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Abstract

The transforming growth factor beta 1 (TGFB1) is a pro-inflammatory cytokine that plays a key role in the mechanisms of 
angiogenesis and breakdown of the blood-retina barrier, which are implicated in the pathogenesis of diabetic retinopathy 
(DR). Polymorphisms in the TGFB1 gene have been associated with DR; however, results are still contradictory. 
Therefore, the aim of this study was to investigate the potential association between two TGFB1 polymorphisms and 
DR. This study included 992 patients with diabetes mellitus (DM): 546 patients with DR (cases) and 446 patients 
without DR and with ≥10 years of DM (controls). The TGFB1 rs1800469 and rs1800470 polymorphisms were genotyped 
by real-time PCR. Frequency of rs1800469 T/T genotype was higher in controls compared to DR cases (18.3% vs. 
12.7%, P= 0.022). This genotype remained associated with protection for DR, adjusting for covariables (OR= 0.604; 
95% CI 0.395 – 0.923; P= 0.020, recessive model). The rs1800470 C/C genotype was observed in 25.4% of the 
controls and 18.0% of the cases (P= 0.015); thus, being associated with protection against DR under the recessive 
model (OR= 0.589; 95% CI 0.405 – 0.857; P= 0.006), adjusting for covariables. In conclusion, the TGFB1 rs1800469 
and rs1800470 polymorphisms are associated with protection against DR in DM patients from Southern Brazil.
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Introduction 
Diabetic retinopathy (DR) is a common chronic 

microvascular complication of diabetes mellitus (DM) and 
represents the primary cause of visual impairment and loss 
in working-aged adults (Cheung et al., 2010; Solomon et al., 
2017; Kusuhara et al., 2018). DR affects approximately 35% 
of DM patients, being more frequent in type 1 DM (T1DM) 
than in type 2 DM (T2DM) patients (Yau et al., 2012). Its 
prevalence increases with DM duration, with ≅ 86% of T1DM 
and 52% of T2DM patients showing some degree of DR after 
20 years of DM duration (Yau et al., 2012). Although the 
risk of DR increases with poor glycemic control, long-term 
DM, arterial hypertension (AH), dyslipidemia, and body 
mass index (BMI), available evidence has suggested its 
development is also influenced by genetic factors (Cho and 
Sobrin, 2014; Priščáková et al., 2016; Han et al., 2019). In this 
context, chronic hyperglycemia and other risk factors initiate a 
cascade of biochemical and physiological alterations that can 
culminate in microvascular damage and subsequent retinal 
dysfunction. These changes are linked to retinal ischemia, 
abnormal angiogenesis, and increased vascular permeability 
due to breakdown of the blood-retina barrier (Cheung et al., 
2010; Kusuhara et al., 2018). 

The transforming growth factor beta 1 (TGFB1) is a 
pro-fibrotic and pro-inflammatory cytokine that modulates 
cell proliferation, differentiation, apoptosis, adhesion, and 
migration of several cell types, and induces the production of 
extracellular matrix (ECM) proteins (Loeffler and Wolf, 2014). 
Given its critical roles in angiogenesis, endothelial proliferation, 
ECM deposition, and breakdown of the blood-retina barrier, 
TGFB1 represents a candidate gene for susceptibility to DR 
as well as other chronic diabetic complications, including 
diabetic kidney disease (DKD) (Khan and Chakrabarti, 2003; 
Jia et al., 2011; Liu et al., 2014). Accordingly, several studies 
have associated single nucleotide polymorphisms (SNPs) 
in the TGFB1 gene with susceptibility for DR and/or DKD 
(Beránek et al., 2002; Buraczynska et al., 2007; Jia et al., 
2011; Bazzaz et al., 2014; Liu et al., 2014; Hampton et al., 
2015; Zhou et al., 2018; Zhou et al., 2019). 

The T allele of rs1800470 (c.+29 T>C, Leu10Pro) 
SNP in the TGFB1 gene was initially associated with risk 
for proliferative DR (PDR) in patients with T2DM from the 
Czech population (Beránek et al., 2002). Conversely, another 
study reported that the C allele conferred risk for DR in 
patients with T2DM from Poland (Buraczynska et al., 2007). 
In 2014, Liu et al. (Liu et al., 2014) published a meta-analysis 
including 3 studies that investigated the association between the 
rs1800469 (c.-1347 C>T) SNP and DR; however, no significant 
association was found. Beránek et al. (Beránek et al., 2002) 
reported that a haplotype constituted by both rs1800470 T and 
rs1800469 C alleles conferred increased risk for PDR. Due 
to the contradictory results, additional studies are needed to 
clarify whether these SNPs are associated with DR. 
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Therefore, as part of the ongoing effort to examine the 
hypothesis that TGFB1 SNPs are associated with DR, this 
study aims to investigate the association of rs1800469 (c.-
1347 C>T) and rs1800470 (c.+29 T>C) SNPs in the TGFB1 
gene with DR in both T1DM and T2DM from a Southern 
Brazilian population.

Material and Methods

DM patients, phenotype measurements,  
and laboratory analyses

This case-control study was designed following STROBE 
and STREGA guidelines for reporting genetic association 
studies (von Elm et al., 2008; Little et al., 2009). The study 
population consisted of 992 DM patients, including 546 cases 
with DR and 446 controls without this complication and with 
a known DM duration of at least 10 years. Of note, of the 
total sample with DM, 727 (73.3%) patients had T2DM and 
156 patients had T1DM (26.7%). All included patients were 
recruited from the outpatient clinic at the Hospital de Clínicas 
de Porto Alegre (Rio Grande do Sul, Brazil) between January 
2005 and December 2013 (Crispim et al., 2010; Massignam et 
al., 2020). The research protocol was approved by the Ethics 
Committee in Research from Hospital de Clínicas de Porto 
Alegre, and all subjects provided assent and written informed 
consent prior to the inclusion in the study.

Patients were diagnosed as having DM according to 
American Diabetes Association guidelines (American Diabetes 
Association, 2020). Assessment of DR was performed by 
an experienced ophthalmologist using fundoscopy through 
dilated pupils. DR was classified as ‘absent DR’ (no fundus 
abnormalities), non-proliferative DR (NPDR, presence of 
microaneurysms, intraretinal hemorrhages, and hard exudates) 
or proliferative DR (PDR, newly formed blood vessels and/
or growth of fibrous tissue into the vitreous cavity). DR 
classification was done considering the most severely affected 
eye, according to the Global Diabetic Retinopathy Group 
scale (Wilkinson et al.,, 2003). 

A standard questionnaire was used to collect information 
about age, age at DM diagnosis, type and DM duration, and 
drug treatment. Moreover, all patients underwent complete 
physical and laboratory evaluations, as previously reported 
by our group (Crispim et al., 2010; Bouças et al., 2013; 
Massignam et al., 2020). Ethnicity was defined based on 
self-classification, and patients were categorized in white and 
non-white subjects (Crispim et al., 2010). Serum and plasma 
samples were taken after 12 h of fasting for laboratory analyses. 
Glucose levels were determined using the glucose oxidase 
method. Glycated hemoglobin (HbA1c) levels were measured 
by different methods and the results were traceable to the 
Diabetes Control and Complications Trial (DCCT) method by 
off-line calibration or using a conversion formulae (Camargo 
et al., 1998). Creatinine was measured by the Jaffé reaction; 
total plasma cholesterol, HDL cholesterol and triglycerides by 
enzymatic methods, and urinary albumin excretion (UAE) by 

immunoturbidimetry (Sera-Pak immuno microalbuminuria, 
Bayer, Tarrytown, NY, USA) (Zelmanovitz et al., 1997). The 
estimated glomerular filtration rate (eGFR) was calculated 
using the Chronic Kidney Disease Epidemiology Collaboration 
(CKD-EPI) equation (Levey et al., 2009). Body mass index 
(BMI) was calculated as weight (kg)/height (meters)2. 

Genotyping

Total DNA was extracted from peripheral blood samples 
using a standardized technique. TGFB1 rs1800469 (c.-1347 
C>T; C-509T) and rs1800470 (c.+29 T>C; T869C; Leu10Pro) 
SNPs were genotyped using TaqMan SNP Genotyping Assays 
20X (Thermo Fisher Scientific, Foster City, CA, USA; Assay 
ID: C_8708473_10 and C_22272997_10, respectively). Real-
Time PCR reactions were performed in 384-well plates, in a 
total 5 µL volume, using 2 ng of DNA, TaqMan Genotyping 
Master Mix 1X (Thermo Fisher Scientific) and TaqMan 
Genotyping Assay 1X. PCR reactions were performed in a 
real-time PCR thermal cycler (ViiA7 Real-Time PCR System; 
Thermo Fisher Scientific). 

Haplotype distributions and linkage disequilibrium 
(LD) analysis 

The haplotypes constructed by the combination of the 
rs1800469 and rs1800470 TGFB1 SNPs and their frequencies 
were inferred using the Phase 2.1 program (Seattle, WA, 
USA), which implements a Bayesian statistical method 
(Stephens et al., 2001). We also used this program to compare 
the distributions of different TGFB1 haplotypes between DR 
patients and control subjects through permutation analyses 
of 10, 000 random replicates (Stephens et al., 2001). Linkage 
disequilibrium (LD) between the two SNPs was calculated 
using Lewontin´s D´|D´| and r2 measurements (Hedrick 1987). 

Statistical analyses

Allele frequencies were determined by gene counting, and 
departures from the Hardy-Weinberg Equilibrium (HWE) were 
assessed using the χ2 test. Allele and genotype frequencies were 
compared between groups of subjects using χ2 tests. Moreover, 
genotypes were compared between case and control groups 
considering additive, recessive, and dominant inheritance 
models (Zintzaras and Lau, 2008). Normal distributions of 
quantitative clinical and laboratory variables were checked 
using Kolmogorov-Smirnov and Shapiro–Wilk tests. Variables 
with normal distribution are shown as mean ± SD. Variables 
with skewed distribution were log-transformed before analysis 
and are shown as median (25th – 75th percentile values). 
Categorical data are shown as percentages.

Clinical and laboratory characteristics were compared 
between case and control patients and between groups of 
patients categorized according to the different genotypes of 
the two TGFB1 SNPs using appropriate statistical tests, such 
as Student’s t-test or χ2 tests. Bonferroni’s correction was 
applied to account for multiple comparisons for unpaired 
Student’s t tests or χ2 tests. 
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The magnitude of association between TGFB1 SNPs 
and DR was estimated using odds ratios (OR) with 95% 
confidence intervals (CI). Multivariate logistic regression 
analyses were done to evaluate the independent association of 
each individual TGFB1 SNP or haplotypes with DR, adjusting 
for possible confounding factors. Statistical analyses were 
performed using the SPSS 18.0 software (SPSS, Chicago, IL), 
and P values < 0.05 were considered significant. Sample size 
was calculated using the OpenEpi site (http://www.openepi.
com) and the minor allele frequencies and ORs observed in 
previous studies regarding associations of the rs1800469 and 
rs1800470 SNPs with DR (Beránek et al., 2002; Paine et al., 
2012; Rodrigues et al., 2015).

Results

Sample description

The clinical and laboratorial characteristics of DR cases 
and controls are shown in Table 1. Males comprised 52.6% of 
the case group and 44.2% of the control group (P = 0.010), and 
the mean age was 62.5 ± 15.1 years in cases and 59.5 ± 20.1 
in controls (P = 0.010). The mean DM duration was higher in 
cases compared to controls (23.3 ± 9.2 vs. 21.4 ± 9.0; P = 0.002). 
As expected, mean levels of LDL, triglycerides and UAE, as 
well as prevalence of AH were significantly higher in cases 
compared to control subjects (all P < 0.003). Ethnic distribution, 
BMI, HbA1c, total cholesterol, and HDL cholesterol levels 
did not differ significantly between groups (Table 1).

Distributions of the TGFB1 rs1800469 and 
rs1800470 SNPs in case and control groups

Genotype frequencies of the rs1800469 (c.-1347 C>T) 
and rs1800470 (c.+29 T>C) SNPs in the TGFB1 gene are in 

HWE in the case group (all P > 0.05). Frequencies of rs1800469 
T/T and rs1800470 C/C genotypes did not differ significantly 
between white and non-white subjects (rs1800469 T/T: 15.0 
vs. 17.2%, respectively; P = 0.354; rs1800470 C/C: 20.8 vs. 
25.8%, P = 0.188). Moreover, frequencies of these genotypes 
did not differ between T1DM and T2DM patients (rs1800469 
T/T: 15.3 vs. 15.2%, respectively; P = 0.893; rs1800470 C/C: 
19.9 vs. 22.1%; P = 0.595). Hence, both white and non-white 
subjects, as well as patients with T1DM and T2DM, were 
analyzed together. 

Table 2 shows genotype and allele frequencies of the 
rs1800469 and rs1800470 SNPs in patients with DM (T1DM 
+ T2DM) categorized into DR cases and non-DR controls. 
Frequency of the T/T genotype of the rs1800469 SNP was 
18.3% in controls and 12.7% in cases with DR (P = 0.022). 
After adjustment for HbA1c, AH, UAE, and triglycerides, the 
T/T genotype remained associated with protection against DR 
in the recessive model (OR = 0.604; 95% CI 0.395 – 0.923; 
P = 0.020). Regarding the rs1800470 SNP, the frequency of 
the C/C genotype was 25.4% in controls and 18.0% in cases 
with DR (P = 0.015). In the recessive model, the rs1800470 
T/T genotype was also found to be associated with protection 
against DR, independent of the variables described above (OR 
= 0.589; 95% CI 0.405 – 0.857; P = 0.006).

Haplotype distributions and LD

Frequencies of haplotypes produced by the combination 
of TFGB1 rs1800469 and rs1800470 SNPs in cases and 
controls are listed in Table 3. Four haplotypes were inferred 
in both samples and their distributions were not significantly 
different between case and control groups (P = 0.564). It is 
noteworthy that the two SNPs of interest are in partial LD in 
our population (|D′| = 0.679 and r2 = 0.335). 

Table 1 – Clinical and laboratory characteristics of DM patients without and with DR.

Characteristics Controls
(n = 446)

Cases with DR
(n = 546) P *

Age (years) 59.5 ± 20.1 62.5 ± 15.1 0.010

Gender (% males) 197 (44.2) 287 (52.6) 0.010

Ethnicity (% non-white) 64 (14.3) 91 (16.7) 0.358

T2DM patients (%) 305 (68.5) 422 (77.3) 0.002

DM duration (years) 21.4 ± 9.0 23.3 ± 9.2 0.002

BMI (kg/m²) 27.8 ± 5.2 27.9 ± 5.1 0.747

HbA1c (%) 7.8 ± 1.9 8.2 ± 2.1 0.015

Cholesterol total (mg/dL) 189.1 ± 49.0 198.0 ± 51.6 0.007

HDL cholesterol (mg/dL) 49.7 ± 14.0 48.5 ± 14.7 0.182

LDL cholesterol (mg/dL) 108.9 ± 41.4 117.6 ± 45.0 0.002

Triglycerides (mg/dL) 127.0 (75.0 – 189.0) 133.5 (32.7 – 86.0) 0.001

Arterial hypertension (%) 322 (72.2) 477 (87.4) 0.0001

eGFR (ml/min per 1.73 m2) 83.5 (61.0 – 100.0) 62.0 (32.7 – 86.0) 0.102

UAE (mg/g) 8.0 (4.0 – 30.5) 54.9 (9.3 – 381.5) 0.0001

Variables are shown as mean ± SD, median (25th-75th percentiles) or absolute number (%). *P-values were computed using Student’s t or χ2 tests, as 
appropriate. Only P values lower than the Bonferroni’s threshold (P = 0.0035) were considered statistically significant. BMI: body mass index; DM: 
diabetes mellitus; DR: diabetic retinopathy; eGFR: estimated glomerular filtration rate; HbA1c: glycated hemoglobin; T2DM: type 2 diabetes mellitus; 
UAE: urinary albumin excretion.
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Table 2 – Genotype and allele frequencies of TGFB1 rs1800469 and rs1800470 SNPs in DM patients without and with DR.

rs1800469 Controls (n = 437) Cases with DR (n = 529) Unadjusted P* Adjusted OR (95% IC) / P†

Genotype

C/C 182 (41.6) 214 (40.5) 0.022 1

C/T 175 (40.0) 248 (46.8) 1.267 (0.910 – 1.765)/ 0.161

T/T 80 (18.4) 67 (12.7) 0.680 (0.431 – 1.073)/ 0.097

Allele

C 0.62 0.64 0.337

T 0.38 0.36

Recessive model

C/C + C/T 357 (81.7) 462 (87.3) 0.019 1

T/T 80 (18.3) 67 (12.7) 0.604 (0.395 – 0.923)/ 0.020

Additive model

C/C 182 (69.5) 214 (76.2) 0.098 1

T/T 80 (30.5) 67 (23.8) 0.656 (0.410 – 1.051)/ 0.079

Dominant model

C/C 182 (41.6) 214 (40.5) 0.757 1

C/T + T/T 255 (58.4) 315 (59.5) 1.075 (0.790 – 1.462)/ 0.645

rs1800470 Controls (n = 426) Cases with DR (n = 512) Unadjusted P* Adjusted OR (95% IC) / P†

Genotype

T/T 136 (31.9) 165 (32.2) 0.015 1

T/C 182 (42.7) 255 (49.8) 1.255 (0.882 – 1.786)/ 0.207

C/C 108 (25.4) 92 (18.0) 0.673 (0.439 – 1.031)/ 0.069

Allele

T 0.53 0.57 0.105

C 0.47 0.43

Recessive model

T/T + T/C 318 (74.6) 420 (82.0) 0.008 1

C/C 108 (25.4) 92 (18.0) 0.589 (0.405 – 0.857)/ 0.006

Additive model

T/T 136 (55.7) 165 (64.2) 0.065 1

C/C 108 (44.3) 92 (35.8) 0.674 (0.437 – 1.039)/ 0.074

Dominant model

T/T 136 (31.9) 165 (32.2) 0.977 1

T/C + C/C 290 (68.1) 347 (67.8) 1.026 (0.740 – 1.423)/ 0.876

Data are shown as number (%) or proportion. *P-values were calculated using χ2 tests. Only P values lower than the Bonferroni’s threshold (P = 0.010) 
were considered statistically significant. † P-value and OR (95% CI) obtained using logistic regression analyses adjusting for HbA1c, AH, UAE and 
triglycerides levels.

Next, in order to increase statistical power, we further 
analyzed haplotype frequencies according to the number of 
minor alleles in haplotypes: a) subjects carrying 0, 1 or 2 minor 
alleles of rs1800469 and rs1800470 SNPs, and b) subjects 
carrying 3 or 4 minor alleles (Figure 1). Frequency of 3 or 4 
minor alleles of the two analyzed SNPs was lower in DR cases 
compared to controls (16.8% vs. 24.0; P = 0.008; Figure 1). 

Moreover, after adjustment for AH, HbA1c, UAE, and 
triglycerides levels, the presence of ≥3 minor alleles 
remained independently associated with protection against 
DR (OR = 0.549; 95% CI 0.371 – 0.812; P = 0.003). The 
observed OR is similar to those obtained for each SNP analyzed 
individually, suggesting that their effects on DR susceptibility 
may not be additive. 
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Discussion
TGFB1 has been recognized as a key factor in the 

pathogenesis of chronic microvascular complications of 
DM (Jia et al., 2011; Liu et al., 2014). Accordingly, SNPs 
in the TGFB1 gene have been shown to be involved in the 
susceptibility for DKD due to the role of this gene on tissue 
fibrosis processes (Buraczynska et al., 2007; Jia et al., 2011; 
Zhou et al., 2018; Varghese and Kumar, 2019; Zhou et 
al., 2019). Moreover, TGFB1 SNPs seem to be associated 
with susceptibility for DR (Paine et al., 2012; Liu et al., 
2014; Hampton et al., 2015); however, available data is less 
convincing. Thus, in this study, we investigated the association 
of TGFB1 rs1800469 and rs1800470 SNPs with DR in T1DM 
and T2DM patients from a Southern Brazilian population. 
Our findings suggest that both SNPs are associated with 
protection against DR. 

The rs1800469 SNP (c.-1347 C>T; also known as 
C-509T) is situated in the first negative regulatory region of 
the upstream promoter of the TGFB1 gene, and the T allele 
seems to increase both TGFB1 gene expression and circulating 
plasma levels in humans (Grainger et al., 1999; Shah et al., 
2006; Martelossi Cebinelli et al., 2016). Interestingly, TGFB1 
concentration seems to be higher in T/T homozygous than 
heterozygous, suggesting a dose-response effect (Grainger et 
al., 1999). Elevated TGFB1 plasma levels have been associated 

with the progression of renal disease due to increased ECM 
production, leading to glomerulosclerosis and tubulointerstitial 
fibrosis (Loeffler and Wolf, 2014). In the context of DR 
pathogenesis, augmented TGFB1 circulating levels might 
enhance angiogenesis and endothelial proliferation, as well as 
ECM production and blood-retina barrier breakdown, thereby 
contributing to the development and progression of DR (Khan 
and Chakrabarti, 2003; Jia et al., 2011; Liu et al., 2014).

Besides functional studies reporting the impact of 
the rs1800469 T allele on TGFB1 levels, the association 
of this SNP with diabetic chronic complications remains 
inconclusive. Our present case-control study demonstrated 
a significant association of the T/T genotype with protection 
against DR. Consistent with our findings, the C allele of 
this SNP was found to be more prevalent in PDR patients 
(P = 0.050), and this allele was associated with risk of PDR 
in the haplotype constituted together with the rs1800470 SNP 
(Beránek et al., 2002). In contrast, the meta-analysis conducted 
by Liu et al. (Liu et al., 2014) did not reveal any significant 
association between this SNP and DR. These discrepant 
findings may be explained by differences in ethnicities since 
the studies included in the meta-analysis involved T2DM 
patients from Czech, Poland, and India populations (Liu 
et al., 2014). Moreover, the meta-analysis only included 3 
studies comprising 521 T2DM patients with DR and 580 
controls, raising the possibility of insufficient statistical power. 
Furthermore, Raina et al. (2015) demonstrated that the T/T 
genotype of rs1800469 SNP was associated with a 5.5-fold 
increased risk of end-stage renal disease (ESRD) in T2DM 
patients from North India. However, other studies have not 
been able to find any association between this SNP and DKD 
(Ng et al., 2003; McKnight et al., 2007; Prasad et al., 2007). 
Although functional studies suggest that the rs1800469 T 
allele leads to worse outcomes related to the pathogenesis 
of microvascular diabetic complications, the results of case-
control studies that investigated this SNP in DM patients are 
still contradictory. Therefore, more studies with larger sample 
sizes are necessary to better understand the involvement of 
the rs1800469 SNP in DM and DR susceptibility. 

The rs1800470 SNP (c.+29 T>C; also known as T869C) 
causes the replacement of a Leucine (Leu) to a Proline (Pro) in 
codon 10 (Leu10Pro) of exon 1, which encodes the N-terminal 
signal peptide of TGFB1 (Martelossi Cebinelli et al., 2016). 
Although it has been speculated that modifications in amino 
acid composition of the signal peptide can affect its polarity 
and lead to different rates of protein export (Wood et al., 2000), 
both T and C alleles encode nonpolar amino acids (Martelossi 
Cebinelli et al., 2016), suggesting they have similar effects 
on protein function. An in vitro study showed that the C (Pro) 

Table 3 – Haplotypes of the TGFB1 SNPs in DM patients without and with DR.

Haplotypes Controls Cases with DR P *

TT 0.086 0.088 0.564

TC 0.522 0.548

CT 0.379 0.355

CC 0.013 0.009

Data are presented as proportion. The first letter of the haplotypes refers to the rs1800470 SNP and the second to the rs1800469 SNP. *Permutation 
P-value was computed for comparisons of haplotype frequencies between groups.

Figure 1 – DR cases and DM controls were categorized by the number of 
risk alleles of the analyzed polymorphisms in the estimated haplotypes. 
Data are presented as percentage. P= 0.008 was obtained using the χ2-test 
and considering the absolute number of patients in each category.
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allele caused an increase in TGFB1 secretion compared to the 
T (Leu) allele (Dunning et al., 2003). Moreover, studies have 
shown that serum TGFB1 concentration is higher in subjects 
with the C/C genotype compared to T allele carriers (Yokota 
et al., 2000; Taubenschuss et al., 2013; Martelossi Cebinelli et 
al., 2016). However, Ramirez et al. (2020) demonstrated that 
individuals carrying the T/T genotype have higher levels of 
TGFB1 when compared to C/C carriers. Hence, although the 
functional effect of this SNP on TGFB1 expression is not yet 
clear, higher levels of TGFB1 can increase angiogenesis, ECM 
production, and blood-retina breakdown, thus predisposing 
to DR.

Our present study reported an association between the 
C/C genotype of the rs1800470 SNP and protection against 
DR. Supporting a protective role of the C allele, Javor et al. 
(2010) demonstrated an association between the T/T genotype 
and an increased risk for DR in T1DM patients from a Slovak 
population. Similarly, another study showed that the T allele 
is associated with risk for PDR (OR = 2.89; 95% CI 1.6 – 5.1) 
in T2DM patients from the Czech Republic (Beránek et al., 
2002). In contrast, Buraczynska et al., (2007) reported that 
the C allele of this SNP was associated with increased risk of 
DR (OR = 2.22; 95% CI 1.64 – 2.99) in T2DM patients from 
Poland. Bazzaz et al. (2014) also reported that the frequency of 
the C allele was higher in T1DM patients with DR compared 
to controls, although the difference did not reach statistical 
significance. Moreover, a small study of Brazilian T2DM 
patients (66 cases with DR and 36 controls) did not find any 
significant association between the rs1800470 SNP and DR 
(Rodrigues et al., 2015). 

In 2011, Jia et al. (2011) published a meta-analysis of 
nine studies (1776 cases and 1740 controls) investigating the 
association between the rs1800470 SNP and DKD in T1DM 
or T2DM patients, which suggested that the presence of the 
C allele was associated with an increased risk for DKD (OR 
= 1.25, 95% CI 1.05 – 1.48). A recent meta-analysis of eight 
Chinese studies (1018 cases with DKD and 941 controls) 
reported that the T/T genotype conferred protection against 
DKD (OR = 0.55, 95% CI 0.31 – 0.96) in T2DM patients (Zhou 
et al., 2018). Despite the new data generated by our article, 
the results remain contradictory, and additional studies are 
necessary to clarify the association between this SNP and DR. 

This study has a few limitations. First, even though 
ethnic distributions were similar between case and control 
groups, there is a possibility of population stratification bias 
when analyzing the samples. Second, although the frequencies 
of the rs1800469 and rs1800470 SNPs were similar between 
T1DM and T2DM patients, the sample size was not sufficient to 
conduct further stratification analysis by DM type. Therefore, 
the possibility that the strength of association of these SNPs 
with DR might be different between DM types cannot be 
ruled out. Third, due to small sample sizes and the number of 
independent variables included in the models, corrections for 
multiple comparisons were not applied in logistic regression 
analyses. Thus, further studies are needed to confirm the 
results of this study.

In conclusion, this study suggests that the TGFB1 
rs1800469 and rs1800470 SNPs may confer protection against 

DR in T1DM and T2DM patients from Southern Brazil. 
Nevertheless, further research is necessary to confirm the 
role of these SNPs in the development of DR.
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