
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

RICCO VASCONCELLOS CONSTANTE SOARES

Coevolutionary Genetic Algorithm and
Graph Neural Networks for a Risk-like

Board Game: Policy Predictions for
Population Initialization

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. Anderson Rocha Tavares

Porto Alegre
January 2025

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitora: Profa. Marcia Cristina Bernardes Barbosa
Vice-Reitor: Prof. Pedro de Almeida Costa
Pró-Reitora de Graduação: Profa. Nádya Pesce da Silveira
Diretor do Instituto de Informática: Prof. Luciano Paschoal Gaspary
Coordenador do Curso de Ciência de Computação: Prof. Marcelo Walter
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

“Man is, at one and the same time, a solitary being and a social being.”

— ALBERT EINSTEIN

ABSTRACT

Over the last decades, various Artificial Intelligence techniques have been employed in

Risk implementations to address the unique challenges posed by this complex strategy

board game, such as its high branching factor and the variable topology of different maps.

Modern state-of-the-art research has gravitated towards the use of Graph Neural Net-

works and algorithms that learn the game tabula rasa, aligning with the latest trends

in AI for games like chess, shogi, and Go. Results indicate that this methodology has

not yet surpassed the performance of incorporating hand-crafted logic into agents, as in

other domains. Recently, Genetic Algorithms have been introduced to the cutting-edge

performance toolbox as an alternative to tree-based search methods, showing promising

improvements. In this approach, player moves are treated as individuals in a popula-

tion, which is evolved to identify optimal solutions. As originally proposed (BAUER,

2024), populations are initialized by sampling random moves. This research explores and

evaluates the effectiveness of incorporating policy prediction to initialize populations, as

opposed to random initialization. In our experiments, the GA with policy initialization

significantly outperformed the standard GA, achieving a 9.05% higher score and winning

60.6% of head-to-head matchups.

Keywords: Artificial Intelligence. Reinforcement Learning. Evolutionary Algorithm.

Risk. Graph Neural Networks.

Algoritmo Genético Coevolucionário e Redes Neurais de Grafos para um Jogo de

Tabuleiro similar a Risk: Predição de Política na Inicialização das Populações

RESUMO

Nas últimas décadas, diferentes técnicas de Inteligência Artificial foram aplicadas em

implementações de Risk para lidar com os desafios únicos proporcionados por esse com-

plexo e estratégico jogo de tabuleiro, tais como o alto fator de ramificação do jogo, além

das diferentes topologias de cada mapa. A pesquisa moderna que atinge o estado da arte

convergiu para a utilização de Redes Neurais de Grafos e algoritmos que aprendem a jo-

gar sem conhecimento prévio (tabula rasa), em conformidade com as últimas tendências

em IA aplicada a jogos como xadrez, shogi e Go. Resultados indicam que essa linha me-

todológica ainda não foi capaz de superar agentes que incorporam lógicas específicas do

jogo (feitas à mão), conforme acontece em outros domínios. Recentemente, Algoritmos

Genéticos foram adicionados à caixa de ferramentas das técnicas de melhor performance,

constituindo uma alternativa aos métodos baseados em busca em árvore, apresentando re-

sultados contundentes. Essa classe de algoritmos trata as ações de um turno de um jogador

como indivíduos de uma população, que é evoluída para a identificação das melhores solu-

ções. Tipicamente, os indivíduos de uma população serão inicializados randomicamente,

isto é, por amostragem de jogadas aleatórias. O presente trabalho visa experimentar o uso

de predição de política na inicialização das populações, ao invés de recorrer à iniciali-

zação randômica. Nos nossos experimentos, o algoritmo genético com inicialização por

predição de política desempenhou significativamente melhor que o algoritmo genético

conforme originalmente proposto (BAUER, 2024), obtendo uma pontuação 9.05% maior,

e vencendo 60.6% dos confrontos diretos.

Palavras-chave: Inteligência Artificial, Aprendizado por Reforço, Algoritmo Evolucio-

nário, Risk, Redes Neurais de Grafos.

LIST OF FIGURES

Figure 2.1 Visualization of the four key phases of MCTS: selection, expansion,
simulation, and backpropagation. The process iteratively refines the search tree. ...15

Figure 2.2 A Warzone game in progress. Each territory contains a number repre-
senting the number of armies stationed there and is colored (pink or purple) to
indicate which player owns it. Neutral territories are gray and may contain neu-
tral troops, requiring an attack to be conquered. Colored boxes outline bonus
regions (in this case, continents) and indicate the additional income provided
for controlling the entire region. The bonus income is specified by the number
inside each box..31

Figure 4.1 From left to right, a Warzone map, and its graph representation. On
the left, the yellow boxes indicate the income bonus offered by its four bonus
regions. On the right, each color group denotes the territories composing each
region ..35

Figure 4.2 Ownership of territories as vertex feature. Orange and purple nodes
represent territories controlled by a player. Neutral territories are gray.36

Figure 4.3 Armies encoded as vertex feature..36
Figure 4.4 Graph Neural Network architecture for policy and value predictions.

The architecture includes TransformerConv layers for graph processing, bonus
integration, and separate heads for policy and value predictions..............................38

Figure 4.5 Two adjacent territories interpreted as vertices. The oriented edge de-
notes that one game order mobilizes troops from t1 to t2. The GNN’s policy
head encodes this order by concatenating node embeddings for t1 and t2 plus
an integer representing troop count...39

Figure 4.6 Competitive co-evolution flowchart...45
Figure 4.7 Genetic operations (a) one-point crossover, and (b) mutation.......................48

Figure 5.1 Maps used in the experiments..50
Figure 5.2 Policy and Value Losses For Training Iteration 1..54
Figure 5.3 Policy and Value Losses For Training Iteration 2..55
Figure 5.4 Policy and Value Losses For Training Iteration 3..57
Figure 5.5 Policy and Value Losses For All Training Iterations58

LIST OF TABLES

Table 5.1 MCTS Parameters for Training ...52
Table 5.2 Neural Network Optimization Hyperparameters ..52
Table 5.3 Data Distribution Across Maps For Iteration 1 ...53
Table 5.4 Evaluation Results for Training Iteration 1. ..53
Table 5.5 Data Distribution for each map in Second Iteration training56
Table 5.6 Evaluation Results for Training Iteration 2 ...56
Table 5.7 Data Distribution for each map in Third Iteration training56
Table 5.8 Evaluation Results for Training Iteration 3. ..59
Table 5.9 MCTS Parameters for Tournaments. For this configuration, the MCTS

will perform as many iterations as possible under the time constraint.60
Table 5.10 GA Parameters for Tournaments. For this configuration, the GA will

perform as many generations as possible under the time constraint.......................60
Table 5.11 Tournament results (Second Iteration GNN) as scoring percentages.

Each agent played 150 games on each of the four maps. Overall scores are
shown as percentages of the maximum possible score (450 points).......................61

Table 5.12 Matchup results for the tournament (Second Iteration GNN). Each matchup
consisted of 150 games. Values represent the number of wins for the row
agent (Agent 1) against the column agent (Agent 2). ...61

Table 5.13 Tournament results (Third Iteration GNN) as scoring percentages. Each
agent played 150 games on each of the four maps. Overall scores are shown
as percentages of the maximum possible score (600 points).61

Table 5.14 Matchup results for the tournament (Third Iteration GNN). Each matchup
consisted of 200 games. Values represent the scoring percentages of the row
agent (Agent 1) against the column agent (Agent 2). ...62

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence

ML Machine Learning

CNN Convolutionl Neural Network

GNN Graph Neural Network

GCN Graph Convolutional Network

MCTS Monte Carlo Tree Search

SOTA State Of The Art

CONTENTS

1 INTRODUCTION...11
2 BACKGROUND..13
2.1 Monte Carlo Tree Search ...13
2.1.1 Selection...13
2.1.2 Expansion...14
2.1.3 Simulation (or Rollout) ..14
2.1.4 Backpropagation ..14
2.1.5 Summary ..14
2.2 Machine Learning...15
2.2.1 Learning Paradigms ...15
2.2.2 The ML Pipeline ..16
2.3 Neural Networks ...16
2.3.1 Fundamental Concepts...16
2.3.2 Mathematical Representation...17
2.3.3 Training Neural Networks ...17
2.3.4 Applications in Decision-Making ..18
2.4 Logits, Loss Functions, and Neural Networks in Decision-Making18
2.4.1 Logits ...18
2.4.2 Cross-Entropy Loss..19
2.4.3 Mean Squared Error (MSE) ...19
2.5 Graph Neural Networks ...19
2.5.1 Foundations of Graph Neural Networks ..20
2.5.1.1 Message Passing ...20
2.5.1.2 Node Update ...20
2.5.2 Graph Convolutional Networks (GCNs)..20
2.5.3 Graph Attention Networks (GATs)..21
2.5.4 Transformer Convolution Layers ...21
2.5.4.1 Definition and Parameters...22
2.6 Policy and Value Predictions..22
2.6.1 Policy Predictions ..22
2.6.2 Value Predictions ...23
2.6.3 Optimization ..23
2.7 Reinforcement Learning...24
2.7.1 Key Concepts in Reinforcement Learning...24
2.7.2 Exploration vs. Exploitation ..24
2.7.3 Markov Decision Processes ...25
2.7.4 RL Algorithms ...25
2.8 AlphaZero: Combining RL and MCTS..25
2.8.1 Key Features of AlphaZero..26
2.8.2 Training Workflow ...26
2.9 Genetic Algorithms and RHEA ...27
2.9.1 Core Components of Genetic Algorithms..27
2.9.2 Fitness Evaluation in Genetic Algorithms ...28
2.9.3 Rolling Horizon Evolutionary Algorithms (RHEA)..28
2.10 Risk and Warzone ...29
2.10.1 Risk: The Board Game ..29
2.10.2 Warzone: A Strategic Evolution ..30
2.10.3 Key Features for Two-Player Matches...30

2.10.4 Strategic Implications ..31
3 RELATED WORK ...32
4 METHODS ..34
4.1 Graph Neural Network...34
4.1.1 Map and Vertex Features ...34
4.1.2 Policy and Value Predictions ...35
4.1.3 Architecture Overview...37
4.1.4 Actions Encoding...37
4.1.5 GNN Training ..39
4.2 Genetic Algorithm...40
4.2.1 Overview..41
4.2.2 Fitness Assignment ..41
4.2.3 Life Cycle...43
4.2.4 Genes Encoding ...44
4.2.5 Mutation and Crossover ...47
4.3 Policy Predictions for Population Initialization ...48
5 EXPERIMENTS ...49
5.1 Risk Implementation ..49
5.1.1 Code Base ..49
5.1.2 Maps...49
5.1.3 Match Rules ...50
5.2 GNN Training Results ..51
5.2.1 Setup ..52
5.2.2 Results..52
5.2.2.1 Iteration 1 ..53
5.2.2.2 Iteration 2 ..53
5.2.2.3 Iteration 3 ..56
5.3 Tournament ...59
5.3.1 Setup ..59
5.3.2 Results..60
5.3.2.1 Second Iteration GNN Tournament ..61
5.3.2.2 Third Iteration GNN Tournament ...61
6 CONCLUSION ...63
6.1 Overview ..63
6.2 Future Work ..63
REFERENCES...66

11

1 INTRODUCTION

The game of Risk is a complex multi-player strategy board game with many vari-

ations and implementations where each player controls one army trying to conquer the

world. Each turn of the game is composed by deploying or units into territories, trans-

ferring from one to another, and performing attacks, resulting in numerous possible next

states when played in any reasonably large map. Aspects like these impose serious chal-

lenges to the task of implementing an AI agent that plays the game on a competitive level,

and even well established algorithms for general videogame playing can perform poorly

when transposed to Risk-like games.

Over the years, researchers have proposed various approaches to tackle this prob-

lem. Early methods heavily relied on translating human heuristics into algorithms, al-

lowing AI to address specific game scenarios. However, these approaches were limited

in adaptability and scope. With advancements in machine learning, especially reinforce-

ment learning and deep neural networks, new paradigms have emerged that aim to learn

game strategies from scratch (tabula rasa). A major example of this is the AlphaZero

(SILVER et al., 2017), whch combines Neural Networks (NNs) with Monte Carlo Tree

Search (MCTS). Despite their successes in other domains like chess, Go, and shogi, these

methodologies have often underperformed when applied to Risk-like games, particularly

on larger maps or against rule-based agents.

Genetic Algorithms (GAs) are a class of algorithms that searches for optimal so-

lutions of a problem in a iterative process mimicking biological evolution. They evolve

one or more populations through multiple generations, where each individual represents a

valid solution to the problem of interest. The solutions are evaluated by a fitness score, in-

dicating the quality of our solution. In terms of the natural selection analogy, its quality of

an individual equivalent to its ability to survive. A recent work (BAUER, 2024) proposed

a GA agent to Warzone (a Risk-like game), achieving convincing results in a tournament

against the most notable techniques. It defines one population for each player, where each

individual corresponds to a player’s move, and evolve them simultaneously in a com-

petitive co-evolution. The fitness of an individual will be determined by a GNN. The

results suggest that this approach addresses the high branching factor of the game more

efficiently, in comparison to previously documented agents.

Despite of its impressive results, the initial population of the GG-net is composed

by random solutions, a characteristic that may guide the co-evolution to a sub-optimal

12

solution. In this work, we propose the use of a policy and value GNN in the GA agent, as

in AlphaZero, to extract initial populations with policy predictions. In order to verify the

effect of starting the evolution with high-quality individuals, we organized tournaments

with time control, including the following agents;

• Vanilla MCTS: Baseline agent without GNN guidance.

• GNN-Guided MCTS: An AlphaZero-like agent.

• GA Agent: Standard genetic algorithm, similar to GG-Net.

• GA with Policy Initialization: GA agent with populations initialized using the

GNN’s policy predictions.

Our experiments indicated that the policy initialization may be a valuable addition

to GG-Net. Out of the 1050 games, the GA with policy scored 9.05% more points than

the standard GA. It presented a particularly strong performance when paired against the

standard version, achieving 60.6% in the head-to-head machups.

Additionally, this work’s contributions include a public implementation derived

from GG-Net’s work, which was our starting point (further comments in 5.1).

The remainder of this work is organized as follows: Chapters 2 and 3 will explain

some crucial algorithms and provide an overview of the literature in AI agents for Risk-

like games. Chapters 4 and 5 provide explanations on the methods utilized, and describe

the tests. Finally, Chapter 6 is dedicated to future work and conclusion.

13

2 BACKGROUND

2.1 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) (BROWNE et al., 2012) is a general heuristic

search algorithm for decision-making in vast and complex state spaces, such as board

games, planning problems, and real-time strategy scenarios. Its success lies in its ability

to efficiently balance exploration and exploitation during tree search without requiring

explicit domain-specific heuristics. This feature has made MCTS a cornerstone of modern

AI applied to games and other sequential decision-making tasks.

The algorithm is structured around four key phases, which are iteratively per-

formed to build and refine a search tree, described in the subsections ahead.

2.1.1 Selection

In the selection phase, the algorithm traverses the existing tree starting from the

root node, selecting child nodes based on a balance between exploration (visiting less-

explored nodes) and exploitation (focusing on nodes with high expected rewards). This

trade-off is often managed using the Upper Confidence Bound for Trees (UCT) formula

(KOCSIS; SZEPESVáRI, 2006), which balances these aspects:

UCT =
Qi

Ni

+ c

√
lnNp

Ni

,

where:

• Qi: Cumulative reward of child node i.

• Ni: Number of times child node i has been visited.

• Np: Number of visits to the parent node.

• c: Exploration constant, which controls the degree of exploration.

Nodes with high UCT values are prioritized, ensuring a balance between exploring

promising nodes and exploring new ones. This strategy is particularly effective in large

and sparse search spaces.

14

2.1.2 Expansion

Once the selection phase reaches a leaf node (a node without children), the expan-

sion phase adds new child nodes to the tree. These nodes represent unexplored actions or

states that can be taken from the current position. Expansion increases the breadth of the

tree, allowing subsequent simulations to consider new paths.

Typically, a single child node is added during expansion, although this can vary

depending on the implementation and domain.

2.1.3 Simulation (or Rollout)

In the simulation phase, a "random playout" is conducted from the newly added

node until the game ends or a predefined horizon is reached. These playouts involve

selecting actions at random or using a simple policy (e.g., heuristic-based rules). The

outcome of the simulation provides an estimate of the value of the expanded node.

The randomness of this phase enables MCTS to sample diverse trajectories, mak-

ing it effective in exploring large state spaces.

2.1.4 Backpropagation

The backpropagation phase propagates the results of the simulation back up the

tree, updating statistics for each node along the visited path. These updates refine the

estimates of each node’s value (Qi) and visitation count (Ni):

• Increment Ni for each visited node.

• Update Qi based on the simulation outcome.

This iterative refinement allows MCTS to converge toward optimal decisions as

more simulations are performed.

2.1.5 Summary

A typical MCTS iteration can be visualized as shown in Figure 2.1:

15

Figure 2.1: Visualization of the four key phases of MCTS: selection, expansion, simula-
tion, and backpropagation. The process iteratively refines the search tree.

Source: (BROWN; SANDHOLM; MACHINE, 2017)

2.2 Machine Learning

Machine learning (ML) is a subfield of artificial intelligence (AI) that focuses on

developing algorithms and models capable of learning patterns from data and making

decisions without explicit programming. A machine learning algorithm can be defined as

an algorithm capable of learning from data (GOODFELLOW; BENGIO; COURVILLE,

2016).

2.2.1 Learning Paradigms

Machine learning encompasses three primary paradigms, each suited to specific

types of problems:

• Supervised Learning: The model learns from labeled data, where each input sam-

ple has an associated target label. The goal is to map inputs X to outputs Y by

minimizing the error between predictions and the true labels. Examples include

image classification and regression tasks.

• Unsupervised Learning: The model identifies patterns or structures in unlabeled

data. Common tasks include clustering, dimensionality reduction, and anomaly

detection. Examples include grouping similar customer profiles or reducing the

dimensions of large datasets for visualization.

• Reinforcement Learning (RL): The model interacts with an environment and

learns to make decisions by receiving rewards or penalties for its actions. RL is

commonly used in robotics, autonomous systems, and game AI, as discussed in

16

Section 2.7.

2.2.2 The ML Pipeline

The typical machine learning workflow involves several stages:

1. Data Collection: Gathering relevant data for the problem at hand.

2. Data Preprocessing: Cleaning, transforming, and normalizing the data to make it

suitable for model training.

3. Model Selection: Choosing an appropriate model architecture or algorithm for the

task (e.g., linear regression, neural networks).

4. Training: Fitting the model to the training data by optimizing a loss function.

5. Evaluation: Measuring the model’s performance on unseen test data using metrics

such as accuracy, precision, or mean squared error.

2.3 Neural Networks

Neural networks are a class of machine learning models designed to learn and

represent complex relationships in data. Inspired by the structure and functioning of bio-

logical neural systems, they have become a cornerstone of modern artificial intelligence,

powering applications from image recognition to natural language processing and strate-

gic decision-making.

2.3.1 Fundamental Concepts

A neural network consists of interconnected layers of nodes, called neurons. These

layers are categorized into three types:

• Input Layer: The first layer receives raw data and passes it to subsequent layers.

• Hidden Layers: Intermediate layers process the data using learned weights and

biases, transforming it into higher-level representations.

• Output Layer: The final layer produces predictions or classifications based on the

processed data.

17

Each neuron in a layer connects to neurons in the subsequent layer through weighted

edges. The output of a neuron is determined by an activation function, which introduces

non-linearity, enabling the network to model complex relationships.

2.3.2 Mathematical Representation

For a neuron, the output hi is computed as:

hi = σ

(∑
j

wijxj + bi

)
,

where:

• wij represents the weight of the connection between neuron j in the previous layer

and neuron i in the current layer.

• xj is the input from the previous neuron.

• bi is the bias term.

• σ is the activation function, such as ReLU (Rectified Linear Unit), sigmoid, or tanh.

2.3.3 Training Neural Networks

Neural networks learn by adjusting weights and biases to minimize a loss function,

which quantifies the error between predicted and actual outputs. The training process

involves:

1. Forward Propagation: Input data passes through the network, generating predic-

tions.

2. Loss Computation: The loss function calculates the error.

3. Backward Propagation: Gradients of the loss with respect to weights are com-

puted using the chain rule of calculus.

4. Weight Update: Weights and biases are updated using optimization algorithms like

Stochastic Gradient Descent (SGD) or Adam (KINGMA; BA, 2017).

18

2.3.4 Applications in Decision-Making

Neural networks are particularly effective in decision-making tasks. By learning

patterns from data, they can:

• Predict Probabilities: For example, estimating the likelihood of a specific outcome

(e.g., winning a game).

• Optimize Actions: Generating policies that maximize rewards in strategic environ-

ments, such as games or real-world planning problems.

These capabilities make neural networks foundational in more advanced architec-

tures like Graph Neural Networks (GNNs) and decision-making frameworks like Alp-

haZero (SILVER et al., 2017).

2.4 Logits, Loss Functions, and Neural Networks in Decision-Making

2.4.1 Logits

Logits are the unnormalized raw outputs of a neural network layer, typically the

final layer, before being converted into probabilities. For classification tasks, logits are

transformed using activation functions, such as the softmax function, to produce probabili-

ties. These probabilities indicate the likelihood of each class or decision being the optimal

choice. In the context of games like Risk, logits are particularly useful for representing

the relative priorities of moves or actions.

Example of Logits in Policy Predictions: Consider a neural network outputting

logits for three possible moves:

• Logits: [2.0, 1.0, 0.1]

• Applying softmax:

P (classi) =
elogiti∑
j e

logitj

• Resulting probabilities: [0.65, 0.24, 0.11]

Here, the first move has the highest probability of being optimal, based on the logits.

19

2.4.2 Cross-Entropy Loss

Cross-entropy loss (GOOD, 1952) is widely used for classification tasks to mea-

sure the difference between the predicted probability distribution and the true distribution.

For a target label y and predicted probabilities ŷ, the loss is defined as:

LCross-Entropy = −
∑
i

yi log(ŷi)

In policy optimization, this loss is used to train the model to assign higher probabilities

to actions that align with expert data or optimal policies. Cross-entropy ensures the net-

work’s predictions move closer to the desired target distribution over time.

2.4.3 Mean Squared Error (MSE)

Mean Squared Error (MSE) is commonly used for regression tasks, including

value predictions in AlphaZero-like frameworks. For predicted values v̂ and ground truth

v, MSE is defined as:

LMSE =
1

N

N∑
i=1

(v̂i − vi)
2

In the context of games, MSE helps the GNN refine its evaluation of game states, enabling

accurate predictions of the likelihood of winning from a given state.

2.5 Graph Neural Networks

Graph Neural Networks (SCARSELLI et al., 2009) are a class of neural networks

that operate on graph-structured data. Unlike traditional neural networks that are de-

signed for grid-like data such as images (2D grids of pixels) or sequences (1D grids of

words), GNNs are capable of modeling complex relationships and dependencies through

nodes and edges in graphs. This makes them suitable for various applications like so-

cial network analysis, recommendation systems, natural language processing, and even

biological networks.

20

2.5.1 Foundations of Graph Neural Networks

A graph G can be represented as G = (V,E), where V is the set of nodes (or

vertices) and E is the set of edges connecting these nodes. Each node v ∈ V can have

associated features xv, and each edge (u, v) ∈ E can also carry features euv.

The core idea behind GNNs is the iterative, feature aggregation mechanism where

each node updates its representation by aggregating feature information from its immedi-

ate neighbors. This process can be summarized as follows:

1. Message Passing: Nodes collect messages from their neighbors.

2. Aggregation: The collected messages are aggregated.

3. Update: Nodes update their embeddings based on the aggregated messages.

2.5.1.1 Message Passing

In each layer of a GNN, every node v gathers messages from its neighbors N (v):

m(k)
v = AGGREGATE(k)({h(k−1)

u ,∀u ∈ N (v)})

Here, h(k−1)
u is the representation of node u from the previous layer k − 1, and

AGGREGATE(k) is a permutation invariant function, such as sum, mean, or max.

2.5.1.2 Node Update

Once the messages are aggregated, the node updates its representation using:

h(k)
v = UPDATE(k)(h(k−1)

v ,m(k)
v)

where UPDATE(k) can be a neural network that combines the previous node state

and the aggregated messages.

2.5.2 Graph Convolutional Networks (GCNs)

Graph Convolutional Networks are a popular variant of GNNs introduced by

(KIPF; WELLING, 2017). GCNs extend traditional convolutional operations to graph

data, utilizing a propagation rule based on spectral graph theory. The update rule for a

node v in a GCN layer can be written as:

21

H(k) = σ
(
D̃−1/2ÃD̃−1/2H(k−1)W (k)

)
where Ã is the adjacency matrix with added self-loops, D̃ is the degree matrix,

W (k) are learned weight matrices, H(k−1) are the node embeddings from the previous

layer, and σ is an activation function like ReLU.

2.5.3 Graph Attention Networks (GATs)

Graph Attention Networks (VELIčKOVIć et al., 2018) introduce an attention

mechanism to GNNs, which allows nodes to assign different importance weights to their

neighbors. The attention coefficient α(k)
uv for edge (u, v) is computed as:

α(k)
uv =

exp
(

LeakyReLU
(
aT [W (k)h

(k−1)
u ∥W (k)h

(k−1)
v]

))
∑

j∈N (v) exp
(

LeakyReLU
(
aT [W (k)h

(k−1)
u ∥W (k)h

(k−1)
j]

))
where a is a learned attention vector, h(k−1)

u and h
(k−1)
v are the node features, and

∥ denotes concatenation. The node update is then:

h(k)
v = σ

 ∑
u∈N (v)

α(k)
uv W

(k)h(k−1)
u

2.5.4 Transformer Convolution Layers

The Transformer Convolution Layer (TransformerConv) (SHI et al., 2021a)

extends traditional Graph Neural Networks by incorporating concepts from transformer

architectures, enabling enhanced message passing on graph-structured data. Introduced in

the Unified Message Passing (UniMP) framework (SHI et al., 2021b), TransformerConv

is particularly effective in semi-supervised classification tasks, combining both node fea-

ture propagation and label propagation during training and inference.

22

2.5.4.1 Definition and Parameters

The TransformerConv layer operates by leveraging multi-head dot-product

attention mechanisms on graph data. Its forward operation integrates features from neigh-

boring nodes, optionally incorporating edge features, as shown in the following equation:

h(k+1)
v = σ

 ∑
u∈N (v)

αuv

(
W

(k)
h hu +W (k)

e euv

) ,

where:

• h
(k)
v and h

(k)
u : Node feature vectors of nodes v and u at layer k.

• N (v): The set of neighbors of node v.

• euv: Edge features for edge (u, v).

• W
(k)
h and W

(k)
e : Trainable weight matrices for node and edge feature transforma-

tions.

• αuv: Attention coefficient computed as:

αuv =
exp

(
LeakyReLU

(
qTv ku + eTuvWa

))∑
j∈N (v) exp

(
LeakyReLU

(
qTv kj + eTvjWa

)) ,
where qv and ku are query and key vectors, respectively.

2.6 Policy and Value Predictions

In decision-making frameworks, such as reinforcement learning, policy and value

predictions play crucial roles in guiding an agent’s actions and assessing game states.

2.6.1 Policy Predictions

A policy prediction represents a probability distribution over all possible actions

in a given state. Formally, a policy π(a | s) is a function that maps a state s to probabilities

of actions a:

π(a | s) = exp(logita)∑
b exp(logitb)

,

23

where logita is the neural network’s raw output for action a. The softmax function nor-

malizes these logits into probabilities. Policy predictions guide the agent in selecting

actions based on their likelihood of success.

2.6.2 Value Predictions

A value prediction estimates the expected cumulative reward from a given state s.

The value function V (s) is defined as:

V (s) = E

[
∞∑
t=0

γtrt | s

]
,

where γ is the discount factor and rt is the reward at time step t. Value predictions help

the agent assess the long-term potential of states, complementing the short-term focus of

policy predictions.

2.6.3 Optimization

Policy predictions are optimized using cross-entropy loss, which aligns the pre-

dicted probabilities with the optimal actions:

Lpolicy = −
∑
i

yi log(ŷi),

where yi is the true probability distribution, and ŷi is the predicted distribution.

Value predictions are optimized using mean squared error (MSE), which mini-

mizes the difference between predicted and actual rewards:

Lvalue =
1

N

N∑
i=1

(v̂i − vi)
2.

Together, these predictions form the foundation of advanced decision-making frameworks

like AlphaZero, integrating strategic planning and state evaluation.

24

2.7 Reinforcement Learning

Reinforcement Learning (RL) is a computational approach to learning through

interaction, where an agent learns to make decisions by optimizing a numerical reward

signal over time. The agent interacts with an environment, observes its state, takes actions,

and receives feedback in the form of rewards. Unlike supervised learning, RL does not

require labeled examples of correct actions but instead relies on the agent exploring and

exploiting the environment to maximize cumulative rewards (SUTTON; BARTO, 2018).

2.7.1 Key Concepts in Reinforcement Learning

A reinforcement learning system is composed of the following elements:

• Agent and Environment: The agent is the learner and decision-maker, while the

environment encompasses everything the agent interacts with.

• Policy: The policy π(s) defines the agent’s behavior, mapping states s to actions a.

Policies can be deterministic or stochastic.

• Reward Signal: A numerical value r the agent receives from the environment after

taking an action, indicating the immediate desirability of the state or action.

• Value Function: The value of a state V (s) represents the expected cumulative

reward starting from that state and following a policy. Similarly, the action-value

function Q(s, a) quantifies the value of taking action a in state s.

• Model (Optional): A model predicts the environment’s next state and reward given

the current state and action. Methods that use models are referred to as model-

based, while those that do not are model-free.

2.7.2 Exploration vs. Exploitation

A central challenge in RL is balancing exploration (trying new actions to discover

their effects) and exploitation (choosing actions known to yield high rewards). Effective

RL strategies aim to optimize this trade-off, ensuring that the agent gathers sufficient

knowledge of the environment while maximizing rewards.

25

2.7.3 Markov Decision Processes

Reinforcement learning problems are often formalized as Markov Decision Pro-

cesses (MDPs), defined by the tuple (S,A, P,R, γ):

• S: Set of states.

• A: Set of actions.

• P (s′|s, a): Transition probabilities, denoting the probability of moving to state s′

after taking action a in state s.

• R(s, a): Reward function, specifying the immediate reward received for taking ac-

tion a in state s.

• γ: Discount factor, 0 ≤ γ ≤ 1, controlling the weight of future rewards.

The agent’s objective is to find an optimal policy π∗ that maximizes the expected

cumulative discounted reward:

Gt = E

[
∞∑
k=0

γkR(st+k, at+k)

]
.

2.7.4 RL Algorithms

Reinforcement learning encompasses several algorithms, including:

• Q-Learning: A model-free method that learns the action-value function Q(s, a)

through temporal difference updates.

• Policy Gradients: Optimize the policy directly by computing gradients of the ex-

pected reward with respect to policy parameters.

• Actor-Critic Methods: Combine policy-based and value-based methods, where an

actor updates the policy and a critic evaluates the policy using a value function.

2.8 AlphaZero: Combining RL and MCTS

AlphaZero (SILVER et al., 2017) is a cutting-edge reinforcement learning algo-

rithm that combines deep learning and Monte Carlo Tree Search (MCTS) to achieve su-

perhuman performance in games like chess, Go, and shogi. Unlike traditional RL ap-

26

proaches, AlphaZero integrates neural network predictions with search-based planning,

enabling efficient decision-making in large state spaces.

2.8.1 Key Features of AlphaZero

• Unified Policy and Value Network: A single neural network predicts both the

policy (probability distribution over moves) and the value (expected outcome of the

game).

• Self-Play Training: AlphaZero learns through self-play, iteratively improving its

policy and value network by playing against itself and learning from its own moves.

• MCTS Guidance: The neural network guides MCTS by providing priors for move

probabilities and state evaluations, reducing the computational cost of exhaustive

simulations.

2.8.2 Training Workflow

The AlphaZero training process involves:

1. Self-Play: The agent generates games by playing against itself, using MCTS guided

by the current neural network.

2. Data Collection: States, actions, and outcomes from self-play games are stored in

a training dataset.

3. Neural Network Training: The policy and value network is updated to minimize

the loss:

L = α · Cross-Entropy Loss (Policy) + β ·Mean Squared Error (Value),

where α and β control the weight of each loss component.

4. Policy Improvement: The updated network is used in subsequent MCTS runs,

iteratively improving decision-making.

27

2.9 Genetic Algorithms and RHEA

Genetic Algorithms (GAs) are optimization heuristics inspired by the process of

natural selection (GOLDBERG, 1989), (HOLLAND, 1992). They mimic biological evo-

lution to explore complex search spaces, making them suitable for solving combinatorial

and continuous optimization problems. GAs operate on populations of candidate solu-

tions (referred to as individuals or chromosomes), applying evolutionary operators such

as selection, crossover, and mutation to evolve towards better solutions over generations.

2.9.1 Core Components of Genetic Algorithms

The typical workflow of a GA involves the following steps:

1. Initialization: Generate an initial population of candidate solutions, often ran-

domly. Each individual encodes a potential solution to the problem.

2. Fitness Evaluation: Assign a fitness score to each individual, reflecting its quality

or how well it solves the problem. The fitness function is a crucial component that

guides the evolution process.

3. Selection: Select individuals for reproduction based on their fitness scores. Com-

mon selection methods include tournament selection, roulette wheel selection, and

rank-based selection.

4. Crossover (Recombination): Combine the genetic material of two selected in-

dividuals (parents) to produce offspring. Crossover methods vary, including one-

point, two-point, or uniform crossover.

5. Mutation: Introduce small random changes in the offspring’s genetic material to

maintain diversity and explore new areas of the search space.

6. Replacement: Form the next generation by replacing less-fit individuals in the

population with the newly generated offspring.

The algorithm iterates through these steps until a stopping criterion is met, such

as reaching a maximum number of generations or achieving a satisfactory fitness score.

28

2.9.2 Fitness Evaluation in Genetic Algorithms

Fitness evaluation is a critical step in GAs as it determines how well each indi-

vidual performs in solving the problem. The fitness function varies depending on the

application and is often domain-specific. For example:

• In optimization problems, fitness may be defined as the objective function to be

maximized or minimized.

• In game AI, fitness often involves simulating gameplay to measure an individual’s

performance, such as the score achieved, win/loss outcome, or strategic effective-

ness.

• In pathfinding or planning tasks, fitness could involve minimizing the distance trav-

eled, energy consumed, or time taken.

In multi-agent systems or games, fitness evaluation often involves interactions be-

tween agents. For instance, an individual’s fitness may depend on its performance against

other individuals or predefined opponents. This dynamic evaluation process introduces

co-evolutionary dynamics, where the success of one individual affects the performance of

others.

2.9.3 Rolling Horizon Evolutionary Algorithms (RHEA)

Rolling Horizon Evolutionary Algorithms (RHEA) (GAINA et al., 2022) extend

the principles of GAs to sequential decision-making tasks, such as games. Instead of

evolving a single solution, RHEA evolves sequences of actions over a finite horizon (e.g.,

game ticks or turns). Each individual in the population represents a potential sequence of

actions, and the fitness evaluation simulates the outcome of executing the sequence from

the current state.

Advantages of RHEA:

• It can handle large and continuous action spaces by focusing on evolving feasible

action sequences.

• RHEA allows flexible adaptation to changing environments or states due to its

rolling horizon nature.

• It can serve as a strong alternative to MCTS in decision-making tasks, particularly

29

in single-agent or deterministic scenarios.

Challenges in Multi-Agent Games: Applying RHEA to multi-agent games in-

troduces unique challenges:

• Opponent Modeling: Vanilla RHEA requires handcrafted heuristics to simulate

opponents’ actions, which may not generalize well across different strategies.

• Co-Evolutionary Dynamics: To address the lack of explicit opponent modeling,

co-evolutionary approaches evolve separate populations for each agent. For exam-

ple, Liu, Pérez-Liébana and Lucas (2016) demonstrate a method where two popula-

tions are evolved simultaneously—one for each player’s sequence of actions. This

allows RHEA to adapt to dynamic strategies in competitive settings.

2.10 Risk and Warzone

Risk and War are classic strategy board games where players compete to conquer

territories on a map through strategic deployment and combat. Originating in 1957 as

"La Conquête du Monde" (The Conquest of the World) by Albert Lamorisse, Risk has

undergone various adaptations, including the Brazilian War. Over time, these games have

inspired numerous digital variations, one of them being Warzone.

2.10.1 Risk: The Board Game

In the classic Risk game, players take turns drafting territories, deploying armies,

and engaging in battles. The goal is to dominate the map by eliminating opponents or

achieving specific objectives, depending on the variant. Battles are resolved through dice

rolls, introducing an element of randomness that can influence outcomes, making Risk

both strategic and luck-dependent.

The game phases include:

1. Drafting Territories: Players take turns selecting territories or receive them ran-

domly in certain versions.

2. Deployment: Players deploy armies based on their controlled territories and bonuses

for entire continents.

3. Combat: Players attack adjacent territories to expand their control, resolved through

30

dice rolls with a balance of offense and defense.

4. Fortification: Players can reposition armies to strengthen their positions.

2.10.2 Warzone: A Strategic Evolution

Warzone is a modern digital adaptation of Risk that enhances strategic depth while

minimizing reliance on randomness. Figure 2.2 illustrates an ongoing Warzone game. The

game retains the core elements of territorial conquest and army deployment but introduces

several key differences:

• Simultaneous Turns: Players submit their moves simultaneously, unlike the se-

quential turns in Risk. This adds complexity, as players must anticipate their oppo-

nent’s actions. After players submitting their moves, the game combines all actions

and process them in a randomized order. This randomized processing of moves

introduces an additional layer of unpredictability and strategic depth to the game-

play.

• Deterministic Combat: Unlike Risk’s dice rolls, Warzone offers an option to cal-

culate combat outcomes deterministically using fixed kill rates (60% for attackers

and 70% for defenders). This setting eliminates randomness, ensuring outcomes

depend solely on strategy.

• No Draft Phase: Territories are pre-assigned at the start of the game, removing the

drafting phase common in Risk.

• Flexible Configurations: Warzone supports extensive customizations, such as ad-

justing bonuses, enabling fog of war, or playing with various team compositions

and map designs.

2.10.3 Key Features for Two-Player Matches

For this work, we focus on Warzone configured for deterministic, two-player

matches without hidden information. The game begins in a randomly generated state,

a notion that is better explained and justified in our context in Chapter 5. Players deploy

armies, transfer forces, and attack territories in simultaneous turns, emphasizing predic-

tion and counter-strategy.

31

Figure 2.2: A Warzone game in progress. Each territory contains a number representing
the number of armies stationed there and is colored (pink or purple) to indicate which
player owns it. Neutral territories are gray and may contain neutral troops, requiring an
attack to be conquered. Colored boxes outline bonus regions (in this case, continents)
and indicate the additional income provided for controlling the entire region. The bonus
income is specified by the number inside each box.

Source: The Author.

The deterministic combat model is particularly relevant, as it ensures reproducibil-

ity and provides a controlled environment for evaluating strategies. Players gain addi-

tional armies based on controlled territories and bonuses, which must be strategically

deployed to maintain a balance between offense and defense.

2.10.4 Strategic Implications

Warzone’s simultaneous turns and deterministic combat shift the focus from chance-

based tactics to precise strategic planning. Players must not only allocate resources ef-

fectively but also predict and adapt to their opponent’s moves. These features make War-

zone an excellent platform for studying decision-making algorithms, as the game’s high

branching factor and complex interactions provide a challenging and dynamic environ-

ment.

32

3 RELATED WORK

The first notable works that proposed AI agents for RISK and similar games relied

mostly on translating human knowledge from the game to algorithms to enable high-

level play while overcoming the high branching factor for the game. More recently, with

the advancement of Machine Learning techniques, the research focused on agents that

learn to play the game with no previous knowledge. In 2005, MARS (JOHANSSON;

OLSSON, 2005) took a multi-agent approach where an agent is put in each territory,

letting them negotiate to decide what actions to prioritize in a bid system. In 2010, Gibson

et al. (GIBSON; DESAI; ZHAO, 2010) applied Monte Carlo Tree Search combined with

an evaluation function trained under supervised learning to shorten the length of UCT

simulations. It only focused on the country drafting phase of the game, but it neatly

carries the intuition of combining extensive simulations with the usage of a board critic,

pivotal ideas in the more modern approaches.

Later, more cutting edge algorithms were employed to this task; (HEREDIA;

CAZENAVE, 2022) represents the era where agents are trained to learn tabula rasa through

self-play and Graph Neural Networks replace conventional Convolutional Neural Net-

works. This work dealt with the computational challenges of using MCTS applying Ex-

pert Iteration algorithm to approximate the MCTS policy without performing the actual

search. The neural networks also are utilized as a prior bias to restrict the search towards

more promising nodes (moves). To sum up, one iteration of the Expert Iteration train-

ing process would consist of the usage of the neural network guiding the search of the

MCTS and/or evaluating game states at the leaves. Then, the new policy is learned by

the neural network. Still, the experiments were made in defined small synthetic maps,

and they also just found evidence of learning for the country drafting phase. In 2020,

Carr (CARR, 2020) Created an agent using temporal difference reinforcement learning

to train a Deep Neural Network including a Graph Convolutional Network to evaluate

player positions. It also tackles the non-determinism in Risk with in the attack phase

of the game introducing a new method, pre-calculating the many possible results of an

attack and performing re-syncs after each attack. This allows opting for an agent with

more conservative/pessimistic or more optimistic/aggressive strategies in regard to deal-

ing with the randomness. The first work to experiment with Genetic Algorithms in Risk-

like games was GG-Net (BAUER, 2024), evolving two populations simultaneously (each

players moves), with the fitness of each individual being determined by a GNN that eval-

33

uates the winning probability of the player. It also achieves generalization across different

maps. The chosen platform for this work was Warzone, dealing with deterministic attacks,

where units lost in defending/attacking players are defined by a fixed ratio. Bauer (2024)

implemented the most dominant techniques as agents to test the proposed GG-Net in a

tournament in different maps, estimating their performance to find that this GA algorithm

surpassed its contestants. In 2015, a Warzone AI tournament had an agent named Cow-

zow as the winner. In general, its competitors implemented approaches that combined

tree seach with handcrafted evaluation functions, or rule-based heuristics. The winner

used the Ford-Fulkerson algorithm (FORD; FULKERSON, 1956) to efficiently distribute

armies. Cowzow was also included on GG-Net’s tournament, where it reached second

position. Despite losing to GG-Net, which is also a tabula rasa approach, Cowzow man-

aged to outperform a MCTS-GNN approach, that should be similar to AlphaZero. This

result outlines that the intrinsic characteristics of the game can make it challenging even

to well established techniques in other domains.

34

4 METHODS

In this chapter, we describe the core methods related to the GNN, and Genetic

Algorithm used in this work. Section 4.1 describes how GNNs are applied in Risk, which

will be a critical component of both MCTS and GA AIs, while Section 4.2 elaborates on

the Genetic Algorithm, covering its fundamental concepts, and justifying design choices

adopted along this work.

4.1 Graph Neural Network

The GNN plays a central role in both the MCTS and GA agents. In MCTS, policy

predictions guide tree expansions by prioritizing promising moves, while its value pre-

dictions replace expensive rollout simulations. In evolutionary agents, policy predictions

initialize populations with high-quality individuals, while value predictions are critical to

the fitness assignment during the competitive coevolutionary process. This section cov-

ers how Risk elements, such as the board and actions, are represented as graph-related

entities, and how the GNN interacts with these entities to learn the game.

4.1.1 Map and Vertex Features

The game maps are modeled as graphs, where each territory corresponds to a

vertex, and edges represent adjacency between territories. Figure 4.1 illustrates a Warzone

map and its graph representation. The left side highlights four bonus regions with yellow

boxes denoting the income bonus awarded for controlling a region, while the right side

displays territories grouped into the different regions. On more complex maps however,

bonus regions often share territories, causing them to overlap.

Territories are considered adjacent if they can be directly accessed from one an-

other, reflecting physical connectivity. However, visual proximity on the map does not

always correspond to adjacency. For example, two territories sharing a border may be

impassable due to natural barriers such as rivers or mountains.

Total armies for each player and their income are incorporated to the value and

prediction pipeline as global features. Vertex features encode the state of each territory,

including:

35

Figure 4.1: From left to right, a Warzone map, and its graph representation. On the left,
the yellow boxes indicate the income bonus offered by its four bonus regions. On the
right, each color group denotes the territories composing each region

Source: The Author.

• Ownership: One-hot encoded to indicate control by the player, the opponent, or

neutrality.

• Army Count: Scalars representing the number of stationed armies, separated by

ownership type.

• Bonus Membership: A binary vector denoting whether the territory belongs to one

or more bonuses.

Figures 4.2 and 4.3 illustrate how ownership and army count are encoded as vertex

features.

4.1.2 Policy and Value Predictions

The GNN outputs two predictions for a given game state:

• Value Prediction v: A single scalar estimating the player’s winning likelihood from

the current state.

• Policy Prediction π: A probability distribution over a set of candidate moves,

where each move can consist of attack, transfer, or deployment orders.

Rather than automatically enumerating all possible actions, the GNN receives a

list of candidate moves to evaluate. It treats each candidate move (or order) by extracting

36

Figure 4.2: Ownership of territories as vertex feature. Orange and purple nodes represent
territories controlled by a player. Neutral territories are gray.

Source: The Author.

Figure 4.3: Armies encoded as vertex feature.

Source: The Author.

37

the relevant node embeddings for source and destination territories, as well as the number

of armies involved. These features pass through specialized dense layers to generate a

logit for each candidate. The logits are then pooled to form a distribution over the input

moves. This approach provides flexibility: for instance, MCTS can supply child moves for

scoring, while a GA might submit randomly generated or evolved moves for evaluation.

Each order is encoded by its source and destination territories, plus the number of armies.

This encoding is described in Section 4.1.4.

4.1.3 Architecture Overview

The GNN architecture employs TransformerConv layers (SHI et al., 2021a) and

dense layers to process graph-level and bonus-specific information. Figure 4.4 outlines

the following steps:

1. Input Transformation: A dense layer projects raw input features into the initial

embedding space.

2. Graph Processing Layers: Three TransformerConv iterations enhance node em-

beddings via adjacency and bonus-specific connections. At each step, bonus-level

features are aggregated from node embeddings and fed back into the graph repre-

sentation.

3. Policy Head: Move-specific features (attack, transfer, deploy) are processed by

separate modules. The outputs are pooled and normalized to yield logits for each

move passed to the network.

4. Value Head: Node embeddings are globally pooled to form a single graph-level

vector, which is concatenated with global features (e.g., incomes, total armies) and

passed through dense layers to predict the value.

4.1.4 Actions Encoding

This subsection further explains how each candidate action is encoded for the

policy head. As introduced in Section 2.6, the GNN receives a batch of candidate moves.

Each move is represented by:

1. Source and Destination Territories: Interpreted as vertex indices in the game’s

38

Figure 4.4: Graph Neural Network architecture for policy and value predictions. The
architecture includes TransformerConv layers for graph processing, bonus integration,
and separate heads for policy and value predictions.

Input Features

Input Transformation
(Linear Layer)

TransformerConv Layer 1

TransformerConv Layer 2

TransformerConv Layer 3

Bonus Aggregation

Bonus Aggregation

Bonus Aggregation

Global Pooling

Concatenate Income and Total Armies

Dense Layer 1

Dense Layer 2

Value Output

Move-Specific Features

Dense Layer 1

Dense Layer 2

Policy Output

Source: The Author.

39

graph. If source and destination are the same territory, it is a deploy action; if they

differ and are both owned by the same player, it is a transfer; if ownership differs,

it is an attack.

2. Number of Armies: An integer specifying how many troops are assigned to the

order.

Figure 4.5 illustrates a pair of territories t1 and t2. An oriented edge from t1 to

t2 plus an integer troop count collectively describes a single order. By combining these

node embeddings (output from the TransformerConv layers) with the integer troop count,

the policy head produces a logit for that order.

Figure 4.5: Two adjacent territories interpreted as vertices. The oriented edge denotes
that one game order mobilizes troops from t1 to t2. The GNN’s policy head encodes this
order by concatenating node embeddings for t1 and t2 plus an integer representing troop
count.

Source: The Author.

Hence, the GNN can handle any list of candidate moves if they are encoded in this

consistent (source, destination, armies) manner. Internally, ownership information in the

node embeddings determines whether an action is an attack, transfer, or deployment.

4.1.5 GNN Training

The training process for the Graph Neural Network (GNN) was inspired by the

AlphaZero framework (SILVER et al., 2017), incorporating iterative self-play, experience

collection, and parameter updates. In each iteration, a guided MCTS agent, utilizing the

current GNN model, played multiple games against itself to generate self-play experi-

ences. These experiences, including game states, actions, and rewards, were stored in a

replay buffer. Each iteration consists of:

1. Self-Play: A guided MCTS agent played games to populate the replay buffer with

new experiences.

40

2. Parameter Updates: The replay buffer was sampled to train the GNN using policy

and value loss functions.

3. Evaluation: The updated model was evaluated on a set of games to assess improve-

ments in performance.

Network parameters were updated using the Adam optimizer (KINGMA; BA,

2017), with policy loss computed using Cross-Entropy (GOOD, 1952) and value loss

using Mean Squared Error (DODGE, 2008). This iterative process ensured that the GNN

refined its policy and value predictions over time, closely following the principles of the

AlphaZero training paradigm. Training was performed over multiple epochs, with data

stored in a replay buffer for batch updates.

At each evaluation step, the trained model plays a number of games against two

agents; A MCTS-based agent guided by the model from previous iteration, and a vanilla

MCTS agent (not guided by GNN). The performance against the previous model indi-

cates the learning at each iteration, while the vanilla agent is a fixed strength baseline for

comparison, indicating the learning across iterations.

The training scope is designed using principles of curriculum learning (SOVIANY

et al., 2022), which observe that focusing on learning easier tasks first often increases the

accuracy and convergence speed of ML models. The first iterations of training included

games in a set of three small maps, while the last iteration included a larger map, which

is more complex to learn. This process could be repeated indefinitely.

Details of the specific training iterations, including the maps used and the evolu-

tion of the training process, are provided in Chapter 5.

4.2 Genetic Algorithm

This section explains in detail the fundamental notions of the GA, starting with

an overview in Subsection 4.2.1. Next, Subsection 4.2.2 explains how individuals are

evaluated during co-evolution. Then, Subsection 4.2.3 describes the life cycle of this

evolution process. Subsection 4.2.4 concentrates on how actions are encoded into genes,

a needed understanding to discuss the handling of mutation and crossover steps, found

in 4.2.5. Lastly, we describe how GNN policy predictions are leveraged for population

initialization (Section 4.3).

41

4.2.1 Overview

The idea of GA is to simulate the natural evolution of populations, analogous to

biological evolution. The real world analogy includes entities representing genes, indi-

viduals, and populations to be evolved. In our context, the genes of the individuals will be

possible actions of a player from a given board state (deploy, attack, or transfer). Multiple

genes will compose an individual, which by extension is defined as a set of actions for

a player’s turn, or a move. Following the analogy, a population is defined as multiple

individuals, or multiple possible moves for a player on a board state. Each individual will

have a fitness value representing the ability of this individual to survive. This fitness in

our context should represent how strong a move is.

The evolution process aims to simulate multiple steps of crossovers and mutations,

also called generations, maintaining only the fittest individuals in the population. At the

end of the evolution, the fittest move of the population is selected to be played. Since the

players play each turn simultaneously, the evolutionary algorithm will define a population

for each player, and they will be co-evolved. At the end of this co-evolution, the best move

of the population that represents the moves of the GA agent is selected to be played.

4.2.2 Fitness Assignment

The fitness of an individual depends on its average performance against individ-

uals of the reciprocate population. Suppose that x is an individual that belongs to the

population X , and that y is an individual of population Y , with s being the initial board

state of the turn. After simulating the moves x and y, reaching the resulting board state s′,

a position evaluation v is assigned to s′, that expresses how advantageous this resulting

board state is for each player. This performance of x against y, evaluated as v will be re-

ferred to as the relational fitness of the pair (x, y). By obtaining value predictions for the

relational fitness of all pairs (xn, yn) for populations X and Y , the fitness of the individual

x will be given by its average relational fitness against individuals of Y . This average is

the average of values vn = RelationalF itness(x, yn), for every yn in Y . Algorithm 1

contains the pseudocode for the fitness assignment of individuals from the populations X

and Y that is done at each populations evaluation step of the evolutionary algorithm in

this competitive co-evolution. Value predictions for board states will be estimated by a

trained GNN.

42

Algorithm 1 Pseudocode to evaluate two populations X and Y of length n, assigning a
fitness value for their individuals.
Require: Population X with n individuals for player P1
Require: Population Y with n individuals for player P2
Require: Function SimulateMoves(x, y):returns resulting board state s′

Require: Function EvaluateBoardState(s′):returns evaluation v for P1’s score
1: Initialize matrix RelationalF itnessTable[n][n] with zeros
2: Initialize array FitnessX[n] with zeros
3: Initialize array FitnessY [n] with zeros
4: for each individual x in X indexed by i do
5: for each individual y in Y indexed by j do
6: s′ ← SimulateMoves(x, y)
7: v ← EvaluateBoardState(s′)
8: RelationalF itnessTable[i][j]← v {Evaluation for P1}
9: end for

10: end for
11: for each individual x in X indexed by i do
12: fitness← 0
13: for each individual y in Y indexed by j do
14: fitness← fitness+RelationalF itnessTable[i][j]
15: end for
16: FitnessX[i]← fitness/n {Average relational fitness of x over all individuals in

Y }
17: end for
18: for each individual y in Y indexed by j do
19: fitness← 0
20: for each individual x in X indexed by i do
21: fitness← fitness+RelationalF itnessTable[i][j]
22: end for
23: FitnessY [j] ← −fitness/n {Average relational fitness of y over all individuals

in X . Signal correction is needed for P2}
24: end for

43

4.2.3 Life Cycle

Each generation has steps of evaluation, crossover, mutation, and elitism. Figure

4.6 displays the life cycle of the competitive coevolution, showing how these steps are

coordinated with fitness assignment steps over the evolution. The first step of each evolu-

tion instance is initializing the populations. Typically, the default initialization is done by

sampling random individuals.

Crossover and mutation are the basic biological operations that will produce new

individuals that share genetic information with previously existing ones. Considering that

the population size is constant, and that the less adapted individuals are selected out of

the population, it is expected that the moves become progressively stronger across gen-

erations. The balance between exploring new moves and preserving genetic information

from the best-evaluated moves is typically determined by hyperparameters like mutation

rate, crossover rate, the portion of genes to be mutated in mutated individuals, and the

size of the elites. Mutation rate dictates the chance of an individual suffering mutations,

while crossover rate quantifies how many new individuals will be generated by mating

parents from the current population. Elitism is a resource to carry the fittest individuals

to the next generation, preventing them to be replaced or selected out of the population at

any step. The size of the elites is also controlled by a hyperparameter.

As implemented, no step will change the size of the populations. To assert this,

the mutation operation replaces the original individual in the population by the mutated

one. Similarly, the offspring generated in crossover also replace their parents. Different

strategies of selecting individuals to mate and to be mutated are viable, and in the present

work, all mating parents and individuals to be mutated are selected randomly. At each

crossover step, two parents will be selected and two new individuals will be generated by

crossover until the offspring set reaches the size of the population. Elites are copied at the

beginning of each generation to be re-introduced in the population at the end when the

elitism is applied, as shown in Figure 4.6. As a result of these design choices, elitism is

the only way for one individual to reach the next generation, and all other elements will be

replaced by the byproduct of crossover, which might contain part of their genes. Elites still

participate in the crossover operation, as they were not removed from the population at

the elites definition step. The mutation step will select random elements of this offspring

population based on the mutation rate parameter. A selected individual will have a random

chance of having each one of its genes mutated.

44

At the end of a generation, populations will be evaluated, and elitism will be ap-

plied. The evaluation consists of a fitness assignment, as already covered in detail in

algorithm 1, followed by sorting both populations, ranking their individuals by their fit-

ness. Applying elitism reintroduces the elites in the population, excluding a number of

worst solutions equal to the size of the elite.

While the fitness evaluation method in this algorithm ensures that each individual

is tested against all individuals from the opposing population, there exist simpler selection

mechanisms such as tournament selection. In tournament selection, a small, randomly

sampled subset of individuals competes, and the individual with the highest fitness among

them is selected for mating. This method balances selective pressure and diversity and is

thoroughly described in the literature (BLICKLE; THIELE, 1995).

The conditions that will set the evolution as complete are if the desired number of

generations are performed, or if the playing agent has reached its time limit. In practice,

checks are added between each step within a generation to check for the time elapsed. In

case the agent has exceeded the given time budget, the evolution will be interrupted, and

the populations will be evaluated and sorted, so that the rank is preserved and the best

solution can still be retrieved to be played.

4.2.4 Genes Encoding

The evolutionary algorithm interprets individuals as an array of integers, where

each integer is a gene. To encode and decode actions of the game into genes, it is necessary

to establish a bijective function. The possible actions of a player for a given board state

are mapped one-to-one to a gene, which may be part of an individual of its population.

To demonstrate how this occurs, it is important to recap some graph notions. Section 4.1

argues that the orders of the game can be mapped to a number of armies a associated

with a pair or vertices (source, destination). Let G be the graph of a Risk map, and E

be a set that contains all edges in G, considering that every vertex in G is connected to

itself. To encode an order of a player that mobilizes a troops into an unambiguous gene

of an individual I of length |E|, we consider that each position of the array I corresponds

to one different element of E, and attribute a to I[index], where index corresponds to

the desired connection (source, destination) of E. Algorithm 2 illustrates this process,

expanding it to show the encoding of a move M into an individual I .

Decoding individuals back to game moves is possible by performing the inverse

45

Figure 4.6: Competitive co-evolution flowchart.

Source: The Author.

46

procedure. For a current board configuration, each gene in the genetic sequence of an

individual can correspond to only one type of action (attack, deployment, or transfer). We

have established that each index of the genetic sequence is mapped to one pair of vertices

of the graph. Then, for each gene, if the integer is greater than zero, an order will be

added to the resulting move. The order type is inferred from the ownership of the vertices

of the pair associated with the index in the current board state. Algorithm 3 demonstrates

how an individual I can be decoded into a move M , a list of orders. The resulting move

is ready to be simulated in a game manager implementation.

Algorithm 2 Pseudocode to encode move M , containing n orders, into individual I . Each
order is an integer a over a pair of territories (source, destination).
Require: List of orders M containing n orders

1: Initialize G as the graph representing a Risk map.
2: Initialize set E with all pairs of connected vertices in G.
3: Initialize set V with all vertices in G.
4: Initialize array I of size |E|+ |V | with zeros.
5: for each v in V do
6: Add (v, v) to E
7: end for
8: for each (t1, t2) in E do
9: Map (t1, t2) to index

10: end for
11: for each ordern in M do
12: I[index from (sourcen, destinationn)] = an
13: end for

Algorithm 3 Pseudocode to decode individual I into move M , a list of orders. Each order
is an integer a over a pair of territories (source, destination).
Require: a graph G representing a Risk map.
Require: Individual I , which is an array of integer
Require: Function Map(index): maps each index of I to a pair (src, dest) of G
Require: Function Interpret(order): interprets the order type of order for current

board state
1: Initialize empty list M of orders.
2: for each gene g in I indexed by index do
3: if g > 0 then
4: (src, dest)←Map(index)
5: order ← ((src, dest), g)
6: interpretedOrder ← Interpret(order)
7: Add interpretedOrder to M
8: end if
9: end for

47

4.2.5 Mutation and Crossover

Knowing how possible moves for a turn are encoded into array of integers, the

mutation operation can be defined as changing one or more integers of an individual’s

genetic sequence. In analogy, a crossover operation can be defined as a function that

takes two individuals as inputs and produces one or more new individuals. The genes of

these offspring individuals will be a combination of the genetic sequence of their parents.

Figure 4.7 displays both operations at a gene level. The crossover in the image corre-

sponds to a one-point crossover, or single-point crossover (WORDEN; STASZEWSKI;

HENSMAN, 2011), where each parent suffers an imaginary cut at the same single point,

and new individuals are generated by swapping the genetic sequences from the point of

the cut. For the mutation, Fig. 4.7 presents a simple mutation in which one gene of an

individual is changed from 0 to 1. The single-point crossover corresponds to the crossover

operation performed at the evolution of the GA agents tested in this work, while the mu-

tation implemented has a chance of switching each gene of the mutated individual to a

random number. This chance is controlled by a hyperparameter.

Frequently, the domain of the problem restricts the possible values for the com-

bination of genes. In these cases, operations such as mutation and crossover can lead to

invalid solutions. In our domain, these operations can produce moves in which the num-

ber of deployed armies exceeds player’s income, or that contain deployments to unowned

territories. Considering the evolution cycle described in 4.2.3, checks for these constraints

and eventual corrections only need to be applied after mutation, before fitness assignment.

For this reason, correction will be considered as part of the mutation process.

After randomly mutating genes of an individual that initially encodes a valid ac-

tion, genes corresponding to deployment orders over enemy territories are set to zero. In

addition, exceeding deployments are removed; if the sum of armies deployed exceeds the

player’s income, armies are randomly subtracted from deployment orders until the con-

dition is satisfied. Finally, since there is no benefit in not deploying available troops (the

income cannot be accumulated), valid deployments are randomly added in case there is

income left.

48

Figure 4.7: Genetic operations (a) one-point crossover, and (b) mutation.

Source: (WORDEN; STASZEWSKI; HENSMAN, 2011)

4.3 Policy Predictions for Population Initialization

The default initialization strategy in Genetic Algorithms is to sample individuals

randomly. However, we leverage the policy predictions from our GNN to seed the initial

populations with higher-quality moves. Concretely:

1. Generate a large pool of random moves. For each player’s population, we create

an oversize set of random moves (e.g., three times the desired population size).

2. Score each move using the GNN policy head. The GNN takes as input the board

state plus these candidate moves and outputs policy logits for each candidate.

3. Select the top-n moves to form the initial population. By sorting candidates

according to their GNN-assigned scores (logits), we choose the best moves as indi-

viduals.

This heuristic ensures that each population begins with a set of moves the GNN al-

ready considers more promising, rather than starting purely at random Section 5 contains

experiments to test if the policy-based initialization provides a beneficial “head start” in

the competitive coevolution.

49

5 EXPERIMENTS

This chapter presents the experiments conducted in this work, outlining the method-

ologies for training and evaluation, as well as the results obtained. Section 5.1 provides a

brief implementation overview, including the codebase, the maps used in the experiments,

and the rules enforced in the matches. Section 5.2 details the training process and perfor-

mance of the GNN. Section 5.3 evaluates different agents through tournaments, focusing

on the impact of using GNN policy predictions for Genetic Algorithm (GA) initialization.

5.1 Risk Implementation

5.1.1 Code Base

The experiments utilized a custom implementation based on the Warzone simu-

lation framework from (Bauer, Andrew, 2023), with modifications to meet the needs of

this study. The updated codebase is available at (Soares, Ricco, 2024). Key modifications

include:

• Local Play Support: Hand-crafted maps replaced external dependencies due to

Warzone’s restricted access to official maps without paid membership.

• Competitive Coevolution: A dedicated module was designed to support competi-

tive co-evolution, replacing PyGAD (GAD, 2021), which does not officially support

coevolution. The new module offers better compatibility and flexibility.

• GNN Training and Evaluation: Scripts for policy and value GNN training were

developed and integrated into the codebase.

5.1.2 Maps

Four maps were used in the experiments (Figure 5.1). The maps vary in size,

topology, and complexity:

• Small Custom Map: A simple sequential map with 9 territories and 3 bonus re-

gions.

• Owl Island and Banana Maps: Both contain 12 territories and 4 disjoint bonuses,

50

differing only in topology.

• Italy Map: A larger map with 20 territories and 10 bonus regions, including more

complex non-disjoint bonuses.

Figure 5.1: Maps used in the experiments.

(a) Small Custom Map: 9 ter-
ritories and 3 bonuses. Each
region offers a bonus of 2
units.

Source: The Author.

(b) Owl Island Map: 12 territories, 4 bonuses.

Source: <https://www.warzone.com/
SinglePlayer?PreviewMap=56763>

(c) Banana Map: 12 territo-
ries, 4 bonuses.

Source: <https://www.
warzone.com/SinglePlayer?
PreviewMap=29633>

(d) Italy Map: 20 territories, 10 bonuses.

Source: <https://www.warzone.com/SinglePlayer?
PreviewMap=3448>

5.1.3 Match Rules

Each game started in a random board state, where territories and armies were

distributed randomly. Despite introducing a luck factor into the evaluation, approaches

51

like this are common in many ML agents for games. In the agent evaluation step, the

random positions prevent early-game exploits. This practice ensures agents’ performance

correlates more to a general understanding of the game as a whole, than to hand-crafted

heuristics for the initial phase of the game or map characteristics exploits. Similarly, in

GNN training, it increases diversity in data. In TCEC (Top Chess Engine Championship),

competitors play from predetermined positions, playing a game as white and as black for

each position. In our evaluation matches, luck is indeed a factor that produces noise over

the results, since players do not switch perspective. However, this should be mitigated as

numerous games are played.

To avoid prolonged matches or stalemates, two tie conditions were enforced:

• The game was considered a tie after 50 turns if both players had winning confidence

between 49% and 51%.

• A game exceeding 100 turns was also declared a tie.

In order to save computational resources, players will agree on the winner in clear

winning positions. This happens in cases where one player has a winning confidence of

at least 99% while the other has 1% or less, and it is considered that the losing player

surrenders. Match scoring followed a chess-like convention, where wins awarded 1 point,

and ties awarded 0.5 points to each player.

5.2 GNN Training Results

The network training followed an AlphaZero-inspired framework described in

Subsection 4.1.5. This process involved three iterations of self-play for data collection,

parameter updates, and evaluation. Results for each iteration are presented in this section,

followed by a brief discussion.

After updating parameters, learning was evaluated through matches against the

previous model and a fixed strength baseline. In each match, 30 games are played on each

map. The updated agent subsequently played against itself to collect more data, which

was accumulated in a replay buffer. The final dataset contained about 89,254 turns. The

remainder of this section details each iteration and its results.

52

5.2.1 Setup

The training setup included a baseline vanilla MCTS agent (without GNN guid-

ance) and a GNN-guided MCTS agent. Their hyperparameters are listed in Table 5.1.

Under these specifications, our baseline agent took about 30s to make each move, while

the guided agent required about 15.5 seconds.

Rather than using randomly initialized weights for the first training iteration, the

initial dataset was generated from played by the baseline agent. Subsequent iterations ex-

pand this dataset with experiences from the guided agent using the updated network, op-

timizing its outputs using MCTS with 150 iterations. These experiences served as policy

and value estimators for parameter updates in the next iteration, following a methodology

similar to (SILVER et al., 2017). The GNN training hyperparameters are detailed in Table

5.2.

Table 5.1: MCTS Parameters for Training
Baseline GNN Guided

Iterations 300 150
Max Rollout Depth 20 20
Policy Trust N/A 0.75
Time Limit ∞ ∞

Table 5.2: Neural Network Optimization Hyperparameters
Optimizer Adam
Policy Loss Cross Entropy
Value Loss Mean Squared Error
Learning Rate 0.001
Batch Size 32
Epochs 200

5.2.2 Results

This subsection presents the results obtained during the training of the GNN for

each iteration. The policy and value losses across all three iterations are depicted in Figure

5.5, offering a comparative visualization on a fixed scale.

53

5.2.2.1 Iteration 1

The first iteration utilized 26,928 turns of data from three small maps (Owl Island,

Banana, and Custom Map). This dataset, generated via self-play by the baseline agent, is

summarized in Table 5.3. The loss curves (Figure 5.2) exhibit smooth convergence, with

value loss stabilizing faster than policy loss. Table 5.4 highlights evidence of learning

during evaluation.

The trained agent achieved 75.6% of match points against the untrained model and

demonstrated competitive performance against the baseline despite using half as many

iterations. The uneven data distribution may explain the agent’s relatively lower perfor-

mance on Owl Island, which had significantly fewer data points in the dataset.

Table 5.3: Data Distribution Across Maps For Iteration 1
Map Number of Turns
Custom Simple 11,980
Banana 8,744
Owl Island 6,204
Total 26,928

Table 5.4: Evaluation Results for Training Iteration 1.
Map Score vs. Untrained Model Score vs. Baseline
Custom Simple 63.3% 51.7%
Banana 86.7% 56.7%
Owl Island 76.7% 46.7%
Overall 75.6% 51.7%

5.2.2.2 Iteration 2

Iteration 2 improved data balance, using 49,206 turns, obtained by expanding the

dataset with experiences of the updated agent (described in Table 5.5). Losses in Fig-

ure 5.3 show increased variance, particularly for value loss. Figure 5.5 gives valuable

insight for comparison with the previous iteration, showing that in reality, both curves

vary in a lower range than in the first iteration. This suggests improved capacity for data

approximation as more turns of similar quality were added.

Evaluation results (Table 5.6) reflect stronger performance overall. Although the

agent underperformed against the previous iteration on Owl Island, its improved results

against the baseline on the same map suggest enhanced map comprehension due to the

balanced dataset.

54

Figure 5.2: Policy and Value Losses For Training Iteration 1.

(a) Policy Loss (Iteration 1)

(b) Value Loss (Iteration 1)

Source: The Author.

55

Figure 5.3: Policy and Value Losses For Training Iteration 2.

(a) Policy Loss (Iteration 2)

(b) Value Loss (Iteration 2)

Source: The Author.

56

Table 5.5: Data Distribution for each map in Second Iteration training
Map Number of Turns
Custom Simple 14,486
Banana 18,325
Owl Island 16,395
Total 49,206

Table 5.6: Evaluation Results for Training Iteration 2
Map Score vs. Iteration 1 Model Score vs. Baseline
Custom Map 58.3% 63.3%
Banana 63.3% 53.3%
Owl Island 40% 63.3%
Overall 53.9% 60%

5.2.2.3 Iteration 3

Iteration 3 introduced the Italy map, resulting in a dataset of 89,254 turns (Table

5.7). The loss curves (Figure 5.4) are smoother than those of the previous iteration but

indicate increased overall loss values compared to earlier iterations. The value loss curve,

in particular, appears less stable.

Evaluation results (Table 5.8) show a decline in general performance. The agent

demonstrated some learning on the Italy map, achieving a high score against the previous

iteration agent. However, it failed to outperform the baseline on this more challenging

map.

The reduced dataset size for Italy (10,002 turns) compared to other maps likely

contributed to the diminished performance. This aligns with the principles of Curriculum

Learning (SOVIANY et al., 2022), which suggest that more complex tasks require greater

quantities of high-quality data. Consequently, the model from Iteration 2 struggled to

generalize its learning from smaller maps to generate data sufficient to outperform the

baseline after just one iteration of training.

Table 5.7: Data Distribution for each map in Third Iteration training
Map Number of Turns
Custom Simple 24,486
Banana 28,335
Owl Island 26,431
Italy 10,002
Total 89,254

57

Figure 5.4: Policy and Value Losses For Training Iteration 3.

(a) Policy Loss (Iteration 3)

(b) Value Loss (Iteration 3)

Source: The Author.

58

Figure 5.5: Policy and Value Losses For All Training Iterations

(a) Policy Loss (All Iterations)

(b) Value Loss (All Iterations)

Source: The Author.

59

Table 5.8: Evaluation Results for Training Iteration 3.
Map Score vs. Iteration 2 Model Score vs. Baseline
Custom Map 70% 51.7%
Banana 43.3% 50%
Owl Island 46.7% 46.7%
Italy 90% 36.7%
Overall 62.5% 46.2%

5.3 Tournament

This section evaluates the performance of different agents through two tourna-

ments. The first tournament uses the best-performing GNN, from the second training

iteration, while the second tournament utilizes the GNN obtained in the third iteration.

Subsection 5.3.1 outlines the setup and methodology, and Subsection 5.3.2 discusses the

results, including insights derived from agent performance across different maps.

5.3.1 Setup

The tournaments compared the following agents:

• Vanilla MCTS: Baseline agent without GNN guidance.

• GNN-Guided MCTS: A standard MCTS agent augmented with GNN policy and

value predictions, as in (SILVER et al., 2017).

• GA Agent: Standard genetic algorithm, similar to GG-Net (BAUER, 2024). The

policy output from the GNN is ignored.

• GA with Policy Initialization: GA agent with populations initialized using the

GNN’s policy predictions.

In each tournament, every pair of agents played 50 games on each map. All agents

that use a neural network share the same GNN model. In order to ensure fairness in com-

paring different agents controlled by different techniques, a time control of 12 seconds

per move was enforced. Tables 5.9 and 5.10 contain, respectively, the parameters config-

uration for the MCTS and GA agents in the tournament.

Since the GA Agent and the GA with Policy Initialization share similar config-

urations and operations—differing only in the additional policy initialization step—the

evolution process was designed to allow interruptions between steps in its lifecycle (as

described in Section 4.2.3). This ensured no additional computational overhead would

60

unfairly benefit the GA with Policy Initialization.

Table 5.9: MCTS Parameters for Tournaments. For this configuration, the MCTS will
perform as many iterations as possible under the time constraint.

Baseline GNN Guided
Iterations ∞ ∞
Max Rollout Depth 20 20
Policy Trust N/A 0.75
Time Limit 12s 12s

Table 5.10: GA Parameters for Tournaments. For this configuration, the GA will perform
as many generations as possible under the time constraint.

Standard GA GA with Policy Initialization
Population Size 30 30
Elites Size 5 5
Generations ∞ ∞
Sampled Individuals N/A 90
Time Limit 12s 12s

5.3.2 Results

While the GA agents did not surpass the performance of the MCTS-based ones,

consistent with prior findings (BAUER, 2024), the GA with policy initialization signifi-

cantly outperformed the standard GA in our experiments. In both tournaments, the guided

MCTS achieved first place (scoring 54.4%, and 55,6%), closely followed by the GA with

policy initialization (scoring 53.8%, and 54.2%). While agents performance were gener-

ally close, the margin between second and third places was more significant (7.1% in the

first tournament and 7.6%, in the second), suggesting that the GNN guided MCTS and

the GA with policy performed significantly better than the other two competitors.

Although the overall score (Tables 5.11, 5.13) indicate tight competition, the

matchup results (Tables 5.12, 5.14) reveal consistent performances. The guided MCTS

scored at least 51% of the match points in all pairings. The GA with policy initializa-

tion outperformed the standard GA and the vanilla MCTS in both tournaments, having a

particular wide margin over the standard GA.

Out of the 1050 games, the GA with policy scored 9.05% more points than the

standard GA, achieving 60.6% in the head-to-head machups. In comparison, the Guided

MCTS scored 1.05% more points than the GA with Policy Initialization, winning 53.29%

in their direct encounters.

61

5.3.2.1 Second Iteration GNN Tournament

Table 5.11 summarizes the results for the tournament using the second iteration

GNN model. The GNN-Guided MCTS and GA with policy initialization consistently

outperformed other contestants.

Table 5.11: Tournament results (Second Iteration GNN) as scoring percentages. Each
agent played 150 games on each of the four maps. Overall scores are shown as percent-
ages of the maximum possible score (450 points).

Agent Custom Map Owl Island Banana Overall
Guided MCTS 56% 57.33% 50% 54.44%
GA with Policy Init. 48.33% 51.33% 62% 53.82%
GA Agent 51% 40.67% 48.67% 46.78%
Vanilla MCTS 44.67% 50.66% 39.33% 44.89%

Table 5.12: Matchup results for the tournament (Second Iteration GNN). Each matchup
consisted of 150 games. Values represent the number of wins for the row agent (Agent 1)
against the column agent (Agent 2).

Agent 1 \ Agent 2 Guided MCTS GA with Policy Init. GA Agent Vanilla MCTS
Guided MCTS – 51% 54.33% 58%
GA with Policy Init. 49% – 57.33% 55.33%
GA Agent 45.67% 42.67% – 52%
Vanilla MCTS 42% 44.67% 48% –

5.3.2.2 Third Iteration GNN Tournament

Results for the tournament using the third GNN model are presented in Table

5.13. The GNN-Guided MCTS and GA with policy initialization maintained strong per-

formance, but all network-guided models struggled on the Italy map. This reflects the

limitations of this model on learning this more complex map in just one iteration of learn-

ing, as discussed in Section 5.2, third training iteration (5.2.2.3). Table 5.14 shows that

the Guided MCTS and GA with Policy Initialization agents won most matches against the

Vanilla MCTS.

Table 5.13: Tournament results (Third Iteration GNN) as scoring percentages. Each agent
played 150 games on each of the four maps. Overall scores are shown as percentages of
the maximum possible score (600 points).

Agent Custom Map Owl Island Banana Italy Overall
Guided MCTS 62.33% 56.67% 57.33% 46% 55.58%
GA with Policy Init. 48% 59.33% 61.33% 48% 54.17%
Vanilla MCTS 41% 41.33% 42% 62% 46.58%
GA Agent 48.67% 42.67% 39.33% 44% 43.67%

62

Table 5.14: Matchup results for the tournament (Third Iteration GNN). Each matchup
consisted of 200 games. Values represent the scoring percentages of the row agent (Agent
1) against the column agent (Agent 2).

Agent 1 \ Agent 2 Guided MCTS GA with Policy Init. Vanilla MCTS GA Agent
Guided MCTS – 55% 57.25% 54.5%
GA with Policy Init. 45% – 54.5% 63%
Vanilla MCTS 42.75% 45.5% – 51.5%
GA Agent 45.5% 37% 48.5% –

63

6 CONCLUSION

6.1 Overview

This research explored a simple increment over a novel approach in Risk-like

games. Our initial experiments revealed that starting the evolution with high-quality in-

dividuals can make difference in GA-based approaches. Still, this work contains many

limitations;

Our experiments only included a small subset of simple maps. Different tech-

niques may have their strengths and flaws. Having more diverse experiments and data

help in understanding in which scenarios each algorithms perform better, a relevant anal-

ysis to compare different agents.

The GNN learning was only partially successful. While the network-guided agents

surpassed the baseline performance, our netowrk struggled to learn a new and more com-

plex map. Ideally, the iterations of the reinforcement learning training are run until con-

vergence. The exact implications on training the GNN over GA self-play data on conver-

gence speed and level of play after convergence are yet to be explored.

Parameters used for both GA and MCTS agents were not sufficiently explored.

Fine-tunning parameters with grid search, and trying different designs for the GA (without

total crossover, for instance) is essential to achieve the highest level of play.

Finally, a great part of our limitations (as dataset size, number of RL iterations,

number of games in evaluation) are associated with the performance of our implementa-

tion.

6.2 Future Work

There is a lack of direct comparison between the different techniques proposed

over the last two decades. Future research could focus on reviewing and testing more

extensively the most notorious works, to understand more clearly the current state-of-the-

art. This issue can be associated with the fact that the research in the field is scattered

on different platforms and variations of the game, with no platform being consolidated as

the best choice to develop AI agents. Despite the code of the current work being open,

and allowing fully local play, refactors would be needed for it to be more extensible and

easily maintainable. Additionally, critical parts could be implemented in a compiled lan-

64

guage to achieve efficiency in CPU operations on game simulation. Thus, the advent of

a free-to-use, efficient, extensible, comprehensible, and customizable implementation of

the game, that supports its most traditional variations, with no server communication re-

quired, would be a milestone on experimentation and reproducibility. Another beneficial

asset would be large public datasets of games played by human experts.

Many different possibilities can be explored in terms of new agents proposal, or

refinements to existing techniques. On the GNN side, different architectures can be fur-

ther explored and compared to provide a hint on what is more effective in RISK. For

policy gradient optimization, Proximal Policy Optimization (SCHULMAN et al., 2017)

is a cutting-edge technique that can be explored.

A myriad of variations of Evolutionary Algorithms can be tested. Ranging from

applying CMA-ES on the evolution, to introducing more complex methods, such as im-

plementing RHEA (GAINA et al., 2022) framework, evaluating the actions of a fixed

horizon of turns, instead of just a turn. While it could add depth to the GA moves search,

a reformulation of the entities (genes, individual, and populations) of the evolutionary

domain would be required, posing the challenge of correcting crossover and mutation

operations on a broader scale, since a mutation of a singular order of a turn can, for ex-

ample, change the ownership of a territory, thus impacting the whole upcoming sequence

of turns, a consistency that should be maintained for both populations in case coevolution

is maintained.

Different combinations of already documented approaches are possible. In the

present work, policy predictions are used only to initialize populations, but other manners

to incorporate it to the framework can be found. For example, a low-depth guided MCTS

could be combined with the GA, in a hybrid framework that combines SOTA approaches.

The MCTS could be used to search potential follow-ups of the moves to be evaluated on

the GA, or the GA could act to refine the MCTS output.

The potential of evolutionary algorithms on neural networks training tabula rasa

in detriment of the established MCTS, as proposed in AlphaZero (SILVER et al., 2017),

is yet to be investigated. In guided MCTS, even when the neural network has random

parameters, the search should eventually reach a terminal state of the game, backpropa-

gating the results, if given enough time. In comparison to the MCTS, the GA is unable to

foresee reasonable continuations of the game without relying on the GNN, as the fitness

of individuals is completely given by the GNN, and no additional search is performed.

Presumably, the GA as studied in this work would struggle in the first few iterations of a

65

reinforcement learning training. Still, if this technique outperforms MCTS with a trained

GNN, it is expected that the GA can be used as a network improvement operator from

a certain point. In that case, this relation could be further studied to achieve the optimal

efficiency reinforcement learning framework for the game, in both convergence time, and

play level reached criteria.

Other unexplored techniques, such as Hierarchical Learning, are yet to be imple-

mented for RISK-like games.

66

REFERENCES

BAUER, A. Artificial intelligence with graph neural networks applied to a risk-like board
game. IEEE Transactions on Games, v. 16, n. 2, p. 342–351, 2024.

Bauer, Andrew. py-risk. 2023. Accessed: Dec 2024. Available from Internet:
<https://github.com/andenrx/py-risk>.

BLICKLE, T.; THIELE, L. A comparison of selection schemes used in genetic
algorithms. In: . [s.n.], 1995. Available from Internet: <https://api.semanticscholar.org/
CorpusID:16240839>.

BROWN, N.; SANDHOLM, T.; MACHINE, S. Libratus: The superhuman ai for no-limit
poker. In: IJCAI. [S.l.: s.n.], 2017. p. 5226–5228.

BROWNE, C. B. et al. A survey of monte carlo tree search methods. IEEE Transactions
on Computational Intelligence and AI in Games, v. 4, n. 1, p. 1–43, 2012.

CARR, J. Using graph convolutional networks and td(λ) to play the game of risk. CoRR,
abs/2009.06355, 2020. Available from Internet: <https://arxiv.org/abs/2009.06355>.

DODGE, Y. Mean squared error. In: . The Concise Encyclopedia of Statistics.
New York, NY: Springer New York, 2008. p. 337–339. ISBN 978-0-387-32833-1.
Available from Internet: <https://doi.org/10.1007/978-0-387-32833-1_251>.

FORD, L. R.; FULKERSON, D. R. Maximal flow through a network. Canadian Journal
of Mathematics, v. 8, p. 399–404, 1956.

GAD, A. F. Pygad: An intuitive genetic algorithm python library. CoRR, abs/2106.06158,
2021. Available from Internet: <https://arxiv.org/abs/2106.06158>.

GAINA, R. D. et al. Rolling horizon evolutionary algorithms for general video game
playing. IEEE Transactions on Games, v. 14, n. 2, p. 232–242, 2022.

GIBSON, R.; DESAI, N.; ZHAO, R. An automated technique for drafting territories in
the board game risk. In: . [S.l.: s.n.], 2010.

GOLDBERG, D. E. Genetic Algorithms in Search, Optimization, and Machine
Learning. New York: Addison-Wesley, 1989.

GOOD, I. J. Rational decisions. Journal of the Royal Statistical Society.
Series B (Methodological), [Royal Statistical Society, Oxford University Press],
v. 14, n. 1, p. 107–114, 1952. ISSN 00359246. Available from Internet: <http:
//www.jstor.org/stable/2984087>.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press,
2016. <http://www.deeplearningbook.org>.

HEREDIA, L.; CAZENAVE, T. Expert iteration for risk. In: . [S.l.: s.n.], 2022. p.
27–37. ISBN 978-3-031-11487-8.

HOLLAND, J. H. Genetic algorithms. Scientific American, Scientific American,
a division of Nature America, Inc., v. 267, n. 1, p. 66–73, 1992. ISSN 00368733,
19467087. Available from Internet: <http://www.jstor.org/stable/24939139>.

67

JOHANSSON, S. J.; OLSSON, F. Mars – a multi-agent system playing risk. In: . [s.n.],
2005. Available from Internet: <https://api.semanticscholar.org/CorpusID:17010299>.

KINGMA, D. P.; BA, J. Adam: A Method for Stochastic Optimization. 2017.
Available from Internet: <https://arxiv.org/abs/1412.6980>.

KIPF, T. N.; WELLING, M. Semi-Supervised Classification with Graph
Convolutional Networks. 2017. Available from Internet: <https://arxiv.org/abs/1609.
02907>.

KOCSIS, L.; SZEPESVáRI, C. Bandit based monte-carlo planning. In: . [S.l.: s.n.],
2006. v. 2006, p. 282–293. ISBN 978-3-540-45375-8.

LIU, J.; PéREZ-LIéBANA, D.; LUCAS, S. M. Rolling horizon coevolutionary
planning for two-player video games. In: 2016 8th Computer Science and Electronic
Engineering (CEEC). [S.l.: s.n.], 2016. p. 174–179.

SCARSELLI, F. et al. The graph neural network model. IEEE Transactions
on Neural Networks, v. 20, p. 61–80, 2009. Available from Internet: <https:
//api.semanticscholar.org/CorpusID:206756462>.

SCHULMAN, J. et al. Proximal Policy Optimization Algorithms. 2017. Available
from Internet: <https://arxiv.org/abs/1707.06347>.

SHI, Y. et al. Masked Label Prediction: Unified Message Passing Model
for Semi-Supervised Classification. 2021. Available from Internet: <https:
//arxiv.org/abs/2009.03509>.

SHI, Y. et al. Masked label prediction: Unified message passing model for semi-
supervised classification. In: ZHOU, Z.-H. (Ed.). Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI-21. International
Joint Conferences on Artificial Intelligence Organization, 2021. p. 1548–1554. Main
Track. Available from Internet: <https://doi.org/10.24963/ijcai.2021/214>.

SILVER, D. et al. Mastering the game of go without human knowledge. Nature, v. 550,
p. 354–359, 10 2017.

Soares, Ricco. py-risk. 2024. Accessed: Dec 20204. Available from Internet:
<{https://github.com/RiccoSoares/py-ris}.>

SOVIANY, P. et al. Curriculum Learning: A Survey. 2022. Available from Internet:
<https://arxiv.org/abs/2101.10382>.

SUTTON, R. S.; BARTO, A. G. Reinforcement Learning: An Introduction. Second.
The MIT Press, 2018. Available from Internet: <http://incompleteideas.net/book/
the-book-2nd.html>.

VELIčKOVIć, P. et al. Graph Attention Networks. 2018. Available from Internet:
<https://arxiv.org/abs/1710.10903>.

WORDEN, K.; STASZEWSKI, W. J.; HENSMAN, J. J. Natural computing for
mechanical systems research: A tutorial overview. Mechanical Systems and Signal
Processing, v. 25, n. 1, p. 4–111, 2011. ISSN 0888-3270. Available from Internet:
<https://www.sciencedirect.com/science/article/pii/S0888327010002499>.

