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Abstract - Computational Fluid Dynamics (CFD) is widely used by polymer processing industries in order to 
evaluate polymeric fluid flows. A successful computational code must provide reliable predictions (modeling) 
in a fast and efficient way (simulation). In this work, a new approach to solve the governing equations of 
viscoelastic fluid flows is proposed. It is based on the finite-volume method with collocated arrangement of 
the variables, using high-order approximations for the linear and nonlinear average fluxes in the interfaces and 
for the nonlinear terms obtained from the discretization of the constitutive equations. The approximations are 
coupled to the Weighted Essentially Non-Oscillatory (WENO) scheme to avoid oscillations in the solution. 
The Oldroyd-B model is used to describe the rheological behavior of the viscoelastic fluid. The average 
values of the variables in the volumes are used during the resolution, and the point values are recovered in the 
post-processing step by deconvolution of the average values. The nonlinear system, resulting from the 
discretization of the equations, is solved simultaneously using a Newton-like method. The obtained solutions 
are oscillation-free and accurate, demonstrated by the application on a classic problem in computational fluid 
dynamics, the slip-stick flow. 
Keywords: Non-Newtonian Fluids; Viscoelasticity; Finite-volume method; High-order interpolation schemes; 
WENO scheme. 

 
 
 

INTRODUCTION 
 

The simulation of polymeric fluid flows can be 
used for many purposes in engineering, like 
equipment design, process optimization, developing 
of new processes, etc. This has been an area of 
intensive research in last two decades, and many 
challenges still remain. 

Polymeric fluids are classified as non-Newtonian 
fluids due to its shear-thinning viscosity, but their 
rheological behavior is more complex compared to 
this single characteristic. These fluids combine 
properties of viscous liquids and elastic solids, being 
called viscoelastic fluids. This behavior leads to 

occurrence of curious phenomena in some flows, as 
can be seen in Bird et al. (1987) and Tanner (1999) 
for example,  making their study very interesting. 

Two topics must be focused in the simulation of 
such flows: the mathematical model, consisting of 
the conservation equations, a constitutive equation, 
and adequate boundary conditions; and the numerical 
technique, used to solve the partial differential 
equations (PDE) system. 

For the first topic, the crucial point is to select a 
reliable constitutive equation. In the literature, there 
exist a great number of constitutive equations, split 
into groups according to their mathematical form and 
predictability of the rheological properties. A good 
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description of the most known constitutive equations 
for viscoelastic fluids can be found in Bird et al. 
(1987) and Larson (1988). In the present work, the 
well-known Oldroyd-B model (Bird et al., 1987), a 
nonlinear differential model, is used as the 
constitutive equation. With the nonlinear differential 
models, it is possible to predict many rheological 
characteristics of viscoelastic fluids, but they have 
some limitations with respect to quantitative 
predictions (Bird et al., 1987; Macosko, 1994). Their 
wide use is due to the relative facility of 
implementation, compared to the integral models, 
and the ability of making many predictions, at least, 
qualitatively. 

In relation to the second topic, there still are 
many difficulties to get around, mainly when the 
elasticity of fluid is more prominent, in other words, 
in flows under high Weissenberg numbers (Tanner, 
1999; Keunings, 1986). To solve the governing PDE 
system, the finite-difference, finite-element, and 
finite-volume methods are the most used methods. 
The first papers appeared in the second half of the 
70’s, using finite-difference and finite-element 
methods (Crochet and Pilate, 1976; Perera and 
Walters, 1977; Kawahara and Takeuchi, 1977; 
Caswell, 1979). A good review of several finite-
element methods for viscoelastic flows can be found  
in Baaijens (1998). The finite-volume method started 
to be used in the beginning of the 90’s (Hu and 
Joseph, 1990; Yoo and Na, 1991), after a great 
development of solving Newtonian flows during the 
70’s and 80’s. 

In the finite-volume method, the domain is 
divided in small control volumes (or cells), creating 
a mesh, and the governing equations are integrated 
over each volume, assuring the conservation of all 
properties in each cell of the mesh. The resulting 
discretized equation system is solved for the 
variables in the center of each volume. The 
differences between the varieties of finite-volume 
approaches found in the literature arise in relation to 
the arrangement of the variables, the interpolation 
schemes, the solution methods of the discretized 
equations, the methods for treating the pressure-
velocity coupling, etc. 

In the beginning, the staggered arrangement of 
variables was exclusively applied (Yoo and Na, 
1991; Darwish et al., 1992), but, in more recent 
works, the collocated arrangement is adopted 
(Missirlis  et al., 1998; Oliveira  et al., 1998), due to 

its advantages  relative to the staggered arrangement 
(Peric et al., 1988). 

In most of the approaches, the discretized 
nonlinear equation systems are solved by a 
segregated technique, requiring an explicit equation 
for pressure, not present in the original system of 
equations for incompressible flows. The usual way is 
to obtain a Poisson equation for pressure from the 
continuity equation. There are many forms to create 
this equation, and consequently, different iterative 
procedures. The most used are semi-implicit 
methods based on pressure correction equations, like 
SIMPLE (Patankar and Spalding, 1972), SIMPLER 
(Patankar, 1980), and SIMPLEC (van Doormal and 
Raithby, 1984). For example, the SIMPLE method 
was used by Luo (1996), while Yoo and Na (1991) 
used the SIMPLER method. A more robust method 
than the previous ones is the SIMPLEC, used in 
more recent works (Oliveira et al., 1998; Alves et al., 
2000). 

The finite-volume method requires two levels of 
approximation in the discretization of the equations: 
the approximation of the integral of the fluxes over 
the cell faces and the approximation of cell face 
values in terms of the cell center values. In the 
classical approach, used in all the papers cited above, 
the approximations are, at most, of second order. The 
integrals of the fluxes are expressed in terms of point 
values over the interface, the second-order 
approximation being the most used, where the value 
of the fluxes along the interfaces is equal to the flux 
in the midpoint of the face. The average value over 
the volume is equal to the value in the central point, 
another approximation of 2nd order. The values of the 
fluxes in the middle point (or more points) of the 
face are expressed in terms of the cell center values, 
using interpolation schemes. 

The most used interpolation schemes are the 
upwind differencing scheme (UDS) and hybrid 
differencing scheme (HDS). The upwind scheme is a 
first-order approximation widely used due to its great 
stability, but it requires a very fine grid to obtain an 
accurate solution, because the solution is 
“contaminated” by the presence of strong numerical 
diffusion (Patankar, 1980). The hybrid scheme is 
nothing more than the use of UDS in regions where 
the convective fluxes have more influence, and the 
central differencing scheme (CDS) in the rest, so the 
same problem still remains. 

With the use of higher-order schemes, coarser 
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grids can be employed. The CDS, power-law, and 
LUDS (Harten, 1983) are examples of 2nd order 
approximation schemes, and the QUICK (Leonard, 
1979) is formally a 3rd order approximation scheme. 
However, as a 2nd order approximation is generally 
used for the fluxes along the interfaces, the resulting 
order of approximation is 2. The use of these 
schemes improves the accuracy of the results, but 
can cause some undesirable problems. In flows 
involving discontinuities, more specifically, in 
regions with large gradients, the solutions obtained 
are characterized by the presence of unreal 
oscillations (wiggles), besides the possibility of 
convergence loss in the numerical procedure. The 
solution becomes unbounded, and the value at the 
interfaces can be larger than the neighboring center 
volume value. 

In order to avoid those undesired problems, the 
above schemes can be coupled with the UDS, 
creating a high-resolution scheme (HRS). This class 
of schemes, like MINMOD (Harten, 1983) or 
SMART (Gaskell and Lau, 1988), obeys a criterion 
that avoids the presence of unbounded solutions, 
called Convective Boundedness Criterion (CBC), of 
Gaskell and Lau (1988). However, the order of 
approximation still remains limited to the 2nd order. 

The use of higher-order approximations, in the 
integration of the fluxes over the cell faces and/or in 
the interpolations schemes, allows the use of even 
coarser grids, reducing the CPU time of a simulation. 
However, high-order interpolation schemes are very 
prone to produce instability and oscillatory solutions. 
Therefore, a desired high-order approach must lead 
to stable and accurate solutions, which are the focus 
of the present work. 

A finite-volume approach to solve the governing 
equations of viscoelastic flows is proposed. The 
approach is based on the work of Kobayashi (1999), 
which uses cell average values as primitive variables 
instead of the point values. The point values, if 
desired, are obtained at the end of calculations by a 
deconvolution procedure. For high-order approximations, 
this approach simplifies the numerical procedure by 
avoiding the need of integration of the flux from a 
set of point values in reconstruction procedures 
(Pereira et al., 2001). The average fluxes at the cell 
faces are expressed in terms of the cell average 
variables, using adequate high-order interpolation 
schemes, obtained through Taylor series expansion. 
Special treatment must be given to the nonlinear 

terms, to maintain the global high-order 
approximation, as it will be seen later.  

The resulting equations are solved 
simultaneously, using a Newton-like method. To 
solve the large-scale linear systems resulting from 
the Newton’s iterations, an iterative method, the 
GMRES method with ILU preconditioning (Golub 
and Charles, 1996) is used. The matrix sparsity of 
the linear systems is also taken into account to 
reduce the amount of memory and CPU time needed. 

In the next sections, the developed methodology 
is presented. The governing equations of a 
viscoelastic fluid flow are shown in section 2. In 
section 3, the proposed approach, the interpolation 
schemes, and the solution method of the discretized 
equations are presented. In section 4, some 
numerical results are presented and discussed. 
 
 

GOVERNING EQUATIONS 
 

he governing equations of an isothermal and 
incompressible fluid flow are the mass and 
momentum conservation equations, being given 
below, in their dimensionless form: 
 

v 0∇ ⋅ =                 (1) 
 

vRe v v p
t

∂ + ⋅ ∇ = −∇ + ∇ ⋅ τ ∂ 
                         (2) 

 
where all the variables are normalized by 
characteristic values,  v being the velocity vector, 
τ the stress tensor, p the pressure, and Re the 
Reynolds number. The characteristic values are L for 
length and V for velocity, defined according to the 
case studied. For stress and pressure, the 
characteristic values are p0 = τ0 = η0V / L. The 
Reynolds number is given by Re = ρ V L / η0, ρ 
being the specific mass, and η0 the viscosity. 

The stress tensor can be split into two parts: a 
viscous stress tensor 

N
( )τ  and an elastic stress 

tensor
P

( )τ , as follow: 
 

N P
τ = τ + τ                (3) 
 

This split is made because many differential 
constitutive equations for viscoelastic fluids can be 
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written in this form, and also due to the insertion of 
diffusive terms in the momentum equations, 
stabilizing the numerical procedure. This technique, 
or a similar one, is used in the simulation                 
of viscoelastic flows by many numerical methods, 
like EVSS - Elastic-Viscous Split Stress method 
(Rajagopalan et al., 1990) among others. 
 The viscous stress tensor is given by Newton’s 
law of viscosity: 
 

NN
τ = η γ                (4) 

 
where ηN is the viscous contribution to the total 
viscosity η0 and ( )Tv v γ = ∇ + ∇

 
 is the shear rate 

tensor for incompressible flow. 
For the elastic stress tensor, an appropriate 

constitutive equation for viscoelastic fluids must be 
used. In this work, the Oldroyd-B model (Bird et al., 
1987) is used because it can produce high and even 
infinity values for elongational viscosity at finite 
elongational rates (Muniz et al., 2004). This is the 
main reason for the difficulty in obtaining solutions 
under high We numbers using this model, making it 
appropriate to test the stability of numerical methods. 
The dimensionless form for this model is given by: 
 

EP P(1)
Weτ + τ = η γ             (5) 

 
where We is the Weissenberg number, ηE = ηP/η0 is 
a dimensionless parameter of the constitutive 
equation that represents the contribution of elastic to 
total viscosity η0 = ηN + ηP, and 

P(1)
τ is the advective 

derivative of the stress tensor, defined in Equation 6. 
The Weissenberg number is defined as We = λV/L, 
where λ is the relaxation time. 
 

( )T
(1)

v v v
t

∂τ
τ = + ⋅ ∇τ − ∇ ⋅ τ − τ ⋅ ∇

∂
                   (6) 

 
According to the above definitions and knowing 

that ηE + ηV = 1, where ηV = ηN/η0, the momentum 
conservation equation (Equation 2) becomes: 
 

( ) 2
E P

vRe v v p 1 v
t

∂ + ⋅ ∇ = −∇ + − η ∇ + ∇ ⋅ τ ∂ 
          (7) 

In this work, for simplicity, only two-dimensional 
problems in Cartesian coordinates are presented. 
Obviously, the methodology can be extended to 
three-dimensional problems and other coordinate 
systems. 
 

NUMERICAL METHOD 
 

The finite-volume method, using collocated 
arrangement of variables, is adopted to discretize the 
governing PDE system. The details of each step of 
the methodology are given below. 
 
System Discretization 
 

The discretization procedure by the finite-volume 
method consists of integrating the partial differential 
equations over the control volumes, leading to 
algebraic equations (for steady-state problems) or 
differential-algebraic equations (for transient 
problems). The discretized equations are written in 
terms of cell face fluxes and cell average values. The 
cell face fluxes f in the x and y directions are defined 
as, respectively: 
 

j 1

j

y
y

i
i

y

1f f (x , )d
y

+

= α α
∆ ∫ ,      

(8) 
i 1

i

x
x

j
j

x

1f f ( , y )d
x

+

= α α
∆ ∫   

 
The cell average value of a quantity φ is defined 

as: 
 

j 1i 1

i j

yx
xy

1 1i , j
x y2 2

1 ( , )d d
y x

++

+ +
φ = φ β α α β

∆ ∆ ∫ ∫               (9) 

 
To exemplify this procedure, two discretized 
equations of the studied system in the steady state 
are shown: the conservation of momentum in the x 
direction, Equation 10, and the constitutive equation 
for the τxx component of the stress tensor, Equation 
11. 
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( ) ( )

y y x x y y
x x x x y x y x

i 1 i j 1 j i 1 i

y y x x
x x x x

E E

i 1 i j 1 j

y y x x
xx xx xy xy

i 1 i j 1 j

Re v v Re v v y Re v v Re v v x P P y

v v v v
1 y 1 x

x x y y

y x

+ + +

+ +

+ +

    − ∆ + − ∆ = − − ∆ +    
    

  ∂ ∂ ∂ ∂  − η − ∆ + − η − ∆ +  ∂ ∂ ∂ ∂      

  τ − τ ∆ + τ − τ ∆  
   

                         (10) 

 
 

xy y y x x
xx x xx x xx y xx y xx1 1i , j i 1 i j 1 j

2 2

xy xy
y yx x

xx xy E x x
i 1 i1 1 1 1i , j i , j

2 2 2 2

x y We v v y We v v x

v v
2We x y 2We x y 2 v v y

x y

+ + + +

+
+ + + +

  τ ∆ ∆ + τ − τ ∆ + τ − τ ∆ −  
   

∂ ∂  τ ∆ ∆ − τ ∆ ∆ = η − ∆ ∂ ∂  

                               (11) 

 
 
In these equations, there are different types of cell 

face fluxes: linear and nonlinear convective fluxes 
and diffusive fluxes, besides some volume averaged 
products of variables and derivatives. These terms 
are approximated by the procedure described in the 
following section. 
 
Approximation of Cell Face Fluxes (Interpolation 
Schemes) 
 

In the present approach, derived from Kobayashi 
(1999) and Pereira et al. (2001), the primitive 
variables in the problem are the cell average values 
of the former primitive variables. The fluxes over the 
cell faces and the cell average of nonlinear terms are 
expressed as a function of the cell average variables 
in the discretized equations. 

Basically, there are three kinds of fluxes to 

approximate: linear and nonlinear convective fluxes 
and diffusive fluxes. The schemes used are all 
derived for uniform spaced grids. The index notation 
shown in Figure 1 is used to describe the 
interpolation schemes, valid to any row in the 
domain. 

The interpolation schemes are obtained by 
proposing an adequate stencil and writing the fluxes 
in terms of cell average variables multiplied by 
coefficients to be determined. Taylor series 
expansion is applied to each term in the scheme, for 
a given order, according to the definitions given by 
Equations 8 and 9, for fluxes over the cell faces and 
cell average values. The coefficients are determined 
by taking the identity between the two sides of the 
resulting expression. For more details, see Pereira et 
al. (2001), that show this procedure to obtain 4th 
order compact schemes. 

 

 
 

Figure 1: Finite volumes and index notation for cell centers and cell faces. 
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To evaluate the convective fluxes, taking the flux 
y

i
φ  for example, a Lagrange 3rd order interpolation 

scheme is used, in other words, an upwinded 3rd 
order approximation, which takes two volumes 
downstream and one volume upstream from the face. 
Then, the expression depends on the flow direction: 
 

y xy xy
3i i
2

xy x3
1i1i 2

2

xy xy
y 3 1i 1i 2 2

x
xy 3

1i
2

1 5
6 6

v 01 O(h )
3

1 5
6 6

v 0
1 O(h )
3

−

+
−

+ +

−

 φ = − φ + φ


> + φ +



 = − φ + φ

φ
 <
+ φ +


            (12) 

 

To evaluate the diffusive fluxes
y

i
x

∂φ
∂

, a centered 

4th order approximation is used: 
 

xy xy
1 3i iy
2 2 4

xy xy
i

1 3i i
2 2

5 1
4 12

1 O(h )
x x 5 1

4 12

+ +

− −

 φ − φ − 
 ∂φ

= + 
∂ ∆  

φ + φ  
 

  (13) 

 
Due to its high order, the use of the interpolation 

scheme given by Equation 12, for the approximation 
of convective fluxes, can lead to the undesired 
problems discussed in section 1. Therefore, the 3rd 
order scheme, using different possible stencils, was 
used to create a WENO –  Weighted  Essentially 
Non-Oscillatory scheme (Liu et al., 1994). This kind 
of scheme is widely used in problems using finite-
difference methods, but not so much explored in the 
finite-volume context (Liu et al., 1994; Qiu and Shu, 
2002). 

A WENO scheme consists of a convex 
combination of different schemes of same order of 
approximation, but with different stencils, leading to 
a higher-order scheme. Its main characteristic is to 
avoid the presence of unreal oscillations in the 

solution in regions of steep gradients, or 
discontinuities. When discontinuities are present, the 
weight of each scheme is dependent on the location 
of the points of each stencil in relation to the points 
of the discontinuity, being higher the “smoother” the 
stencil. 

Using 3rd order approximations for the convective 
fluxes at a generic interface i parallel to y, like 
Equation 12, considering vx > 0, three (r = 3) 
possible stencils lead to three different schemes fk: 
 

xy xy xy 3
0 1 3 5i i i

2 2 2

11 7 1f O(h )
6 6 3− − −

= φ − φ + φ +   (14) 

 
xy xy xy 3

1 3 1 1i i i
2 2 2

1 5 1f O(h )
6 6 3− − +

= − φ + φ + φ +   (15) 

 
xy xy xy 3

2 3 1 1i 1 i
2 2 2

1 5 1f O(h )
6 6 3+ + −

= − φ + φ + φ +  (16) 

 
Then, the flux at interface i can be a convex 

combination of these schemes, like: 
 

r 1
y

k k
i k 0

f
−

=

φ = ω∑                                                 (17) 

 
where ωk is the weight of each scheme in the 
resulting scheme (Liu et al., 1994), defined by: 
 

k
k r 1

i
i 0

−

=

α
ω =

α∑
             (18) 

 

where k
k 2

k

C
( IS )

α =
ε +

         (19) 

 
Ck is called optimal weight, ISk is a smoothness 
measurement of the stencil k, and ε is a small 
positive constant to avoid division by zero, 10-6 
being the value used in all calculations in this work. 
The optimal weights, according to Jiang and Shu 
(1996), are {C0 = 1/10, C1 = 6/10, C2 = 3/10}. The 
expressions of ISk for each stencil considered, used 
in this work, were derived by Jiang and Shu (1996), 
given below: 
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2

0 5 3 1i i i
2 2 2

2

5 3 1i i i
2 2 2

13IS f 2f f
12

1 f 4f 3f
4

− − −

− − −

 
 = − + +
 
 

 
 − +
 
 

      (20) 

 
 

2

1 3 1 1i i i
2 2 2

2

3 1i i
2 2

13IS f 2f f
12

1 f f
4

− − +

− +

 
 = − + +
 
 

 
 −
 
 

      (21) 

 
2

2 1 1 3i i i
2 2 2

2

1 1 3i i i
2 2 2

13IS f 2f f
12

1 3f 4f f
4

− + +

− + +

 
 = − + +
 
 

 
 − +
 
 

                       (22) 

 
The resulting WENO scheme leads to a 5th order 

approximation for the flux
y

i
φ , in smooth 

regions (Jiang and Shu, 1996).  
The approximation is taken line by line in the 2D 

domain. It is possible to derive more adequate 
WENO schemes for this domain, where the stencil 
could take into account volumes in both directions. 
An example is given by Shi et al. (2002), where it 
was concluded that the results obtained by the two 
paths lead to similar solutions, reminding that the 
two-direction scheme is computationally more 
expensive compared to the line by line 
approximation. 

To finalize the step of approximations, the 
nonlinear terms that consist of products of variables 
at the cell faces, and the products of cell variables, 
averaged over the volume, must be treated with 
special attention. Examples for the first case are the 
inertia terms in the momentum equation, 

y
x x

i
v v and analogs and, for the second case, the 

product between velocity and stress terms in the 

constitutive equations, like
xy

x
xx

1 1i , j
2 2

v
x

+ +

∂
τ

∂
. 

In the classical approach, the approximation of a 
product of variables is given by the product of the 
approximations of each term, resulting in 2nd order 
approximations: 
 

y yy 2
1 2 1 2

i i i
O(h )φ φ = φ φ +        (23) 

 
xy xyxy 2

1 2 1 21 1 1 1 1 1i , j i , j i , j2 2 2 2 2 2

O(h )
+ + + + + +

φ φ = φ φ +   (24) 

 
If these approximations are used, even using 

high-order approximations for cell face fluxes, the 
global order of approximation is of 2nd order. To 
obtain a global high-order scheme, a higher-order 
approximation for the nonlinear fluxes must be 
employed too. 

The approximation used, based on the work of 
Pereira et al (2001), is obtained by comparing the 
Taylor series expansions of the right and left sides of 
Equations 23 or 24, for a given order. For the 
nonlinear fluxes at interfaces, using a 4th order 
approximation, the resulting terms are: 
 

0 0 0 0

1 2 1 2
i i i

2
41 2

(x ,y ) (x ,y )

y O(h )
12 y y

ξ ξ ξ
φ φ = φ φ +

  ∂φ ∂φ∆    +
   ∂ ∂   

            (25) 

 
where ξ means the normal direction to the interface i. 

For the nonlinear products averaged over the 
volume, the terms are: 
 

0 0 0 0

0 0 0 0

xy xy xy
1 2 1 21 1 1 1 1 1i , j i , j i , j

2 2 2 2 2 2

2
1 2

(x ,y ) (x ,y )

2
41 2

(x ,y ) (x ,y )

x
12 x x

y O(h )
12 y y

+ + + + + +
φ φ = φ φ +

  ∂φ ∂φ∆    +
  ∂ ∂   

   ∂φ ∂φ∆    +
  ∂ ∂   

       (26) 

 
An approximation of the terms on the RHS of 

Equations 25 and 26 is needed, and they are 
expressed in terms of the average cell values in the 
neighborhood. For example, the resulting expression 
for Equation 25 is given below. 
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y y y
1 2 1 2

i 1 i 1 i 1

xy xy
1 11 3 1 1i , j i , j

2 2 2 2

xy xy
1 13 3 3 1i , j i , j

2 2 2 2

xy xy
2 21 3 1 1i , j i , j

2 2 2 2 4

xy xy
2 23 3 3 1i , j i , j

2 2 2 2

1
192

O(h )

+ + +

+ + + −

+ + + −

+ + + −

+ + + −

φ φ = φ φ +

 φ − φ + 
 

⋅ 
 φ − φ  
 

 φ − φ + 
 

+ 
 φ − φ  
 

       (27) 

 
It must be emphasized that the present approach 

can be easily extended to more complex and reliable 
differential constitutive equations, like Phan-Thien-
Tanner (Phan-Thien and Tanner, 1977) and Giesekus 
(1982). The terms that arise in the discretization of 
these equations are totally analogous to those 
approximated in the present work.. 
 
Boundary Conditions 
 

The boundary conditions are naturally imposed in 
the discretized equations. When the values of the 
fluxes are known at the boundary, they are replaced 
directly in the equation. For example, zero velocity 
at the walls, zero shear stress at the symmetry lines, 
among other examples. In situations where the 
boundary value must be calculated from internal 
values, interpolation schemes are used, with the 
same order of approximation of internal cell faces, to 
maintain the global order. This is valid for all types 
of fluxes to be approximated. 
 
Solution of the approximated equations 
 

The resulting system of nonlinear equation is 
solved using a Newton-like method. This method 
consists of  solving a nonlinear system F(x) = 0, 
through the following iterative procedure: 
 

m kJ(x ) x F(x )δ = −                                                (28) 
 
where k 1 kx x x+ = + δ , xk is the variables vector, at 
the k iteration, and J(xm) is the Jacobian matrix of the 
system, evaluated at some previous iterate xm. The 
Jacobian matrix is calculated by perturbation in finite 

differences, being kept fixed  for a given number of 
iterations: 
 

m m
m F(x ) F(x )J(x ) + α −

≈
α

                            (29) 

 
The sparsity of the Jacobian matrix is taken into 

account in the numerical procedure. The linear 
system is solved using the GMRES method (Saad 
and Schultz, 1986), which is a Krylov subspace 
based method, appropriate for large-scale linear 
systems. The ILU preconditioner is used to improve 
the convergence of this iterative method (Golub and 
Charles, 1996). 
 
Deconvolution of Average Values 
 

With the solution of the discretized system of 
algebraic equations, the cell average values are 
obtained. Generally, the values of the cell variables 
at specified points are of interest, and can be 
obtained by applying a deconvolution procedure to 
the average values. There are many ways to perform 
a deconvolution, as for example, to obtain the values 
at the cell vertices from average values at cell faces 
using an adequate high-order approximation (Pereira 
et al., 2001). In this work, the same procedure was 
adopted. An important point is that the expression 
used should maintain the order of the approximations 
used in the numerical procedure. 
 
 

NUMERICAL RESULTS AND DISCUSSION 
 

The problem solved is the slip-stick flow or entry 
flow. It is a problem in fluid mechanics frequently 
employed to test numerical methods and 
interpolation schemes, due to the presence of a 
singularity in a boundary condition (slip to no-slip). 
This singularity causes theoretically an infinite stress 
at the junction, resulting in profiles of the stress 
variables with very sharp shape in this region. An 
illustration of this geometry is shown in Figure 2. 
Dealing with this type of singularity is important 
because this is a common feature in many polymer 
processing flows, like flow in an abrupt contraction 
or abrupt expansion, exit flow in extrusion, among 
many others. In the simulations, only the lower half 
of the  shown domain was taken into account, the 
origin point being located at the  slip-stick junction. 

The slip-stick problem consists of parallel plate 
entry flow of a fluid coming from a surface with slip 
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at the walls. The boundary conditions for this 
problem are a uniform velocity profile and zero 
stresses at the input, developed profiles at the output, 
symmetry conditions at the upper and lower 
boundary of the y-domain before the singularity, and 
no-slip conditions at the lower boundary after the 
origin.  

In the situation considered in this example, the 
lengths shown in Figure 1 are H = 1, L1 = 5, and 
L2 = 7. The values of the dimensionless parameters 
are Re = 1, We = 0.2, and ηE = 0.5. 

The problem was solved using two distinct 
groups of approximations: the first one, referred to in 
the text as LAG3, uses 3rd order Lagrange 
interpolation for convective fluxes, 4th order 
Lagrange for diffusive fluxes, and 4th order 
approximation for non-linear terms. The second 

group, referred to as WENO, uses the same 
approximations mentioned above, together with the 
WENO scheme for the convective fluxes. Different 
meshes were used in the calculations, as can be seen 
in Table 1. 

The simulations involving WENO 
approximations are computationally more expensive, 
and the simulations using LAG3 present solutions 
with oscillations near the singularity, bringing 
instability to the numerical procedure for viscoelastic 
flows. Far from this critical region, the solutions 
obtained by both approximations have the same 
behavior. 

In Figure 3, the flow streamlines are shown. Note 
that the fluid near the entrance wall has the tendency 
to distribute over the channel height, leading to large 
variations near the slip-stick junction. 

 
 
 

 
 

Figure 2: The slip-stick geometry. 
 

Table 1: Dimension of the meshes used. 
 

Mesh dx dy Nx Ny 
M1 0.3333 0.1000 36 10 
M2 0.2500 0.1000 48 10 
M3 0.2500 0.0500 48 20 
M4 0.1667 0.1000 72 10 
M5 0.1667 0.0500 72 20 
M6 0.1250 0.0500 96 20 
M7 0.1000 0.0500                   120 20 

 
 

 
Figure 3: Streamlines of the slip-stick flow, obtained  

in mesh M5 by WENO group approximations. 
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The behavior observed above can be better seen 
visualizing the variable profiles near to zero on y-
axis (near to the singularity). These profiles will be 
used to observe many characteristics of the solutions 
obtained by the two groups of approximations 
previously cited. All the profiles showed hereafter 
are in the dimensionless values. 

In Figure 4, the x-velocity and y-velocity 
profiles in the horizontal line y = 0.05 obtained by 
both groups of approximations in mesh M1 are 
showed. 

The x-velocity profile is relatively smooth, and 
both the approximations lead to similar solutions, 
oscillation free.  However, the use of LAG3 causes 
undershoots and oscillations in the y-velocity profile 
near to the singularity, as seen in Figure 4 (b). The 
use of the WENO scheme eliminates this problem, as 
seen in the same figure. This behavior also occurs in 
stress profiles. The shear stress profiles in the 

horizontal line at y = 0.075, obtained in mesh M5 by 
both groups of approximations, are shown in Figure 
5 (a), and the region near to the singularity is pointed 
out in Figure 5 (b). 

In the other stress profiles, obtained in mesh M5, 
seen in Figure 6, oscillations are not present, but the 
solution obtained by the LAG3 presents higher 
overshoots compared to the WENO solution. 

A question that arises when using centered 
collocated variable arrangement is the possibility of 
generation of oscillations in the pressure profiles, a 
common situation in approaches using this kind of 
arrangement (Peric et al., 1988; Patankar, 1980). Due 
to the use of high-order interpolation schemes, the 
pressure drop across a cell depends on the pressure 
in that cell and on the pressure in the neighboring 
cells, avoiding the occurrence of this problem. A 
pressure profile in the horizontal line y = 0.05, 
obtained in mesh M1, is displayed in Figure 7. 
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(b) 

Figure 4: Velocity profiles in the horizontal line (y = 0.05), obtained by LAG3 and WENO 
approximations: (a) x-velocity; (b) y-velocity 
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 (b) 

Figure 5: Shear stress profile in the horizontal line (y = 0.075), obtained by LAG3 and WENO. 
(a) entire profile; (b) zoom near to the singularity. 
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(b) 

Figure 6: Stress profiles in the horizontal line (y = 0.075), obtained by LAG3 and  
WENO. (a) xx-normal stress; (b) yy-normal stress. 
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Figure 7: Pressure profiles in the horizontal line (y = 0.05),  
obtained by LAG3 and WENO in mesh M1. 

 
The x-velocity and stress profiles in the horizontal 

line at y = 0.075, obtained in different meshes, using 
the WENO scheme, are shown in Figures 8 and 9. 

Note that the height of the stress peaks is 
dependent on the mesh dimension, being higher the 
more refined the mesh. In regions far from the 
singularity, the solutions are mesh-independent, after 
a given mesh size, including horizontal neighbor 
lines. For the x-velocity profile, the solutions are 
practically the same, because they do not have large 
variations like the stress profiles. 

Another point to be commented in the obtained 
solutions is the behavior of the stress profile in the 
region near to the singularity. In the work of 
Eggleton et al. (1996), solving the same problem for 
UCM fluid, the obtained profiles are contaminated 
by oscillations, even using low-order 
approximations. Oliveira et al. (1998), solving the 

same problem, also using the UCM model, point to 
the possible cause of this behavior as the inadequate 
approximation of the boundary conditions at the 
wall, and suggest a correct way to do it, calculating 
the stress values at the wall by implicit equations 
derived from the constitutive equations. In the 
present approach, this is not necessary, due to the 
high order nature of the approximations, the 
boundary conditions being easily imposed in an 
explicit form. The profiles near to the singularity, 
obtained with the use of the mesh M7 are shown in 
Figures 10 and 11. 

In Figures 10 and 11, a non-oscillatory solution 
can be observed in the region near to the singularity. 
The large variation of the variables can be seen again 
in these profiles, the gradients being larger closer to 
the singularity, and being more pronounced on the 
stick side of the flow. 
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(b) 

Figure 8: x-velocity and shear stress profiles in the horizontal line (y = 0.075),  
obtained by WENO in different meshes. (a) x-velocity; (b) shear stress. 
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(b) 

Figure 9: Normal stress profiles in the horizontal line (y = 0.075), obtained by  
WENO in different meshes. (a) xx-normal stress; (b) yy-normal stress. 
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(b) 

Figure 10: x-velocity and shear stress profiles in vertical lines near to the singularity,  
obtained by WENO, using mesh M7. (a) shear stress; (b) x-velocity. 
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(b) 

Figure 11: Normal stress profiles in vertical lines near to the singularity, obtained by WENO,  
using mesh M7. (a) xx-normal stress; (b) yy-normal stress. 

 
 

CONCLUSIONS 
 

In this paper, a new approach to simulate 
viscoelastic flows in Cartesian meshes was 
presented. The system of equations was discretized 
by the finite-volume method, using the collocated 
arrangement for variables, and high-order 
approximations for the fluxes over cell faces. All the 
procedure is based on the variable cell averages and, 
at the end of calculations, the point values are 
recovered, if needed, by a deconvolution formula. In 
order to illustrate the proposed approach, an example 
of application was presented, showing that the 
solutions obtained are accurate and oscillation-free 
near to the discontinuities. All the schemes were 
derived for uniform meshes, it being necessary to use 
high mesh sizes to capture the solution at the 
discontinuity. 
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