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Abstract
Oculomotor deficits are common in hereditary ataxia, but disproportionally neglected in clinical ataxia scales and as outcome 
measures for interventional trials. Quantitative assessment of oculomotor function has become increasingly available and thus 
applicable in multicenter trials and offers the opportunity to capture severity and progression of oculomotor impairment in a 
sensitive and reliable manner. In this consensus paper of the Ataxia Global Initiative Working Group On Digital Oculomotor 
Biomarkers, based on a systematic literature review, we propose harmonized methodology and measurement parameters 
for the quantitative assessment of oculomotor function in natural-history studies and clinical trials in hereditary ataxia. 
MEDLINE was searched for articles reporting on oculomotor/vestibular properties in ataxia patients and a study-tailored 
quality-assessment was performed. One-hundred-and-seventeen articles reporting on subjects with genetically confirmed 
(n=1134) or suspected hereditary ataxia (n=198), and degenerative ataxias with sporadic presentation (n=480) were included 
and subject to data extraction. Based on robust discrimination from controls, correlation with disease-severity, sensitivity 
to change, and feasibility in international multicenter settings as prerequisite for clinical trials, we prioritize a core-set of 
five eye-movement types: (i) pursuit eye movements, (ii) saccadic eye movements, (iii) fixation, (iv) eccentric gaze holding, 
and (v) rotational vestibulo-ocular reflex. We provide detailed guidelines for their acquisition, and recommendations on the 
quantitative parameters to extract. Limitations include low study quality, heterogeneity in patient populations, and lack of 
longitudinal studies. Standardization of quantitative oculomotor assessments will facilitate their implementation, interpre-
tation, and validation in clinical trials, and ultimately advance our understanding of the evolution of oculomotor network 
dysfunction in hereditary ataxias.
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Introduction

Patients with hereditary ataxia present with a broad range 
of symptoms and clinical findings, including deficits in 
stance and gait, limb coordination, speech, swallowing, 
and also mood and cognition [1, 2]. Oculomotor deficits 
are also frequently observed in this population and have the 
advantage over other motor manifestations in that they are 
relatively well studied and not confounded by significant 

inertia or musculoskeletal factors [3–6]. Whereas differ-
ent types of eye movements have distinct anatomical sub-
strates and their alterations constitute functional readouts 
of underlying brain pathophysiology (see Leigh and Zee for 
an in-depth review [7]), specific ataxias often affect more 
than one brainstem or cerebellar circuit. While tradition-
ally electronystagmography and scleral search coils were 
the most frequently used approaches to record eye move-
ments, video-oculography (VOG) and infrared systems have 
become the preferred method due to high recording quality, 
tolerability, and easy handling [8]. Both the type and the 
pattern of oculomotor abnormalities may facilitate the dif-
ferential diagnosis in such patients and thus may allow for a 
rapid and targeted diagnostic workup [9, 10]. For example, 
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very slow saccades to targets in the context of a dominant 
family history are suggestive of spinocerebellar ataxia type 
2 (SCA2) [11], and bilateral vestibular loss-of-function in 
the setting of cerebellar ataxia with sensory neuronopathy 
may point to replication factor complex subunit 1–related 
disease [12]. Importantly, oculomotor parameters seem to 
be sensitive and objective biomarkers to monitor disease 
progression and treatment effects in clinical trials [13, 14].

The identification of the most valuable oculomotor param-
eters along with their appropriate acquisition paradigms for 
use in clinical trials is particularly challenging. These param-
eters are variable and have been assessed and quantified in 
many different hereditary ataxias [15], but most studies have 
been single-center without established best practices or stand-
ardized protocols. Ideal oculomotor parameters should be 
easy and reliably measurable in a standardized multi-center 
setting, and, most importantly, should be sensitive to detect 
the presence of early disease, disease progression, and the 
effects of treatment interventions. Noteworthy, the optimal 
selection of parameters depends on the focus of the research 
question (distinguishing between diagnostic accuracy studies, 
longitudinal observational studies, and treatment-response 
studies) as well as the disease population studied.

The aim of this work, which is an undertaking of the 
Ataxia Global Initiative (AGI [16]) working group on dig-
ital-motor biomarkers, is to propose a core set of quantita-
tive oculomotor parameters for clinical studies of hereditary 
ataxias. A particular focus is on identifying those parameters 
(a) that are the most feasible and (b) applicable in multi-
center trial settings, (c) that have shown significant dis-
criminatory power for identifying affected individuals from 
healthy or disease controls, and (d) whose validity has been 
demonstrated by correlations with other validated measure-
ments of disease severity. Along with the proposed core set 
of paradigms and parameters, we will propose guidelines 
for measurement standardization. To achieve these aims, we 
performed a systematic review of the published literature 
on quantitative oculomotor testing in ataxia and assessed 
the suitability of identified parameters regarding the four 
criteria above. Based on a stepwise review and consensus 
process discussed extensively with the oculomotor working 
group, we provide guidelines for the standardized acquisi-
tion of a core set of oculomotor assessments, and provide 
recommendations on the quantitative parameters to derive.

Material and Methods

Data Sources and Searches

We searched MEDLINE (via PubMed) for articles using 
words and controlled-vocabulary terms related to research 

studies reporting on oculomotor and/or vestibular proper-
ties in ataxia patients. A detailed description of the search 
strategy is available in Appendix 1. Our search was updated 
through May 13, 2021. No registration on PROSPERO was 
made.

Study Selection

Identified articles were reviewed and selected by two inde-
pendent raters (PG, AAT) using pre-determined inclusion 
criteria and a structured protocol (see Appendix 1). We 
focused on studies reporting on quantitative oculomotor 
and/or vestibular testing in patients with hereditary ataxia, 
either confirmed or suspected. However, we included studies 
reporting on degenerative ataxias with sporadic presentation 
as well. In order to understand the spectrum of oculomotor/
vestibular paradigms used in the past in patients presenting 
with ataxia, we wanted to be as inclusive as possible and thus 
not to omit findings from patients presenting with ataxia from 
a non-hereditary origin. We calculated inter-rater agreement 
on full-text inclusion using Cohen’s kappa [17].

Data Extraction and Quality Assessment for Studies 
Reporting on Oculomotor Findings in Ataxia

A quality assessment of included studies was performed by 
two independent reviewers (PG, AAT) based on eight prede-
fined quality criteria covering items related to (i) the study-
cohort, (ii) data acquisition, and (iii) data analysis in studies 
reporting on oculomotor findings in ataxia, and included 
an evaluation for risk-of-bias for assessing test results. An 
overall study quality rating (high, moderate, or low) was 
derived from this quality assessment (see Appendix 2 for 
details). In brief, studies were considered “high quality” if 
they (i) included patients with genetically confirmed heredi-
tary ataxia, (ii) included age-matched healthy control groups 
(confirmed on clinical examination, except for longitudinal 
or treatment-response trials), (iii) implemented a prespeci-
fied recording protocol, (iv) provided sufficient detail of 
recorded parameters to allow reproduction, (v) used appro-
priate (i.e., with sufficiently high-resolution and recording 
frequency) eye-movement recording devices, (vi) reported 
on the data analysis performed with sufficient detail to allow 
reproduction, (vii) were based on normative values retrieved 
from an appropriate control group, and (viii) had a low risk 
of bias for assessing the test results. If no genetic testing 
was available, a positive family history with a clear pattern 
of inheritance (autosomal dominant, autosomal recessive, 
X-linked recessive) or established and specific diagnostic 
biomarkers were a necessary requirement to define studies 
as “moderate quality.” We did not exclude studies from the 
review based on the rated study quality.
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Data extraction was jointly performed by two review-
ers (PG, AAT). We did not contact study investigators 
to retrieve additional information. Information extracted 
from each eligible article included the type of study con-
ducted (e.g., case-control studies or observational studies), 
the number of research participants, the underlying diag-
noses, and the actual oculomotor paradigms performed. 
We extracted detailed information related to the record-
ing device used, the experimental paradigm(s) performed, 
and the patient cohort(s) studied. This study is reported in 
accordance with PRISMA guidelines [18].

Data Synthesis, Parameter, and Paradigm Selection 
Process

Based on the systematic literature review, consensus was 
sought for a recommendation of experimental paradigms 
and quantitative parameters suitable for validation as out-
come measures for clinical trials in ataxia. Prioritization 
considered how often a given experimental paradigm was 
investigated in different ataxia cohorts, but was ultimately 
based on (i) the reported robustness to discriminate ocu-
lomotor abnormalities in ataxia from healthy or disease 
control populations; (ii) if validating data was available 
reporting on the correlation with disease severity, or sen-
sitivity to detect within-subject changes in observational 
or interventional studies; and (iii) the feasibility of data 
collection in the setting of large, international, multicenter 
clinical trials. The existence of standardized recording 
procedures that can be completed with commercial, read-
ily available devices and software, ideally using a single 
device for all paradigms, was a key requirement. Para-
digms requiring technically demanding, non-standardized, 
or non-scalable equipment (including rotating chairs, ves-
tibular-evoked myogenic potentials) were discarded.

An initial proposal was designed by a subgroup panel 
(“parameter validation core group,” n=7 participants) after 
reviewing all studies that reported on specific oculomotor 
paradigms. The paradigms that met the selection criteria 
(i)–(iii) as defined above were prioritized, and proposed 
detailed recommendations on the acquisition setup (e.g., 
the type of recording device), the stimulation paradigm, 
and the extraction of quantitative parameters for each 
paradigm, selecting ranges of parameters that had been 
successfully implemented in the reviewed studies. The 
proposal was then critically reviewed and updated by all 
members of the oculomotor subgroup of the AGI work-
ing group on digital-motor biomarkers, and by an expert 
neuro-otologist not involved in the working group. This 
was an iterative process until all members of the working 
group agreed on the proposal.

Results

Systematic Literature Review: Included Studies, 
Study Quality, and Study Goals

Our search identified 819 unique citations, of which 624 
(76.2%) were excluded at the abstract level (see Fig. 1—
PRISMA flow-chart). Two independent raters had excel-
lent initial agreement on inclusion of full-text manuscripts 
(kappa value 0.89 (95% CI=0.85–0.94), see Appendix 1). 
After resolving initial disagreements in the assessment 
at the full-text level, 117/195 (60.0%) studies were con-
sidered eligible, representing 14.3% of the total number 
of studies. Included studies (n=117) reported on 1812 
unique patients with either genetically confirmed ataxia 
(n=1134), suspected hereditary ataxia based on family his-
tory or biomarkers (n=198), and other sporadic or degen-
erative ataxias (n=480). Among genetically confirmed (or 
suspected) hereditary ataxias, Friedreich Ataxia (FRDA) 
(n=178), spinocerebellar ataxias (SCA) (most often 
SCA2 (n=421), SCA3 (n=268), and SCA6 (n=117)), and 
ataxia telangiectasia (A-T) (n=85) were most frequently 
reported (see Fig. 2 for distribution of specific disorders). 
In twenty-eight studies, a diagnosis of sporadic (degenera-
tive) ataxia was based on the clinical syndrome and patient 
history (including age at symptom onset and symptom 
duration), and imaging findings (describing cerebellar/
combined cerebellar and brainstem atrophy) (for epide-
miologic details, see Table 1 and supplementary Table S1 
in Appendix 3).

The overall quality with regard to reporting oculomo-
tor testing in ataxia was rated as “low” in the majority of 
studies (n=69; 59%), whereas a minority of ratings were 
“moderate” (n=26; 22%) or “high” (n=22; 19%). The risk 
of bias was judged “high” in 18 studies, “unclear” in 12 
studies, and “low” in the remaining 87 studies (see sup-
plementary Table S2 in Appendix 3). Reasons for low-
quality ratings (multiple reasons possible) were most often 
related to patient selection (lacking genetically confirmed 
diagnosis, positive family history with clear pattern of 
inheritance, or established biomarkers; n=41), control 
group selection (being non-age matched and providing no 
health status; n=31), statistical analysis (not providing any 
information on statistical analyses performed; n=32), and 
unclear risk-of-bias for analysis of the test results (n=12).

The sample size in the studies included here ranged 
from single case reports to larger prospective studies con-
taining up to 82 SCA2 patients and 80 controls [19]. The 
primary focus of the vast majority of studies was the phe-
notypic characterization of oculomotor abnormalities in 
the respective population (n=94), being cross-sectional in 
all but two observational studies that used eye movement 
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recordings to monitor disease progression over period of 
12 months [19] and 5 years [20], respectively. Very few 
studies used oculomotor testing for monitoring treatment 
responses (n=11), or evaluated the value of oculomotor 
paradigms to differentiate between genetically stratified 
ataxias (n=12) as, e.g., SCA1-3 and FRDA [21].

Setup, Paradigms, and Quantitative Parameters

The studies reported here included a broad range of ocu-
lomotor paradigms (with or without fixation) that were 
obtained with distinct recording techniques. The most 
frequently assessed oculomotor paradigms were visually 
guided saccadic eye movements (SEMs; n=73), pursuit eye 
movements (PEMs; n=46), and eccentric gaze holding to 
assess gaze-evoked nystagmus (GEN; 32) (see Table 2 for 
details). Among the vestibular assessments, rotational vesti-
bulo-ocular reflex (VOR) testing (n=29), VOR-suppression 
testing (n=24), and quantitative head-impulse testing (qHIT; 
n=17) were most often reported (see Table 3 for details).

The most common recording techniques were electro-
oculography (EOG, n=40 studies and n=915 or 50% of 

patients), and VOG (including infrared oculography, n=43 
studies and n=639 or 35% of patients). Scleral search coil 
recordings were obtained in a minority of patients (n=148; 
8%) as illustrated in Table 4. From the 117 studies included, 
eye movement recordings were restricted to the horizontal 
plane in 56 studies (reporting on 972 patients), whereas in 
58 studies (reporting on 803 patients) both the horizontal 
and vertical plane were considered. Recordings were bin-
ocular in 860 patients, whereas 408 patients had monocu-
lar recordings only and no information was provided in the 
remaining 544 patients. Recording frequency of devices 
used to quantify eye movement responses ranged between 
30 and 1000Hz, strongly depending on the methodology 
used. Whereas for search coil recordings and EOG recording 
frequencies were generally 100Hz or above, VOG devices 
operated at frequencies in the range of 60 to 500Hz.

The specific quantitative parameters that were extracted, 
within each paradigm, varied across studies. For PEM, most 
studies focused on PEM gain (n=22 studies), whereas for 
SEM three different aspects were measured with similar fre-
quency (saccadic latency [n=44 studies], peak eye velocity 
[n=47 studies] and amplitude/gain/accuracy [n=48 studies]). 

Fig. 1  *MEDLINE was 
accessed via PubMed. †Hand 
search of citation lists from 
selected studies and investigator 
files identified 4 additional man-
uscripts for review. ‡Abstracts 
coded as “yes” or “maybe” 
by at least one reviewer were 
included in full-text review. 
§After full-text evaluation by 
two reviewers, any differences 
were resolved by discussion 
and—if needed—adjudication 
by a third, independent reviewer
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For saccadic intrusions (SIs), studies generally reported their 
frequency of occurrence without further specification. For 
spontaneous nystagmus (SN) and GEN, studies usually made 
a dichotomized distinction between SN/GEN being either 
present or absent. For qHIT analysis, all studies focused on 
qHIT gain.

Normative Values in Healthy Controls

Where available, we extracted information on normative val-
ues (for the same experimental setting and setup) of healthy 
control populations (80 studies; n=1504 controls). For PEM, 
the average gains were similar for horizontal and vertical 
movements (see Figure S1 in Appendix 4), and both horizon-
tal (n=13 studies) and vertical gain (n=4 studies) decreased 
with increasing peak stimulus velocity (p = 0.004, linear 
model with peak stimulus velocity and movement direction 
as fixed effect factors). For visually guided horizontal SEM, 
saccadic peak velocity increased with saccade amplitude (p 
< 0.001 across n=28 studies, see Figure S2 in Appendix 4), 
as expected. For saccadic amplitudes of 10° or lower, there 
was a large difference in the average normative value of 
saccadic peak velocity, gain, and latency (up to 40–70%; 
see Figures S2-5 in Appendix 4). For SIs, normative val-
ues were provided in only 4/24 studies that measured SI. 
These studies reported normative values on square-wave jerk 

(SWJ) frequency per minute and SWJ amplitude [22–25]. 
SWJ frequency varied substantially, ranging from 3.6±7.8 
to 25.5±0.7 per minute. Normative values for nystagmus 
were only provided in 1/17 studies reporting on SN [26], and 
2/22 studies reporting on horizontal GEN [25, 26], while no 
normative values were available for vertical SN (downbeat 
nystagmus [DBN], upbeat nystagmus). From the 17 studies 
that reported on qHIT, most used normative values proposed 
by the manufacturer of their device (see Table 4 for details), 
whereas only four studies developed their own normative 
values [21, 26–28].

Oculomotor Parameters in Treatment Response 
Trials and Observational Studies

Both observational studies identified in our review reported 
on disease progression in SCA2 patients over a period of 
12 months [19] and 5 years [20], respectively, and focused 
on horizontal visually guided saccades. Over a period of 5 
years, SCA2 patients demonstrated a significant decrease in 
saccade peak velocity and saccade accuracy, whereas sac-
cade latency increased. Faster progression rates of saccadic 
slowing were associated with larger CAG repeat length [20]. 
Importantly, the effect size of the within-subject longitudinal 
change for saccade peak velocity and latency was larger than 
Scale for the Assessment and Rating of Ataxia (SARA), the 

Fig. 2  Number of patients 
with specific ataxia syndromes 
as reported from all included 
manuscripts. Abbreviations: 
ADCA, autosomal-dominant 
cerebellar ataxia; AOA, 
ataxia ocular motor apraxia; 
ARCA, autosomal-recessive 
cerebellar ataxia; A-T, ataxia 
telangiectasia; ATLD, ataxia-
telangiectasia like disease; 
CANVAS, cerebellar ataxia, 
neuropathy, vestibular areflexia 
syndrome; EA, episodic ataxia; 
FRDA, Friedreich Ataxia, SCA, 
spinocerebellar ataxia; HSP, 
hereditary spastic paraparesis; 
MJD, Machado-Joseph-Disease 
(=SCA3); MSA-C, multisystem 
atrophy type C; RFC, replica-
tion factor C subunit 1
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main clinical score, indicating higher statistical power to 
monitor the efficacy of a potential disease modifying ther-
apy. In another study with a shorter follow-up period of 1 
year, no significant decreases in saccade peak velocity were 
observed (with an average decrease over 1 year of 8°/s, n = 
30 patients) [19].

Eleven studies used quantitative oculomotor assessments 
for evaluation of response to treatment [29–39]. Patient 
populations were diverse (ranging from acute autoim-
mune cerebellar disease, unspecified cerebellar ataxia, and 

autosomal-dominant cerebellar ataxia (ADCA) to episodic 
ataxia (EA) type 4, SCA2, FRDA, Niemann-Pick disease 
type C (NPC), and A-T) and sample sizes were often small 
(n=1-38). Oculomotor parameters used to assess treat-
ment response included SI (n=2), visually guided saccades 
(n=5), PEM (n=2), rotational vestibulo-ocular reflex (rVOR) 
(n=3), SN (n=3), GEN (n=3), VOR decay time constant 
(Tc) (n=1), and optokinetic nystagmus (n=1). Significant 
treatment responses as assessed by oculomotor measure-
ments could be detected in seven studies. This included 

Table 1  Overview of study 
design and clinical population 
across studies

*Missing data in 34 studies (representing 475 patients)
§ This included downbeat nystagmus [32, 54], cerebellar ataxia neuropathy and vestibular-areflexia [27, 52, 
55–57] and progressive ataxia and palatal tremor [58]
# Single case with suspected thiamine deficiency [59]
† Two single cases (one case with confirmed autoimmune anti-GAD-antibody-associated cerebellar ataxia 
[37], one case with opsoclonus and cerebellar dysfunction of unknown origin [60])

Studies (n) Patients (n)

Sex*
 Women 74 638
 Men 72 695
 Unclear 34 475
 Total 117 1812
Study design—time line
 Retrospective 10 73
 Prospective 106 1730
 Unclear 1 9
Study design—location
 Monocentric 111 1763
 Multicentric 6 49
Study type
 Case series 31 312
 Case-control study 68 1236
 Single case reports 7 7
 Observational study 2 112
 Randomized controlled treatment study 2 71
 Non-randomized treatment study 7 74
Purpose of eye movement recordings
 Characterization of deficits 94 1356
 For monitorization of treatment response 11 147
 For differential diagnosis (diagnostic accuracy evaluation) 12 309
Patient population studied
 Genetically confirmed hereditary cerebellar ataxia 51 973
 Genetically or biochemically confirmed hereditary cerebellar ataxia 19 157
 Cohort with both hereditary and non-hereditary cerebellar ataxia 19 411
 Early-onset cerebellar ataxia (first symptoms before age 25 years) 2 6
 Late-onset cerebellar ataxia 5 103
 Other clinical findings suggestive of cerebellar ataxia§ 8 88
 Cerebellar ataxia (not further defined) 10 71
 Acute-onset cerebellar  ataxia# 1 1
 Subacute-onset cerebellar  ataxia† 2 2
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reduction of SI in response to intravenous immunoglobulin 
in anti-GAD-antibody-positive cerebellar ataxia [30] and 
in response to memantine in ADCA [35]. Increased PEM 
gain and more stable eccentric gaze holding (i.e., reduced 
centripetal eye drift) were reported in EA4 under gabap-
entin treatment [31]. Furthermore, DBN in patients with 
various cerebellar pathologies [32] and rVOR decay Tc and 
gaze holding instabilities (SN, periodic alternating nystag-
mus [PAN]) in A-T [36] were reduced by 4-aminopyridine 
(4-AP). PAN was abolished and the rVOR decay Tc was 
normalized in a patient with anti-GAD-antibody positive 
cerebellar ataxia by baclofen [37] and saccadic latency was 
reduced by oral zinc sulfate supplementation in SCA2 [38].

Recommendations for Quantitative Oculomotor 
Assessments in Hereditary Ataxia: Core Set 
of Paradigms and Parameters

To guide the design and implementation of quantitative ocu-
lomotor assessments in clinical studies of hereditary ataxia, 
we developed a core set of paradigms and parameters for 
validation in future studies. Consensus was achieved for 

the following core set of paradigms: (i) PEMs; (ii) SEMs; 
(iii) fixation stability, looking for SIs and SN; (iv) eccen-
tric gaze-holding deficits, looking for GEN; and (v) rVOR 
using the qHIT. All these paradigms can be recorded with 
the participant seated on a chair (or in a wheelchair) using 
a single commercially available video-oculography (or pos-
sibly infrared oculography) device and a computer screen 
or headset (virtual reality or other built-in screen). Detailed 
information on the proposed paradigms, recommended 
recording conditions and parameters, are shown in Table 5.

Guidelines for Recording Setup, Calibration, 
and Minimal Requirements

Standardization of data acquisition with clearly defined 
minimal requirements is key to achieve reliable high-quality 
recordings, especially for multicenter studies. Thus, the con-
sensus process included detailed technical recommendations 
on various aspects, including preferred hardware used for 
eye movement recordings, necessary calibration procedures, 
and prior clinical assessments to determine whether binocu-
lar recordings are possible.

Table 2  Frequency of investigation of oculomotor paradigms across studies

Stimulus motion plane

Studies (n) Subjects (n)

Horizontal Vertical Horizontal and vertical Horizontal Vertical Horizontal and vertical

Pursuit
 Pursuit eye movements 27 0 19 479 0 344
Saccadic eye movements (SEM)
 Visually guided SEM 47 1 25 896 73 304
 Memory-guided SEM 4 0 0 99 0 0
 Antisaccades 5 0 3 96 0 98
 Other SEM 1 0 2 2 0 19
Optokinetic stimulus
 Optokinetic nystagmus 18 0 4 342 0 20
Gaze-holding
 Gaze-evoked nystagmus 14 0 18 152 0 457
 Rebound nystagmus 8 0 5 130 0 97

Eye movement recording plane
Studies (n) Subjects (n)
Horizontal Vertical Horizontal and vertical Horizontal Vertical Horizontal and vertical

Fixation instability
 Saccadic intrusions 9 0 18 124 0 396
Gaze-holding
 Spontaneous nystagmus 4 0 25 101 0 454
Triggered nystagmus
 Head-shaking nystagmus 1 0 0 48 0 0
 Hyperventilation-induced nystagmus 0 0 1 0 0 11
 Positional nystagmus 0 0 5 0 0 103
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Ocular Alignment

Before initiating a recording session, we recommend that 
both an assessment for ocular alignment and a calibration 
should be performed. To assess for ocular alignment, both 
a cover/uncover test and an alternate cover test should be 
done (and recorded if binocular recording devices are used) 
while looking straight-ahead, measuring any ocular devia-
tion angle [40, 41]. The alternate cover test allows the iden-
tification of any skew deviation (i.e., vertical divergence 
or vertical tropias), and the cover/uncover test can reveal 
horizontal tropias. Note that horizontal phorias seen dur-
ing the alternate cover test (i.e., always only one eye view-
ing) are frequently seen and require no further adjustments. 
In patients with horizontal or vertical tropias, monocular 
recordings should be performed with the non-recorded eye 
covered.

Recording Setup

The use of commercially available video-oculography 
devices is strongly recommended with a minimal record-
ing frequency of 100Hz, which is critical for fast eye move-
ments [42] as saccades (taking into account published 

recommendations for the recording of saccades [43]) and 
the vestibulo-ocular reflex. While monocular recordings are 
considered acceptable as a minimal requirement, we recom-
mend binocular recordings to allow coverage of a larger field 
of view and for controlling ocular alignment. If performing 
monocular recordings (e.g., due to VOG restrictions or ocu-
lar misalignment), the eye not recorded should be covered 
to make sure the recorded eye is the viewing eye. Likewise, 
recordings of both horizontal and vertical eye movements 
are recommended to allow a better characterization of ocular 
abnormalities such as vertical saccade slowing or vertical 
(down-beating) spontaneous nystagmus.

Calibration

Calibration is essential to ensure good data accuracy and 
precision. During calibration, the geometric characteristics 
of the subject’s eye are estimated and incorporated into the 
calculation of the subject’s gaze point (see, e.g., [44]). Sub-
jects are typically asked to look at specific points (or calibra-
tion dots) in the screen that rapidly move from one position 
to another. For VOG systems, the calibration sequence is 
generally optimized for each device and provided by the 
manufacturer. It is important to note (and anticipate) that 

Table 3  Frequency of investigation of vestibular paradigms across studies

Abbreviations: N/A not applicable, OVAR off-vertical axis rotation, qHIT quantitative head-impulse test, Tc time constant, VEMP vestibular 
evoked myogenic potentials, oVEMP ocular VEMP, cVEMP cervical VEMP, VOR vestibulo-ocular reflex, VVOR vision-enhanced VOR

Stimulus motion plane

Studies (n) Subjects (n)

Horizontal Vertical Horizontal and 
vertical

Horizontal Vertical Horizontal 
and vertical

Vestibulo-ocular reflex (VOR)
 VOR rotational 27 0 2 393 0 4
 VOR decay Tc 7 0 1 80 0 4
 VVOR rotational 11 0 2 107 0 31
 VOR translational 2 0 0 17 0 0
 OVAR N/A N/A 1 N/A N/A 10
 VOR suppression 23 0 1 341 0 4
 qHIT 7 0 10 130 0 101
 Caloric irrigation 12 N/A N/A 152 N/A N/A
 Dynamic visual acuity 1 0 0 27 0 0

No specific stimulus motion plane
Studies (n) Subjects (n)

VEMPs
 oVEMPs 4 27
 cVEMPs 7 64
Behavioral tasks
 Self-motion decay Tc 1 8
 Subjective visual vertical 2 18
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some ataxia patients may not be able to execute calibra-
tion procedures that have been designed for healthy volun-
teers. In fact, slow eye movements, fixation instabilities, or 
limited range of movement in some patients may require 
adapting the default calibration procedures. For example, 
some default calibration procedures jump quickly from one 
calibration point to the next, and participants with severely 
reduced saccade velocities (e.g., due to severely abolished 
saccade generation in NPC) or patients who require cor-
rective saccades to reach the calibration points may not be 
able to perform a correct calibration with the default timing. 
Such patients may require a calibration sequence based on 
pursuit rather than saccades. There is no optimal one-fits-all 
calibration procedure given the variable pattern of oculo-
motor deficits across hereditary ataxias. Thus, we recom-
mend that characteristics of the population of interest are 
reviewed before initiating a study. Calibration may poten-
tially also require acquisition of some pilot data prior to 
the study. Additionally, we recommend that the calibration 
performance parameters such as accuracy and precision are 
recorded. Such quality control measures can be important to 
interpret discrepancies among study subjects, for example, 

when comparing datasets from different sites that differ in 
data quality [8, 45].

Standardized Stimulation Procedures

A standardized stimulation procedure is recommended for 
all eye movement recordings. For qHIT recordings, stimu-
lation sequences and quality control criteria are typically 
available from the manufacturer of the device. Other eye 
movement types (PEM, SEM, SN/GEN, SI) may require 
designing customized stimulation sequences. When using 
different devices across sites for multicenter studies, efforts 
should be made to standardize the acquisition procedure, 
and use—when possible—the same stimulus sequence and 
acquisition protocol. Practice trials should be considered and 
implemented whenever possible before starting the actual 
test sequence. Detailed guidelines on recommended stimulus 
parameters such as stimulus motion, the number of trials, 
and the recording duration can be found in Table 5.

Discussion

Based on a systematic and comprehensive review of the 
literature, we recommend a prioritized set of oculomotor 
paradigms and derived quantitative parameters for further 
validation in multicenter clinical trials in hereditary ataxia: 
(i) pursuit eye movements, (ii) saccadic eye movements, 
(iii) fixation (including spontaneous nystagmus and sac-
cadic intrusions), (iv) eccentric gaze holding (gaze-evoked 
nystagmus), and (v) the rotational vestibulo-ocular reflex 
as assessed by the head-impulse test. We complement this 
recommendation with a specific technical guideline for 
data acquisition to facilitate the standardization of meas-
urements. All proposed parameters have demonstrated dis-
criminatory power, correlation with disease severity, and/
or intra-individual sensitivity to change in previous stud-
ies (as discussed in detail in the companion paper [46]), 
and all proposed paradigms are feasible for multicenter 
trial deployment since they may be measured with simple, 
commercially available, relatively affordable and portable 
recording systems. Together, the paradigms and param-
eters comprehensively can capture for potential pathol-
ogy in the entire brain circuitry and vestibular system 
which underlies eye movement abnormalities in hereditary 
ataxia. This includes the cerebellum, brainstem nuclei, and 
the cerebral cortex. We consider our recommendations as 
a core set of paradigms and parameters, which may require 
adaptation to the study population under examination (e.g., 
specific ataxia genotypes), and that can be adjusted (add-
ing, e.g., stimulus movement along the vertical plane or 
different types of saccades) as required. In the framework 
of the Ataxia Global Initiative, we particularly consider 

Table 4  Recording setup and normative values across studies

EOG electro-oculography, VOG video-oculography
*Numbers of healthy control subjects included were inconsistently 
reported only; thus, a total number of subjects is not available (N/A)

Studies (n) Subjects (n)

Plane of eye movement recordings
 horizontal plane only 56 972
 vertical plane only 0 0
 both horizontal and vertical plane 58 803
 no eye movement data collected 3 37
Number of eyes recorded
 One eye 41 408
 Both eyes 41 860
 Unclear 35 544
Technique used for eye movement 

recordings
 Scleral search coils 23 148
 Electro-oculography (EOG) 40 915
 Video-oculography (incl. infrared) 

(VOG)
43 639

 Mixed (VOG and/or search coils) 3 33
 Mixed (EOG or search coils) 4 28
 Combined (both EOG and VOG) 1 12
Source of normative values used*
 From own laboratory 80 N/A
 From manufacturer of device 4 N/A
 From previous publications 3 N/A
 No normative values considered 15 N/A
 Unclear 15 N/A
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our recommendations an evidence-based prioritization of 
paradigms and parameters for longitudinal validation stud-
ies needed to show their value as digital-motor outcome 
measures in clinical trials.

Selection of Paradigms and Devices for Recording 
Eye Movements in Hereditary Ataxia

Recording device selection is critical for the success of 
eye movement recording, as for example a 30-Hz record-
ing rate will not capture fast eye movements as saccades 
appropriately. To improve handling, recording quality, 
and comparability in multi-site trial settings, we recom-
mend the use of commercially available, certified devices 
that have an established track record in the field. Devices 
with high-resolution, high recording frequency, and low 
noise levels are required to achieve sufficient eye move-
ment recording quality [8]. Recording of both horizontal 
and vertical eye movements is preferred. Low-quality eye 
trackers and smartphones are currently not recommended, 
since they lack the accuracy, precision, and sampling fre-
quency required to robustly measure oculomotor param-
eters. With further technological advances in smartphone 
cameras, however, they may prove useful in the near 
future. The use of electro-oculography devices may be 
sufficient for selected paradigms (including horizontal 
SEM or horizontal PEM), but they have higher noise lev-
els, baseline drift, and lid artifacts, especially for vertical 
eye movements [47]. At the same time, magnetic scleral 
search coil recordings—still considered the gold standard 
with regard to quality and versatility of eye movement 
recordings—are not feasible for multicentric clinical trials 
due to their technical and financial demands, and are also 
associated with increased participant burden [48].

Full access to the raw data and support of individualized 
stimulus protocols is critical. This can be essential to iden-
tify and correct potential data quality issues, or to perform 
additional sensitivity analyses. For example, being able to 
review the raw eye movement traces can help identify and 
remove artifacts, which may otherwise contribute to noise in 
the data. For multicenter trials, the optimal proposal would 
be to use identical devices and setups at all sites. However, 
this is often not feasible, in which case employing different 
devices across sites could be acceptable, but it is impor-
tant to seek consistent acquisition conditions, paradigm 
and operating procedures. Here, it is important to take into 
account the technical characteristics of the included devices, 
and the potential biases associated with each specification. 
For instance, sampling frequency impacts the estimation 
of saccade duration or velocity [42] and thus an important 
parameter to keep in mind when choosing the eye movement 
recording device to be used.Ta
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The Importance of Normative Values

The impact of normative values depends on the study design. 
While for longitudinal observational studies or for treatment 
trials intra-individual comparisons with either baseline 
measurements at the study initiation or before treatment are 
made, normative values will play a more prominent role in 
case-control studies. Differences in normative values identi-
fied in the studies we included may have distinct underlying 
causes including data smoothening (especially for saccades), 
synchronization errors, distraction of subjects, fatigue, stim-
ulus parameter variations including stimulus size, stimulus 
brightness, background light, recording type (VOG, EOG), 
recording device, and a speed-accuracy tradeoff. Overall, the 
range of normative values was considerable—and often they 
were not reported. Across the literature, there are numerous 
reports of normative values for horizontal PEM gains and 
horizontal visually guided saccade latency, peak velocity, 
and gains. In contrast, there are few studies reporting healthy 
control values for vertical saccades, memory-guided sac-
cades, anti-saccades, SI, SN, and GEN.

When using video-oculography, however, using norma-
tive values provided by the manufacturer of the device seems 
justified for the qHIT. Noteworthy, normative values may 
vary among measurement systems used and comparative 
studies have been published. For the qHIT, normative values 
depend on the peak head velocity values; thus, the appli-
cation of head impulses needs training and experience, as 
well as good-quality control criteria to maintain individual 
impulses within the intended velocity range. Whereas for 
horizontal semicircular canals normative values are very 
similar for different devices (e.g., EyeSeeCam [Interacous-
tics, A/S, Denmark], ICS Impulse goggles [Natus, USA]), 
stronger discrepancies have been reported for the vertical 
canals [49, 50].

Study limitations, areas of limited knowledge, 
future directions

The oculomotor parameters proposed here were derived 
from paradigms used in previously published studies, and 
were the result of extensive discussion and consensus among 
the members inside and outside of this working group. The 
full potential of these parameters across ataxia genotypes, 
however, has not yet been revealed and other oculomotor 
parameters not considered here may be valuable as well. 
Prospective, disease-specific longitudinal validation studies 
measuring the within-subject progression and heterogene-
ity of this set of parameters are now needed to fully assess 
their potential as digital-motor biomarkers in clinical tri-
als in hereditary ataxia. The heterogeneity in the patient 
populations of the included studies (ranging from geneti-
cally proven ataxias to sporadic or acquired ataxias) and the 

limited data for various oculomotor paradigms and derived 
parameters are important limitations of this systematic 
review. With the majority of studies in our systematic review 
being of low overall study quality with regard to reporting 
oculomotor function in hereditary ataxia, there is a need for 
more high-quality studies in this field.

From a regulatory perspective, clinical outcome measures 
not only require adequate metric properties (i.e., sensitiv-
ity to change), but must also be functionally meaningful 
to the patient [51]. However, there are currently no estab-
lished clinical or performance measures capturing functional 
impairment by oculomotor dysfunction in hereditary ataxia. 
While the dynamic visual acuity provides a functional 
assessment of the integrity of the rotational vestibulo-ocular 
reflex, this paradigm has been considered in a single study 
only in our literature review [52]. Other potentially suit-
able measures include assessments of visual stability, i.e., 
the amount of visual impairment by fixation instability as, 
e.g., SN, GEN, and SI or reading performance [53]. Future 
validation studies of quantitative oculomotor parameters in 
hereditary ataxia must include such clinician-reported or 
patient-reported outcome measures of oculomotor function 
to effectively aim for trial readiness.

Conclusions

Based on a systematic literature review, we have selected a 
core set of quantitative oculomotor parameters for capturing 
eye movement abnormalities in (hereditary) ataxias. These 
parameters now require further, disease-specific prospective 
validation in both observational and clinical studies focusing 
on their reliability, validity, sensitivity to change, and even-
tually functional meaningfulness to patients. We have pro-
vided detailed measurement and analysis guidelines based 
on previously published studies in the field and approved 
these recommendations through a multi-step review process 
within our working group. The protocol should be tailored 
to each specific study and population, pruning or adding to 
the core paradigms that we have proposed here. This will aid 
the implementation and interpretation of oculomotor param-
eters in clinical and observational trials and thus advance 
our understanding of the evolution of oculomotor and ves-
tibular network dysfunction in hereditary ataxias. Impor-
tantly, the use of commercially available, mobile recording 
devices with recording frequencies above 100Hz and based 
on video-oculography is strongly recommended.
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