

Evento	Salão UFRGS 2024: SIC - XXXVI SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2024
Local	Virtual
Título	Análise da taxa de produção de hidrogênio na eletrólise
	alcalina da água para diferentes catalisadores
Autor	LEONARDO DOS SANTOS BACH
Orientador	ANNELISE KOPP ALVES

O hidrogênio é promissor como um substituto para os combustíveis fósseis e, principalmente, como um método de armazenamento de energia. Ele não só apresenta a maior densidade de energia gravimétrica, como também o único subproduto da sua queima é a água, o tornando um dos combustíveis mais sustentáveis para o meio ambiente, especialmente, se a energia necessária para sua produção for originada de fontes renováveis. A eletrólise da água é o método mais utilizado para a obtenção de hidrogênio atualmente. Em geral, a eletrólise da água pode ser dividida na reação de evolução de hidrogênio que ocorre no cátodo e a reação de evolução de oxigênio que ocorre no anodo. Um dos maiores desafios para a utilização do hidrogênio é que a sua eficiência de produção esteja de acordo a sua demanda comercial. Com isso em mente, o trabalho foi desenvolvido a partir de análises da viabilidade dos óxidos de zinco (ZnO) e de cobre (CuO) como catalisadores na reação de eletrólise da água e o seu impacto na taxa de produção de hidrogênio. Os óxidos foram obtidos a partir de síntese por combustão e a sua caracterização realizada pelos métodos de Espectrometria por Reflectância Difusa (ERD), Microscopia Eletrônica de Varredura (MEV) e Difração de Raios X (DRX). Os óxidos foram depositados em vidros condutores FTO pelo método de revestimento por imersão e analisados pelo processo de medida de fotocorrente. A produção de hidrogênio foi realizada utilizando o Voltâmetro de Hoffman, onde, no catodo, havia um eletrodo de platina e, no anodo, o vidro condutor FTO revestido pelo catalisador obtido. O eletrólito utilizado foi o hidróxido de potássio (KOH), que é utilizado em escala comercial, em uma solução aquosa de 10%. A taxa de produção de hidrogênio foi observada na tensão de 5 V para os dois óxidos e em uma reação de eletrólise de controle sem catalisador. A análise revelou que a utilização de CuO resultou em um aumento significativo de 47,3% na taxa de produção de hidrogênio em comparação com a reação de controle, evidenciando sua eficácia superior. Por outro lado, o ZnO também demonstrou uma melhoria considerável, com uma taxa de produção de hidrogênio 26,9% maior do que a reação de controle, embora ainda abaixo do desempenho do CuO.