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RESUMO – É de comum conhecimento tanto da indústria quanto da academia que cerca 
de 60% das malhas de controle da maioria dos processos industriais possui significativo 
potencial de melhora em seu desempenho. Devido ao grande número de malhas em uma 
planta industrial, tão importante quanto auditar seu desempenho é a hierarquização de sua 
manutenção. É sabido que reduzir a variabilidade em uma dada malha acarreta o aumento 
da variabilidade em outras. Este é o escopo deste trabalho: propor uma metodologia para 
quantificação do potencial econômico de cada malha, como ferramenta pra 
hierarquização de sua manutenção, considerando a transferência de variabilidade entre 
elas. O ponto central é a Matriz de Variabilidade (VM). Esta mostra o impacto da 
melhora de um dado controlador em toda a planta. Baseado na VM, uma metodologia 
para traduzir esta matriz no potencial econômico de cada loop também é proposta. A VM 
pode ser quantificada considerando que tanto o modelo da planta quanto do controlador 
estão disponíveis, ou quando um ou ambos estão ausentes. A eficácia da metodologia 
proposta é ilustrada pela aplicação em um caso de estudo. 
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ABSTRACT – It is now common knowledge that as many as 60% of the control loops in most 
industrial processes have considerable performance potential of improvement. Because of the 
large number of control loops in an industrial plant, control loop monitoring is indispensable, 
but also equally important is how to prioritize their maintenance. It is well known that 
variance reduction in a loop occurs by transferring variability to other variables or loops. The 
focus of this study is to propose a methodology to prioritize loop maintenance based on the 
potential improvement of each loop and the variability transfer among them. The central point 
of this work is the Variability Matrix (VM), an array that shows the impact of performance 
improvement of a given loop on the whole plant. Based on VM, a methodology to translate 
the VM into a potential loop economic benefit metric is also introduced. The VM can be 
quantified in the ideal scenario where plant model and controller are available and also when 
they are not, thus allowing the application of these idea in industry. The efficacy of proposed 
methodology is illustrated by successful application to a case study. 

 
 
 



 

Figure 1: Variability reduction impact: (I)
normal operating variability (II) variability
reduction and (III) operating point shift.

1. INTRODUCTION 

The main requirement for a control 
system is ensure the process stability and 
robustness. This is the key reason for the 
industrial interest in performance assessment 
methodologies and tools. Many good reviews 
on assessment of control loops are available in 
the literature (Jelali, 2006, Huang et al., 1997). 
However, in a typical plant there are hundreds 
or thousands of controllers and most of them 
have potential to improvement (Bialkowski, 
1993). How can the control engineer prioritize 
the loop maintenance? The answer should not 
only be based on the performance potential, but 
also mainly on the economic benefits that can 
be realized in improving the performance of 
each loop. 

The main motivation for improving the 
performance of the plant is simple: reduction in 
process variability allows to achieve a more 
profitable operating point, closer to the 
constrains, as shown in Figure 1. In scenario I, 
the process has large variability and therefore 
the setpoint or the target has to be significantly 
far away from the economically optimal 
operating point (in this case the restriction is 
0.95). If the variability is reduced, due to a 
controller improvement or process 
improvement, elsewhere as in scenario II the 
process operating point can be moved to a more 
profitable setpoint (scenario III). 

The literature is relatively sparse in 
terms of quantification of control improvement 
economic benefits. Muske (2003) proposes the 
idea of potential reduction in control loop 
variability. The economic benefit is quantified 
based on the mean shift in the mean operation 
toward a product specification or process 
constraint. The variance reduction is based on a 
fix benchmark, which is the minimum variance 
controller. Craig and Henning (2000) proposed 
another methodology to quantify the economic 

benefit of Advanced Process Control (APC) 
projects. The authors mention that the whole part 
of the benefit comes from the steady-state 
optimization. They assume that the variance of 
the products can be reduced by 35% to 50%. 
Mascio and Barton (2001) propose a 
methodology to quantify the control quality in 
economic terms based on the Taguchi 
Framework. 

All available methodologies agree that 
reduction in variability means shifting the 
operating point to a more profitable point. The 
main drawback is that they consider each loop as 
an isolated case, i.e. if performance of one loop is 
improved then the whole plant will not suffer its 
effect. This is clearly not a realistic scenario. 

All modern industrial plants have 
significant interaction among loops due to tighter 
heat integration. Because of this, one cannot 
assume that the variance reduction in one loop 
will occur without impacting other loops 
adversely. Typically, variability is transferred 
from loops where it should be reduced to loops 
that have the room or the buffer to accommodate 
large fluctuations (e.g. level loops). In many 
cases, if one variable has its variability reduced 



 

and its operating point shifted, then it is likely 
that other interacting or complementary will 
have their variability increased, shifting the 
operating point away from the constraints. This 
implies that “part of the profit” realized by 
variability reduction in a given loop “will be 
offset” by the loops where the variability 
increases. This is why a control loop should not 
be considerate in isolation and the potential 
economic benefit should be computed by 
analyzing the whole plant, not only a specific 
loop.  

The main contribution of this work is 
the introduction of the notation of the 
Variability Matrix (VM). This array shows how 
the variability transfers between the loops and 
the impact of one specific loop on the variances 
of all other interacting or complementary loops. 
The potential economic benefit of each loop 
can be quantified based on VM. 

This paper is structured as follows: 
section 2 introduces the concept of Variability 
Matrix. In section 3, practical issues in 
computing the VM are discussed. The 
methodology to quantify the economic benefit 
of each control loop and prioritize loop 
maintenance is shown in section 4. The 
complete methodology is illustrated by the 
application in the Wood and Berry case study 
(section 5) showing fruitful results. The paper 
ends with concluding remarks. 

2. VARIABILITY MATRIX: 
CONCEPTS AND DEFINITION 

2.1 Preliminary Definitions 

To quantify the economic impact, it is 
interesting to classify control loops into the 
following two categories: 

Main Loops are the loops that directly control 
the products specification. Their performance 

improvement causes reduction in product 
variability, which can be directly translated into 
profitability. 

Auxiliary Loops: Loops that do not directly 
control product quality, but can indirectly affect 
the product variability. 

2.2 Variability Matrix Structure 

The structure of the variability matrix 
consists of the following: 

• Rows: The rows show the influence of each 
loop on the same final product. The number of 
rows is the same as the products or the 
number of main loops. 

• Columns: Shows the influence of a specific 
loop on all other loops that may impact or 
influence the specification of the final 
product. The number of columns is the same 
as the number of control loops implemented in 
the plant. The first columns correspond to the 
main loops and the adjacent set of columns 
corresponds to the auxiliary loops as shown in 
Figure 2. 

 

 

 

 

Figure 2: Schematic representation of 
Variability Matrix 

In Figure 2 Mni is the main loop i and 
Auxj is the auxiliary loop j. The total number of 
loops in the plant is l and it has m main loops. 
For example, column 1 (Mn1) shows the impact 
of variability reduction in main controller 1 on all 
other main loops. The row 1 shows the impact on 
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the variability of Mn1 when the performance of 
all other loops is changed. 

This section discusses the methodology 
for computing each element VM(i,j) of the 
Variability Matrix. In the first scenario, the 
following assumptions are taken: (I) the plant 
model (G) is available; (II) the controller model 
(C) is also available; and (III) the controlled 
variables (y) and control outputs (u) are 
available. For the sake of simplicity, we 
consider that the setpoint is fixed and set to 
zero. 

Based on the previous assumptions, the 
procedure to quantify the VM is described 
below: 

1. Read process data yj (j = 1…l) and uj 
(j = 1…l) with all loops closed (with 
actual performance); 

2. Select main and auxiliary loops; 

3. Compute the actual variance for each 
main loop (varact,i, i = 1…m); 

4. For each loop j (j = 1…l) 

a. Calculate the best performance 
achievable (see section 3.2) for 
loop j; 

b. Apply the controller; 

c. Calculate the new variance for 
each main loop i (varbest,i,,j, 
i = 1…m) 

d. Compute the elements of VM jth 
column using equation (1). 

 ( )
iact

jibestiactjiVM
,

,,,

var
varvar

,
−

=  (1) 

This structure for VM elements was 
chosen because of two reasons: 1) it provides 
directly the variability impact potential for each 
loop; and 2) it is dimensionless, fact that allows 
comparing the impact of two or more loops in the 
plant. 

Each element of the VM shows the 
potential improvement in the variability of each 
product, when a given loop has its performance 
improved. For example, consider the VM of: 
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−

5.19.07.0
2.103.0

 (2) 

Initially, we can verify that this plant has 
2 main loops and one auxiliary loop. From this 
VM we can conclude that: 1) if the performance 
of main controller 1 is improved, its variance will 
decrease 30%; 2) it has a negative and strong 
impact on another loop: its variance will increase 
by 70%. Is this healthy for the process? Clearly 
the answer to this question depends on the 
economic impact of each main loop. In the 
second case, the main loop 2 has potential 
reduction in variability of 90%. This controller 
has no influence on the main loop 1 variance; 3) 
improving the performance in the auxiliary loop 
(3rd column) will increase the variability in all 
main loops. 

In complement with the VM, the concept 
of the complementary VM arises (CVM). It is 
not necessary for all controllers to have fast 
performance, many loops have to play the role of 
accommodating or buffer disturbances. Based on 
this assumption, we define the Complementary 
Variability Matrix (CVM). The values are 
computed with actual loop variance (varactual,i) 
and the variance of the loop with the worst 
performance acceptable (varworst,i,j). The structure 
is the same as shown before, and the elements are 
computed as follows: 
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The same procedure as considered 
earlier can be used to evaluate the 
Complementary Variability Matrix (CVM). 
Only step 4.1 is replaced by the slowest 
accepted performance (see Smith, 2002) and 
the worst accepted performance (varwor) should 
be quantified. 

The proposed computational steps may 
not be easily applicable in an industrial setting, 
because the required information (controller 
and process model) is generally unavailable. 
The algorithm to compute VM where the 
controller and plant model are not available is 
shown in section 3. 

3. PRACTICAL ISSUES IN 
COMPUTING VM 

3.1 Computing the VM 

This section presents the methodology 
to evaluate VM in industrial setting where 
process and/or controller models may not be 
available.  

The first analyzed scenario is where a 
Model Predictive Controller is implemented. In 
this case, the controller model is not available, 
because most of industrial MPCs are “closed 
box solutions”. However, the plant model is 
available. In this case, setpoint variations in 
MPC controllers are quite common, because of 
the optimization layer. In this scenario, the 
controller model can be extracted (identified) 
using the Asymptotic Method (Zhu, 1998) or 
Subspace Identification (Overschee and Moor, 
1996).  

A second scenario contemplates the case 
where only low order controllers (PI and PID) 

are present and setpoint activity is available all 
loops. For this case, the following steps are 
contemplated: 

• Identify the controller order and 
parameters (C) using structured target 
factor analysis (STFA) (Fotopoulos et al., 
1994); 

• Estimate the time delay (Tuch et al., 
1994); 

• Identify the process model (G) using 
Subspace Identification (Overschee and 
Moor, 1996); 

• Identify the disturbance model (d) using 
Subspace Identification. 

• With G, C, and d available, the VM can 
be estimated applying the methodology 
shown in section 2.3. 

Based on our limited experience, we can 
affirm that the VM is not extremely dependent on 
both model and controller models accuracy. Even 
for visible mismatch, the obtained results are 
fairly good, comparing with the case where 
controller and plant model are available. 

3.2  Best and worst controller 
performances 

A natural question that arises is: how can 
the best and worst performance be computed for 
a given system? The answer clearly depends on 
the controller that is implemented on the process. 

For MPC controllers, the best achievable 
performance can be computed using the 
methodology proposed by Trierweiler and Farina 
(2003). If the desired performance is attainable, 
this methodology provides the tuning parameters 
for the chosen performance. Otherwise, if it’s not 



 

achievable, the best achievable performance is 
quantified. In this work, we assume that the 
“best performance” is based on the open and 
closed loop rise time ratio, and a convenient 
value for this ratio is 3.  

For low order (PI and PID) 
decentralized controllers, the best performance 
can be estimated using the methodology 
proposed by Faccin and Trierweiler (2004). The 
worst performance can be evaluated based on 
the methodology to tune buffer tanks (Smith, 
2002). Classical methodologies for PI/PID 
tuning (e.g. Ziegler-Nichols) can also be used 
as benchmark. 

4. QUANTIFYING THE 
ECONOMIC BENEFITS BASED ON 
VM 

The economic benefits of improving 
control performance each loop can be 
computed in two ways. The first method 
considers that the best performance can be 
achieved. In this case the VM can be used as 
follows. We represent the column j of the VM 
as VMj. The economic benefit can be easily 
quantified using the relationship: 

 VMDCLEB ⋅=  (4) 

where CLEB is the Control Loop Economic 
Benefit vector. It has the same number of 
elements as the number of main loops. 

1 2
T

lCLEB D VM D VM D VM= ⋅ ⋅ ⋅⎡ ⎤⎣ ⎦L  (5) 

Where D is the vector that translates 
variability reduction into $ per unit time. 

 1 2
T

mD D D D= ⎡ ⎤⎣ ⎦L  (6) 

where m is the number of main loops in the 
plant. This vector can be quantified as a 
function of plant throughput increase, utilities 

reduction, among others factors. This value can 
be provided by the commercial department of the 
plant or the optimization layer weights used in 
MPC design. 

However, as previously mentioned, not all 
controllers need to have high or tight tuning and 
the economic benefit, considering the worst 
performance of each one, can also be quantified. 
This vector is defined as Complementary Control 
Loop Economic Benefit: 

1 2
T

mCCLEB D CVM D CVM D CVM= ⋅ ⋅ ⋅⎡ ⎤⎣ ⎦L  (7) 

For example, suppose a plant where the VM and 
D are: 
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VM  (8) 

 [ ]100 50 TD =  (9) 

the CLEB is then be computed as: 

 [ ]2055 −=CLEB  (10) 

The CLEB indicates that improvement loop 1 
performance means an increasing the plant 
profitability. However, the opposite behavior is 
expected when loop 2 performance is improved. 

5. CASE STUDY - WOOD AND 
BERRY DISTILLATION COLUMN  

The pilot-scale distillation column 
proposed by Wood and Berry (1973) will be 
studied in this case study. The plant model is 
given by: 
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where xD and xB are the overhead and bottom 
products composition, and R and S are the reflux 



 

and steam flow rates, respectively. The time 
constants and time delays are expressed in 
minutes. 

Two decentralized PI type controllers 
were applied in this case study. The disturbance 
was generated by passing a random signal 
through a first order transfer function with 
unitary gain and 50 minute time constant. The 
VM analysis of this case study is next presented 
under 3 scenarios: 1) controller and plant 
models are assumed to be available; 2) only 
plant model is available; 3) neither the plant 
model nor controller models are available. 
However active setpoint activity is assumed. 
This serves as good excitation for closed loop 
identification.  

The PI controllers were tuned to have a 
performance where the closed loop rise time is 
twice faster than the open loop case. We 
consider here the best achievable performance 
when the rise time is 6 times faster than open 
loop.  

The D vector for this case is 
hypothetically set as: 

 [ ]30100=D  (12) 

In the first scenario, the controller and 
plant model were available. The VM was 
computed using the methodology shown in 
section 2.3.  
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−

−
=

41.018.0
17.057.0

VM  (13) 

The CLEB for this case is: 

 [ ]552 −=CLEB  (14) 

Based on CLEB, loop 1 should have its 
performance improved (top composition), 
increasing the plant profitability. Loop 2 shows 
the opposite behavior, improvement in its 

performance is likely to result in decreased plant 
profitability. 

In the second scenario, the controller 
model is assumed to be unavailable. Initially, 
using a scenario where two setpoint variations in 
each variable are available, the controller model 
was identified (see section 3.1). In this scenario, 
the VM was estimated to be: 

 ⎥
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−
=

46.019.0
19.060.0

VM  (15) 

Notice that the estimated VM closely 
matches the true VM shown in (17). In the third 
scenario, both controller and plant model were 
identified using closed loop data. The estimated 
VM for this scenario is: 

 ⎥
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⎤
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−

−
=

46.018.0
19.060.0

VM  (16) 

Even for this case, where controller and 
plant model were first identified using subspace 
identification, a good estimative of VM was 
obtained. 

6. CONCLUDING REMARKS 
The main conclusions of the proposed 

work can be summarized as: 

• industrial plants have many loops with 
considerable potential for performance 
improvement and therefore methodology to 
prioritize loop maintenance is required; 

• the concept of Variability Matrix was 
introduced in this work and has been shown to 
highlight the potential improvement in each 
loop and its impact on the whole plant; 

• the methodologies to compute VM where 
neither the controller nor plant model are 
available has also been presented; in this 



 

scenario Subspace Identification can be 
used; even for this case the methodology has 
been shown to yield very good results for 
closed loop identification; 

• the proposed methodology was applied to 
two case studies providing good results; 

• the proposed scenarios where the VM can be 
computed allows the application in an its 
industrial setting. 
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