaller JLs
4: for every value v ∈ val(a) do {//iterating through values using AVaTa}
5: JLnew ← rel(a, v) //a new smart list is created
6: JLnew ← JLnew ∩R
7: if (|JLnew| >= 2) then
8: add JLnew to JoinLists
9: end if

10: end for
Algorithm 13: The algorithm that breaks a JL into smart JLs

when a large number of sources are available.
An indirect benefit of using the AVaTa index is that it prunes combinations that

would produce empty rewritings. For instance, without smart JLs, the combination
algorithms would produce the following empty rewriting:

h(title,genre,year):-S1(title,genre),S2(title,year,_)

Empty rewritings such as the one above would only be identified during the
rewriting check. The cost of identifying rewritings that fail to satisfy join predicates
is eliminated if the smart join lists are used.

Moreover, if no selection predicates are provided in the query, the rewritings
found do not need to go through the rewriting check. The smart JLs assures that
all involved relations in a rewriting share at least one value for the join attribute,
which makes the check unnecessary.

The check is still required when the query contains selection variables, since
it would not be possible to assure that some of the tuples that satisfy the join
predicate also satisfy the selection predicates. However, it is possible to optimized
the rewriting check when the rewritings are produced based on smart join lists.

Algorithm 14 shows how to adapt Algorithm 8 to achieve this optimization. In
the original algorithm, joins are checked by comparing tuples to see which ones share
values. In the new version, the AVaTa index indicates directly which tuples share
values.

6.3.6 Ranking

This section presents the strategy we have adopted to rank rewritings generated
from join-less queries. With this type of query, the classification of rewritings as
single-relation and multi-relation serves as a natural way to group rewritings that
should be considered more relevant. The list below indicates the chosen order of
relevance:

1. Complete single-relation rewritings

2. Complete multi-relation rewritings

3. Incomplete single-relation rewritings
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checkRewriting(Rewriting w)
1: //check the filters
2: //...
3: //check the joins
4: a = join attribute of w
5: v = value used in the smart join list that originated w
6: for every pair of relation subgoals gi and gj do
7: ri = indexed relation mapped to gi

8: rj = indexed relation mapped to gj

9: auxListi = {} //list of values of ri that satisfy the join
10: auxListj = {} //list of values of rj that satisfy the join
11: for each relation r of rel(a, v) do {//iterating through relations using AVaTa}
12: if (r == ri) then
13: add ide(ri) into auxListi
14: end if
15: if (r == rj) then
16: add ide(rj) into auxListj
17: end if
18: end for
19: if (not intersect(validTuplesri, auxListi)) or (not intersect(validTuplesrj,

auxListj)) then
20: //Error - the rewriting does not cover all predicates of the query.
21: end if
22: end for
Algorithm 14: Rewriting Check using information from the AVaTa and the smart
JLs.

Complete rewritings are intuitively more relevant than incomplete ones, since
they cover more variables. Besides, complete answers that come from a single source
are also deemed more relevant, mainly because there is no need to perform joins.

The benefit of separating rewritings into these three groups is that we obtain a
partial ordering without doing any ranking-related processing. Of course, further
ranking is necessary for rewritings that belong to the same group. In the case
of single-relation, the order is based on the table match similarity presented in
last chapter. On the other hand, the order among the multi-relation rewriting is
computed differently.

Two criteria are provided. The first is to consider the uniqueness factor of the
join attribute. Generally speaking, rewritings whose join attribute has a higher
uniqueness factor are deemed more relevant. The intuition behind this criteria is
that some join attributes are not appropriate for joining, and this fact is related to
the uniqueness of the attribute.

For instance, query Q7 has two possibilities of join attributes: title and year.
However, rewritings created with year as the join attribute are likely to bring in-
correct answers, since year does not uniquely identify tuples of movies. Considering
the uniqueness factor of the AVaTa index (Figure 6.1), rewritings that use title as
the join attribute will get a better ranking position.

Another criteria is necessary to rank rewritings that use the same join attribute.
In such cases, rewritings that use less relations are considered more relevant, since
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they decrease the cost for finding the answers by performing a smaller number of
joins.

As discussed in the previous chapter, the relevance of the relations can be com-
puted by additional ways, such as the page rank of where the relation was extracted.
The number of tuples of the participating relations can also influence the ranking.
Moreover, the number of tuples of the final answer would be a good indicator of
relevance. This information is directly available for single-relation rewritings that
contain at most one selection variable, through ATaVa lookups. In other cases, the
number of tuples is available only after the query processor builds the answer. All
of the above are possibilities not explored in this work, but that could be easily
supported by the proposed architecture.

6.4 Chapter Remarks

This chapter demonstrates our second solution to the querying of structured and
heterogeneous sources on the Web. Oppositely to the first, the query language is
simpler, similarly to the keyword queries found in general search engines. Besides,
joins are not allowed. Rewritings are classified as single-relation and multi-relation,
where the latter indicates the fact that multiple relations are joined to find the
results.

It is shown that single-relation rewritings can be produced using the table search
algorithms presented in Chapter 5. On the other hand, multi-relation rewritings are
found using a new approach. To support this idea, we extend the proposed indexes
with the AVaTa, and propose combination algorithms that arrange incomplete rela-
tions in order to form multi-relation rewritings that cover all variables of the query.

The AVaTa is particularly useful to improve the efficiency of the combination
algorithms, by reducing the number of relations that need to be combined. Fur-
thermore, in some cases it enables the generation of non-empty rewritings without
the need to perform the rewriting check. The benefits of this complementary index
are discussed in the experimental results chapter. Among other things, this chapter
also compares the two rewritings approached proposed in the thesis.
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7 EXPERIMENTS

This chapter presents the results obtained when evaluating the proposed ap-
proaches for indexing and query rewriting. We measure the table search algorithms
with respect to efficiency and ability to find all possible answers(recall). The com-
bination algorithms related to join-less queries are also compared. Additionally, we
assess the importance of the rewriting check and the memory cost of the proposed
indexes. Finally, we present a search engine application build based on the ideas of
this thesis.

7.1 Table Search Algorithms

The data set used to evaluate the table search algorithms contains synthetic
tables. The tables were generated based on the information described in Table 7.1,
which defines the probability of each attribute being part of a table. The underlined
attributes (title, film, movie) have a disjoint probability of belonging to the same
table (their individual probabilities sum up to 100%).

The distribution of attributes presented in Table 7.1 was derived from a collection
of 671 tables that we have collected from the Web (see Section 7.3 for details). Based
on the distribution of the Figure, a data set of 10.000 tables was created.

Attribute Frequency
other_notes 85%
title 75%
notes 65%
director 58%
genre 56%
cast 55%
year 30%
role 17%
film 17%
category 8%
movie 8%
rank 1%

Table 7.1: Attribute frequencies used to define the computer generated tables

The experiments were conducted on a Pentium Core 2 Duo with a 2.67 GHZ
processor and 4GB of RAM. Each experiment was executed 100 times, and we
report the one that took the lowest time.
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7.1.1 Measuring Efficiency

We measured the cost in time for the three table search strategies presented in
this work (Table Scan, Pivot Table Scan, Table Intersection).

The query workload used in the experiments in described in Table 7.2. The
number of query variables of the workloads changes iteratively according to the iter-
ation. Furthermore, assume that the variables belong to the same relation subgoal,
and they are either all required or all optional.

For example, in the first iteration, workload 1 contains variable rank only,
whereas in the third iteration it contains variables rank,category and role.

In the first and second workloads, queries in the succeeding iterations are added
with variables that are more frequent in the indexed relations. In the third and
fourth iterations, queries in the succeeding iterations are added with less frequent
variables. Moreover, queries in the first and third workloads contain only required
variables.

Iteration Workload 1 Workload 2 Workload 3 Workload 4
all required all optional all required all optional

1 rank rank notes notes
2 category category title title
3 role role other_notes other_notes
4 year year director director
5 cast cast genre genre
6 genre genre cast cast
7 director director year year
8 other_notes other_notes role role
9 title title category category
10 notes notes rank rank

Table 7.2: Query workloads - each workload is divided in 10 iterations.

Figure 7.1 shows the results obtained after running the first and second work-
loads, where the queries start with less frequent variables and are added with more
frequent ones.

We remark that the table search strategies are optimized to explore the less
frequent attributes of the query. In the table scan, these attributes are processed
first. Likewise, in the table intersection, smaller lists of tables are intersected first.
In the pivot table scan, the less frequent attribute becomes the pivot. The results
of this tuning are described next.

When all variables are required (workload 1), table scan presents a behavior
that oscillates to a constant cost, as the number of variables increase. The reason is
that few relations cover the less frequent variables. As they are added to the query,
the chances are that the algorithm discovers that a relation does not provide a full
coverage before all variables are processed.

Pivot table scan behaves similarly. The difference is that it does not process
all indexed relations, only those that contain the attribute rank, the less frequent
variable that is present in all iterations of the workload. It is notable the benefits
of using a pivot to reduce the search space.

Table intersection initially has a increasing cost, and then remains constant when
five or more variables are used. This mark indicates a relation subgoal that is not
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Figure 7.1: Efficiency results for workloads 1 and 2

fully covered by any indexed relation. Therefore, adding variables has no effect since
the algorithm stops processing when the intersection of relations becomes empty,
which happens when the five less frequent variables are processed.

The cost of the pivot table scan does not change when the query contains only
optional variables (workload 2). The reason is that, in both cases, the attribute rank
is used to select the relations to process. The drawback is that not all possible table
matches can be found, only those that contain the rank attribute. Experiments in
Section 7.1.3 presents the recall when the pivot table scan answers queries where all
variables are optional.

As the Figure 7.1 shows, table scan has a linear cost in workload 2. Differently
than in workload 1, all variables of the query are processed, which explains why the
performance is proportional to the number of variables.

When all variables are optional, the table intersection simply increases the list of
table matches (no intersection is performed). In the first iterations, when attributes
are less frequent, the number of table matches are small. In the final iterations,
when more frequent attributes appear, the number of table matches is much higher.
Therefore, the amount of work is higher during the last iterations, which explains
the curve presented in the Figure.

Figure 7.2 shows the results obtained after running the third and forth workloads.
As opposed to the first case, queries in these workloads start with more frequent
variables and are added with less frequent ones.

When all variables are required (workload 3), the three search strategies have
one point in common: The cost reaches a peak in iterations 3-5, and then gradually
reduces. The descent in the Figure happens because the iterations that are closer
to the end contain less frequent attributes. When a new less frequent attribute
is added to the query, the algorithms use it to perform the search. Since the less
frequent attribute is processed first, the number of relations processed by the pivot
table scan and table intersection is smaller for the last iterations. Similarly, the
table scan strategy is able to verify that a relation does not match the query sooner,
since it checks the coverage for the less frequent attributes first.

The ascend before the peak happens because the first iterations contains at-
tributes that are relatively frequent, and the cost to process one more attribute in
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Figure 7.2: Table search efficiency results for workloads 3 and 4

a succeeding iteration overcomes the gain that the added less frequent attribute
brings.

When all variables are optional (workload 4), the cost does not decrease for the
table scan and table intersection. The reason is simple: all attributes need to be
processed, since the search cannot stop when the algorithm verifies that an attribute
is not covered. However, the cost for the table intersection is not linear as it is for the
table scan. This difference occurs because the amount of work is higher during the
first iterations of the table intersection, which is a consequence of having queries with
more frequent attributes in the first iterations. Observe that the curves for workload
2 and 4 resemble an inverted image of each other (for the table intersection), where
the only difference between the workloads it that they have an inverted order of the
iterations.

Additionally, observe that the pivot table scan curve behaves similarly to the
one presented in workload 3. The reason is that this algorithm assumes that the
less frequent attribute in the query is required, which ends up reducing the cost in
the final iterations.

Comparing the four workloads, we can see that pivot table scan is much faster
than the other two. However, it may miss rewritings, for queries that only contain
optional variables, as will be discussed later. The differences between the table scan
and table intersection is deeply related to the query. As the experiments show, table
intersection is better for queries that contain low frequency attributes. Considering
horizontal search engines that needs to index information from disparate domains,
it is very likely that a major number of attribute have low frequencies. In such
cases, table intersection would be more efficient than having to process all indexed
relations. Observe that, if the query contains at least one required variable, pivot
table scan would be a better choice, since no rewritings would be missed.

7.1.2 Measuring Scalability

The scalability of the table search algorithms is depicted in Figure 7.3. The
figure shows the results obtained when running queries from the workloads 1 and 2.
The collection of query variables are taken from the last iteration of the workloads,
where 10 variables are requested.



90

Figure 7.3: Table search scalability results for workloads 1 and 2

The cost in time grows linearly as the number of indexed relations increases. As
expected, pivot table scan is the most efficient. The cost is also linear, but does not
increase as much as the other two search approaches.

Observe that the table intersection is better than table scan when all variables
are required. On the other hand, table scan is better when all variables are optional.
The results are related to the queries used in the experiment. As discussed in the
previous Section, depending on the query, table intersection can be better than table
scan even with only optional variables.

It is also important to remark that dealing with optional variables is much more
time consuming than dealing with required variables, as the Figure shows. The table
search algorithms work better with required variables because they are able to stop
processing a relation when they discover that the relation does not cover one of the
variables.

7.1.3 Measuring Recall

As explained earlier in the Chapter, pivot table scan may not retrieve all possible
table matches when all variables are optional. In this section we present experimental
results that show the recall of the algorithm in such cases. The expected answers
used to measure recall were obtained by running either the table scan or table
intersection, as they both bring all possible answers.

Workloads 2 and 4, composed by optional variables, are used for the experiment.
Besides, we have tested two different flavors of pivot table scan: Most Selective
and Less Selective. The first follows the traditional idea of using the less frequent
attribute as the pivot, in order to increase efficiency. The second uses the most
frequent attribute as the pivot. This setting is less efficient, but naturally is able to
find more answers, as the results in Figure 7.4 show.

In the first iteration, the settings do not miss any rewriting, since only one
variable is requested. In the last iteration, when 10 variables are requested, the
difference is notable. For the Less Selective, the recall in workload 4 reaches a point
where it is close to constant. This happens because the iterations succeed each other
by adding less frequent variables. Given a new variable in the query, there is hardly
any rewriting that contains this variable and was not yet found by the previous
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iteration, where that variable was absent.

Figure 7.4: Number of missed rewritings when pivot table scan process queries with
optional variables

Interestingly, workload 2 has an decreasing recall until variable genre is used as
the pivot (iteration 6). The total number of rewritings in the first iterations is lower
than the final ones, which helps explaining why the number of missed rewritings
increase in the beginning. During the final iterations the recall starts to increase
again, since the variables that are added to these iterations appear in a high number
of relations.

Figure 7.5 shows the same results measured by the relative recall, with respect to
the total amount of possible rewritings. Recall drops severely in the Most Selective
setting when the query contains non-frequent variables, since it is biases by the
frequency of its less frequent variable, as indicated in Table 7.1. On the other hand,
recall is much higher when the Less Selective setting is used.

Figure 7.5: Recall obtained when pivot table scan process queries with optional
variables

Even though the Less Selective approach outperforms the other, and recall is
meaningful, the number of missed rewritings deserves attention. For instance, take
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iteration 4 in workload 2, where the query requests four non-frequent variables.
This would be a normal request in a structured search engine that indexes a large
number of attributes. In this case, the number of missed rewritings is close to 2000.
It represents 20% of the whole set of indexed relations. In larger repositories, the
number would be even greater. Besides, it is important to remark that our data
set contains a reduced number of attributes, with a individual frequency that could
be considered high. In real world domains, this frequency would be much lower.
Consequently, the number of indexed relations that share the same non-frequent
attributes would be minimal, and this fact would have a direct impact on the pivot
table scan recall.

7.2 Combination Strategies

In this section we discuss how variations of the combination strategies affect the
cost to find multi-relation rewritings.

Initially we compare the Naïve, the Stream-Driven and the Template-Driven
strategies. In essence, these algorithms receive join lists and compute valid combi-
nations. Therefore, we measure their efficiency by artificially creating join lists.

The join list used in the first experiment is composed by two different comple-
ments: [year] and [rank]. The number of entries that correspond to each complement
varies according to the iteration of the execution. In the first iteration, each com-
plement can be found in one entry of the join list. In the fifth (last) iteration, each
complement can be found in five entries of the join list. Table 7.3 shows informa-
tion related to each iteration. Observe the relation between the number of possible
combinations and the actual number of valid combinations. Recall that, in order to
be valid, a combination must be complete and minimal.

Iteration rank entries year entries sum possible comb. valid comb.
1 1 1 2 3 1
2 2 2 4 15 4
3 3 3 6 63 9
4 4 4 8 255 16
5 5 5 10 1023 25

Table 7.3: First experiment: the number of entries changes according to the iteration

For the second experiment, each iteration works with join lists that contain
different sets of complements, as depicted in Table 7.4. There are two entries to each
different complement. This number remains the same throughout the iterations. For
lack of space, the complements are indicated in the abbreviated form.

Figure 7.6 presents the results found when the combination algorithms process
the join lists mentioned above. Other setting of join lists were tested as well, and
they present curves similar to the ones illustrated in the Figure.

As expected, the performance becomes more expressive as the total number of
possible combinations increase. We can see that the Naïve approach takes exponen-
tial time to compute valid answers, since it needs to compute all possible combina-
tions. The Stream-Driven approach presents a great improvement over the Naïve,
since it is able to reduce the number of computed combinations. The best results
are achieved with the Template-Driven approach, mainly because it is capable of
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Iteration distinct complements in the JL sum possible comb. valid comb.
1 [r],[g] 4 15 4
2 [r],[g],[y] 6 63 12
3 [r],[g],[y],[d] 8 255 24
4 [r],[g],[y],[d],[g,y] 10 1023 32
5 [r],[g],[y],[d],[g,y],[d,r] 12 4095 44
6 [r],[g],[y],[d],[g,y],[d,r],[g,r,y] 14 16383 48

Table 7.4: Second experiment: the number of different complements changes ac-
cording to the iteration

Figure 7.6: Efficiency results for the combination strategies

grouping entries with the same signature.
Interestingly, Experiment A shows that the Template approach is worst than the

stream approach in the first iteration. The reason is that the join list is two small
in this case, and the cost of computing template trees becomes the most expensive
operation when the join lists are too small. Future work could investigate how to
automatically choose the best strategy for each case. One possible tuning would be
to use the template tree only when a join list is larger than a pre-defined threshold.

The third experiment includes the AVaTa index optimization in the measure-
ment. As explained in Section 6.3.5, this index is able to create smart join lists
that together tend to be smaller than the original join list. From the smart JLs
it is possible to directly compute all valid rewritings that are not empty, without
performing the rewriting check.

To evaluate the AVaTa optimization, we created a JL composed by two different
complements: [rank] and [genre]. There are 50 entries that correspond to each
complement, which gives us 2500 valid combinations. However, it is very likely that
only a few of those are not empty.

No AVaTa index is actually used in the experiment. Instead, we simulated the
number of smart lists the index would compute, based on the maximum number of
valid combinations, as indicated in Table 7.5. For instance, in the first iteration, 125
lists are created, which represents 5% of the total number of combinations(2500).
Additionally, we stipulated than each list is composed by two relations only. There-
fore, at most one rewriting may exist for each smart list.

After splitting the original join list into the smart lists, the Template-driven
approach was used to compute the rewritings. Recall that the ATaVa optimization
may generate duplicated rewritings, for instance, when two smart join lists contain
the same relations. Therefore, when all rewritings are put together, it is necessary
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Iteration percentage amount
1 5% 125
2 10% 250
3 15% 375
4 20% 500
5 25% 625
6 30% 750
7 35% 875
8 40% 1000
9 45% 1125
10 50% 1250

Table 7.5: The number of simulated smart lists changes according to the iteration

Figure 7.7: Efficiency results when smart lists are used

to ignore the duplicates. This step is also included in the evaluation.

Figure 7.7 shows the time cost to find the rewritings for the Stream-Driven, the
Template-Driven and the Template-Driven with smart lists. The first two remain
constant, since the cost is not affected by the number of smart lists (their processing
is based on the original list). We can see that the ATaVa brings an improvement
when the number of smart lists is relatively small. The turning point occurs when
more than 750 lists needs to be processed. The results show that, for this particular
case, it is faster to use one single list with 100 entries than to use 750 lists with
2 entries each - in the former, only one template tree is computed, against 750
template trees in the second.

It is important to remark that different settings could yield different curves, for
instance, when more query complements exist(in the example, there are only two:
[rank] and [genre]). One possibility is to automatically analyze the scenario in order
to decide whether smart lists should be used. We leave these considerations as ideas
for future work. Another thing that deserves attention is the cost to perform the
rewriting check, which is not needed when the smart lists are used, and given queries
with no selection predicates. This cost is not taken into account in the experiment,
which suggests that the benefits of the smart lists exceed the border depicted in the
Figure.
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7.3 Rewriting Check

The rewriting check is able to identify empty rewritings and prevent them from
being presented to the user. In this section we measure the effort the user would
spend to find non-empty rewriting if this check is not performed.

To evaluate this type of check, the repository was populated with HTML tables
crawled from the Web. We have implemented a simple parser that automatically
extracts information from well-behaved HTML tables (i.e., tables whose header row
is defined with TH tags). A Wikipedia page that brings a list of the 100 best
American movies 1 was used as the seed for the crawl.

The crawler focus on pages that contains at least one HTML table where one of
the following values can be found in the table header: title, film or movie. The
goal of this crawling template is twofold:

• detect Web tables that are used for data tabulation purposes instead of for-
matting purposes.

• discover relevant sources of data for the movie domain.

This data set is intended to show how our approach scales for relations that are
part of the same domain.

The crawling stopped after 200 movies related wikipedia pages were retrieved.
From these sources, we extracted into the repository all HTML tables that satisfy the
template stated above. A total of 671 tables were indexed. By manually analyzing
10% of the indexed tables, we estimate that 95% of them are indeed part of the
movie domain.

Table 7.6 shows the query workload used. The first two queries show variations
in the selection predicate for the variable year. The last three queries exercise the
creation of multi-relation rewritings. No indexed relation covers all variables of
queries Q3 to Q5, so joins need to be performed in order to find answers. In all
cases empty rewriting can be generated, either because the selection predicates or
the join predicates are not satisfied.

Query Type of Predicate

Q1: title year [year = 2000] Selection Predicate
Q2: title year [year < 1995] Selection Predicate
Q3: title year director cast genre notes Join Predicate
Q4: title genre director year cast Join Predicate
Q5: title cast role Join Predicate

Table 7.6: Query workload used to find statistics about rewritings emptiness

Table 7.7 shows the results achieved for queries Q1 and Q2. The evaluation was
performed over data sets of different sizes. Column c1 refers to the total number
of rewritings found and column c2 refers to the number of rewritings that are not
empty. Column c3 refers to the number of empty rewritings the user would have to
open until 10 non empty rewritings are found (if no rewriting check is applied).

1The list was created by the American Film Institute http://en.wikipedia.org/wiki/100_
Years...100_Movies
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#tables Q1 Q2
c1 c2 c3 c1 c2 c3

101 7 1 6 7 5 2
208 28 8 20 28 19 5
313 28 8 20 28 19 5
412 28 8 20 28 19 5
501 29 9 20 29 20 5
605 34 10 24 34 22 5
679 36 12 24 36 24 5

Table 7.7: Statistics about rewriting emptiness for Q1 to Q2, where c1 = total
number, c2 = not empty, c3 = empty rewritings until 10 not empty

In the best case scenario, only 2 empty rewritings would have to be opened (for
query Q2 and having a data set of 101 source relations). The worst case occurs
for Q1 and having a data set of 679, where 24 rewritings would have to be opened.
The filter predicate of Q1 is more restrictive than Q2, which explains the difference
indicate in the Figure. Also, as expected, the user effort increases as the number
of indexed relation increases. If thousands of relations were available, the task of
finding non-empty rewritings would be unfeasible.

Table 7.8 shows the results achieved for queries Q3 to Q5. The total number of
rewritings is much larger if compared to the other queries. The reason is related to
the number of possible combinations of incomplete indexed relations that are able
to provide a full coverage. The comparison between c1 and c2 shows that only a
small part of the rewritings are non-empty. This case clearly shows that the process
of finding non-empty rewritings needs to be performed by the search engine, and
not delegated to the user.

#tables Q3 Q4 Q5
c1 c2 c3 c1 c2 c3 c1 c2 c3

101 529 23 346 529 23 346 231 0 231
208 3780 40 1246 3780 40 1239 1755 14 570
313 6496 78 624 6496 78 628 3016 51 288
412 9212 102 1513 9212 102 1520 4277 74 719
501 12494 128 289 12006 130 269 5796 100 269
605 18469 161 829 17272 163 907 7620 116 832
679 23560 205 403 20340 207 391 9605 157 391

Table 7.8: Statistics about rewriting emptiness for Q3 to Q5, where c1 = total
number, c2 = not empty, c3 = empty rewritings until 10 not empty

7.4 Comparison with Related Work

From the related work, the one of Dong and Halevy (DONG; HALEVY, 2007)
is the most similar to ours, in that the ultimate goal is to seamlessly query a large
corpus of structured information available on the Web. In this section we compare
our approach to the one proposed by Dong.

To start, we briefly describe the two main indexes of the related work - ATIL
and AAIL - that we use as a basis of the comparison. Further details can be found
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in Section 3.2.4.
The ATIL is a list of keywords, where each keyword corresponds to the concate-

nation of a value and an attribute. Each keyword contains a inverted list of tuple
instances. For example, 2004//year:[T1-2, T4-3] indicates that the attribute year
contains the value 2004 in two different tuples: T1-2, represents the second row of
table T1 and T4-3 represents the third row of table T3.

The AAIL is a variation of ATIL that supports associations. An association is
a role between two related tuples. Furthermore, associations are bi-directional, and
each direction is given a role name. Each association is stored in the AAIL several
times, one for each attribute of the tables involved in the association.

7.4.1 Memory Cost

In order to evaluate memory cost, we collect data from the WT10G data set.
This collection contains over 1.5M web pages crawled from the Web (details can be
found at http://ir.dcs.gla.ac.uk/test_collections/wt10g.html).

From these sources, we apply a more general template extraction than the one
used in the movie data set. An HTML table matches a template if it contains one
of the following attributes: artist, city, company, country, name, product
and title. In the end, a total of 3471 tables were indexed (out of 2845 pages).

To compare the indexes, we implemented indexers that takes the parsed HTML
tables and store it according to the ATIL and AAIL. However, our approach has
no support to identifying associations as proposed in (DONG; HALEVY, 2007).
Instead, we updated AAIL with the associations we were able to find automatically,
in which tuples are related if they share the same attribute name and same value.
The name of the association is computed as the name of the attribute prefixed
with the word same. For instance, if the attribute name is title, the name of the
association becomes same title, in both directions.

All indexes are represented as Java primitive data types. Plus, the relationships
between the indexed elements are given by inverted lists, structured as primitive
arrays. The size of an index is computed as the total amount of bytes the in-
dex occupies. It is important to remark that we care about optimizing memory
consumption, for all evaluated indexes. To accomplish this, we prevent object du-
plicates - unique objects are represented only once. The data set used in the exper-
iments as well as the source code that computes the memory cost are available at
http://www.inf.ufrgs.br/~heuser/atava.zip.

Figure 7.8 shows the results achieved when measuring memory cost. Observe
that the size of all indexes grows linearly with respect to the number of tables.

At the very low part of the graphic is the ATa index. Despite its low memory
consumption, it does not provide enough information to perform the rewriting check.
Therefore, queries with selection predicates may lead to empty rewritings.

On the other hand, the ATaVa is able to perform the rewriting check, but it
takes a considerably higher amount of memory. ATaVa is slightly better than ATIL.
These indexes are analogous, in the sense they do not store associations but allow
queries with selection predicates.

We also compare the associations-aware indexes ATaVa+AVaTa and AAIL. The
memory cost in ATaVa + AVaTa is lower that its analogous AAIL. The reason is
the overhead involved when adding an association in AAIL. Adding an association
to an instance with n attributes implies in adding n new keywords.
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Figure 7.8: Memory consumption for the WT10G data set

Interestingly, adding the AVaTa to the ATaVa hardly increases the memory con-
sumption. Recall that the AVaTa only keeps information about the join attributes.
Naturally, the size of this index varies according to the total number of join at-
tributes. However, we have found that only a small part of the whole data set needs
to be stored in this index, even considering all existing attributes. Our statistics
(considering both movie and wt10g data sets) indicate that 73% of the table values
are unique, 22% of them appear in different relations, but for attributes with differ-
ent names, and only 5% appear in different relations for attributes with the same
name.

Finally, the TAt component is included in the three variations of our indexes.
Information from the TAt is used by the table scan and pivot table scan algorithms
to traverse the list of indexed tables. The TAt is created by adding links among
elements that are already part of the ATa. Therefore, there is no significant overhead
to keep it in the repository.

7.4.2 Answering Queries without Selection Predicates

Queries without selection predicates are those where the user only wants to
discover sources than contain the specified attributes, regardless of the contents of
the tuples.

In our approach, this type of query can be answered using information from the
ATa. On the other hand, ATIL was designed with the purpose of answering selection
predicate queries, and not to merely define the attributes of interest. In order to
find out which sources contain information about a specific attribute, a full scan
in the index is required, since the attribute part of the indexed keywords is hidden
behind the value part.

One possible overcome would be to index additional keywords, using only at-
tribute names. We did implemented a variation of the ATIL that adds these new
keywords. The results are positive, and indicate that this variation does not have a
severe impact with respect to the memory consumption.
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7.4.3 Answering Queries with Selection Predicates

Queries with selection predicates are those where the user wants to discover
sources than contain the specified attributes, and the values of some attributes need
to be within a determined range.

The ATaVa is able to identify the indexed relations that satisfy the selection
variables of a query. Furthermore, the data type information stored in the index
allows the selection operations to be semantically performed.

ATIL easily supports queries whose selection predicates contain the equality
operator. Tuples that satisfy this kind of predicate are directly identified in the
index. However, other kinds of operators require additional processing. In such
cases, the index would have to be scanned to find out which values satisfy a selection
predicate. After the values are found, another step is required to check if the indexed
attribute is the one of the predicate. Additionally, the index does not smoothly
accommodate data types, so values would always be compared as strings.

7.4.4 Index Distribution

The ATaVa/AVaTa indexes can be distributed in several nodes, creating parti-
tions at the attribute level. Given a query with n attributes, at most n nodes would
have to be accessed, considering the all requested attributes are kept in distinct
nodes. This organization helps to amortize the cost for storing the tuples, which
is the information that represents the higher amount of memory, as indicated in
Figure 7.8.

Considering a distributed index, the TAt component would have to be kept in a
separate node. However, the cost of this index is low, since it does not care about
tuples. The memory consumption is similar to the ATa, where the relationship
among attributes and relations occur in the opposite direction. Also, since the TAt
is no longer kept in the same node, the indexed objects would have to be uniquely
identified across the indexes, so that the rewriting algorithms are able to correlate
them.

In ATIL, the entries are prefixed by values. Therefore, there is no meaningful
way to distribute the information in several nodes. One idea would be to create
partitions at the values level. In this case, if a selection predicate uses the equality
operator, only the node that keeps the specified value needs to be accessed(eg. "find
information where year = 2000"). However, if the selection predicate uses any
other operator, defining the necessary nodes would be a complex and time consuming
task(eg. "find information where year > 2000"). A similar problem occurs if
a requested attribute is not part of any selection predicate. This situation would
required the index to be adapted, as already mentioned in Section 7.4.3.

7.4.5 Associations Discovery

This thesis describes two different ways of handling associations. In the first,
no associations are indexed, and it is up to the user to specify the join among the
sources. In the second, associations are indexed between tuples that share the same
column name and value. On the other hand, AAIL supports a more general kind of
association. An association is a role between two tuples, and its not conditioned to
the equality of column names. However, automatically finding associations between
tuples and defining their role names is a complex process, and probably would have
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to be manually consolidated. In (DONG; HALEVY, 2007), it is not clear how this
information is discovered.

The number of associations found by our indexer is lower than associations found
by the AAIL, but it is a process that can be performed automatically. Of course,
this comes with a price of lower precision / recall rates, specially when mixing
information from multiple domains into a single index.

Nevertheless, in the context of exploratory search, this behavior is acceptable,
and sometimes, can even produce interesting answers. For instance, given the movie
source (title, director) and the book source (title, year), the query title
director year would return the title and director of a movie, along with the year
in which a homonymous book was released.

One limitation of the way in which we use associations in rewritings is that the
join attribute needs to be specified in the query. If the provided attributes of the
query are not good join attributes, relevant associations may not be found.

We intend to leverage this limitation by artificially adding join attributes to the
query. Given a query, schema-completion techniques (CAFARELLA et al., 2008)
can be used to discover which lacking attributes best match the schema of the query,
and try to use these as join attributes.

7.4.6 Answering Keyword Queries

Keyword queries (where no metadata information is provided) are easily an-
swered with the ATIL, since all indexed keywords are prefixed by the value. For
example, the query "The Aviator"is able to find relations that contain the terms
"the"and "Aviator"as contents of an attribute.

In our approach, keyword queries cannot be answered, since the value information
is hidden behind the attributes level.

Observe that the ability to answer keyword queries is orthogonal to the ability
to answer general predicate queries, and this is a direct consequence of the index
organization. ATIL/AAIL are based on values, which makes them more powerful for
keyword search. On the other hand, ATaVa/AVaTa are based on attributes, which
makes them more powerful for predicate queries, including those that use operators
other than equality.
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8 EIDOS PROTOTYPES

This chapter presents prototypes of a structured search engine, build based on the
concepts of the Eidos architecture. Two versions are presented: one that supports
queries with joins and another one that supports join-less queries.

8.1 SPJ Queries Support

Figure 8.1 shows the interface that allows users to express SPJ queries in SQL. To
demonstrate, we have populated the repository with HTML tables from the movie
data set, using the extraction rules presented in Section 7.3.

The Figure shows a list of rewritings that contain possible answers to an SQL
query asking for the title, year and notes of movies. Close to the rewritings is a
summary of the involved indexed relations as well as links to the URL of the Web
pages where the HTML tables are located.

When the user clicks on a rewriting, the search engine accesses the actual Web
page and extracts the desired information from the HTML table located in that
page. The output of the selected rewriting (Rewriting 2) is displayed to the user
in a tabular format, composed by a list of records and segmented as one or more
attributes.

The query of Figure 8.1 contains one relation subgoal, so each rewriting retrieves
answers from a single indexed relation. When queries contain multiple relation
subgoals, the search engine delivers rewritings that access more than one indexed
relations to find the answers.

The next example compares a result computed by the search engine to the actual
source from where the result was obtained. In this case, the user wants to explore
information about actors and awards. The first rewriting returned is shown in
Figure 8.2, together with an excerpt of the Web page from where the information
was extracted. Since the data is retrieved from the source, the result is always fresh.1

Observe that the content of the output table is a subset of the content that
can be found in the source HTML table, which includes links and images (relative
links are automatically converted to their respective absolute links). By keeping
the hypertext-based information we give the user the power to navigate through
the results, exploring its contents and discovering additional information that are
related to the query.

1For efficiency, results could also be cached.
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Figure 8.1: Query interface of the structured search engine. Users pose SQL queries
and the system retrieves HTML tables that best match the queries.

8.2 Join-less Queries Support

In this section we present a prototype that accepts join-less queries, expressed
in the proposed keyword language. The application is similar in spirit to the one
that accepts SPJ queries. Therefore, only the different feature is shown here, which
is related to the ability to find multi-relation rewritings.

To demonstrate how the search engine behaves on real data retrieved from the
Web, the tables extracted from the WT10G collection compose our data set. This
collection is much larger than the movie data set and the universe of discourse is
much more diverse, which composes a scenario that better represents the hetero-
geneity found over the Web.

Interestingly, from the seven join attributes used in the extraction template, sev-
eral different domains could be retrieved, such as restaurants, industry and politics.
Therefore, this data set is particularly interesting for wide purpose queries, such as
the ones asked in a horizontal search engine.

Figure 8.1 shows a list of arbitrary queries posed to our search engine. Queries
from 1 to 5 are answered using single-relation rewritings (a single Web table is
accessed). For instance, one of the rewritings for the first query refers to a relation
that contains a list of 16 cities of Utah. The rewriting check assures that only
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Figure 8.2: A rewriting returned for the query select actor, award from movie
and its corresponding result is shown on the left. An excerpt of the Wikipedia page
from which the result was extracted is displayed on the right.

# Query

1. city [state = UT]
2. city [zipcode > 53701]
3. zipcode [city = madison]
4. product [company = ibm]
5. restaurant telephone_ [city = malibu]
6. company location ticker
7. country country_code monetary_unit

Table 8.1: Example of Arbitrary Queries

relations that satisfy the predicates are selected.
Queries six and seven are answered using multi-relation rewritings, having ’com-

pany’ and ’country’ as join attributes, respectively. Some of the results obtained for
query 7 are shown in Figure 8.3.

It is important to notice that the number of relations from the WT10G data set
that belong to the same domain is very small. Despite the size of the collection, there
are only few relations that contain the same or similar schema. We did try to perform
scalability experiments with this collection, but the limited amount of information
that overlaps did not give us enough data to draw conclusions. However, we do
expect that scalability results using larger overlapping schemas would be similar to
the ones found for the movie data set.

8.3 Additional Features

The Eidos architecture - along with the information kept in the proposed indexes
- enables interesting features to be implemented as part of the search engine. This
section explores some of these possibilities. The presented features were added as
part of the SQL search engine, but it could be implemented for join-less queries as
well.

Figure 8.4 shows the query expansion feature, which allows the user to discover
additional information that is available in the retrieved relations. If the user clicks on
the link ’Click here to expand query’ below the rewriting, a new answer is computed,
composed by all attributes from the indexed relations. This feature allows the user
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Figure 8.3: Some results for the query ’country country_code monetary_unit’

to quickly discover/visualize complementary information related to the query.
Additionally, next to each attribute‘s header, a drop-down list is provided that

enables users to refine a query by switching a returned attribute to any other at-
tribute that is available in the indexed relation. The Figure 8.4 illustrates what
happens if the user switches the attribute gross for the attribute studio.

Besides structured queries, the search engine also supports keyword-based queries.
Keyword-based queries can be used alone or in conjunction with structured queries.
If the user issues a keyword-based query, the computed rewritings access pages that
contain the specified keywords. Each rewriting refers to a particular HTML table
and returns the contents of all columns of the table. To support keywords, we keep
a full-text index built using Lucene2.

For instance, Figure 8.5 shows the first rewriting produced when the query ’grou-
cho’ is issued. This rewriting retrieves a source table in a page that contains infor-
mation about the Marx Brothers. When a structured query and keyword-based
query are used in the same request, rewritings are derived that:

• cover the attributes specified in the structured part of the query.

• come from a page from where the keywords can be found.

For example, suppose the user enters "select year from movie"as the structured
query and ’Groucho’ as the keyword query. Also suppose that all indexed relations
cover the attribute year, but only one page contains the requested keyword. In
this case, only the indexed relations that come from this specific page will generate
rewritings.

The search engine also allows users to navigate through the schemas of the in-
dexed relations. The ’Suggestions’ link (located above the Table Search box) can

2http://lucene.apache.org
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Figure 8.4: Users can expand/refine a rewriting in order to see other information
related to the query.

be used to discover relation that are similar to the relation of the user query, for
queries that contain a single relation. For instance, Figure 8.6 shows schemas that
are related to the query "select title, actors from movies". Each entry in the result
consists of the schema description and the number of relations that use this schema.

Schemas are ranked according to their relevance to the user query. Those that
cover more attributes of the query are deemed more relevant. If two schemas cover
the same number of attributes, the one that can be found in the higher number of
relations is deemed more relevant. When the user clicks on a schema, the rewritings
that use the selected schema become available.

Users can also browse the different schemas for all relations in the repository
using the ’Repository’ link (located above the Table Search box, Figure 8.4)). The
schemas are ranked according to their frequency - the proportional number of source
tables in the repository that use the schema. Similarly to the Suggestions link, when
the user clicks on a schema, the rewritings that use the selected schema become
available.

Precision could also be improved if additional information was collected from the
Web pages other than the tables. Our Table Parser module only extracts information
that appear inside HTML tables. For instance: in our collection, there are no tables
that contain both the name of an artist and its role in different movies. However,
we have noticed that the column role usually appear in Web Pages of a particular
artist. Thus, even though the name of the artist is not directly represented in the
table, it could be found in the surroundings, or sometimes even in the URL itself.
Therefore, even if some information is not directly returned to the user, it is possible
to take the initial answers as a starting point, and find out additional information by
exploratory means, such as refining the query, checking the URL or going straight
to the data source.
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Figure 8.5: Keyword queries can be combined with structured queries to restrict the
search

Figure 8.6: The suggestion feature shows schemas of indexed relations that are
related to the relation of the query.
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9 CONCLUSIONS

The main contribution of the thesis is an architecture for querying and correlating
information from dataspaces in which pre-defined schemas or mappings are not
required. Information from the sources are wrapped as relations and captured by
specialized indexes that decouples the content as relational tuples composed by
attributes and values. In querying time, the indexes are accessed in order to find
rewritings - sources that best match a user‘s request.

So that user queries can be effectively and efficiently translated into queries over
the underlying relations, different indexes and rewriting algorithms have been pro-
posed. Simpler indexes, such as ATa, consume less memory but present a limited
usability, restricting the user to search sources that contain the desired attributes.
When the values of the relations are considered, more powerful indexes are cre-
ated(ATaVa and AVaTa). These indexes allow rewriting checks to be performed
over queries that contain selection and join predicates. Experiments show that the
overhead of the most complete indexes is acceptable. Comparisons with related
work demonstrate that the memory cost is similar, but the benefits are meaningful,
considering the querying capabilities.

An important benefit from not having pre-defined mappings is that the cost
of maintenance is reduced: new sources can be added to the system and queried
without the overhead of creating new mappings (or updating a global schema). Of
course this best-effort approach cannot give guarantees of coverage (i.e., that all
answers are retrieved) or even that the returned answers are ‘correct’. Therefore, it
is not a substitute for the traditional integration approaches, which are needed for
application that require precise answers. However, it provides the means whereby
users can more easily explore dataspaces, learn about different domains, identify
relevant data sources and their associations, as a prelude to a more structured (e.g.,
mediator-based) integration systems.

Looking at the search engine perspective (instead of the integration system), our
approach allows the user to easily access structured information sources. As already
occurs in traditional search engines, false-positives are expected, so the answers
cannot be taken from granted. When the results seem to be incorrect, it is up to
the user to fine-tune the queries in order to improve the quality of the search. We
understand that the trade-off is acceptable when considering a system that is able
to reach a large volume of information.

To demonstrate the architecture’s flexibility, two query languages were tested.
The first requires users to specify the joins, and the second is able to automatically
identify joins between associated sources. The latter is easier to use, which makes
of it the best choice considering the search engine scenario. On the other hand, the
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former allows the user to discover associations between related sources that would
be hard to find automatically (in a scenario where foreign key relationships are not
known), which makes of it the best choice for data integration/exploratory purposes.

The list below describes the contributions achieved by the thesis:

• No human interaction is needed to populate the indexes.

• Queries with selection predicated are allowed.

• Query answering can be done using indexed information.

• Associations between relations are discovered automatically.

• Detection of empty rewritings is possible.

• Algorithms to find rewritings scale well.

• Indexed information can be distributed in several nodes.

• The architecture can be easily extended.

Querying dataspaces is a challenging problem. As demonstrated, traditional in-
tegration systems are not able to handle the diversity found on the Web. Attempts
have already been made to substitute the schema-first approaches, mainly using
pay-as-you-go strategies or by indexing the structure sources. Following the index-
ing direction, we have taken another step towards a mechanism that automatically
provides meaningful access to structured information sources on the Web, making
it possible to seamlessly query and understand dataspaces and their connections.
There are still several topics that need to be addressed in future works. In what
follows we present a comprehensive list with the most relevant issues that remain
open.

Ranking of the Rewritings An user query may return a reasonable number of
rewritings. Therefore, there is a need to rank the rewriting so that the most
relevant results appear first. The number of attributes covered and the esti-
mated number of tuples returned are possible features that may be used, and
that are easily extracted from the indexes.
Another possible heuristic involves analyzing the amount of joins among re-
lations from different locations. The higher this number, the less relevant is
the rewriting. This heuristic is based on the fact that different locations (Web
Servers, databases, ...) may be inconsistent with respect to each other, and
joining them may bring fewer tuples or even incorrect ones. The location it-
self is likely to be an useful ranking information. For example, if the user is
searching for restaurants to go at night, the most relevant results are those
that indicates near-by options.

Match by Similarity Currently, the attributes of a user query are matched to
indexed attributes with the same name. Schema matching techniques (HE;
CHANG, 2003; RAHM; BERNSTEIN, 2001) can be used to allow attributes to
match even if their names are not the same (for example using name and data
type similarity). Besides, similarity techniques are also useful to match tuples
with selection predicates that contain similar content. The ranking mechanism
suggested above can be adapted to take the match score into consideration.
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Associations Discovery Similarly to the previous topic, associations are auto-
matically found between relations that cover the same attribute, and only
when the attributes contain the exact same content in at least one tuple of the
associated relations. Schema matching techniques also serve to allow the join
attribute to have similar names in different relations (not equal). Moreover,
tuples with similar content on determined attributes can be used to determine
which relations have overlapping information, and therefore should be associ-
ated. The similarity can be used along with the attribute‘s selectivity in order
to determine the ranking of the rewritings found.

Join Attribute Discovery If one or more attributes in a user query span multiple
relations, the implemented algorithms derive rewritings that join these rela-
tions. Observe that this only works if the original query contains a "good"join
attribute. One possibility to overcome this limitation is by adding a pre-
processing step into the query answering that tries to find the join attributes
even if they are not declared in the user query. Schema auto-completion tech-
niques can be explored in order to achieve this goal.

Definition of Evaluation Measures The querying mechanism proposed is based
on inferences on how the query relates to the sources. This may lead to false
positives rewritings (in the case of homonyms) or false negatives rewritings (in
the case of synonyms). Thus, there is a need to evaluate the quality of the
answers in order to determine the mechanism efficiency. This becomes more
crucial if matches are to be found by similarity, as pointed earlier.

The precision and recall metrics are traditional approaches used to evaluate the
quality of information retrieval systems (BAEZA-YATES; RIBEIRO-NETO,
1999). Generally speaking, these metrics are computed based on the number
of correct answers and the number of incorrect answers of a query: the preci-
sion measures how many of the returned answers are correct, while the recall
measures how many of the correct answers were returned.

In the context of our work, results can be incomplete (when not all query
attributes are found. Therefore, a rewriting might not be correct neither
incorrect, but something in between. It is important to adapt/complement the
precision and recall metrics so that more consistent evaluations are performed.

Query Guidance and User Feedback Although users tend to refine queries in
order to achieve better results, we believe that new mechanisms are needed
to guide the query formulation, such as query wizards or navigation through
trees of connected data sources. "Did you mean"features, where the query is
fixed by adapting terms that might be incorrect also need to be investigated.
As a proof of concept, we have implemented a mechanism that suggest new
queries based on the schema of the original query.

Another interesting possibility is to use pay-as-you-go strategies by leveraging
user feedback. To test the benefits of user feedback, our prototype already
allows the user to interact with the query results by replacing the incorrect
attributes with other attributes available in the data source. This feature
not only brings immediate value to the user, but it naturally shows that it
is possible to map the user interactions to a knowledge base, and therefore
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improve the search capabilities in the long-term. Other forms of interactions
can be easily mapped, such as which rewritings were actually opened and the
time the user spent in each opened rewriting.

Index Optimizations The experiments showed that the memory cost of the in-
dex is acceptable, considering the alternative solution found in the literature.
Nevertheless, optimizations may still be able to reduce this cost, exploring
existing techniques such as index summarization and canonization.

An additional idea to optimize the index is to learn from queries history.
Instead of indexing all columns of a relation, the index can store only columns
that appear more often in the queries history. Similarly, the values level can be
indexed only for attributes that appear in selection predicates of past queries.

Building of Wrappers and Extractors To evaluate the Eidos architecture, a
simple HTML table wrapper was implemented. The wrapper is able to recog-
nize tables built with the proper HTML constructs, and only when the cells
are well formed. Adaptations of the wrapper are necessary in order to reach
more diverse tables. It is also important to develop new wrappers for other
kinds of data sources, such as XML. Another good and vast source of infor-
mation is the deep Web. Existing techniques for finding and surfacing hidden
databases on the Web can be explored to amplify the range of the search
engine (BARBOSA; FREIRE, 2007a,b; BARBOSA; FREIRE; SILVA, 2007).

Source Selection Control Our rewriting mechanism selects data sources that
best match the attributes of a query. It is important to notice that other
information related to the sources (source descriptions) can improve the selec-
tion, such as locality and capabilities. The Eidos architecture can be extended
in different ways so this control can be implemented, mainly by adapting the
proposed algorithms or by adding a new component that rearrange/remove
the computed rewritings. Another useful control is to distributed the access
to the data sources, to prevent communications bottlenecks cause when the
same location is largely visited.

Functional Dependencies The usage of functional dependencies for query rewrit-
ing (BAI; HONG; MCTEAR, 2003) were already addressed in the litera-
ture. However, our approach makes no assumptions about how attributes
of a wrapped relation (or even of the query) relate to each other. There is
no knowledge available that informs which are the primary keys and which
attributes functionally depend on others.

The availability of this information might be useful to perform query con-
tainment test. In this case, considering the matches are correct, it would be
possible to determine if the answers provided by a rewriting are indeed sound.
To support the test, it becomes necessary to infer the functional dependen-
cies of the wrapped relations and the queries (MARCHI; LOPES; PETIT,
2002; BAUCKMANN; LESER; NAUMANN, 2006). Additionally, the query
language can be extended so the user can declare useful information, such as
which of the requested attributes correspond to a primary key.

Another research area involves exploring the functional dependencies to apply
query minimization techniques, which reduces the size of the rewritings and
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consequently the time required to process them.

Peer-to-Peer Adaptations The proposed architecture considers a centralized so-
lution that contains the index and the components required to compute the
rewritings. The only distributed component is the publisher, responsible for
providing access to data that is not reached by the crawler.

One idea worth investigation is the usage of a peer-to-peer solution that dis-
tributes the rewriting components among user nodes. This approach would
alleviate the processing on the Eidos server, which would be responsible solely
to keep the indexed information. Several P2P extensions can be built over
this idea, including private networks, where nodes publish information that
are accessible only by authorized users.

The following items are published material, which we list as part of the contri-
butions of the thesis, and as additional information regarding the ideas described
along the text. Part of the work was done at the University of Utah, with the
collaboration of Professor Juliana Freire.

EDBT 2010 Conference paper that details the architectural components required
to automatically discover associations among data sources (MERGEN; FREIRE;
HEUSER, 2010a).

IJMSO 2010 Journal paper that further details the components introduced in the
RED 2008 paper (MERGEN; FREIRE; HEUSER, 2010b).

SBBD 2008 Demo paper that describes the prototype of a search engine that
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APPENDIX A RESUMO DA TESE

O volume de dados estruturados disponibilizados na Web cresceu considera-
velmente no passado recente, como os dados produzidos por Web Services e bases
de dados online que publicam conteúdo na forma de tabelas HTML. Além disso,
existem muitas fontes de dados distribuídas relativas ao mesmo domínio, e que fre-
quentemente possuem informações complementares sobre objetos comuns.

A literatura se refere a essas fontes Web estruturadas como dataspaces. Um modo
simples de definir um dataspace é um conjunto de fontes de informação estruturadas e
distribuídas que servem a um propósito específico e que contém conexões (implícitas
ou explícitas) entre elas.

Contrastando com documentos desestruturados, a presença de estrutura permite
que consultas ricas sejam efetuadas em dataspaces. Isso cria novas oportunidades
para mineração, correlação e integração de um número sem precedentes de fontes de
dados distintas.

No entanto, as abordagens existentes para integração de dados apresentam li-
mitações no tocante aos dataspaces. Considere, por exemplo, os mediadores. Estes
sistemas definem um esquema global e mapeamentos pré-definidos que conectam
este esquema aos esquemas locais. Com base nestes mapeamentos, consultas sobre
o esquema global são traduzidas em consultas sobre as fontes de informação.

Naturalmente, não é viável criar e manter um sistema desse tipo para milhares
de fontes. Na Web, novas fontes surgem a todo instante, e fontes existentes são
modificadas. Assim, estar atento a essas mudanças e atualizar mapeamentos é um
processo que tem um custo proibitivo. Além do mais, é improvável que um único es-
quema global seja suficiente para satisfazer as necessidades de todo perfil de usuários
existente.

Em uma direção ortogonal, motores de busca também estão sendo considerados
para o ambiente de dataspaces. Motores de busca são bastante usados para realizar
pesquisas por palavra-chave, onde informações são modeladas como um conjunto de
termos e pesquisadas através de interfaces de consulta simples. Dadas as devidas
adaptações, motores de busca podem ser usados para lidar com fontes estruturadas.
Até o momento, as pesquisas neste campo evoluíram a ponto de reduzir os custos
relacionados à consulta. No entanto, a estrutura dos dados ainda não é explorada de
forma adequada. Por exemplo, a expressividade das consultas é limitada, e tende a
seguir o modelo baseado em palavras-chave, onde as consultas são simples coleções
de termos.

Quando o interesse recai sobre dataspaces, motores de busca especializados são
necessários para lidar com estrutura. Até o momento, os trabalhos relacionados
conseguiram utilizar motores de busca como uma forma de reduzir o custo de
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manutenção, o que é um dos maiores problemas quando se lida com um grande
número de fontes. Entretanto, nenhum dos trabalhos usa a estrutura de forma sig-
nificativa. A expressividade das consultas é limitada e tende a seguir o modelo
baseado em palavras-chave, onde as consultas são simples coleções de termos.

Esta tese propoe uma nova abordagem de integração projetada para atender
a natureza escalável e dinâmica das fontes de dados estruturadas na Web. Nosso
objetivo é prover aos usuários a habilidade de consultar e integrar on the fly um
grande número de fontes de dados estruturadas disponíveis na Web, mesclando a
expressividade das consultas dos sistemas de integração de dados com a flexibilidade
dos sistemas de integração de dataspaces.

Dessa união, três características importantes se destacam:

• Não existe esquema global: Ao invés de submeter consultas em um esquema
global, o usuário formula consultas com base no seu conhecimento do domínio
e naquilo que ele espera encontrar. As consultas podem ser refinadas a medida
que o usuário explora e aprende mais a respeito das fontes de informação.

• Mapeamentos são derivados automaticamente: Ao invés de exigir mapeamen-
tos pré-definidos, as consultas de um usuário são reescritas em consultas sobre
as fontes com base nas correspondências identificadas entre os atributos da
consulta e os atributos das fontes.

• Consultas são estruturadas: As consultas são mais do que simples listas de
palavras-chave. Explorando a estrutura das fontes, nossa abordagem permite
que os usuários submetam consultas expressivas e consequentemente obtenham
respostas de maior qualidade.

Para lidar com essas questões da forma adequada, construímos a arquitetura
Eidos. Uma das premissas da arquitetura é tratar cada fonte de dados individual
como uma relação. Para apoiar essa idéia, nosso modelo é baseado em três enti-
dades interconectadas: relações, atributos e valores. Os relacionamentos entre essas
entidades são capturados em índices especializados.

A arquitetura é dividida em três camadas. A camada de dados intermedia a
comunicação entre as fontes e os demais componentes da arquitetura. A camada
de mediador contém componentes responsáveis pela integração propriamente dita.
Essa camada contém uma subcamada de reescrita, cujos componentes são dedicados
ao processo de reescrita.

A tese está focada na camada de reescrita. Essa camada corresponde ao núcleo
da arquitetura, uma vez que ela contém os componentes que formam o mecanismo
de reescrita. Esses componentes são isolados dos demais componentes, o que permite
com que a estratégia de reescrita mude sem que o restante da arquitetura precise
ser alterado.

A camada de reescrita é composta por três componentes. O Indexer é ativado
durante a indexação. Ela recebe informações sobre as fontes e as armazena no índice.
Os outros dois componentes são ativados durante a consulta. O Query parser recebe
uma consulta estruturada e a transforma no formato adequado. Dada uma consulta
transformada, o Rewriter deve acessar os índices para descobrir diferentes formas
de responder a consulta do usuário utilizando as fontes de dados.

Cada forma de resposta diferente (que utilize um conjunto de fontes específicas)
é chamada de reescrita. Nosso objetivo é atingir o maior número de reescritas
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possíveis. Uma possibilidade é entregar ao usuário a união de todas as reescritas
existentes. No entanto, decidimos apresentar ao usuário cada reescrita de forma
isolada. Essa decisão foi motivada pelos seguintes fatores:

1. Dependendo do número de fontes, o custo para computar todas reescritas
pode ser proibitivo. Além disso, o usuário normalmente foca nos primeiros
resultados apenas.

2. É mais fácil relacionar tuplas de resposta com suas respectivas fontes de
origem. Saber a proveniência das tuplas ajuda a identificar as melhores fontes
de informação.

3. É possível associar uma reescrita a tuplas entendidas como erradas pelo usuário
e ignorar todas tuplas que vêm dessa reescrita.

4. É possível conceber um mecanismo de feedback, onde o usuário pode informar
que algumas (ou todas) informações das tuplas estão erradas. Com base nessa
informação, o sistema pode adaptar a reescrita para aprimorar a eficácia.

Com base nessa arquitetura, foram propostas duas abordagens de consulta dife-
rente. Cada uma delas deu origem a diferentes linguagens de consulta e componentes
da camada de Reescrita.

Na primeira abordagem, o usuário tem a liberdade de criar consultas com junções.
Para que isso seja possível, propomos os índices ATa, ATaVa e TAt. O primeiro é
uma lista invertida de atributos, onde cada atributo aponta para as relações que
o possuem. O segundo é uma extensão do primeiro que possui um nível adicional
para armazenar informações sobre os valores encontrados dentro de cada par atri-
buto/relação. O terceiro é uma lista invertida de relações, onde cada relação aponta
para os atributos que ela possui.

De modo geral, o índice ATa permite encontrar relações que possuam os atributos
presentes em uma consulta. O índice ATaVa também fornece essa informação, e
ainda indica se a relação satisfaz os predicados de seleção da consulta, caso eles
existam. O índice TaT é complementar aos outros dois, e serve para facilitar a
navegação entre os elementos indexados.

Além dos índices foram criados algoritmos de busca de tabela, cujo objetivo é
acessar os índices para encontrar as relações que forneçam respostas para a consulta
do usuário. Os algoritmos propostos são Table Scan, Pivot Table Scan e Table
Intersection.

Os experimentos mostram que Pivot Table Scan tem um desempenho bem su-
perior aos outros dois. No entanto, ele pode deixar de encontrar todas as reescritas
possíveis quando a consulta possui apenas atributos opcionais. Já os outros dois
algoritmos sempre encontram todas as reescritas, mesmo quando a consulta possui
apenas atributos opcionais. Desses dois, os experimentos mostram que o Table Inter-
section obtém um desempenho superior quando a consulta é composta por atributos
pouco frequentes. Considerando que diversos domínios sejam indexados, é provável
que nenhum atributo indexado seja muito frequente. Nessas circunstâncias, onde a
consulta não possui atributos obrigatórios e todos os atributos são pouco frequentes,
o Table Intersection é o mais recomendado.

Também foram propostos algoritmos que exploram o índice AVaTa de diversas
formas, como para otimizar o processo de busca de tabela (para quando a consulta
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possuir predicados de seleção), para encontrar reescritas vazias e para realizar o
processamento da consulta propriamente dito, sem precisar que as fontes de dados
sejam acessadas.

Na segunda abordagem, o usuário não precisa informar critérios de junção na
consulta. Cabe ao próprio componente de reescrita descobrir se existem reescritas
que tragam o resultado fazendo a junção de dados de múltiplas fontes. Para que isso
seja possível, propomos o índice AVaTa, complementar aos demais índices propostos.
Esse índice é uma lista invertida de atributos, onde cada atributo aponta para os
valores que ele possui. O índice ainda conta com um nível adicional para armazenar
informações sobre as relações associadas com cada par atributo/valor.

O índice AVaTa só possui informações para atributos que apareçam em mais
de uma relação, sendo que nessas relações deve existir pelo menos um valor em
comum dentro desses atributos. De certo modo, essas informações indicam algumas
possibilidades de junção entre fontes de dados diferentes. Os algoritmos de reescrita
acessam esse índice para descobrir como fontes diferentes podem colaborar para
responder a uma consulta do usuário.

Quanto aos algoritmos de reescrita para a segunda abordagem, foram realiza-
dos experimentos testando diferentes estratégias de combinação, onde o objetivo é
encontrar combinações de relações que formem reescritas válidas. Para ser válida,
estipulamos que a reescrita deve ser mínima e completa. Três estratégias foram
medidas: Naïve, Stream-Driven e Template-Driven. Das três, a Template-Driven
possui o melhor desempenho, só perdendo para a Stream-Driven quando o número
de relações a ser combinadas for muito baixo.

Os experimentos também comparam os índices propostos na tese com os índices
propostos em um trabalho relacionado. As comparações indicam que nossa abor-
dagem é mais indicada quando o usuário tem interesse em pesquisar os atributos
das fontes, enquanto o trabalho relacionado é mais indicado quando o usuário tem
interesse em pesquisar as fontes usando palavras-chave. Como consequência disso,
nossa abordagem é mais adequada para consultas com predicados de seleção. Ainda,
experimentos medindo o consumo de memória mostram que os índices propostos na
tese consomem menos memória que os índices do trabalho relacionado.

As duas abordagens de consulta foram implementadas em protótipos. Os índices
foram alimentados com dados reais obtidos de páginas da Wikipedia e da coleção
WT10G, que contem cerca de 1.5M. de páginas extraídas da Web. Acessando esses
índices, os protótipos desenvolvidos permitiram que diversos tipos de consulta fossem
respondidos.

Um importante benefício de não trabalhar com mapeamentos pré-definidos é
que o custo de manutenção é reduzido: novas fontes de dados são adicionadas ao
sistema e consultadas sem a sobrecarga da criação de novos mapeamentos (ou a atu-
alização do esquema global). É importante salientar que essa abordagem best-effort
não garante que todas respostas sejam recuperadas, e que as respostas recuperadas
sejam corretas. Dessa forma, ela não substitui as abordagens de integração tradi-
cionais, que são necessárias para aplicações que necessitem respostas precisas. No
entanto, essa abordagem fornece os meios para que usuários facilmente explorem
dataspaces, aprendam sobre domínios diferentes, e identifiquem fontes de dados re-
levantes e suas associações, como um prelúdio para sistemas de integração de dados
mais estruturados.

Já do ponto de vista de um motor de busca, nossa abordagem permite que o
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usuário facilmente acesse fontes de dados estruturadas. Como já ocorre em motores
de busca tradicionais, falsos-positivos são esperados, ou seja, não se pode assumir
que as respostas sejam corretas. Quando as respostas parecem estar erradas, cabe
ao usuário refinar a consulta de forma a aprimorar a qualidade da busca. Nós
entendemos que esse custo-benefício é aceitável para um sistema apto a atingir um
grande volume de informações.

A lista abaixo descreve as principais contribuições alcançadas na tese:

• Nenhuma interação humana é necessária para popular os índices.

• Consultas com predicados de seleção são suportadas.

• O processamento de consultas pode ser feito usando informações dos índices.

• Associações entre relações são descobertas automaticamente.

• A detecção de reescritas vazias é possível.

• Os algoritmos propostos para encontrar reescritas são escaláveis.

• As informações indexadas podem ser distribuídas.

• A arquitetura pode ser facilmente estendida.

A integração e posterior realização de consultas sobre dataspaces são problemas
desafiadores. Como demonstrado, sistemas de integração tradicionais não lidam
bem com a diversidade encontrada na Web. Tentativas já foram feitas para eliminar
o custo de manutenção, como através de abordagens pay-as-you-go ou através de
indexação. Seguindo o caminho da indexação, demos um importante passo rumo
a um mecanismo que automaticamente disponibilize acesso à fontes de dados es-
truturadas na Web, tornando possível a realização de consultas transparentes e a
compreensão dos dataspaces e suas conexões. Ainda existem diversos tópicos que
precisam ser atacados em trabalhos futuros. A seguir destaco três que consideramos
importantes:

Ranking das Reescritas Uma consulta pode retornar um número razoável de re-
escritas. Assim sendo, existe a necessidade de ordenar as reescritas para que os
resultados mais relevantes apareçam primeiro. O número de atributos cobertos
e o número estimado de tuplas retornadas são critérios que podem ser usados,
e que são facilmente extraídos a partir dos índices.

Outro critério possível envolve a quantidade de junções entre relações que
residem em diferentes fontes. Quanto maior o número, menos relevante é a
reescrita. Essa heurística é baseada no fato de que diferentes fontes (servidores
Web, bancos de dados) podem ser inconsistentes entre si, e junções entre eles
podem trazer poucas tuplas ou tuplas incorretas. A localização propriamente
dita é outra informação útil para ranking. Por exemplo, se o usuário está bus-
cando por restaurantes, os resultados mais relevantes são aqueles que indicam
opções geograficamente próximas.
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Casamento por Similaridade No estado atual, os atributos de uma consulta são
casados com atributos indexados que possuem o mesmo nome. Técnicas de
casamento de esquema podem ser usadas para permitir que atributos casem
mesmo que seus nomes sejam diferentes (por exemplo, usando similaridade de
nome ou de tipo de dados). Técnicas de similaridade também são úteis para
casar tuplas com predicados de seleção que contenham conteúdo similar. O
mecanismo de ranking comentado acima pode ser adaptado para levar o escore
de casamento em consideração.

Descoberta de Associações Associações são automaticamente identificadas en-
tre relações que cobrem o mesmo atributo, e apenas quando os atributos con-
têm o mesmo conteúdo em pelo menos uma tupla das relações associadas.
Técnicas de casamento de esquema podem ajudar a encontrar atributos de
junção que tenham nomes diferentes. Ainda, a associação de relações pode ser
computada com base em tuplas com conteúdo similar.


