
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

JORDI PUJOL RICARTE

Automatic Configuration of Generalized
Constructive Heuristics

Work presented in partial fulfillment of the
requirements for the degree of Bachelor in
Computer Science

Advisor: Prof. Dr. Marcus R. P. Ritt

Porto Alegre
January 2025



UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitora: Profa. Marcia Barbosa
Vice-Reitor: Prof. Pedro Costa
Pró-Reitora de Graduação: Profa. Nádya Pesce da Silveira
Diretor do Instituto de Informática: Prof. Luciano Paschoal Gaspary
Coordenador do Curso de Ciência de Computação: Prof. Álvaro Freitas Moreira
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro



“So Long, and Thanks for All the Fish”

— DOUGLAS ADAMS



AGRADECIMENTOS

Agredeço a minha família, que sempre me incentivou a conhecer mais sobre o

mundo e me motiva a ser uma pessoa melhor a cada dia. Também agradeço os amigos

que estiveram comigo durante os últimos anos e me deram suporte nos momentos mais

difíceis, especialmente àqueles que me apoiaram direta ou indiretamente durante a escrita

desse trabalho. Por fim, agradeço a Juliana Ferraro (in memoriam) por me incentivar a

fazer o curso de Ciência da Computação na UFRGS, mesmo com todas as dificuldades

existentes em ir sozinho estudar em um estado até então desconhecido por mim.



ABSTRACT

Constructive algorithms represent one of the three fundamental approaches of metaheuris-

tics, along with the modification and recombination strategies. In this context, the goal

is to develop, step by step, a solution within a feasible solution space for a given prob-

lem. Examples of heuristics that employ this strategy include the Greedy Algorithm,

Beam Search, Ant Colony Algorithm, among others. The diversity of available construc-

tive algorithms, coupled with the nuances of metaheuristics, which are often stochastic,

frequently complicates the selection of the most suitable algorithm for a specific prob-

lem. The same applies to design options, such as the definition of the neighborhood to

be explored and the appropriate structures for efficient implementation. In light of these

challenges, the field of automatic algorithm configuration emerges with the purpose of

combining multiple heuristics to achieve more effective and comprehensive solutions, us-

ing various techniques to select the best heuristics and the best parameters for a given

scenario.

This work proposes the use of automatic configuration techniques to combine multiple

constructive heuristics, aiming to achieve the best possible combination for specific prob-

lems. Additionally, it intends to compare the results obtained with other solutions found

in the literature, employing different problems for the evaluation of these metrics.

Keywords: Constructive Algorithms. Heuristics. Combinatorial Optimization. Context-

free grammar.



Configuração automática de Heurísticas Construtivas de propósito geral

RESUMO

Os algoritmos construtivos representam uma das três abordagens fundamentais das meta-

heurísticas, juntamente com as estratégias de modificação e recombinação. Nesse con-

texto, o objetivo é desenvolver, passo a passo, uma solução num espaço de soluções

viáveis para um problema. Exemplos de heurísticas que empregam essa estratégia in-

cluem o Algoritmo Guloso, a Busca por Raio, o Algoritmo de Colônia de Formigas, entre

outros. A diversidade de algoritmos construtivos disponíveis, aliada às nuances das meta-

heurísticas, que muitas vezes são estocásticas, frequentemente dificulta a escolha do al-

goritmo mais adequado para um problema específico. O mesmo acontece com as opções

de projeto, como a definição da vizinhança a ser explorada e das estruturas adequadas

para uma implementação eficiente. Diante desses desafios, a área de configuração auto-

mática de algoritmos surge com o propósito de combinar várias heurísticas para alcançar

soluções mais eficazes e abrangentes, empregando diversas técnicas para selecionar as

melhores heurísticas e os melhores parâmetros para um determinado cenário.

Este trabalho propõe a utilização de técnicas de configuração automática para combinar

múltiplas heurísticas construtivas, visando alcançar a melhor combinação possível para

problemas específicos. Além disso, pretende-se comparar os resultados obtidos com ou-

tras soluções encontradas na literatura, empregando diferentes problemas para a avaliação

dessas métricas.

Palavras-chave: Algoritmos construtivos. Heurísticas. Otimização combinatória. Gra-

máticas livres de contexto.



LIST OF FIGURES

Figure 4.1 Example of KLSFP instance and solution for k = 2 (in red) ........................26
Figure 4.2 Box plot of average difference on objective value by instance class

(Ours vs CBFS).........................................................................................................31
Figure 4.3 Objective value comparison scatter plot. Ours (axis X) vs CBFS (axis Y)...32
Figure 4.4 Histogram of average difference on cost (Ours vs CBFS). ...........................33
Figure 4.5 Box plot for average difference value by instance class (Ours vs Base). ......36
Figure 4.6 Histogram of % difference (Ours vs Base)....................................................37



LIST OF TABLES

Table 4.1 Parameters configuration. ................................................................................27
Table 4.2 KLSFP instaces classes ...................................................................................28
Table 4.3 Comparison of objective value and cost differences with the Pilot Method. ..29
Table 4.4 Comparison of objective value and cost differences with CBFS. ...................30
Table 4.5 Max Budget Formula based on Number of Jobs (|J |) and Number of

Machines (|M |) .........................................................................................................34
Table 4.6 Comparison of average and standard deviation of values and cost differ-

ences for FSSP...........................................................................................................35
Table 4.7 Values for FSSP...............................................................................................36



CONTENTS

1 INTRODUCTION.......................................................................................................10
2 HEURISTIC ALGORITHMS ...................................................................................12
2.1 Classical Constructive Heuritics............................................................................12
2.1.1 Priority Algorithm..................................................................................................13
2.1.2 Greedy Algorithm ..................................................................................................13
2.1.3 Pilot Method ..........................................................................................................14
2.1.4 Beam Search Algorithm.........................................................................................15
2.1.5 Multi-Start Algorithm ............................................................................................16
2.1.6 Ant-Colony Optimization ......................................................................................17
2.2 Hybridizing Heuristics ...........................................................................................19
3 A GRAMMAR-DRIVEN HYBRID HEURISTIC...................................................20
3.1 A Grammar to represent an algorithmic space....................................................20
3.1.1 Priority algorithm...................................................................................................21
3.1.2 Main Algorithm .....................................................................................................21
3.2 Implementation .......................................................................................................22
3.2.1 Interface .................................................................................................................22
3.2.2 Algorithm Implementation.....................................................................................24
3.2.2.1 Selector ...............................................................................................................24
3.2.2.2 Main Algorithm ..................................................................................................24
3.2.3 Configuration Reader .............................................................................................24
4 EXPERIMENTAL RESULTS ...................................................................................26
4.1 K-Labelled Spanning Forest ..................................................................................26
4.1.1 Implementation ......................................................................................................27
4.1.2 Instances.................................................................................................................28
4.1.3 Results....................................................................................................................28
4.2 Flowshop Scheduling Problem...............................................................................31
4.2.1 Implementation ......................................................................................................34
4.2.2 Instances.................................................................................................................34
4.2.3 Results....................................................................................................................35
5 CONCLUSION ...........................................................................................................38
REFERENCES...............................................................................................................39



10

1 INTRODUCTION

Every day we encounter optimization problems in our lives. Whether finding the

shortest path from our house to our workplace or deciding the best way to organize our

daily tasks, we always seek an efficient way to solve our problems. In mathematics, the

field of finding the optimal solution to a problem is called optimization. In computer

science, the branch of optimization that aims to find the best solution in a finite set of

possibilities is called combinatorial optimization (Papadimitriou; Steiglitz, 1998).

These problems can be expressed as a set P ⊆ I × S of instances and solutions.

All the problems for which a solution can be verified in polynomial time belong to the

complexity class NP. Some optimization problems can also be solved by algorithms with a

polynomial time complexity, such as the Minimum Spanning Tree (Kruskal, 1956). These

problems are elements of the complexity class P. Other problems in the NP class can not

be solved by an algorithm with polynomial time complexity unless it is proven that P and

NP are the same. In other words, no algorithm can solve them exactly in a polynomial

time unless P = NP (Papadimitriou, 1994). One example of NP-Hard combinatorial

optimization problems is the Knapsack Problem (Martello; Toth, 1987).

Fortunately, not every problem needs to be solved precisely. Often, an approxi-

mate solution is sufficient for various practical applications. To achieve these solutions,

many techniques have been developed to create approximations to the optimal solution of

a problem, such as approximation algorithms (Williamson; Shmoys, 2011) and even ma-

chine learning (Zhou; Liu, 2021). Another widely used method for solving combinatorial

optimization problems is the heuristic.

Heuristics are algorithms that find a solution to a problem in a reasonable time,

with no formal guarantee of the quality of this solution. Even without these, those algo-

rithms are widely used in science and industry, considering they can find satisfactory solu-

tions for many applications. Today, multiple instances of famous problems have their best

solutions encountered by heuristics, like the Traveling Salesman Problem (TSP) (Gutin;

Punnen, 2007) and the Job-Shop Scheduling Problem (JSSP) (Applegate; Cook, 1991).

Heuristics can be divided into three main categories based on how they explore

the solution space: constructing, modifying, or combining solutions. In this work, we

will focus on the constructive heuristics. These algorithms build a solution step by step,

adding elements to a partial solution until it is complete.

Constructive heuristics must be capable of exploring the solution space efficiently.



11

Many decisions must be made to accomplish this goal, such as finding the best element

selection criteria and the construction method. Currently, many works in the literature

propose using automatic configuration techniques to explore the space of heuristics, find-

ing the best option for a specific problem.

In this work, we propose a grammar to represent a sub-space of constructive

heuristics and the creation of a metaheuristic that can generate results close to state-of-

the-art algorithms. Also, we want to create an interface to our metaheuristic that can be

used for different problems without changing the main algorithm. Our main contributions

are: The creation of a grammar that is able to represent multiple classical constructive

heuristics and the definition and implementation of a metaheuristic that uses this gram-

mar.

In Chapter 2, we will define a combinatorial problem, a Heuristic, and the algo-

rithms used as a base for this work. In Chapter 3, we will introduce our proposed grammar

and algorithm. In Chapter 4, we will explain the problems explored, the tuning scenario,

the resulting algorithms, and their results.



12

2 HEURISTIC ALGORITHMS

In combinatorial optimization, a problem P can be defined as a tuple P = (I, S, f),

where I is an instance of a problem, S is the set of complete solutions and f is an ob-

jective function, typically defined as f : S → R. The goal is to find a solution s ∈ S

where f(s) is optimal. These solutions s are called optimal solutions, defined here as s∗.

The value f(s∗) is called the optimal value of the problem and will be referenced here

as OPT . By optimal we mean that if the problem is a minimization problem, OPT will

be the minimal value for f . If the problem is a maximization problem, OPT will be the

maximal value for the function.

For some problems, finding a optimal solution is an easy task. For example, the

shortest path problem can be solved in polynomial time using Dijkstra’s algorithm (Dijk-

stra, 1959). However, for many of the optimization problems, finding s∗ is hard, and no

known algorithm can find s∗ in a polynomial time.

Many heuristics use the concept of a solution space, where each solution is a point

in the space. With this concept, we can see a heuristic as an algorithm that searches for a

good solution in the space.

In constructive heuristics, it is possible to visualize the relation between the partial

solutions as a Directed Acyclic Graph (DAG). In this DAG, the root is an empty solution,

and each internal node is a partial solution, and each final node is a complete solution in

the solution space. At each step, the algorithm chooses the next node to explore, based on

some criteria. In the end, the choices made by the algorithm will be a path in the DAG.

2.1 Classical Constructive Heuritics

There are many constructive heuristics in the literature. Some strategies will use

the concept of exploitation, exploring a small number of alternative paths and choosing

the best solutions greedily. Others will use the concept of exploration, visiting a large

number of alternatives to find the best solution even when their path is not the best. The

following section will describe some of the heuristics studied in this work.

We will use the following concepts and notation from now on to describe the

heuristics, expanding the concepts previously defined: E is the set of all the elements in

instance I . Solution s is a subset of E that represents a complete solution. The set of

all complete solutions of an instance I is defined as S. A set of partial solutions will be



13

defined as S, where each element is a subset of E. A partial solution in this set will be

referenced as s and si is a partial solution with i elements. Note that S ⊆ S (in other

words, a complete solution is also a partial solution). A partial solution with no elements

is ∅.

The neighborhood of a partial solution s is N(s), defined as the set of all reachable

partial solutions from s by adding (N+(s)) or removing (N−(s)) one element. The set of

elements such that s ∪ {e} ∈ N+(s) will be referenced as E+. The element e∗ is the one

that maximizes f(s ∪ {e∗}).

We will use this notation to define each algorithm in the next subsection.

2.1.1 Priority Algorithm

All the heuristics explored in this work rely on selecting an element in a good

order. A good order is a sequence of elements that, when processed by the heuristic,

produces a good result. To guarantee a good element selection in each algorithm, we

will use the concept of Priority Algorithms (Borodin; Nielsen; Rackoff, 2003). A priority

algorithm (Algorithm 1) is a heuristic that, when given a partial solution s, returns a

sequence E∗ ⊆ E sorted by some criterion. This criterion is a function σ : E × S → R

that evaluates the element e based on the partial solution s and returns a value.

Algorithm 1 Priority algorithm
Require: A partial solution s, a function σ
Ensure: An sequence of elements E∗

1: E∗ = {}
2: for e ∈ E+ do
3: E∗ = E∗ ∪ {e+ 7→ σ(e+, s)}
4: end for
5: return E∗

This concept will be used in the definition of the following algorithms.

2.1.2 Greedy Algorithm

A greedy algorithm (Algorithm 2) is the simplest constructive method used to

solve a problem using a priority algorithm. It starts with an empty solution ∅ and, at each

step, adds the element e∗ to s. The algorithm stops when s ∈ S.



14

Algorithm 2 Greedy algorithm
Require: An instance I
Ensure: s ∈ S

1: s← ∅
2: while s /∈ S do
3: e∗ ← argmaxe∈E+ f(s ∪ {e})
4: s← s ∪ {e∗}
5: E ← E \ {e∗}
6: end while
7: return s

The greedy algorithm is deterministic and will always find the same solution for

the same instance. A variation of this algorithm is the α-greedy; Algorithm (3). In this

version, we add a random factor α to the choice of the element. When added, the algo-

rithm will choose the element e∗ with probability α, otherwise, it will select a random

element. The selection of a random element from a set will be referenced in algorithms

and formulas from now on as ∈R.

Algorithm 3 α-Greedy Algorithm

Require: An instance I , a random factor α ∈ [0, 1]
Ensure: s ∈ S

1: s← ∅
2: while s /∈ S do
3: if X ∼ U([0, 1]) < α then
4: e← argmaxe∈E f(s ∪ {e})
5: else
6: e← e ∈R E
7: end if
8: s← s ∪ {e}
9: E ← E \ {e}

10: end while
11: return s

Another common variation is to define a subset Bk ⊆ E of the k% best elements

at each step. In this case, the algorithm randomly chooses one element e from Bk. This

version is mentioned in the literacy as a k-greedy algorithm (4).

2.1.3 Pilot Method

The Pilot Method was defined by Duin and Voß (1999). It uses a constructive

heuristic H that, at each step, chooses the e that gives the best complete solution s based



15

Algorithm 4 k-Greedy Algorithm

Require: An instance I , a integer k ∈ [0, 1]
Ensure: s ∈ S

1: s← ∅
2: while s /∈ S do
3: e← e ∈R Bk

4: s← s ∪ {e}
5: E ← E \ {e}
6: end while
7: return s

on some simpler heuristic. Here, all the e ∈ E+ are expanded at each step.

Algorithm 5 Pilot Method
Require: An instance I , an Heuristic H
Ensure: s ∈ S

1: s← ∅
2: while s /∈ S do
3: e← argmaxe∈E f(H(s ∪ {e}))
4: s← s ∪ {e}
5: E ← E \ {e}
6: end while
7: return s

Originally, the Pilot Method used the Greedy Algorithm as the simpler heuristic

to evaluate the solutions, but the definition does not restrict the use of other heuristics.

Some research was made trying to improve the heuristic performance and results, such as

(Voß; Fink; Duin, 2005)

Another way to see the Pilot Method is as a Greedy Algorithm that uses σ =

f(H(s ∪ {e})). In other words, it uses the objective value of the solution found by a

heuristic algorithm as the priority function.

2.1.4 Beam Search Algorithm

Beam Search was introduced by Lowerre (1976), when developing the speech

recognition system Harpy. Even been developed in the Artificial Intelligence context, this

algorithm has been widely used in the context of combinatorial optimization.

In this algorithm, we define a set B, called beam, with maximum size n of partial

solutions to keep track. At each step, for each s ∈ B, a subset of N+(s) with size m is

evaluated to update B. At the end of the step, the algorithms keep the n best solutions in



16

B. This update can be elitist or non-elitist. An update is called elitist when the algorithm

also uses the partial solutions s ∈ B in the creation of the new beam.

When s ∈ S, the algorithm removes s from B and adds the complete solution to

the set of solutions found. In the end, the best solution is returned.

Algorithm 6 Beam Search
Require: An instance I , two integers n and m
Ensure: s∗ ∈ S

1: B ← {∅}
2: while B ̸= {} do
3: B′ ← {}
4: for each s ∈ B do
5: Bs ← select m neighbors using σ(N+(s))
6: B′ ← B′ ∪Bs

7: end for
8: if elitist then
9: B ← select n best solutions in B′ ∪B

10: else
11: B ← select n best solutions in B′

12: end if
13: for each s ∈ B do
14: if s ∈ S then
15: B ← B \ {s}
16: end if
17: end for
18: end while
19: return s∗

The number of solutions kept in B is called beam-width, and the number of so-

lutions evaluated in each step is called expansion-width or beam-factor. A Beam Search

with beam-width n and expansion-width m will be referenced as Beam Search(n, m).

This algorithm is a generalization of the Greedy Algorithm, where n = 1 and

m = |E|.

2.1.5 Multi-Start Algorithm

Multi-Start Algorithm is the idea of running a heuristic multiple times until reaches

a stop condition and returns the best solution found. The stop condition can be any condi-

tion that can be tracked between iterations. Some of the most common are the number of

iterations, the number of iterations without improvement, a time limit, or a budget limit

(number of essential operations).



17

Algorithm 7 Multi-Start Algorithm
Require: An instance I , an integer n
Ensure: s∗ ∈ S

1: for i = 1 to n do
2: s′ ← H(I)
3: end for
4: return s∗

This concept is not exclusive to constructive methods and can be seen in many

other non-constructive algorithms and heuristics, such as the Simulated Annealing (Kirk-

patrick; Jr; Vecchi, 1983). It is possible to see that the inner heuristic inside must be

non-deterministic, or at least, the initial condition in each iteration must be different from

the previous ones. Otherwise, all the results produced by the heuristic will be the same.

2.1.6 Ant-Colony Optimization

Introduced by Dorigo, Maniezzo and Colorni (1996) and Dorigo, Caro and Gam-

bardella (1999), this algorithm was designed for optimization in graph problems. Even

so, many other problems can be solved using it.

Ant-Colony Optimization (ACO) is an algorithm designed to mimic the behav-

ior of an ant colony finding the best path to a food source. When ants start the pro-

cedure to find a new source of food, they begin to search for food randomly, leaving a

pheromone trail behind them. After find some food, the ant returns to the nest, reinforc-

ing the pheromone trail. If no food is found by an ant, it will return to the colony without

throwing these pheromones. Following that, other ants will follow the stronger trail, in-

creasing the probability of finding the food. This process occurs multiple times until most

of the ants follow the same trail. Paths that are not used will have their pheromone trail

evaporated during the time.

Bringing the analogy to the algorithm, a colony of ants is a set A of n partial

solutions (also called ants). At every iteration, called a walk, all the ants will construct

a new solution using a non-deterministic greedy strategy, referred to from now on as τ -

Greedy.

For each step in their walk, all the n ants will select an element e with a probability

p(e) defined by the Equation 2.1. This equation uses the pheromone value τe deposited

by other ants in previous iterations and the heuristic information ηe. In this equation, α

and β are real variables that represent the weight of each value in the probability.



18

p(e) =
ταe η

β
e∑

e′∈E ταe′η
β
e′

(2.1)

When all the ants construct their solution in an interaction, the pheromone trail of

each element is updated using the Equation 2.2, using an evaporation rate ρ.

τe ← (1− ρ)τe + ρ

n∑
k=1

∆τ ke (2.2)

Also, ∆τ ke is defined for each ant using the Equation 2.3. We use sk to denote the

solution found by the ant k.

∆τe =


1

f(sk)
, if e ∈ sk

0, otherwise
(2.3)

The application of these equations for a given e and τ set can define the Algorithm

8. Using all of these operations, we can define one of many variations of the Ant-Colony

Optimization as in Algorithm 9.

Algorithm 8 Evaporate
Require: An set τ , an Elements set E

1: for e ∈ E do
2: τe ← (1− ρ)τe + ρ

∑n
k=1 ∆τ ke

3: end for

Algorithm 9 Ant-Colony Optimization

Require: An instance I , (m,nants) ∈ Z+ and (α, β, ρ) ∈ R+

Ensure: s∗ ∈ S
1: for i = 1 to m do
2: for k = 1 to nants do
3: sk ← τ -Greedy(I)
4: end for
5: evaporate(τ , E)
6: end for
7: return s∗

If we remove the biological analogy, the ACO can be seen as a variation of the

multi-start algorithm. Instead of running the heuristic a single time for each interaction,

ACO runs the heuristic m times. The τ -greedy algorithm is a simple α-greedy algorithm

that uses the pheromones system as a priority function. At the end of each iteration, the

priority function is updated based on the solutions found.



19

2.2 Hybridizing Heuristics

As introduced in the previous section, some constructive heuristics have similar

recipes: We build a solution step by step, using some priority algorithm to select the next

element. Some of them keep more than one solution at the same time, while others run an

internal heuristic multiple times, trying to find a better solution through repetition.

When we look at the multiple implementations of the greedy algorithm shown

previously, including the τ -greedy defined in Algorithm 9, we see that the only difference

is the priority algorithm that selects the next element. Even further, the Beam Search

algorithm, defined in Algorithm 6, can be seen as a generalization of the greedy algorithm

allowing multiple solutions at the same time.

Finding the common ground between two or more heuristics allows us to mix

them to create another that explores the solution space differently. This approach in the

design of heuristics is called hybridization and has created some well-known heuristics,

such as the Beam-ACO (Blum, 2005). When we compare the algorithms above, we can

create a generic constructive heuristic, defined in Algorithm 10.

Algorithm 10 Generic Constructive Heuristic

Require: An instance I , a (m,n) ∈ Z+, a priority algorithm σ
Ensure: A solution s ∈ E

1: for i = 1 to m do
2: Initialize n different partial solutions
3: for k = 1 to n do
4: while sk /∈ S do
5: Select m elements to compare using σ
6: Add the best element to the solution sk
7: end while
8: end for
9: Update σ

10: end for
11: return s∗

With this idea in mind, in the next chapter, we propose a new approach, using

regular grammar to create a constructive metaheuristic.



20

3 A GRAMMAR-DRIVEN HYBRID HEURISTIC

The first step in developing a hybrid heuristic is to define an algorithmic space. To

accomplish this, we need to define the algorithms in our space and the relation between

them. When we observe the algorithms defined in the last section, they all follow the same

pattern. Each one of them has a main algorithm and a priority algorithm. This simplicity

allows us to represent all the addressed algorithms as regular grammar, using the concepts

defined in Chomsky (1956). In this grammar, the terminals represent a concrete algorithm,

and the non-terminals represent one type of algorithm. The use of formal grammar to

create hybrid heuristics is not new and was used previously in works like Brum and Ritt

(2018) and Pagnozzi and Stützle (2021).

One advantage of using a formal grammar to create hybrid heuristics is that we

formalize a space of possible heuristics when using them. Applying the generated func-

tions to a problem, we can define a quality value for each, and use this value to select the

best heuristic in the space. To explore this space for a specific problem, we can use a tool

such as irace (López-Ibáñez et al., 2016).

In the first section of this chapter, we will explore those similarities to create a

grammar that expresses a generic constructive algorithm. Each symbol in this grammar

will be a part of some algorithm explained above. Those symbols can express an existing

algorithm or create a new one, mixing two or more. After that, we will explain our

implementation, the use of object-oriented programming techniques to develop a generic

solver using this grammar, and the process used to select good algorithms.

3.1 A Grammar to represent an algorithmic space

Our grammar is divided into a priority algorithm and a main algorithm. The pri-

ority algorithm will be the element selection algorithm used in the main algorithm. The

main algorithm will be responsible for creating the solution returned at the end of the

execution. The full grammar is explained below:



21

H ::= P A Heuristic

P ::= greedy Priority Algorithm

| random− greedy(α, k)

| pheromones(γ, ρ)

| pilot(k)

A ::= S Main Algorithm

| multi− start(m,n) S

S ::= greedy

| beam− search(b, e)

3.1.1 Priority algorithm

This non-terminal will be expanded in one of the four priority algorithms ex-

plained in the previous chapter. The greedy priority algorithm is the same as the one

defined before.

The random greedy priority algorithm receives two parameters: α and k, The first

parameter is the probability of selecting the best element. If this is not selected, k repre-

sents the proportional amount of elements to choose at random. In this case, the algorithm

will select one between the k% best elements to choose with an equal probability, includ-

ing the best one.

The pheromones selection represents the τ -greedy Selection Algorithm 9. The

parameter ρ represents the evaporation value, while γ is a combination of α and β. Con-

sidering γ ∈ [a, b], both variables can be extracted from gamma using the Formula 3.1.

α =
γ − a

b− a
β =

b− γ

b− a
(3.1)

The parameter k in the pilot priority is the proportion of elements that will expand

in the internal heuristic, such as in Random Greedy. In this grammar, we only use the

greedy algorithm as the internal heuristic.

3.1.2 Main Algorithm

The greedy algorithm is Algorithm 2. The beam-search takes two parameters: the

beam-width (b) and the expansion-width (e).



22

The multi-start algorithm will repeat one of the others heuristics up to m times or

n iterations without improvement. Also, for each iteration, the multi-start algorithm can

generate up to k solutions. This last parameter is crucial to represent the ACO algorithm

in our grammar.

3.2 Implementation

After defining the desired grammar, we develop a concrete version of our gram-

mar. The implementation was made with C++ and is accessible in the project GitHub

repository (Ricarte, 2024). We aim to create a library with all the functions and classes

needed to implement a heuristic for a problem using our grammar. A program that uses

this library must be capable of receiving a configuration file and an instance for an imple-

mented problem and return the objective value of the solution.

It is possible to divide the implementation between the interface, the algorithm

implementation, and the configuration reader. The interface is the part where the user will

extend to solve its specific problem. The algorithm implementations follow a pattern that

enables hybridization. Finally, the configuration reader is responsible for extracting the

desired algorithm from an input file.

3.2.1 Interface

When creating the implementation, our main goal was to create a program that

could be as close as possible to the problem definitions from Chapter 2. Because of this,

we divide our interface into four generic classes: Problem, Instance, Solution

and Element respectively.

As we desire to create a generic interface that can be used for many problems,

we only implemented some control methods in each class. Other methods are defined as

abstract and will be implemented for each problem, as described in the next chapter.

The Problem class calculates values such as the objective value statically, with-

out any side effect for a solution. In our implementation, the problem will be a mini-

mization problem. That means all the algorithms will try to minimize the objective value

returned by the problem. When implementing a solution for a specific problem, the user

must define the following methods:



23

• An objectiveValue function, that given a s, returns f(s);

• An objectiveValue function, that given a s and an e+, returns f(s ∪ {e+});

• An isValid test, that returns true if partial solution s ∪ {e+} is valid;

• An isComplete test, that returns true if partial solution s ∈ S.

The Instance class stores all the instance’s specific values. This class will also

be responsible for the interaction between a solution and an element. The user must

implement four methods when solving a problem:

• A initializeSolution function, that returns an solution ∅ ∈ S;

• A getCandidatesElements function, that returns N+(s);

• The tests isValid and isComplete, which return the same values as the meth-

ods in the class Problem.

The Solution class will be the class that will store any data related to a specific

iteration of an algorithm. It can be the set of elements in a single solution, the iteration

between them, or any other solution-related value. This class also will be responsible for

calculating the quality of an element in a given solution. The abstract methods defined in

this class are:

• getSolution, which returns the elements in the solution sorted by insertion or-

der;

• getElementQuality, which returns a Heuristic value for an e ∈ E+ for the

solution;

• getObjectiveValue, which returns the objective value of the solution;

• clone function who creates a clone of the solution.

The algorithm uses the element quality as the σ function in the selector. This is

necessary because, for many problems, the computation of the objective value is costly,

so we must use a simpler function for evaluation.

The struct Element will represent the elements for a given problem. These ele-

ments will retrieve any information related to a single element in an instance. Also, the

user must define a partial order for the elements. In other words, they need to be sorted

by the ≤ operator.



24

3.2.2 Algorithm Implementation

3.2.2.1 Selector

The first part of our implementation is the class Selector. This generic class is

a basic interface for all the priority algorithms. The three main methods used in this class

are: initialize, updateProbabilitiesIteration and selectElement.

The first method is used to initialize all the internal elements of the class; the second

is responsible for updating all the probabilities used in the selection and is especially

important for the implementation of Equation 2.2. The last method returns the e ∈ E+

element given by the priority algorithm.

3.2.2.2 Main Algorithm

To allow the hybridization, we implement all the main algorithms to receive at

least the same tuple of parameters: a problem, an instance, and a selector. Also, they all

solve the problem as a minimization problem and return the best value using this criterion.

For the multi-start algorithm, we created a struct called StoppingCriteria,

which keeps counting the number of iterations and iterations without improvement. A

single method called shouldStop was implemented; it returns true if the algorithm

reaches some stopping criterion. Another difference in the multi-start algorithm is that it

receives another heuristic as a function parameter.

Internally, all algorithms follow the same structure as defined in Chapter 2.

3.2.3 Configuration Reader

Our goal with this implementation is to build an algorithm with an input that fol-

lows the predefined grammar. To implement this functionality, we translated our grammar

to the JSON syntax as follows:

1 <output> ::=

2 { "type": <algorithm>, "priority": <priority-config> }

3

4 <algorithm> ::=

5 { "type": "greedy" } |



25

6 { "type": "beamsearch", "beam-width": <integer>, "

expansion-width": <integer> } |

7 { "type": "iterated", "internal-algorithm": <internal-

algorithm>, "stop": <stop-criteria>, "num-solutions": <

integer> | (nothing) }

8

9 <internal-algorithm> ::=

10 { "type": "greedy" } |

11 { "type": "beamsearch", "beam-width": <integer>, "

expansion-width": <integer> }

12

13 <stop-criteria> ::=

14 { "max-iterations": <integer>, "max-no-improvement-

iterations": <integer> }

15

16 <priority-config> ::=

17 { "type": "greedy" } |

18 { "type": "random", "alpha-value": <float>, "k-value": <

float> } |

19 { "type": "pheromone", "gamma-value": <float>, "rho-value

": <float> } |

20 { "type": "pilot", "k-value": <float> }

To read the configuration, a parser was used to implement an automaton that cre-

ates a Configuration object while parsing the file. If the parser ends the reading in a

valid state, the output will contain a valid heuristic to solve the implemented problem. The

configuration is fully independent of the interface. So it does not carry any information

about the problem.



26

4 EXPERIMENTAL RESULTS

To evaluate the heuristic, we implement two problems: the k-Labelled Spanning

Forest Problem (KLSFP) and the Permutation Flowshop Scheduling Problem (PFSSP)

with total completion time minimization. In this section, we will explain each one of

them, our decisions when implementing the solution, and the obtained algorithm and

results.

Two metrics was used to evaluate a heuristic: the objective value and the cost. For

cost, we mean the number of main operations for the result. The operation used as the

metric will be specified for each problem.

For every problem, we select a published constructive algorithm that can be ex-

pressed in the grammar and has competitive results to be the base for comparison. We

execute the same tests for the obtained configuration and the base algorithm to evaluate

the quality of the heuristics.

4.1 K-Labelled Spanning Forest

Introduced by Cerulli et al. (2014), the k-Labelled Spanning Forest is a a problem

P = (G, k) defined as follow: G = (V,E, L) is a undirected graph with a set of labels L,

where each edge has exactly one label. The goal is to find a subgraph G′ = (V,E ′) ⊆ G

with the edges from k distinct labels that minimizes the number of connected components

of G′.

Figure 4.1 shows an example instance of the problem with 5 nodes, 5 edges, 4

labels and k = 2. A solution that minimizes the object value for this instance would be a

G′ containing the edges with labels 1 or 3, with two connected components.

Figure 4.1 – Example of KLSFP instance and solution for k = 2 (in red)

A B

C

D

E

1

1

3

2

4

Using the notation introduced in Chapter 2, we can define each label as an element

in E. A solution s is the subgraph G′. The solution will complete when the number



27

of labels selected is the same as k. Then, our function f(s) will return the number of

connected components of s.

4.1.1 Implementation

In the implementation, the Element class represents a label. Besides the integer

that represents the label, this class also keep a list of edges that have the label. To calculate

the number of connected components in the Solution, we use the UnionFind data

struct. That was used either in the element quality computation or the objective value

computation. The Instance class keeps the graph information and a list of every label

used in the solution. In this problem, the number of Union in the UnionFind is the main

operation for the cost.

The Pilot method was used as the base algorithm. This algorithm was the state of

the art on the problem in the past and can be achieved from our grammar. The scenario

shown in Table 4.1 was used to train the model. We limit the cost of a configuration to

the maximum cost obtained by the number of nodes on G using the base algorithm. This

decision limited the algorithmic space that the heuristic could reach but guaranteed that

the resulting configuration would have a similar cost order as the base algorithm. We also

compare the results with the current state-of-the-art algorithm (CBFS) proposed by Ritt

(2024).

Table 4.1 – Parameters configuration.
Name Type Values/Range
beam width Integer 2 to 8
beam factor Integer 2 to 8
max iterations Integer 0 to 20
max no improvement Integer 0 to 20
parallel solutions Integer 1 to 10
random α Real 0 to 0.99
random k Real 0 to 0.99
pilot k Real 0 to 0.99
pheromones γ Real -1 to 1
pheromones ρ Real 0 to 1



28

4.1.2 Instances

The instances used were generated based on Pinheiro, Ravelo and Buriol (2022).

These instances are randomly generated graphs with a specified number of nodes, edges,

labels, and k value. All the generated graphs have an edge density of 0.2. This means

that the number of edges is 20% the number of all the possible edges for the graph. The

number of labels is a ratio of the number of vertices.

We divided the instances into classes as shown in Table 4.2. For every class, 3

instances were generated for training and 10 for test.

Table 4.2 – KLSFP instaces classes

Nodes Labels Ratio Max Labels (k)
100 |V |

4
, |V |

2
, |V |

1
, 5|V |

4
3, 6

200 |V |
4
, |V |

2
, |V |

1
, 5|V |

4
3, 6, 12

300 |V |
4
, |V |

2
, |V |

1
, 5|V |

4
2, 4, 9

400 |V |
4
, |V |

2
, |V |

1
, 5|V |

4
3, 6, 12

500 |V |
4
, |V |

2
, |V |

1
, 5|V |

4
3, 7, 15

1000 |V |
4
, |V |

2
, |V |

1
, 5|V |

4
3, 7, 15

4.1.3 Results

The training returns as best configuration a Pilot Method with k = 0.6024 and the

obtained results were grouped by Nodes, Labels, and Max Labels. Table 4.3 shows the

average percentual difference and standard deviation between the objective value and cost

of our configuration and the base algorithm. In both cases, a negative value means that

our algorithm had a better performance when compared to the base algorithm.

Table 4.3 shows consistent values, with only two groups of instances showing

different results from the base algorithm. At the same time, all the instances have a

40% decrease in cost, showing that the algorithm keeps the same results with a better

performance.

When comparing the same results with the CBFS algorithm, we have a more di-

verse result, as shown in Table 4.4 and in Figure 4.2. While most instances have similar

values, some classes have a worse performance when compared to the current state-of-

the-art algorithm, as shown in the Figure 4.3. Even so, we managed to have better results



29

Table 4.3 – Comparison of objective value and cost differences with the Pilot Method.
Nodes Labels Max Value (%) Cost (%)

100 25 3 0.00 ± 0.00 -39.74 ± 0.52
100 50 3 0.00 ± 0.00 -39.96 ± 0.25
100 50 6 0.00 ± 0.00 -40.65 ± 0.08
100 100 6 0.00 ± 0.00 -39.94 ± 0.10
100 125 6 0.00 ± 0.00 -39.90 ± 0.08
200 50 3 0.00 ± 0.00 -40.12 ± 0.09
200 100 6 0.00 ± 0.00 -40.19 ± 0.12
200 200 6 0.00 ± 0.00 -39.90 ± 0.04
200 250 6 0.00 ± 0.00 -39.88 ± 0.01
200 250 12 0.00 ± 0.00 -40.09 ± 0.02
300 75 2 0.00 ± 0.00 -39.89 ± 0.05
300 75 4 0.00 ± 0.00 -40.49 ± 0.10
300 150 4 0.00 ± 0.00 -40.01 ± 0.08
300 300 9 0.00 ± 0.00 -39.91 ± 0.01
300 375 9 0.00 ± 0.00 -39.87 ± 0.02
400 100 3 0.00 ± 0.00 -39.94 ± 0.06
400 200 6 0.00 ± 0.00 -40.02 ± 0.02

4000 400 6 0.00 ± 0.00 -39.85 ± 0.00
400 400 12 0.00 ± 0.00 -39.92 ± 0.01
400 500 12 -1.00 ± 3.16 -39.87 ± 0.01
500 125 3 0.00 ± 0.00 -39.96 ± 0.06
500 250 7 0.00 ± 0.00 -40.05 ± 0.03
500 500 7 0.00 ± 0.00 -39.84 ± 0.04
500 625 7 0.00 ± 0.00 -39.81 ± 0.01
500 625 15 0.00 ± 0.00 -39.86 ± 0.01

1000 250 3 0.00 ± 0.00 -40.00 ± 0.03
1000 500 7 2.41 ± 8.01 -39.88 ± 0.03
1000 1000 7 0.00 ± 0.00 -39.80 ± 0.01
1000 1000 15 0.00 ± 0.00 -39.85 ± 0.00
1000 1250 15 0.00 ± 0.00 -39.79 ± 0.00



30

for four classes of instances.

Table 4.4 – Comparison of objective value and cost differences with CBFS.
Nodes Labels Max Value (%) Cost (%)

100 25 3 0.00 ± 0.00 372.28 ± 29.34
100 50 3 0.84 ± 2.22 789.65 ± 17.70
100 50 6 0.00 ± 0.00 1004.06 ± 4.34
100 100 6 3.23 ± 4.19 1250.40 ± 9.48
100 125 6 0.00 ± 0.00 1547.30 ± 18.84
200 50 3 0.00 ± 0.00 818.31 ± 12.81
200 100 6 -5.00 ± 15.81 1657.43 ± 383.22
200 200 6 1.34 ± 2.37 2488.82 ± 21.15
200 250 6 0.00 ± 0.00 3047.58 ± 12.33
200 250 12 0.00 ± 0.00 5301.49 ± 14.08
300 75 2 0.00 ± 0.00 1540.96 ± 19.42
300 75 4 0.00 ± 0.00 1427.58 ± 202.38
300 150 4 0.00 ± 0.00 2128.80 ± 13.68
300 300 9 -0.92 ± 5.20 3675.66 ± 22.53
300 375 9 4.64 ± 5.34 4446.20 ± 26.37
400 100 3 0.50 ± 1.58 1650.23 ± 21.18
400 200 6 1.46 ± 16.33 2642.44 ± 33.04
400 400 6 0.00 ± 0.00 4844.09 ± 0.00
400 400 12 0.00 ± 0.00 8131.21 ± 767.24
400 500 12 7.62 ± 16.16 6078.76 ± 32.74
500 125 3 0.43 ± 1.37 1995.52 ± 21.51
500 250 7 -6.67 ± 36.18 3273.17 ± 39.64
500 500 7 2.03 ± 2.38 5907.37 ± 17.37
500 625 7 0.61 ± 0.52 7229.46 ± 9.82
500 625 15 0.00 ± 0.00 13443.71 ± 17.71

1000 250 3 0.17 ± 0.54 3796.33 ± 20.40
1000 500 7 3.70 ± 7.91 6283.27 ± 30.02
1000 1000 7 1.83 ± 1.53 11530.88 ± 24.33
1000 1000 15 0.00 ± 0.00 21364.75 ± 37.83
1000 1250 15 -4.07 ± 7.25 15280.38 ± 118.95

The CBFS has a better cost performance, as shown in the Figure 4.4, with an av-

erage percentual difference of 4541.7% compared to our configuration. As this algorithm

uses multiple methods beside the constructive strategy, the CBFS is not in the algorithmic

space covered in this work. This means that it is not possible to achieve this algorithm

using the grammar defined in section 3.1.



31

Figure 4.2 – Box plot of average difference on objective value by instance class (Ours vs CBFS).

Figure 4.3 – Objective value comparison scatter plot. Ours (axis X) vs CBFS (axis Y).



32

Figure 4.4 – Histogram of average difference on cost (Ours vs CBFS).

4.2 Flowshop Scheduling Problem

The problem was first defined by Johnson (1954). Since then, many variations

and solutions have been proposed. The one used in this work is the Permutation Flow-

shop Scheduling Problem (PFSSP) with total completion time minimization, defined as

follows: The PFSSP is a tuple P = (J,M, P ) where

• J is a set of n Jobs J1, ..., Jn;

• M is a set of m Machines M1, ...,Mm;

• P is a set of processing time pji of every job j in every machine i.

Every machine can process up to one job at a time and any job can be made by two

machines concurrently. Also, all the machines must process the jobs in the same order.

We will use Ci to express the total time spent to complete Ji, including the idle time

between two machines. The problem objective is to create a permutation π of Machines

that minimizes
∑n

i=1Ci.

In the notation presented in 2, the solution will be the permutation π. Each Jj is

an element in a solution, that will be complete when all the jobs are inserted. The function

f(s) will return the total time spent for every machine for the jobs already in s.



33

4.2.1 Implementation

We use as the base for our implementation the algorithm developed by Brum,

Ruiz and Ritt (2022) for this problem. Their Solution for the PFSSP uses a Beam Search

with both beam-width and beam-factor as 3. This means that the algorithm keeps three

solutions at each step, and expands three neighbors for each solution. The selection was

a α-Greedy with α = 0.8.

The Solution class uses as base the implementation of a single solution used in

(Brum; Ruiz; Ritt, 2022), there called a node. This implementation contains a vector of

jobs that will be ordered during the execution, and values used to evaluate the elements at

each iteration. The quality value of an element is defined using the heuristic defined by

Fernandez-Viagas and Framinan (2017) for candidate nodes evaluation.

The Element class holds only the job number. In our Instance class, any

job not selected at the moment of evaluation is valid and the solution is complete when

all the jobs are selected. As the main operation, we choose both the computation of the

evaluation heuristic and the computation of the objective value.

The tuning process uses the same configuration shown in Table 4.1. To avoid

configurations where the cost is larger than the base algorithm cost, we limit the algorithm

by budget in the tuning for the reasons expressed in Section 4.1.1. The formulas shown

in Table 4.5 were defined using the cost obtained by replicating the base algorithm with

our grammar and making a linear regression based on the number of Jobs.

Table 4.5 – Max Budget Formula based on Number of Jobs (|J |) and Number of Machines (|M |)
Number of Jobs (|J |) Max Budget Formula

|J | ≤ 20 maxBudget = 700
21 ≤ |J | ≤ 200 maxBudget = 5418.36 |M |+ 189.1 |J | − 31093.04
|J | > 200 maxBudget = 16537.1 |M |+ 262.73 |J | − 102886.16

4.2.2 Instances

For training the heuristic, we use variations of the benchmark instances defined by

Taillard (1993). For tests, we use the original 120 benchmark instances of the paper.

These instances are divided into twelve classes, with ten instances per class. The

classes are defined by a combination of a number of jobs (20, 50, 100, 200) and a number

of machines (5, 10, 20). The time spent for each job in each machine is set randomly in



34

the interval [1, 99].

4.2.3 Results

The resulting configuration has a main algorithm from the training is also a Beam

Search, but with a beam-width of 2 and beam-factor of 5. The priority algorithm is a

Random Greedy algorithm with α = 0.4695 and k = 0.6305. Table 4.6 shows the average

percentual difference between the results of our configuration and the base algorithm and

the standard deviation of these values. For both value and cost, negative results means

that our configuration had a better result then the compared one. The output values are

divided by class of instances.

Table 4.6 – Comparison of average and standard deviation of values and cost differences for
FSSP.

Jobs Machines Value (%) Cost (%)
20 5 -2.54 ± 3.65 -32.76 ± 0.00
20 10 -3.87 ± 3.41 -32.76 ± 0.00
20 20 -1.41 ± 3.06 -32.76 ± 0.00
50 5 -0.86 ± 2.20 -33.23 ± 0.00
50 10 -0.90 ± 2.12 -33.23 ± 0.00
50 20 0.01 ± 1.12 -33.23 ± 0.00

100 5 1.00 ± 1.92 -33.31 ± 0.00
100 10 -0.28 ± 1.60 -33.31 ± 0.00
100 20 -0.02 ± 2.14 -33.31 ± 0.00
200 5 0.31 ± 1.22 -33.33 ± 0.00
200 10 0.29 ± 1.53 -33.33 ± 0.00
200 20 -0.84 ± 1.35 -33.33 ± 0.00
500 5 0.62 ± 0.83 -33.33 ± 0.00
500 10 0.87 ± 0.76 -33.33 ± 0.00
500 20 0.55 ± 1.10 -33.33 ± 0.00

The results vary for each class, as shown in Figure 4.5. The heuristic had better

results in smaller instances of the problem. As the size of the instances increases, the

algorithm starts to return slightly worse objective values compared to the base algorithm,

with the average difference never going over 1%. Even so, Table 4.7 and the Histogram in

Figure 4.6 show that the results of our configuration were pretty similar to the compared

one. When analyzing the cost of the solution, we can observe that all the classes have a

third decrease in costs. Those data show that the expressive cost decrease provided by the

automatic configuration may compensate for a small increase in the objective value for

some instances.



35

Figure 4.5 – Box plot for average difference value by instance class (Ours vs Base).

Table 4.7 – Values for FSSP
Value Instance

Mean Cost Difference −33.19%
Worst Value Difference 4.89% ta062
Mean Value Difference −0.42%
Best Value Difference −11.43% ta010
# Better 72
# Equal 12
# Worst 76



36

Figure 4.6 – Histogram of % difference (Ours vs Base).



37

5 CONCLUSION

The generated heuristic could achieve comparable results with the current state-

of-the-art algorithms. Our algorithm could deliver similar results with a significant per-

formance increase compared to the base algorithms in both problems. In the KLSFP, the

output configuration had an average of 40% decrease in the execution cost, returning the

same result as the traditional Pilot method for almost every instance. In the PFSSP, the

resulting beam search configuration decreased the number of essential operations by 33%,

improving the objective value, especially in smaller instances, compared to the base algo-

rithm. This shows that hybrid heuristics can achieve good results by being used to explore

multiple heuristics and refine the existing ones.

Creating a generic library expressing multiple algorithms reduces the effort needed

to solve a problem. This allows the user to focus on creating and optimizing operations

in the problem, not in the strategy, knowing that, if right configured, the algorithm can

return a good result.

The grammar in this work only covers a small subset of all constructive algo-

rithms, limiting the possible configurations of the heuristic. This limits the results and

performance that can be obtained. When comparing our algorithm results to CBFS, the

last one still has better results using a fraction of the operations of the first one. Increasing

the grammar with other algorithms is possible in future work. It is possible to expand

the grammar in constructive and priority algorithms or allow new strategies to improve an

existing solution, such as modifying it or recombining multiple solutions.



38

REFERENCES

APPLEGATE, D.; COOK, W. A computational study of the job-shop scheduling problem.
ORSA Journal on Computing, v. 3, n. 2, p. 149–156, 1991. Available from Internet:
<https://doi.org/10.1287/ijoc.3.2.149>.

BLUM, C. Beam-aco - hybridizing ant colony optimization with beam search: An appli-
cation to open shop scheduling. Computers and Operations Research, v. 32, p. 1565–
1591, 6 2005. ISSN 03050548.

BORODIN, A.; NIELSEN, M. N.; RACKOFF, C. (incremental) priority algorithms. Al-
gorithmica (New York), v. 37, p. 295–326, 12 2003. ISSN 01784617.

BRUM, A.; RITT, M. Automatic design of heuristics for minimizing the makespan in
permutation flow shops. In: IEEE. 2018 IEEE Congress on Evolutionary Computation
(CEC). [S.l.], 2018. p. 1–8.

BRUM, A.; RUIZ, R.; RITT, M. Automatic generation of iterated greedy algorithms
for the non-permutation flow shop scheduling problem with total completion time min-
imization. Computers & Industrial Engineering, v. 163, p. 107843, 2022. ISSN
0360-8352. Available from Internet: <https://www.sciencedirect.com/science/article/pii/
S0360835221007476>.

CERULLI, R. et al. The k-labeled spanning forest problem. Procedia - Social and Be-
havioral Sciences, Elsevier BV, v. 108, p. 153–163, 1 2014. ISSN 18770428.

CHOMSKY, N. Three models for the description of language. IRE Transactions on In-
formation Theory, v. 2, n. 3, p. 113–124, 1956.

DIJKSTRA, E. W. A note on two problems in connexion with graphs. Numer. Math.
(Heidelb.), Springer Nature, v. 1, n. 1, p. 269–271, dec. 1959.

DORIGO, M.; CARO, G. D.; GAMBARDELLA, L. M. Ant algorithms for discrete opti-
mization. Artificial Life, v. 5, p. 137–172, 4 1999. ISSN 1064-5462.

DORIGO, M.; MANIEZZO, V.; COLORNI, A. Ant system: optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), v. 26, p. 29–41, 2 1996. ISSN 1083-4419.

DUIN, C.; VOß, S. The pilot method: A strategy for heuristic repetition with application
to the steiner problem in graphs. Networks, v. 34, n. 3, p. 181–191, 1999. Available from
Internet: <https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0037%
28199910%2934%3A3%3C181%3A%3AAID-NET2%3E3.0.CO%3B2-Y>.

FERNANDEZ-VIAGAS, V.; FRAMINAN, J. M. A beam-search-based constructive
heuristic for the pfsp to minimise total flowtime. Computers & Operations Research,
v. 81, p. 167–177, 2017. ISSN 0305-0548. Available from Internet: <https://www.
sciencedirect.com/science/article/pii/S0305054816303288>.

GUTIN, G.; PUNNEN, A. P. (Ed.). The Traveling Salesman Problem and Its Varia-
tions. [S.l.]: Springer US, 2007. ISBN 978-0-387-44459-8.

https://doi.org/10.1287/ijoc.3.2.149
https://www.sciencedirect.com/science/article/pii/S0360835221007476
https://www.sciencedirect.com/science/article/pii/S0360835221007476
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0037%28199910%2934%3A3%3C181%3A%3AAID-NET2%3E3.0.CO%3B2-Y
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0037%28199910%2934%3A3%3C181%3A%3AAID-NET2%3E3.0.CO%3B2-Y
https://www.sciencedirect.com/science/article/pii/S0305054816303288
https://www.sciencedirect.com/science/article/pii/S0305054816303288


39

JOHNSON, S. M. Optimal two- and three-stage production schedules with setup times
included. Naval Research Logistics Quarterly, v. 1, n. 1, p. 61–68, 1954. Available
from Internet: <https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800010110>.

KIRKPATRICK, S.; JR, C. D. G.; VECCHI, M. P. Optimization by simulated annealing.
science, American association for the advancement of science, v. 220, n. 4598, p. 671–
680, 1983.

KRUSKAL, J. B. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, American Mathematical
Society, v. 7, n. 1, p. 48–50, 1956. ISSN 00029939, 10886826. Available from Internet:
<http://www.jstor.org/stable/2033241>.

LOWERRE, B. The harpy speech recognition system[ph. d. thesis]. 1976.

LóPEZ-IBáñEZ, M. et al. The irace package: Iterated racing for automatic algorithm
configuration. Operations Research Perspectives, v. 3, p. 43–58, 2016.

MARTELLO, S.; TOTH, P. Algorithms for knapsack problems. In: MARTELLO, S.
et al. (Ed.). Surveys in Combinatorial Optimization. North-Holland, 1987, (North-
Holland Mathematics Studies, v. 132). p. 213–257. Available from Internet: <https:
//www.sciencedirect.com/science/article/pii/S0304020808732377>.

PAGNOZZI, F.; STüTZLE, T. Automatic design of hybrid stochastic local search algo-
rithms for permutation flowshop problems with additional constraints. Operations Re-
search Perspectives, v. 8, p. 100180, 2021. ISSN 2214-7160. Available from Internet:
<https://www.sciencedirect.com/science/article/pii/S2214716021000038>.

PAPADIMITRIOU, C. Computational Complexity. Addison-Wesley, 1994. (Theoreti-
cal computer science). ISBN 9780201530827. Available from Internet: <https://books.
google.com.br/books?id=JogZAQAAIAAJ>.

PAPADIMITRIOU, C.; STEIGLITZ, K. Combinatorial Optimization: Algorithms
and Complexity. Dover Publications, 1998. (Dover Books on Computer Science).
ISBN 9780486402581. Available from Internet: <https://books.google.com.br/books?id=
cDY-joeCGoIC>.

PINHEIRO, T. F.; RAVELO, S. V.; BURIOL, L. S. A fix-and-optimize matheuristic for
the k-labelled spanning forest problem. In: 2022 IEEE Congress on Evolutionary Com-
putation, CEC 2022 - Conference Proceedings. [S.l.]: Institute of Electrical and Elec-
tronics Engineers Inc., 2022. ISBN 9781665467087.

RICARTE, J. P. Grammar Constructive. [S.l.]: GitHub, 2024. <https://github.com/
jpricarte/grammar-constructive>.

RITT, M. The k-labeled spanning forest problem: instance analysis and effective heuristic
solution. In: Anais do LVI Simpósio Brasileiro de Pesquisa Operacional. Fortaleza,
Brasil: [s.n.], 2024.

TAILLARD, E. Benchmarks for basic scheduling problems. European Journal of Oper-
ational Research, v. 64, n. 2, p. 278–285, 1993. ISSN 0377-2217. Project Management
anf Scheduling. Available from Internet: <https://www.sciencedirect.com/science/article/
pii/037722179390182M>.

https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800010110
http://www.jstor.org/stable/2033241
https://www.sciencedirect.com/science/article/pii/S0304020808732377
https://www.sciencedirect.com/science/article/pii/S0304020808732377
https://www.sciencedirect.com/science/article/pii/S2214716021000038
https://books.google.com.br/books?id=JogZAQAAIAAJ
https://books.google.com.br/books?id=JogZAQAAIAAJ
https://books.google.com.br/books?id=cDY-joeCGoIC
https://books.google.com.br/books?id=cDY-joeCGoIC
https://github.com/jpricarte/grammar-constructive
https://github.com/jpricarte/grammar-constructive
https://www.sciencedirect.com/science/article/pii/037722179390182M
https://www.sciencedirect.com/science/article/pii/037722179390182M


40

VOSS, S.; FINK, A.; DUIN, C. Looking ahead with the pilot method. Annals of Opera-
tions Research, Springer, v. 136, p. 285–302, 2005.

WILLIAMSON, D. P.; SHMOYS, D. B. The design of approximation algorithms.
[S.l.]: Cambridge university press, 2011.

ZHOU, Z.; LIU, S. Machine Learning. Springer Nature Singapore, 2021. ISBN
9789811519673. Available from Internet: <https://books.google.com.br/books?id=
ctM-EAAAQBAJ>.

https://books.google.com.br/books?id=ctM-EAAAQBAJ
https://books.google.com.br/books?id=ctM-EAAAQBAJ

	Agradecimentos
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Heuristic algorithms
	2.1 Classical Constructive Heuritics
	2.1.1 Priority Algorithm
	2.1.2 Greedy Algorithm
	2.1.3 Pilot Method
	2.1.4 Beam Search Algorithm
	2.1.5 Multi-Start Algorithm
	2.1.6 Ant-Colony Optimization

	2.2 Hybridizing Heuristics

	3 A grammar-driven Hybrid Heuristic
	3.1 A Grammar to represent an algorithmic space
	3.1.1 Priority algorithm
	3.1.2 Main Algorithm

	3.2 Implementation
	3.2.1 Interface
	3.2.2 Algorithm Implementation
	3.2.2.1 Selector
	3.2.2.2 Main Algorithm

	3.2.3 Configuration Reader


	4 Experimental Results
	4.1 K-Labelled Spanning Forest
	4.1.1 Implementation
	4.1.2 Instances
	4.1.3 Results

	4.2 Flowshop Scheduling Problem
	4.2.1 Implementation
	4.2.2 Instances
	4.2.3 Results


	5 Conclusion
	References

