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Abstract

This thesis evaluates XQuery as a complete solution for data storage and pro-
cessing, application logic and UI. To this end, I designed and implemented a
simplified e-Commerce Web Application entirely with XQuery. I used XTC [8],
a native XML database management system, as application server. This thesis
also describes necessary updates and features related to the server, extending
XTC to work as application server. The extension comprises an HTTP infras-
tructure and XQuery functions for the application development, not supported
by the XQuery specification. The resulting application has shown that the use
of XQuey and XML avoids the impedance mismatch between the data and the
application logic and that it simplifies application development.

keywords

XQuery, XML, web application, web development.
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1 Introduction

Nowadays, more and more applications are built using web technologies. On the
client side, we have HTML enhanced with Adobe Flash, Ajax and Javascript.
On the server-side, PHP, ASP and JSP. These applications are accessed via web
browsers and are usually referred to as web applications.

Their popularity comes from a series of advantages. Usually, a user can ac-
cess an application through any web browser connected to the internet or LAN.
Moreover, the application and its data are stored on the server-side, which in-
creases reliability and makes it accessible from almost everywhere [17].

Besides that, web applications introduce advantages also for the developers.
Applications can be developed, deployed and maintained without any interaction
of a technically skilled user. In fact, users are not required to install or update the
applications by themselves. Development and maintenance can be done remotely
and the developed applications are platform independent. Any modern browser
is able to display these applications.

The main cost for these features is complexity. While applications grow in size
and features, development complexity grows even more. Some of the challenges
that development of web applications need to address nowadays include:

Availability
Web applications need to run 24/7 and need to have fast response times. For
that, the robustness of the code is essential.

Scalability
Because these platforms are accessible from almost anywhere, it is not sur-
prising that the amount of users tend to grow with time. For that, large
amounts of simultaneous connections need to be managed.

Multi-user
Web applications are not static. They work with dynamic data and changes
come and go from user to servers quite regularly.

Persistent data
Most applications rely on persistent data storage, a characteristic of dynamic
applications. Almost all kinds of applications store or load persistent data.
A blog application, for example, must store comments and new postings
somewhere.

Accessibility
The access to these applications is basically through a web browser. The
communication between the client and the server occurs with HTTP, so the
application server must support HTTP communication.

These challenges are typically addressed by the use of complex infrastruc-
tures and technologies. Of course, the system should obey common properties of
any software, such as readability, maintainability, low complexity, composibility
and reusability. Therefore, developers usually build their application on top of
frameworks like Java Enterprise Edition (JEE), for example. JEE uses object
orientation and a multi-layered approach to develop applications [4].



9

A web application can be typically divided into three logical layers: presenta-
tion layer, business layer and resource layer. The presentation layer provides the
user interface (UI) and communicates with the business layer in order to process
the application logic. The business layer processes these requests and exchanges
data with the resource layer. The resource layer is responsible for the perma-
nent storage of the data [19]. This approach often deals with a special problem:
the impedance mismatch between the layers, commonly appearing between re-
lational databases and object-oriented languages[20][21]. While the presentation
layer usually uses HTML, the business layer uses Java language and the resource
layer uses any kind of relational database to storage data.

We can better illustrate this problem with an example. Suppose we have to
store a list of users in a database, consisting of an identifier, a name and the user’s
age. We want a list of all users with the name containing “Schwarzenegger” that
are older than 50 years. In a Java application, we would use JDBC (a set of Java
interfaces and classes allowing to read and write data from and to data sources
- databases [38]) to access a relational database. The Java code (without any
regard to security or best practices on accessing databases) would be something
similar to the one shown in Fig. 1.

Fig. 1: Query example using Java.

First, we declare a string variable to store the desired query. Then, an object
of type Statement is used to execute the static query. After that, we begin the
output, where the query results are displayed to the user. Data is displayed using
a loop, creating an HTML list with results. Finally, we can release the resources
used: the Statement and the connection to the database.
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This thesis solves this task in a different way. Using technologies, such as
XML and XQuery, the key idea is to build and deploy a whole web application
using mostly XQuery programming language.

XQuery is a functional language designed to query and manipulate XML.
It provides means to extract and manipulate data from XML. The XQuery
language is derived from an XML query language called Quilt, which borrowed
features from other languages, such as XPath, XQL, XML-QL, SQL and OQL
[1]. Because XQuery speaks XML natively and sees output as a structured tree,
not only string data, it is easy to create well-formed output with it. Thus, using
XQuery and a native XML database, XTC [8] enables development of web-based
application without facing the impedance mismatch problem. For example, the
same query shown in Fig. 1 would be something similar to the one shown in
Fig. 2.

Fig. 2: Query example using XQuery.

In this example, all we have to do is use a FLWOR expression. For binds the
single items of a sequence to a variable; Let binds sequences to variables; Where
filters nodes, based on a boolean expression; Order by sorts values; and Return
gets evaluated once for every bound variable of the For clause. Both examples,
the first in Java language, showed in Fig. 1, and the second in XQuery language,
showed in Fig. 2, perform the same functionality. The result will be a list with
all users whose name contains ‘Schwarzenneger’ and are older than 50 years.
The XQuery implementation, however, is much easier to read and understand
because it was designed for this purpose. The same situation will happen when
compared to other programming languages, such as PHP, .Net, etc. [39].

The database used for this application is XTC[8]. XTC is an XML database
management system. As such, it needs to be extended to work as an application
server, supporting development of applications using XQuery. Its HTTP interface
will be expanded and an entire structure for the development and deployment
of applications with XQuery will be developed.

The remainder of this thesis is organized as follows. Section 2 describes the
runtime environment, which is basically the application server, XTC, and its
communication facilities. Besides that, it also describes how applications are
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deployed and structured in this approach. Section 3 introduces an XQuery ap-
plication, developed and deployed on the server. Further details like application
design, use cases and the necessary XQuery functions developed for general de-
veloping are presented. Section 4 compares, based on the already mentioned
challenges, the development of applications with XTC against other known im-
plementations of XQuery, like MarkLogic and Sausalito. Finally, section 5 con-
cludes this thesis and discusses future work.
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2 Runtime Environment

This chapter gives a brief introduction on the necessary infrastructure for the
deployment of web applications. As already mentioned, XTC [8] is a database
management system. Therefore, I had to extend it to work as an application
server. For that, I focused mainly on the HTTP agent component, present in
the server architecture. The main aspects that have been developed are: the cre-
ation of a pre-defined structure, a skeleton for developing applications on XTC;
a structure built to handle HTTP requests; and extra features for extending
the XQuery language, which, in the way it is defined, does not provide all nec-
essary mechanisms for developing web applications. For example, XQuery does
not provide mechanisms for accessing the database or mechanisms for gaining
access and working with HTTP sessions. These features were developed when
necessary. Some details about the server architecture and connectivity features
are presented first.

2.1 XTC

The XML Transaction Coordinator (XTC) is a native XML database manage-
ment system. Through extensive research in diverse areas, such as XQuery pro-
cessing, XML storage, indexing techniques, transactions and self-tuning features,
XTC allows to create, load and process XML files in a transactional environment.

It also provides several client interfaces with CRUD features - create, read,
update and delete - on single and whole document collections, and primitives for
ACID transactions, like “begin” and “commit”. Currently the system supports
access via DOM, SAX, HTTP and FTP.

More details on particular features and actual research topics can be found
in [8].

2.1.1 Architecture The architecture of XTC follows a five layer approach
introduced by [7]. An overview of this architecture can be seen in Fig. 3.

The two bottom layers, the File Services layer (L1) and the Propagation layer
(L2), manage external storage and buffers. The File Services layer works with
data stored in containers (files arranged in a sequence of fixed-length blocks).
This layer also provides read/write facilities between these containers and the
main memory.

The Propagation layer implements buffers and assigns each container to a
buffer manager (an array of pages). The buffer manager maps every block of
a container directly to a page of the same size. This layer also handles page
requests that come from the layer above.

The Access Services Layer (L3) implements the mapping from XML trees to
the pages provided by the Propagation Layer, along with access and scan meth-
ods. The components responsible for it are: Index Services, responsible for storing
records as key-value pairs; Catalog Manager, that keeps track of documents and
meta-data collections, like document id and secondary indexes; Record Manager,
that stores documents in a B-* tree index, called document index.
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Fig. 3: XTC Structure [6].

The Node Services Layer (L4) serves as an interface provider for features
of the Access Service Layer. Besides that, it also decodes internal records into
external human readable XML and requests locks from the Lock Manager.

Finally the XML Processing Services layer (L5) provides high level functions
like storage and reconstruction of documents and XPath evaluation.

This layer is also responsible for the metadata needed to manage XML docu-
ments and collections. The metadata mirrors the functionalities of a file system,
enabling creation, removal, rename, etc, of directories and documents.

As can be seen in Fig. 3, the Transaction Services are connected to all layers.
Its main responsibilities are transaction synchronization (i. e. lock manager and
deadlock detector), logging for crash recovery and transaction rollback opera-
tions.

On top, the Interface layer provides a set of APIs, like HTTP, FTP, DOM,
SAX and a proprietary library to interact with the system.

More details on the theoretical aspects of this structure can be found in [7].

2.2 XTC as Application Server

This chapter explains the activities that were necessary to transform XTC into
an application server prototype. First I present the HTTP interface of the server.
After that, I detail the used client-server model, then I give some explanation
about the technology used to develop the internal structure. Ultimately, I present
the used development patterns and the developed structure itself.
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2.2.1 HTTP Interface The HTTP agent in the Interface Service layer is
the central interface for this thesis. As already mentioned, users must be able to
access the XQuery-based application somehow. Our server implements a client-
server computing model and the HTTP Agent provides HTTP access to the
application.

HTTP, Hyper Text Transfer Protocol, is the transport protocol used across
the web. It specifies the message exchange between clients and servers. Its be-
havior is defined in RFC2616 [12]. The message structure follows the definitions
of the old ARPA Internet Test Messages, defined in RFC822 [9].

With HTTP 1.0, a connection had to be established before a single request
and response could be sent. Afterwards, the connection was released. This ap-
proach was adequate when pages were pure HTML text. Nowadays, every single
web page consists of multiple content types, including images, style sheets, ap-
plets, etc. Establishing a connection to each of these objects is not appropriate.

With the arrival of HTTP 1.1, the support for persistent connections was
added, that allows to send multiple requests over one single connection. It is
also possible to pipeline requests; i.e, the second request can be issued before
the first response arrives.

HTTP was designed more general than just to be used for the web, so meth-
ods were supported, instead of only requesting pages. The HTTP methods are
GET, HEAD, PUT, POST, DELETE, TRACE, CONNECT and OPTIONS.
This thesis gives most attention to GET and POST. While the first one requests
some page information (it “gets” informations), the second sends data to be
appended on the server-side (or “posts” data to the server).

2.2.2 Client-Server Model
In a client-server model, we have typically two actors: the client and the server.
The client connects to the server and requests a resource, typically specifying
a particular page. The server accepts the connection from the client, resolves
the name of the requested resource to load, e.g, from the local disk and finaly
returns the resource to the client and releases the connection.

Some of the responsibilities addressed by the our server are:

Resolve requests

A requested page might not be directly mapped to a file
in the server. For example, when a user tries to access
“http://localhost/apps/appName/default/” the application server may
infer that the file “default.xq” is requested, even though its complete name
is not in the request. Also, the resource location might not be directly
mapped from the structure described in the URL to the physical storage.
The server must resolve this name to the real path.

Authentication and Authorisation
The identity of the client should be validated. This step is necessary for ac-
cess control to resources with confidential or private content.
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Sometimes, not only the identity has to be validated, but also the place
from where the request has been made. In other words, there might be re-
strictions on access from outside the company, and these accesses should be
denied somehow.

Resource management
When a request reaches the application server, the server must, e.g, access
its disks to retrieve resources and send them back to the clients. The server
cannot serve more requests per second than it can make disk accesses. If the
number of requests increases and exceeds the number of accesses the server
can make, the subsequent requests will have to wait more and more for their
responses. One simple improvement is to maintain a cache in memory, as
already clarified in the XTC architecture 2.1.

Determine the MIME type
The acronym means Multipurpose Internet Mail Extensions, and the main
idea is to define encoding rules for non-ASCII content. It is defined in
RFC1341 [10] and RFC2045 [11] and is widely used, not only for Mail pur-
poses. Web browsers, e.g, use it to display or output files that are not in
HTML format. Because XTC provides storage for different files types, the
right MIME type for the requested page must be specified.

Miscellaneous
Other kind of activities can be performed by the server, such as build user
profiles or gather statistics, and so on and so forth.

To solve these server-side tasks in a simple, composable and reusable way,
one good alternative is the use of Java Servlets and Java Development Patterns,
because they provide component-based and platform-independent methods to
develop web applications.

2.3 Servlets

A servlet is a Java class that aims to extend request-response server capabilities.
Servlets are commonly used to build web servers.

The javax.servlet [31] and javax.servlet.http [32] packages provide classes and
interfaces for writing servlets. All servlets implement the servlet interface [33].

I used a servlet-based architecture to manage the client-server communica-
tion. Servlets can be seen as an extension to a server and are also efficient, be-
cause after they are loaded, the server stores it as an object instance on memory.
If multiple requests are needed, each request is managed by a different thread,
so they are also scalable [15]. Servlets have also other advantages, like:

– Strong typing, inherited from the Java language
– Safe error handling, based on Java’s exception handling mechanism
– Clean, object-oriented and modular coding
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– Integration with the server let servlets address problems like file path trans-
lations, logging, check authorisations, map MIME types, among others.

This thesis focuses on the specialized HttpServlet class, that provides meth-
ods like doGet, do Post, doHead, doOptions, doPut and doTrace. These methods
correspond directly to the HTTO protocol methods [14].

2.4 Development patterns

The design of this servlet-based structure I created is the most relevant aspect
of the whole framework. Over the years, a series of guides concerning best prac-
tices related to architecture and design of applications with JEE technologies
was created, like [2] and [23]. Strongly based on these design approaches, I use
mainly two of the patterns which I describe now: the Front Controller and the
Intercepting Filter pattern.

2.4.1 Front Controller
The main idea behind the Front Controller pattern concerns how requests will
be handled. This pattern proposes a centralized way of solving this situation, a
single entry point to the system. It achieves, among others:

– Centralized retrieval and manipulation of data to the presentation-tier 1

layer.
– Centralized handling of requests, easing the control and log of user’s system

usage.

The pattern proposes a single controller as the initial entry point for client re-
quests. The controller manages common cross-cutting tasks like authentication,
authorisation, delegation of processes and error handling. This centralized con-
trol promotes reuse across requests and increases maintainability. For example,
control of authentication and authorisation does not have to exist on every single
web page and whenever this control needs updates, the updates will be made
only in one central place.

The pattern also provides a dispatcher component, which is responsible for
navigation. Thus, it steers the control flow of the application, i.e., it chooses the
next view for the presentation layer.

The Front Controller pattern suggests a centralized component for the man-
agement of requests.

The two other main components are the View and the Helper. The View
represents the information presented to the user. The Helper is responsible for

1 The presentation-tier is basically the user interface or topmost level of the applica-
tion. The main goal is to translate results of request into something the user can
understand.
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helping a view or controller to complete their tasks. The Helper responsibilities
include also data gathering, required by the view. The helper may adapt data
and, afterwards, deliver this manipulated data to the view. For example, it can
provide either access directly to the raw data or to data formated as a web
content.

Fig. 4 shows an overview of this pattern main structural ideas.

Fig. 4: Front Controller sequence diagram [2].

2.4.2 Intercepting Filter
The main concern of the pre- and post-processing of web requests. Usually, in
any kind of web application, a request must pass some checks before it can be
processed, for example:

– Authorisation
– Session validation
– Location validation (related to IP localization)

A naive solution for the realization of these checks would be a cascade of con-
ditional expressions at the beginning of each operation. When a check evaluates
to false, the processing stops or the user is displayed an appropriate error mes-
sage. However, this solution leads to code fragility and a copy-and-paste style of
programming [2].

The Intercepting Filter Pattern instigates the following idea: a simple mech-
anism to add and remove processing components, in a flexible and unobtrusive
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manner. Pluggable filters, that intercept requests and responses, may be added
or removed unobtrusively, without changing the existing code.

When a user accesses a resource, the FilterManager intercepts this request and
passes it to a FilterChain. A FilterChain consists of a series of filters, such as
authorisation, location, internal dependencies, etc. You also define the filters pro-
cessing order. Afterwards, the FilterManager forwards the request to its original
target. Fig. 5 shows an overview of this structure.

Fig. 5: Intercepting Filter sequence diagram [2].

2.4.3 Proposed Approach
The proposed approach assembles the best of both patterns. I implemented the
structure proposed by the Front Controller pattern, showed in Fig. 4. Besides
that, I incorporated the facilities introduced by the Intercepting Filter pattern,
based on the principles I have already shown on 2.4.2.

The resulting architecture is composed of tree servlets, the Controller, the
Dispatcher and the AppError, and of a filter, the AuthorisationFilter. Fig. 6
illustrates such architecture.

To identify the servlet responsible for a request, the server uses a mechanism
based on the requested URL. Through a “longest match rule” we can decide
which servlet will receive the request. Suppose we have the following two prefixes,
registered to different servlets:

– Servlet A: http://localhost/app/*
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– Servlet B: http://localhost/app/longerPath/*

In this example, the server routes a request for
“http://localhost/app/longerPath/existingPage” to servlet B, because the
longest complete match is with “http://localhost/app/longerPath/*”. Similarly,
it routes a request for “http://localhost/app/otherPath/otherExistingPage” to
servlet A.

Fig. 6: Proposed Structure diagram.

An incoming request is first intercepted by the FilterChain. This mechanism
is almost the same described in the Intercepting Filter Pattern, in section 2.4.2
and it allows processing components to be added and removed, in a flexible and
unobtrusive manner. These filters are the first components to work with the
request, which means that any undesirable behavior can be surpassed.

The request is then handled by the only filter present on the current ver-
sion of the server, the AuthorisationFilter. It works as a wall against unau-
thorised users. While public resources do not require authorisation mecha-
nisms, private resources actually rely on simple validation functions, such as:
“checkUser(‘user’,‘pass’)”. This function would need to be called for every re-
source that needs access privileges to be reached. The AuthorisationFilter solves
exactly this task. With a centralized approach, every resource under the private
structure of the application is only accessible if an authentication is verified and
the authorisation is granted. In other words, only authorised users access these
resources.

After passing through the filter chain, the request reaches the Controller
servlet. Its main purpose is to extract basic information about the request, such
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as the requested application name and the requested resource from the URI of
the request. The servlet makes this information available for the further process-
ing. The Controller servlet also sets the response content type (“application/x-
html+xml; charset=UTF-8”). RFC 3236[13] gives more information about this
content type.

Afterwards, the Controller passes the request to the servlet Dispatcher. The
Dispatcher servlet receives the preprocessed request and chooses the right action
to do with it. “Right action” means select the right resource from the server and
bind all necessary external variables to it.

Till this point, I explained the path of the request through the framework
structure. Now, the actual application comes into play. The requested resource
is actually an XQuery page, stored in the application structure, which is de-
scribed in 2.5.1. The Dispatcher selects all external variables in the XQuery
page and checks all request parameters names for matches with these variables.
The servlet takes into account only the variable name, which means that each
variable declared as external in a XQuery page should have a corresponding pa-
rameter in the request with the same name. For example, the external variable
declaration showed in Fig. 7 would be automatically bound to a request param-
eter called “extTest”2. In one hand we lose here a bit of flexibility, because the
name of external variables must match the name of a parameter, but on the
other hand, manual mechanisms to select HTTP parameters are not necessary.
The automatic binding makes development easier and faster.

Finally, the Dispatcher evaluates the query and displays the result to the
user.

Fig. 7: External variable declaration.

Besides that, application errors are handles by the AppError servlet, which
is invoked, whenever an application component, e.g., a query, terminates with
an exception. It shields the user from details of the error, like a stack trace, and
displays appropriate error messages.

2 Because XQuery allows declaration of external variables, binding them is necessary.
Binding means that these variables must receive a value from external environment
before the query can be evaluated.
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2.5 Deployment

Each application developed for our platform follows a specific structure. This
structure aims for simplicity: in one hand, design simplicity for new applications
and in the other hand, easiness of deployment.

2.5.1 Application Structure Applications use a standard directory struc-
ture, shown in Fig. 8. This structure also ensures the existence of a root user,
a manager, who has some access privileges. Its semantic is defined as: the user
who owns the application. The resources under /appName/queries/private/ are
only accessible after the manager is properly authenticated. The main structure
is described below:

Fig. 8: Application structure.

/appName

The appName is the root folder of the application. The name of an
application is the folder’s name, in this case: appName. Users access
applications using this name as final part of the URL, for example:
“http://myServerLocation.com/apps/appName/resourceName”.

/appname/queries
The queries folder stores files containing the XQuery queries, used to define
the business logic. Each file contains exactly one query. When the user ac-
cesses a query, it is executed by the server. Here, two different access types
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exist: private or public queries. Private queries can be accessed only by an au-
thenticated user of the application and public queries are publicly accessed.
Section 2.4.3 describes the mechanism for access restriction.

/appname/views
The views folder contains internal queries, images and other resources. Three
basic folders coexist here: a “CSS” folder, where CSS style sheets are stored;
an “images” folder, where image resources are stored; and a “default” folder,
where internal queries are stored. These queries are located under a “default”
folder and are internally accessed by predefined functions. Resources under
the “CSS” and “images” folders are stored under XTC database at deploy-
ment time and are delivered as plain/uninterpreted binary content through
HTTP request.

The structure contains also a configuration file, appProperties.xml. This con-
figuration file stores information about the application, such as the manager
username and password (both encoded as MD5 hash sequence 3), the applica-
tion name - which must match the main folder name - and the storage folders
that need to be created under the XTC database. An example of configuration
file is shown in Fig. 9.

Fig. 9: Application properties file.

3 MD5 - Message-Digest Algorithm 5 - is a cryptographic hash function with a 128-bit
hash value. More details about it are available in [24].



23

The existence of this kind of structure simplifies application development,
because the developer can focus solely on the application development. The
developer also takes advantage of several predefined queries and resources.

The deployment of applications under XTC is rather easy. All that is nec-
essary is the existence of a proper folder structure, as shown in Fig. 8. This
folder must be placed under the “/apps/” folder. On startup, the server scans
all applications underneath the “/apps/” folder, checks their structure, creates
the necessary metadata, stores the necessary images and files and makes the
application accessible.

So far, XTC provides only this deploying method. Some extra features are
desirable, such as “hot deployment” which is the ability to deploy a new ap-
plication, or re-deploy and existing one, without the need to stop the server.
Nowadays, application servers like Tomcat [22] provides this extra feature. Tom-
cat allows local and remote deployment and does not require a restart.
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3 XQuery application

This chapter focuses on the development of a web application, showing that the
runtime environment is suited for developing web applications using XQuery. As
showcase, it demonstrates how to create a simple e-commerce platform. First,
I discuss some well-known techniques for developing software, whose teachings
have provided good ideas and methodologies for software development. Then, I
illustrate the business rules and use cases, which have to be modelled in the sam-
ple application. Furthermore, I introduce a series of extra functions, that enables
the application to interact with the database and the servlet framework. Finally,
I show some code snippets of the application, illustrating how the development
is done using XQuery.

3.1 Software Development

Over the past years, several writers proposed development models that increase
development success rate. This thesis gives a brief on three of them: the waterfall
model, the spiral model and the RAD model. Other development models exist
and are shown in [26].

The waterfall model is a sequential development approach. The model sug-
gests a sequential organization of the development activities. Royce [25] intro-
duced this approach, even tough he did not name it as waterfall. Its main phases
are system and software requirement, analysis, program design, coding, testing
and operation. More details about this approach are shown in [25][26].

The spiral model corrects the evident lack of flexibility in the waterfall model.
The sequential order of the waterfall model is inconsistent with real situations,
where typically activities need to be repeated two or more times [26]. Boehm
[27] proposes a spiral model which is an incremental development process. More
details about this approach are shown in [26][27]. An overview of this model is
shown in Fig. 10.

The RAD model, Rapid Application Development, provides minimal plan-
ning in favor of rapid prototyping. Prototypes are typically samples, basis or
primitive forms of the desired goal. Because prototypes are designed, the RAD
model achieves fast development. It also emphasizes on completing the business
need, in despite of technological or engineering excellence. More details about
this model are shown in [28].

I used parts of these three developing models. I took advantage of the con-
cepts of planning and designing, originally from the waterfall model. I also re-
organize these ideas in parallel with the development, as in the spiral model.
Besides that, I made the whole development and testing as prototypes, achiev-
ing fast development, as suggested by the RAD model.

3.2 Application Design

The developed application itself consists of an e-commerce web platform for a
given market store, the Gaucho’s Market. The platform allows clients to buy
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Fig. 10: Spiral Model introduced by [27].

items, which are offered by the platform manager. Because the application itself
is not the focus of this thesis, more specific details are irrelevant.

The buying part is split up into the following use cases: Clients of the Gau-
cho’s Market can search items 4, look items properties, add items to a private
shopping cart and buy the items in the shopping cart.

The offering part, creates the following cases: The manager of the Gaucho’s
Market e-commerce platform can create, update, remove and search items.

I chose these business rules and use cases in order to address the widest
possible range of challenges, from the point of view of storage and data access.
Challenges, such as access, modification and removal of data from the database,
in addition to transaction mechanisms, function calls and usage parallelism are
addressed. An overview of this application use cases is shown in Fig. 11 and the
use cases are shown in sections 3.2.1 to 3.2.9.

I chose UML to specify the use cases. I also represented every use case with an
activity diagram. Activity diagrams are useful for presentations, fast to develop
- because they are informal - and show a visual idea of activities, thus helping
during the development process.

3.2.1 Search item

Actors
Manager, User.

4 Items are a generalization of any kind of product that are sold online. Because the
nature of the items is not relevant, I call them simply items.
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Fig. 11: Gaucho’s Market use cases.

Goal
Provides a result list of items, according to the searched string key.

Summary
Provides basic search functionality.

Dependencies
None.

Basic path
1. The user accesses the search items page.
2. The search page displays a list of items, according to a predefined priority
rule.
3. The user requests information about some specific item, through a string
searching facility.
4. The application queries the data storage for the given string.
5. The server responds with the resulting data.
6. The application displays the resulting items to the user.

An overview of the search use case is shown in Fig. 12.

3.2.2 Login

Actors
Manager.
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Fig. 12: Search Item activity diagram.

Goal
Establishes privileges and administrative access.

Summary
The Gaucho’s Market is accessed by two different user groups: customs, that
use the platform to buy, search, etc. items from the platform; and a man-
ager, that manages the platform. The login mechanism authenticates and
authorises managers, giving them access to resources with access restriction.

Dependencies
None.

Basic path
1. The manager accesses the login web page.
2. The manager enters username and password information.
3. The servers processes the login successfully.
4. The application displays login confirmation.

Abnormal path
1. The manager accesses the login web page.
2. The manager enters username and password information.
3. The servers processes the login unsuccessfully.
4. The application redirects the user to the login web page.

An overview of the login use case is shown in Fig. 13.
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Fig. 13: Login activity diagram.

3.2.3 Create item

Actors
Manager.

Goal
Creates new items at the e-commerce platform.

Summary
Provides an item creation facility. Every item is defined by a name, a de-
scription and a price. The Manager is able to create different new items.

Dependencies
3.2.2.

Basic path
1. The manager accesses the create items web page.
2. The manager fills the item creation form information.
3. The manager sends the data to the application server.
4. The server validates the data successfully.
5. The server redirects the manager to the just created item page.
6. The application displays the new item.

Abnormal path
1. The manager accesses the create items web page.
2. The manager fills the item creation form information.
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3. The manager sends the data to the application server.
4. Validation fails.
5. The application displays the invalid information.
6. The server redirects the manager to the create items web page.

An overview of the create item use case is shown in Fig. 14.

Fig. 14: Create item activity diagram.

3.2.4 Remove item

Actors
Manager.

Goal
Removes existing items from the e-commerce platform.

Summary
Provides an item deletion facility. The Manager is able to delete all existent
items.

Dependencies
3.2.2.

Basic path
1. The manager accesses the remove items web page.
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2. The application asks the manager confirmation for the deletion.
3. The manager confirms the deletion.
4. The server removes the item from the storage.
5. The server redirects the manager to the initial item listing page.

Abnormal path
1. The manager accesses the remove items web page.
2. The application asks the manager confirmation for the deletion.
3. The manager does not confirm the deletion.
4. The server redirects the manager to the initial item listing page.

An overview of the remove item use case is shown in Fig. 15.

Fig. 15: Remove item activity diagram.

3.2.5 Update item

Actors
Manager.

Goal
Updates existing items in the e-commerce platform.

Summary
Provides an item update facility. The Manager is able to update all existent
items.
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Dependencies
3.2.2.

Basic path
1. The manager accesses the edit items web page.

2. The application displays the item details for edition.

3. The manager edits the item.

4. The manager sends the data to the application server.

5. The server validates the data successfully.

6. The server redirects the manager to the item’s page.

7. The application displays the updated item’s information to the manager.

Abnormal path
1. The manager accesses the edit items web page.

2. The application displays the item details for edition.

3. The manager edits the item.

4. The manager sends the data to the application server.

5. Validation fails.

6. The application displays invalid information to the manager.

7. The server redirects the manager to the edit items web page.

An overview of the update item use case is shown in Fig. 16.

Fig. 16: Update item activity diagram.
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3.2.6 Add item to cart

Actors
User.

Goal
Adds the desired item to the current client shopping cart.

Summary
A shopping cart defines the set of products to buy. The add to cart activity
adds the desired item to your current shopping cart.

Dependencies
None.

Basic path
1. User accesses the item’s detailed web page.

2. Application displays item’s details.

3. User adds the item to the cart.

4. Application displays message about the item added to the cart.

5. Server redirects user to the item list page.

An overview of the add item to cart use case is shown in Fig. 17.

Fig. 17: Add item to cart activity diagram.
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3.2.7 Remove item from cart

Actors
User.

Goal
Removes an existing item from the cart.

Summary
Provides an item removal facility. The user is able to remove all existent
items from the shopping cart.

Dependencies
None.

Basic path
1. User accesses cart list items web page.
2. Application displays cart items.
3. User removes item from the cart.
4. Application asks confirmation for the deletion.
5. User confirms deletion.
6. Application removes item from cart.
7. Server redirects the user to the cart list items page.

Abnormal path
1. User accesses cart list items web page.
2. Application displays cart items.
3. User removes item from the cart.
4. Application asks confirmation for the deletion.
5. User does not confirm deletion.
6. Server redirects the user to the cart list items page.

An overview of the remove item from cart use case is shown in Fig. 18.

3.2.8 Update cart item

Actors
User.

Goal
Updates an existing item in the cart.

Summary
Provides an item updating facility. The user is able to update all existent
items in the shopping cart.
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Fig. 18: Remove Item from cart activity diagram.

Dependencies
None.

Basic path
1. User accesses edit item in cart web page.

2. Application displays item’s details.

3. User edits item.

4. User sends data to the server.

5. Valid data.

6. Server redirects user to the cart list items web page.

7. Application displays updated item’s information

Abnormal path
1. User accesses edit item in cart web page.

2. Application displays item’s details.

3. User edits item.

4. User sends data to the server.

5. Data not valid.

6. Application displays invalid information to the User.

7. Server redirects user to edit item in cart web page.

An overview of the update item in cart use case is shown in Fig. 19.

3.2.9 Buy cart
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Fig. 19: Update cart item activity diagram.

Actors
User.

Goal
Buys the items in the cart.

Summary
Provides a buying cart facility. The user is able to buy the items of its shop-
ping cart.

Dependencies
None.

Basic path
1. User accesses buy cart web page.

2. Application displays current cart item’s, together with a user information
form.

3. User fills in the form with his personal information.

4. User sends data to the server.

5. Valid data.

6. Server redirects user to the cart list payment options.

7. User chooses among different payment options.

8. Valid payment options.

9. Server registers the buying for future processing.
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Abnormal path
Abnormal paths, in this case, consist of validation errors in multiple paths.
These situations are better viewed on the activity diagram of this use case,
shown in Fig. 20.

Fig. 20: Buy cart activity diagram.

3.3 Application Implementation

Based on the use cases shown in sections 3.2.1 to 3.2.9, this section sketches the
implementation of the Gaucho’s Market application in XQuery. First, it gives an
overview of the application, than it shows some extra functions necessary during
the development and finally it shows some code snippets, in order to get a taste
of the implementation style.

3.3.1 Overview The structure of the application is shown in Fig. 11. Each
of these use cases is translated into one or more queries formulated in XQuery.
For more complex cases, I used more than one query, aiming for simplicity,
instead of larger queries with more complex code. These cases are the ones
where interaction with the user is necessary, e.g., item creation and buying the
shopping cart.

The development of Gaucho’s Market application involves 17 different queries,
besides some default queries shown in the default structure in Fig. 8. These 17
queries are divided in two groups: 6 are private and 11 are public. Private queries
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concern application management, used by the Manager, such as creation, removal
and update of items. Public queries concern application usage, such as adding
items to cart, searching for items and the actual purchase of items.

During the development phase, some extra features were needed, because
XQuery itself does not provide certain functionalities, such as document man-
agement and metadata creation in the XTC database, dynamic evaluation of
queries or interoperability with HTTP objects.

3.3.2 Application server API This section shows suplementary XQuery
functions that were created to allow the XQuery application to interact with
the runtime environment, i.e., the application server. The functions have been
created based on needs that emerged during the XML development. For better
organization of the tasks, I used the concept of namespaces, which are pre-
declared prefixes [1], achieving better classification of these extra features. I cre-
ated the following namespaces: http, xtc and util. The http namespace comprises
functions related to the HTTP protocol extended by XTC. The xtc namespace
unifies functions related specifically to the usage of the XTC database and the
util namespace groups miscellaneous utility functions.

3.3.2.1 Document Storage
The storeFile function stores a document in XTC. It takes as parameters the
full path name of the resource to be stored and the content of this resource, and
returns the stored XML document. The specified content must be a well-formed
XML node.

xtc:storeFile($name as xs:string, $content as node()) as node()

3.3.2.2 Document Removal
The deleteFile function removes a document from the XTC database. It takes
the full path name of the resource, deletes it from the database and returns true
in case of success and false otherwise.

xtc:deleteFile($name as xs:string) as xs:boolean

3.3.2.3 Document Access
The loadFile function accesses an already existent document from the file system,
not from the XTC database. It receives the full path name of the resource to be
loaded and returns the file as a string result.

xtc:loadFile($name as xs:string) as xs:string

3.3.2.4 Dynamic Evaluation
The eval function is used to execute a dynamically constructed XQuery expres-
sion, inside a running XQuery script. It is very useful when, for example, an
XQuery page generates queries based on HTTP parameters passed by the user.
The eval function receives a query and returns the result of this query.

xtc:eval($expr as node()) as node()



38

3.3.2.5 Directory Creation
The makeDirectory function creates a virtual directory in the metadata catalog
of XTC, as already explained in section 2.1.1. It takes the full directory path
name and returns true in case of successful directory creation and false otherwise.

xtc:makeDirectory($fullPathName as xs:string) as xs:boolean

3.3.2.6 Template Creation
The dynamic generation of HTML code is a key task in web applications. The
problem is that, most of the times, the same HTML code is repeated in the
development of different pages. The template function aims to resolve this prob-
lem, increasing reusability of HTML code. The function template works with
a predefined XQuery page and renders five different external variables, head,
header, menu, content and footer. This query can be seen in Fig. 21.

Fig. 21: Default query used by template function.

The function has two different signatures: the first receives five parameters,
head, header, menu, content and footer. Here, all parameters will be bound
to the template query variables, as shown in Fig. 21. All parameters must be
well-formed XQuery expressions so the function can work properly. The second
signature receives only the main content of the page, and displays it according
to the already shown query. The other variables, $head, $header, $menu and
$footer are bound to defautl resources. These resources are head.xq, header.xq,
menu.xq and footer.xq respectively, and are present under the /views/default
folder, shown in Fig. 8.

The usage of the function is as follow.
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xtc:template($content as node()) as node()

or

xtc:template($content as node(),

$head as node(),

$header as node(),

$menu as node(),

$footer as node()) as node()

3.3.2.7 Session Attributes
The HTTP protocol is by definition stateless, but usually state information must
be kept between requests. The HTTP session stores this kind of information,
but the XQuery standard does not provide any mechanism to use or access it[1].
Therefore, the creation of functions to support session features became necessary.
The basic functions are create, read and remove of session attributes.

The setSessionAtt function creates a new session attribute. It takes the at-
tribute name and content. It returns true in case of success, false otherwise.

http:setSessionAtt($name as xs:string,

$obj as node()) as xs:boolean

The getSessionAtt function reads a session attribute. It takes the attribute
name and returns the session attribute, if it exists.

http:getSessionAtt($name as xs:string) as node()

The removeSessionAtt function removes an attribute from the session. It
takes the attribute name and returns true when the attribute is successfully
removed, false otherwise.

http:removeSessionAtt($name as xs:string) as xs:boolean
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3.3.3 Examples To better understand how the above presented functions, as
well as the development of applications using XQuery, this section shows some
of the developed code. It provides a step by step guide on how to create an item,
illustrating the running XQuery code, along with the result of each XQuery, i.e.,
the HTML screens displayed to the user.

First, the user accesses the e-commerce platform using the URL http://

localhost:24280/app/eCommerce/default/, the server executes the respective
query default.xq, and, as a result, it shows the home page of the store. Fig. 22
shows both, the query and its result.

(a) XQuery code.

(b) HTML result.

Fig. 22: Default application page.

Fig. 22 also presents the template function in action, which simplifies develop-
ment. Managers must log in before they can access item maintenance functions.
Ergo, the login form is present on the default page. The code for the application
login and logout is showed in Fig. 23.

(a) XQuery login code. (b) XQuery logout code.

Fig. 23: XQuery code for login and logout features.

http://localhost:24280/app/eCommerce/default/
http://localhost:24280/app/eCommerce/default/
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The login and logout queries show, also the usage of session control functions,
such as add or remove attributes. After logging in properly, the user proceeds
to the item creation page. This page requests the items name and description.
The user fulfills and submits the form, allowing the server to create the item.
Finally, fig. 24 presents the executed XQuery code, to process user input and to
create a new item in the database.

In this example, I presented definition and usage of local functions, as well
a new function to access session attibutes, getSesstionAtt. This example also
demonstrates how to store documents using storeFile.

Fig. 24: XQuery items creation code.
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4 Related Approaches

This section analyzes other application servers with XQuery capabilities. The
selected solutions are MarkLogic [36] and Sausalito [35]. Both are commercial
products, which makes the comparison more interesting, because it shows how
academic work is capable of reaching a commercial systems level. The consid-
ered aspects are the respective architecture, and how XQuery was adapted as
programming language.

4.1 MarkLogic

MarkLogic Server is an XQuery- and XSLT-driven database server. It fuses
database functionality with search and indexing features and application server
logic together into a unified system [36].

It uses XML documents as its core data model, supports the ACID properties,
search features, and stores both structure and unstructured information.

4.1.1 Architecture MarkLogic follows a three level architecture composed
of a Data Layer, an Evaluation Layer and Application Services. The later han-
dles access through a variety of technologies, such as HTTP, HTTPS, XDBC,
WebDAV, REST and AJAX. The architecture is shown in Fig. 25.

Fig. 25: MarkLogic server structure [36].

The Data layer handles data by compressing XML documents into binary
fragments, provides supplementary indexes and cache mechanisms, and support-
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ing transactions. On top of the Data layer, the Evaluation Layer evaluates all
requests to documents.

Finally, the Application Services layer provides client APIs, such as Search,
Information Studio (simplifies document handling) and Library Services (docu-
ment management, version control mechanisms).

4.1.2 Application Development MarkLogic provides some built-in func-
tions, aiming to fulfill the gaps for document loading and plain text search ex-
istent in XQuery [36]. It provides one store document and one search function.
The store function, xdmp:document-load(’docPath’), loads a document into the
database. The search function, search:search(’key’) searches documents from the
database, matching a given key.

This string search feature is certainly an extra provided by MarkLogic. They
create different indexes, such as a word index and various phrase indexes, which
are used depending on the search string. The search process consists of analyz-
ing the query, deciding which index to use, selecting a first group of solution
candidates, and finally filtering such candidates, confirming the result.

4.2 Sausalito

Sausalito is a scalable XML database and provide a set of tools that allow you
to write, test, and deploy XQuery web-based applications.

4.2.1 Architecture Sausalito is an application server integrated with a database
system and a web server. This section shows an overview of the whole Sausalito
environment. Clients can connect to Sausalito using technologies, such as REST
and HTTP. An overview of this structure is present in Fig. 26.

Fig. 26: Sausalito environment structure [35].
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4.2.2 Application Development Like the solution proposed in this thesis,
Sausalito uses a default skeleton structure for the development of applications.
This structure may contain XQuery code, static files (e.g. HTML, JavaScript,
or images), XML schema (to validate data), seed data (to test projects locally),
configuration resources or testing information. The specific folder structure is
showed in Fig. 27. In General, Sausalito provides three module types: handlers,
libraries, and external modules. These modules are stored under handlers, lib
and external folders, respectively.

Fig. 27: Directory structure of Sausalito projects [35].

Handlers are XQuery functions that build the interface of the applications.
Each function can be called by HTTP request with a path component identified
by the module’s name and the function’s name. For example, the function named
listModules in the module declared in the resource handlers/testModules.xq can
be called by making one HTTP call with path /testModules/listModules.

The lib directory contains XQuery library modules. The functions contained
within these library modules can only be imported by other modules (handler
modules or other library modules). That is the main difference between libraries
and handlers. These libraries are not directly exposed and accessible through
HTTP calls. An arbitrary number of nested directories within the lib directory
is allowed.

The external directory stores third-party XQuery modules. To use these mod-
ules, an import statement is provided. More information on how to use this
features can be found in [35].

Besides these folders, the public folder stores static files, such as images,
JavaScript or HTML. The access of /public/test.jpg, for example, is possible
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through http://localhost/appName/test.jpg. The test folder contains logs and
persisted data. The bulkload folder contains XQuery programs that can be used
to load initial data into the collections declared in a project. The .config directory
contains the sausalito.xml file. This file stores configuration details about the
application. The schemas directory contains schemas to validate data within a
project.

Sausalito also provides extra functions, with the same purpose of MarkLogic:
fill the existent gaps of XQuery, concerning web application development. It
provides HTTP modules, with support to session, request and responses, very
useful when working with web applications.

4.3 Comparison

The similarities between XTC, MarkLogic and Sausalito are evident. Therefore,
comparing these commercial solutions with a prototyped application server be-
comes interesting. It is motivating to notice how much an academic system such
as XTC can achieve.

MarkLogic provides different access protocols, along with a consistent and
well-organized application server structure, expanded features implemented as
predefined functions and deployment services. Sausalito provides cloud support,
RESTfull services, plugins for Eclipse development, namespaces support and a
predefined structure for application development.

A better comparison between these approaches is shown in table 1.

Feature XTC MarkLogic Sausalito

Application deployment services OK OK OK

Application access methods OK OK OK

Application development structure OK - OK

Detailed application server architecture OK OK -

Extra predefined functions OK OK OK

Cloud support - OK OK

RESTfull services support - - OK

Development plugins - - OK

Binary files under database storage OK - OK

Table 1: Comparison between approaches
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5 Conclusions

This thesis showed the development of a whole web application using the XQuery
programming language. This technology has shown to be suited for this develop-
ment and to have significant advantages over common application development
paradigms (J2EE, .Net, etc), avoiding the impedance mismatch between appli-
cation layers and ensuring simpler code.

XTC has shown to be a good application server. The functionalities developed
within this work achieved the thesis objectives: the server provides HTTP access
to resources managed by the database; provides authentication and authorization
methods; and deals with different MIME types properly. The Java part of the
server, consisting of the servlets already explained in section 2.3, is minimal and
very functional. It contains only code that would take longer to be developed
within XQuery and is much simpler within Java servlets environment.

The application development itself also showed to be flexible and simple. The
standardized directory structure helped significantly to increase development
efficiency.

The deployment mechanism also showed to be necessary. Even though XQuery
pages are accessed directly from the application structure, thus making new
changes to these files automatically accessible, new resourses that need to be
stored in XTC, i.e., new images, are only available after re-deployment.

Summarizing, this thesis proposed a first sketch of web application develop-
ment using XQuery successfully. In the future, however, more experience with
this kind of development is needed.

5.1 Future Work

After developing this application using XQuery, and all necessary server-side
development, some problems emerged as challenges for the future.

Development Plugins
Plugins for development tools (like Eclipse), are a good idea. Sausalito pro-
vides a tool called XQuery Development Toolkit (XQDT) [40]. XQDT sup-
ports XQuery inside Eclipse. It provides features such as XQuery 1.1, XQuery
scripting, code completion and code templates, launching and debugging sup-
port for Sausalito and Zorba, as-you-type validation and semantic checking.

Data Validation
Concerning data consistency, the creation of relational database concepts like
keys is often necessary. For example, when a new item is created within the
presented application, it has an identification number. When the shopping
cart containing this item is bought, the item number is used to reference it
in the XTC database and to create a buying order. The relation between the
item and the buying order is that an item cannot be bought when it does
not exist within the database. In a relational database, referential key con-
straints address this kind of problems. Constraints make possible to restrict
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the domain of data values. We could address a specific integer column of a
table to accept only values between 1 and 99 using a constraint. The same
concept is valid for referential constraints. The values of a column can be
restricted to another table column using a primary key. In the item exam-
ple, the item identification number would be the primary key of the table.
Whenever a buying order is placed, the item to be bought must exist within
the item table, otherwise the buying order would not be placed.
There are techniques for data validation within the XML world, such as
XML Schema or Document Type Definitions (DTD). A schema validation
step can check if a XML file is well-formed, validate data types and data
structures.

Application Monitoring
Another good idea is a kind of application monitor, as the one present in
MarkLogic. This application monitors all applications deployed under the
server, and shows statistics and management options. More details are shown
in [36].

Deployment Improvements
The XTC server automatically deploys all applications under its apps folder.
However, especially in the development phase, simple and fast mechanisms
to (re-)deploy an application partially or as a whole are desirable. That is
why a “hot deployment” mechanism would be a good alternative for the
future, along with other optimizations and improvements concerning the de-
ployment mechanism.

Scripting Facilities
XQuery provides an extension called XQuery Scripting Extension 1.0 [41].
Most programmers, nowadays, are used to imperative programming (pro-
gramming in statements that change the program state). Thus, the func-
tional programing is not very common in practice. With the XQuery Script-
ing Extension, expressions can be evaluated in a specific order, with later
expressions seeing the effects of the expressions that came before them. These
support of the XQuery Scripting Extension in XTC might be a good idea.

Plain Text Search
XQuery expresses rich and powerful queries over structured data, but it
expresses very poor queries over plain text data [42]. A text search extension
might be a good idea. Some approaches already exist, like the one proposed
by MarkLogic [36] and other by TeXQuery [42].
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