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Cardiometabolic and psychiatric disorders often co-exist and share common early life risk factors, such 
as low birth weight. However, the biological pathways linking early adversity to adult cardiometabolic/
psychiatric comorbidity remain unknown. Dopamine (DA) neurotransmission in the striatum is 
sensitive to early adversity and influences the development of both cardiometabolic and psychiatric 
diseases. Here we show that a co-expression based polygenic score (ePGS) reflecting individual 
variations in the expression of the striatal dopamine transporter gene (SLC6A3) network significantly 
interacts with birth weight to predict psychiatric and cardiometabolic comorbidities in both adults (UK 
Biobank, N = 225,972) and adolescents (ALSPAC, N = 1188). Decreased birth weight is associated with 
an increased risk for psychiatric and cardiometabolic comorbidities, but the effect is dependent on a 
striatal SLC6A3 ePGS, that reflects individual variation in gene expression of genes coexpressed with 
the SLC6A3 gene in the striatum. Neuroanatomical analyses revealed that SNPs from the striatum 
SLC6A3 ePGS were significantly associated with prefrontal cortex gray matter density, suggesting 
a neuroanatomical basis for the link between early adversity and psychiatric and cardiometabolic 
comorbidity. Our study reveals that psychiatric and cardiometabolic diseases share common 
developmental pathways and underlying neurobiological mechanisms that includes dopamine 
signaling in the striatum.

The co-occurrence of more than one chronic disease1 has high prevalence in primary care settings2, inflating 
health care utilization and functional disability3. Psychiatric and cardiometabolic disorders, which are highly 
comorbid4,5, rank amongst the leading global causes of disability-adjusted life years worldwide6,7. Prospective 
studies show a bi-directional relationship between psychiatric and cardiometabolic conditions8. Meta-analytic 
evidence from longitudinal studies indicates that diabetes increases the risk for depression by approximately 25% 
and that depression increases the risk for type 2 diabetes by 40–60%7,9. The odds for depression also increase 
with one or more non-psychiatric coexisting chronic conditions, especially coronary artery disease, chronic 
arthritis, and stroke10. Anxiety is also associated with 41% increased risk of developing cardiovascular disease11. 
Among adult patients with schizophrenia, the prevalence of diabetes averages 15%, which is higher than the 10% 
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prevalence of diabetes in the general population. This association persists even after controlling for factors such 
as obesity and the use of antipsychotic drugs12.

The underlying mechanism for these comorbidities remains unknown, but an emerging explanation is that 
psychiatric and cardiometabolic disorders share common developmental pathways. For example, low birth 
weight, a prevalent form of early life adversity13, is specifically linked to cardiometabolic14–18 and psychiatric 
disorders19–24. One in four newborns worldwide are considered small vulnerable newborns experiencing 
significant intrauterine adversities, affecting their growth and development, with long-term consequences that 
reach the societal level independently of the economic status of the country25. There are many mechanisms 
involved with this condition, including genetic and epigenetic factors, maternal-fetal environment – such 
as mother’s age, ethnicity, and geographical location, maternal malnutrition, placental size and dysfunction, 
presence of maternal illness, and substance exposure (e.g., smoking, alcohol, drugs). Therefore, being born small 
is an insightful quantitative proxy for adversity exposure during pregnancy26 and associated with increased 
morbimortality throughout the life course18.

An obvious question concerns the biological mechanisms that underlie such a developmental trajectory 
involved in the development of cardiometabolic and psychiatric comorbidities. The brain dopamine system 
is highly sensitive to early adversity27 and proposed as a mechanism underlying developmental pathways to 
multiple psychiatric and metabolic comorbidities28,29. Early life adversity such as fetal growth restriction that 
leads to low birth weight alters dopaminergic signaling30–32. Dysfunction of dopamine neurotransmission in 
both the ventral and dorsal striatum associates with depression33, as well as dysregulated food intake and altered 
energy homeostasis31,32,34. Striatal dopamine signaling also appears to regulate systemic glucose metabolism 
in humans35. The striatum harbors dopaminergic neurons36 and the striatal dopamine transporter (DAT) is a 
critical regulator of striatal dopamine release and reuptake37. Dopamine signaling is influenced by core metabolic 
hormones such as leptin and insulin, through their actions on the expression and function of DAT34,38, which is 
encoded by the SLC6A3 (solute carrier family 6 member 3) gene.

Based on the large evidence supporting the relation between metabolism, mental health and striatal 
dopaminergic neurotransmission, as well as the effects of early adversity on striatal dopamine function, we 
hypothesized that the striatal SLC6A3 gene network underlies the association between early life adversity and 
the comorbidity between psychiatric and cardiometabolic disorders in humans. We therefore aimed to test if 
individual differences in the function of a striatal SLC6A3 gene network might moderate the effects of early life 
adversity on psychiatric and cardiometabolic comorbidities in adults and adolescents. To achieve this, we created 
a SLC6A3 striatal co-expression-based polygenic score (striatum SLC6A3 ePGS) reflecting the genetic capacity 
for expression of the striatal DAT1 gene network (possibly influencing dopamine signaling) and analyzed the 
effect of its interaction with birth weight on the comorbidity of psychiatric and cardiometabolic conditions in 
adults (UK Biobank) and adolescents (Avon Longitudinal Study of Parents and Children, ALSPAC).

Methods
Participants
We used genomic and phenotypic data from two cohorts, one from adults (Uk Biobank), and one from 
adolescents (Avon Longitudinal Study on Parents and Children, ALSPAC).

Adult cohort
The UK Biobank is a large population-based study from the United Kingdom39. Participants, aged 37–73, were 
recruited between 2006 and 2010 resulting in 502,543 subjects. Detailed description of the inclusion/exclusion 
criteria for the current analysis and the corresponding sample size at each step can be found in Supplementary 
information, Supplementary Fig. 1. After all exclusion and inclusion criteria, the number of subjects that remained 
for the analysis was 225,972 (mean age = 55.22, SD = 8.08) (Table 1). We used all the data available for the brain 
imaging analysis considering the inclusion/exclusion criteria (Supplementary information, Supplementary Fig. 1, 
N = 11,167, mean age = 53.86, SD = 7.39).

Adolescent cohort
 To explore our findings in an earlier developmental time point we used data from the Avon Longitudinal Study 
of Parents and Children (ALSPAC) cohort40–42. This is a transgenerational prospective observational cohort 
that recruited 14, 541 pregnant women residents in Avon County, UK. Additional recruitment (N = 913) was 
performed later during Phases II, III and IV respectively, bringing the total sample size of prospective mother-
child dyads to 15,658. For more information on ALSPAC variables, please see  h t t p : /  / w w w . b  r i s t o l  . a c . u  k / a l s p a c / 
r e s e a r c h e r s / o u r - d a t a /     . Data from the adolescent offspring aged between 15.5 and 17.5 were used in this study. 
Only subjects with available phenotypic data of interest, early life adversity measure, in this case birth weight and 
genotyping data were considered for the analyses (N = 1,188) (Table 2). Detailed description of the inclusion/
exclusion criteria and the corresponding sample size at each step can be found in Supplementary information, 
Supplementary Fig. 2.

See Supplementary Information Supplementary Methods for detailed description of the genotyping procedure 
for each cohort.

Ethics approval and consent
UK Biobank
Informed consent was obtained from each participant, and the project has been approved by the North-
West Multicentre Research 580 Ethics Committee (REC reference 11/NW/0382), the National Information 
Governance Board for Health and Social Care, and the Community Health Index Advisory Group for UK 
Biobank. Consenting participants provided baseline information, answered questions, had measurements 
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and biological samples collected. This research has been conducted using the UK Biobank Resource under 
application number 41975.

ALSPAC
Participants provided written informed consent to participate in the study. Ethics approval for the study was 
obtained from the ALSPAC Ethics and Law Committee and the local research ethics committees (a full list of 
the ethics committees that approved different aspects of the ALSPAC studies is available at  h t t p : /  / w w w . b  r i s t o l  . a 
c . u  k / a l s p a c / r e s e a r c h e r s / r e s e a r c h - e t h i c s /     ) . Consent for biological samples has been collected in accordance with 
the Human Tissue Act (2004).

Consent for publication was obtained from UK Biobank and ALSPAC management teams. The use of these 
datasets was locally approved by the Centre intégré universitaire de santé et de services sociaux de l’Ouest-de-
l’Île-de-Montréal Research Ethics Board under application number IUSMD-21-73.

Identification of the striatal SLC6A3 co-expression gene network and ePGS calculation
Figure 1A shows the steps involved in the identification of the gene co-expression networks and the calculation of 
the ePGS score. The ePGS was calculated considering genes co-expressed with the SLC6A3 gene in the striatum. 

ALSPAC (n = 1188)

Characteristics Mean / N SD/% ePGS correlation/mean difference p_value

Sex - male 565 47.559% 0.086 0.144

Gestational Age (Weeks) 39.731 1.289 0.007 0.822

Birth weight (grams) 3508.933 450.425 0.034 0.239

SES (Crowding index above 1) 27 2.314% 0.080 0.665

Waist circumference (cm) at 15.5 years of age 76.237 8.262 0.028 0.329

SDQ Total difficulties score at 16.5 years of age 5.477 4.372 − 0.047 0.109

CIS-R Depression score at 17.5 years of age 0.283 0.747 0.014 0.640

CIS-R Anxiety score at 17.5 years of age 0.231 0.667 0.021 0.467

HOMA2-IR at 17.5 years of age 0.879 0.6 0.006 0.843

zBMI at 15.5 years of age 0.271 0.989 0.037 0.209

Table 2. Description of the baseline characteristics in ALSPAC sample and associations with striatum SLC6A3 
ePGS. Low socioeconomic status (SES) in ALSPAC: crowding index higher than 0.75 at 2-year-and-9-month 
time point was considered as low SES. Crowding index was calculated by dividing the number of individuals 
living in the family dwelling by the number of rooms in the family dwelling and was used as a proxy measure 
of socioeconomic status.

 

UK Biobank (n = 225,972)

Characteristics Mean / N SD/% ePGS correlation/mean difference p_value

Sex - Male 88,939 39.358% 0.007 0.109

Birth weight (grams) 3317.492 658.366 0.008 < 0.001

Completed full-time education at 14-years of age or younger 1667 1.159% − 0.025 0.308

Age at recruitment (years) 55.218 8.079 0.013 < 0.001

Townsend deprivation index at recruitment − 1.482 2.983 − 0.027 < 0.001

BMI at recruitment 27.265 4.866 − 0.001 0.570

ICD10 F10-F19 Mental and behavioural disorders due to psychoactive substance use 9278 4.106% − 0.009 0.363

ICD10 F20-F29 Schizophrenia, schizotypal and delusional disorders 556 0.246% − 0.022 0.613

ICD10 F30-F39 Mood [affective] disorders 8539 3.779% 0.008 0.469

ICD10 F40-F48 Neurotic, stress-related and somatoform disorders 5541 2.452% − 0.015 0.272

ICD10 E11 Non-insulin-dependent diabetes 10,269 4.544% − 0.037 < 0.001

ICD10 I70 Atherosclerosis 632 0.28% 0.001 0.978

ICD10 I63 Cerebral infarction 1758 0.778% − 0.006 0.809

ICD10 I20-I25 Ischaemic heart diseases 15,389 6.81% − 0.002 0.815

Table 1. Description of the baseline characteristics in UK Biobank sample and associations with striatum 
SLC6A3 ePGS. Townsend deprivation index in UK Biobank: A measure of the level of social deprivation 
that a person lives in. The index was calculated based on previous national census. Participant is given a 
score reflecting the output area in which their postal code is located. Four key aspects are considered in the 
index: the percentage of unemployment, overcrowded households, households without a car and non-home 
ownership.
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As described previously43–50, we began by using brain region-specific RNA sequencing data from mice available 
at GeneNetwork (http://genenetwork.org/, HBP Rosen Striatum M430V2 (Apr05) RMA Clean)51 to identify 
SLC6A3 co-expressed genes (absolute value of co-expression correlation with SLC6A3 gene greater or equal to 
r = 0.5). GeneNetwork was used to obtain gene expression from rodents since our previous findings demonstrated 
multiple effects of early life adversities, especially poor fetal growth, on dopaminergic mesocorticolimbic system 
in rodents30–32,52–56. We then converted SLC6A3 co-expressed genes to human orthologs by using the biomaRt 
package57. Since we were interested in gene networks that were active during the early developmental period 
in which adversity occurred and when the brain is still undergoing core maturational processes in humans, 
we used BrainSpan to select autosomal transcripts expressed at least 1.5-fold more during fetal and childhood 
periods (0–60 months after birth) in comparison to adulthood (20–40 years of age). This process resulted in a 
list of striatal SLC6A3 co-expressed genes. We then mapped all the existent SNPs in the human ortholog genes 
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comprising the striatum SLC6A3 gene network using biomaRt package57 in R and gathered all gene-SNP pairs 
from the GTEx dataset in human striatum. These lists were merged with the genotyping data from UK Biobank 
and ALSPAC cohorts, respectively, retaining only common SNPs and subjecting the final SNP lists to linkage 
disequilibrium clumping (r2 < 0.2) within 500 kb radious to eliminate redundant SNPs. The process resulted in 
1532 independent functional SNPs retained in UK Biobank and 1663 SNPs in ALSPAC. The final score included 
67 genes in our discovery sample (UKB) (Supplementary information, Supplementary Table 1).

To calculate the striatal SLC6A3 ePGS, the number of effect alleles (genotype information from the study 
samples) at a given SNP was weighted using the estimated brain-region-specific effect of the SNP on gene 
expression from the GTEx data58. We also accounted for the direction of the co-expression of each gene with 
SLC6A3 in the network, by multiplying the weight by -1 in case the expression of a gene was negatively correlated 
with the expression of the SLC6A3 gene in the network – therefore, the higher the score, the higher the expression 
of the genes that compose the network. The sum of the weighted values from all SNPs for each individual in 
the cohorts resulted in the region-specific striatal scores. The striatal SLC6A3 expression-based polygenic score 
(ePGS) is a continuous measure that reflects variation of gene expression of the genes co-expressed with the 
SLC6A3 gene in the striatum.

Comparison between polygenic risk scores and ePGS
To compare the results obtained with the striatum SLC6A3 ePGS, we generated traditional polygenic risk 
scores (PRS) using our accelerated pipeline (https://github.com/MeaneyLab/PRSoS)59. A traditional PRS is a 
cumulative score calculated based on a relevant GWAS that represents a genetic risk for a certain health outcome 
or trait60. The sum of the allele count weighted by the effect size across all SNPs in GWAS was used to calculate 
type 2 diabetes61 and major depression disorder62 PRSs. The number of SNPs included was defined based on the 
number of SNPs present in our striatum SLC6A3 ePGS calculated in the discovery cohort. For MDD PRS we 
used the GWAS results that were obtained without UK Biobank or 23andMe subjects.

Functional enrichment analysis
Enrichment analysis was performed using MetaCore® software from Clarivate Analytics  (   h t t p s : / / p o r t a l . g e n e g o 
. c o m     ) to characterize the putative biological functions associated with the striatal SLC6A3 co-expression gene 
network. Genes that comprise the striatal SLC6A3 ePGS were used in the analysis and the whole genome was 
used as a background. The significance was considered for the false discovery rate (FDR) adjusted p-value < 0.05. 
To investigate network centrality measures, co-expression patterns were mined from geneMANIA63.The gene 
interactions were then visualized using the Cytoscape® software64. The nodes are the elements of a network (genes) 
and edges are the connections between these elements. Bottleneck genes are defined as those having a high 
betweenness (the extent to which genes act as ‘bridges’ between other genes in a network), hub genes are defined 
as those with a high degree (genes with more connections to other genes). To analyze the topological properties 
associated with this gene network, the CentiScaPe app in Cytoscape® was used to calculate the degree and 
betweenness of each gene. We used this information to define the “hub genes” within the network, characterized 
as nodes with degrees higher than + 1SD above the mean; and the “bottlenecks” characterized as nodes with 
betweenness higher than + 1SD above the mean. A gene that is both bottleneck and hub was considered as a 
central node of the network65. We also mined protein-protein (PPI) network interactions using the STRING 
database (https://string-db.org)66 and the striatum SLC6A3 ePGS genes, with the objective to query the physical 
interactions of the genes that compose our genetic score. Although we mapped the mice co-expressed gene list 
to human orthologs, not necessarily the co-expression features would be recapitulated in humans. In order to 
confirm if the genes that comprised the striatal SLC6A3 ePGS are co-expressed in humans and to analyze their 

Fig. 1. Construction and characterization of the striatum SLC6A3 gene network. (A) calculation of the 
expression based polygenic score (ePGS) from the genes co-expressed with the SLC6A3 gene in striatum. 
GeneNetwork was used to generate a list of genes co-expressed with SLC6A3 in striatum in mice, which were 
then converted to human orthologs. BrainSpan was used to identify genes overexpressed within striatum in 
fetal samples and up to 5 years of age in comparison to adult samples. All SNPs from these genes, common 
between the study sample and GTEx databases, were retained and included in the final list of SNPs. This final 
list was subjected to linkage disequilibrium clumping, with removal of highly correlated SNPs. Next, for each 
SNP, a number of alleles at a given SNP from each participant’s genotype (rs1, rs2…) was multiplied by the 
estimated effect of the genotype-gene expression association from GTEx. The sum of these values over all SNPs 
provides the striatum SLC6A3 ePGS. (B) striatum SLC6A3 ePGS co-expression gene network. Co-expression 
pattern was mined from GeneMANIA63. The color of the node border represents the correlation sign with 
the SLC6A3 gene according to GeneNetwork co-expression matrix (dark purple represents negative and light 
purple positive correlation). Node color intensity represents betweenness (number of times a node acts as 
a bridge between nodes). Node border width represents the number of connections a node has with other 
nodes (total degree). (C) Co-expression of genes included in the striatum SLC6A3 gene network in humans 
at different ages according to BrainSpan. (D) Topological properties of the striatum SLC6A3 gene network, 
showing hubs (with degrees higher than + 1SD above mean), bottlenecks (betweenness higher than + 1SD 
above the mean), and hub-bottlenecks. Lines in black indicate mean + 1 SD for degrees and betweenness. 
Hub and hub-bottleneck genes are related to ribosomal structure. Among the bottleneck genes, HNRNPA1 is 
involved in the packaging of pre-mRNA into particles and transport from the nucleus to the cytoplasm, as well 
as splicing. The SDC3 gene may play a role in cell shape organization and has been associated with obesity77.
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patterns of co-expression during different life periods in humans, we used the gene expression data from human 
postmortem samples from the BrainSpan database67 (see Supplementary information, Supplementary Methods).

Outcome measures
Adult cohort
Psychiatric disorder diagnosis was defined based on the primary or secondary diagnosis of a mental, mood, 
schizophrenia and neurotic disorders according to participants hospital inpatient records, coded according to the 
International Classification of Diseases version 10 (ICD-10)68 (UK Biobank field 41270; ICD10 codes: F10-F19 
Mental and behavioural disorders due to psychoactive substance use, F20-F29 Schizophrenia, schizotypal and 
delusional disorders, F30-F39 Mood [affective] disorders, F40-F48 Neurotic, stress-related and somatoform 
disorders). Cardiometabolic disorders diagnosis was defined by the ICD-10 codes from chapter IV Endocrine, 
nutritional and metabolic diseases and chapter IX Diseases of the circulatory system (UK Biobank fields: 41270; 
ICD10 codes: E11-Non-insulin-dependent diabetes, I70-Atherosclerosis, I63-Cerebral infarction, I20-I25 
Ischaemic heart diseases). The presence of at least one mental disorder diagnosis and at least one cardiometabolic 
diagnosis was considered a comorbidity case. Comorbidity variable was coded as a binary variable (1 = “yes” or 
0 = “no”). T1 structural brain MRI pre-processed imaging data were generated by an image-processing pipeline 
developed and run on behalf of the UK Biobank69 (Supplementary information, Supplementary Methods).

Adolescent cohort
 No diagnoses for the psychiatric and cardiometabolic disorders noted above were available in ALSPAC. As 
recommended by the American Academy of Pediatrics (AAP)70, we defined disease risk in adolescents using 
continuous measures of Total difficulties score measured by the Strengths and Difficulties Questionnaire, 
depression and anxiety scores measured by Computerized Interview Schedule – Revised (CIS-R), Homeostatic 
Model Assessment of Insulin Resistance (HOMA-IR), and waist circumference (cm) (Supplementary information, 
Supplementary Methods, Supplementary Table 2, Supplementary Fig. 3). We then characterized two groups of 
children: low and high cardiometabolic and psychiatric comorbidity risk (see Statistical Analysis).

Statistical analysis
Statistical analysis were performed using R71. For the descriptive statistics, the ePGS groups were defined by 
median split, and a comparison between low and high ePGS groups was done using Student t test for continuous 
variables and a chi-square test for categorical variables (Tables 1 and 2). Significance levels for all tests were set 
at p < 0.05.

We performed cluster analysis using the mclust package to construct the comorbidity risk variable in 
ALSPAC adolescent sample72. This algorithm applies a model-based classification and density estimation of the 
z-standardized variables based on finite Gaussian mixture modelling. The method assumes that predictors can 
be explained by an underlying latent categorical variable (cluster) that represents distinct profiles within the 
sample, both in a qualitative and quantitative manner. We defined a priori a cluster size solution of two (lower 
and higher risk for comorbidity). All predictors were z-transformed and adjusted for sex prior to entering the 
clustering procedure. Regression analysis was carried out to demonstrate the difference between the two clusters 
in the means for each variable used in the cluster analysis (Supplementary information, Supplementary Table 2). 
The resulting cluster membership, which represented comorbidity risk, was coded as a binary variable (1= “yes 
comorbidity” or 0= “no comorbidity”).

The gene by environment (G-E) interaction effect on binary outcomes was explored by logistic regression 
analysis. Birth weight as a continuous variable was used as a proxy for early life environment exposure in UK 
Biobank (variable ID20022) and ALSPAC. Early life adversity (E), striatal SLC6A3 ePGS (G) and the interaction 
term between them were included in the model as main predictors for both cohorts. UK Biobank analyses were 
also adjusted by sex, age, the first forty genetic principal components, genotyping array, and assessment center, 
and ALSPAC analyses were adjusted by sex and the first ten genetic principal components. In case of a significant 
gene by environment (G-E) interaction effect, post hoc simple slope analysis was performed to investigate how 
the environment effect varies as a function of the genetic background73. The directionality of the G-E effect was 
explored in the UK Biobank, our discovery cohort, using a two-tailed P-value threshold. The directionality of 
the G-E effect on ALSPAC was anticipated based on the finding from UK Biobank, thus a one-tailed P-value 
threshold was considered.

The relation between early life adversity, ePGS and gray matter density in UK Biobank was analyzed in a 
multivariate parallel independent component analysis (pICA). This analysis was applied to identify the effect 
of early life adversity on the relation between two different data modalities (genetic and gray matter density) 
in a data-driven manner74. This analysis separately estimates the maximum independent components within 
each data modality while also maximizing the association between modalities using an entropy term based 
on information theory74. Each SNP that composes the striatal SLC6A3 ePGS weighted by striatal GTEx data 
(genotype * GTEx striatum gene expression slope for each SNP) and whole brain voxel based gray matter density 
were used in the analysis. Weighted SNPs were adjusted for the genetic principal components (ancestry). The 
subjects were split in two groups according to the birth weight (low birth weight group: subjects with birth 
weight < = 2.5 kg, n = 953) and a randomly selected group of non-low birth weight individuals (subjects with 
birth weight > 2.5 kg, n = 953, please see https://www. who.int/data /nutrition/n lis/info/lo w-birth-weight), since 
there was a large discrepancy between cases and controls sample size within the subsample of individuals with 
T1 structural brain MRI available. Comparison between low birth weight and randomly selected non-low birth 
weight individuals on main descriptive variables can be seen on Supplementary information (Supplementary 
information, Supplementary Table 5). Comparison between the randomly selected group and the full sample of 
non-low birth weight individuals with MRI available can be seen on Supplementary information (Supplementary 

Scientific Reports |        (2024) 14:27349 6| https://doi.org/10.1038/s41598-024-78465-5

www.nature.com/scientificreports/

https://www.who.int/data/nutrition/nlis/info/low-birth-weight
http://www.nature.com/scientificreports


information, Supplementary Table 6). T1 structural brain MRI pre-processed images were adjusted by age and 
sex (See Supplementary information, Supplementary Methods). The Fusion ICA Toolbox  (   h t t p : / / m i a l a b . m r n . o r 
g / s o ft  w a r e / fi  t /     ) within MATLAB® R2019 was used to run the analysis. The number of independent components 
was estimated using minimum description length criteria74 for the MRI modality and SNP dimensionality inside 
the toolbox for the genetic modality. Components for both modalities were converted to z-scores and a threshold 
at |Z| > 2.5 was used to identify significant brain regions and SNPs that contributed the most for the component 
overall pattern74. Loading coefficients, which describe the presence of the identified component across subjects74, 
were extracted for each component, modality, and subject. The mean subject-specific loading coefficients of 
these components from low birth weight and non-low birth weight groups were compared using Student’s t-test. 
Brodmann areas defined by talairach coordinates were used to identify the anatomical classification of brain 
areas included in the identified MRI component75,76. The significant SNPs (|Z| > 2.5) from the identified genetic 
component were analyzed using MetaCore®, to identify associated gene ontology processes terms (See Fig. 3A 
for graphical representation of pICA analysis).

Results
Characteristics of the striatal SLC6A3 gene network
We developed a polygenic score to explore the genetic moderation of early life adversity on psychiatric and 
cardiometabolic comorbidities focusing on a specific gene network (Fig. 1A and B). We first used brain region-
specific RNA sequencing data from mice available at GeneNetwork (http://genenetwork.org/)51 to identify 
genes co-expressed with the SLC6A3 gene in the striatum. These genes were then converted to human orthologs 
(Supplementary Tables 1 and Fig. 1B). This list was used to inform the calculation of the expression-based 
polygenic score (Striatum SLC6A3 ePGS) in UK Biobank and ALSPAC participants as described in the Methods.

To investigate if mouse-generated SLC6A3 gene network was co-expressed in humans, we queried the 
gene co-expression patterns of the striatum SLC6A3 gene network throughout human development using 
gene expression data from human postmortem samples67. A high co-expression was expected in childhood/
adolescence, as the striatum SLC6A3 gene network was enriched for genes overexpressed in this period of life 
(see Fig. 1C and Supplementary information, Supplementary Methods). Prominent gene co-expression clusters 
were also seen in adults (Fig. 1C). These findings confirm that the striatal SLC6A3 gene network, originally 
from murine data, is also co-expressed in humans, and that co-expression is observed at different ages. When 
visualizing and exploring the network properties (Fig. 1D), we observed that the central gene (hub) and the 
hub-bottleneck genes are related to ribosomal structure. Among the bottleneck genes, which are important 
connectors between groups of genes, we observed HNRNPA1, which is involved in the packaging of pre-mRNA 
into particles and transportation from the nucleus to the cytoplasm, as well as splicing. We also observed SDC3 
gene, which plays a role in cell shape organization and has been associated with obesity77. Protein-protein 

Fig. 2. Striatum SLC6A3 ePGS moderates the effect of early life adversity on the risk for mental health 
disorder and cardiometabolic comorbidity. Probability of having comorbidity in individuals with high and 
low striatum SLC6A3 ePGS as a function of birth weight. A, UK Biobank cohort, N = 225,972. The risk for 
comorbidity increases as birth weight decreases, especially at lower ePGS values (Low ePGS: b = -0.247, 
OR = 0.781, P < 0.001, 95% CI 0.738–0.826; High ePGS: b = -0.166, OR = 0.847, P < 0.001, 95% CI 0.800–
0.897). B, ALSPAC cohort, N = 1,188. The risk for comorbidity increases as birth weight decreases, especially at 
lower ePGS values (Low ePGS: b = -0.373, OR = 0.688, 95% CI 0.447–1.066, P = 0.090; High ePGS: b = 0.176, 
OR = 1.192, P = 0.419, 95% CI 0.779–1.825).
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interactions of the striatum SLC6A3 co-expression network mined from STRING revealed that the network has 
significantly more interactions than expected by chance (P < 1.0e-16), suggesting that a significant number of 
the genes in this co-expression network also have physical interactions at the protein level.

The main gene ontology processes terms associated with the network (Supplementary information, 
Supplementary Figure S4) include: insulin signaling and response terms (Insulin receptor signaling pathway 
via phosphatidylinositol 3-kinase; Insulin receptor signaling pathway; Cellular response to insulin stimulus; 
Response to insulin), ribosome production related terms (Ribosome biogenesis; Ribosomal large subunit 
biogenesis), dopamine receptor signaling pathway (Adenylate cyclase-activating dopamine receptor signaling 
pathway) and inflammatory response related terms (Regulation of cytokine production involved in inflammatory 
response; Negative regulation of cytokine production involved in inflammatory response).

 Striatum SLC6A3 ePGS moderates the association between birth weight and the risk for 
psychiatric and cardiometabolic comorbidities in adults
Lower birth weight was associated with the presence of comorbidities in UK Biobank (b= -0.206, Odds ratio 
(OR) = 0.814, 95% confidence interval (95% CI): 0.781–0.847, P < 0.001). However, in ALSPAC this association 
was not significant (b= -0.091, OR = 0.913, 95% CI:0.680–1.228, P = 0.548).

For the UK Biobank there was no significant main association of the ePGS with comorbidity (b = 0.006, 
OR = 1.006, 95% CI: 0.977–1.036, P = 0.678). In contrast, and consistent with our anticipated hypothesis, there 
was a significant interaction effect between the striatum SLC6A3 ePGS and birth weight on the presence of 
psychiatric and cardiometabolic comorbidities in UK Biobank adults (b = 0.042, OR = 1.043, 95% CI: 1.001–
1.086, P = 0.044). The risk for comorbidity increased as birth weight decreased, especially at lower ePGS 
values (Low ePGS: b = -0.247, OR = 0.781, P < 0.001, 95% CI 0.738–0.826; High ePGS: b = -0.166, OR = 0.847, 
P < 0.001, 95% CI 0.800–0.897). (Fig. 2A). (As we considered birth weight as a continuous variable ranging from 
low to high values and comorbidity as a dichotomous variable, with the presence of comorbidity computed as 1 
and absence as 0, the odds ratio represents the negative association between birth weight and the probability of 
having comorbidity. Results are presented from the perspective of low birth weight).

In ALSPAC adolescents the G-E model revealed a significant interaction effect between the striatum 
SLC6A3 ePGS and birth weight on the probability of belonging to the high comorbidity risk cluster (b = 0.271, 
OR = 1.311, 95% CI: 1.015 – Inf, P = 0.041, n = 1,188). The risk for of belonging to the high comorbidity risk 
cluster increased as birth weight decreased, especially at lower ePGS values (Low ePGS: b = -0.373, OR = 0.688, 
95% CI 0.447–1.066, P = 0.090; High ePGS: b = 0.176, OR = 1.192, P = 0.419, 95% CI 0.779–1.825). (Fig. 2B). 
Similar to the findings in adults, there was no significant main effect association of the striatum SLC6A3 
ePGS on the comorbidity risk (b = 0.086, OR = 1.090, 95% CI: 0.957–1.240, P = 0.195). These results indicate a 
developmental trajectory, in which early indicators of risk to develop psychiatric and metabolic comorbidities 
in adulthood can be seen in adolescents as a function of the interaction of the striatum SLC6A3 co-expression 
gene network and birth weight.

To benchmark our method against the classical polygenic risk score derived from a GWAS, we performed 
the same G-E interaction analysis using birth weight and PRSs based on GWAS for major depressive disorder62 
and type 2 diabetes61. These are phenotypes related to our main outcome, psychiatric and cardiometabolic 
comorbidity. We found significant main effects of Type 2 diabetes and MDD PRSs on the comorbidity outcome 
in UK Biobank, but not in ALSPAC (Supplementary information, Supplementary Table 3) and no significant 
G-E interaction on comorbidity using these PRSs in the UK Biobank or ALSPAC (Supplementary information, 
Supplementary Table 4).

SNPs from the striatum SLC6A3 ePGS are related to gray matter variations in the frontal 
cortex
We then explored the neuroanatomo-functional relevance of the relation between the striatal SLC6A3 gene 
network and early adversity. Functional refers to the variation in gene expression represented by the weight 
attributed to the SNPs that compose the striatum SLC6A3 ePGS. We used a multivariate parallel independent 
component analysis (pICA)74 (Fig.  3A and Supplementary information, Supplementary Methods) and 
investigated correlations between the SNPs from the striatum SLC6A3 ePGS and voxel-based gray matter density 
in UK Biobank participants from low birth weight and non-low birth weight groups. This analysis identifies 
independent components within each data modality separately (SNPs and MRI) while also maximizing the 
association between these two modalities. The estimated number of components for the MRI modality was 28 
and for the genetic modality was 34. Only the most significantly linked pair of components that resulted from the 
multivariate analysis with higher correlation index value was selected to be further explored: the pair combining 
the genetic component 13 and MRI component 18 (r=-0.201, p = 6.779e− 19). A statistically significant difference 
between birth weight groups was observed for both the genetic component 13 (t = 2,214, p = 0.026) as well as 
the MRI component 18 (t=-3,318, p < 0.001). These differences between the adversity groups suggest that the 
relations between data pattern variations (i.e., the relationships between SNPs and gray matter) within this pair 
of components are significantly different between the two birth weight groups. We then explored the content of 
genetic component 13 and MRI component 18. The subset of significant SNPs within component 13 is related to 
variations in gray matter density in the frontal cortex, including the prefrontal cortex, and also more specifically 
the orbitofrontal cortex, part of the prefrontal cortex, cingulate cortex and temporal cortex (Fig. 3B). Enrichment 
analysis of this subset of significant SNPs (Supplementary information Supplementary Table 7) using MetaCore® 
(FDR < 0.05) showed that the most significant gene ontology enrichment terms are related to regulation of 
dendrite development, regulation of neuron remodeling, positive regulation of nervous system development, 
pyruvate biosynthetic process, ATP metabolic process and response to epinephrine (Fig. 3C).
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Discussion
Overview and discussion of main results
Our study suggests that being born with lower birth weight increases the risk for later comorbidities between 
cardiometabolic and psychiatric conditions in adulthood. In fact, being born at low birth weight, which reflects 
prenatal adversity13, independently associates with increased risk for developing both cardiometabolic14–17 and 
psychiatric disorders19–24 corroborating our findings. Our functional genomics approach provides evidence 
for the striatal SLC6A3 co-expression gene network as a salient mechanism moderating this association. This 
finding is aligned with the critical role of the dopaminergic system in environmental responsivity44,78.

Although lower birth weight is associated with an increased risk for co-morbidity in both ePGS groups in 
the UK Biobank, low ePGS participants have significantly more risk than high ePGS individuals. In the low 
ePGS group in adolescence, there is a suggestion of increased risk of being part of a high comorbidity risk as 
birth weight decreases (p = 0.09). Although the simple slope for the high ePGS group in adolescence shows a 
positive inclination between birth weight and risk for comorbidity, this slope is not significant therefore the risk 
for comorbidity does not vary according to birth weight in the high ePGS group. No information on gestational 
age was available in the UK Biobank cohort. To maintain consistency, birth weight as a continuous variable and 
not corrected for gestational age was used in both cohorts. The lack of information about gestational age in our 
study may be especially affecting the adolescent analysis and this may potentially explain why the simple slope 
for the low ePGS group does not reach statistical significance, although the interaction between ePGS and birth 
weight is statistically significant in ALSPAC.

Fig. 3. Parallel ICA analysis. (A) schematic representation of parallel ICA method. Two different data 
modalities (SNPs and voxel-based gray matter) were used to establish anatomical-functional correlations 
between the striatum SLC6A3 ePGS and brain features from UK Biobank participants (N = 11,167). 
Participants were separated into low birth weight and normal birth weight groups. The analysis estimates 
the maximum independent components within each data modality separately while also maximizing the 
association between modalities using an entropy term based on information theory. (B) significant brain 
regions associated with SNPs from the striatum SLC6A3 were frontal cortex, including the orbitofrontal 
and prefrontal cortex, cingulate cortex and temporal cortex. Color scheme represents the amount of volume 
variation (cubic centimeter) significantly associated with the subset of SNPs. (C) summary of significant gene 
ontology processes related to SNPs from the striatum SLC6A3 ePGS associated with gray matter. Image created 
with BioRender.com (BioRender.com/f03l258) and open-source tool BrainPainter.
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Comparison between ePGS and PRS scores on main hypothesis testing
Based on the comparisons observed in this study, only the striatum SLC6A3 ePGS was capable of capturing gene 
by environment interaction effects, while different PRSs did not significantly interact with early life adversity 
to predict the main outcome. GWAS-derived PRS reflect main genetic effects and thus are unlikely to capture 
individual differences in response to environmental variation. Indeed we found significant main effects of the 
PRSs of Major depressive disorder62 and Type 2 diabetes61 on comorbidity in UK Biobank. Overall, these results 
align with the well-known capacity of PRS to detect main genetic effects, as well as demonstrate the ability of our 
ePGS technique in identifying responsivity to environmental change as compared to traditional GWAS-based 
PRS79. PRS main effects were not observed in adolescents from ALSPAC probably due to the specificity of the 
GWAS to the features of the original discovery sample; the majority of GWASs are generated based on adult 
samples80, thus limiting the extrapolation of the effects in different ages.

Discussion of enrichment analysis results
Our enrichment analysis showed that the striatal SLC6A3 gene network is co-expressed in humans across 
childhood/adolescence and adulthood (Fig. 1C), which is aligned with our interaction between striatum SLC6A3 
ePGS and birth weight been observed both in adolescents and in adults. Our results therefore demonstrate that 
striatum SLC6A3 ePGS is able to detect individual differences in response to early adversity at both ages.

We also identified putative biological mechanisms underlying the moderating effect of the striatum SLC6A3 
ePGS on the association between early adversity and cardiometabolic – psychiatric comorbidities (Fig.  1D 
and Supplementary Fig. 4). Central genes of the striatum SLC6A3 network are related to ribosomal structure 
and the entire gene network is significantly enriched for ribosome production related terms (Ribosome 
biogenesis; Ribosomal large subunit biogenesis) as seen in our gene-ontology analysis. Our SLC6A3 gene 
network is significantly enriched for inflammatory response related terms, especially cytokine production and 
not surprisingly, for dopamine receptor signaling pathway. (see Supplementary information Supplementary 
Discussion for complement discussion of enrichment terms related to ribosome functioning, inflammation and 
dopamine function)

Our striatum SLC6A3 gene network is significantly enriched for insulin signaling and response related 
terms. Being born with low birth weight is associated with insulin resistance in children and adolescents81 and 
insulin resistance is a risk factor for cardiometabolic and brain-based disorders, including type II diabetes, 
cardiovascular disease, Alzheimer disease, and major depressive disorder82,83. Metformin, a medication to treat 
insulin resistance, has shown beneficial psychotropic effects in psychiatric conditions84,85. Evidence shows that 
insulin has a role in modulating mesocorticolimbic DA neurotransmission through different mechanisms, 
one of which is increasing DA reuptake by activating the phosphatidylinositol (PI) 3-kinase38,86. Insulin also 
reduces DA release in rodent nucleus accumbens and medial prefrontal cortex slices87. Our significant gene by 
environment results, using birth weight as our environmental proxy, corroborate with the literature showing 
elevated risk for developing psychiatric and cardiometabolic disorders among individuals born with low birth 
weight. Our genetic enrichment analysis results indicate that insulin signaling disturbances may be a potential 
mechanism involved in the interaction effect between birth weight and the striatum SLC6A3 co-expression gene 
network on the risk for cardiometabolic and psychiatric comorbidities. This is aligned with many other studies 
suggesting that altered insulin function is an important mechanism linking early adversity to later disease88,89.

Discussion of genomic-anatomical association results
The frontal, prefrontal and orbitofrontal cortices were related to the significant subset of SNPs identified by 
the pICA analysis (see Supplementary information Supplementary Discussion for complement discussion of 
the associated processes related to the subset of SNPs identified by the pICA analysis). This is aligned with 
evidence demonstrating that resting state functional connectivity between the orbitofrontal cortex and 
dorsolateral prefrontal cortex is altered in human individuals born small for gestational age, at different ages 
during development90.

The cingulate and temporal cortices also emerged as a significant brain regions in the pICA analysis. The 
anterior cingulate has been implicated in affective abnormalities in mood disorders and volume reduction in 
patients with major depressive disorder91. Abnormal posterior cingulate functional connectivity has also been 
reported in major depression92. Temporal lobe alterations are related to insulin resistance pathophysiology 
in different imaging modalities93. Interestingly, the relationship between genetic and MRI components was 
significantly different between the two early life adversity groups, suggesting that the biological mechanisms 
represented by the genetic component and the brain regions highlighted by the MRI component are relevant for 
the effects of early adversity on adult disease.

Conclusion of potential biological mechanisms and anatomical regions involved in main 
results
Taken together, the evidence suggests that ribosomal function, inflammation, and insulin modulation of 
dopamine function may be underlying mechanisms by which the striatum SLC6A3 gene network moderates 
the risk for developing psychiatric and cardiometabolic comorbidities in response to early life adversity. These 
mechanisms might be especially important in brain areas involving the prefrontal and orbitofrontal cortices, 
cingulate and temporal cortices.

Limitations
Our study is limited by the fact that ePGS does not consider intronic regions, potentially ignoring other important 
regulatory elements. The complex data analysis presented on this study relies on a series of steps, which depend 
on a prior set of assumptions and the results presented here, based on secondary analysis, require validation by 
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a longitudinal study. Our outcome measures related to psychiatric disorders in the UK Biobank are based on 
ICD-10 classifications derived from hospital inpatient data, not always attributed by mental health professionals 
or from structured clinical interviews which are considered the gold standard in psychiatric diagnosis. Similarly, 
in the ALSPAC cohort, indicators of risk for developing psychiatric disorders are collected through self-report 
measures. This situation is common in large nonspecialized data sources94, although it presents a limitation 
compared to cardiometabolic disorder diagnoses, which rely on objective biological measures, resulting in 
greater diagnostic accuracy. Although low birth weight is itself considered a form of early life adversity that 
impacts growth and development with long-term consequences25, the datasets used in this study provide limited 
information on possible causal prenatal adversity factors (e.g. maternal smoking or illness during gestation). 
Moreover, potential interactions between prenatal and postnatal stressors were not assessed. The pICA results 
are potentially limited by the diminished capacity of the technique in detecting subcortical regions, as the atlas 
used emphasizes cortical areas95.

Conclusion
In sum, we observed that the association between environmental and genetic factors can place individuals at risk 
for adult comorbid chronic conditions from an early age, and that a striatal dopamine transporter gene network 
expression has a central role in moderating the association of the early environment with the risk for these 
diseases. These findings open opportunities for the exploration of the understudied field of precision prevention 
in pediatrics, and the potential design of more effective interventions and primary care strategies.

Data availability
The raw genetic and phenotypic data that support the findings of this study are available from UK Biobank 
(https://www.ukbiobank.ac.uk/) and ALSPAC (https://www.bristol.ac.uk/alspac/) but restrictions apply to the 
availability of these data, which were used under license for the current study, and so are not publicly available. 
Codes, variables processing information, and more details can be obtained by contacting the corresponding 
author at patricia.silveira@mcgill.ca.
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