

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS CURSO DE GRADUAÇÃO EM GEOLOGIA

LEONARDO HAHN CARDOSO MARTINS

CARACTERIZAÇÃO MINERALÓGICA DA OPALA DO RIO GRANDE DO SUL

Porto Alegre, 2024

LEONARDO HAHN CARDOSO MARTINS

CARACTERIZAÇÃO MINERALÓGICA DA OPALA DO RIO GRANDE DO SUL

Trabalho de Conclusão do Curso de Geologia do Instituto de Geociências da Universidade Federal do Rio Grande do Sul. Apresentado na forma de monografia, junto à disciplina Projeto Temático em Geologia III, como requisito parcial para obtenção do grau de Bacharel em Geologia.

Orientador: Prof. Dr. Pedro Luiz Juchem

Coorientador: Dr. Lucas Bonan Gomes

LEONARDO HAHN CARDOSO MARTINS

CARACTERIZAÇÃO MINERALÓGICA DA OPALA DO RIO GRANDE DO SUL

A comissão examinadora, abaixo assinada, aprova o Trabalho de Conclusão de Curso apresentado na Universidade Federal do Rio Grande do Sul, como parte das exigências para a obtenção do título de Bacharel em Geologia.

Porto Alegre, 20 de dezembro de 2024.

BANCA EXAMINADORA

Prof. Dr. Isaque Conceição Rodrigues da Silva (UFRGS)

Profa. Dra. Lauren da Cunha Duarte (UFRGS)

Profa. Dra. Márcia Elisa Boscato Gomes (UFRGS)

AGRADECIMENTOS

Escrevo estes agradecimentos com os olhos transbordando emoção e alegria. A Geologia foi um sonho lindo que integra um capítulo especial na minha vida que se encerra com muita satisfação e felicidade. Este capítulo é acompanhado de muitos personagens importantes, portanto, cabem aqui meus agradecimentos a todas as partes que compõem o todo.

A minha família, Daisy, Izaque e Jeniffer, por sempre acreditarem em mim e nos meus sonhos, mesmo quando nem eu acreditava. Pelo amor incondicional, força motriz sem a qual eu nada seria capaz. As minhas afilhadas, Maya Luise e Celina Laís, minhas fontes de alegria infinita.

À Universidade Federal do Rio Grande do Sul, especialmente ao Instituto de Geociências por me apresentar a tantos universos que eu jamais seria capaz de imaginar e por me permitir conhecer pessoas incríveis ao longo da graduação.

À PROPESQ, pelo apoio financeiro durante todos esses últimos anos de bolsa de iniciação científica.

Ao meu orientador Dr. Pedro Luiz Juchem, o melhor gemólogo que conheço, por aceitar ser ponto de ancoragem essencial para este estudo, pela paciência em me ensinar, pelo comprometimento nas correções deste e de tantos trabalhos, pelas etapas de campo e por todo incentivo que me deu nesses últimos anos. Obrigado por sempre me ajudar.

Ao meu coorientador Dr. Lucas Bonan Gomes, pela parceria, por toda sabedoria que compartilhou comigo, e por todas as amostras de opala que analisou.

Ao pessoal do Labogem, Lauren, Larissa, Tânia, agradeço todo apoio e por toda a ajuda ao longo desses anos.

Aos meus amigos, que acima de tudo fizeram esses anos todos mais leves e coloridos. Tenham certeza que carrego boas memórias de cada um de vocês junto comigo sempre. Quero agradecer especialmente, em ordem cronológica:

- Lourenço: meu irmãozão! Obrigado por ser meu primeiro amigo desde os primeiros dias de aula, passamos por tanta coisa, enfim chegamos aqui! E ainda nem acredito.
- Luiza: obrigado por sempre me acompanhar nas fantasias Halloween, por sempre me ouvir quando tenho que desabafar, por sempre elogiar minhas

roupas, quero agradecer as gargalhadas e as cartinhas sempre muito bem escritas que só tu sabe fazer.

- Jéssica: eu tenho tanto a agradecer, obrigado por me ensinar tanta coisa, pelos trabalhos que sempre fazíamos juntos, pelos materiais que sempre compartilhava comigo. Quero agradecer também a amizade que construímos, os filmes que assistimos e os dias de patinação na Orla. Acima de tudo quero agradecer as boas piadas e risadas que sempre vão ecoar na minha memória.
- Melissa: a parceria, o companheirismo, as conversas, as longas videochamadas pré-prova de Estrutural, os resumos, os trabalhos, a tudo isso eu agradeço e principalmente por sempre achar um tempo para conversarmos um pouquinho mais, mesmo sabendo que o assunto nunca teria fim e que as horas passariam voando.
- Andrei: muito obrigado pela companhia nas horas de estudo, pelas reuniões que fazíamos no Jerônimo e pelas caminhadas intermináveis até aquela confeitaria incrível de Caçapava.
- Isabelle: Belle obrigado por toda a amizade, por toda diversão e comprometimento. O Mapeamento não teria sido o mesmo sem a tua presença, e o Granito Ramada teria sido um tédio sem a tua companhia. Obrigado por tornar mais leves dias tão pesados.

A minha equipe da ENECON, que desde que entrei como estagiário não pouparam esforços para compartilhar seus conhecimentos comigo. Alexandra, Pedro, Patrícia, Rachel, muito obrigado pelo apoio e incentivo sempre.

Ao Irineu Markmann que gentilmente nos acompanhou e indicou os depósitos de opala durante o campo. À técnica Denise Camarim, por me ajudar no preparo da opala. A minha colega de bolsa Nicole Montanari, que também me ajudou no preparo das amostras para este trabalho.

A todos vocês, muito obrigado.

Na natureza nada se cria, nada se perde, tudo se transforma. Antoine Laurent Lavoisier

RESUMO

Este estudo está inserido no projeto Mapeamento Geológico e Mineralógico do Distrito Mineiro de Salto do Jacuí, RS, cujo objetivo geral é obter dados de campo e de laboratório que contribuam para compreender a formação dos depósitos de opala no Rio Grande do Sul, que ocorrem nessa região. Este estudo foi focado na caracterização das fases cristalinas que compõem essa opala, descrevendo suas propriedades físicas, químicas e ópticas, contribuindo para um melhor entendimento das condições geoquímicas envolvidas no processo de formação desse mineral. Dados de isótopos de oxigênio, indicam que a temperatura de cristalização dessa opala é baixa (entre 76ºC e 150ºC). Estudos anteriores indicaram que a opala do RS é do tipo microcristalina, sendo classificada como opala-CT (opala com cristobalita e tridimita) e opala-C (opala com predomínio de cristobalita), identificadas por Difração de Raios X. No entanto, nas análises em equipamentos ópticos (microscópio petrográfico, polariscópio e refratômetro), essa opala mostra um comportamento isótropo, típico de material sem estrutura cristalina. Para melhor entender esse comportamento atípico, foi utilizada Difração de Raios X, através de difratogramas de alta resolução que permitem a obtenção de dados mais detalhados sobre a estrutura cristalina desse agregado de minerais. Os dados obtidos foram indexados no software High Score X'PertPlus, tendo por objetivo a obtenção de informações sobra a célula unitária e a proporção entre material cristalino das fases constituintes. Os resultados desta pesquisa mostram que a opala do RS é constituída de um agregado de nanocristais de α -cristobalita e α -tridimita, com cristalitos com dimensões nanométricas (5,7 a 168,6 nm). A diferença entre os comprimentos de onda da luz (da ordem de 400 a 700 nm) e o tamanho médio dos cristalitos, não permite uma interação construtiva dessa radiação eletromagnética com a estrutura cristalina dos minerais constituíntes dessa opala, fazendo com que não tenham o comportamento esperado para minerais anisótropos, mas a reação típica de materiais amorfos e minerais cúbicos. Através destes dados, foram elaboradas fichas descritivas de cada amostra estudada nesta pesquisa.

Palavras-Chave: opala do RS, Salto do Jacuí, Difratometria de Raios X

ABSTRACT

This study is part of the Geological and Mineralogical Mapping Project of the Salto do Jacuí Mining District, RS, which aims to obtain field and laboratory data to contribute to the understanding of the formation of opal deposits in Rio Grande do Sul, located in this region. The study focused on characterizing the crystalline phases that compose this opal, describing its physical, chemical, and optical properties, contributing to a better understanding of the geochemical conditions involved in the mineral's formation process. Oxygen isotope data indicate that the crystallization temperature of this opal is low (between 76°C and 150°C). Previous studies have shown that opal from RS is microcrystalline, classified as opal-CT (opal containing cristobalite and tridymite) and opal-C (opal predominantly composed of cristobalite), as identified by X-Ray Diffraction. However, analyses with optical equipment (petrographic microscope, polariscope, and refractometer) revealed isotropic behavior in this opal, typical of materials lacking a crystalline structure. To better understand this atypical behavior, X-Ray Diffraction was used, with high-resolution diffractograms that provide more detailed data on the crystalline structure of this mineral aggregate. The data obtained were indexed using the High Score X'PertPlus software to obtain information about the unit cell and the proportion of crystalline material in the constituent phases. The results of this research show that the opal from RS consists of an aggregate of nanocrystals of α -cristobalite and α -tridymite, with crystallites of nanometric dimensions (5,7 to 168,6 nm). The difference between the wavelengths of light (ranging from 400 to 700 nm) and the average crystallite size prevents constructive interaction of this electromagnetic radiation with the crystalline structure of the opal's constituent minerals. This results in uncharacteristic behavior of anisotropic minerals but typical of amorphous materials and cubic minerals. Based on this data, descriptive sheets were prepared for each opal sample studied in this research.

Keywords: RS opal, Salto do Jacuí, X-ray Diffraction

SUMÁRIO

1.	INTRODUÇÃO	11
1.1.	A opala	11
1.2.	Depósitos de opala no mundo	14
1.3.	Depósitos de opala no Brasil	16
1.4.	Depósitos de opala no RS	17
1.5.	Objetivos	17
1.6.	Justificativa	17
2.	ESTADO DA ARTE / REFERENCIAL TEÓRICO	18
2.1.	Localização e Contexto Geológico	18
2.2	1.1. Bacia do Paraná	18
2.2	1.2. Vulcanismo Serra Geral	21
2.2	1.3. Área de estudo	22
2.2	1.4. Caracterização da opala do RS	24
3.	MATERIAIS E MÉTODOS	29
3.1.	Etapa pré – campo – Revisão Bibliográfica	
3.2.	Etapa de campo	29
3.3.	Etapa pós – campo	
3.3	3.1. Análise em polariscópio	
3.3	3.2. Análise de Índice de Refração	31
3.3	3.3. Análise de Densidade relativa da opala	35
3.3	3.4. Análise de Isótopos de Oxigênio	
3.3	3.5. Difratometria de Raios X (DRX)	
3.3	3.6. Microscopia Eletrônica de Varredura (MEV)	41
3.3	3.7. Análise macroscópica de rochas	42
3.3	3.8. Caracterização petrográfica das rochas e da opala	42
3.3	3.9. Caracterização de inclusões	43
3.3	3.10. Indexação de Dados de DRX (<i>software X´PertPlus</i>)	44
	~	

4.	RESULTADOS E DISCUSSOES	46
4.1.	Análise em polariscópio	46

7. ANEXOS	81
6. REFERÊNCIAS	76
5. CONCLUSÕES	75
4.9. Indexação de Dados de DRX (<i>software X´PertPlus</i>)	60
4.8. Caracterização de inclusões	60
4.7. Caracterização petrográfica das rochas	
4.6. Microscopia Eletrônica de Varredura (MEV)	56
4.5. Difratometria de Raios X (DRX)	54
4.4. Análise de Isótopos de Oxigênio	50
4.3. Características Físicas e Ópticas da opala	47
4.2. Análise de Índice de Refração	46

1. INTRODUÇÃO

O estado do Rio Grande do Sul tem grande relevância na extração, comércio e exportação de pedras preciosas, principalmente ametista e ágata. Este estudo estará centralizado nos depósitos de opala que ocorrem na região entre os municípios de Salto do Jacuí e Soledade, em rochas do Vulcanismo Serra Geral. A pesquisa apresentada neste trabalho traz dados adicionais ao desenvolvimento do projeto Mapeamento Geológico e Mineralógico do Distrito Mineiro de Salto do Jacuí, RS, desenvolvido no Laboratório de Gemologia do IGEO/UFRGS. Para a caracterização da opala utilizou-se as técnicas de petrografia do minério e das rochas encaixantes, análise de Difratometria de Raios X (DRX), Microscopia Eletrônica de Varredura (MEV), análise de isótopos de oxigênio, além a indexação dos dados de DRX através do *software X'PertPlus*.

1.1. A opala

A opala é conhecida pelo homem desde a Antiguidade, sendo utilizada como gema e também na confecção de utensílios. pertence ao grupo Este mineral pertence ao grupo dos silicatos e traz em sua composição química moléculas de água $(SiO_2 \cdot nH_2O)$, o que a diferencia dos polimorfos de sílica. Tradicionalmente era classificada como um material amorfo, constituída de esferas de sílica ligadas entre si por um gel de sílica e teores de água médios de 4,0 a 10,0% (FRONDEL, 1962). Isso faz com que tenha uma densidade baixa (1.9 - 2.3), dureza média de 5,5 a 6, com índice de refração em torno de 1,43, características muito distintas do quartzo, o polimorfo de sílica mais comum.

Entre os mais conhecidos polimorfos de sílica estão o quartzo, a cristobalita e a tridimita. Estes polimorfos compartilham a mesma estrutura em rede composta por tetraedros de silício. Cada tetraedro está ligado a quatro tetraedros vizinhos através de átomos de oxigênio compartilhados, formando assim uma estrutura tridimensional. Esses polimorfos de sílica podem ser divididos em dois grupos principais, um de alta temperatura (fase β) e um de baixa temperatura (fase α), que possuem a mesma estrutura em rede, embora possam ser distintos por deformações no retículo cristalino. Nesses três casos, a fase de baixa temperatura é a que possui mais baixa simetria.

Com o avanço nas técnicas de investigação, foi identificado na opala a presença de duas fases cristalinas – α -cristobalita e α -tridimita (e.g. JONES &

SEGNIT, 1971; GRAETSCH, 1994). Segundo proposta desses autores, a opala pode ser classificada e subdividida de acordo com seu arranjo atômico em três categorias:

- Opala-A (altamente desordenada - amorfa)

- Opala-CT (desordenada - com α-cristobalita e α-tridimita)

- Opala-C (bem ordenada – com α-cristobalita)

A opala-CT sedimentar e a opala-CT hidrotermal apresentam diferenças sutis: a opala-CT sedimentar contém tridimita monoclínica, enquanto a opala-CT hidrotermal pode conter tridimita ortorrômbica (Fröhlich, 2020).

A opala-CT hidrotermal é opticamente fibrosa e provavelmente idêntica à variedade conhecida como lussatita (Fröhlich, 2020). Curtis *et al.* (2019) também observaram variabilidade na opala-CT, identificando variedades simples e complexas. Após estudar diversas amostras, eles atribuíram essas diferenças, pelo menos em parte, às variações no conteúdo de cristobalita, além de notarem que pode ocorrer gradação entre opala-A, opala-CT e opala-C.

A estrutura cristalina da cristobalita e da tridimita e as condições de cristalização desses minerais ainda são motivo de debate entre pesquisadores, sem que haja um consenso definitivo. Diferentes estudos apresentam interpretações variadas sobre o sistema cristalino predominante e as temperaturas relacionadas a essas transformações. Paul F. Kerr, em 1959, propõe que a cristobalita apresenta sistemas pseudo-cúbico abaixo 230°C e cúbico acima de 230°C, enquanto para a tridimita sugere sistemas ortorrômbico abaixo de 117°C e hexagonal acima de 117°C. No mesmo ano, James D. Dana identificou a cristobalita como tetragonal abaixo de 200°C e cúbica acima de 1470°C, descrevendo a tridimita como pseudo-hexagonal e ortorrômbico entre 870 e 1470°C.

Frondel em 1962 sugeriu que a cristobalita possui estrutura cúbica entre 1470 e 1728°C e tetragonal em baixas temperaturas, enquanto a tridimita é descrita como hexagonal entre 870 e 1470°C e ortorrômbica abaixo de 127°C.

A. Betekhtin, em 1966, definiu a cristobalita como tetragonal e pseudo-cúbica em baixas temperaturas e em altas temperaturas a definiu pertencente ao sistema cúbico. Já a tridimita de baixa temperatura o autor define como ortorrômbica, em altas temperaturas, hexagonal. No mesmo ano, W.A. Deer, R.A. Howie e J. Zussman concordaram em parte com Betekhtin, mas adicionaram maior detalhamento nos sistemas cristalinos, definindo a tridimita de baixa temperatura como pseudo-hexagonal.

Em 1994, P.J. Heaney sugere que a cristobalita se apresenta no sistema cúbico acima de 300°C, entretanto, para temperaturas mais baixas não definiu em qual sistema cristalino a cristobalita se cristaliza.

Posteriormente, Klein e Dutrow (2007), embora não definam temperaturas específicas para cada fase mineral, propõem sistemas tetragonal para a α -cristobalita e cúbico para a β -cristobalita. Já a α -tridimita pode cristalizar no sistema monoclínico e ortorrômbico, e a β -tridimita no sistema hexagonal.

Sites como Mindat.org e Webmineral não distinguem esses dois minerais em fases de alta temperatura e baixa temperatura, porém concordam que a cristobalita cristaliza no sistema tetragonal e a tridimita no sistema triclínico.

As divergências observadas podem ser atribuídas a vários fatores, incluindo as metodologias analíticas utilizadas e até mesmo à carência de precisão devido às limitações tecnológicas das diferentes épocas em analisar esses cristais com dimensões sempre muito reduzidas. A seguir, na Tabela 1, estão citados os autores e suas contribuições para a caracterização de cada mineral.

Diante dessas divergências e incertezas a respeito da estrutura cristalina presente na opala, este estudo optou por refinar e adequar os dados obtidos de DRX de acordo com o COD (Crystallography Open Database), uma coleção de acesso aberto de estruturas cristalinas de minerais, compostos orgânicos, inorgânicos e metal-orgânicos. Dentre as mais de 500 mil fichas cristalográficas foram selecionadas por comparação visual aquelas que mais refletiam os dados obtidos durante a pesquisa.

Embora as análises feitas com equipamentos ópticos (microscópio petrográfico, polariscópio e refratômetro) na opala do RS indicarem que o material é isótropo, análises prévias feitas através de Difratometria de Raios X (DRX), não revelaram nenhum padrão de opala-A (amorfa), mas sim padrões coerentes com opala-C (opala com α -cristobalita) e opala-CT (opala com α -cristobalita e α -tridimita). Diante deste material essencialmente cristalino, porém ópticamente isótropo, tornouse necessário estudos mais aprofundados a respeito da mineralogia da opala do RS.

Autor	cristobalita		tridimita					
Autor	α	β	α	β				
Paul F Kerr	pseudo-cúbico	cúbico	ortorrômbico	hexagonal				
1959	abaixo de 230 °C	acima de 230°C	abaixo de 117°C	acima de 117°C				
James D. Dana	tetragonal	cúbico	ortorrômbico	pseudo-hexagonal				
1959	abaixo de 200°C	acima de 1470°C		entre 870 e 1470°C				
Frondel	tetragonal	cúbico	ortorrômbico	hexagonal				
1962		entre 1470 e 1728°C	abaixo de 127°C	entre 870 e 1470°C				
A. Betekhtin	tetragonal	cúbico	ortorrômbico	hexagonal				
1966	pseudo-cúbico							
W. A. Deer	tetragonal		ortorrômbico					
R.A. Howie		cúbico	pseudo-hexagonal	hexagonal				
J. Zussman	nseudo-cúbico							
1966								
P. J. Heaney	-	cúbico	ortorrômbico	hexagonal				
1994	abaixo de 272°C	acima de 300°C	abaixo de 350°C	acima de 350°C				
Klein & Dutrow	4-4		monoclínico	hexagonal				
2007	tetragonal	CUDICO	ortorrômbico					
Fonte	cristobalita		tridimita					
mindat.org	tetragonal		triclínico					
2024								
Webmineral	tetragonal		triclínico					
2024								

Tabela 1: Compilado de contribuições de autores consultados durante a pesquisa, para características de cristobalita e tridimita de alta e de baixa temperatura. Nela estão descritas temperaturas de cristalização e sistemas cristalinos.

1.2. Depósitos de opala no mundo

Os principais depósitos de opala estão localizados na Austrália, que se destaca pela alta produção da variedade denominada "opala nobre", caracterizada por um jogo de cores intenso.

A opala pode ocorrer em diversos contextos geológicos e apresenta uma gênese variada. Os depósitos de opala pelo mundo são encontrados em diferentes tipos de rochas hospedeiras e resultam de processos geológicos específicos que influenciam sua formação.

No caso da Austrália, que produz cerca de 98% de opala de qualidade gemológica, os depósitos estão localizados predominantemente em rochas sedimentares da Grande Bacia Artesiana (Hsu *et al.,* 2015). Estudos realizados por

Dutkiewicz *et al.* (2015), com base em elementos traço, sugerem que a opala tenha se formado pela percolação de fluidos diagenéticos, processo que envolveu a movimentação de água carregada de sílica ao longo do tempo.

No México, os mais importantes depósitos de opala estão localizados no estado de Querétaro, onde as rochas hospedeiras que predominam são riolíticas do período Cenozóico de acordo com Coenraads & Zenil (2006). A opala de fogo, característica dessa região, se forma em um sistema de sílica gel hidratada sob temperaturas entre 150 e 160°C, conforme apontam análises realizadas com Raman e Difração de Raios X (DRX).

Já no estado de Oregon, nos Estados Unidos, os depósitos de opala estão associados a fluxos vulcânicos do início do Terciário. Acredita-se que a opala se origine do intemperismo de rochas siliciclásticas, seguido da precipitação de um líquido enriquecido em sílica em cavidades como geodos em riolito (Gaillou *et al.,* 2008).

Na Etiópia, região amplamente conhecida por sua opala de qualidade gemológica, os depósitos ocorrem em rochas ígneas estratificadas, como riolito, tufo e ignimbrito conforme Chauviré *et al.* (2019). A gênese da opala nessa área está associada à precipitação de sílica por fluidos, que interagiram com ignimbritos durante a diagênese, com forte influência de águas meteóricas e subterrâneas (Chauviré *et al.*, 2019).

Os depósitos da Tanzânia, conforme Kinnunen & Malisa (1990), especificamente em Haneti, apresentam opala associada a rochas ultramáficas metamorfoseadas de idade Arqueana. No entanto, até o momento, não há estudos conclusivos sobre a origem dos fluidos responsáveis pela formação da opala na região.

Na Turquia, a opala é extraída de nódulos presentes em riolitos. Estudos realizados por Hatipoglu *et al.* (2010) através de técnicas como Difração de Raios X, microscopia eletrônica de varredura (MEV) e espectroscopia termoluminescente (TL), apontam que os fluidos que geraram essa opala são de origem hidrotermal (Hatipoglu, 2009).

Em Madagascar, conforme Simoni *et al.* (2010), os depósitos de Faratsiho, localizados no centro da ilha, são conhecidos pela opala de fogo, que ocorre em riodacitos do Cretáceo. Semelhante à Tanzânia, a gênese do fluido formador da opala ainda não foi determinada.

1.3. Depósitos de opala no Brasil

No estado do Piauí, nos arredores da cidade de Pedro II, está localizado o único depósito de opala nobre do Brasil. Essa opala é de alta qualidade (identificada como opala-A) e seus atributos como baixo teor de água (2,6 a 4,9%), resistência ao calor sem perda de água e dureza relativamente elevada (aproximadamente 6.5), a tornam uma boa concorrente da opala australiana no mercado internacional (Gomes & Costa, 1994). Os trabalhos de pesquisa realizados por Gomes & Costa (1994) nesses depósitos, de modo geral se restringem aos aspectos descritivos dessa região. Segundo estes autores, a gênese dessa opala ainda é bastante controversa, mas estudos químicos e mineralógicos sugerem a atuação de processos supergênicos durante a formação destes depósitos. Outra hipótese de gênese dessa opala proposta pelo mesmo autor (Gomes & Costa, 1994) é a influência de atividades hidrotermais geradas por intrusões de diabásio da Formação Sardinha, em rochas sedimentares (arenitos, siltitos e folhelhos) da Formação Serra Grande e Canindé.

Ao norte do Piauí, na cidade de Pedro II, está localizado o único depósito expressivo de opala nobre do Brasil, extraída de rochas sedimentares pertencentes à Formação Cabeças. A gênese desses depósitos, conforme Gomes *et al.* (2022), está associada a eventos tectônicos relacionados à ruptura do supercontinente Gondwana, que permitiram a ocorrência de um extenso magmatismo fissural. Esse magmatismo gerou o aporte de calor necessário para o desenvolvimento das primeiras células convectivas de fluidos quentes. De acordo com Gomes *et al.* (2022) a água presente nos arenitos da formação teria alimentado o sistema hidrotermal, enriquecendo-se em sílica por meio da dissolução parcial ou total dos grãos de quartzo presentes nos arenitos. Esse processo foi intensificado pela intrusão de um corpo de diabásio, que desempenhou um papel crucial na formação da opala. Já a opala de fogo, que ocorre em Buriti dos Montes, no município do Piauí, de acordo com Marques (2011) é produto da atividade hidrotermal resultante da interação entre as rochas sedimentares do Grupo Serra Grande e ígneas da Formação Sardinha.

A opala nobre encontrada no estado do Piauí é reconhecida mundialmente por sua beleza e qualidade. Essa gema apresenta um intenso jogo de cores, fenômeno óptico que confere reflexos de cores vibrantes que variam entre tons de azul, verde, amarelo, laranja e vermelho, dependendo do ângulo de observação e da incidência de luz (Gomes & Costa, 1994).

1.4 Depósitos de opala no RS

O Rio Grande do Sul é conhecido internacionalmente por possuir extensas jazidas de ágata e ametista, que ocorrem preenchendo geodos nas rochas vulcânicas da Formação Serra Geral. Os depósitos de opala no RS ocorrem geralmente associados a jazidas de ágata, na região do Distrito Mineiro de Salto do Jacuí. As rochas portadoras (riodacitos e riolitos) têm características da litofácies Palmas do Vulcanismo Serra Geral como descrito por Nardi *et al.* (2008). As características mineralógicas e gemológicas da opala serão descritas no decorrer deste trabalho.

1.5. Objetivos

Objetivo geral: Realizar um estudo mais detalhado das características mineralógicas dessa opala, contribuindo para um melhor entendimento dos processos hidrotermais envolvidos na gênese desse mineral.

Objetivos específicos: Determinar com precisão a composição mineralógica dessa opala. Identificar as suas fases cristalinas e suas características cristaloquímicas através de Difratometria de Raios X (DRX) utilizando difratogramas de alta resolução e Microscopia Eletrônica de Varredura (MEV) com o objetivo de calcular com precisão o tamanho médio dos cristalitos de α-cristobalita e α-tridimita, além da obtenção dos parâmetros de célula unitária, através de refinamentos matemáticos com a utilização de softwares específicos.

1.6. Justificativa

Diante das inconsistências encontradas nas análises preliminares do material (ópticamente isótropo mas constituído de agregados de α -tridimita e α -cristobalita), decidiu-se aplicar técnicas mais avançadas para determinar a composição mineralógica mais precisamente. Assim, com estudos detalhados a respeito da composição mineralógica da opala do RS espera-se obter mais informações sobre a gênese desse material, bem como justificativas para o comportamento ópticamente isótropo da opala composta majoritariamente por α -tridimita e α -cristobalita.

2. ESTADO DA ARTE / REFERENCIAL TEÓRICO

2.1. Localização e Contexto Geológico

2.1.1. Bacia do Paraná

A Bacia do Paraná, localizada na região centro oriental da América do Sul, é uma das maiores bacias sedimentares do continente, que evoluiu durante o Paleozoico e o Mesozoico, abrange parte dos territórios do Brasil, Paraguai, Uruguai e Argentina. Abrange uma área de cerca de 1.400.000km², estendendo-se pelo Brasil (1.100.000 km²), Paraguai (100.000 km²), Uruguai (100.000 km²) e Argentina (100.000 km²), Zalán, *et al.*, 1991).

Os processos geológicos envolvidos na evolução da Bacia do Paraná foram controlados por fatores climáticos e tectônicos, sendo eles episódios de glaciação, variações no nível do mar e movimentos tectônicos. Na era Mesozoica é possível distinguir duas importantes deposições de sequências sedimentares continentais: uma corresponde a ciclos transgressivo-regressivos paleozoicos e outra caracterizada por pacotes sedimentares continentais mesozoicos, havendo intercalações com rochas (gneas associadas (Milani, 1997).

De acordo com Milani (1997), é possível reconhecer seis Unidades Aloestratigráficas ou Supersequências limitadas por discordâncias regionais de origem tectônica, sendo elas: Rio Ivaí (Neo-Ordoviciano ao Eo-Siluriano), Paraná (Devoniano), Gondwana I (Neo-Carbonífero ao Eo-Triássico), Gondwana II (Meso-Triássico ao Neocretáceo). A seguir, é possível observar a posição dos seis supersequências na Figura 1.

Figura 1: Mapa geológico simplificado da Bacia do Paraná indicando a posição das seis supersequências (Milani, 2004).

Abaixo estão caracterizadas as seis Supersequências que constituem a Bacia do Paraná, sendo elas:

- Supersequência Rio Ivaí (RI), Neo-Ordoviciano ao Eo-Siluriano, é a mais antiga já identificada na Bacia do Paraná, assentando-se diretamente sobre o embasamento da bacia. Ela é constituída pelas Formações: Alto das Garças (arenitos arcoseanos e quartzíticos), Iapó (diamictitos) e Vila Maria (folhelhos micáceos e fossilíferos) (Milani, 2006);
- Supersequência Paraná (P), registra o período Devoniano onde são reconhecidas duas unidades: Formação Furnas e Formação Ponta Grossa. A primeira é composta por arenitos quartzosos com presença de caulinita e estratificações cruzadas de várias naturezas ocorrendo localmente (Milani *et al.*, 2006). Já a Formação Furnas é caracterizada por arenitos de granulometria fina e presença de estratificação cruzada truncada por ondas, que se intercalam com os estratos basais da Formação Ponta Grossa (Milani *et al.*, 2006);
- 3. Supersequência Gondwana I (GI), que corresponde ao Neo-Carbonífero até o Eo-Triássico, marca a ocorrência de movimentações geradas por reativações tectônicas durante o Triássico médio. Esta Supersequência é representada pelo Grupo Itararé e Formação Aquidauana, considerados como registros glaciais. Estão presentes também as Formações: Lagoa Azul (arenitos e folhelhos), Campo Mourão (arenitos), Taciba (arenitos e folhelhos), Rio Bonito (arenitos e carvão), Palermo (siltitos e arenitos), Irati (evaporitos e folhelhos betuminosos) e Rio do Rasto (arenitos, siltitos e folhelhos);
- 4. Supersequência Gondwana II (GII), restrita à região sul da Bacia do Paraná, pertence ao período Triássico e é caracterizada por depósitos flúvio-lacustres, que incluem conglomerados, arenitos e folhelhos (Milani *et al.,* 2006). Os registros dessa Supersequência compõem as Formações Pirambóia e Rosário do Sul. É caracterizada por arenitos de cor avermelhada e esbranquiçada, de granulometria fina a média e estratificação cruzada acanalada (Michelin, 2014);
- 5. Supersequência Gondwana III (GIII), situada entre o período Jurássico e Eocretáceo, onde se inserem as formações Botucatu (arenitos quartzosos) e as rochas do Vulcanismo Serra Geral. Esta Supersequência é distribuída pela Bacia do Paraná e é dominada por fácies eólicas da Formação Botucatu e lavas basálticas oriundas do Vulcanismo Serra Geral (Michelin, 2014);
- Supersequência Bauru (B), corresponde ao período Cretáceo Superior e reflete o soerguimento gradual da região costeira, sudeste do Brasil. Esta unidade corresponde a depósitos conglomeráticos arenosos que incluem clastos de diversas litologias (vulcânicas, arenitos, folhelhos e rochas cristalinas do embasamento) (Milani *et al.*, 2006).

2.1.2. Vulcanismo Serra Geral

O Vulcanismo Serra Geral é composto por extensas sequências de rochas vulcânicas oriundas do intenso vulcanismo fissural ocorrido durante o Cretáceo Inferior, associado ao processo de ruptura do supercontinente Gondwana. Este evento foi responsável pela formação de uma das maiores províncias vulcânicas de basalto de platô do planeta, recobrindo uma área de aproximadamente 100.000 km².

Na sucessão de derrames basálticos do Vulcanismo Serra Geral são descritos: basaltos toleíticos que compõem cerca de 90% da litologia, 7% são andesitos-toleíticos e 3% são riodacitos-riolitos (Piccirillo & Melfi, 1988). Análises envolvendo técnicas como química mineral, paleomagnetismo, análise litoquímica e perfis gravimétricos regionais, permitiram que Wildner (2004) readequasse a divisão do magmatismo Serra Geral em nove fácies distintas: cinco relacionadas ao magmatismo máfico (fácies Gramado, Paranapanema – Pitanga, Esmeralda, Campo Erê e Lomba Grande) e quatro associadas ao magmatismo intermediário a félsico (fácies Palmas ou Caxias, Chapecó, Várzea do Cedro e Alegrete).

Em uma nova abordagem, Rossetti *et al.* (2018) sugerem uma reavaliação da nomenclatura utilizada para a Formação Serra Geral. Com base na análise estratigráfica das rochas vulcânicas, os estudos sugerem que o termo "Formação Serra Geral" seja atualizado para "Grupo Serra Geral". Essa proposta reflete a intenção de readequar de maneira mais precisa a classificação estratigráfica da região. Essa sequência de lavas do Grupo Serra Geral pode ser dividida em quatro pacotes distintos de lava, depositados sobre os arenitos da Formação Botucatu. A nomenclatura estratigráfica proposta é composta pelas formações Torres, Vale do Sol, Palmas e Esmeralda (Rossetti *et al.*, 2018).

2.1.3. Área de estudo

O trabalho de campo foi organizado de modo a complementar dados preexistentes do projeto Mapeamento Geológico e Mineralógico do Distrito Mineiro de Salto do Jacuí, RS. A área analisada em detalhe localiza-se no Distrito Mineiro de Salto do Jacuí (RS), privilegiando pontos em que havia extração ativa ou inativa de ágata e opala. Esse distrito compreende os municípios de Salto do Jacuí, Tunas, Soledade, Barros Cassal, Campos Borges, Espumoso e Jacuizinho (Figura 2 A). Nos levantamentos de campo priorizou-se a descrição das rochas aflorantes, coleta de amostras e descrição dos modos de ocorrência. Os pontos selecionados foram descritos, fotografados e amostrados (Figura 2 B). A etapa de campo procedeu-se da seguinte maneira:

- Localização dos pontos de extração de ágata através do Google Earth, com o auxílio de um aparelho de GPS (Global Position System), registrando as coordenadas UTM de latitude, longitude e altitude;
- Identificação e descrição do modo de ocorrência da opala;
- Coleta de amostras de opala, e quando possível da rocha encaixante;
- Registro fotográfico em detalhe dos depósitos.

Figura 2: Localização da área estudada e seu contexto geográfico, geológico e gemológico. A) Mapa gemológico do Rio Grande do Sul, indicando a área do estudo (modificado de Juchem *et al.,* 2011), e B) mapa de localização dos municípios em torno de Soledade e Salto do Jacuí, indicando aqueles em que foram identificados depósitos de opala em estudo anteriores (cor amarela) e em destaque (cor laranja) os municípios com as áreas estudadas durante o trabalho de campo realizado nesta pesquisa, Barros Cassal, Mormaço, Espumoso e Lagoão (créditos do autor).

2.1.4. Caracterização da opala do RS

O Rio Grande do Sul exerce grande impacto na mineração, comércio e exportação de pedras preciosas, principalmente pela produção expressiva de ágata e de ametista, mas ocorrem também importantes depósitos de opala. No mapa gemológico do RS (Figura 2A), observa-se que a maior quantidade de materiais gemológicos ocorre nas rochas vulcânicas do Grupo Serra Geral, que recobrem a grande unidade geotectônica designada Bacia do Paraná. Destacam-se nessa área os municípios entre Salto do Jacuí e Soledade, que correspondem ao Distrito Mineiro de Salto do Jacuí, onde ocorrem os principais depósitos de ágata e depósitos de opala. A opala do RS é extraída de depósitos dispersos e de pequena extensão que variam desde pequenas acumulações até centenas de quilogramas, ocorrendo nos municípios de Soledade, Espumoso, Tunas, Campos Borges, Barros Cassal, Fortaleza dos Valos e Salto do Jacuí (Brum & Juchem, 2014), sendo identificados neste trabalho, outros depósitos nos municípios de Mormaço e Lagoão e, ainda, obtidas amostras de um comerciante como provenientes de um depósito promissor em Tupanciretã. Segundo (Brum & Juchem, 2014), a opala do RS ocorre de modos distintos, junto à ágata ou em pequenos depósitos. Nesses depósitos a opala pode ocorrer em geodos, fraturas, feições de fluxo da rocha hospedeira e também cimentando brechas (Figura 3).

As rochas portadoras de opala são afaníticas e semivítreas com cores cinza a cinza escuro e castanho avermelhado, sempre bastante alteradas (Brum & Juchem, 2014). Análises litogeoquímicas das rochas portadoras de opala permitem classificálas no diagrama catiônico elaborado por De La Roche *et al.* (1980), observando-se que são sempre riodacitos e riolitos (Figura 4).

Figura 3: Modos de ocorrência da opala. Em (A) preenchimento parcial de um geodo (associada à ágata), em (B) preenchendo fraturas, em (C) cimentando brechas de rochas vulcânicas, e em (D) em estruturas de fluxo da lava. Fonte: Brum & Juchem (2014).

Figura 4: Classificação litogeoquímica de rochas portadoras de opala em diagrama catiônico de De La Roche *et al.* (1980), classificadas como riodacitos e riolitos. Fonte: Brum & Juchem (2014).

A opala do Rio Grande do Sul apresenta grande diversidade de cores, incluindo branco, preto, diferentes tonalidades de azul, rosa (Figura 5), além de tons de amarelo, laranja e vermelho que caracterizam a opala de fogo, muito valorizada no comércio (Figura 6). Na figura 7 estão separadas as duas variedades de cores mais apreciadas no mercado de gemas: opala de fogo e opala azul. A alta limpidez e a gama de cores disponíveis nessa opala, torna esse mineral um material gemológico de alta qualidade bastante valorizado no mercado de gemas.

Figura 5: Amostras brutas de opala do RS em diferentes cores (branco, preto, diferentes tonalidades de azul, rosa. Tons de amarelo, laranja, vermelho) com quatro amostras de opala de fogo lapidadas. (Fonte: Juchem *et al.* (2023)).

Figura 6: Amostra bruta de opala de fogo do RS, variedade bastante valorizada no comércio de gemas. (Fonte: Acervo fotográfico do Laboratório de Gemologia/UFRGS).

Figura 7: Amostras brutas de opala azul e opala de fogo, fragmentos de 5 a 12 cm, acondicionadas em sacos, separadas conforme a cor. (Fonte: Juchem *et al.* (2023)).

No polariscópio, no refratômetro gemológico e no microscópio petrográfico a opala do RS exibe um comportamento isótropo (por vezes fracamente anisótropo) com um índice de refração fixo. A Figura 8, extraída de Brum & Juchem (2014) mostra opala do RS associada à ágata onde em A se observa o comportamento completamente isótropo desse mineral e em B um comportamento fracamente anisótropo.

A figura 9, extraída de Brum & Juchem (2014), mostra padrões de DRX representativos da opala do RS (Figura 8a) comparados com DRX de cristobalita, tridimita, opala-CT e opala-C, propostos por Graetsch (1994) (Figura 8b). Nessa figura, observa-se que as amostras do RS têm padrões semelhantes aos apresentados para opala-CT (gráficos A e B) e opala-C (gráficos C e D) e amostras aparentemente compostas só por cristobalita (gráficos E e F). Observa-se ainda variações expressivas na cristalinidade das amostras, marcada pela intensidade crescente dos picos de reflexão da amostra A em direção à amostra F.

As características da opala do RS descritas nos trabalhos disponíveis na literatura, indicam que se trata de um material diferenciado de outros depósitos conhecidos e que deve ser estudado com mais detalhes para se entender melhor a relação entre a sua composição mineralógica e a gênese desses depósitos.

Figura 8: Fotomicrografias de opala obtidas ao microscópio petrográfico. A) opala associada à calcedônia em agregados globulares (LN) que em (LP) exibem o caráter isótropo da opala e a calcedônia constituída por agregados esferulíticos de quartzo fibroso. B) agregados esferulíticos de calcedônia fibrosa associada à opala que exibe em LP uma fraca anisotropia. Fonte: Brum & Juchem (2014).

Figura 9: Difratogramas comparativos entre os tipos de opala descrita por Graetsch (1994) e a opala do RS. a) DRX representativos de opala do RS, mostrando que a opala do RS varia desde opala-CT (A e B) a opala-C (C, D, E e F), com variação significativa no grau de cristalinidade do gráfico A para o gráfico F. Modificado de Brum & Juchem (2014). b) DRX de tridimita, cristobalita, opala-CT e opala-C de Graetsch (1994).

3. MATERIAIS E MÉTODOS

Os métodos utilizados para o desenvolvimento deste trabalho foram cuidadosamente selecionados para compreender a área de estudo em várias escalas de trabalho. A aplicação dessas técnicas possibilita uma análise abrangente tanto em nível regional, por meio de pesquisas de campo para descrição e coleta de amostras, quanto microscopicamente, por meio de petrografia, análise de Difratometria de Raios X (DRX), Microscopia Eletrônica de Varredura (MEV), análise de isótopos de oxigênio, além da indexação dos dados de DRX através do programa *X'PertPlus*. Neste trabalho, será apresentada uma descrição detalhada da metodologia utilizada durante a pesquisa.

3.1. Etapa pré - campo – Revisão Bibliográfica

A revisão bibliográfica foi conduzida por meio da análise de artigos científicos e consulta à literatura previamente publicada na área de estudo. O objetivo principal dessa revisão foi obter conhecimento teórico sobre a geologia regional, bem como entender as metodologias e técnicas previamente utilizadas na região do Distrito Mineiro de Salto do Jacuí, Rio Grande do Sul. Além disso, a revisão proporcionou informações importantes para compreender e planejar a etapa de campo dessa pesquisa. Esta etapa de trabalho permitiu a leitura de artigos científicos já publicados correlatos à área de pesquisa permitindo assim um melhor entendimento sobre os processos hidrotermais envolvidos na gênese da opala do Rio Grande do Sul.

3.2. Etapa de campo

O trabalho de campo teve como objetivo complementar dados de campo já existentes e identificar novos depósitos de opala que ocorrem entre Salto do Jacuí e Soledade no Distrito Mineiro de Salto do Jacuí. A partir dos dados desses depósitos, complementares à pesquisa do projeto, desenvolveu-se um estudo mais detalhado das características mineralógicas dessa opala. Por meio desta etapa foi possível reconhecer as litologias aflorantes e coletar amostras para a confecção de lâminas delgadas para estudo petrográfico.

3.3. Etapa pós – campo

Nesta etapa foram planejadas as técnicas de análise utilizadas neste trabalho, bem como a preparação das amostras selecionadas.

3.3.1. Análise em polariscópio

A utilização do polariscópio torna possível a determinação do comportamento da luz polarizada que incide sobre uma gema. Com essa ferramenta pode-se determinar se o mineral é isótropo, anisótropo ou possui anisotropia anômala. Outro recurso que este equipamento permite é a determinação do seu caráter óptico (uniaxial ou biaxial). Essas propriedades refletem diretamente a estrutura cristalina presente em um mineral ou agregado de minerais microcristalinos. Nesta abordagem foi utilizado um polariscópio da marca Hans-Günter Schneider do Laboratório de Gemologia da UFRGS (Figura 10).

O funcionamento do polariscópio baseia-se no princípio de que a luz polarizada, quando passa por um segundo polarizador (analisador), é bloqueada completamente ao encontrar o plano de vibração deste analisador orientado a 90°. Quando um mineral que é isótropo é colocado entre o polarizador e o analisador, ele permanece escuro em todas as posições em que é colocado. Já minerais uniaxiais ou biaxiais exibem alternância entre quatro posições claras e quatro escuras ao longo de uma rotação de 360°. Caso o material permaneça sempre iluminado, pode tratar-se de um agregado microcristalino. Já a anisotropia anômala pode ocorrer em materiais isótropos, quando estes são submetidos a tensões que podem orientar alguns dos seus átomos.

Figura 10: Polariscópio da marca Schneider, composto por dois polaróides, um na base (1) e outro no topo (2). Entre eles há uma lente convergente para obtenção de figura de interferência. Créditos do autor.

3.3.2. Análise de Índice de Refração

A análise de índice de refração (IR) é uma das principais técnicas executadas na gemologia. Através do refratômetro gemológico de contato não só é possível medir o valor numérico dos índices de refração (diagnóstico para várias espécies mineirais), determinar se a gema é isótropa ou anisótropa, o caráter óptico (uniaxial ou biaxial), o sinal óptico (positivo ou negativo), e também o valor numérico da birrefringência. Para que seja possível fazer a leitura do índice de refração das amostras, é necessário obter uma superfície plana e polida em cada amostra selecionada. Para isso é necessário lixar e polir uma superfície da amostra com o auxílio de serra e politriz elétrica (Figura 11 A), até obter uma superfície espelhada. Após selecionar as amostras foi preciso aplicar técnicas de corte e posteriormente aplicar abrasivos (alumina). Após a etapa de abrasão foi aplicado pasta de diamante para atingir o acabamento ideal para a leitura de IR (Figura 11 B).

Figura 11: Equipamentos de polimento. Politrizes utilizadas para o acabamento espelhado nas amostras. Créditos do autor.

Depois de obter uma superfície adequada para a leitura de IR, com o uso de um refratômetro gemológico de contato (Figura 12), são determinados os índices de refração. Para que as medições possam ser feitas, usa-se um feixe de luz monocromática amarela (5,893 A), utilizada internacionalmente como um padrão nas leituras de índices de refração. Em seguida deve-se colocar amostra com a superfície polida voltada sobre a "janela" de leitura do refratômetro (vidro com IR=1,81). Para evitar que haja ar entre a amostra e o vidro do equipamento, evitar desvios nos feixes de luz, e também prevenir que a amostra entre em contato direto com o vidro, que tem dureza baixa, é colocado um líquido especial (di-iodo metano + enxofre) (Figura 13) com um índice de refração igual a 1,79. Na figura 14, é ilustrado o princípio da reflexão da luz que incide em uma gema. Na escala é possível fazer a leitura do IR.

Figura 12: Funcionamento do refratômetro gemológico de contato. A luz incide sobre a gema. De acordo com o ângulo crítico para a reflexão da luz, se formará uma zona clara (raios refletidos) e uma zona escura (raios refratados). Na escala será formada uma sombra, onde então é feita a leitura. Fonte: Schuman (2006).

Figura 13: Fluido para refratômetro. Evita que haja ar entre a gema e o vidro do equipamento e possíveis desvios nos feixes de luz. Créditos do autor.

Figura 14: Princípio da reflexão total da luz que incide em um cristal. Um feixe incide sobre a gema e gera raios refratados e refletidos. Os raios refratados estão relacionados com o ângulo crítico para a reflexão da luz, que depende das características ópticas de cada mineral. Fonte: Augustin (2004).

Nesta técnica, dez amostras de opala foram selecionadas para a leitura do índice de refração utilizando um refratômetro gemológico de contato, marca TOPCON (Figura 15). Essa técnica foi conduzida no Laboratório de Gemologia (LABOGEM) no Departamento de Mineralogia e Petrologia da UFRGS no Instituto de Geociências.

Figura 15: Refratômetro gemológico de contato TOPCON. Equipamento utilizado para a leitura de índice de refração. Créditos do autor.

3.3.3. Análise de Densidade relativa da opala

A densidade é a relação existente entre a massa e o volume de um material, a uma dada pressão e temperatura. De acordo com o método desenvolvido por Arquimedes, a análise de densidade relativa leva em consideração o princípio de que um corpo, submerso em um fluido, desloca um volume equivalente ao seu próprio peso. Densidade relativa (d) é um número que expressa a razão entre o peso de uma substância e o peso de um volume igual de água (destilada) a 4°C (a temperatura de máxima densidade da água). A equação para a obtenção da densidade relativa é estruturada da seguinte maneira por Klein & Dutrow (2007):

$$d = \frac{(peso no ar)}{(peso no ar) - (peso na água)}$$

Para esse método, foram selecionadas dez amostras representativas, que foram higienizadas para a retirada de impurezas superficiais e pesadas numa balança hidrostática de precisão da marca Marte modelo M200 (Figura 16), com capacidade de 200g e precisão de 0,001g. Esta mesma balança é transformada em uma balança hidrostática para obter o peso das amostras mergulhadas em água destilada como mostrado na Figura 16. Essa técnica foi conduzida no Laboratório de Gemologia (LABOGEM) no Departamento de Mineralogia e Petrologia da UFRGS no Instituto de Geociências.

Figura 16: Balança hidrostática de precisão. Para a obtenção dos valores de densidade foi utilizada uma balança da marca Marte, modelo M200. Créditos do autor.

3.3.4. Análise de Isótopos de Oxigênio

Em estudos isotópicos em minerais e rochas, o que se determina normalmente não é a quantidade absoluta de um determinado isótopo, mas a diferença entre o isótopo mais pesado, que no caso do elemento químico oxigênio é o ¹⁸O, e o isótopo mais leve, o ¹⁶O. Essa relação é chamada de razão isotópica, e é expressa em unidades per mil (‰).

Os isótopos de oxigênio são frequentemente indicados para estudos geológicos e ambientais, especialmente para reconstruções paleoclimáticas, análises de processos de cristalização e avaliação de interações entre água e os diferentes tipos de rocha. A razão isotópica ¹⁸O/¹⁶O fornece informações sobre a origem dos fluidos e as condições de temperatura durante a formação das rochas e minerais.

As amostras de opala selecionadas para análise de isótopos de oxigênio, foram trituradas com almofariz e pistilo de ágata até a granulometria aproximada de
150 Mesh (aproximadamente 0,105 mm), no Laboratório de Gemologia do IG/UFRGS. Para dar sequência ao estudo, as amostras foram analisadas no LABISE (Laboratório de isótopos estáveis) do Departamento de Geologia da Universidade Federal de Pernambuco, em Recife.

Após a trituração de uma amostra, o almofariz e o pistilo são lavados com água corrente, com álcool PA (C_2H_6O) e deixados mergulhados em água deionizada por 24 horas, toda a operação repetida 3 vezes, a fim de eliminar qualquer resíduo da amostra triturada, para não contaminar a amostra seguinte.

Amostras de silicatos são normalmente atacadas com ácido ortofosfórico (H₃PO₄) ou pentafluoreto de bromo (BrF₅) puros, para liberar o oxigênio da estrutura cristalina. No entanto, as amostras de opala tiveram reações indesejadas com esses compostos, porque tem quantidades variáveis de água na estrutura. Como o LABISE nunca havia trabalhado com opala, foi necessário criar uma nova rotina de análises para esse material, fazendo inclusive com que algumas amostras fossem analisadas várias vezes, para confrontar os resultados e ter confiabilidade nos dados obtidos. Assim, as amostras de opala foram inicialmente deixadas alguns dias em estufa para eliminar a água da estrutura e depois foi provocada uma reação de solubilização com um bombardeamento do mineral com raio laser, em uma câmara contendo F2. A solução obtida foi então levada para a linha de extração de CO₂, constituída de vários tubos de vidro Pyrex interconectados entre si e com uma série de válvulas, que permitem ou obstruem a passagem de gases em uma determinada direção, conforme a temperatura a que a solução é submetida. A solução resultante foi conduzida por um processo de extração de impurezas, com nitrogênio líquido, onde CO2 é capturado. O processo de purificação garante a retirada de água, ar e outros gases indesejáveis que eventualmente possam estar presentes na amostra.

As amostras do CO₂ foram então analisadas em um Espectrômetro de massa *VG – Isotech Sira II* para determinar as razões isotópicas entre ¹⁸O/¹⁶O, cujos resultados são fornecidos em comparação com um padrão internacionalmente aceito, conhecido como *VSMOW* (*Vien Standard Mean Ocean Water*), que corresponde a razão ¹⁸O/¹⁶O média obtida para a água do mar.

Os resultados obtidos de δ¹⁸O foram utilizados para a determinação da temperatura de formação da opala, de acordo com a equação de Clayton *et al.* (1972) a seguir:

 $10^3.\ln\alpha ~ O^{18}_{~Q-W} = 3.38(10^6~T^{-2}) - 3.40$

Onde:

 α = fator de fracionamento isotópico;

Q = quartzo;

W = água;

 $T = temperatura (^{0}K).$

3.3.5. Difratometria de Raios X (DRX)

A Difratometria de Raios X desempenha um papel importante na identificação das fases cristalinas presentes em uma amostra, sendo uma ferramenta essencial para o propósito deste trabalho. A técnica tem como base o efeito de difração causados às ondas de raios X quando estas atravessam planos cristalinos dos minerais. O retardo nessas ondas, que varia de acordo com as distâncias interplanares presentes em cada mineral, segue o esquema do modo de funcionamento da difração indicado na Figura 18.

Para a realização da análise do material é necessário que a amostra seja pulverizada. Essas partículas pulverizadas são depositadas em um porta amostra específico, a fim de preservar a desorientação das partículas e permitir a análise de todos os minerais ou estruturas cristalinas presentes.

Selecionou-se 10 amostras de opala, sendo 9 já coletadas em projetos anteriores e uma do trabalho de campo feito neste estudo, para analisar por Difratometria de Raios X de alta resolução. Como critério de seleção das amostras, selecionou-se diferentes cores, diferentes localidades e diferentes tipos de opala (C e CT) já identificadas anteriormente pela Difratometria de Raios X padrão. Os difratogramas utilizados são de alta resolução, gerados após um tempo de processamento de aproximadamente 17h no equipamento.

O Difratômetro pode ser descrito como um goniômetro de precisão, o qual se movimenta em variações angulares muito reduzidas, ficando no centro a amostra pulverizada. De um lado do goniômetro fica a fonte de raios X e do outro lado o detector (Figura 19).

Figura 18: Princípio da Difração de Raios X. Fonte Campos (2014).

Figura 19: Esquema de funcionamento do Difratômetro de Raios X - goniômetro de precisão, a fonte de raios X à direita e à esquerda o detector de raios X. No centro localiza-se a amostra pulverizada. Fonte: Augustin (2004).

Na escolha das amostras de opala, foram selecionadas aquelas livres de impurezas, principalmente óxidos de ferro. Os cristais são quebrados em partes menores (Figura 20 A) para que através da análise em lupa binocular seja possível remover alguma impureza antes não detectada. Ao obter uma porção de fragmentos livres de impurezas, usa-se então um processo de moagem em almofariz e pistilo de ágata (Figura 20 B), a fim de obter um pó de granulometria muito fina.

Como mostrado na Figura 20 C a amostra pulverizada passa pela peneira de abertura 0,177 mm (marca Granutest) em seguida o material é peneirado mais uma vez em uma peneira de abertura 0,045mm (Figura 20 D), que evita que algum

fragmento de tamanho maior que o desejado esteja presente na amostra, garantindo que todas as partículas que serão analisadas tenham a mesma granulometria. Após o uso, as peneiras, pistilo e almofariz de ágata são lavados com detergente neutro e depois higienizados com acetona. Neste processo de higienização, as peneiras segue para a máquina de limpeza de ultrassom no Laboratório de Preparação de Amostras do Instituto de Geociências da UFRGS para a remoção de partículas que não foram removidas na primeira lavagem. Esses materiais são secados posteriormente com o auxílio de ar comprimido. Para garantir a total secagem desses utensílios, utilizam-se luminárias com lâmpadas incandescentes, onde ficam expostos por aproximadamente 3 horas até a secagem total dos instrumentos.

As análises foram conduzidas no laboratório de Difratometria de Raios X do CPGq (Centro de Pesquisas em Petrologia e Geoquímica) do Instituto de Geociências da Universidade Federal do Rio Grande do Sul. Foi utilizado um Difratômetro de Raios X marca Siemens (BRUKER AXS), modelo D-5000, operando a 40 kV e 40 mA, com intervalo angular de 10 a 60° 20 e passos de $0.02^{\circ}/25s$.

Figura 20: Preparação de amostras para DRX. Em A, amostras livres de impurezas. Em B, almofariz de ágata onde o material é pulverizado. Em C, primeira peneira de abertura 0,177 mm. Em D, peneira de abertura 0,045 mm utilizada na finalização do preparo das amostras. Créditos do autor.

3.3.6. Microscopia Eletrônica de Varredura (MEV)

A Microscopia Eletrônica de Varredura (MEV) é uma técnica amplamente utilizada em diversas áreas do conhecimento, incluindo a Mineralogia, onde tem se mostrado extremamente necessário devido a sua alta magnificação, que pode chegar a cerca de 300.000 vezes. Essa técnica gera imagens ao incidir um feixe de elétrons sobre a amostra, provoca a emissão de elétrons secundários (SE - *Secondary Electrons*) e elétrons retroespalhados (BSE - *backscattering electrons*); estas imagens indicam diferenças composicionais na região ionizada do mineral. Em tons claros são exibidos os elementos químicos mais pesados e os mais leves em tons escuros. É possível realizar também uma análise química semiquantitativa pela técnica de EDS (*Energy Dispersive System*). Esse tipo de análise pode ser realizada em apenas um ponto, reduzindo o feixe analítico a menos de 1 µm de espessura, ou em áreas maiores através do sistema de varredura (*scanning*) do feixe de elétrons na amostra.

Para a aplicação dessa técnica foram selecionadas sete amostras representativas, de cores variadas e com cavidades e estruturas favoráveis para a identificação das diferentes fases minerais durante a análise (Figura 21).

Figura 21: Preparação de amostras para o MEV. Foram selecionadas sete amostras representativas de opala para análise. Créditos do autor.

No presente estudo, as análises foram conduzidas no Centro de Microscopia Eletrônica da Universidade Federal do Rio Grande do Sul.

3.3.7. Análise macroscópica de rochas

Durante as atividades de campo realizadas, foi possível coletar amostras de rocha em dois locais distintos. As amostras foram identificadas através de etiquetas e acondicionadas em embalagem plástica, evitando assim possíveis contaminações que pudessem comprometer análises futuras. As rochas coletadas nesses dois pontos foram selecionadas com base em sua representatividade geológica e relevância para o contexto do estudo. As rochas desses depósitos de opala foram descritas macroscopicamente com o objetivo de identificar características como cor, brilho, textura e estruturas visíveis, permitindo uma análise preliminar das características gerais da litologia presente na área de estudo.

3.3.8 Caracterização petrográfica das rochas e da opala

As amostras de rocha e opala coletadas em trabalho de campo foram descritas macroscopicamente, priorizando as mais representativas dos locais estudados. Nas rochas foram descritas a mineralogia, estrutura e textura. Na opala foram descritas a cor, variações na cor e o brilho. Foram selecionadas duas amostras de rocha e duas de opala para análise ao microscópio petrográfico. Essas amostras foram serradas e confeccionadas lâminas delgadas de espessura de 30 µm (Figura 22), permitindo um estudo de maior detalhe sob o microscópio petrográfico. A preparação das lâminas petrográficas foi realizada no Laboratório de Preparação de Amostras, localizado no Instituto de Geociências da UFRGS.

Figura 22: Lâminas delgadas prontas para a caracterização ao microscópio petrográfico. OPL1 rocha vitrófira, OPL 3 opala maciça, OPL 6 rocha vulcânica e OPL 7 opala bandada. Créditos do autor.

A descrição microscópica foi conduzida utilizando o microscópio petrográfico marca Leica, utilizando aumentos da ordem de 10 e 40 vezes, com luz transmitida e polarizada. Nesta etapa foram obtidas fotomicrografias, em luz transmitida e polarizada, através de câmera digital MC170 de alta resolução acoplada ao microscópio. Este microscópio é utilizado na área de pesquisa em rochas sedimentares do Departamento de Mineralogia e Petrologia da UFRGS/ Instituto de Geociências.

3.3.9 Caracterização de inclusões

Frequentemente na opala são encontradas inclusões de outros minerais e pequenos fragmentos da rocha hospedeira. Essa característica implica em algumas dificuldades para outras análises, como obter uma superfície plana e polida para leitura de índice de refração (IR) e no preparo das análises para DRX. Na etapa de trituração das amostras para limpeza antes da pulverização necessária para as análises de DRX, procedeu-se a separação destas inclusões para identificação das mesmas. Nesta abordagem, utilizou-se o separador magnético isodinâmico Frantz, modelo L-1 (Figura 23), que permite a separação mais eficiente das partículas ferromagnéticas presentes nas amostras de opala. Ele é composto por uma calha vibratória ajustável nas direções vertical e horizontal, posicionada entre dois eletroímãs com corrente regulável que cria o campo magnético no interior desta calha.

No experimento, fixou-se a inclinação longitudinal da calha em 30° e as correntes aplicadas variaram entre 0,3 e 1,75A, com intervalos de aproximadamente 0,25A. Quando submetida aos intervalos de 1,50 e 1,75A, as amostras tiveram inclusões separadas. Este material foi descrito em lupa binocular, colado em fita de carbono dupla de 8mm de largura, metalizado com carbono e posteriormente analisado ao microscópio eletrônico de varredura (MEV) a baixo vácuo e sua composição química determinada por espectroscopia de energia dispersiva de raios-X (EDS). As análises foram realizadas nos laboratórios do Serviço Geológico Brasileiro, na sede de Porto Alegre.

Figura 23: Separador Frantz utilizado para a técnica de separação das inclusões na opala. Créditos do autor.

3.3.10. Indexação de Dados de DRX (software X'PertPlus)

Para a obtenção de dados mais precisos, foram executados cálculos matemáticos através de *software High Score X'Pert Plus*, para que fosse possível quantificar as proporções de cada fase cristalina presente nas amostras, através do Método RIR (*Reference Intensity Ratio*) bem como calcular o tamanho dos cristais. Nesta abordagem, os dados adquiridos pela análise de DRX de alta resolução, foram importados para o programa, onde foi possível visualizar o difratograma correspondente. Em seguida, os picos de difração que representavam as fases

cristalinas presentes na amostra, foram identificados. Com o auxílio do *software*, foi possível indexar fichas cristalográficas mais adequadas às características observadas em cada difratograma. Nesta escolha comparativa, selecionou-se as fichas com melhor correspondência visual em relação aos picos observados nos difratogramas. Sendo assim, nesta etapa adequou-se os difratogramas às fichas selecionadas para cada amostra. Estabelecida a correlação entre esses dois dados, foi possível calcular através da equação de Scherrer (1918), o tamanho dos cristais existentes:

EQUAÇÃO DE SCHERRER:

$$D_{hkl} = \frac{K\lambda}{\beta\cos(\theta)}$$

Onde:

- D= diâmetro médio das partículas
- K= constante dependente da forma das partículas
- λ = comprimento de onda da radiação eletromagnética
- θ = ângulo de difração
- $\beta(2\theta)$ =largura na metade da altura do pico de difração

4. RESULTADOS E DISCUSSÕES

A Tabela 2 apresenta as cores das amostras coletadas na etapa de campo desta pesquisa, localização, a densidade e os índices de refração. As figuras 36 a 45 são as fichas descritivas das amostras analisadas onde além dos difratogramas e das fases cristalinas presentes aparecem também a cor, a localização, a densidade e os índices de refração. Todas essas características são discutidas nos itens seguintes.

4.1. Análise em polariscópio

A utilização do polariscópio permitiu a realização de análises preliminares das amostras de opala, auxiliando na identificação de propriedades ópticas importantes. Esses resultados destacam a relevância do polariscópio como ferramenta inicial de caracterização, proporcionando uma visão geral sobre a natureza óptica das amostras de opala. Durante as análises, foi observado que a grande maioria das amostras apresentaram um comportamento isótropo. Algumas amostras apresentaram um comportamento fracamente anisótropo.

4.2. Análise de Índice de Refração

A partir das leituras de índice de refração do material selecionado, é possível fazer as seguintes considerações. Os valores obtidos nas amostras mostram variações entre 1,426 e 1,491. Observou-se que as amostras que possuem tons claros, como branco e incolor, exibiram índices de refração menores, onde se obtiveram valores entre 1,426 (SJ2-5), 1,430 (OPL 2) e 1,455 (OP 5). Em contrapartida, amostras de coloração mais intensa, como vermelho, laranja e castanho apresentaram valores ligeiramente mais altos, como 1,462 (OPL 11-9).

O comportamento observado pode ter origem nas variações da composição química das amostras e possivelmente na presença de inclusões, que influenciam na qualidade do polimento das amostras e consequentemente na qualidade das leituras obtidas. Vale ressaltar que a opala é um material gemológico que apresenta algumas dificuldades para adquirir o polimento ideal para leituras no refratômetro gemológico de contato. A primeira dificuldade está associada dureza média do material (entre 5.5 e 6), pois é necessário utilizar abrasivos específicos para se chegar ao resultado esperado. A segunda dificuldade está associada à presença de inclusões disseminadas na amostra. Foi possível diagnosticar a presença de micro inclusões disseminadas nas amostras observadas durante o processo de polimento. A presença de minerais, com durezas diferentes, implicou no surgimento de rugosidades nas superfícies polida, e isso influencia, não só no acabamento esperado, mas também na leitura de índice de refração que possa ser feita nestas condições.

4.3 Características físicas e ópticas da opala

Amostras de opala coletadas em etapas anteriores a esta pesquisa (Brum & Juchem, 2014) indicaram uma densidade sempre baixa, variando entre 1,95 e 2,25, possuem um comportamento predominante isótropo com um índice de refração fixo, mas que pode variar nas diferentes amostras, entre 1,439 e 1,475

Os valores de densidade das amostras coletadas na etapa de campo desta pesquisa, variaram entre 1,96 e 2,61 (Tabela 2), indicando diferenças na composição do material e possivelmente nas proporções entre as diferentes fases cristalinas. As amostras com tonalidades laranja (OPL 6, OPL 1-1, OPL 1-2, OPL 3) mostraram uma variação significativa da densidade, com valores que vão de 2,02 (OPL 3) a 2,61 (OPL 6), que pode estar associada à heterogeneidade do material ou à presença de pequenas inclusões na opala. As amostras de coloração branca e amarela apresentaram, em geral, densidades mais baixas. Por exemplo, a amostra OPL 2-2 (branca) apresentou uma densidade de 1,965, registrando o menor valor presente na tabela, enquanto a amostra OPL 2-1 (amarela) teve uma densidade ligeiramente maior, de 2,02. A amostra OPL 6 (laranja) apresentou a maior densidade dentre todas, 2,61, o que pode ser um indicativo de menor porosidade ou maior saturação em água. Já a amostra OPL 7 (laranja), com densidade de 1,97, está próxima dos valores mais baixos, sugerindo diferenças na uniformidade interna, apesar da mesma tonalidade de cor.

É importante ressaltar que a opala, sendo um mineral hidratado, possui absorção de água quando exposta a ambientes úmidos e fluidos, o que pode influenciar na obtenção valores da densidade relativa. Foi observado por vezes, a formação de pequenas bolhas de ar ao redor de algumas amostras, indicando a absorção da água destilada que compunha o experimento. Essa característica da opala pode influenciar na precisão dos resultados obtidos para densidade.

Amostra	Localização	Densidade	Índice de Refração
OPL 1-1	Barros Cassal		
laranja	345434 O	2,058	1,440
	6778300 S		
OPL 1-2	Barros Cassal		
Cor: vermelha	345434 O	2,059	1,440
	6778300 S		
OPL-2-1	Barros Cassal		
Cor: amarela	343541 O	2,025	1,430
	6775693 S		
OPL-2-2	Barros Cassal		
Cor: branca	343541 O	1,965	-
	6775693 S		
OPL-3	Barros Cassal		
Cor: laranja	346157 O	2,029	1,438
	6780472 S		
OPL-6	Lagoão		
Cor: incolor	327651 O	2,608	1,438
	6765846 S		,
OPL-7	Tupanciretã		
Cor: laranja	Sem coordenadas	1,971	1,426

Tabela 2: Amostras selecionadas para análise nesta pesquisa. Localização, valores de densidade e índice de refração.

4.4. Análise de Isótopos de Oxigênio

A tabela 3 mostra os resultados obtidos na análise de isótopos de oxigênio de 24 amostras de opala da região do Distrito Mineiro de Salto do Jacuí, coletadas em etapas anteriores a esta pesquisa. Nesta tabela é possível identificar a cor e o modo de ocorrência, os valores de δ ¹⁸O referenciados à V-SMOW (*Viena – Standard Mean Ocean Water*) bem como as temperaturas de cristalização calculadas pela equação de Clayton *et al.* (1972), como já descrito no item sobre metodologia. Nesta equação é relacionado o fracionamento isotópico do quartzo (δ ¹⁸O_{quartzo}) com o fracionamento isotópico do quartzo (δ ¹⁸O_{quartzo}) com o fracionamento isotópico da água (δ ¹⁸O_{água}). Assumiu-se que o fracionamento isotópico entre o quartzo e a água é o mesmo entre a opala e água; para o valor do fracionamento isotópico da água considerou-se os valores encontrados em água dentro de geodos de ágata de Salto do Jacuí (-5,10) por Matsui *et al.* (1974) e água dentro de geodos em Ametista do Sul (-5,66) Juchem *et al.* (2009), chegando-se a uma média aproximada de -5,5. Os cálculos indicaram temperaturas de cristalização entre 76 e 150°C, indicando temperaturas baixas de cristalização desse material.

Amostra	Modo de ocorrência	Cor	Tipo de opala	δ ¹⁸ O SMOW	Temp. ⁰ C
OP 1	Cimentando brecha	Caramelo	СТ	18,6	82
OP 1-2	Cimentando brecha	Castanho amarelado	-	17,3	91
OP 3-1	Fratura na rocha	Amarela	СТ	13.7	118
OP 3-2	Fratura na rocha	Laranja	-	18.9	80
OP 4-1	Estrutura de fluxo	Castanho claro (doce	C	19.6	76
OP 4	Estrutura de fluxo	Laranja	СТ	16.6	06
OP 5	Estrutura de fluxo	Branca azulada	С	17.4	90
OP 6-1	Estrutura de fluxo	Laranja	-	17,4	90
OP 6-2	Estrutura de fluxo	Bege	-	10,0	103
OP 7	Estrutura de fluxo	Laranja	СТ	10,7	149
OP 8-1	Estrutura de fluxo	Avermelhada	СТ	12.1	133
OP 8-3	Estrutura de fluxo	Amarelo acastanhado	-	14.6	111
OP 21	Em fraturas	Laranja	-	15.3	106
OP 23	Em fraturas	Laranja	СТ	15.0	108
SJ 2-5	Em geodo (calcedão)	Branca	СТ	12.9	110
OP 46	Em geodo c/ ágata	Rosa	С	12.5	130
OP 49	Em geodo c/ ágata	Amarela	СТ	12,3	132
OP 50	Em geodo c/ ágata	Cinza azulado	С	16.5	96
OP 25 1A	Em geodo c/ ágata	Branca	-	10,0	146
OP 25-2	Em geodo c/ ágata	Branca	-	15 /	105
OP 25-3A	Em geodo c/ ágata	Branca	СТ	13.8	110
OP 25 4A	Em geodo c/ ágata	Branca	СТ	15.0	100
OP 25 5a	Em geodo c/ ágata	Branca	СТ	10.6	160
OP 25 6a	Em geodo c/ ágata	Branca	СТ		125
l		1	I	שוו,ש	133

Tabela 3: Resultados de análises de isótopos de oxigênio na opala do Rio Grande do Sul. Modo de ocorrência, cor, tipo de opala e temperaturas de cristalização das diferentes amostras, calculadas com aplicação da equação de fracionamento isotópico entre quartzo e água de Clayton *et al.* (1972).

4.5. Difratometria de Raios X (DRX)

Para análise de difratometria de Raios X foram selecionadas as seguintes amostras de opala: OP-1. OP-4, OP-5, OP-11-8, OP-11-9, OP-11 GEL, OP-14, OP-27, SJ-2-5 e OPL-7. A amostra OP-11 GEL, foi coletada como um gel vermelho que extravasou de um geodo parcialmente preenchido com ágata, na mina Bilig em Salto do Jacuí. Após desidratar, o gel se transformou em uma amostra sólida de opala vermelha, com brilho resinoso a vítreo, como pode ser observado na sua ficha completa (Figura 41).

Foi possível observar nos difratogramas de Raios X que a opala do RS é sempre do tipo cristalina, constituída por opala-C e opala-CT. Em nenhuma amostra foi encontrada opala-A (amorfa), que apresentaria um halo amorfo no difratograma. A diferenciação entre opala-C e a opala-CT, se dá através da relação de intensidade dos picos em (2- θ) iguais a 20,629° 2- θ (4,302 Å) e 21,709° 2- θ (4,285Å), que representam respectivamente os principais picos da α -tridimita e da α -cristobalita, identificados nos difratogramas.

As figuras 24 a 28 mostram os difratogramas correspondentes às 10 amostra analisadas neste estudo. As amostras classificadas como opala-CT apresentam a posição do pico mais intenso em 4,039 Å (OP-1) a 4,739 Å (OP-11-9). Enquanto nas amostras classificadas como opala-C o pico mais intenso oscila entre 4,100 Å (OP 11 GEL) e 4,109 Å (OP 27), que apresentaram picos mais estreitos e de maior intensidade. É importante ressaltar que na maioria das amostras de opala-CT os picos correspondentes à tridimita e cristobalita estão muito próximos. Tal proximidade não permite calcular com precisão o tamanho dos cristalitos, uma vez que o *software* interpreta esses dois picos como sendo um só. Essa observação foi considerada na análise das amostras OP-11-9, SJ2-5 e OPL-7.

Figura 24: Nos difratogramas acima é possível identificar a proximidade entre os picos de cristobalita (em verde) e tridimita (em azul).

Figura 25: No difratograma OP 5, amostra classificada como opala CT e ao lado amostra OP 11-GEL, classificada com opala-C.

Figura 26: No difratograma OP 11-8 foi possível classificar a amostra como opala-C, e em OP 11-9 como opala-CT.

Figura 27: Difratograma da amostra OP 14, classificada como opala-CT e em OP 27 como opala C.

Figura 28: Nos dois difratogramas acima (SJ2-5 e OPL-7) é observada a proximidade entre os picos referentes à cristobalita (em verde) e tridimita (em azul). Ambas classificadas como opala-CT.

4.6. Microscopia Eletrônica de Varredura (MEV)

A utilização do MEV neste estudo teve como objetivo, através de suas imagens de alta resolução, caracterizar as superfícies das amostras de opala, o que permitiu uma análise detalhada da morfologia e estruturas presentes no material. Teve como objetivo também a visualização dos cristais de cristobalita e tridimita que, no entanto, não foi possível provavelmente devido as suas dimensões muito reduzidas.

O MEV revelou a presença de esferas de sílica organizadas em arranjos micrométricos (Figura 29), uma morfologia típica da opala.

Figura 29: Na imagem é possível observar em detalhe a morfologia típica da opala, organizada em agregados globulares micrométricos aproximadamente homogêneas.

Em diferentes amostras, a técnica permitiu identificar outras feições como microporosidade, que indicou superfícies texturizadas, refletindo diferentes graus de ordem estrutural diretamente atrelados ao arranjo cristalino de cada amostra observada. Além disso, foram observadas microcavidades, provavelmente associadas a processos de desidratação dessa opala provocados por alterações intempéricas (Figura 30).

Augustin (2004) em observações ao MEV, observou em uma cavidade de opala do RS, a presença de lepisferas de α-cristobalita com empilhamento de microcristais α-tridimita (Figura 31). Nesse mesmo material também foram observados

microcristais tetragonais de α -cristobalita associados às lepisferas, indicando que essas fases minerais ocorrem de maneira conjunta.

Figura 30: Morfologia da opala. Na imagem observa-se o agregado globular com glóbulos organizados em tamanho predominantemente homogêneo. Em alguns glóbulos observam-se microcavidades que podem estar associadas à desidratação da amostra.

Figura 31: Em I, observa-se um agregado esférico característico de opala-CT, constituído segundo Graetch (1994), pela face {111} da cristobalita e pela face {001} da tridimita. Em II, cristais de cristobalita de baixa temperatura (tetragonal). Modificado de Augustin (2004).

4.7. Caracterização petrográfica das rochas

Dos pontos amostrados durante a pesquisa de campo desta pesquisa, só foi possível coletar amostras de rocha hospedeira em duas das áreas pesquisadas: OPL-1 e OPL-6 (Figura 32). Em ambos os locais os processos de alteração intempéricas eram intensos e não foi possível estabelecer uma relação precisa entre o minério e as rochas aflorantes.

A amostra OPL-1 apresenta coloração preta, afanítica e com um padrão bandado e aspecto semi-vítreo. Seu brilho é predominantemente resinoso, indicando que já há um processo de cristalização em meio a massa vítrea que compõe esta rocha. Observa-se também sinais iniciais de exposição a processos de alteração intempérica.

Por outro lado, a amostra OPL-6 é de coloração cinza, com textura afírica e ausência de estruturas visíveis. Contudo, microcavidades foram identificadas, parcialmente preenchidas por cristais de quartzo. Ela representa o topo de um derrame na região pesquisada, não sendo possível, no entanto, relacionar esse derrame diretamente com os depósitos de opala devido à intensa alteração intempérica das rochas mineralizadas.

Figura 32: Amostras das rochas coletadas no trabalho de campo relacionadas aos depósitos de opala. A amostra OPL 1 de cor preta e exibe uma textura semi vítrea, enquanto que a amostra OPL 6 é cinza de textura afírica.

Ao microscópio petrográfico, na amostra OPL-1 (Figura 33) foram identificados microfenocristais de plagioclásio (labradorita), piroxênio (augita) e minerais opacos poliédricos envoltos por óxidos de ferro e uma matriz vítrea parcialmente alterada, onde observam-se micrólitos de plagioclásio e de piroxênio e cristalitos aciculares em arranjos irregulares, por vezes tendendo à radiados.

A amostra OPL-6 (Figura 34), já apresenta um grau de alteração mais intenso, com microfenocristais e micrólitos de plagioclásio, de máficos (piroxênios) e de opacos poliédricos a irregulares, tudo envolto por uma matriz vítrea extremamente alterada, onde ainda é possível identificar por vezes cristalitos aciculares. O grau de alteração mais intenso não permitiu uma determinação satisfatória da composição do plagioclásio e do piroxênio por meios ópticos.

Figura 33: Fotomicrografias da amostra de rocha do ponto OPL-1 observada em luz natural (LN) e luz polarizada (LP). A) Microfenocristal de plagioclásio (labradorita) envolto por micrólitos de plagioclásio de mesma composição, piroxênio (augita), opacos e vidro vulcânico com cristalitos aciculares. Observase feições de fluxo do vidro em torno do microfenocristal e de alguns micrólitos. B) Micrólitos de plagioclásio (labradorita), de piroxênio (augita) e de opacos envoltos por vidro vulcânico com cristalitos aciculares a fibrosos, indicando feições de fluxo do vidro.

Figura 34: Fotomicrografia da rocha do ponto OPL-6 observada em luz natura (LN) e em luz polarizada (LP). Micrólitos de plagioclásio euédricos a anédricos, de piroxênios prismáticos tentendo a anédricos, de opacos prismáticos envoltos por vidro vulcânico muito alterado, identificando-se ainda alguns cristalitos aciculares em meio a massa vítrea.

4.8. Caracterização de inclusões

A análise de inclusões presentes na opala é uma ferramenta fundamental para compreender sua origem e os processos envolvidos em sua formação. Para essa investigação, foram utilizadas duas metodologias complementares: o Separador Magnético Frantz, empregado na separação e caracterização de inclusões presentes na opala, e a Microscopia Eletrônica de Varredura (MEV), que tornou possível a observação em alta definição das inclusões presentes e a identificação da composição química.

Foi observado que as inclusões são compostas por grãos variando entre 100 e 150µm, constituídos de quartzo prismático ou anédrico, recoberto por minúsculos cristais metálicos de cor cinza escura e aspecto rugoso (Figura 35). Na análise química por EDS, esses minerais metálicos indicaram a presença de ferro e titânio, compatíveis com o mineral ilmenita.

Figura 35: Quartzo recoberto. Em A, cristal de quartzo com recobrimento de cristais metálicos, conferindo aspecto rugoso. Em B, análise química por EDS indicando a presença de ferro e titânio, compatível com a composição de ilmenita. O cálcio identificado pelo *software* do MEV pode ter sido confundido com o pico de silício que é semelhante ao do cálcio.

4.9. Indexação de Dados de DRX (software X'PertPlus)

Os resultados adquiridos por Difratometria de Raios X (DRX) passaram por indexação utilizando o *software High Score X'pert Plus* e analisados com base no banco de dados cristalográficos COD (*Crystallograpy Open Database*). A aplicação do método permitiu a identificação de fases cristalinas predominantes, assim como a estimativa do tamanho dos cristais por meio da equação de Scherrer e a determinação dos parâmetros da célula unitária consultados diretamente nas fichas cristalográficas correspondentes.

A análise revelou a presença das fases α-cristobalita e α-tridimita, sempre como cristalitos as quais apresentaram distribuições percentuais distintas entre as amostras. O gráfico abaixo (Gráfico 1) relaciona estes percentuais.

Gráfico 1: Gráfico de percentuais de cada fase mineral da opala estudada. É possível observar a distribuição e os percentuais distintos de α -cristobalita e α -tridimita em cada amostra analisada.

A Tabela 4 resume as características das amostras estudadas, incluindo o resultado do refinamento dos dados de DRX.

Observa-se nessa tabela que predominam as amostras do tipo opala-CT, sendo que somente três amostras são de opala-C, constituídas essencialmente por cristobalita (OP-11-GEL, OP-11-8 e OP-27).

Na amostra OP-11-8, foi identificada ainda a presença de 2,7% de quartzo. Embora os parâmetros dessa fase não tenham sido calculados ou apresentados na tabela, esse dado é relevante pois sugere a possibilidade de contaminação ou inclusões no material, que podem ter origem em diferenças na litologia do local durante a formação da opala. Outra hipótese pode estar associada à evolução mineralógica do fluido que depositou opala, uma vez que ela comumente ocorre com polimorfos de sílica, neste caso, possivelmente calcedônia.

Os tamanhos dos cristalitos estimados se distribuíram de forma bastante heterogênea e variaram entre as fases e amostras. O tamanho de cristalitos de α -cristobalita variam entre 5,7 a 168,6 nm. Já a alfa-tridimita tem cristalitos variando de 9 a 28,5 nm.

Em uma comparação entre as duas fases, observa-se que a α-cristobalita, com um tamanho de cristalito de dimensões maiores, pode ter se formado em condições que favoreceram a redução de defeitos estruturais que pudessem impedir um crescimento cristalino uniforme. Na tabela 4 estão identificadas as amostras, cor, tipo de opala, o percentual de cada fase cristalina e os tamanhos de cristalito observados nos picos mais representativos de cada difratograma.

Amostra	Localização	d	IR	Tipo de	Fase mineral	Tamanho de
				opala		cristalito
OP-1	Barros Cassal				Cristobalita 19 %	Cristobalita 5,7 nm
caramelo	353364 O	2,03	1,445	СТ	Tridimita 81 %	Tridimita 24 a
	7679856 S					28,5 nm
OP-4	Tunas				Cristobalita 77 %	Cristobalita 16,8 nm
laranja	312147 O	2,10	1,455	СТ	Tridimita 23 %	Tridimita 13 nm
	6775377 S					
OP-5	Campos Borges				Cristobalita 75%	Cristobalita 65,8 nm
branca	304877 0	2,13	1,455	СТ	Tridimita 25%	Tridimita 72 nm
azulada	7924660 S					
OP-11 GEL	Mina Bilig-Salto				Cristobalita 100%	Cristobalita 7,7 a
vermelha	do Jacui	1,84 -		С		9,2 nm
	282886 O				Tridimita 0 %	Tridimita
	6678598 5					
OP-11-8	Mina Bilig-Salto				Cristobalita 97,3%	Cristobalita 128,5 a
cinza	do Jacuí	2,28	1,471	С	Tridimita 0.%	168,6 nm Tridimita
azulado/	282886 O	,			Ouertae 2.7%	Quartzo
castanho	66678598 S					Quartzo
OP-11-9	Mina Bilig-Salto		1,462	СТ	Cristobalita 70%	Cristobalita 12,5 nm
laranja		2,09			T : 1: 1: 200/	T : I: :: : : : : : : : : : : : : : : :
					Tridimita 30%	Tridimita 19,5 nm
00.14	00078598 S				Cristopolito 82%	Cristopolito 42.2 o
branca	1011dS					Cristopalita 42,3 d
Dialica	6675546 \$	2,22	1,491	CT	Tridimita 18 %	Tridimita 0 nm
	00755405					
OP-27	Barros Cassal				Cristobalita 100%	Cristobalita
laranja/	343763 O	2,01	1,440	С		4,5 a 11,5 nm
amarela	6775621 S	,	,	-	Tridimita 0 %	Tridimita
SJ-2-5	Otto Miller				Cristobalita 25%	Cristobalita 18,1 a
branca	Salto do Jacuí	2.11	±1,426			22,9 nm
	283630 O	2,11	2,11		Tridimita 75 %	Tridimita 27 nm
	6777708 S					
OPL-7	Tupanciretã				Cristobalita 21%	Cristobalita 7,5 nm
vermelha	rmelha 283630 O 1,97 ±1,426 CT 66777708 S		СТ	Tridingite 70.04		
				Trialmita 79 %	20 nm	

Tabela 4: Tabela incluindo a localização, características físicas e ópticas da opala estudada e dados de refinamento de DRX.

A aquisição desses dados permitiu elaborar fichas descritivas, com todas as informações reunidas sobre as amostras de opala deste trabalho. Nas figuras 36 a 45, estão descritas cada amostra individualmente com suas características físicas, ópticas e interpretação dos difratogramas de Raios X. Os parâmetros da célula unitária estão definidos em nanômetros (nm) e o volume da célula unitária em picômetros (pm).

Figura 36: Ficha descritiva da amostra OP-1, classificada como opala-CT, composta por 19% de cristobalita (tetragonal) e 81% de tridimita (triclínica).

Figura 37: Ficha descritiva da amostra OP-4, classificada como opala-CT, composta por 77% de cristobalita (tetragonal) e 23% de tridimita (ortorrômbico). A tridimita ortorrômbica é descrita por vários autores (ver Tabela 1) como cristalizada em temperaturas baixas.

Figura 38: Ficha descritiva da amostra OP-5, classificada como opala-CT, composta por 75% de cristobalita (tetragonal) e 25% de tridimita (monoclínica). A tridimita monoclínica só foi identificada por Klein & Drutrow (2007) – ver Tabela 1.

Figura 39: Ficha descritiva da amostra OP-11 GEL, classificada como opala-C, composta unicamente por cristobalita (tetragonal). A fragilidade das mostras não permitiu a obtenção de uma face polida para a leitura de índice de refração.

Figura 40: Ficha descritiva da amostra OP-11-8, classificada como opala-C, composta por 98,3% de cristobalita (tetragonal) e 2,7% de quartzo.

Figura 41: Ficha descritiva da amostra OP-11-9, classificada como opala-CT, composta por 70% de cristobalita (ortorrômbica) e 30% de tridimita (ortorrômbica). A cristobalita ortorrômbica não é descrita por nenhum dos autores na Tabela 1, mas é descrita por Le Bail (1995) na ficha cristalográfica do anexo 5.

Figura 42: Ficha da amostra OP-14, classificada como opala-CT, composta por 82% de cristobalita (tetragonal) e 18% de tridimita (ortorrômbica).

Figura 43: Ficha descritiva da amostra OP-27, classificada como opala-C, composta por 100% de cristobalita (cúbica). A cristobalita cúbica é descrita pela maioria dos autores (ver Tabela 1) como cristalizada como beta cristobalita de mais alta temperatura. No entanto, alguns autores descrevem a alfa cristobalita pseudo-cúbica, o que poderia ser o caso desta amostra.

Figura 44: Ficha descritiva da amostra SJ2-5, classificada como opala-CT, composta por 75% de cristobalita (monoclínica) e 25% de tridimita (triclínica). A cristobalita monoclínica não foi identificada por nenhum dos autores citados na Tabela 1. No entanto Matsui *et al.* (2014) descrevem cristobalita monoclínica como pode ser visto na ficha cristalográfica desta amostra no anexo 9.

Figura 45: Ficha descritiva da amostra OPL-7, classificada como opala-CT, composta por 21% de cristobalita (tetragonal) e 79% de tridimita (triclínica).

5. CONCLUSÕES

A caracterização da opala do Rio Grande do Sul foi possível de ser executada a partir do conjunto de informações petrográficas, mineralógicas, químicas e isotópicas obtidas durante a elaboração deste trabalho. A partir destes dados podese concluir que:

A opala do Rio Grande do sul apresenta colorações que variam desde incolor, branco, amarelo, laranja até vermelho;

As amostras de coloração mais clara apresentam valores de densidade mais baixos como 1,96, enquanto as de cores mais intensas demostram valores mais altos como 2,61;

As inclusões presentes na opala são majoritariamente cristais de quartzo anédrico, eventualmente recobertos por minúsculos cristais de ilmenita;

A opala do RS é sempre isótropa e em raros casos fracamente anisótropa, sendo assim exibe apenas um índice de refração que varia entre as diferentes amostras. Amostras de coloração mais clara revelam índices de refração ligeiramente menores como 1,426; já amostras de cores mais intensas revelam índices de refração mais altos 1,491;

Os dados obtidos pela análise de isótopos de oxigênio indicam baixas temperaturas de cristalização (entre 76 e 150°C), indicando que um processo hidrotermal de temperaturas relativamente baixas ocorreu após o período de atividade do vulcanismo Serra Geral e é o responsável pelas mineralizações de opala nesse Distrito Mineiro. Essas diferenças de temperatura estão relacionadas apenas a oscilações na temperatura do fluido mineralizante, causadas provavelmente por diferentes pulsos e/ou eventos hidrotermais que afetaram todo o Distrito Mineiro;

Não foi observada a ocorrência de opala-A (amorfa), apenas opala-C e opala-CT. A indexação de dados de DRX revelou que a opala do RS é constituída por um agregado nanométrico de cristalitos de α-cristobalita e α-tridimita com dimensões entre 5,7 e 168 nm. A grande diferença entre os comprimentos de onda da luz (400 a 700nm) e o tamanho médio dos cristalitos, não permite a interação construtiva entre esta radiação eletromagnética com a estrutura dos minerais constituintes da opala. Como consequência observa-se então o comportamento atípico ópticamente isótropa.

6. REFERÊNCIAS

Augustin, A.H. 2004. *Geologia e mineralogia dos depósitos de opala da região do Salto do Jacuí, RS, Brasil.* Porto Alegre, 2004. Monografia de Graduação, Universidade Federal do Rio Grande do Sul.

Betekhtin, A.G. 1966. *A Course of Mineralogy*. Moscou, Mir Publishers, 460p. p. 314-315.

Brum, T.M.M., Juchem, P.L., Hartmann, L.A., Augustin, A.H. & Hoppe, B. 2011. Características geológicas e geoquímicas dos depósitos de opala em rochas vulcânicas ácidas no Rio Grande do Sul. 13° Congresso Brasileiro de Geoquímica, Gramado, RS. 1 CD-ROM. CPGQ 07, T25: 1517-1520.

Brum, T.M.M. & Juchem, P.L. 2014. *Técnicas instrumentais não destrutivas aplicadas a gemas do Rio Grande do Sul*. In: Hinrich, R. (Organizador). Porto Alegre, IGeo/Universidade Federal do Rio Grande do Sul, p. 27–43.

Campos Júnior, L. de M. 2014. *Síntese e caracterização de óxidos magnéticos diluídos nanoestruturados preparados por moagem mecânica*. Belo Horizonte, 2014. Dissertação de Mestrado, Universidade Federal de Minas Gerais.

Chauviré, B. et al. 2018. *Pedogenic origin of precious opals from Wegel Tena (Ethiopia): evidence from trace elements and oxygen isotopes*. Applied Geochemistry, 101: 127-139, Dezembro.

Clayton, R.N., O'Neil, J.R. & Mayeda, T.K. 1972. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research, 77: 3057-3067.

Coenraads, R.; Zenil, A. 2006. *Leopard opal: play-of-color opal in vesicular basalt from Zimapán, Hidalgo State, Mexico*. Gems & Gemology, Notes and New Techniques, 42(4): 236–246, Winter.

Curtis, N. J. et al. 2019. A review of the classification of opal with reference to recent *new localities*. Minerals, 9(5): 299, Maio.

Dana, E.S. & Hurlbut, C.S. 1959. *Manual de Mineralogia*. 4^a ed., Nova York, Wiley, 721p. p. 534-535.

Deer, W.A., Howie, R.A. & Zussmann, J. 1966. *Minerais constituintes das rochas – Uma introdução*. Londres, Longmans, 528p. p. 264-265.

De La Roche, H., Leterrier, J. & Grandclaude, P.A. 1980. *Classification of volcanic and plutonic rocks and associations*. Chemical Geology, 29: 183-210.

Dutkiewicz, A. et al. 2015. Origin of silica and fingerprinting of Australian sedimentary opals. Gondwana Research, 27: 786-795.

Fröhlich, F. 2020. *The opal-CT nanostructure*. Journal of Non-Crystalline Solids, 533: p. 1-8, Dezembro.

Frondel, C. 1962. *In: The System of Mineralogy of J.D. Dana & E.S. Dana*. 7. ed. New York: John Wiley & Sons, Inc.

Gaillou, E. et al. 2008. *The geochemistry of gem opals as evidence of their origin*. Ore Geologia Reviews, 34: 113-126, Abril.

Gomes, E.R. & Costa, M.L. 1994. *Contribuição à gênese das opalas de Pedro II (Piauí)*. Geochimica Brasiliensis, v. 8, n. 1.

Graetsch, H. 1994. *Structural characteristics of opaline and microcrystalline silica minerals*. In: Heaney, P.J., Prewitt, C.T. & Gibbs, G.V. (Eds.). *Silica: Physical behavior, geochemistry and materials applications*. Reviews in Mineralogy, v. 29, p. 209–232.

Hatipoglu, M.; Babalik, H.; Chamberlain, S. 2010. *Gemstone deposits in Turkey*. Rocks & Minerals, 85: 124-133, Julho.

Heaney, P.J. 1994. *Structure and chemistry of the low-pressure silica polymorphs*. In: Heaney, P.J., Prewitt, C.T. & Gibbs, G.V. (Eds.). *Silica: Physical behavior, geochemistry and materials applications*. Virginia, Mineralogy Society of America. Reviews in Mineralogy, v. 29, p. 1–40.

Hsu, T.; Lucas, A.; Pardieu, V. 2015. *Splendor in the outback: a visit to Australia's opal fields*. Gems & Gemology, Field Report, 51(4): 418–427, Winter.

Jones, J.B. & Segnit, E.R. 1971. *The nature of opal: I. Nomenclature and constituent phases*. Journal of the Geological Society of Australia, v. 13, n. 1, p. 57–68.

Juchem, P. L.; Hartmann, L. A.; Massone, H.; Theye, T. 2009. Oxygen isotope composition of amethyst and related silica minerals in volcanic rocks from the Paraná

Province, southern Brazil. In: XII Congresso Brasileiro de Geoquímica, 2009, Ouro Preto, MG. Anais do XXII Congresso Brasileiro de Geoquímica. Rio de Janeiro: Sociedade Brasileira de Geoquímica, v.2, p.599 - 602

Juchem, P. L., Hartmann, L. A. 2011. *Isótopos de enxofre no Distrito Mineiro de Ametista do Sul, RS.* In: Anais XIII Congresso Brasileiro de Geoquímica, Gramado, RS.

Juchem, P.L., Brum, T.M.M; Duarte, L.C. 2023. *Gemas do Rio Grande do Sul.* In: Cornejo, C. (Ed.). Gemas do Brasil. Solaris Edições Culturais, São Paulo.p. 376-385.

Kerr, P.F. 1959. Optical Mineralogy. Nova York, McGraw-Hill, 408p. p. 273-280.

Kinnunen, K.; Malisa, E. 1990. *Gem-quality chrysoprase from Haneti-Itiso area, Central Tanzania*. Bulletin of the Geological Society of Finland, 62: 157-166, Setembro.

Klein, C. & Dutrow, B. 2007. *The Manual of Mineral Science*. 23^a ed., Nova York, Wiley, 716p. p. 538.

Le Bail, A. 1995. Interpretation of X-ray diffraction patterns of low-cristobalite and lowtridymite. Journal of Non-Crystalline Solids, v. 183, p. 39-42.

Marques, G. T. 2011. *Inclusões sólidas em opalas laranja de Buriti dos Montes (Piauí – Brasil): morfologia, mineralogia e composição química.* Trabalho de Conclusão de Curso (Graduação em Geologia) – Faculdade de Geologia, Instituto de Geociências, Universidade Federal do Pará, Belém.

Matsui, E.; Salati, E.; Marini, O. J. 1974. *D/H* and 180/160 ratios in waters contained in geodes from the basaltic province of Rio Grande do Sul, Brazil. Geological Society of America Bulletin, v. 85, p. 577-580.

Matsui, M.; Sato, T.; Funamori, N. 2014. *Crystal structures and stabilities of cristobalite-helium phases at high pressures.* American Mineralogist, v. 99, p. 184-189.

Michelin, C.R.L. 2014. Ágata do distrito mineiro de Salto do Jacuí (Rio Grande do Sul, Brasil): uma caracterização com base em técnicas estratigráficas, petrográficas, geoquímicas e isotópicas. Porto Alegre, 2014. Tese de Doutorado, Programa de Pós-Graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul. Milani, E.J. 2004. *Comentários sobre a origem e evolução tectônica da Bacia do Paraná*. In: Mantesso Neto, V., Bartorelli, A., Carneiro, C.D.R. & Brito-Neves, B.B. (Eds.). *Geologia do Continente Sul-Americano: Evolução da Obra de Fernando Flávio Marque de Almeida*. São Paulo: Beca, p. 265-279.

Milani, E.J. & Ramos, V.A. 1997. Orogenias paleozóicas no domínio sul-ocidental do Gondwana e os ciclos de subsidência da Bacia do Paraná. Revista Brasileira de Geociências, v. 28, n. 4, p. 473-484.

Milani, E.J., França, A.B. & Schneider, R.L. 2006. *Bacia do Paraná*. Boletim de Geociências da Petrobras, 14(2): 227-270.

MINDAT. *Cristobalite*. Disponível em: https://www.mindat.org/min-1155.html. Acesso em: 8 dez. 2024.

MINDAT. *Opal-CT*. Disponível em: https://www.mindat.org/min-32185.html. Acesso em 8: dez. 2021.

MINDAT. *Tridymite*. Disponível em: https://www.mindat.org/min-4015.html. Acesso em: 8 dez. 2024.

Nardy, A.J., Machado, F.B., Oliveira, M. A. F., 2008. As rochas vulcânicas mesozoicas ácidas da Bacia do Paraná: litoestratigrafia e considerações geoquímicas estratigráficas. Revista Brasileira de Geociências, 38: 178-195.

Piccirillo, E.M. & Melfi, A.J. (Eds.). 1988. The Mesozoic flood volcanism from the *Paraná Basin (Brazil): petrogenetic and geophysical aspects.* São Paulo, IAG/USP, 600 p.

Rossetti, L., Lima, E.F., Waichel, B.L., Hole, M.J., Simões, M.S. & Scherer, C.M.S. 2018. *Lithostratigraphy and volcanology of the Serra Geral Group, Paraná-Etendeka Igneous Province in Southern Brazil: Towards a formal stratigraphical framework.* Journal of Volcanology and Geothermal Research, 355: 98-114.

Scherrer, P. 1918. *Estimation of the size and internal structure of colloidal particles by means of Röntgen*. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 2: 96-100.

Simoni, N., Caucia, F., Adamo, I., Galinetto, P. 2010. *New ocurrence of fire opal from Bemia, Madagascar.* Gems & Gemology, 46 (2): 114-121.

Schuman, W. 2006. Gemas do Mundo. Editora Disal. Porto Alegre. 282 p.

WEBMINERAL.Cristobalite.Disponívelem:https://webmineral.com/data/Cristobalite.shtml.Acesso em: 8 dez. 2024.

WEBMINERAL.Tridymite.Disponívelem:https://webmineral.com/data/Tridymite.shtml. Acesso em: 8 dez. 2024.

Wildner, W. 2004. *Estratigrafia do magmatismo Serra Geral na Bacia do Paraná: conceitos básicos e divisão faciológica.* Reunião Aberta da Comissão Brasileira de Estratigrafia, 2004, Porto Alegre. SBG, 62-78.

Zalán, P.V., Wolff, S., Conceição, J.C.J., Marques, A., Astolfi, M.A.M., Vieira, I.S., Appi, V.T. & Zanotto, O.A. 1991. Bacia do Paraná. In: Gabaglia, G.R. & Milani, E.J. (Eds.). *Origem e evolução de bacias sedimentares*. Rio de Janeiro, Petrobrás, 135-168.

7. ANEXOS

Anexo I – Ficha Cristalográfica da amostra OP-1

Ficha cristobalita

Name and formula

Reference code:	96-900-8229		
Mineral name: Compound name: Common name:	Cristobalite Cristobalite Cristobalite		
Chemical formula:	Si _{4.00} O _{8.00}		

Crystallographic parameters

Crystal system: Space group: Space group number:	Tetragonal P 41 21 2 92
a (۱۹)۰	1 0020
a (n). h (Å).	4,9930
D (A).	4,9930
с (А):	7,0050
Alpha (°):	90,0000
Beta (°):	90,0000
Gamma (°):	90,0000
Calculated density (q/cm^3):	2,28
Volume of cell (10 ⁶ pm ³):	174 , 63
RIR:	5,22

Subfiles and Quality

Subfiles:

Quality:

User Inorganic User Mineral None ()

Comments

Creation Date: Modification Date: Publication title: $08/05/2024 \ 00:15:29$ $08/05/2024 \ 00:15:29$ High-temperature single-crystal study of the cristobalite inversion Note: Cell has been corrected Sample: T = 179 C

COD database code: 9008228

References

Structure:

Peacor, D. R., *Zeitschrift fur Kristallographie*, **138**, 274 - 298, (1973)

Peak list

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	1	0	1	4,06587	21,842	100,0
2	1	1	0	3,53058	25,204	0,5
3	1	1	1	3,15278	28,284	7,9
4	1	0	2	2.86736	31,167	9.4
5	2	0	0	2,49650	35,944	12.2
6	1	1	2	2,49050	26 002	12 , 2
0	1	1	1	2,400JI 2,251C2	30,093	5,0
/	2	1	T	2,35162	38,242	0,2
8	2	1	0	2,23294	40,360	0,0
9	2	1	1	2,12747	42,455	2,6
10	1	0	3	2,11514	42 , 715	0,2
11	2	0	2	2,03294	44,532	2,6
12	1	1	3	1 , 94759	46 , 596	4,6
13	2	1	2	1,88285	48,298	4,7
14	2	2	0	1,76529	51,744	0,4
15	0	0	4	1,75125	52,190	0.7
16	2	2	1	1.71177	53,487	0.0
17	2	0	- ۲	1 70533	53 706	2,3
1.0	1	0	1	1 65255	55,700	2,5 0 5
10	⊥ 2	0	1	1 61026	56 011	2,5
19	3	1	1	1,61926	50,811	3,0
20	2	1	3	1,61380	57,021	1,9
21	3	1	0	1,57893	58,401	0,3
22	2	2	2	1,57639	58,504	0,3
23	1	1	4	1,56885	58,812	0,0
24	3	1	1	1,54028	60,014	2,3
25	3	0	2	1,50325	61,651	2,3
26	3	1	2	1,43942	64,707	2,9
27	2	0	4	1,43368	64,998	1,6
28	2	2	3	1,40816	66,327	1,4
29	3	2	0	1,38481	67.594	0.0
30	2	1	4	1,37800	67,973	2.3
31	2	2	1	1 35852	69 085	1 0
22	2	0	2	1 25520	60 272	1,0 0 7
22	1	0	5	1,33329	09,273	1 (
33	1	0	5	1,34890	69,648	1,6
34	3	Ţ	3	1,30/96	72,162	1,8
35	1	1	5	1,30222	72,531	0,0
36	3	2	2	1,28781	73 , 475	2,0
37	4	0	0	1,24825	76 , 210	0,1
38	2	2	4	1,24326	76 , 571	0,9
39	4	0	1	1,22889	77 , 633	1,2
40	2	0	5	1,22176	78,171	0,2
41	4	1	0	1,21098	79,003	1,6
42	3	0	4	1,20642	79.360	0,0
43	4	1	1	1,19328	80.411	0.1
44	3	2	т 2	1 19109	80 589	1 5
15	2	1	5	1 18675	80 945	1 5
10	2	1 2	0	1 17696	00, 545	1,J
40	2	5	0	1,17501	01,709	0,2
4 /	4	0	2	1,1/581	81,858	0,2
48	3	Ţ	4	1,1/26/	82,124	0,/
49	3	3	1	1,16060	83,167	0,4
50	4	1	2	1,14450	84,605	0,2
51	1	0	6	1,13684	85 , 310	0,0
52	4	2	0	1,11647	87,251	0,0
53	3	3	2	1,11557	87 , 339	0,5
54	1	1	6	1,10847	88,042	1,5
55	4	2	1	1,10255	88,638	1,1
56	4	0	3	1,10083	88,814	0,3
57	2	2	5	1,09740	89,165	0,2

Ficha tridimita

Name and formula

Reference code:	96-901-3394		
Mineral name: Compound name: Common name:	Tridymite Tridymite Tridymite		
Chemical formula:	Si _{80.00} O _{160.00}		

Crystallographic parameters

Crystal system:	Anorthic
Space group:	P 1
Space group number:	1
a (Å):	9,9320
b (Å):	9,9380
c (Å):	41,2320
Alpha (°):	86,5490
Beta (°):	83,0830
Gamma (°):	60,0230
Calculated density (g/cm^3):	2,28
Volume of cell (10^6 pm^3):	3499,68
RIR:	1,43

Subfiles and Quality

Subfiles:	User Inorganic
	User Mineral
Quality:	None ()

Comments

Creation Date: 07/05/2024 23:52:22 Modification Date: 07/05/2024 23:52:22 Structure TIDY: Transformed from space group: "F1" to space group: "P 1". Structure TIDY: 0.5, 0, -0.5 Structure TIDY: 0.5, 0, -0.5 Structure TIDY: 0.5, 0, 0.5 Structure TIDY: 0.5, 0, 0.5 Structure TIDY: TRANS -a-c,-a+b-c,-c origin .51115 .37392 .63194 Publication title: The crystal structure of low tridymite COD database code: 9013393

References

Structure:

Konnert, J. H., Appleman, D. E., *Acta Crystallographica, Section B*, **34**, 391 - 403, (1978)

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	0	0	1	40,93190	2,157	0,0
2	0	0	2	20,46595	4,314	0,0
3	0	0	3	13,64397	6,473	0,0
4	0	0	4	10,23298	8,634	0.1
5	0	1	0	8,60855	10.267	0.0
6	1	0	0	8,55625	10,330	0.0
7	0	1	1	8 12130	10,000	0,0
0	1	1	1	0,42430	10,495	0,0
8	-1	-1	1	8,20486	10,774	0,0
9	0	0	5	8,18638	10,799	0,0
10	0	1	2	7,93522	11,141	0,2
11	-1	-1	2	7,61564	11,610	0,0
12	0	-1	3	7 , 28045	12,147	0,1
13	-1	-1	3	6,92989	12,764	0,0
14	0	0	6	6,82198	12 , 967	0,1
15	0	-1	4	6,58745	13,430	0,0
16	1	0	5	6,25033	14,158	0,0
17	0	1	5	5,93235	14.922	0.0
18	0	0	7	5.84741	15,140	0.0
19	1	0	6	5,62846	15,732	0.0
20	<u> </u>	1	6	5 34673	16 567	0,0
20	0		0	5 11640	17 210	0,0
21	1	1	0	J, 11049	17,310	0,0
22	-1	-1	6	5,08137	17,439	0,0
23	2	T	Ţ	4,96600	1/,84/	0,0
24	1	-1	0	4,96010	17,868	0,0
25	2	1	2	4,92984	17,979	0,0
26	1	2	2	4,88862	18,132	0,0
27	0	1	7	4,83711	18,327	0,0
28	-2	-1	1	4,82597	18 , 369	0,1
29	-1	-2	2	4,75482	18,646	0,0
30	2	1	4	4,66650	19,003	0,9
31	-1	0	7	4,60858	19,244	0.0
32	1	-1	4	4,57344	19,393	0.1
33	<u> </u>	<u> </u>	à	1,51799	19 503	
21	_2	_1	2	4,54755 A A6771	10 057	0,0
24	-2	-1 1	0	4,40//1	19,0J7 20 172	0,0
30	1	-1	0	4,39023	20,175	0, /
36	-1	-2	4	4,36071	20,349	0,1
37	0	2	0	4,30428	20,619	56,3
38	2	0	T	4,30168	20,631	51,0
39	0	-2	1	4,28066	20,734	0,0
40	2	0	2	4,27811	20,746	0,3
41	2	1	6	4,24585	20 , 905	3,0
42	0	-2	2	4,21211	21,075	0,0
43	2	2	3	4,20951	21,088	0,9
44	-1	-1	8	4,20201	21,126	0,0
45	1	2	6	4,13255	21,485	0,1
46	0	2	3	4,10489	21,632	0,0
47	2	0	4	4,10258	21.644	0.6
4.8	0	0	10	4 09319	21 694	100 0
10	0	_1	то 10	4,000105	22,094	100,0
50	2	1	ך ר	4,02125	22,007	0,0
JU 51	~	⊥ 2	/	4,UI409 2 00701	22,123	0,0
LC	U	2	4	3,90/01	ZZ,390	0,0
52	2	0	5	3,96551	22,402	0,3
53	-1	1	6	3,90099	22,777	0,1
54	-1	-1	9	3,85246	23,068	0,0
55	0	2	5	3,80980	23,330	16,3
56	2	0	6	3,80793	23,342	15 , 5
57	-2	-1	6	3,78518	23,484	0,3
58	0	0	11	3,72108	23,894	0,0

59	0	-1	10	3,69656	24,055	0,0
60	1	2	8	3,67426	24,203	0,1
61	0	2	6	3,64031	24,433	0,0
62	-2	-2	5	3 , 63857	24,444	0,8
63	2	1	9	3,56349	24,968	0,3
64	1	0	11	3 , 55075	25,059	0,0
65	0	2	7	3,46645	25,678	0,0
66	-2	-2	6	3,46494	25,690	0,3
67	1	2	9	3,45810	25,741	0,2
68	0	-1	11	3,41561	26,067	0,0
69	0	0	12	3,41099	26,103	0,0
70	-2	-1	8	3,35399	26 , 555	0,3
71	0	2	8	3,29381	27,049	0,0
72	-2	0	7	3,29263	27,059	0,8
73	-1	-1	11	3,28892	27,090	0,0
74	-1	1	9	3,25538	27,375	0,2
75	2	3	1	3,25248	27,400	11 , 5
76	1	-2	0	3,25093	27,413	0,3
77	3	2	2	3,24851	27,434	0,3
78	2	-1	2	3,24242	27,486	0,1
79	-1	-3	1	3,23050	27,590	0,3
80	3	1	3	3,22830	27,609	0,2
81	2	-1	3	3,21232	27,749	0,2
82	1	-2	3	3,19108	27,937	0,2
83	-3	-1	1	3,18889	27 , 957	0,2
84	0	-1	12	3,17110	28,117	3,0
85	-2	1	2	3,16400	28,181	1,4
86	2	1	11	3 , 15854	28,231	0 , 5
87	0	0	13	3,14861	28,322	0,0
88	1	-2	4	3,13443	28,453	0,3
89	3	2	5	3,13229	28,473	0,3
90	0	-2	9	3,12615	28 , 530	0,1
91	-2	-2	8	3,12511	28,539	0,2
92	2	-1	5	3,09980	28,778	0,7
93	1	-1	11	3,06708	29,091	0,1
94	-1	-3	4	3,06331	29,128	0,2
95	-3	-1	3	3,06147	29,146	0,2
96	-1	0	12	3,06039	29,156	0,0
97	-2	-3	4	3,02264	29 , 529	0,4
98	-1	-3	5	2,98097	29,951	0,2
99	3	1	7	2,97925	29,969	0,2
100	2	1	12	2,97784	29,983	0,4

Anexo II – Ficha Cristalográfica da amostra OP-4

Ficha da cristobalita

Name and formula

Reference code:	96-101-0939		
Mineral name: Compound name: Common name:	Cristobalite low Cristobalite low Cristobalite low		
Chemical formula:	Si _{4.00} O _{8.00}		

Crystallographic parameters

Crystal system: Space group: Space group number:	Tetragonal P 41 21 2 92
a (Å):	4,9640
D (A):	4,9640
C (A):	6,9200
Alpha (°):	90,0000
Beta (°):	90,0000
Gamma (°):	90,0000
Calculated density (g/cm^3):	2,34
Volume of cell (10^6 pm^3):	170,52
RIR:	5,46

Subfiles and Quality

Subfiles:	User Inorganic
	User Mineral
Quality:	None ()

Comments

07/05/2024 04:42:31 07/05/2024 04:42:31 Die Kristallstruktur des Tief-Cristobalits Si O2

References

Structure:

Nieuwenkamp, W, *Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie (-144,1977)*, **92**, 82 - 88, (1935)

Peak list

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	1	0	1	4,03354	22,019	100,0
2	1	1	0	3.51008	25.354	0.4
3	1	1	1	3 13040	28 490	0 , 1
1	1		- -	2,13040 2,020E1	20,400	10 2
4	1 O	0	2	2,03031	SI,492	10,2
5	2	0	0	2,48200	36,161	13,/
6	1	1	2	2,46410	36,433	4,9
7	2	0	1	2 , 33627	38 , 503	0,1
8	2	1	0	2,21997	40,606	0,0
9	2	1	1	2,11386	42,742	2,4
10	1	0	З	2.09185	43,214	0.1
11	2	0	2	2,03100	10,211	3 1
10	1	1	2	1 00700	47,100	5,1
12	1 Q	1	3	1,92768	47,106	⊃,∠ ⊑ 0
13	2	Ţ	2	1,86845	48,695	5,9
14	2	2	0	1,75504	52 , 068	0,4
15	0	0	4	1,73000	52 , 880	0,7
16	2	2	1	1,70118	53,847	0,1
17	2	0	3	1,68965	54,245	2,8
18	1	0	4	1,63363	56.267	0.6
19	3	0	1	1 60930	57 195	о , о Л 7
20	2	1	1 2	1,00000	57,133 57 577	1 (
20	2	1	3	1,59953	57,577	1,0
21	3	Ţ	0	1,569/5	58,//5	0,4
22	2	2	2	1,56520	58,963	0,4
23	1	1	4	1,55176	59 , 525	0,0
24	3	1	1	1,53086	60,421	3,0
25	3	0	2	1,49275	62,132	3,0
26	3	1	2	1,42951	65,211	2.6
27	2	0	4	1,41926	65.742	1.5
29	2	2	3	1 30672	66 9/1	1 0
20	2	2	0	1 27(77	00,941	1,0 0,0
29	3	2	0	1,3/6//	68,04Z	0,0
30	2	1	4	1,36458	68,735	3,0
31	3	2	1	1 , 35030	69,565	1,1
32	3	0	3	1,34451	69,908	0,6
33	1	0	5	1,33315	70,592	2,0
34	3	1	3	1,29775	72,821	2,5
35	1	1	5	1,28753	73,493	0.1
36	3	2	2	1 27922	74 050	2 6
20	1	0	2	1 2/100	74,000	2,0 0 1
57	4	0	0	1,24100	70,730	0,1
38	2	2	4	1,23205	//,396	Ι,Ο
39	4	0	1	1,22151	78,191	1,5
40	2	0	5	1,20878	79 , 175	0,3
41	4	1	0	1,20395	79 , 556	2,0
42	3	0	4	1,19577	80,209	0,0
43	4	1	1	1,18613	80,996	0.3
44	3	2	3	1 18220	81 322	1 9
15	2	1	5	1 17446	81 073	1 0
40	2	1	5	1,17440	01,973	1,9
46	3	3	0	1,1/003	82,350	0,3
47	4	0	2	1,16814	82,512	0,5
48	3	1	4	1,16252	82,999	1,1
49	3	3	1	1,15365	83,780	0,5
50	4	1	2	1,13708	85,288	0,3
51	1	0	6	1,12341	86,578	0,0
52	4	2	0	1.10998	87.891	0.0
52	י ג	ן ג	2	1,10837	88,052	0,0 0 8
50	л	2 2	ے 1	1 00507	QQ 311	1 5
54	1 1	1	т Г	1 00570	00 240	±,)
22	1	Ţ	Ø	1,095/U	89,34U	۷,۷
56	4	U	3	1,09287	89,633	Ο,4

Name and formula

Reference code:	00-042-1401		
Mineral name:	Tridymite- <i>O</i>		
Compound name:	Silicon Oxide		
PDF index name:	Silicon Oxide		
Empirical formula:	O ₂ Si		
Chemical formula:	SiO ₂		

Crystallographic parameters

Crystal system:	Orthorhombic
Space group:	F
a (Å):	17,0859
b (Å):	9,9313
c (Å):	16,3041
Alpha (°):	90,0000
Beta (°):	90,0000
Gamma (°):	90,0000
Volume of cell (10^6 pm^3):	2766,56
Z:	68,00
RIR:	-

Subfiles and Quality

Subfiles:	Alloy, metal or intermetalic
	Inorganic
	Mineral
Quality:	Indexed (I)

Comments

Creation Date:01/01/1970Modification Date:01/01/1970Sample Source or Locality:Specimen from Topaz Mountain, Utah, USAUnit Cell:Reference reports: a=17.0722(225), b=9.9233(9), c=16.2909(168).
Cell parameters generated by least squares refinement.

References

Primary reference:

Smelik, E., Reeber, R., Phys. Chem. Miner., 17, 197, (1990)

Peak list

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	2	2	0	4,28472	20,714	93,0
2	0	0	4	4,08029	21,764	100,0
3	2	2	2	3,80152	23,382	68,0

4	4	2	0	3,24174	27,492	48,0
5	2	2	4	2,96117	30,156	11,0
6	6	0	0	2,85230	31,336	9,0
7	0	4	0	2,48123	36,173	35,0
8	2	4	0	2,38248	37,727	21,0
9	2	2	6	2,29770	39 , 175	19,0
10	4	4	2	2,07715	43,535	12,0
11	0	0	8	2,03849	44,405	11,0
12	8	2	0	1,95940	46,299	14,0
13	6	2	6	1,82722	49,867	9,0
14	4	4	6	1,68522	54,399	8,0
15	8	4	0	1,61933	56 , 809	10,0
16	2	6	2	1,59214	57 , 870	11,0
17	4	6	0	1,54362	59 , 871	6,0
18	6	6	0	1,43056	65 , 158	7,0
19	0	6	6	1,41308	66,066	6,0
20	2	6	6	1,39543	67 , 011	5,0
21	6	6	4	1,35141	69 , 500	5,0
22	6	0	12	1,22656	77 , 808	5,0
23	6	2	12	1,18956	80,714	6,0

Stick Pattern

Anexo III – Ficha Cristalográfica da amostra OP-5

Ficha da cristobalita

Name and formula

Reference code:	96-901-4260		
Mineral name: Compound name: Common name:	Cristobalite Cristobalite Cristobalite		
Chemical formula:	Si _{4.00} O _{8.00}		

Crystallographic parameters

Crystal system: Space group: Space group number:	Tetragonal P 41 21 2 92
a (Å):	4,9730
b (Å):	4,9730
c (Å):	6 , 6270
Alpha (°):	90,0000
Beta (°):	90,0000
Gamma (°):	90,0000
Calculated density (g/cm^3):	2,43
Volume of cell (10 ⁶ pm ³):	163,89
RIR:	4,49

Subfiles and Quality

Subfiles:	User Inorganic
	User Mineral
Quality:	None ()

<u>Comments</u>

Creation Date: 07/05/2024 23:48:38 Modification Date: 07/05/2024 23:48:38 Structure TIDY: TRANS Origin 1/2 1/2 1/2 Publication title: Mathematical Modeling of the structures and bulk moduli of TX2 quartz and cristobalite structure types, T = C, Si, Ge and X = O, S

COD database code: 9014259

References

Structure:

Gibbs, G. V., Boisen, M. B., Downs, R. T., Lasaga, A. C., Materials Research Society Symposia Proceedings, **121**, 155 - 165, (1988)

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	1	0	1	3 , 97761	22,333	100,0
2	1	1	0	3,51644	25,307	1,8
3	1	1	1	3,10623	28,717	13,8
4	1	0	2	2,75747	32,443	17,9
5	2	0	0	2,48650	36,093	19,1
6	1	1	2	2,41155	37,256	1,6
7	2	0	1	2,32802	38,645	0,0
8	2	1	0	2,22399	40,530	0,0
9	2	1	1	2,10843	42,857	4,2
10	1	0	3	2,01879	44,861	0,2
11	2	0	2	1,98880	45,575	1,5
12	1	1	3	1,87054	48,637	7,2
13	2	1	2	1,84661	49,309	6,9
14	2	2	0	1,75822	51,967	0,9
15	2	2	1	1,69943	53,907	0,1
16	0	0	4	1,65675	55 , 414	2,0
17	2	0	3	1,65143	55 , 607	3,4
18	3	0	1	1,60812	57,241	4,0
19	3	1	0	1,57260	58,658	1,2
20	1	0	4	1,57182	58,690	0,4
21	2	1	3	1,56727	58,877	0,4
22	2	2	2	1,55312	59 , 468	0,6
23	3	1	1	1,53011	60,454	4,7
24	1	1	4	1,49874	61 , 857	0,1
25	3	0	2	1,48250	62,610	6,8
26	3	1	2	1,42071	65 , 666	1,1
27	3	2	0	1,37926	67,902	0,0
28	2	0	4	1,37873	67 , 932	1,9
29	2	2	3	1,37566	68,104	1,5
30	3	2	1	1,35033	69 , 564	1,9
31	2	1	4	1,32862	70,870	2,6
32	3	0	3	1,32587	71,039	0,6
33	3	1	3	1,28112	73,922	4,8
34	1	0	5	1,28069	73 , 951	3,2
35	3	2	2	1,27335	74,449	4,2
36	4	0	0	1,24325	76 , 572	0,0
37	1	1	5	1,24023	76 , 792	0,0
38	4	0	1	1,22193	78 , 158	1,4
39	4	1	0	1,20613	79 , 383	1,5
40	2	2	4	1,20578	79 , 411	0,5
41	4	1	1	1,18664	80,954	1,4
42	3	3	0	1,17215	82,169	1,0
43	3	0	4	1,17182	82,196	0,0
44	3	2	3	1,16994	82,358	1,3
45	2	0	5	1,16961	82,385	0,1
46	4	0	2	1,16401	82,869	0,5
47	3	3	1	1,15423	83,729	0,7
48	3	1	4	1,14059	84,963	1,5
49	2	1	5	1,13855	85,151	1,9
50	4	1	2	1,13338	85,632	0,1
51	4	2	0	1,11200	87,691	0,2
52	3	3	2	1,10504	88,386	0,5
53	4	2	1	1,09666	89,240	1,2

Ficha da tridimita

Name and formula

Reference code:	96-900-5271		
Mineral name: Compound name: Common name:	Tridymite Tridymite Tridymite		
Chemical formula:	Si _{8.00} O _{16.00}		

Crystallographic parameters

Crystal system: Space group: Space group number:	Monoclinic C 1 c 1 9
a (Å):	5,0070
D (A):	8,6000
Alpha $(^{\circ})$	90,0000
Beta (°):	91,5120
Gamma (°):	90,0000
Calculated density (g/cm^3): Volume of cell (10^6 pm^3):	2,26 353,70
RIR:	1,73

Subfiles and Quality

Subfiles:	User Inorganic
	User Mineral
Quality:	None ()

Comments

Creation Date:	08/05/2024 00:10:19
Modification Date:	08/05/2024 00:10:19
Structure TIDY:	TRANS -x,-y,-z origin .35600 0 .69180
Publication title: 29Si MAS NMR	spectrum and superstructure of modulated tridymite L3-To(MX-1)
	Sample: average crystal structure

COD database code: 9005270

References

Structure:	Graetsch, H., Topalovic-Dierdorf I, 8 , 103 - 113, (1996)	European Journal of Mineralogy,
	, , , ,	

No.	h	k	l	d [A]	2Theta[deg]	I [%]
1	1	1	0	4,32593	20,514	100,0

2	0	2	0	4,30000	20,639	45,0
3	0	0	2	4,10707	21,620	82,4
4	-1	1	1	3,86408	22,998	32,8
5	0	2	1	3,80958	23,331	30,2
6	1	1	1	3,79209	23,441	24,0
7	-1	1	2	3,01301	29,625	10,7
8	0	2	2	2,97000	30,064	14,3
9	1	1	2	2,94516	30,324	6,7
10	2	0	0	2,50263	35,853	12.2
11	1	3	0	2,48757	36,077	19.7
12	-1	3	1	2,38950	37,613	2,7
13	1	3	1	2,37217	37,898	2,8
14	-1	1	3	2.33779	38,477	4.0
15	0	2	3	2,30957	38,966	3,6
16	1	1	3	2,29009	39,311	4,2
17	2	2	0	2,16297	41,726	0,0
18	-2	0	2	2,16263	41,732	0,6
19	0	4	0	2.15000	41,989	0.1
20	-1	3	2	2,14019	42,191	1.3
21	1	3	2	2,11546	42,708	2,8
22	2	0	2	2,11250	42,771	2,0
23	-2	2	1	2,10351	42,963	3.2
24	0	4	1	2,07993	43,474	2.9
25	0	0	4	2,05353	44,062	3.2
26	-2	2	2	1,93204	46,994	1.6
27	0	4	2	1,90479	47,707	1.4
28	2	2	2	1,89604	47,941	0.4
29	-1	1	4	1,87173	48,604	1,1
30	-1	3	3	1,85331	49,119	⊥ , ⊥ 0.3
31	0	2	4	1,85306	49,126	2.6
32	1	1	4	1,83895	49.528	0.3
33	1	3	3	1,82927	49,808	0,6
34	-2	2	3	1,71641	53,331	1,6
35	0	4	3	1,69098	54,199	1.8
36	2	2	з З	1,67875	54,626	1,2
37	3	1	0	1,63788	56,108	2.6
38	2	4	0	1,63083	56.372	1.3
39	1	5	Õ	1,62664	56,530	1.2
40	-3	1	1	1,61430	57,002	1.3
41	-2	0	4	1,60845	57,228	0,0
42	-2	4	1	1,60488	57,367	0,6
43	-1	5	1	1,59826	57,627	2,9
44	2	4	1	1,59438	57,781	2.1
45	-1	3	4	1,59393	57,798	0,1
46	1	5	1	1,59305	57,833	0,7
47	1	3	4	1,57354	58,620	0,3
48	2	0	4	1,56735	58,874	0,5
49	-1	1	5	1,54757	59,702	2,1
50	-3	1	2	1,53511	60,237	0,7
51	0	2	5	1,53464	60,257	1,4
52	-2	4	2	1,52473	60,690	0,9
53	1	1	5	1,52432	60,708	1,2
54	-1	5	2	1,51680	61,041	0,4
55	1	5	2	1,50792	61 , 439	, 1,1
56	2	4	2	1,50685	61 , 488	0,3
57	-2	2	4	1,50651	61,503	0,6
58	0	4	4	1,48500	62,493	0,6
59	2	2	4	1,47258	63,080	0,1
60	3	3	0	1,44198	64 , 579	2,8
61	0	6	0	1,43333	65 , 016	0,7
62	-3	3	1	1,42581	65 , 402	0,6

63	-3	1	3	1,42191	65 , 604	1,4
64	3	3	1	1,41477	65,977	0,6
65	0	6	1	1,41200	66,123	2,0
66	-2	4	3	1,41184	66,131	0,4
67	-1	5	3	1,40376	66,561	1,5
68	1	5	3	1,39323	67,131	0.2
69	2	4	3	1,39065	67,272	1.0
70	2	1	3	1 38982	67 317	⊥,°
70	_1	3	5	1 37920	67 906	0,5
71	-7	2	2	1 27026	69 101	0,1
72	-3	0	2	1,37030	00,404	0,0
75	1	0	ю Г	1,36902	60,40U	0,1
74	1 Q	3	5	1,36266	68,845	0,2
/5	0	6	2	1,35329	69,390	0,3
76	3	3	2	1,35096	69,527	0,7
.7.7	-2	2	5	1,32287	71,224	1,5
78	-1	1	6	1,31387	71 , 787	0,2
79	0	4	5	1,30537	72 , 328	0,8
80	0	2	6	1,30450	72 , 384	0,2
81	-3	1	4	1,29696	72 , 873	0,1
82	1	1	6	1,29674	72 , 887	0,1
83	2	2	5	1,29412	73 , 058	0,3
84	-3	3	3	1,28803	73,460	0,1
85	-2	4	4	1,28792	73,467	0,4
86	-1	5	4	1,28043	73,968	0,3
87	1	5	4	1,26979	74,693	0,4
88	2	4	4	1,26653	74,918	0,0
89	3	1	4	1,26460	75,052	0.1
90	3	3	3	1,26403	75,092	0.1
91	4	0	0	1,25131	75,990	0, <u>1</u>
92	2	6	0	1 24378	76 533	1,0 0 6
93	_2	6	1	1 23216	70,333	13
93	2	6	1	1 22738	77,300	1,J
94	_2	0	I G	1 21/62	70 710	0,9
90	-Z 1	2	G	1,21403	70,713	0,7
90	-1	3	0	1,20000	79,307	0,4
97	-4	0	2	1,20589	/9,402	0,5
98	4	2	0	1,20148	19,152	0,/
99	3	5	0	1,19/5/	80,065	0,4
100	-2	6	2	1,19475	80,292	0,2
101	-4	2	1	1,19316	80,421	0,4
102	-3	3	4	1,19296	80 , 437	0,1
103	1	3	6	1,19280	80 , 450	0,2
104	-3	5	1	1,18826	80,821	0,4
105	2	0	6	1,18794	80,848	0,2
106	2	6	2	1,18609	81,000	0,1
107	4	2	1	1,18454	81,128	0,1
108	-1	7	1	1,18182	81 , 354	0,9
109	1	7	1	1,17971	81 , 530	0,6
110	0	6	4	1,17534	81,897	0,0
111	-3	1	5	1,17522	81,908	1,5
112	-2	2	6	, 1,16889	82,447	0,4
113	3	3	4	1,16764	82,555	0.0
114	-2	4	5	1,16747	82,570	0.5
115	- 4	2	2	1.16110	83.123	0.2
116	_ 1	5	5	1.16088	83,142	0,2
117	_ ?	5	2	1 1555Q	83 608	0,7
⊥⊥ / 11Q	0	л Л	2	1 15/70	83 679	0,0
110	1	ч 5	5	1 15006	91 021	0,2
1 2 0	⊥ . 1	с 7	5	1 1 1 1 7 7 0	04,UZL 0/ 010	0,1
⊥∠∪ 1 ⊃ 1	- T	/ л	∠	エ , エサノノム 1 - 1 ハワロク	04,313 01 397	0,3
122 122	~	4	2	1,14/30	04,32/ 04 507	∪,∠
100	4	∠ 1	2	1,14030	04, JZ /	0,4
123	3	T	5	1,14516	84,544	υ,1

124	2	2	6	1,14504	84,556	0,0
125	1	7	2	1,14386	84,664	0,3
126	-1	1	7	1,13910	85 , 100	0,0
127	-2	6	3	1,13805	85 , 197	0,2
128	0	2	7	1,13205	85 , 757	0,0
129	2	6	3	1,12687	86,247	0,1
130	1	1	7	1,12605	86 , 325	0,0
131	-4	2	3	1,11061	87,828	0,6
132	-3	5	3	1,10492	88,398	0,1
133	-1	7	3	1,09634	89 , 274	0,3
134	-3	3	5	1,09619	89,289	0,1
135	1	7	3	1,09130	89 , 797	0,1
136	4	2	3	1,09010	89,924	0,1
137	3	5	3	1,08966	89,969	0,3

Anexo IV – Ficha Cristalográfica da amostra OP-11-8

Ficha da cristobalita

Name and formula

Reference code:	96-901-4260		
Mineral name: Compound name: Common name:	Cristobalite Cristobalite Cristobalite		
Chemical formula:	Si _{4.00} O _{8.00}		

Crystallographic parameters

Crystal system: Space group: Space group number:	Tetragonal P 41 21 2 92
a (Å):	4,9730
b (Å):	4,9730
c (Å):	6 , 6270
Alpha (°):	90,0000
Beta (°):	90,0000
Gamma (°):	90,0000
Calculated density (g/cm^3):	2,43
Volume of cell (10 ⁶ pm ³):	163,89
RIR:	4,49

Subfiles and Quality

Subfiles:	User Inorganic
	User Mineral
Quality:	None ()

Comments

Creation Date:	07/05/2024 23:48:38
Modification Date:	07/05/2024 23:48:38
Structure TIDY:	TRANS Origin 1/2 1/2 1/2
Publication title: Mathemati	cal Modeling of the structures and bulk moduli of TX2 quartz and
	cristobalite structure types, $T = C$, Si, Ge and $X = O$, S

COD database code: 9014259

References

Structure:

Gibbs, G. V., Boisen, M. B., Downs, R. T., Lasaga, A. C., *Materials Research Society Symposia Proceedings*, **121**, 155 - 165, (1988)

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	1	0	1	3,97761	22,333	100,0
2	1	1	0	3,51644	25,307	1,8
3	1	1	1	3,10623	28,717	13,8
4	1	0	2	2,75747	32,443	17,9
5	2	0	0	2,48650	36,093	19,1
6	1	1	2	2,41155	37,256	1,6
7	2	0	1	2,32802	38,645	0,0
8	2	1	0	2,22399	40,530	0,0
9	2	1	1	2,10843	42,857	4,2
10	1	0	3	2,01879	44,861	0,2
11	2	0	2	1,98880	45 , 575	1,5
12	1	1	3	1,87054	48,637	7,2
13	2	1	2	1,84661	49,309	6,9
14	2	2	0	1,75822	51 , 967	0,9
15	2	2	1	1,69943	53 , 907	0,1
16	0	0	4	1,65675	55 , 414	2,0
17	2	0	3	1,65143	55 , 607	3,4
18	3	0	1	1,60812	57,241	4,0
19	3	1	0	1,57260	58,658	1,2
20	1	0	4	1,57182	58,690	0,4
21	2	1	3	1,56727	58,877	0,4
22	2	2	2	1,55312	59 , 468	0,6
23	3	1	1	1,53011	60,454	4,7
24	1	1	4	1,49874	61 , 857	0,1
25	3	0	2	1,48250	62,610	6,8
26	3	1	2	1,42071	65,666	1,1
27	3	2	0	1,37926	67 , 902	0,0
28	2	0	4	1,37873	67 , 932	1,9
29	2	2	3	1,37566	68,104	1,5
30	3	2	1	1,35033	69,564	1,9
31	2	1	4	1,32862	70 , 870	2,6
32	3	0	3	1,32587	71,039	0,6
33	3	1	3	1,28112	73,922	4,8
34	1	0	5	1,28069	73,951	3,2
35	3	2	2	1,27335	74,449	4,2
36	4	0	0	1,24325	76 , 572	0,0
37	1	1	5	1,24023	76 , 792	0,0
38	4	0	1	1,22193	78,158	1,4
39	4	1	0	1,20613	79 , 383	1,5
40	2	2	4	1,20578	79 , 411	0,5
41	4	1	1	1,18664	80,954	1,4
42	3	3	0	1,17215	82,169	1,0
43	3	0	4	1,17182	82,196	0,0
44	3	2	3	1,16994	82,358	1,3
45	2	0	5	1,16961	82,385	0,1
46	4	0	2	1,16401	82,869	0,5
47	3	3	1	1,15423	83,729	0,7
48	3	1	4	1,14059	84,963	1,5
49	2	1	5	1 , 13855	85 , 151	1,9
50	4	1	2	1,13338	85,632	0,1
51	4	2	0	1,11200	87,691	0,2
52	3	3	2	1,10504	88,386	0,5
53	4	2	1	1,09666	89,240	1,2

Anexo V – Ficha Cristalográfica da amostra OP-11-9

Ficha da cristobalita

Name and formula

Reference code:	96-901-7506		
Mineral name: Compound name: Common name:	Cristobalite Cristobalite Cristobalite		
Chemical formula:	Si _{8.00} O _{16.00}		

Crystallographic parameters

Crystal system: Space group: Space group number:	Orthorhombic P 21 21 21 19
a (Å):	7,0900
b (Å):	7,2200
c (Å):	7,3000
Alpha (°):	90,0000
Beta (°):	90,0000
Gamma (°):	90,0000
Calculated density (g/cm^3):	2,14
Volume of cell (10 ⁶ pm ³):	373,69
RIR:	5,98

Subfiles and Quality

Subfiles:	User Inorganic
	User Mineral
Quality:	None ()

Comments

Creation Date:08/05/2024 00:03:39Modification Date:08/05/2024 00:03:39Structure TIDY:TRANS b,a,-c -x,-y,-z origin 1/4 3/4 3/4Publication title: Modelling the silica glass structure by the Rietveld method Note: model for
amorphous silica based on cristobalite-type topologyCOD database code: 9017505

References

Le Bail, A., Journal of Non-Crystalline Solids, 183, 39 - 42, (1995)

<u>Peak list</u>

Structure:

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	0	1	1	5,13336	17,261	0,2
2	1	0	1	5,08601	17,422	0,3
3	1	1	0	5,05872	17 , 517	0,8
4	1	1	1	4,15794	21,353	100,0
5	0	0	2	3,65000	24,367	0,0
6	0	2	0	3,61000	24,641	0,0
7	2	0	0	3,54500	25,100	0,0
8	0	1	2	3,25741	27,357	1,5
9	1	0	2	3,24521	27,462	1,5
10	0	2	1	3,23594	27,542	0,9
11	1	2	0	3,21700	27,708	1.0
12	2	0	1	3,18888	27.957	0.5
1.3	2	1	0	3,18212	28,018	2,0
14	1	1	2	2,95996	30,169	0.8
15	1	2	1	2 94382	30 338	29
16	2	1	1	2 91703	30 623	1 4
17	0	2	2	2,51,03	34 929	т , т 5 9
18	2	0	2	2,50000	35 265	68
10	2	2	0	2,539300	25 161	5 1
20	2 1	2	2	2, 32, 930	27 226	0,1
20	1	ے 1	2	2,41340	27 165	0,4
21	2	1	ے 1	2,39037	37,403	0,4
22	2	1	1	2,30990	37,003	0,0
23	1		3	2,30389 2,30150	39,030	0,1
24	Ţ	0	3	2,30156	39,107	0,1
25	0	3	T	2,28566	39,390	0,0
26	1 2	3	1	2,2/895	39,511	0,3
27	3	0	Ţ	2,24844	40,070	0,2
28	3	1	0	2,24607	40,114	0,1
29	1	1	3	2,19284	41,131	0,5
30	1	3	1	2,17541	41,476	0,3
31	3	1	1	2,14675	42,056	0,4
32	2	2	2	2,07897	43,495	4,9
33	0	2	3	2,01775	44,886	0,1
34	0	3	2	2,00922	45,087	1,1
35	2	0	3	2,00619	45,159	0,3
36	2	3	0	1,99116	45 , 518	0,5
37	3	0	2	1,98380	45,697	0,3
38	3	2	0	1,97730	45,856	0,4
39	1	2	3	1,94069	46,772	1,3
40	2	1	3	1,93295	46,970	1,1
41	2	3	1	1,92099	47,280	0,7
42	3	1	2	1,91290	47,492	0,7
43	3	2	1	1,90853	47,608	1,4
44	0	0	4	1,82500	49,932	0,0
45	0	4	0	1,80500	50 , 524	0,1
46	4	0	0	1,77250	51 , 518	0,1
47	0	1	4	1,76935	51 , 616	0,0
48	1	0	4	1,76739	51 , 678	0,0
49	2	2	3	1,75359	52 , 115	0,3
50	0	4	1	1,75223	52 , 158	0,0
51	1	4	0	1,74920	52 , 255	0,0
52	2	3	2	1,74798	52,294	0,9
53	3	2	2	1,73858	52,599	0,4
54	4	0	1	1,72245	53,130	0,0
55	4	1	0	1,72139	53,165	0,0
56	1	1	4	1,71670	53,322	0,2
57	0	3	3	1,71112	53,510	0,0
58	1	4	1	1,70105	53,852	0,3
59	3	0	3	1,69534	54,048	0,0

60	3	3	0	1,68624	54,364	0,1
61	4	1	1	1,67543	54,743	0,2
62	1	3	3	1,66336	55 , 174	2,8
63	3	1	3	1,65045	55 , 643	3,2
64	3	3	1	1,64298	55 , 919	2,4
65	0	2	4	1,62870	56,452	0,0
66	2	0	4	1,62260	56,684	0,0
67	0	4	2	1,61797	56,861	0,0
68	2	4	0	1,60850	57 , 226	0,1
69	4	0	2	1,59444	57 , 778	0,0
70	4	2	0	1,59106	57 , 913	0,0
71	1	2	4	1,58736	58 , 060	0,6
72	2	1	4	1,58312	58,231	0,2
73	1	4	2	1,57742	58,462	0,1
74	2	4	1	1,57082	58,731	0,7
75	4	1	2	1,55693	59 , 307	1,0
76	4	2	1	1,55456	59 , 407	0,1
77	2	3	3	1,54100	59,983	0,1
78	3	2	3	1,53454	60,261	0,3
79	3	3	2	1,53078	60,425	0,2
80	2	2	4	1,47998	62,729	2,2
81	2	4	2	1,47191	63,112	2,0
82	4	2	2	1,45851	63,760	1,9
83	0	3	4	1,45418	63,972	0,6
84	0	4	3	1,449/0	64,194	0,2
85	3	0	4	1,44445	64,455	0,4
80 07	3	4	0	1,43448	64,958 65 049	0,3
0 / Q Q	4	1	5	1 /3103	65 131	0,3
89	1		5	1 43000	65 187	0,0
90	1	3	0	1 42720	65 330	0,0
91	1	3	4	1,42452	65,468	0,1
92	1	4	3	1,42031	65,687	0.8
93	0	5	1	1,41655	65,883	0,1
94	3	1	4	1,41639	65,892	0,3
95	1	5	0	1,41495	65,967	0,0
96	3	4	1	1,40756	66,358	0,2
97	4	1	3	1,40530	66,479	0,2
98	1	1	5	1,40275	66,616	0,3
99	4	3	1	1,40068	66 , 727	0,3
100	5	0	1	1,39198	67 , 199	0,0
101	5	1	0	1,39142	67 , 230	0,1
102	1	5	1	1,38910	67 , 357	0,5
103	3	3	3	1,38598	67 , 529	0,8
104	5	1	1	1,36681	68,607	0,4
105	0	2	5	1,35350	69 , 378	0,1
106	2	0	5	1,34999	69,584	0,1
107	2	3	4	1,34538	69,856	0,4
108	0	5	2	1,34274	70,014	0,1
109	2	4	3	1,34183	70,068	0,1
110	3	2	4	1,34108	70,113	0,0
	2	5	0	1,33/31	70,340	0,0
⊥⊥∠ 112	3	4	2	1,3350/	/U,4/6	0,2
⊥⊥3 114	4	2	3	1,33100 1,33040	10,003 70 016	0,4
⊥⊥4 11⊑	1	∠ ?	2	1,32949	10,010 70 821	0,4
116	4 2	ی 1	∠ 5	1 37600	70 060	0,0
++0 117	ے 5		2	1 30176	71 292	0,2
118	5	2	<u>ک</u>	1,321,0	71,413	0,0 0 1
119	1	5	2	1,31929	71,447	0,1
120	2	5	1	1.31542	71,690	0.4
	-	-	_	,	,	<i>, , , , , , , , , , , , , , , , , , , </i>

121	5	1	2	1,30015	72 , 665	0,2
122	5	2	1	1,29878	72 , 754	0,3
123	0	4	4	1,28334	73 , 773	0,8
124	4	0	4	1,27150	74,576	0,7
125	4	4	0	1,26468	75,047	0,9
126	2	2	5	1,26447	75,062	0,1
127	Ţ	4	4	1,26282	/5,1//	0,5
128	2	5	2	1,25568	75,679	0,1
129	4	1	4	1,25223	75,924 76,200	0,7
131	1	З Л	1	1,24020	76,209 76,364	0,0
132	4 7	-	1 5	1 24210	76,504	0,4
133	0	5	3	1,24181	76,677	0.3
1.34	5	2	2	1,24118	76,723	0,1
135	3	3	4	1,23851	76,919	0,0
136	3	4	3	1,23573	77,123	0,0
137	3	5	0	1,23220	77,385	0,5
138	4	3	3	1,23107	77,469	0,0
139	1	3	5	1,22936	77 , 598	0,8
140	5	0	3	1,22515	77,914	0,9
141	3	1	5	1,22411	77 , 993	0,5
142	1	5	3	1,22319	78,063	0,7
143	5	3	0	1,22171	78 , 176	0,1
144	0	0	6	1,21667	78,562	0,1
145	3	5	1	1,21501	78,690	0,9
146	5	1	3	1,20789	79,245	0,5
14/	2	4	4	1,206/0	79,338 70,476	0,1
148 179	0	3	1 O	1,20495 1,20333	79,476 79,604	0,8
149	0	1	6	1,20333 1 19975	79,004 79,890	0,0
151	4	1 2	4	1,19929	79,927	0,2
152	1	0	6	1,19914	79,939	0,0
153	4	4	2	1,19498	80,273	0,2
154	0	6	1	1,18731	80,899	0,0
155	1	6	0	1,18637	80,977	0,2
156	1	1	6	1,18293	81,261	0,1
157	6	0	0	1,18167	81,366	0,1
158	2	3	5	1,17740	81,723	0,0
159	3	2	5	1,17452	81 , 967	0,4
160	2	5	3	1,17198	82,183	0,2
161	1	6	1	1,17100	82,266	0,0
162	3	5	2	1,16/4/	82,570	0,1
163	6	1	Ţ	1,16648	82,655	0,1
165	5	1	3	1,16015	02,004 83 205	0,0
166	5	2	2	1,15853	83,348	0,0
167	0	2	6	1,15295	83,843	0,3
168	6	1	1	1,15155	83,968	0,1
169	2	0	6	1,15078	84,037	0,1
170	0	6	2	1,14283	84,758	0,4
171	2	6	0	1,13948	85,066	0,4
172	1	2	6	1,13800	85,202	0,2
173	2	1	6	1,13643	85,347	0,7
174	0	4	5	1,13514	85,468	0,1
175	0	5	4	1,13240	85,724	0,1
176	1	6	2	1,12827	86,115	0,5
$\perp / /$	3	4	4	1,12779	86,160	υ,Ο
170	4	U	Э 1	1,12693	80,242	0,0
エ / ツ 1 8 0	4	0 A	⊥ 2	⊥,⊥∠⊃04 1 10/00	00,343 86 501	∪ , ⊥ ∩ ⊃
1.81	6	2	∠ ∩	1 19303	86 617	0,2 0 7
TOT	0	~	0	I, IZJUJ	00,014	0,5

182	4	4	3	1,12217	86,698	0,0
183	1	4	5	1,12087	86,823	0,2
184	5	0	4	1,11973	86,933	0,0
185	4	5	0	1,11952	86,954	0,0
186	1	5	4	1,11823	87,080	0,1
187	5	4	0	1,11506	87 , 389	0,0
188	4	1	5	1,11345	87 , 548	0,2
189	6	1	2	1,11083	87 , 807	0,3
190	6	2	1	1,10998	87 , 892	0,4
191	4	5	1	1,10658	88,231	0,1
192	5	1	4	1,10650	88,239	0,1
193	3	3	5	1,10376	88,515	0,1
194	5	4	1	1,10228	88,666	0,1
195	3	5	3	1,09929	88 , 970	0,0
196	2	2	6	1,09642	89,266	0,1
197	5	3	3	1,09182	89,743	0,1

Ficha da tridimita

Name and formula

Reference code:	96-900-6969		
Mineral name: Compound name: Common name:	Tridymite Tridymite Tridymite		
Chemical formula:	Si _{24.00} O _{48.00}		

Crystallographic parameters

Crystal system:	Orthorhombic
Space group:	P 21 21 21
Space group number:	19
a (Å):	4,9840
b (Å):	8,2010
c (Å):	26,1750
Alpha (°):	90,0000
Beta (°):	90,0000
Gamma (°):	90,0000
Calculated density (g/cm^3):	2,24
Volume of cell (10^6 pm^3):	1069,87
RIR:	1,50

Subfiles and Quality

Subfiles:	User Inorganic
	User Mineral
Quality:	None ()

Comments

Creation Date:	08/05/2024 00:22:15
Modification Date:	08/05/2024 00:22:15
Structure TIDY:	TRANS b,c,a -x,-y,-z origin 0 1/2 0
Publication title: X-ray powde	r diffraction study on the modulated high temperature forms of SiO2
	tridymite between 110 and 220 C Sample: superstructure, T = 115
	C
COD database code: 9006968	3

COD database code: 9006968

References

Structure:

Graetsch, H., *Physics and Chemistry of Minerals*, **28**, 313 - 321, (2001)

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	0	0	2	13,08750	6,748	0,2
2	0	1	1	7 , 82587	11,298	0,0
3	0	1	2	6,94934	12,728	0,0
4	0	0	4	6 , 54375	13,521	0,0
5	0	1	3	5 , 97565	14,813	0,0
6	0	1	4	5,11499	17,323	0,0
7	1	0	1	4,89603	18,104	0,0
8	1	0	2	4,65769	19,039	2,6
9	0	1	5	4,41262	20,107	0,2
10	0	0	6	4,36250	20,340	63,3
11	1	0	3	4,32769	20,506	100,0
12	1	1	0	4,25915	20,839	0,4
13	1	1	1	4,20386	21,117	0,2
14	0	2	0	4,10050	21,655	93,7
15	0	2	1	4,05109	21,923	1,5
16	1	1	2	4,05008	21,928	2,7
17	1	0	4	3,96493	22,405	4,6
18	0	2	2	3,91294	22,707	0,1
19	0	1	6	3,85148	23,074	38,3
20	1	1	3	3,82746	23,221	70,1
21	0	2	3	3,71109	23,960	0,0
22	1	0	5	3,60969	24,643	0,0
23	1	1	4	3,56963	24,924	1,8
24	0	2	4	3,47467	25,617	0,0
25	0	1	7	3,40231	26,171	0,1
26	1	1	5	3,30382	26,966	0,2
27	1	0	6	3,28263	27,143	1,5
28	0	0	8	3,27187	27,234	0,2
29	0	2	5	3,22810	27,611	0,4
30	1	2	0	3,16654	28,158	0,4
31	1	2	1	3,14362	28,368	0,1
32	1	2	2	3,07773	28,988	2,0
33	1	1	6	3,04756	29,282	0,6
34	0	1	8	3,03895	29,367	0,0
35	1	0	7	2,99106	29,848	0,3
36	0	2	6	2,98782	29,881	8,9
37	1	2	3	2,97657	29,996	29,1
38	1	2	4	2,85035	31,358	1,7
39	1	1	7	2,81000	31,820	0,1
40	0	2	7	2,76297	32,377	0,0
41	0	1	9	2,74107	32,642	0,0
42	1	0	8	2 , 73516	32,715	4,2
43	0	3	1	2,71888	32,916	0,0

44	1	2	5	2,70943	33,034	0,1
45	0	3	2	2 , 67592	33,460	0,1
46	0	0	10	2,61750	34,230	0,2
47	0	3	3	2,60862	34,350	0,0
48	1	1	8	2,59466	34,540	1,1
49	1	2	6	2,56262	34,986	0,5
50	0	2	8	2,55750	35,059	0.1
51	0	3	4	2,52241	35,562	0.3
52	1	0	G G	2,52241 2,51197	35 716	17 0
52		1	10	2,01104	25 000	,0
55	2		10	2,49557	JJ, 900 26 011	0,1
54	2	0	1	2,49200	36,011 26,100	Э , О 1 Б
55	2	0	Ţ	2,48078	36,180	1,5
56	2	0	2	2,44802	36,681	0,0
5/	0	3	5	2,42318	3/,0/1	0,3
58	1	2	7	2,41649	37,177	0,0
59	1	1	9	2,40180	37,413	1,9
60	1	3	0	2 , 39681	37,493	0,0
61	2	0	3	2,39618	37,504	0,2
62	1	3	1	2,38682	37,656	0,1
63	2	1	0	2,38435	37,697	4,8
64	2	1	1	2,37452	37,859	0,0
65	0	2	9	2,37223	37,897	0,1
66	1	3	2	2,35760	38,141	0,4
67	2	1	2	2,34574	38,341	0,1
68	2	0	4	2,32884	38,630	0,0
69	1	0	10	2,31736	38,830	2,1
70	0	3	6	2,31645	38,845	7,6
71	1	3	3	2.31119	38,937	6.8
72	2	1	3	2,30001	39,134	0.0
73	0	1	11	2,28529	39,397	0.0
74	1	2	8	2,27541	39,575	0,9
75	1	2	4	2 25059	40 030	0,3
76	2	0	5	2,25007	40 040	0,2
70	2	1	<u></u>	2 24027	40 222	0,0
70	1	1	10	2,24027	40,222	1 0
70		⊥ 2	10	2,23004	40,413	1,0
00	0	2	10	2,20005	40,059	0,1
00	0	2	10	2,20031 2 10125	40,009	0,0
01	1	2	T C	2,10123	41,300	0,0
82	1 O	3	5	2,1/926	41,399	0,3
83	2	T	5	2,16988	41,586	1,0
84	2	0	6	2,16385	41,708	0,2
85	1	0	11	2,14/36	42,043	0,2
86	1	2	9	2,14198	42,154	0,8
87	2	2	0	2,12957	42,411	0,7
88	2	2	1	2,12256	42,558	0,1
89	0	1	12	2,10796	42,867	4,1
90	2	2	2	2,10193	42,996	0,1
91	1	3	6	2,10064	43,024	0,0
92	0	3	8	2,09782	43,085	0,2
93	2	1	6	2,09224	43,206	5,7
94	1	1	11	2,07733	43,532	0,2
95	2	0	7	2,07369	43,612	0,0
96	2	2	3	2,06884	43,719	0,1
97	0	2	11	2,05811	43,959	0,1
98	0	4	0	2,05025	44,136	3,1
99	0	4	1	2,04399	44,279	0,2
100	0	4	2	2,02555	44,704	0,0
101	2	2	4	2,02504	44,715	0,0
102	1	3	7	2,01787	44,883	0,2
103	1	2	10	2,01747	44,892	1,1
104	2	1	7	2,01041	45,058	0.9

105	1	0	12	1,99826	45,348	0,5
106	0	4	3	1,99589	45,405	0,0
107	0	3	9	1,99188	45,501	0,0
108	2	0	8	1,98247	45,729	0,1
109	2	2	5	1,97260	45,971	0,7
110	0	4	4	1,95647	46,372	0,0
111	0	1	13	1,95539	46,399	0,0
112	1	1	12	1,94146	46,752	0,1
113	1	3	8	1,93352	46,955	0,1
114	2	1	8	1,92696	47,125	0,1
115	0	2	12	1,92574	47,157	1,1
116	2	2	6	1,91373	47,471	2,7
117	0	4	5	1,90906	47,594	0,0
118	1	2	11	1,90230	47,774	0,1
119	1	4	0	1,89609	47,940	0,1
120	2	0	9	1,89234	48,041	0,0
121	1	4	1	1,89113	48,073	0,0
122	0	3	10	1,89059	48,088	0,0
123	1	4	2	1,87650	48,472	0,8
124	0	0	14	1,86964	48,662	0,0
125	1	0	13	1,86688	48,738	0,0
126	0	4	6	1,85555	49,056	0,2
127	1	4	3	1,85284	49,132	6,0
128	2	2	7	1,85051	49,198	0,5
129	1	3	9	1,84964	49,223	0,2
130	2	1	9	1,84389	49,386	0,3
131	2	3	0	1,84163	49,451	0,2
132	2	3	1	1,83709	49,581	0,1
133	2	3	2	1,82367	49,971	0.1
134	0	1	14	1,82287	49,995	0,2
135	1	4	4	1,82118	50,044	0.5
136	1	1	13	1,82031	50,070	0,2
137	0	2	13	1,80733	50,454	0.0
138	2	0	10	1,80485	50,529	0,0
139	2	3	3	1,80193	50,616	0,1
140	0	4	7	1,79775	50,742	0,0
141	1	2	12	1,79631	50,786	0,2
142	0	3	11	1,79482	50,831	0,1
143	2	2	8	1,78482	51,136	0,1
144	1	4	5	1,78275	51,200	0,0
145	2	3	4	1,77276	51,509	0,0
146	1	3	10	1,76768	51,668	0,2
147	2	1	10	1,76267	51,826	0,1
148	1	0	14	1,75053	52,213	0,5
149	1	4	6	1,73894	52,587	0,0
150	2	3	5	1,73727	52,642	0,4
151	2	0	11	1,72098	53 , 179	0,3
152	2	2	9	1,71820	53,272	0,2
153	1	1	14	1,71196	53,481	0,3
154	0	1	15	1,70679	53 , 656	0,0
155	0	3	12	1,70500	53 , 717	2,9
156	0	2	14	1,70116	53,848	0,0
157	1	2	13	1,69907	53 , 920	0,0
158	2	3	6	1,69665	54,003	2,5
159	1	4	7	1,69110	54,194	0,1
160	1	3	11	1,68866	54,279	0,0
161	2	1	11	1,68429	54,432	1,1
162	0	4	9	1,67572	54 , 733	0,0
163	3	0	1	1,65800	55 , 368	0,0
164	2	3	7	1,65213	55,582	0,4
165	2	2	10	1,65191	55 , 590	0,0

166	3	0	2	1,64811	55 , 729	0,1
167	1	0	15	1,64697	55 , 771	1,7
168	2	0	12	1,64131	55 , 980	0,7
169	1	4	8	1,64052	56,010	0,0
170	0	5	1	1,63699	56,141	0,0
171	0	0	16	1,63594	56,180	0,0
172	3	0	3	1,63201	56 , 328	0,3
173	3	1	0	1,62826	56,469	0,1
174	0	5	2	1,62747	56 , 499	0,0
175	3	1	1	1,62512	56,588	0,0
176	0	3	13	1,62118	56 , 738	0,0
177	3	1	2	1,61580	56,944	0,7
178	1	1	15	1,61473	56 , 985	2,7
179	0	4	10	1,61405	57 , 011	0,0
180	1	3	12	1,61321	57,044	0,0
181	0	5	3	1,61196	57 , 092	0,0
182	3	0	4	1,61025	57 , 158	0,2
183	1	2	14	1,60996	57 , 170	0,3
184	2	1	12	1,60940	57 , 191	2,1
185	0	2	15	1,60565	57 , 337	0,0
186	2	3	8	1,60487	57 , 368	0,0
187	0	1	16	1,60433	57 , 389	0,0
188	3	1	3	1,60063	57 , 534	3,0
189	0	5	4	1,59098	57 , 916	0,0
190	1	4	9	1,58835	58,021	0,5
191	2	2	11	1,58688	58,080	0,4
192	3	0	5	1 , 58351	58,215	0,0
193	2	4	0	1,58327	58,225	0,1
194	2	4	1	1,58038	58,342	0,0
195	3	1	4	1,58008	58,354	1,0
196	2	4	2	1,57181	58,691	0,0
197	2	0	13	1,56614	58,924	0,3
198	0	5	5	1,56517	58,964	0,2
199	1	5	0	1,55800	59 , 262	0,0
200	2	4	3	1,55783	59 , 270	0,1
201	2	3	9	1,55592	59 , 350	0,1
202	1	5	1	1,55525	59 , 378	0,0
203	3	1	5	1 , 55479	59 , 397	0,0

Anexo VI – Ficha Cristalográfica da amostra OP-11 GEL

Ficha da cristobalita

Name and formula

Reference code:	96-900-8230		
Mineral name: Compound name: Common name:	Cristobalite Cristobalite Cristobalite		
Chemical formula:	Si _{4.00} O _{8.00}		

Crystallographic parameters

Crystal system:	Tetragonal
Space group:	P 41 21 2
Space group number:	92
a (Å):	4,9960
b (Å):	4,9960
c (Å):	7,0160
Alpha (°):	90,0000
Beta (°):	90,0000
Gamma (°):	90,0000
Calculated density (g/cm^3):	2,28
Volume of cell (10^6 pm^3):	175,12
KIK:	5.22

Subfiles and Quality

Subfiles:

Quality:

User Inorganic User Mineral None ()

Comments

Creation Date: Modification Date: Publication title: $08/05/2024 \ 00:15:29$ $08/05/2024 \ 00:15:29$ High-temperature single-crystal study of the cristobalite inversion Note: Cell has been corrected Sample: T = 210 C

COD database code: 9008229

References

Structure:	Peacor, D. R., Zeitschrift fur Kristallographie, 138, 274 - 298,
	(1973)

Peak list
No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	1	0	1	4,06964	21,821	100,0
2	1	1	0	3,53271	25,189	0,5
3	1	1	1	3,15529	28,261	7,7
4	1	0	2	2.87095	31.127	9.3
5	2	0	0	2,49800	35,922	12.0
6	1	1	2	2,19000	36 053	5 7
7	1 2		1	2,40922	20,000	0,7
/	2	1	1 O	2,30329	30,213 40,225	0,2
8	2	1	0	2,23428	40,335	0,0
9	2	Ţ	Ţ	2,12893	42,425	2,5
10	1	0	3	2,11809	42,652	0,2
11	2	0	2	2,03482	44,489	2,6
12	1	1	3	1 , 95007	46 , 533	4,4
13	2	1	2	1,88451	48,253	4,6
14	2	2	0	1 , 76635	51 , 710	0,4
15	0	0	4	1,75400	52,102	0,7
16	2	2	1	1,71290	53,449	0,0
17	2	0	3	1,70724	53,641	2,3
18	1	0	4	1.65497	55.478	0.5
19	3	0	1	1,62031	56,771	3.7
20	2	1	3	1 61552	56 955	20
20	2	⊥ 1	0	1 57007	50,955	2,0 0 2
21	2	1	0	1,57907	50,50Z	0,3
22	2	2	2	1,57765	58,452	0,3
23	Ţ	T	4	1,5/102	58,723	0,0
24	3	1	1	1,54128	59,971	2,3
25	3	0	2	1,50442	61,598	2,2
26	3	1	2	1,44053	64,652	3,1
27	2	0	4	1 , 43547	64 , 907	1,6
28	2	2	3	1,40950	66 , 255	1,3
29	3	2	0	1,38564	67,548	0,0
30	2	1	4	1,37965	67,881	2,2
31	3	2	1	1,35938	69,034	1,0
32	3	0	3	1,35655	69,199	0,8
33	1	0	5	1,35093	69.528	1.6
34	3	1	3	1,30915	72.087	1.7
35	1	1	5	1 30409	72 410	
36	3	2	2	1 28875	73 112	1 0
27	1	0	0	1 24000	76 156	1, J
20	7	0	0	1,24900	70,130	1 0
30	2	2	4	1,24461	/0,4/3	1,0
39	4	0	1	1,22967	//,5/4	1,2
40	2	0	5	1,22340	/8,04/	0,1
41	4	T	0	1,211/1	/8,946	1,6
42	3	0	4	1,20770	79 , 260	0,0
43	4	1	1	1,19403	80,350	0,1
44	3	2	3	1,19211	80,506	1,5
45	2	1	5	1,18829	80,819	1,5
46	3	3	0	1 , 17757	81,710	0,2
47	4	0	2	1,17664	81,787	0,2
48	3	1	4	1,17389	82,021	0,6
49	3	3	1	1,16132	83,103	0,4
50	4	1	2	1,14531	84,531	0.2
51	1	0	6	1.13856	85,150	0.0
52	<u>-</u> Д	2	0	1,11714	87,186	0 0
52	т 2	2	2	1 11625	87 263	0,0
55	ر 1	ی 1	6	1 11010	01,203 07 070	0,0 1 ⊑
94 55	1	⊥ 2	0	\perp , $\perp \perp \cup \perp \cup$ 1 10224	01,013	1,J
33	4	2	⊥ ੨	1,1U3Z4	80,368	1,1 0,0
56	4	0	3	1,10172	88,722	0,3
57	2	2	5	1,09871	89,030	0,2

Anexo VII – Ficha Cristalográfica da amostra OP-14

Ficha da cristobalita

Name and formula

Reference code:	96-900-9686		
Mineral name: Compound name: Common name:	Cristobalite Cristobalite Cristobalite		
Chemical formula:	Si _{4.00} O _{8.00}		

Crystallographic parameters

Crystal system: Space group: Space group number:	Tetragonal P 41 21 2 92
a (Å):	4,9570
b (Å):	4,9570
c (Å):	6,8900
Alpha (°):	90,0000
Beta (°):	90,0000
Gamma (°):	90,0000
Calculated density (g/cm^3):	2,36
Volume of cell (10^6 pm^3):	169,30
RIR:	5,04

Subfiles and Quality

Subfiles:

Quality:

User Inorganic User Mineral None ()

Comments

Creation Date: Modification Date: Publication title: 08/05/2024 00:12:45 08/05/2024 00:12:45 Crystal structure of low cristobalite at 10, 293, and 473 K: Variation of framework geometry with temperature Sample: T = 10 K

COD database code: 9009685

References

Structure:	Pluth, J. J., Smith, J. V., Faber, J., <i>Journal of Applied Physics</i> , 57 , 1045 - 1049, (1985)

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	1	0	1	4,02383	22,073	100,0
2	1	1	0	3,50513	25 , 390	1,0
3	1	1	1	3,12410	28,549	10,7
4	1	0	2	2,82891	31,602	13,7
5	2	0	0	2,47850	36,214	15,9
6	1	1	2	2.45697	36.543	3.4
7	2	<u> </u>	1	2,33219	38,573	0.0
8	2	1	0	2,00210	10 666	0,0
0	2	⊥ 1	1	2,21004	40,000	2 1
10	ے 1	1	1 2	2,11030	42,010 12 200	⊃ , 4
10	Ţ	0	3	2,00307	43,300	0,2
11	2	0	2	2,01191	45,023	2,3
12	Ţ	Ţ	3	1,92102	47,279	6,5
13	2	1	2	1,86422	48,812	6,5
14	2	2	0	1,75256	52,147	0,6
15	0	0	4	1 , 72250	53 , 128	1,3
16	2	2	1	1,69848	53,940	0,1
17	2	0	3	1,68461	54,421	3,3
18	1	0	4	1 , 62707	56 , 514	0,6
19	3	0	1	1,60677	57,293	4,5
20	2	1	3	1,59502	57,755	1,0
21	3	1	0	1,56754	58,866	0,7
22	2	2	2	1,56205	59.094	0.5
23	1	1	4	1,54592	59.773	0.1
24	3	1	1	1,52848	60,525	3.8
25	3	<u> </u>	2	1 48983	62 268	2,0 4,7
26	3	1	2	1 42678	65 352	23
20	2		7	1 11116	65 993	1 9
27	2	2	т 2	1 20225	67 120	1 0
20	2	2	0	1 27/02	60 1 5 0	1,9
29	2	ے 1	0	1,37402	60,132	0,0 2 1
21	2	1	4	1,3001/	60,909 CO CO7	⊃ , ⊥ 1 ⊂
31	3	2	1	1,34825	69,687	1,0
32	3	0	3	1,34128	70,102	0,8
33	Ţ	0	5	1,32/65	70,929	2,8
34	3	1	3	1,29472	73,019	3,8
35	1	1	5	1,28245	73,832	0,0
36	3	2	2	1,27690	74 , 207	3,6
37	4	0	0	1,23925	76 , 864	0,0
38	2	2	4	1,22848	77 , 663	0,8
39	4	0	1	1,21968	78,331	1,6
40	2	0	5	1,20437	79 , 522	0,2
41	4	1	0	1,20225	79 , 690	2,0
42	3	0	4	1,19241	80,482	0,0
43	4	1	1	1,18435	81,143	0,7
44	3	2	3	1,17962	81,537	1,8
45	2	1	5	1,17032	82,325	2,1
46	3	3	0	1,16838	82,492	0,6
47	4	0	2	1,16610	82,688	0.5
48	3	1	4	1,15934	83,277	1.4
49	3	3	1	1,15193	83,934	0.7
50	4	1	2	1,13511	85,470	0.2
51	1	<u> </u>	6	1,11971	87.033	\cap
52	т Д	2	0	1,10842	88,047	0,0
52	ر ۲	2	2	1 106/7	88 212	0,1
53		2 2	∠ 1	1 00/25	80,242 80,180	1 5
54 55	1 1	ے 1	с Т	1 00106	89 801	2 / L
55	⊥ ∕I	<u>г</u>	0 2	1 00061	80 870	∠ , 4 ∩ ∘
50		U	5		0,0,0	U , 0

Name and formula

Reference code:	00-042-1401		
Mineral name:	Tridymite- <i>O</i>		
Compound name:	Silicon Oxide		
PDF index name:	Silicon Oxide		
Empirical formula:	O ₂ Si		
Chemical formula:	SiO ₂		

Crystallographic parameters

Crystal system:	Orthorhombic
Space group:	F
a (Å):	17,0859
b (Å):	9,9313
c (Å):	16,3041
Alpha (°):	90,0000
Beta (°):	90,0000
Gamma (°):	90,0000
Volume of cell (10^6 pm^3):	2766,56
Z:	68,00
RIR:	-

Subfiles and Quality

Subfiles:	Alloy, metal or intermetalic
	Inorganic
	Mineral
Quality:	Indexed (I)

Comments

Creation Date: Modification Date: Sample Source or Locality: Unit Cell:	01/01/1970 01/01/1970 Specimen from Topaz Mountain, Utah, USA Reference reports: a=17.0722(225), b=9.9233(9), c=16.2909(168) Cell parameters generated by least squares refinement.
	Cell parameters generated by least squares refinement.

References

Primary reference:

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	2	2	0	4,28472	20,714	93,0
2	0	0	4	4,08029	21,764	100,0

3	2	2	2	3,80152	23,382	68,0
4	4	2	0	3,24174	27,492	48,0
5	2	2	4	2,96117	30,156	11,0
6	6	0	0	2,85230	31,336	9,0
7	0	4	0	2,48123	36,173	35,0
8	2	4	0	2,38248	37,727	21,0
9	2	2	6	2,29770	39,175	19,0
10	4	4	2	2,07715	43,535	12,0
11	0	0	8	2,03849	44,405	11,0
12	8	2	0	1,95940	46,299	14,0
13	6	2	6	1,82722	49,867	9,0
14	4	4	6	1,68522	54,399	8,0
15	8	4	0	1,61933	56 , 809	10,0
16	2	6	2	1,59214	57 , 870	11,0
17	4	6	0	1,54362	59 , 871	6,0
18	6	6	0	1,43056	65 , 158	7,0
19	0	6	6	1,41308	66,066	6,0
20	2	6	6	1,39543	67 , 011	5,0
21	6	6	4	1,35141	69 , 500	5,0
22	6	0	12	1,22656	77 , 808	5,0
23	6	2	12	1,18956	80,714	6,0

Stick Pattern

Anexo VIII – Fichas Cristalográficas da amostra OP-27

Ficha da cristobalita

Name and formula

Reference code:	96-900-8234		
Mineral name: Compound name: Common name:	Cristobalite Cristobalite Cristobalite		
Chemical formula:	Si _{8.00} O _{16.00}		

Crystallographic parameters

Crystal system: Space group: Space group number:	Cubic F d -3 m 227
a (Å): b (Å):	7,1660 7,1660
c (Å):	7,1660
Alpha (°):	90,0000
Beta (°):	90,0000
Gamma (°):	90,0000
Calculated density (g/cm^3) :	2,17
	507,99
RIR:	5,70

Subfiles and Quality

Subfiles:

Quality:

User Inorganic User Mineral None ()

Comments

Creation Date:08/05/2024 00:15:29Modification Date:08/05/2024 00:15:29Publication title:High-temperature single-crystal study of the cristobalite inversion
Sample: T = 273 C

COD database code: 9008233

References

Structure:

Peacor, D. R., *Zeitschrift fur Kristallographie*, **138**, 274 - 298, (1973)

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	1	1	1	4,13729	21,460	100,0
2	0	2	2	2 , 53356	35,401	17,3
3	1	3	1	2,16063	41,773	1,5
4	2	2	2	2,06865	43,724	4,0
5	0	4	0	1,79150	50,932	0,4
6	1	3	3	1,64399	55,881	7,1
7	2	4	2	1,46275	63 , 553	5,2
8	1	5	1	1,37910	67,912	1,2
9	0	4	4	1,26678	74,901	1,8
10	1	5	3	1,21128	78 , 980	2,8
11	2	4	4	1,19433	80,326	0,1
12	0	6	2	1,13304	85 , 664	1,5
13	3	5	3	1,09280	89,640	0,3

Anexo IX – Ficha Cristalográfica da amostra SJ-2-5

Ficha da cristobalita

Name and formula

Reference code:	96-901-7022		
Mineral name: Compound name: Common name:	Cristobalite Cristobalite Cristobalite		
Chemical formula:	Si _{8.00} O _{16.00} He _{8.00}		

Crystallographic parameters

Crystal system:	Monoclinic
Space group:	P 1 21/c 1
Space group number:	14
a (Å):	8,0620
b (Å):	4,7970
c (Å):	9,4910
Alpha (°):	90,0000
Beta (°):	120,4300
Gamma (°):	90,0000
Calculated density (g/cm^3):	2,69
Volume of cell (10^6 pm^3):	316,49
RIR:	1.09

Subfiles and Quality

Subfiles:

Quality:

User Inorganic User Mineral None ()

<u>Comments</u>

COD database code: 9017021

References

Structure:

Matsui, M., Sato, T., Funamori, N., *American Mineralogist*, **99**, 184 - 189, (2014)

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	1	0	0	6 , 95145	12,724	0,0
2	-1	0	2	4,72411	18,769	0,0
3	0	1	1	4,13842	21,454	38,0
4	0	0	2	4.09180	21.702	100.0
5	-1	1	1	4,03973	21,985	8.3
6	1	1	0	3 9/818	22,501	78 3
7			2	2 74560	22,301	(),) (),)
,	-2	0	2	3,74300	23,730	03,5
8	2	0	0	3,4/5/2	25,609	0,0
9	-1	Ţ	2	3,36593	26,459	0,8
10	1	1	1	3,21264	27,746	2,5
11	0	1	2	3,11310	28,652	3,6
12	-2	1	1	3 , 07797	28,986	88,1
13	-2	1	2	2,95224	30,249	4,3
14	1	0	2	2,93567	30,424	13,6
15	2	1	0	2,81457	31,767	1,5
16	-3	0	2	2,68089	33.396	11.1
17	-1	1	۲ ۲	2 62506	34 128	2 4
1.0	_2	1	3	2,55005	35 164	5 0
10	- <u>∠</u> 1	1	2	2,55005	35,104 35 033	10 E
19	Ţ	1	2	2,50396	33,033	10,5
20	0	2	0	2,39850	37,466	4,4
21	2	Ţ	T	2,3/840	37,795	14,2
22	0	1	3	2,37127	37,913	8,6
23	-2	0	4	2,36206	38,066	20,7
24	-3	1	2	2,34022	38 , 435	0,1
25	3	0	0	2,31715	38,833	0,2
26	-1	0	4	2,30402	39,063	1,2
27	0	2	1	2,30168	39,105	0,1
28	-3	1	1	2,28684	39,369	2,7
29	-1	2	1	2,28427	39,415	26.3
30	1	2	0	2,26733	39.722	1.5
31	-3	1	з З	2,21494	40,702	±,0 5.5
32	-3		Л	2721771 2 17/53	10,702	0 2
22	2	0	2	2,1,400	41,400	0,2
21	- 1	0	2	2,10303	41,724	0,1
24	-1	1	~	2,13004	42,223	2 , 4
35	-2	Ţ	4	2,11909	42,631	0,3
36	T	2	T	2,09/6/	43,088	4,0
37	3	1	0	2,08648	43,331	1,2
38	-1	1	4	2,07688	43,541	11,5
39	0	2	2	2,06921	43,711	8,5
40	-2	2	1	2,05880	43,944	3,1
41	0	0	4	2,04590	44,235	5,6
42	-2	2	2	2,01987	44,836	0,4
43	-4	0	2	2,00650	45,151	0,3
44	1	1	3	1,99222	45,493	0,0
45	-3	1	4	1,98054	45,776	2,0
46	2	2	0	1.97409	45.934	0.6
47	2	1	2	1,97186	45,990	10.2
19	_1	2	2	1 00523	13,550	2 9
40	_T	ے 1	1	1 00100	47,090	2 , 9
49	0	1	4	1,00109 1,07500	40,323	0,2
50	-2	2	3	1,8/596	48,48/	0,3
51	-4	U	4	1,8/280	48,5/4	0,2
52	1	2	2	1,85739	49,003	0,6
53	-4	1	2	1,85109	49,181	2,6
54	-4	1	3	1,84030	49,489	11,1
55	3	1	1	1,83169	49,738	0,7
56	2	2	1	1,80437	50,543	0,6
57	0	2	3	1,80125	50 , 637	1,5
58	-3	2	2	1,78753	51,053	0,6

59	-4	1	1	1 , 77256	51 , 516	2,8
60	-2	1	5	1,76374	51 , 793	0,0
61	-3	2	1	1,76339	51 , 803	4,2
62	-4	1	4	1,74456	52 , 405	1,4
63	1	0	4	1,73860	52 , 598	3,6
64	4	0	0	1,73786	52 , 622	6,0
65	-3	2	3	1,72979	52 , 887	0,1
66	-3	1	5	1,72541	53,031	1,4
67	-1	1	5	1,69415	54,089	3,0
68	3	0	2	1,68355	54,457	0,4
69	-2	2	4	1,68296	54,478	0,0
70	3	2	0	1,66649	55 , 062	1,3
71	-1	2	4	1,66159	55,238	0,5
72	2	1	3	1,64967	55,672	2,2
73	1	1	4	1,63455	56,232	1,2
74	4	1	0	1,63394	56,255	0,1
75	1	2	3	1,61727	56,888	1,8
76	-3	2	4	1,61100	57,129	0,1
77	2	2	2	1,60632	57,311	0,8
78	-4	1	5	1,59774	57,648	5,4
79	3	1	2	1,58856	58,012	0,1
80	-5	0	2	1,58308	58,232	0,9
81	-5	0	4	1,58087	58,322	2,3
82	-3	0	6	1,57470	58,572	0,1
83	0	3	1	1,56932	58,793	0,2
84	-2	0	6	1,56817	58,840	1,4
85	-1	3	1	1,56377	59,022	0,2
86	1	3	0	1,55831	59,250	3,6
87	0	2	4	1,55655	59,323	0,3
88	0	1	5	1,54904	59,640	2,3
89	-4	2	2	1,53899	60,069	0,7
90	-4	2	3	1,53277	60,338	4,2
91	-5	1	3	1,52836	60,530	2,6
92	3	2	1	1,52778	60,556	9,7
93	-1	3	2	1,51459	61,139	0,7
94	-4	0	6	1,50534	61,556	1,3
95	-5	1	2	1,50333	61,647	0,4
96	-5	1	4	1,50144	61,733	0,2
97	1	3	1	1,49983	61,807	0,1
98	-3	1	6	1,49615	61,975	0,8
99	-4	2	1	1,49297	62,122	0,0
100	-2	1	6	1,49055	62,234	0,7
101	0	3	2	1,48932	62,291	0,0
102	-1	0	6	1,48840	62,334	2,1
103	-2	2	5	1,48768	62 , 368	0,4
104	-2	3	1	1,48542	62 , 473	5,9
105	-4	2	4	1,47612	62 , 912	0,2
106	4	1	1	1,47326	63,048	0,0
107	-2	3	2	1,47060	63 , 175	1,0
108	2	0	4	1,46783	63 , 308	1,4
109	-3	2	5	1,46447	63 , 470	4,6
110	2	3	0	1,45265	64,048	0,8
111	-1	2	5	1,44521	64,417	0,3
112	-4	1	6	1,43628	64,866	2,9
113	-5	1	1	1,43339	65 , 013	0,0
114	-5	1	5	1,43011	65 , 181	0,2
115	-1	3	3	1,42454	65 , 467	0,4
116	-1	1	6	1,42154	65 , 623	5,2
117	2	2	3	1,41729	65 , 845	0,0
118	-2	3	3	1,41218	66,113	2,5
119	1	2	4	1,40767	66 , 352	0,0

120	4	2	0	1,40728	66 , 373	0,4
121	1	3	2	1,40421	66 , 537	2,3
122	2	1	4	1,40360	66 , 570	3,7
123	5	0	0	1,39029	67,292	0,2
124	-5	0	6	1,38581	67 , 538	4,3
125	-4	2	5	1,38396	67,641	1,8
126	3	1	3	1,38099	67,806	0,1
127	2	3	1	1,38087	67,812	3,1
128	0	3	3	1,37947	67,891	1,4
129	1	1	5	1,37819	67,962	1,5
130	3	2	2	1,37798	67,974	0,0
131	-3	3	2	1,37328	68,239	9,1
132	4	0	2	1,36937	68,461	1,3
133	0	0	6	1,36393	68,772	0,9
134	-3	3	1	1,36225	68,869	0,0
135	0	2	5	1,35194	69,469	5,2
136	-3	3	3	1,34658	69,786	0,5
137	-6	0	4	1,34045	70,152	3,5
138	-5	2	3	1,33813	70,291	1,5
139	5	1	0	1,33534	70,460	3,8
140	-5	1	6	1,33137	70,701	0.3
141	-2	3	4	1,32413	71,146	1,5
142	-5	2	2	1,32124	71,326	0,0
143	-5	2	4	1,31995	71,406	0,0
144	4	1	2	1,31677	71,605	0,0
145	-3	2	6	1,31635	71,631	0,2
146	3	3	0	1,31606	71,649	2,7
147	-1	3	4	1,31364	71,802	0,5
148	-2	2	6	1,31253	71,872	0,3
149	0	1	6	1,31193	71,910	2,2
150	-3	1	7	1,30474	72,369	3,2
151	-6	0	2	1,30074	72,627	3,8
152	1	3	3	1,29141	73,236	0,0
153	-6	1	4	1,29099	73,264	1.0
154	-6	1	3	1,28851	73,428	0,0
155	-3	3	4	1,28821	73,448	2,5
156	2	3	2	1,28582	73,607	0,1
157	-4	1	7	1,28285	73,806	0,0
158	-2	1	7	1,28184	73,873	0,1
159	-4	2	6	1,27502	74,335	0,2
160	-5	2	1	1,27300	74,473	5,5
161	-5	2	5	1,27070	74,631	0,4
162	-1	2	6	1,26468	75,047	1,2
163	-6	1	5	1,26234	75,210	0,1
164	0	3	4	1,25986	75 , 384	0,0
165	-6	1	2	1,25541	75 , 699	0,0
166	2	2	4	1,25199	75 , 942	1,5
167	3	0	4	1,25114	76,002	0,1
168	-4	3	2	1,25049	76,049	0,8
169	-6	0	6	1,24853	76 , 189	2,3
170	-4	3	3	1,24715	76 , 289	3,6
171	3	3	1	1,24446	76,484	0,0
172	3	2	3	1,23587	77,113	5,9
173	1	2	5	1,23386	77,262	5,8
174	5	1	1	1,22648	77,814	0,1
175	1	0	6	1,22621	77,834	0,2
176	-4	3	1	1,22542	77,894	1,3
177	-2	3	5	1,22250	78 , 116	0,3
178	-5	1	7	1,22238	78,124	0,2
179	-1	1	7	1,22064	78,257	0,5
180	-4	3	4	1,21606	78,609	0,0

181	2	1	5	1,21483	78,704	0,5
182	3	1	4	1,21064	79,029	0,9
183	-3	3	5	1,20952	79,117	0,7
184	-6	1	6	1,20828	79,214	1,2
185	5	2	0	1,20283	79,645	0,5
186	-5	2	6	1,19992	79 , 876	0,1
187	0	4	0	1,19925	79 , 930	1,9
188	-1	3	5	1,19860	79,982	0,4
189	-6	1	1	1,19819	80,015	1,8
190	4	2	2	1,18920	80,744	0,0
191	1	1	6	1,18801	80,841	0,1
192	0	4	1	1,18658	80,959	0,0
193	0	2	6	1,18564	81,037	0,0
194	-1	4	1	1,18417	81,158	1,8
195	-3	0	8	1,18302	81,254	0,6
196	2	3	3	1,18253	81,295	0,3
197	1	4	0	1,18179	81,356	0,0
198	-4	0	8	1,18103	81,420	0,2
199	-3	2	7	1,18032	81,479	0,1
200	1	3	4	1,17693	81,764	1,9
201	4	3	0	1,17670	81 , 783	0,3
202	4	1	3	1,17637	81,811	1,8
203	-6	2	4	1,17011	82,343	0,5

Ficha da tridimita

Name and formula

Reference code:	96-901-3394		
Mineral name: Compound name: Common name:	Tridymite Tridymite Tridymite		
Chemical formula:	Si _{80.00} O _{160.00}		

Crystallographic parameters

Crystal system:	Anorthic
Space group:	P 1
Space group number:	1
a (Å):	9,9320
b (Å):	9,9380
c (Å):	41,2320
Alpha (°):	86,5490
Beta (°):	83,0830
Gamma (°):	60,0230
Calculated density (g/cm^3):	2,28
Volume of cell (10^6 pm^3):	3499,68
RIR:	1,43

Subfiles and Quality

Subfiles:	User Inorganic
	User Mineral
Quality:	None ()

Comments

Creation Date: 07/05/2024 23:52:22 Modification Date: 07/05/2024 23:52:22 Structure TIDY: Transformed from space group: "F1" to space group: "P 1". Structure TIDY: Applied Transformation matrix: Structure TIDY: 0.5, 0, -0.5 Structure TIDY: 0.5, 0, 0.5 Structure TIDY: 0.5, 0, 0.5 Structure TIDY: TRANS -a-c,-a+b-c,-c origin .51115 .37392 .63194 Publication title: The crystal structure of low tridymite COD database code: 9013393

References

Structure:

Konnert, J. H., Appleman, D. E., *Acta Crystallographica, Section B*, **34**, 391 - 403, (1978)

Peak list

No.	h	k	1	d [A]	2Theta[deg]	Ι	[%]
1	0	0	1	40,93190	2,157		0,0
2	0	0	2	20,46595	4,314		0,0
3	0	0	3	13,64397	6,473		0,0
4	0	0	4	10,23298	8,634		0,1
5	0	1	0	8,60855	10,267		0,0
6	1	0	0	8,55625	10,330		0,0
7	0	1	1	8,42430	10,493		0,0
8	-1	-1	1	8,20486	10,774		0,0
9	0	0	5	8,18638	10,799		0,0
10	0	1	2	7,93522	11,141		0,2
11	-1	-1	2	7,61564	11,610		0,0
12	0	-1	3	7,28045	12,147		0,1
13	-1	-1	3	6,92989	12,764		0,0
14	0	0	6	6,82198	12,967		0,1
15	0	-1	4	6 , 58745	13,430		0,0
16	1	0	5	6,25033	14,158		0,0
17	0	1	5	5 , 93235	14,922		0,0
18	0	0	7	5,84741	15,140		0,0
19	1	0	6	5,62846	15,732		0,0
20	0	1	6	5,34673	16 , 567		0,0
21	0	0	8	5,11649	17,318		0,0
22	-1	-1	6	5,08137	17,439		0,0
23	2	1	1	4,96600	17,847		0,0
24	1	-1	0	4,96010	17,868		0,0
25	2	1	2	4,92984	17,979		0,0
26	1	2	2	4,88862	18,132		0,0
27	0	1	7	4,83711	18,327		0,0
28	-2	-1	1	4,82597	18,369		0,1
29	-1	-2	2	4,75482	18,646		0,0
30	2	1	4	4,66650	19,003		0,9
31	-1	0	7	4,60858	19,244		0,0
32	1	-1	4	4,57344	19,393		0,1
33	0	0	9	4,54799	19,503		0,0

34	-2	-1	3	4,46771	19,857	0,0
35	0	-1	8	4,39823	20,173	0,7
36	-1	-2	4	4,36071	20,349	0,1
37	0	2	0	4,30428	20,619	56,3
38	2	0	1	4,30168	20,631	51,0
39	0	-2		4,28066	20,734	0,0
40 //1	2	1	6	4,2/011 1 21585	20,740	30
41 42	2		2	4,24303 4 21211	20,905	3,0 0 0
4.3	2	2	3	4,20951	21,088	0,0
44	-1	-1	8	4,20201	21,126	0,0
45	1	2	6	4,13255	21,485	0,1
46	0	2	3	4,10489	21,632	0,0
47	2	0	4	4,10258	21,644	0,6
48	0	0	10	4,09319	21,694	100,0
49	0	-1	9	4,02125	22,087	0,0
50	2	1	7	4,01489	22,123	0,0
51	0	2	4	3,96761	22,390	0,0
52	2	0	5	3,96551	22,402	0,3
53	-1 1	1	6	3,90099	22,111	0,1
54 55	-1	-1 2	9	3,85246	23,000	16.2
55 56	2		5	3,80980	23,330	10,3 15 5
57	-2	-1	6	3,78518	23,484	13,3
58	0	0	11	3,72108	23,894	0,0
59	0	-1	10	3,69656	24,055	0,0
60	1	2	8	3,67426	24,203	0,1
61	0	2	6	3,64031	24,433	0,0
62	-2	-2	5	3,63857	24,444	0,8
63	2	1	9	3,56349	24,968	0,3
64	1	0	11	3,55075	25,059	0,0
65	0	2	7	3,46645	25,678	0,0
66	-2	-2	6	3,46494	25,690	0,3
67	I O	∠ 1	9	3,4581U 2,41561	25,741	0,2
60	0	-1	12	3,41301	20,007 26 103	0,0
70	-2	-1	8	3,41099	26,555	0,0
71	0	2	8	3,29381	27,049	0,0
72	-2	0	7	3,29263	27,059	0,8
73	-1	-1	11	3,28892	27,090	0,0
74	-1	1	9	3,25538	27,375	0,2
75	2	3	1	3,25248	27,400	11,5
76	1	-2	0	3,25093	27,413	0,3
77	3	2	2	3,24851	27,434	0,3
78	2	-1	2	3,24242	27,486	0,1
79	-1	-3	1	3,23050	27,590	0,3
80	3	1	3	3,22830	27,609	0,2
81	2	-1	ろ つ	3,21232 2 10109	27,749	0,2
02 83	_ 3	-2 -1	5 1	3,19100 3,18889	21,931 27 957	0,2
84	0	_1	12	3,17110	28,117	3.0
85	-2	1	2	3,16400	28,181	1,4
86	2	1	11	3,15854	28,231	0,5
87	0	0	13	3,14861	28,322	0,0
88	1	-2	4	3,13443	28,453	0,3
89	3	2	5	3,13229	28,473	0,3
90	0	-2	9	3,12615	28,530	0,1
91	-2	-2	8	3,12511	28,539	0,2
92	2	-1	5	3,09980	28,778	0,7
93	1	-1	11	3,06708	29,091	0,1
94	-1	-3	4	3,06331	29 , 128	0,2

95	-3	-1	3	3,06147	29,146	0,2
96	-1	0	12	3,06039	29,156	0,0
97	-2	-3	4	3,02264	29 , 529	0,4
98	-1	-3	5	2,98097	29 , 951	0,2
99	3	1	7	2,97925	29,969	0,2
100	2	1	12	2,97784	29 , 983	0,4

Anexo X – Ficha Cristalográfica da amostra OPL-7

Ficha da cristobalita

Name and formula

Reference code:	96-900-8230
Mineral name: Compound name: Common name:	Cristobalite Cristobalite Cristobalite
Chemical formula:	Si _{4.00} O _{8.00}

Crystallographic parameters

Crystal system:	Tetragonal
Space group:	P 41 21 2
Space group number:	92
a (Å):	4,9960
b (Å):	4,9960
c (Å):	7,0160
Alpha (°):	90,0000
Beta (°):	90,0000
Gamma (°):	90,0000
Calculated density (g/cm^3):	2,28
Volume of cell (10^6 pm^3):	175,12
RIR:	5,22

Subfiles and Quality

Subfiles:

Quality:

User Inorganic User Mineral None ()

Comments

Creation Date: Modification Date: Publication title: $\begin{array}{l} 08/05/2024 \ 00:15:29\\ 08/05/2024 \ 00:15:29\\ \mbox{High-temperature single-crystal study of the cristobalite inversion}\\ \mbox{Note: Cell has been corrected Sample: $T = 210 C$ \end{array}$

COD database code: 9008229

References

Structure:

Peacor, D. R., *Zeitschrift fur Kristallographie*, **138**, 274 - 298, (1973)

Peak list

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	1	0	1	4,06964	21,821	100,0
2	1	1	0	3,53271	25,189	0,5
3	1	1	1	3,15529	28,261	7,7
4	1	0	2	2.87095	31.127	9.3
5	2	0	0	2,49800	35,922	12.0
6	1	1	2	2,19000	36 053	5 7
7	1 2		1	2,40922	20,000	0,7
/	2	1	1 O	2,30329	30,213 40,225	0,2
8	2	1	0	2,23428	40,335	0,0
9	2	Ţ	Ţ	2,12893	42,425	2,5
10	1	0	3	2,11809	42,652	0,2
11	2	0	2	2,03482	44,489	2,6
12	1	1	3	1 , 95007	46 , 533	4,4
13	2	1	2	1,88451	48,253	4,6
14	2	2	0	1 , 76635	51 , 710	0,4
15	0	0	4	1,75400	52,102	0,7
16	2	2	1	1,71290	53,449	0,0
17	2	0	3	1,70724	53,641	2,3
18	1	0	4	1.65497	55.478	0.5
19	3	0	1	1,62031	56,771	3.7
20	2	1	3	1 61552	56 955	20
20	2	⊥ 1	0	1 57007	50,955	2,0 0 2
21	2	1	0	1,57907	50,50Z	0,3
22	2	2	2	1,57765	58,452	0,3
23	Ţ	Ţ	4	1,5/102	58,723	0,0
24	3	1	1	1,54128	59,971	2,3
25	3	0	2	1,50442	61,598	2,2
26	3	1	2	1,44053	64,652	3,1
27	2	0	4	1 , 43547	64 , 907	1,6
28	2	2	3	1,40950	66 , 255	1,3
29	3	2	0	1,38564	67,548	0,0
30	2	1	4	1,37965	67,881	2,2
31	3	2	1	1,35938	69,034	1,0
32	3	0	3	1,35655	69,199	0,8
33	1	0	5	1,35093	69.528	1.6
34	3	1	3	1,30915	72.087	1.7
35	1	1	5	1 30409	72 410	
36	3	2	2	1 28875	73 112	1 0
27	1	0	0	1 24000	76 156	1, J
20	7	0	0	1,24900	70,130	1 0
30	2	2	4	1,24461	/0,4/3	1,0
39	4	0	1	1,22967	//,5/4	1,2
40	2	0	5	1,22340	/8,04/	0,1
41	4	T	0	1,211/1	/8,946	1,6
42	3	0	4	1,20770	79 , 260	0,0
43	4	1	1	1,19403	80,350	0,1
44	3	2	3	1,19211	80,506	1,5
45	2	1	5	1,18829	80,819	1,5
46	3	3	0	1 , 17757	81,710	0,2
47	4	0	2	1,17664	81,787	0,2
48	3	1	4	1,17389	82,021	0,6
49	3	3	1	1,16132	83,103	0,4
50	4	1	2	1,14531	84,531	0.2
51	1	0	6	1.13856	85,150	0.0
52	<u>-</u> Д	2	0	1,11714	87,186	0 0
52	т 2	2	2	1 11625	87 263	0,0
55	ر 1	ی 1	6	1 11010	01,203 07 070	0,0 1 ⊑
94 55	1	⊥ 2	0	\perp , $\perp \perp \cup \perp \cup$ 1 10224	01,013	1,J
33	4	2	⊥ ੨	1,1U3Z4	80,368	1,1 0,0
56	4	0	3	1,10172	88,722	0,3
57	2	2	5	1,09871	89,030	0,2

Ficha da tridimita

Name and formula

Reference code:	96-900-5270
Mineral name: Compound name: Common name:	Tridymite Tridymite Tridymite
Chemical formula:	Si _{24.00} O _{48.00}

Crystallographic parameters

Crystal system:	Anorthic
Space group:	P 1
Space group number:	1
a (Å):	8,6001
b (Å):	8,6540
c (Å):	16,4340
Alpha (°):	88,6810
Beta (°):	90,0000
Gamma (°):	60,2110
Calculated density (g/cm^3):	2,26
Volume of cell (10^6 pm^3):	1061,11
RIR:	1,10

Subfiles and Quality

Subfiles:	User Inorganic
	User Mineral
Quality:	None ()

Comments

Creation Date: 08/05/2024 00:10:19 Modification Date: 08/05/2024 00:10:19 Structure TIDY: Transformed from space group: "C1" to space group: "P 1". Structure TIDY: Applied Transformation matrix: Structure TIDY: -1, 0, 0 Structure TIDY: 0.5, -0.5, 0 Structure TIDY: 0, 0, 1 Structure TIDY: TRANS -a-2b,-b,c -x,-y,-z origin .27790 .69300 .49800 Publication title: 29Si MAS NMR spectrum and superstructure of modulated tridymite L3-To(MX-1) Sample: superstructure

COD database code: 9005269

References

Structure:

Graetsch, H., Topalovic-Dierdorf I, *European Journal of Mineralogy*, **8**, 103 - 113, (1996)

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	0	0	1	16,42822	5 , 375	0,0
2	0	0	2	8,21411	10,762	0,1
З	0	1	0	7,50783	11.778	0.0
1	1	1	0	7 16216	11 850	0 1
	1	1	1	(00004	10,000	0,1
5	0	Ţ	1	6,89804	12,823	0,2
6	-1	0	Ţ	6,828/6	12,954	Ο,Ι
7	1	0	1	6 , 76130	13,084	0,3
8	0	1	2	5 , 61642	15 , 766	0,0
9	-1	0	2	5,56025	15,926	0,0
10	1	0	2	5,48777	16,138	0.0
11	0	0	<u>-</u>	5 47607	16 173	0 0
10	0	1	2	5,47007	10,101	0,0
12	0	-1	2	5,46996	10,191	0,1
13	0	1	3	4,48120	19,796	0,0
14	-1	0	3	4,44306	19 , 968	0,4
15	1	0	3	4,38754	20,223	0,3
16	0	-1	3	4,36942	20,308	0,4
17	1	-1	0	4.32609	20,513	65.8
18	2	1	Õ	/ 30005	20 639	59 6
10	1	2	1	4,00000	20,000	0,0
19	1 O	2	1	4,20090	21,101	0,0
20	2	T	T	4,15991	21,342	0,0
21	0	0	4	4,10705	21,620	100,0
22	1	2	2	3,86414	22 , 997	19,3
23	-2	-1	2	3,80961	23,331	18,3
24	1	-1	2	3,79201	23,441	17,3
25	0	2	0	3,75391	23.682	0.0
20	2	2	0	2 72122	23,002	0,0
20	2	2	1	3,73123	23,020	0,1
27	0	2	T	3,68085	24,159	0,0
28	-2	0	1	3,64924	24,372	0,6
29	0	1	4	3,64409	24,407	0,0
30	0	-2	1	3,63869	24,444	3,1
31	2	0	1	3,62852	24,513	2,1
32	-1	0	4	3,61838	24,583	0.1
33	1	0	4	3 57831	24 863	0 1
24		1	-	3, 57031 3 EC2E0	24,000	0,1
34	0	-1	4	3, 36339	24,967	0,0
35	0	2	2	3,44902	25,810	Ο,Ι
36	-1	1	3	3,43310	25,932	0,0
37	-2	0	2	3,41438	26 , 077	0,0
38	-2	-1	3	3,38198	26,331	0,0
39	0	-2	2	3,38053	26,343	0.1
40	1	-1	З	3,35738	26.528	0.0
10		0	5	3 28561	27 118	0,0
40	0	0	2	2,20004 2,12520	20 445	0,0
42	0	2	2	3,13520	20,440	0,1
43	2	2	3	3,10258	28,751	0,3
44	2	0	3	3,06491	29,112	0,4
45	0	-2	3	3,05865	29 , 173	0,0
46	0	1	5	3,03978	29,358	4,4
47	1	1	5	3,02181	29,537	2.7
18	1	2	1	3 01313	29 621	5 7
40	1	2	-	2,01313	20,024	0,0
49	1 O	1	5	2,99200	29,032	0,0
50	0	-1	5	2,98112	29,949	0,0
51	-2	-1	4	2,97001	30,064	7,3
52	1	-1	4	2,94503	30,325	3,7
53	1	3	0	2,83516	31,530	0,1
54	2	-1	0	2,82805	31,612	0,0
55	- 2	2	0	2.81580	31.753	0.0
56	0	2	Л	2 80821	31 8/1	0,0
50	1	2	1	2,00021	01,041	0,0
5/	-1	2	1	∠,8U581	31,869	0,3
58	-2	1	1	2,79641	31 , 979	0,1

59	1	-2	1	2,78236	32,145	0,6
60	2	2	4	2,78001	32,173	0,0
61	-2	-3	1	2,77755	32,202	1,2
62	-3	-2	1	2,77303	32,256	0,4
63	-2	-2	4	2,74376	32,609	0,1
64	0	0	6	2,73804	32,680	0,0
6.5	0	-2	4	2,73498	32,717	0.0
66	1	3	2	2.70095	33,141	0.0
67	2	3	2	2,69038	33,275	0.1
68	3	2	2	2,66771	33,566	0,0
69	-3	-2	2	2,65958	33,672	0,0
70	2	-1	2	2,65770	33,696	0,0
71	1	2	5	2 64584	33 852	0,0
72	-2	_1	5	2,04004	3/ 321	0,0
72	0	1	6	2,010/4	31 512	0,0
75	_1	- 2	5	2,59450	24,542	0,0
74	-1 1	-Z 1	G	2,J00UJ 2 50151	34,032 34,722	0,0
75	1	1	0 C	2,50151 2 EE0E0	34,722 25,020	0,1
70	-1	-1 1	b C	2,55959 2 FEOCO	35,029 25 150	0,1
77	1	-1	0	2,55063	35,156	0,1
78	Ţ	3	3	2,54387	35,252	0,1
79	-2	Ţ	3	2,53347	35,402	0,0
80	3	2	3	2,50922	35,756	0,1
81	0	2	5	2,50554	35,810	0,0
82	0	3	0	2,50261	35,853	11,9
83	3	1	3	2,49916	35,904	0,2
84	1	-2	3	2,49249	36,004	0,1
85	3	0	0	2,48768	36,076	9,0
86	0	3	1	2,48389	36,133	0,0
87	-2	0	5	2,48223	36,158	0,0
88	0	-3	1	2,46435	36,429	0,0
89	3	0	1	2,45486	36 , 575	0,0
90	2	0	5	2,44999	36,650	0,1
91	0	-2	5	2,44051	36,798	0,4
92	0	3	2	2,41187	37,251	0,0
93	-3	0	2	2,38964	37,610	1,3
94	0	-3	2	2,37646	37,827	0,0
95	3	0	2	2,37223	37,897	1,3
96	-1	2	4	2,36111	38,082	0,0
97	2	3	4	2,35116	38,250	0,0
98	0	0	7	2,34689	38,322	0,0
99	-1	1	6	2,33793	38,474	1,1
100	3	2	4	2,32780	38,648	0,0
101	3	1	4	2 , 31708	38,834	0,1
102	-2	-1	6	2 , 30957	38,966	1,4
103	-2	-3	4	2 , 30767	38,999	0,1
104	1	-2	4	2,30646	39,020	0,0
105	0	3	3	2,29935	39,146	0,0
106	1	-1	6	2,28998	39,313	2,4
107	3	3	3	2,27611	39,562	0,0
108	0	1	7	2,25711	39,909	0,0
109	3	0	3	2,25377	39,971	0,0
110	1	1	7	2,24728	40,091	0,3
111	0	2	6	2,24060	40,216	0,2
112	-1	-1	7	2,23038	40,408	0,2
113	0	-1	7	2,22327	40,543	0,1
114	-2	0	6	2,22153	40,576	0,1
115	2	0	6	2,19377	41,113	0,1
116	0	-2	6	2,18471	41,291	0.0
117	1	3	5	2,17359	41,512	0.3
118	-2	1	5	2,16490	41 , 687	0,3
119	0	3	4	2,16275	41,730	0,6

120	2	4	1	2,15076	41,974	0,0
121	4	2	0	2,15002	41,989	0,0
122	-3	-1	5	2,14338	42,125	0,2
123	3	3	4	2,14021	42,190	0,5
124	-2	-4	1	2,13804	42,235	0,0
125	-3	-2	5	2,13283	42,343	0,2
126	4	2	1	2,13185	42,364	0,0
127	2	-1	5	2,12254	42,558	0,0
128	1	-2	5	2,12047	42,602	0,1
129	-3	-3	4	2,11535	42,710	0,9
130	0	-3	4	2,11236	42,774	1,5
131	-2	2	2	2,10364	42,960	1,3
132	1	2	7	2,08296	43,408	0,0
133	1	4	0	2,08128	43,445	0,0
134	4	2	2	2,07996	43,474	1,0
135	3	4	0	2,07352	43,615	0,1
136	1	4	1	2,07144	43,662	0,3
137	4	1	0	2,06699	43,760	0,0
138	3	4	1	2,06190	43,874	0,2
139	-2	-1	7	2,06004	43,916	0,0
140	1	-3	1	2,05827	43,955	0,1
141	0	0	8	2,05353	44,062	2,1
142	-4	-1	1	2,05268	44,081	0,3
143	4	1	1	2,04897	44,165	0,0
144	1	-1	7	2,04334	44,294	0,1
145	-1	3	2	2,03008	44,598	0,0
146	-2	2	3	2,02773	44,653	0,0
147	3	4	2	2,01925	44,851	0,0
148	0	3	5	2,01682	44,907	0,0
149	0	2	7	2,01415	44,970	0,1
150	-4	-1	2	2,00797	45,116	0,0
151	1	-3	2	2,00536	45,178	0,0
152	-3	-4	2	2,00177	45,264	0,0
153	4	2	3	2,00130	45 , 275	0,0
154	-4	-3	2	2,00095	45,283	0,0
155	-2	0	7	1,99854	45,341	0,1
156	-3	0	5	1,99603	45,401	0,0
157	1	3	6	1,99464	45,435	0,0
158	0	1	8	1,99428	45,443	0,0
159	-2	1	6	1,98708	45 , 617	0,1
160	1	1	8	1,98664	45 , 628	0,1
161	2	0	7	1,97494	45,914	0,2
162	-1	-1	8	1,97329	45 , 954	0,0
163	-3	-3	5	1,97077	46,016	0,0
164	-3	-1	6	1,96793	46,087	0,0
165	0	-1	8	1,96753	46,096	0,0
166	0	-2	7	1,96668	46,117	0,0
167	0	-3	5	1,96589	46,137	0,0
168	-1	3	3	1,96242	46,223	0,0
169	-3	-2	6	1,95813	46,331	0,0
170	3	4	3	1,95103	46,509	0,1
171	-2	-3	6	1,94770	46,593	0,1
172	1	-2	6	1,94539	46,652	υ,Ο
173	-4	-1	3	1,93850	46,828	0,1
175	2	4	4	1,93207	46,993	0,4
1/5		-3	3	1,92916	4/,068	0,1
175	3	-1	3	1,92766	4/,107	0,1
170	-4	-2	4	1,90480	4/,/0/	0,5
170	2	-2	4	1,896UL	4/,942	υ,Ι
1/9 100	U	4	U	1,8/696	48,460	0,0
T 8 0	- 1	3	4	1,8/614	48,482	υ,Ο

181	0	3	6	1,87214	48,592	0,0
182	1	2	8	1,87180	48,602	0,4
183	0	4	1	1,87043	48,640	0,1
184	4	4	0	1,86561	48,773	0,0
185	3	4	4	1,86479	48,796	0,0
186	0	-4	1	1,85927	48,951	0,0
187	4	4	1	1,85645	49,030	0,2
188	-3	0	6	1,85342	49,116	0,1
189	-2	-1	8	1,85306	49,126	0,7
190	4	3	4	1,85171	49,164	0,0
191	4	0	1	1,85111	49,181	0,1
192	4	1	4	1,84096	49,470	0,0
193	0	4	2	1,84043	49,485	0,0
194	-1	-2	8	1,83885	49 , 531	0,2
195	1	-3	4	1,83760	49 , 567	0,0
196	-1	2	7	1,83055	49,770	0,4
197	3	0	6	1,82926	49,808	0,3
198	2	4	5	1,82591	49,906	0,0
199	0	0	9	1,82536	49,922	0,0
200	-4	0	2	1,82462	49,943	0,0
201	2	3	7	1,82394	49,963	0,2
202	0	-3	6	1,82332	49,981	0,0
203	0	2	8	1,82205	50,019	0,0