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ABSTRACT 

Volunteer computing is the name of the use of end-user resources to do high-

performance computations. Two of the biggest challenges of volunteer computing 

nowadays is to facilitate the application development work of the scientists, and to 

allow the client to donate in an isolated and transparent way. If a volunteer computing 

system isn't easy to use by the scientist, scientists will avoid using it regardless of the 

computing power available. If it isn't easy to use by the volunteer, it will drive 

volunteers away and harness less computing power. This work describes clouds@home, 

which is a project to integrate virtual machines running on desktop hosts into the OAR 

scheduler to make them computing nodes of a virtual cluster. With clouds@home, the 

scientist must keep only a single version for a single compilation target of its 

application, thereby reducing the burden of application development. He also isn't 

bound to any particular API. The volunteer is further protected by the virtual machine 

monitor isolation layer.  
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Clouds@home: Integração de Virtualização em Desktop Grids com 

OAR e BOINC 

RESUMO 

Computação voluntária é o nome dado ao uso de recursos dos usuários finais para 

executar computações de alto desempenho. Dois grandes desafios da computação 

voluntária atualmente são facilitar o desenvolvimento de aplicações pelo cientista e 

permitir aos clientes doarem seus recursos de maneira isolada e transparente. Se um 

sistema de computação voluntária não é fácil de usar para um cientista, cientistas vão 

evitar empregá-lo, indiferentemente da quantidade de poder computacional disponível. 

Se ele não é fácil de usar para um voluntário, menos voluntários doarão seus recursos e 

assim dispor-se-á de um poder computacional menor. Este trabalho descreve 

clouds@home, que é um projeto para integrar máquinas virtuais executando em 

máquinas desktop no escalonador OAR de forma a torná-las nodos computacionais de 

um cluster virtual. Com clouds@home, o cientista precisa manter apenas uma versão 

para um único alvo de compilação de sua aplicação, assim reduzindo o trabalho de 

desenvolver aplicações. Ele também não precisa escrever em nenhuma API em 

particular. A camada de virtualização melhora a proteção do voluntário por representar 

uma outra camada de isolamento.  
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1 INTRODUCTION 

Volunteer computing is the name of the use of end-user resources to do high-

performance computations. It has gained importance, since the end users now hold 

much more computing power than ever, much more than any centralized approach. To 

show this, we can compare the BOINC Project, which is the flagship of volunteer 

computing projects and now holds more than 3,775,961.8 GigaFLOPS 

(BOINCSTATS,2010) to the most powerful supercomputer, which has the max 

processing power of 2,566,000 GigaFLOPS (TOP500,2010). It is still worth pointing 

out that the BOINC network has lots of potential of increasing, accompanying the 

growth of the Internet and personal computing. 

One of the biggest challenges of volunteer computing nowadays is to facilitate the 

work of the scientists. For instance, if a scientist wants to use BOINC today, he has to 

rewrite his application using BOINC's API, and also write a single version for each 

platform (e.g. Windows x86 and Linux amd64), not to mention test and maintain those 

variations. If we see that, even with the shown computing power of this sort of 

computation, only around 10 projects use most of the available volunteer computing 

power on the BOINC network, we have evidence that know-how is a limiting factor to 

access the volunteer computing technology. 

Another challenge is to allow the client to donate in an easy and transparent way. 

This is also a big challenge, since the volunteer will be opening his computer to a 

foreign code stream, thus trusting the scientist to use his resource in a thoughtful way. 

This raises questions regarding isolation and resource usage. 

This work advocates a virtualized approach for volunteer computing. To do so, we 

will describe our experiences and lessons learned so far from implementing 

clouds@home.  

The goal of clouds@home is to integrate virtual machines running on desktop hosts 

into the OAR scheduler to make them computing nodes of a virtual cluster. We will 

describe which questions arose and how we've addressed them in this project, 

discussing considered alternatives. 

Our contributions are the following: we’ve developed a desktop computing agent for 

the OAR batch scheduler, the vmlauncher, which is a BOINC application designed to 

launch a virtual machine when run, a virtual appliance designed to run the OAR desktop 

computing agent and we’ve improved the OAR REST API, so that the desktop 

computing agent interacts with the OAR scheduler by the REST API. 

This work was developed as a Google Summer of Code project, and after that as an 

INRIA internship, specifically at the Laboratoire de Informatique de Grenoble. It was 

developed very closely with the OAR team.



 

 

 

2 BACKGROUND ON VOLUNTEER COMPUTING 

This chapter provides background on volunteer computing. First we will discuss 

many computing forms related to volunteer computing, including volunteer computing. 

Then we discuss challenges and desirable properties of a volunteer computing system.  

2.1 Forms of computing 

 

This section describes many forms of computing related to volunteer computing. It 

is intended to define and contextualize volunteer computing. We address here cluster, 

grid, cloud, and volunteer computing. 

The first form of parallel computation we'd like to address is cluster computing. 

For this discussion, we take the definition from (STERLING; LUSK; GROPP, 2003). A 

computer cluster is a parallel computer constructed of commodity components and runs 

(as its system software) commodity software. The idea is to build a supercomputer out 

of assembled computers, even though some vendors sell prepackaged clusters. Clusters 

might have different purposes, like high-availability, load-balancing, and high-

performance. In this work we're interested in the high-performance variant. 

The next stop in our series is grid computing. According to (FOSTER, 2002), a 

grid is ―a system that coordinates resources which are not subject to centralized control, 

using standard, open, general-purpose protocols and interfaces to deliver nontrivial 

qualities of service‖. More recent definitions have focused on the combination of 

resources from different administrative domains in order to reach a common goal 

(BOTE-LORENZO; DIMITRIADIS; GÓMEZ-SÁNCHEZ, 2003). 

The dream of grid computing is that computing becomes a utility much in the sense 

electricity and water are in a modern household. One could simply "plug in" and start 

computing. The following characteristics are differences between grid and cluster 

computing: 

 Grid nodes are typically more heterogeneous; 

 Grid nodes belong to different administrative domains; 

 Grid operates in a bigger scale than cluster computing. 

These items are also the challenges of grid computing. Heterogeneity raises 

portability challenges; the involvement of different administrative domains raises 

questions of privacy, security, authentication and authorization. And there are still the 

challenges of scalability and interoperability due to the third point. 
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A new avatar of grid computing arose recently. Cloud computing, in particular in 

its Infrastructure as a Service (IaaS) form, is a form of grid computing, where 

virtualized resources are allocated dynamically on a pay-as-you-go scheme 

(VAQUERO et al., 2009). It is important to reference because it is a trend in distributed 

systems, and also because virtualization is a key technology to allow cloud computing, 

thus motivating us to explore the benefits of virtualization for other computing forms, in 

this case, volunteer computing. 

The idea behind volunteer computing (also seen in the literature as desktop grids or 

global computing) is to maximize the ease with which people can donate their 

computing resource to a scientific project (SARMENTA, 2001). There are a couple of 

differences between grid and volunteer computing. First, grid computing assumes a 

network of clusters, supercomputers, and regular computers owned by universities, 

research labs and companies. Secondly, grid computing assumes specialist management 

of these resources. Naturally, if you involve desktop computers from regular users of 

the Internet, these assumptions don't hold. 

The computing form being advocated here is the Volunteer Cloud Computing 

approach (SEGAL et al., 2009). In comparison with cloud computing, we no longer 

have the pay-as-you-go component, nor are the virtual machines dynamically allocated. 

It is similar if we take into account the dynamic nature of the donated virtual machines.  

2.2 Challenges of volunteer computing 

 

As already mentioned, the main difference between grid and volunteer computing is 

that volunteer computing demands a simple setup, while grid computing can sacrifice 

this for other desirable properties.  

In this section we will list and discuss briefly some of the challenges that arises on 

the design of a volunteer computing platform. This list certainly isn't comprehensive, 

but it prepares the reader to criticize this work, and also serves as a more concrete 

discussion of what is volunteer computing, enabling the reader to spot missing points. 

We can divide our list in two parts: the challenges that arise from the volunteer 

perspective and the challenges that arise from the scientist's perspective. 

2.2.1 Challenges on the volunteer side 

This section describes some of the challenges that arise on the volunteer side. These 

challenges arise mostly from the model of volunteer assumed on volunteer computing: a 

non-technical, domestic user, but also from the number and potential variety of 

volunteers. 

Probably the most central one is ease of use. We must assume that the volunteer-

side software is easy to use, in order to attract volunteers from different technical 

backgrounds (possibly volunteers without a technical background!), and thus more 

volunteers and more computing power. In other words, we can't impose difficulties on 

the process, taking the risk of losing volunteers and therefore computing power. 

Due to the varied nature of volunteers, we must take platform independence into 

account. Volunteers might own a variety of computers, running another variety of 



 

 

 

operating systems with different packages installed on it. The goal here is, for instance, 

not to exclude those volunteers who own a Macintosh. 

In order not to discourage the volunteer from donating his computing power, the 

system must have volunteer-side security. The idea here is that the volunteer should 

have to trust the project the least possible. 

A requirement that is not typically present on grid systems is user interface design. 

Grid computing can assume that the system administration is done by a technician, 

whereas volunteer computing must present an interface designed for the non-technician 

volunteer, where he can manage his participation details and abstract the technical 

details as much as possible.  

2.2.2 Challenges on the scientist’s side 

This section describes the challenges that arise on the scientist's side. They are 

similar to the ones on grid computing, but taken to a new plateau, due to the increased 

heterogeneity, the higher number of administrative domains, and the more likely 

presence of malicious users and unreliable nodes. 

The first one is programmability. Developing parallel and distributed high-

performance applications is hard, and we should make it as easy as possible. This 

property is often traded by performance, scalability, and other properties. 

A particular case of programmability is portability. The volunteers own a 

potentially huge variety of platforms. Ideally, the scientist must not bother with the 

variety of hardware and platforms on which his application would run. Maintaining 

multiple versions of an application due to the variety of platforms is a big hurdle if the 

maintenance time is considered, especially from a scientist, which ultimately doesn't 

want to waste time on sheer programming. 

A volunteer computing project usually operates with a huge amount of volunteers. 

Seti@Home, for instance, has over 3 million volunteers. If the project doesn't scale well 

it won't benefit from a big number of volunteers as it should. So scalability is a desired 

property. 

A challenge that clashes with programmability is adaptability. Adaptability is the 

ability of the application to cope with changes in the computing infrastructure e.g. 

volatility, failures, etc. Since volunteer nodes are inherently volatile, we must use a 

programming model that addresses adaptability. For instance, MPI (GROPP; LUSK; 

SKJELLUM, 1999) wouldn't be appropriate; since MPI jobs are static i.e. they must 

keep the same set of nodes during the whole computation. 

Lastly, economy is a good challenge. We wouldn't bother to do volunteer computing 

if it would be cheaper to buy or rent an infrastructure. For an interesting comparison 

between renting Amazon EC2 instances and starting a volunteer computing project, see 

(KONDO et al., 2009).  

2.3 Final Remarks 

In this chapter, we've discussed various forms of computation in order to present 

background on parallel computing forms. We've also discussed many of the technical 

challenges of volunteer computing itself, since it is the most relevant computing form to 

this work. 
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3 BACKGROUND ON VIRTUALIZATION FOR 

VOLUNTEER COMPUTING 

This chapter provides background on virtualization for volunteer computing. Firstly 

we will describe what virtualization is, what a hypervisor is and which techniques are 

used to achieve virtualization. After that we'll summarize the advantages and challenges 

that virtualization brings for volunteer computing.  

3.1 Virtualization 

This section describes what virtualization is, what an hypervisor does and how it 

enables virtualization. 

In essence, an operating system is a multiplexer, which multiplexes a virtual 

resource to a scarce physical one using different strategies. A process, for instance, is a 

virtualized view of a CPU; virtual memory works analogously for the physical memory 

and files for the persistent storage. 

The idea of virtualization is to present the whole machine as a resource, and 

multiplex it onto the physical machine. The interface provided by the virtual machine 

duplicates that of the physical machine, so that one can run operating systems on top of 

it. 

The piece of software that enables virtualization is called hypervisor, also referred 

as Virtual Machine Monitor or VMM in the literature. It sits on top of the hardware, 

replacing the operating system in a classical system. The guest operating systems are 

then located on top of the hypervisor. 

The hypervisor also multiplexes the physical resources to the guest OS, enforcing 

protection and isolation as well.  

The hypervisor also isolates the devices available on the physical machine by 

presenting an ideal device to the guest OS. This is important because operating systems 

are easily ported, since the interface is designed this way. 

Our discussion doesn't include operating system virtualization, where one enforces 

that the host and the guest run the same OS, and present to the guests a virtualized OS 

interface. We are not addressing this form of virtualization, since we are interested in 

OS portability. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Diagram of a system stack (a) without virtualization (b) with virtualization 

 

We now discuss the techniques for implementing virtualization. 

Emulation is the simplest form of virtualization, and also the least performing. The 

technique is a simple switch statement for each instruction, and then the semantics of 

the instruction are implemented on code. The guest OS is run unmodified. The guest 

architecture can be different from the host one, as it is the case with video game 

emulation. Also, the emulator can emulate devices that aren't present on the physical 

machine. 

The problem with emulation is that it is very slow. One can improve the 

performance by running most of the instructions natively, assuming that the host and 

guest architectures are the same. This approach isn't feasible on the x86 architecture: 

some instructions can't be run natively because they fail silently or behave differently 

than when run on kernel mode. (ADAMS; AGESEN, 2006) discuss this issue further. 

There are basically three workarounds: dynamic translation, paravirtualization and 

hardware-enabled virtualization. 

Paravirtualization solves the difficulty of virtualizing the x86 architecture by 

offering an interface to the guest machines that is not identical to the interface offered 

natively, in order to accelerate and facilitate the support of multiple guest operating 

systems. The guest OS' kernel must be slightly adapted to support the modified 

interface. This is a drawback of this approach, since closed-source systems like 

Windows aren't still ported. 

It was one of the first approaches to present good results on modern systems, as one 

can see in (BARHAM et al., 2003), which also discuss further the difficulties and the 

workaround adopted. 

Another possibility to tackle the difficulty of virtualizing the x86 architecture is to 

modify slightly the architecture to include a hypervisor mode. Typically in a modern 

operating system we see the kernel mode and the user mode. These modifications add 

the hypervisor mode, so that the hypervisor can multiplex kernels into the hardware 
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without the aforementioned hardware difficulties. Examples of such modifications are 

the Intel-VT and AMD-V. This has the advantage of running unmodified guest OS 

kernels e.g. Windows. 

Another possibility is to adopt a special cache, which maps each instruction on the 

virtualized side to a set of physical instructions to be run. The difficult instructions are 

then dynamically rewritten. This approach is the least performing of the three 

workarounds. 

3.2 Virtualization and Volunteer Computing 

This section summarizes the advantages of using virtualization in volunteer 

computing. It is a summary of the advantages discussed in (FIGUEIREDO; DINDA; 

FORTES, 2003), slightly adapted for the volunteer computing case. 

The first advantage is isolation. We have another layer of isolation due to the virtual 

machine abstraction. This is good because a volunteer can trust less the project he is 

collaborating. The job assigned to the volunteer might contain bugs. Without a virtual 

machine, this bug would happen in the same level of the volunteer's processes, 

potentially affecting them. The extra layer of isolation can thus isolate further the bug.  

We claim improvements on security due to the least privilege principle. If the job 

contains malicious code, it will compromise only the virtual machine, instead of the 

whole physical machine. 

Another advantage is customization. We can run the job in a customized 

environment, without having to install software packages on the volunteer machine. 

 

Another advantage is simplified application development. For instance, we can 

develop only for 32-bit Linux architecture and be able to deploy on an x64 Windows 

volunteer machine. 

A corollary of customization is legacy support. If our job depends on a legacy piece 

of software, we can ship it into our virtual machine, without even the knowledge of the 

volunteer. 

Sometimes the application wants to do legitimate use of some resource but it has no 

authorization. An example would be to mount a remote file system. With the virtualized 

approach this is not a hurdle anymore, and without breaking the aforementioned 

isolation and security. 

We can have a better control of resource usage by the application by specifying the 

virtual machine configuration prior to execution. Examples of controllable parameters 

are RAM size and hard drive size. Also, there are some other parameters which are now 

easy to configure due to network access, like bandwidth usage, traffic shaping, etc. The 

argument here is that we can reuse the network administration's toolkit to do resource 

management. 

One possibility that arises is to use system-level checkpointing. In some projects 

the computation can take hours or even days. If a volunteer gets some task and doesn't 

donate anymore, he might block the advance of the project in the whole. Traditionally 

this would be solved with scheduling the task again to another volunteer, but there is the 



 

 

 

possibility that the migration of the VM doing the work would result in a more efficient 

usage of computing resource. 

3.3 Challenges of Virtualization in Volunteer Computing 

This section describes the challenges raised by virtualization.  

A hypervisor installation may range in size from dozens to hundreds of megabytes, 

which added to the image size complicates the issue of data transfer. This can drive 

volunteers away, since volunteers might not be willing to download huge files. Also, it 

might be considered overly invasive, since the installation typically involves some sort 

of kernel module, possibly causing a system restart and violating the least privilege 

principle. 

We can't afford to pay for a virtualization solution for each volunteer in our network. 

Also, there are functionalities that are missing on the free or open-source versions, so 

our decision must take licensing issues into account. 

Hypervisors aren't still very interoperable due to the lack of standards. A point 

where this concern is better seen is the programming API of the hypervisors, where 

each one basically has its own syntax and semantics. 

Since the hypervisor can and will be updated, the versioning problem arises. It 

arises in two particular cases: if the update changes the interface of the hypervisor and if 

the volunteer already uses virtualization, potentially with version clashes from the 

version used for the volunteer computing project. A simple example for this is that 

Virtualbox won't work on Linux if the kernel module for the KVM is loaded on a 

processor with Intel VT-x. 

We must consider the problem of sending the image to the volunteer node. Typically 

those images are big (around hundreds of megabytes), so we must take action to make 

them short. Narrowing the image's size hinders the scientist/framework developer, since 

he's allowed to include fewer packages into the distribution, making it less flexible. 

Also, we must address the problem of how the volunteer node gets the data which 

we'll compute upon. It also has the problems of transfer size, but here we must find a 

compromise solution, since it can affect the overall computing performance. 

The need to transfer data to do the computations must be transparent to the 

volunteer. This means he shouldn’t get billed by bandwidth overuse, nor notices some 

slowness on his Internet connection. 

The question here is whether the volunteer nodes should communicate, and how. 

The absence of communication allows the nodes only to do data-parallel or task-parallel 

computations. A naïve approach would lead to a central node routing the 

communication. The variety of networking solutions used by the volunteer makes a 

decision in this point difficult, as it might rule out volunteers or desired functionality. 

The additional burden should be transparent for the volunteer. He shouldn't have to 

manually install the virtual machine monitor nor see any pop-up window due to the 

virtual machine. 
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3.4 Final Remarks 

In this chapter we've discussed the challenges and tradeoffs involved in the 

virtualized approach for volunteer computing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

4 RELATED WORK 

This chapter discusses related work on the subject. 

4.1 Volunteer Computing Middlewares 

(CECILE et al., 2001) describes XtremWeb, a global computing system. Volunteers 

must download a Java client in order to donate. This Java client can communicate with 

the server using TCP/IP, CORBA or RMI. The client keeps sending heartbeats to sign 

to the server that it is alive and computing. It also addresses the various platforms 

problems by providing a version of the application for each platform. 

(ANDERSON, 2004) describes BOINC, a middleware for volunteer computing. 

BOINC's goals are the following: to reduce the barriers of entry to public-resource 

computing, to share resources among autonomous projects, to support diverse 

applications and, to reward participants. It is designed to require from the scientist only 

a modest hardware configuration and computer skills. 

There are a couple of projects that already use BOINC as platform. SETI@Home, 

Einstein@Home are the most famous, but not the only ones. As already told on this 

document, the estimated computing power of the whole BOINC network is 3,775,961.8 

GigaFLOPS (BOINCSTATS, 2010). We will discuss BOINC in more detail in chapter 

5, since it is an essential part of our design. 

4.2 Grid Middlewares 

Cigri (GEORGIOU; RICHARD; CAPIT, 2007) is a lightweight grid middleware. 

The idea is to exploit idle cluster resources by running bag-of-tasks jobs. It must thus 

cope with the volatility of the nodes. It also allows for system-level checkpointing. They 

achieve system-level checkpointing by using BLCR (DUELL, 2003), and not by the 

means of virtualization. 

Globus (FOSTER; KESSELMAN, 1996) describes a metacomputing infrastructure 

toolkit. It describes the mechanisms of this toolkit to tackle the problems of scale, 

heterogeneity, lack of structure, dynamicity and interoperability. It does so by providing 

means to select resources according to restrictions given by the user, as well as 

providing mechanisms for authentication, data access and interfaces for parallel 

programming. 

4.3 Resource Managers 

Condor (LITZKOW; LIVNY; MUTKA, 1988) is a scheduling system for a 

workstation environment. It schedules backgrounds jobs into idle workstations. It uses 

the Remote Unix (LITZKOW, 1987). The placement of the jobs is transparent to the 

user, and it uses checkpointing in the case where a workstation running a background 

job stops being idle. This checkpointing facility works at the process level. 
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OAR (CAPIT et al. 2005) is an open-source resource manager (batch scheduler) for 

large clusters. It is developed with high-level tools, such as Perl as scripting language 

and MySQL as DBMS, without considerable loss of performance or scalability, and 

implementing most of the important features seen on other schedulers, such as 

reservations, and interactive jobs. 

4.4 Virtual Machine Monitors 

VirtualBox (ORACLE VM VIRTUALBOX USER MANUAL, 2010) is a cross-

platform virtualization application. It is freely available as Open Source Software under 

the terms of the GNU General Public License (GPL). It runs on Windows, Linux, 

Macintosh and OpenSolaris hosts and supports a large number of guest hosts. It doesn't 

demand hardware support for virtualization, because it uses dynamic recompilation. But 

its performance improves if hardware supports virtualization. It allows for a shared 

folder between the host and the guest. It also can present up to 32 virtual CPUs to the 

virtual machine, enabling SMP on the virtual host. It also can save snapshots, being a 

useful feature for implementing checkpointing. It also has a command-line front end. 

Xen (BARHAM et al., 2003) is a virtual machine monitor for IA-32, x86\_64, 

Itanium and ARM architectures.  It is free software and uses both the hardware-assisted 

approach and the paravirtualized if there's no hardware support. In Xen, one of the 

multiple virtual machines is called the domain0, and it is typically the operating system 

that has direct access to the hardware. This domain0 can (as of the version 3.0) Linux, 

*BSD, Solaris. In machines with support for x86 virtualization, Windows can also be 

used as domain0. Xen has checkpointing and live migration features. It also has a 

feature to map a Virtual Block Device to a physical one, where the physical one can be 

a hard disk, a partition, a NFS mount, a LVM volume or a file. Xen also has the 

XenAPI, an API for managing the hypervisor. 

KVM is a virtual machine monitor for Linux. KVM stands for Kernel-based virtual 

machine. KVM can only run Linux as host operating system, and demands a 

virtualization-enabled hardware. 

VMware has a handful of virtualization solutions which runs both on Windows and 

Linux. But their proprietary licensing makes it inappropriate for our purposes. 

4.5 Virtualization for Grid Computing 

(FIGUEIREDO; DINDA; FORTES, 2003) advocates a virtualized approach for grid 

computing. His discussion has been summarized in the former chapter. It identifies 

many qualitative arguments in favor of virtualization and new challenges that arise. It 

also present benchmarks on the performance of an application running inside a VM and 

the boot overhead. It also proposes an architecture for a grid using virtual machines. 

This architecture raises questions that every grid using virtual machines should answer. 

4.6 Volunteer Computing Projects with Virtualization 

(MAROSI et al., 2008) described their approach for application sandboxing 

(isolation the application inside a virtual machine). They've developed a wrapper for 

launching a virtual machine and manage a task inside this virtual machine. 

Communication direction is always from the wrapper to the task. They used QEMU as 



 

 

 

virtual machine monitor, therefore trading performance achieved with other VMMs for 

features and flexibility. Their wrapper is intended to be portable across different 

volunteer computing infrastructures, and has been tested against BOINC and SZTAKI, 

which is a Hungarian BOINC project. 

(ANDERSEN. 2006) describes how they scavenged idle desktops to the Minimum 

intrusion grid (VINTER, 2005). Their approach has some interesting points. They used 

an embedded Linux distribution for the virtual appliance, achieving a virtual image size 

of 3MB. To avoid the firewall issue, they've employed a pull architecture over HTTP 

and HTTPS only for the desktop nodes. The paper doesn't address licensing issues, or 

the easiness that the volunteer can install the software package to donate. 

(DOMINGUES; ARAUJO; SILVA, 2009) addresses further the question of 

performance and overhead of virtualized nodes. Their findings include that a job 

running inside a virtual machine suffers a 10-35\% penalty due to virtualization. The 

CPU-intensive jobs are less affected than the I/O-intensive ones. The perceived 

overhead to the volunteer was also measured, and it is ranging between 15\% and 30\%. 

The paper concludes that I/O and network intensive applications should be avoided to 

run on virtualized environments due to the overhead. 

4.7 Custom Execution Environments 

(BUNCIC et al., 2010) describes CernVM, a virtual appliance for tackling the 

problem of deploying the software of an experiment on multiple platforms. They use 

CernVM-FS (BLOOMER; BUNCIC, 2010) to deploy the files of the experiment into 

the virtual machine. CernVM-FS is an on-demand read-only filesystem which makes 

use of aggressive caching. Deployment sizes into the LHC experiment ranges between 2 

and 8 GB. They generated the appliance using rBuilder, a tool from rPath. The paper 

also describes the server infrastructure. 

(FERREIRA; ARAUJO; DOMINGUES, 2010) describes libboincexec, a library 

which extends BOINC to run applications in a custom execution environment. This 

execution environment can be a virtual machine, or a simple fork()/exec().  
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5 SOLUTION’S DESIGN 

This chapter describes the design of our solution. The goal of this work is to 

integrate virtual machines running on desktop hosts into the OAR scheduler to make 

them computing nodes of a virtual cluster. We use BOINC as a tunnel for our virtual 

appliance, and also to manage the client-side issues. We used BOINC to manage those 

issues in order to reuse BOINC's features of client preferences. 

Our solution comprises 7 parts: the BOINC server and client, the VirtualBox 

hypervisor, the vmlauncher application, the virtual appliance, the OAR desktop 

computing agent and the OAR server.  

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Static diagram of the solution  

 

5.1 Structure of the Solution 

We wrote a BOINC application that launches a virtual machine. The idea is to use 

the virtual machine as a sandbox, thereby providing an homogenous platform for the job 

programmer. It is written in C++ and uses the command-line interface for VirtualBox.  

We've developed a desktop computing agent for OAR. The goal of the desktop 

computing feature is to enable nodes behind firewalls to join the grid. The agent fetches 

jobs in a pull architecture over HTTP. This means that the desktop computing agent 

operating in an infinite loop of fetching jobs, executing them and submitting their 

results. The agent connects to the OAR through the REST API. 

We've developed a virtual appliance. A virtual appliance is a virtual machine image 

designed to run on a virtualization platform. This means that the virtual appliance, when 

executed, spawns virtual machines. Many virtual machines can be spawned from the 

same virtual appliance. 

The goal is that this virtual appliance runs the desktop computing agent on boot 

time, and that its size is small. 



 

 

 

5.2 Tools 

This section describes the tools in which we based our solution upon. 

5.2.1 BOINC 

The volunteers must install the BOINC client and then attach to one or more projects 

through the URL. The BOINC client can be run as a screensaver, as a daemon or as a 

regular application, and the participant can control his preferences i.e. how much of his 

resources is the project allowed to use. The volunteer gains credit by his participation. It 

is the experience of the BOINC community that volunteers are highly motivated by 

credit. 

It is necessary to develop applications specifically for BOINC, or to use its wrapper. 

Even when using the wrapper, it is necessary to develop versions of the applications for 

each of the desired platforms. Then one must create workunits, which are ways to 

describe the data to be computed. Each workunit has a result, which represents the 

result of the application run upon the workunit. 

BOINC server implements mechanisms for redundant computing in order to avoid 

fake results. It also uses a decentralized architecture so that its daemons can be 

distributed through different hosts and can cope with failure. It also uses an exponential 

backfoff on the clients to cope with server overload and failure. 

5.2.2 Virtualbox 

Virtualbox is a virtual machine monitor for x86 and Intel64/AMD64 platforms. We 

already discussed VirtualBox and other virtual machine monitors in section 4.4. 

We've chosen VirtualBox because it is cross-platform, licensed under the terms of 

the GPL and because it doesn't demand special hardware support. 

5.2.3 OAR 

OAR is a batch scheduler and a resource manager. This means that OAR receives 

requests for execution of jobs and it must assign resources from a pool of resources to 

actually execute those jobs. It provides command-line tools for managing resources 

(e.g. adding and removing nodes, setting node properties, etc.) and submitting jobs. It 

manages the dynamicity of resources i.e. when a resource is unreachable, OAR will 

mark the node as suspected. OAR manages its resources in a push architecture over 

SSH i.e. when OAR schedules a job to run in a node, it will access that node though 

SSH and then spawn the job for execution. OAR back end can be either MySQL or 

PostgreSQL. 

Recently, the OAR team developed a REST API, so that one can manage resources 

and jobs also through a lean web service layer that works over HTTP. We've further 

developed this API so that the desktop computing agent communicates with the OAR 

server also through this API. We've done so because of the code reuse and 

interoperability provided by the REST API. 

5.2.4 Kameleon 

Kameleon is a virtual appliance generator. It interprets a recipe YAML file in order 

to generate the corresponding image described in the recipe. The recipe is described as a 
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list of steps, where each step describes a set of kameleon commands to achieve its 

semantic. A kameleon command is roughly a shell command to be executed.  

 

 

Figure 5.2: Interactions of vmlauncher with VirtualBox and the BOINC client  

5.3 Contributions 

This section describes the contributions made in this project. In summary, we built a 

BOINC application to launch virtual machines in VirtualBox, a virtual appliance to act 

as a desktop computing host in the volunteer computer, the OAR desktop computing 

agent and its corresponding REST API calls. 

5.3.1 vmlauncher 

vmlauncher is a BOINC application written in C++ that starts a virtual machine 

when run. It is based on the BOINC Wrapper. The figure 5.2 explains its mechanics. 

As we can see on the figure 5.2, the application forwards and translates the BOINC 

client's commands to VirtualBox. The BOINC client issues those commands using the 

OS functionality e.g. signals on UNIX. The vmlauncher application translates them to 

commands to the VirtualBox command-line front end. This interaction takes place when 

the volunteer starts donating e.g. when the volunteer's computer is idle. 

Another option would have been to modify BOINC's clients, but then the volunteer 

would have to download our modified client in order to donate, thus imposing another 

difficulty to the volunteer, without bringing any advantage in contrast to writing an 

application. 

It is also important to explain that we didn't use libboincexec (FERREIRA; 

ARAUJO; DOMINGUES, 2010) because it would require the virtual machine to be 

reachable from the host, thus making it more prone to security hazards. 

5.3.2 Virtual Appliance 

We've developed a Virtual Appliance using Kameleon. This appliance contains a 

lean debootstrapped debian image with the ruby interpreter and the OAR desktop 

computing agent installed into it. We used kameleon in order to make it easier to 

maintain: if we want to change the virtual appliance to include a package, we just have 

to change the recipe file and re-generate the appliance. 



 

 

 

The virtual machine is going to be launched by the BOINC client and the 

vmlauncher application. When it boots, it must start the OAR desktop computing agent. 

It is important to the virtual appliance to be small, so that we don't consume the 

bandwidth of the volunteer. 

We could have used CernVM, but the size (800MB) is too big, and we are afraid to 

lose volunteers due to it. Also, we could have used an embedded Linux distribution 

based on uclibc (UCLIBC HOMEPAGE, 2010) and busybox (BUSYBOX 

HOMEPAGE, 2010), which would render our distribution in around 10MB. But the 

lack of stable packaging systems and big software repositories makes the option a little 

harder, since it makes the virtual appliance maintenance harder.  

 

 

Figure 5.3: Conceptual diagram of the desktop computing agent  

 

5.3.3 OAR desktop computing agent 

We've developed a desktop computing agent for OAR. The difference between a 

desktop host and a service host is that the desktop host can be behind a firewall. This 

means that a desktop host can't receive connections from outside. In particular, the OAR 

server can't access a desktop host through SSH, which is what it would normally do to a 

service node. A way to handle the presence of firewalls is to make the desktop host 

initiate the connections. That is the goal of the desktop computing feature.  

The agent polls the server through the REST API every 30 seconds asking for jobs 

to run and to kill. Whenever there are jobs for the agent to run, it spawns another 

process, which will in turn ask the REST API for the details of the job e.g. command to 

be run, stagein file, and also update the state of the job. It will then run the job and 

submit the results as a stageout, even in the case of error. 

We wrote the agent in ruby, so that we could benefit from a dynamic and object-

oriented design style. This improves its readability and makes it easier to modify. The 

figure 5.3 pictures the classes written and their responsibilities. 
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The agent class triggers the client class every 30 seconds to run and kill jobs. The 

client class will then acts as a proxy for the REST API, asking for jobs and spawning a 

JobRunner class for each job, passing to it a JobResource. The JobRunner merely 

executes the job, asking for the job details to the JobResource, which acts as well as a 

proxy for the REST API. The configuration is a singleton that parses the configuration 

file. 

Once developed, we developed a debian package for the agent. This way, one can 

install the agent on his computer by typing apt-get install oar-desktop-computing-agent 

from the OAR repository. 

5.3.4 OAR REST API Improvements 

We decided to make the communications between the agent and the server through 

the REST API. The OAR REST API is an API accessible through HTTP that follows 

the REST architecture. A REST architecture over HTTP means that each URI identifies 

a resource and that the action on this resource is identified by the HTTP method used to 

access the URI. The advantages of using the REST API for the communication are to 

have a high-level, interoperable and scalable communication medium. Also, the API 

calls developed here can be used for other purposes, enhancing code reuse. 

In order to design a REST API, we must first identify the resources. A resource is an 

entity or concept of the problem domain. Then we must identify the relationship 

between the resources. Finally, we must determine which operations we want to 

perform on those resources. 

We identified the following resources: job, stagein, stageout, job state and node. 

Then we identified the relationships between the resources: a job can have one stagein 

and one stageout, and must have a state. A node is said to have many jobs if those jobs 

are assigned to this node. 

Finally, we identified the operations. Thus, we've developed the following REST 

API calls: 

 GET /jobs/<job_id>/stagein to download the stagein file assigned to the job 

whose id is job_id 

 POST /jobs/<job_id>/stageout to upload the stageout file related to the job 

whose id is job_id. It supports multipart upload. 

 GET /resources/nodes/<node_id>/jobs(.*)?state=<job_state> to list the jobs 

scheduled under the state job_state to the node whose id is node_id 

 GET /desktop/agents to get a newly generated node_id for this node. This is 

actually a bad example of RESTful design, because the URI doesn't identify 

a resource. 

 POST /jobs/<job_id>/state to change the state of the job whose id is job\_id 

to the one given in the message body 

 

Other options for the communication would be sockets, RPC/RMI or other web 

services, like XML-RPC. It would be harder to develop using sockets, since it is lower 

level than a RESTful web service. RPC and RMI would not be as interoperable as a 

RESTful web service, since they are typically bound to a single programming language. 



 

 

 

Other web services approaches are typically not as simple to implement as RESTful 

web services. 

5.4 Operation 

The purpose of this section is to explain how each of the users of the system view it. 

We then present the system from the perspective of the volunteer, of the scientist and of 

the project administrator. We also present briefly how the system reacts to the actions of 

those users, in order to explain better the system's internals. 

5.4.1 Volunteer’s View 

Volunteers want to support projects by allowing those projects to do computation 

with the resources of the volunteer i.e. donate to the project. A volunteer must not be 

technically skilled to collaborate with the project. 

In our solution, volunteers must install the BOINC client and VirtualBox to donate 

to the project. He must then attach to our BOINC project through its master URL. This 

all can be done through the GUI, since both BOINC and VirtualBox installations are 

graphical, and attaching to a project is also a graphical process. Nevertheless, it is a 

manual process, requiring the volunteer to install each one separately and attach 

manually. 

Volunteers also want to set rules on this collaboration. He wants to tell the computer 

that, for instance, he doesn't want his computer to be used during office hours, or if he 

wants to collaborate only when the computer stays idle for more than 5 minutes. 

BOINC enables that by the user preferences, and our application complies with it. 

When the volunteer starts donating, according to his preferences, the BOINC client 

downloads the vmlauncher application and the virtual appliance, and then run the 

vmlauncher application. The vmlauncher application imports the virtual appliance into 

the hypervisor and then launches it. The desktop computing agent is then launched at 

the boot of the virtual appliance, running an infinite loop of fetching jobs from the OAR 

server, running jobs and submiting results. When the volunteer stops donating, the 

virtual machine is powered off instantly. 

5.4.2 Scientist’s View 

Scientists want to write the application and submit the job to be computed by the 

desktop hosts. We should assume that the scientists’ knowledge of computer goes little 

beyond the scope of his application. 

In our solution, the scientist must submit a job to OAR. If he is already used to do 

so, the only differences are the flags he must specify on the submission command. 

There are two flags that are important for the scientist to make desktop computing jobs 

work: the desktop_computing flag and the stagein flag.  

The desktop_computing flag marks the job as a desktop computing job. This means 

that it won't get scheduled to a service node, but only for the nodes marked as 

desktop_computing nodes. Nodes joining through the REST API as described above are 

automatically marked as desktop_computing nodes. 

The stagein flag signalizes for the submission tool that it must prepare the stagein 

file for the job. The stagein consists in a tar package containing the directory in which 
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the command is to be executed. It is necessary for the desktop computing jobs that are 

more complex than a simple command on the virtual appliance.  

 

5.4.3 Administrator’s View 

Administrators want something easy to manage, stable and secure. Although the 

administrator has a technical expertise, we should try to minimize what he has to learn 

in order to deploy our solution. 

When the administrator gets the request to host a project, he must deploy both 

BOINC and OAR servers on a machine. It is not necessary for them to be in the same 

machine. 

To deploy the BOINC server, he must compile the BOINC server. Other options are 

downloading a virtual appliance for VMWare or using the prebuilt packages on the 

debian repository. 

Once compiled, he has to use the make_project tool to create the project. He can 

pass the test app flag to add a test application. Then he can test with a vanilla BOINC 

client to see if there are no networking problems, and the application is downloaded, run 

and uploaded successfully. Typically naming issues arise here e.g. the hostname of the 

machine isn't the same that's on the DNS server. 

To deploy the OAR server, he must edit the souces of the apt repository to point to 

the OAR repository. Then the packages oar-server and oar-api must be installed on the 

server. Also, apache's modules rewrite and ident must be set. It is also necessary to 

configure apache for authentication mechanisms. The default is to use LDAP. Once 

installed it can be tested by generating a virtual appliance with the OAR desktop 

computing agent, point it to the server hostname and see if the host appears at the 

oarnodes. 

In the BOINC server, he must copy the vmlauncher app properly compiled for each 

architecture to the apps directory. 

It is also necessary to create a workunit that states that the virtual machine's files are 

to be copied to the client, as described in the same link. 

5.5 Final Remarks 

This chapter presented the design of our solution, whose goal is to integrate virtual 

machines running on desktop hosts into the OAR scheduler to make them computing 

nodes of a virtual cluster. We described each part of the solution individually, 

separating the given tools and the contributions. We also discussed the operation of the 

solution from different perspectives to give a sense of the whole working of the 

solution. 

 

 



 

 

 

6 SCALABILITY TEST 

We needed to assess that our solution indeed scales well for usage on the Internet. 

To do so, we designed a scalability experiment: we want to run a ray tracing job using 

our project. We used the Grid'5000 infrastructure to run the tests. 

We will first describe Grid'5000 infrastructure and software ecosystem in order to 

make the test procedure description meaningful. Then we will describe our test job. 

After that we will describe the tasks performed in order to run the test and then we will 

discuss its evaluation.  

6.1 Tools 

6.1.1 Grid’5000 

Grid'5000 is a French nation-wide infrastructure for research in Grid computing. It is 

designed exclusively for computer science research, allowing much more flexibility 

than traditional grids. We used it because it is freely available for doing the 

experiments, and because we could simulate loads in it e.g. many requests at the same 

time, many clients.  

Grid'5000 is composed of 10 sites distributed geographically. A site is a 

geographical location that aggregates one or more clusters. A cluster is an aggregate of 

one or more nodes. A node can be of two types: service node or computing node. The 

computing nodes are those where the actual computation takes place. The service nodes 

provide infrastructure service e.g. the frontend node. All hosts on Grid'5000 run a x86-

64 architecture. Each node has at least 80GB of local storage. Each site features its own 

NFS server. 

Each cluster has at least 1Gbps Ethernet connecting the nodes. The clusters might 

also feature Myrinet or Infiniband, which features 10Gbps and low-latency. Nodes can't 

access the internet directly; they must go through a proxy. This proxy has a list of 

allowed hosts, blocking the access to any host not present in the list. 

Grid'5000 uses OAR for resource management and job scheduling and Kadeploy for 

images deployment into the nodes. 

6.1.2 Kadeploy 

Kadeploy (GEORGIOU et al., 2006) is a tool for deploying custom operating 

systems in a large-scale infrastructure. It is based on the preboot execution environment 

(PXE).  

Kadeploy operates in a master-slave scheme. When the slaves are rebooted, they 

fetch and run a basic boot program, which create the partitions and connect to the 

server. When all slaves are connected to the server, the server arranges them into a 

chain of TCP connections, and then uses this chain to broadcast the image to the slaves, 

which will in turn deploy the image into their hard drives. 
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6.1.3 Taktuk 

We start the desktop computing agents using Taktuk (CLAUDEL; HUARD; 

RICHARD, 2009). Taktuk is a remote execution tool i.e. a tool to execute commands on 

a group of remote hosts. It uses a work-stealing strategy to achieve better scalability. 

The work-stealing algorithm is an algorithm to distribute the job in a tree-like manner, 

in this case the job being the command to be executed remotely. 

6.2 Test Job Details 

6.2.1 POVRay 

The Persistence of Vision Ray-Tracer is a ray-tracing tool used to render three-

dimensional images. It reads a scene description file, which describes the objects, the 

lighting and the camera position. Ray-tracing is a time-consuming process, but it 

produces very high quality and realistic images. It is also embarrasingly parallel. 

6.2.2 The Job Campaign 

We rendered a complex 3D scene in a definition of 1280x720 based on a camera 

movement inside the scene. The camera rotates 2 times and elevate slightly. We 

rendered a frame for each degree of the 2 rotations, which makes 720 frames. At 25 

frames per second, this is a 28-second video. Each job renders a frame, and afterwards 

we build the video out of the frames. 

6.3 Method 

This section describes the tasks performed in order to run the test and then we will 

discuss its evaluation. 

The first task was to develop the environments. We developed two environments: an 

OAR server environment and an OAR agent environment. The OAR server 

environment contains the OAR server and an Apache server publishing the REST API. 

The OAR agent environment contains the OAR desktop computing agent. 

To develop those environments, we deployed with Kadeploy a default debian Lenny 

environment, modified it as specified above, and then saved it using the tgz-g5k tool, 

which is a tool for creating the image of a running environment on Grid'5000. 

The second task was to do the submissions. We did two OAR interactive 

submissions: one for the server and another for the clients. In the client submissions we 

asked for many nodes. Then we would deploy the agent environment in the group of 

nodes using Kadeploy and then launch our OAR desktop computing agent on them 

using Taktuk. 

The third task is to run the agents. Since we can't know in which host our OAR 

server environment will be deployed, we must use Taktuk to pass this information to the 

agent machines, and then start the OAR desktop computing agent. 

The fourth and final task is to submit the job once the agents start being managed by 

the OAR server. Our job is embarrassingly task-parallel: our job campaign consists of 

the same command invoked each time with different parameters. 

 



 

 

 

6.4 Evaluation 

For the evaluation we did the process aforementioned for a varying number of 

nodes. We've started with 10 nodes/80 cores and increased repeatedly by 10 nodes. It is 

important to point that Kadeploy often can't deploy the environment on all the machines 

allocated. For instance, even though we had 20 nodes allocated in one of the points of 

the graph, Kadeploy could deploy the agent environment on only 17 nodes. We 

proceeded as it is because the exact number of nodes shouldn’t impact on scalability i.e. 

regardless of the exact number of nodes we expect the scale-up to be almost linear. 

We consider the execution time to be the interval between the start time of the first 

job of the job campaign and the stop time of the last job. We retrieved the start time and 

stop time from the OAR server. 

As of the test results, from 320 cores on, it stopped working. When we investigated 

the cause of the malfunction, we discovered that it was due to excessive number of 

concurrent connections to the database, which is a problem that affects the whole OAR 

REST API. This is because it creates a connection to the database for each HTTP 

request received. 

The test revealed that our solution is still unfit for the Internet, but can already be 

run on a group of workstations. Two workarounds are planned for the database 

connection problem: a connection pool mechanism in the OAR persistence layer and a 

backoff mechanism for the agent. 

6.5 Final Remarks 

This chapter described how we tested our project for scalability. We described 

Grid'5000 and then two of its associated software packages: Kadeploy and Taktuk. We 

then described our job, which uses the POVray ray tracer to render a complex 3D scene. 

We then described our steps into setting up the test and executing it. We've found that 

our solution doesn't work yet beyond 40 nodes/320 cores, due to excessive simultaneous 

connections, and we proposed workarounds for the problem. 
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7 CONCLUSION 

In this chapter we discuss some qualitative questions about our design and some 

suggested future work. We then summarize the report in order to finish the document. 

7.1 Qualitative evaluation 

In this section we evaluate our design qualitatively. We discuss improvements and 

new challenges raised by our solution according to the properties discussed in chapters 

2 and 3. We present our arguments for the claims of improvement and future directions 

to face the new challenges. 

7.1.1 Programmability 

We claim improvements in programmability and portability, since the developer 

doesn't have to write his application in any particular API. This means that he can 

develop using the programming library that is more suited for him. We also claim such 

improvements because now the developer can program for a single compilation target, 

and thus doesn't need to keep multiple versions of his application. 

Customization is also enabled by virtualization. The virtual appliance can contain 

the software package necessary for the jobs, and since it would be deployed in the 

virtual appliance, it is transparent for the volunteer. This software package can be a 

legacy software package, so we also claim improvements on legacy support based on 

the same argument. 

7.1.2 Ease of use 

Our proposed solution is harder to use than the vanilla BOINC client, since the 

volunteer needs to install VirtualBox manually. To solve this issue, there are efforts to 

bundle VirtualBox with BOINC. Another possibility is to consider QEMU with 

KQEMU, since it runs on user space, but the additional overhead and the fact that 

KQEMU is experimental for Windows and unavailable for Mac is to be further 

investigated. 

7.1.3 Security 

Security can drive volunteers away if a virtual machine represents a security hazard 

for them. We claim improvement in security due to the extra isolation layer, which 

means that if the job contains malicious code it will be isolated from the other processes 

of the volunteer. Another point in favor is the fact that the VM is unreachable through 

the network, which means that the VM doesn't represent additional network security 

risk. 

7.1.4 Adaptability 

OAR doesn't handle adaptability in the job level, only in the resource level. This 

means that if a node fails or stops donating, the computation scheduled won't be 

rescheduled. It is not the intent of the OAR to handle adaptability in the job level, so we 

propose an integration with Cigri, which we discuss below. 



 

 

 

7.1.5 Instalation Size and Licensing 

By choosing VirtualBox, we've compromised with a modest installation size (around 

50 MB), a FOSS license and we don't face standards issues due to the single 

virtualization technology. The virtual appliance size was of 200MB, which is 

considered modest in contrast to CernVM (800MB). 

One could use an embedded Linux distribution, but the lack of packaging systems 

and big package repositories is an obstacle for the programmability. 

7.2 Future work 

This section discusses future directions in the course of exploring improvements of 

volunteer computing systems by the means of virtualization. 

7.2.1 B-OAR and VM wrapper 

While using BOINC as the tunnel for our virtual appliance we've wondered about 

the advantages and disadvantages of another approach: integrating BOINC and OAR at 

the job level, and handle the virtualization layer fully in BOINC.  

B-OAR is a bridge interface for submission of BOINC jobs through OAR. We can 

combine that with the upcoming default VM wrapper for BOINC or libboincexec. 

With this approach, the resource management of the volunteer nodes is done fully in 

BOINC, being thus potentially simpler. Also, BOINC would handle the dynamicity of 

the nodes, resubmitting the jobs when necessary. Checkpointing would also be managed 

inside BOINC, being transparent to OAR. 

7.2.2 Cigri integration 

Another option to tackle the adaptability of jobs is to use Cigri. 

Cigri is a job manager for bag-of-tasks jobs. It uses OAR as resource manager, but it 

is designed to interoperate with other resource managers as well. 

This approach would leave the validation of volunteer's result open yet, so another 

layer for solving the validation issues would be necessary. 

7.2.3 On-demand file system 

The problem of file staging is that if you have a task-parallel job, you will have 

many times the same stagein staged. If you have a data-parallel job, you will probably 

ship unneeded data to the agents.  

A possible improvement is to use an on-demand file system, like CernVM-FS. It is a 

mountable Linux filesystem that downloads the demanded files only when then files are 

actually read by the job. It operates over HTTP in order to avoid firewalls. 

For writing the results we can still use stageouts, since CernVM-FS mounted 

directory is read-only. 

7.2.4 Other possible works 

We are unaware of any system that actually uses VMs for checkpointing in 

volunteer computing, although checkpointing is greatly simplified by the use of 

virtualization technology. It is relevant, since checkpointing is hard to implement, and 
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often relegated to the scientist. Thus, by achieving VM checkpointing we would be 

making the job of the scientist even lighter. 

Another possibility is to use Virtual Private Networks to present to the nodes the 

illusion of being at the same IP network. Currently the nodes can't communicate 

between themselves. The goal would be to run the n-queens problem in a volunteer 

network. 

We can now explore further scheduling strategies for desktop grids, since OAR is 

very flexible in this sense. In particular, we'd like to cite the possibility of fair sharing, 

reservations, priorities and job containers. 

Further control of resource usage is possible e.g. traffic shaping. Also, management 

of the number of virtual CPUs seen by the virtual machine is also possible. 

A KQEMU port for Mac would make KQEMU suitable for volunteer computing, 

and thus we could explore further which hypervisor would be a better fit. 

7.3 Summary 

This work presented clouds@home, whose goal is to integrate virtual machines 

running on desktop hosts into the OAR scheduler to make them computing nodes of a 

virtual cluster. We also ran scalability tests and found that it still doesn't scale well 

enough for Internet usage. Nevertheless, the root causes of the scalability problems are 

merely technical, and thus not inherent of any part of our design. We would like to 

proceed further and achieve better scalability results, and to address questions such as 

adaptability better, as proposed on the future works. 

As a personal conclusion, working in this project was a nice experience with 

scalable design, since I had resources to test if my design was indeed scalable, and I 

could learn a few things about good and bad design in terms of scalability. I also learned 

a good deal about reading research papers (particularly about reading them and the 

value of keeping a journal with summaries of papers read) and writing this report, about 

the need to structure my ideas and strategies to explain them. 
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