
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

THIAGO ADDEVICO PRESA

Towards Clouds@home: Integration of

Virtualization in Desktop Grids with OAR

and BOINC

Final Report presented in partial fulfillment of

the requirements for the degree of Bachelor of

Computer Science.

Prof. Dr. Nicolas Maillard

Orientador

Porto Alegre, dezembro de 2010.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pró-Reitora de Graduação: Profa. Valquiria Link Bassani

Diretor do Instituto de Informática: Prof. Flávio Rech Wagner

Coordenador do CIC: Prof. João César Netto

Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGEMENTS

I've been lucky in so many ways in my life that I have many people to thank.

I can't help but begin with my mother, Rejane. She would be very proud of me doing

this work, and I know that this work can only exist because of her loving effort in

raising me.

I must also thank my friends who helped me a lot in the course of graduation. Fabio

Correa, Ewerton Miglioranza, Vicente Cruz and Joao Vicente Lima. They taught me a

lot about life and friendship, and I can't help but to be friend of them in retribution.

I must also thank Barbara Santinon Lago, for being a patient and loving partner

while I was doing this work.

On the work side, I must thank Bruno Bzeznik. His advice on technical decisions

and writing taught me a lot and certainly made me a better engineer. I must also thank

Derrick Kondo for the opportunity of developing this work at INRIA and for the

guidance during this work.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS .. 6

LIST OF FIGURES .. 8

ABSTRACT .. 9

RESUMO .. 10

1 INTRODUCTION ... 11

2 BACKGROUND ON VOLUNTEER COMPUTING 12

2.1 Forms of Computing ... 12

2.2 Challenges of Volunteer Computing ... 13

2.2.1 Challenges on the volunteer side .. 13

2.2.2 Challenges on the scientist's side .. 14

2.3 Final Remarks ... 14

3 BACKGROUND ON VIRTUALIZATION FOR VOLUNTEER

COMPUTING ... 15

3.1 Virtualization ... 15

3.2 Virtualization and volunteer computing .. 17

3.3 Challenges of virtualization in volunteer computing 18

3.4 Final Remarks ... 19

4 RELATED WORK ... 20

4.1 Volunteer Computing Middlewares ... 20

4.2 Grid Middlewares.. 20

4.3 Resource Managers ... 20

4.4 Virtual Machine Monitors .. 21

4.5 Virtualization for Grid Computing .. 21

4.6 Volunteer Computing Projects with Virtualization 21

4.7 Custom Execution Environments ... 22

5 SOLUTION'S DESIGN .. 23

5.1 Structure of the Solution ... 23

5.2 Tools ... 24

5.2.1 BOINC .. 24

5.2.2 VirtualBox ... 24

5.2.3 OAR .. 24

5.2.4 Kameleon .. 24

5.3 Contributions ... 25

5.3.1 vmlauncher .. 25

5.3.2 Virtual Appliance .. 25

5.3.3 OAR desktop computing agent .. 26

5.3.4 OAR REST API improvements ... 27

5.4 Operation ... 28

5.4.1 Volunteer's View ... 28

5.4.2 Scientist's View ... 28

5.4.3 Administrator's View ... 29

5.5 Final Remarks ... 29

6 SCALABILITY TEST .. 30

6.1 Tools ... 30

6.1.1 Grid'5000 ... 30

6.1.2 Kadeploy ... 30

6.1.3 Taktuk ... 31

6.2 Test Job Details ... 31

6.2.1 POVRay .. 31

6.2.2 The Job Campaign ... 31

6.3 Method ... 31

6.4 Evaluation .. 32

6.5 Final Remarks ... 32

7 CONCLUSION.. 33

7.1 Qualitative Evaluation .. 33

7.1.1 Programmability .. 33

7.1.2 Ease of use... 33

7.1.3 Security ... 33

7.1.4 Adaptability ... 33

7.1.5 Instalation Size and Licensing .. 34

7.2 Future work ... 34

7.2.1 B-OAR and VM wrapper ... 34

7.2.2 Cigri Integration .. 34

7.2.3 On-demand file system .. 34

7.2.4 Other possible works ... 34

7.3 Summary.. 35

REFERENCES ... 36

LIST OF ABBREVIATIONS AND ACRONYMS

OS Operating ystem

VM Virtual Machine

VMM Virtual Machine Monitor

API Application Programming Interface

BOINC Berkeley Open Infrastructure for Network Computing

DBMS Database Management System

HTTP Hypertext Transfer Protocol

HTML Hypertext Markup Language

REST Representational State Transfer

BLCR Berkeley Lab Checkpoint/Restart

VPN Virtual Private Network

FOSS Free and Open Source Software

LDAP Lightweight Directory Access Protocol

GUI Graphical User Interface

TCP Transfer Control Protocol

KVM Kernel-Based Virtual Machine

MPI Message Passing Interface

SQL Structured Query Language

ABI Application Binary Interface

NFS Network File System

LVM Logical Volume Manager

HTTPS Hypertext Transfer Protocol Secure

LHC Large Hadron Collider

RPC Remote Procedure Call

RMI Remote Method Invocation

URI Uniform Resource Identifier

XML eXtensible Markup Language

XML-RPC eXtensible Markup Language – Remote Procedure Call

URL Uniform Resource Locator

PXE Preboot Execution Environment

SSH Secure Shell

LIST OF FIGURES

Figura 3.1: Diagram of a system stack. .. 16

Figura 5.1: Static Diagram of the Solution .. 23

Figura 5.2: Interactions of vmlauncher with VirtualBox and the BOINC client. 25

Figura 5.3: Conceptual Diagram of the desktop computing agent 26

ABSTRACT

Volunteer computing is the name of the use of end-user resources to do high-

performance computations. Two of the biggest challenges of volunteer computing

nowadays is to facilitate the application development work of the scientists, and to

allow the client to donate in an isolated and transparent way. If a volunteer computing

system isn't easy to use by the scientist, scientists will avoid using it regardless of the

computing power available. If it isn't easy to use by the volunteer, it will drive

volunteers away and harness less computing power. This work describes clouds@home,

which is a project to integrate virtual machines running on desktop hosts into the OAR

scheduler to make them computing nodes of a virtual cluster. With clouds@home, the

scientist must keep only a single version for a single compilation target of its

application, thereby reducing the burden of application development. He also isn't

bound to any particular API. The volunteer is further protected by the virtual machine

monitor isolation layer.

Keywords: virtualization, desktop grids, volunteer computing, resource management,

portability.

Clouds@home: Integração de Virtualização em Desktop Grids com

OAR e BOINC

RESUMO

Computação voluntária é o nome dado ao uso de recursos dos usuários finais para

executar computações de alto desempenho. Dois grandes desafios da computação

voluntária atualmente são facilitar o desenvolvimento de aplicações pelo cientista e

permitir aos clientes doarem seus recursos de maneira isolada e transparente. Se um

sistema de computação voluntária não é fácil de usar para um cientista, cientistas vão

evitar empregá-lo, indiferentemente da quantidade de poder computacional disponível.

Se ele não é fácil de usar para um voluntário, menos voluntários doarão seus recursos e

assim dispor-se-á de um poder computacional menor. Este trabalho descreve

clouds@home, que é um projeto para integrar máquinas virtuais executando em

máquinas desktop no escalonador OAR de forma a torná-las nodos computacionais de

um cluster virtual. Com clouds@home, o cientista precisa manter apenas uma versão

para um único alvo de compilação de sua aplicação, assim reduzindo o trabalho de

desenvolver aplicações. Ele também não precisa escrever em nenhuma API em

particular. A camada de virtualização melhora a proteção do voluntário por representar

uma outra camada de isolamento.

Palavras-chave: Virtualização, desktop grids, computação voluntária, gerência de

recursos, portabilidade.

11

1 INTRODUCTION

Volunteer computing is the name of the use of end-user resources to do high-

performance computations. It has gained importance, since the end users now hold

much more computing power than ever, much more than any centralized approach. To

show this, we can compare the BOINC Project, which is the flagship of volunteer

computing projects and now holds more than 3,775,961.8 GigaFLOPS

(BOINCSTATS,2010) to the most powerful supercomputer, which has the max

processing power of 2,566,000 GigaFLOPS (TOP500,2010). It is still worth pointing

out that the BOINC network has lots of potential of increasing, accompanying the

growth of the Internet and personal computing.

One of the biggest challenges of volunteer computing nowadays is to facilitate the

work of the scientists. For instance, if a scientist wants to use BOINC today, he has to

rewrite his application using BOINC's API, and also write a single version for each

platform (e.g. Windows x86 and Linux amd64), not to mention test and maintain those

variations. If we see that, even with the shown computing power of this sort of

computation, only around 10 projects use most of the available volunteer computing

power on the BOINC network, we have evidence that know-how is a limiting factor to

access the volunteer computing technology.

Another challenge is to allow the client to donate in an easy and transparent way.

This is also a big challenge, since the volunteer will be opening his computer to a

foreign code stream, thus trusting the scientist to use his resource in a thoughtful way.

This raises questions regarding isolation and resource usage.

This work advocates a virtualized approach for volunteer computing. To do so, we

will describe our experiences and lessons learned so far from implementing

clouds@home.

The goal of clouds@home is to integrate virtual machines running on desktop hosts

into the OAR scheduler to make them computing nodes of a virtual cluster. We will

describe which questions arose and how we've addressed them in this project,

discussing considered alternatives.

Our contributions are the following: we’ve developed a desktop computing agent for

the OAR batch scheduler, the vmlauncher, which is a BOINC application designed to

launch a virtual machine when run, a virtual appliance designed to run the OAR desktop

computing agent and we’ve improved the OAR REST API, so that the desktop

computing agent interacts with the OAR scheduler by the REST API.

This work was developed as a Google Summer of Code project, and after that as an

INRIA internship, specifically at the Laboratoire de Informatique de Grenoble. It was

developed very closely with the OAR team.

2 BACKGROUND ON VOLUNTEER COMPUTING

This chapter provides background on volunteer computing. First we will discuss

many computing forms related to volunteer computing, including volunteer computing.

Then we discuss challenges and desirable properties of a volunteer computing system.

2.1 Forms of computing

This section describes many forms of computing related to volunteer computing. It

is intended to define and contextualize volunteer computing. We address here cluster,

grid, cloud, and volunteer computing.

The first form of parallel computation we'd like to address is cluster computing.

For this discussion, we take the definition from (STERLING; LUSK; GROPP, 2003). A

computer cluster is a parallel computer constructed of commodity components and runs

(as its system software) commodity software. The idea is to build a supercomputer out

of assembled computers, even though some vendors sell prepackaged clusters. Clusters

might have different purposes, like high-availability, load-balancing, and high-

performance. In this work we're interested in the high-performance variant.

The next stop in our series is grid computing. According to (FOSTER, 2002), a

grid is ―a system that coordinates resources which are not subject to centralized control,

using standard, open, general-purpose protocols and interfaces to deliver nontrivial

qualities of service‖. More recent definitions have focused on the combination of

resources from different administrative domains in order to reach a common goal

(BOTE-LORENZO; DIMITRIADIS; GÓMEZ-SÁNCHEZ, 2003).

The dream of grid computing is that computing becomes a utility much in the sense

electricity and water are in a modern household. One could simply "plug in" and start

computing. The following characteristics are differences between grid and cluster

computing:

 Grid nodes are typically more heterogeneous;

 Grid nodes belong to different administrative domains;

 Grid operates in a bigger scale than cluster computing.

These items are also the challenges of grid computing. Heterogeneity raises

portability challenges; the involvement of different administrative domains raises

questions of privacy, security, authentication and authorization. And there are still the

challenges of scalability and interoperability due to the third point.

13

A new avatar of grid computing arose recently. Cloud computing, in particular in

its Infrastructure as a Service (IaaS) form, is a form of grid computing, where

virtualized resources are allocated dynamically on a pay-as-you-go scheme

(VAQUERO et al., 2009). It is important to reference because it is a trend in distributed

systems, and also because virtualization is a key technology to allow cloud computing,

thus motivating us to explore the benefits of virtualization for other computing forms, in

this case, volunteer computing.

The idea behind volunteer computing (also seen in the literature as desktop grids or

global computing) is to maximize the ease with which people can donate their

computing resource to a scientific project (SARMENTA, 2001). There are a couple of

differences between grid and volunteer computing. First, grid computing assumes a

network of clusters, supercomputers, and regular computers owned by universities,

research labs and companies. Secondly, grid computing assumes specialist management

of these resources. Naturally, if you involve desktop computers from regular users of

the Internet, these assumptions don't hold.

The computing form being advocated here is the Volunteer Cloud Computing

approach (SEGAL et al., 2009). In comparison with cloud computing, we no longer

have the pay-as-you-go component, nor are the virtual machines dynamically allocated.

It is similar if we take into account the dynamic nature of the donated virtual machines.

2.2 Challenges of volunteer computing

As already mentioned, the main difference between grid and volunteer computing is

that volunteer computing demands a simple setup, while grid computing can sacrifice

this for other desirable properties.

In this section we will list and discuss briefly some of the challenges that arises on

the design of a volunteer computing platform. This list certainly isn't comprehensive,

but it prepares the reader to criticize this work, and also serves as a more concrete

discussion of what is volunteer computing, enabling the reader to spot missing points.

We can divide our list in two parts: the challenges that arise from the volunteer

perspective and the challenges that arise from the scientist's perspective.

2.2.1 Challenges on the volunteer side

This section describes some of the challenges that arise on the volunteer side. These

challenges arise mostly from the model of volunteer assumed on volunteer computing: a

non-technical, domestic user, but also from the number and potential variety of

volunteers.

Probably the most central one is ease of use. We must assume that the volunteer-

side software is easy to use, in order to attract volunteers from different technical

backgrounds (possibly volunteers without a technical background!), and thus more

volunteers and more computing power. In other words, we can't impose difficulties on

the process, taking the risk of losing volunteers and therefore computing power.

Due to the varied nature of volunteers, we must take platform independence into

account. Volunteers might own a variety of computers, running another variety of

operating systems with different packages installed on it. The goal here is, for instance,

not to exclude those volunteers who own a Macintosh.

In order not to discourage the volunteer from donating his computing power, the

system must have volunteer-side security. The idea here is that the volunteer should

have to trust the project the least possible.

A requirement that is not typically present on grid systems is user interface design.

Grid computing can assume that the system administration is done by a technician,

whereas volunteer computing must present an interface designed for the non-technician

volunteer, where he can manage his participation details and abstract the technical

details as much as possible.

2.2.2 Challenges on the scientist’s side

This section describes the challenges that arise on the scientist's side. They are

similar to the ones on grid computing, but taken to a new plateau, due to the increased

heterogeneity, the higher number of administrative domains, and the more likely

presence of malicious users and unreliable nodes.

The first one is programmability. Developing parallel and distributed high-

performance applications is hard, and we should make it as easy as possible. This

property is often traded by performance, scalability, and other properties.

A particular case of programmability is portability. The volunteers own a

potentially huge variety of platforms. Ideally, the scientist must not bother with the

variety of hardware and platforms on which his application would run. Maintaining

multiple versions of an application due to the variety of platforms is a big hurdle if the

maintenance time is considered, especially from a scientist, which ultimately doesn't

want to waste time on sheer programming.

A volunteer computing project usually operates with a huge amount of volunteers.

Seti@Home, for instance, has over 3 million volunteers. If the project doesn't scale well

it won't benefit from a big number of volunteers as it should. So scalability is a desired

property.

A challenge that clashes with programmability is adaptability. Adaptability is the

ability of the application to cope with changes in the computing infrastructure e.g.

volatility, failures, etc. Since volunteer nodes are inherently volatile, we must use a

programming model that addresses adaptability. For instance, MPI (GROPP; LUSK;

SKJELLUM, 1999) wouldn't be appropriate; since MPI jobs are static i.e. they must

keep the same set of nodes during the whole computation.

Lastly, economy is a good challenge. We wouldn't bother to do volunteer computing

if it would be cheaper to buy or rent an infrastructure. For an interesting comparison

between renting Amazon EC2 instances and starting a volunteer computing project, see

(KONDO et al., 2009).

2.3 Final Remarks

In this chapter, we've discussed various forms of computation in order to present

background on parallel computing forms. We've also discussed many of the technical

challenges of volunteer computing itself, since it is the most relevant computing form to

this work.

15

3 BACKGROUND ON VIRTUALIZATION FOR

VOLUNTEER COMPUTING

This chapter provides background on virtualization for volunteer computing. Firstly

we will describe what virtualization is, what a hypervisor is and which techniques are

used to achieve virtualization. After that we'll summarize the advantages and challenges

that virtualization brings for volunteer computing.

3.1 Virtualization

This section describes what virtualization is, what an hypervisor does and how it

enables virtualization.

In essence, an operating system is a multiplexer, which multiplexes a virtual

resource to a scarce physical one using different strategies. A process, for instance, is a

virtualized view of a CPU; virtual memory works analogously for the physical memory

and files for the persistent storage.

The idea of virtualization is to present the whole machine as a resource, and

multiplex it onto the physical machine. The interface provided by the virtual machine

duplicates that of the physical machine, so that one can run operating systems on top of

it.

The piece of software that enables virtualization is called hypervisor, also referred

as Virtual Machine Monitor or VMM in the literature. It sits on top of the hardware,

replacing the operating system in a classical system. The guest operating systems are

then located on top of the hypervisor.

The hypervisor also multiplexes the physical resources to the guest OS, enforcing

protection and isolation as well.

The hypervisor also isolates the devices available on the physical machine by

presenting an ideal device to the guest OS. This is important because operating systems

are easily ported, since the interface is designed this way.

Our discussion doesn't include operating system virtualization, where one enforces

that the host and the guest run the same OS, and present to the guests a virtualized OS

interface. We are not addressing this form of virtualization, since we are interested in

OS portability.

Figure 3.1: Diagram of a system stack (a) without virtualization (b) with virtualization

We now discuss the techniques for implementing virtualization.

Emulation is the simplest form of virtualization, and also the least performing. The

technique is a simple switch statement for each instruction, and then the semantics of

the instruction are implemented on code. The guest OS is run unmodified. The guest

architecture can be different from the host one, as it is the case with video game

emulation. Also, the emulator can emulate devices that aren't present on the physical

machine.

The problem with emulation is that it is very slow. One can improve the

performance by running most of the instructions natively, assuming that the host and

guest architectures are the same. This approach isn't feasible on the x86 architecture:

some instructions can't be run natively because they fail silently or behave differently

than when run on kernel mode. (ADAMS; AGESEN, 2006) discuss this issue further.

There are basically three workarounds: dynamic translation, paravirtualization and

hardware-enabled virtualization.

Paravirtualization solves the difficulty of virtualizing the x86 architecture by

offering an interface to the guest machines that is not identical to the interface offered

natively, in order to accelerate and facilitate the support of multiple guest operating

systems. The guest OS' kernel must be slightly adapted to support the modified

interface. This is a drawback of this approach, since closed-source systems like

Windows aren't still ported.

It was one of the first approaches to present good results on modern systems, as one

can see in (BARHAM et al., 2003), which also discuss further the difficulties and the

workaround adopted.

Another possibility to tackle the difficulty of virtualizing the x86 architecture is to

modify slightly the architecture to include a hypervisor mode. Typically in a modern

operating system we see the kernel mode and the user mode. These modifications add

the hypervisor mode, so that the hypervisor can multiplex kernels into the hardware

17

without the aforementioned hardware difficulties. Examples of such modifications are

the Intel-VT and AMD-V. This has the advantage of running unmodified guest OS

kernels e.g. Windows.

Another possibility is to adopt a special cache, which maps each instruction on the

virtualized side to a set of physical instructions to be run. The difficult instructions are

then dynamically rewritten. This approach is the least performing of the three

workarounds.

3.2 Virtualization and Volunteer Computing

This section summarizes the advantages of using virtualization in volunteer

computing. It is a summary of the advantages discussed in (FIGUEIREDO; DINDA;

FORTES, 2003), slightly adapted for the volunteer computing case.

The first advantage is isolation. We have another layer of isolation due to the virtual

machine abstraction. This is good because a volunteer can trust less the project he is

collaborating. The job assigned to the volunteer might contain bugs. Without a virtual

machine, this bug would happen in the same level of the volunteer's processes,

potentially affecting them. The extra layer of isolation can thus isolate further the bug.

We claim improvements on security due to the least privilege principle. If the job

contains malicious code, it will compromise only the virtual machine, instead of the

whole physical machine.

Another advantage is customization. We can run the job in a customized

environment, without having to install software packages on the volunteer machine.

Another advantage is simplified application development. For instance, we can

develop only for 32-bit Linux architecture and be able to deploy on an x64 Windows

volunteer machine.

A corollary of customization is legacy support. If our job depends on a legacy piece

of software, we can ship it into our virtual machine, without even the knowledge of the

volunteer.

Sometimes the application wants to do legitimate use of some resource but it has no

authorization. An example would be to mount a remote file system. With the virtualized

approach this is not a hurdle anymore, and without breaking the aforementioned

isolation and security.

We can have a better control of resource usage by the application by specifying the

virtual machine configuration prior to execution. Examples of controllable parameters

are RAM size and hard drive size. Also, there are some other parameters which are now

easy to configure due to network access, like bandwidth usage, traffic shaping, etc. The

argument here is that we can reuse the network administration's toolkit to do resource

management.

One possibility that arises is to use system-level checkpointing. In some projects

the computation can take hours or even days. If a volunteer gets some task and doesn't

donate anymore, he might block the advance of the project in the whole. Traditionally

this would be solved with scheduling the task again to another volunteer, but there is the

possibility that the migration of the VM doing the work would result in a more efficient

usage of computing resource.

3.3 Challenges of Virtualization in Volunteer Computing

This section describes the challenges raised by virtualization.

A hypervisor installation may range in size from dozens to hundreds of megabytes,

which added to the image size complicates the issue of data transfer. This can drive

volunteers away, since volunteers might not be willing to download huge files. Also, it

might be considered overly invasive, since the installation typically involves some sort

of kernel module, possibly causing a system restart and violating the least privilege

principle.

We can't afford to pay for a virtualization solution for each volunteer in our network.

Also, there are functionalities that are missing on the free or open-source versions, so

our decision must take licensing issues into account.

Hypervisors aren't still very interoperable due to the lack of standards. A point

where this concern is better seen is the programming API of the hypervisors, where

each one basically has its own syntax and semantics.

Since the hypervisor can and will be updated, the versioning problem arises. It

arises in two particular cases: if the update changes the interface of the hypervisor and if

the volunteer already uses virtualization, potentially with version clashes from the

version used for the volunteer computing project. A simple example for this is that

Virtualbox won't work on Linux if the kernel module for the KVM is loaded on a

processor with Intel VT-x.

We must consider the problem of sending the image to the volunteer node. Typically

those images are big (around hundreds of megabytes), so we must take action to make

them short. Narrowing the image's size hinders the scientist/framework developer, since

he's allowed to include fewer packages into the distribution, making it less flexible.

Also, we must address the problem of how the volunteer node gets the data which

we'll compute upon. It also has the problems of transfer size, but here we must find a

compromise solution, since it can affect the overall computing performance.

The need to transfer data to do the computations must be transparent to the

volunteer. This means he shouldn’t get billed by bandwidth overuse, nor notices some

slowness on his Internet connection.

The question here is whether the volunteer nodes should communicate, and how.

The absence of communication allows the nodes only to do data-parallel or task-parallel

computations. A naïve approach would lead to a central node routing the

communication. The variety of networking solutions used by the volunteer makes a

decision in this point difficult, as it might rule out volunteers or desired functionality.

The additional burden should be transparent for the volunteer. He shouldn't have to

manually install the virtual machine monitor nor see any pop-up window due to the

virtual machine.

19

3.4 Final Remarks

In this chapter we've discussed the challenges and tradeoffs involved in the

virtualized approach for volunteer computing.

4 RELATED WORK

This chapter discusses related work on the subject.

4.1 Volunteer Computing Middlewares

(CECILE et al., 2001) describes XtremWeb, a global computing system. Volunteers

must download a Java client in order to donate. This Java client can communicate with

the server using TCP/IP, CORBA or RMI. The client keeps sending heartbeats to sign

to the server that it is alive and computing. It also addresses the various platforms

problems by providing a version of the application for each platform.

(ANDERSON, 2004) describes BOINC, a middleware for volunteer computing.

BOINC's goals are the following: to reduce the barriers of entry to public-resource

computing, to share resources among autonomous projects, to support diverse

applications and, to reward participants. It is designed to require from the scientist only

a modest hardware configuration and computer skills.

There are a couple of projects that already use BOINC as platform. SETI@Home,

Einstein@Home are the most famous, but not the only ones. As already told on this

document, the estimated computing power of the whole BOINC network is 3,775,961.8

GigaFLOPS (BOINCSTATS, 2010). We will discuss BOINC in more detail in chapter

5, since it is an essential part of our design.

4.2 Grid Middlewares

Cigri (GEORGIOU; RICHARD; CAPIT, 2007) is a lightweight grid middleware.

The idea is to exploit idle cluster resources by running bag-of-tasks jobs. It must thus

cope with the volatility of the nodes. It also allows for system-level checkpointing. They

achieve system-level checkpointing by using BLCR (DUELL, 2003), and not by the

means of virtualization.

Globus (FOSTER; KESSELMAN, 1996) describes a metacomputing infrastructure

toolkit. It describes the mechanisms of this toolkit to tackle the problems of scale,

heterogeneity, lack of structure, dynamicity and interoperability. It does so by providing

means to select resources according to restrictions given by the user, as well as

providing mechanisms for authentication, data access and interfaces for parallel

programming.

4.3 Resource Managers

Condor (LITZKOW; LIVNY; MUTKA, 1988) is a scheduling system for a

workstation environment. It schedules backgrounds jobs into idle workstations. It uses

the Remote Unix (LITZKOW, 1987). The placement of the jobs is transparent to the

user, and it uses checkpointing in the case where a workstation running a background

job stops being idle. This checkpointing facility works at the process level.

21

OAR (CAPIT et al. 2005) is an open-source resource manager (batch scheduler) for

large clusters. It is developed with high-level tools, such as Perl as scripting language

and MySQL as DBMS, without considerable loss of performance or scalability, and

implementing most of the important features seen on other schedulers, such as

reservations, and interactive jobs.

4.4 Virtual Machine Monitors

VirtualBox (ORACLE VM VIRTUALBOX USER MANUAL, 2010) is a cross-

platform virtualization application. It is freely available as Open Source Software under

the terms of the GNU General Public License (GPL). It runs on Windows, Linux,

Macintosh and OpenSolaris hosts and supports a large number of guest hosts. It doesn't

demand hardware support for virtualization, because it uses dynamic recompilation. But

its performance improves if hardware supports virtualization. It allows for a shared

folder between the host and the guest. It also can present up to 32 virtual CPUs to the

virtual machine, enabling SMP on the virtual host. It also can save snapshots, being a

useful feature for implementing checkpointing. It also has a command-line front end.

Xen (BARHAM et al., 2003) is a virtual machine monitor for IA-32, x86_64,

Itanium and ARM architectures. It is free software and uses both the hardware-assisted

approach and the paravirtualized if there's no hardware support. In Xen, one of the

multiple virtual machines is called the domain0, and it is typically the operating system

that has direct access to the hardware. This domain0 can (as of the version 3.0) Linux,

*BSD, Solaris. In machines with support for x86 virtualization, Windows can also be

used as domain0. Xen has checkpointing and live migration features. It also has a

feature to map a Virtual Block Device to a physical one, where the physical one can be

a hard disk, a partition, a NFS mount, a LVM volume or a file. Xen also has the

XenAPI, an API for managing the hypervisor.

KVM is a virtual machine monitor for Linux. KVM stands for Kernel-based virtual

machine. KVM can only run Linux as host operating system, and demands a

virtualization-enabled hardware.

VMware has a handful of virtualization solutions which runs both on Windows and

Linux. But their proprietary licensing makes it inappropriate for our purposes.

4.5 Virtualization for Grid Computing

(FIGUEIREDO; DINDA; FORTES, 2003) advocates a virtualized approach for grid

computing. His discussion has been summarized in the former chapter. It identifies

many qualitative arguments in favor of virtualization and new challenges that arise. It

also present benchmarks on the performance of an application running inside a VM and

the boot overhead. It also proposes an architecture for a grid using virtual machines.

This architecture raises questions that every grid using virtual machines should answer.

4.6 Volunteer Computing Projects with Virtualization

(MAROSI et al., 2008) described their approach for application sandboxing

(isolation the application inside a virtual machine). They've developed a wrapper for

launching a virtual machine and manage a task inside this virtual machine.

Communication direction is always from the wrapper to the task. They used QEMU as

virtual machine monitor, therefore trading performance achieved with other VMMs for

features and flexibility. Their wrapper is intended to be portable across different

volunteer computing infrastructures, and has been tested against BOINC and SZTAKI,

which is a Hungarian BOINC project.

(ANDERSEN. 2006) describes how they scavenged idle desktops to the Minimum

intrusion grid (VINTER, 2005). Their approach has some interesting points. They used

an embedded Linux distribution for the virtual appliance, achieving a virtual image size

of 3MB. To avoid the firewall issue, they've employed a pull architecture over HTTP

and HTTPS only for the desktop nodes. The paper doesn't address licensing issues, or

the easiness that the volunteer can install the software package to donate.

(DOMINGUES; ARAUJO; SILVA, 2009) addresses further the question of

performance and overhead of virtualized nodes. Their findings include that a job

running inside a virtual machine suffers a 10-35\% penalty due to virtualization. The

CPU-intensive jobs are less affected than the I/O-intensive ones. The perceived

overhead to the volunteer was also measured, and it is ranging between 15\% and 30\%.

The paper concludes that I/O and network intensive applications should be avoided to

run on virtualized environments due to the overhead.

4.7 Custom Execution Environments

(BUNCIC et al., 2010) describes CernVM, a virtual appliance for tackling the

problem of deploying the software of an experiment on multiple platforms. They use

CernVM-FS (BLOOMER; BUNCIC, 2010) to deploy the files of the experiment into

the virtual machine. CernVM-FS is an on-demand read-only filesystem which makes

use of aggressive caching. Deployment sizes into the LHC experiment ranges between 2

and 8 GB. They generated the appliance using rBuilder, a tool from rPath. The paper

also describes the server infrastructure.

(FERREIRA; ARAUJO; DOMINGUES, 2010) describes libboincexec, a library

which extends BOINC to run applications in a custom execution environment. This

execution environment can be a virtual machine, or a simple fork()/exec().

23

5 SOLUTION’S DESIGN

This chapter describes the design of our solution. The goal of this work is to

integrate virtual machines running on desktop hosts into the OAR scheduler to make

them computing nodes of a virtual cluster. We use BOINC as a tunnel for our virtual

appliance, and also to manage the client-side issues. We used BOINC to manage those

issues in order to reuse BOINC's features of client preferences.

Our solution comprises 7 parts: the BOINC server and client, the VirtualBox

hypervisor, the vmlauncher application, the virtual appliance, the OAR desktop

computing agent and the OAR server.

Figure 5.1: Static diagram of the solution

5.1 Structure of the Solution

We wrote a BOINC application that launches a virtual machine. The idea is to use

the virtual machine as a sandbox, thereby providing an homogenous platform for the job

programmer. It is written in C++ and uses the command-line interface for VirtualBox.

We've developed a desktop computing agent for OAR. The goal of the desktop

computing feature is to enable nodes behind firewalls to join the grid. The agent fetches

jobs in a pull architecture over HTTP. This means that the desktop computing agent

operating in an infinite loop of fetching jobs, executing them and submitting their

results. The agent connects to the OAR through the REST API.

We've developed a virtual appliance. A virtual appliance is a virtual machine image

designed to run on a virtualization platform. This means that the virtual appliance, when

executed, spawns virtual machines. Many virtual machines can be spawned from the

same virtual appliance.

The goal is that this virtual appliance runs the desktop computing agent on boot

time, and that its size is small.

5.2 Tools

This section describes the tools in which we based our solution upon.

5.2.1 BOINC

The volunteers must install the BOINC client and then attach to one or more projects

through the URL. The BOINC client can be run as a screensaver, as a daemon or as a

regular application, and the participant can control his preferences i.e. how much of his

resources is the project allowed to use. The volunteer gains credit by his participation. It

is the experience of the BOINC community that volunteers are highly motivated by

credit.

It is necessary to develop applications specifically for BOINC, or to use its wrapper.

Even when using the wrapper, it is necessary to develop versions of the applications for

each of the desired platforms. Then one must create workunits, which are ways to

describe the data to be computed. Each workunit has a result, which represents the

result of the application run upon the workunit.

BOINC server implements mechanisms for redundant computing in order to avoid

fake results. It also uses a decentralized architecture so that its daemons can be

distributed through different hosts and can cope with failure. It also uses an exponential

backfoff on the clients to cope with server overload and failure.

5.2.2 Virtualbox

Virtualbox is a virtual machine monitor for x86 and Intel64/AMD64 platforms. We

already discussed VirtualBox and other virtual machine monitors in section 4.4.

We've chosen VirtualBox because it is cross-platform, licensed under the terms of

the GPL and because it doesn't demand special hardware support.

5.2.3 OAR

OAR is a batch scheduler and a resource manager. This means that OAR receives

requests for execution of jobs and it must assign resources from a pool of resources to

actually execute those jobs. It provides command-line tools for managing resources

(e.g. adding and removing nodes, setting node properties, etc.) and submitting jobs. It

manages the dynamicity of resources i.e. when a resource is unreachable, OAR will

mark the node as suspected. OAR manages its resources in a push architecture over

SSH i.e. when OAR schedules a job to run in a node, it will access that node though

SSH and then spawn the job for execution. OAR back end can be either MySQL or

PostgreSQL.

Recently, the OAR team developed a REST API, so that one can manage resources

and jobs also through a lean web service layer that works over HTTP. We've further

developed this API so that the desktop computing agent communicates with the OAR

server also through this API. We've done so because of the code reuse and

interoperability provided by the REST API.

5.2.4 Kameleon

Kameleon is a virtual appliance generator. It interprets a recipe YAML file in order

to generate the corresponding image described in the recipe. The recipe is described as a

25

list of steps, where each step describes a set of kameleon commands to achieve its

semantic. A kameleon command is roughly a shell command to be executed.

Figure 5.2: Interactions of vmlauncher with VirtualBox and the BOINC client

5.3 Contributions

This section describes the contributions made in this project. In summary, we built a

BOINC application to launch virtual machines in VirtualBox, a virtual appliance to act

as a desktop computing host in the volunteer computer, the OAR desktop computing

agent and its corresponding REST API calls.

5.3.1 vmlauncher

vmlauncher is a BOINC application written in C++ that starts a virtual machine

when run. It is based on the BOINC Wrapper. The figure 5.2 explains its mechanics.

As we can see on the figure 5.2, the application forwards and translates the BOINC

client's commands to VirtualBox. The BOINC client issues those commands using the

OS functionality e.g. signals on UNIX. The vmlauncher application translates them to

commands to the VirtualBox command-line front end. This interaction takes place when

the volunteer starts donating e.g. when the volunteer's computer is idle.

Another option would have been to modify BOINC's clients, but then the volunteer

would have to download our modified client in order to donate, thus imposing another

difficulty to the volunteer, without bringing any advantage in contrast to writing an

application.

It is also important to explain that we didn't use libboincexec (FERREIRA;

ARAUJO; DOMINGUES, 2010) because it would require the virtual machine to be

reachable from the host, thus making it more prone to security hazards.

5.3.2 Virtual Appliance

We've developed a Virtual Appliance using Kameleon. This appliance contains a

lean debootstrapped debian image with the ruby interpreter and the OAR desktop

computing agent installed into it. We used kameleon in order to make it easier to

maintain: if we want to change the virtual appliance to include a package, we just have

to change the recipe file and re-generate the appliance.

The virtual machine is going to be launched by the BOINC client and the

vmlauncher application. When it boots, it must start the OAR desktop computing agent.

It is important to the virtual appliance to be small, so that we don't consume the

bandwidth of the volunteer.

We could have used CernVM, but the size (800MB) is too big, and we are afraid to

lose volunteers due to it. Also, we could have used an embedded Linux distribution

based on uclibc (UCLIBC HOMEPAGE, 2010) and busybox (BUSYBOX

HOMEPAGE, 2010), which would render our distribution in around 10MB. But the

lack of stable packaging systems and big software repositories makes the option a little

harder, since it makes the virtual appliance maintenance harder.

Figure 5.3: Conceptual diagram of the desktop computing agent

5.3.3 OAR desktop computing agent

We've developed a desktop computing agent for OAR. The difference between a

desktop host and a service host is that the desktop host can be behind a firewall. This

means that a desktop host can't receive connections from outside. In particular, the OAR

server can't access a desktop host through SSH, which is what it would normally do to a

service node. A way to handle the presence of firewalls is to make the desktop host

initiate the connections. That is the goal of the desktop computing feature.

The agent polls the server through the REST API every 30 seconds asking for jobs

to run and to kill. Whenever there are jobs for the agent to run, it spawns another

process, which will in turn ask the REST API for the details of the job e.g. command to

be run, stagein file, and also update the state of the job. It will then run the job and

submit the results as a stageout, even in the case of error.

We wrote the agent in ruby, so that we could benefit from a dynamic and object-

oriented design style. This improves its readability and makes it easier to modify. The

figure 5.3 pictures the classes written and their responsibilities.

27

The agent class triggers the client class every 30 seconds to run and kill jobs. The

client class will then acts as a proxy for the REST API, asking for jobs and spawning a

JobRunner class for each job, passing to it a JobResource. The JobRunner merely

executes the job, asking for the job details to the JobResource, which acts as well as a

proxy for the REST API. The configuration is a singleton that parses the configuration

file.

Once developed, we developed a debian package for the agent. This way, one can

install the agent on his computer by typing apt-get install oar-desktop-computing-agent

from the OAR repository.

5.3.4 OAR REST API Improvements

We decided to make the communications between the agent and the server through

the REST API. The OAR REST API is an API accessible through HTTP that follows

the REST architecture. A REST architecture over HTTP means that each URI identifies

a resource and that the action on this resource is identified by the HTTP method used to

access the URI. The advantages of using the REST API for the communication are to

have a high-level, interoperable and scalable communication medium. Also, the API

calls developed here can be used for other purposes, enhancing code reuse.

In order to design a REST API, we must first identify the resources. A resource is an

entity or concept of the problem domain. Then we must identify the relationship

between the resources. Finally, we must determine which operations we want to

perform on those resources.

We identified the following resources: job, stagein, stageout, job state and node.

Then we identified the relationships between the resources: a job can have one stagein

and one stageout, and must have a state. A node is said to have many jobs if those jobs

are assigned to this node.

Finally, we identified the operations. Thus, we've developed the following REST

API calls:

 GET /jobs/<job_id>/stagein to download the stagein file assigned to the job

whose id is job_id

 POST /jobs/<job_id>/stageout to upload the stageout file related to the job

whose id is job_id. It supports multipart upload.

 GET /resources/nodes/<node_id>/jobs(.*)?state=<job_state> to list the jobs

scheduled under the state job_state to the node whose id is node_id

 GET /desktop/agents to get a newly generated node_id for this node. This is

actually a bad example of RESTful design, because the URI doesn't identify

a resource.

 POST /jobs/<job_id>/state to change the state of the job whose id is job_id

to the one given in the message body

Other options for the communication would be sockets, RPC/RMI or other web

services, like XML-RPC. It would be harder to develop using sockets, since it is lower

level than a RESTful web service. RPC and RMI would not be as interoperable as a

RESTful web service, since they are typically bound to a single programming language.

Other web services approaches are typically not as simple to implement as RESTful

web services.

5.4 Operation

The purpose of this section is to explain how each of the users of the system view it.

We then present the system from the perspective of the volunteer, of the scientist and of

the project administrator. We also present briefly how the system reacts to the actions of

those users, in order to explain better the system's internals.

5.4.1 Volunteer’s View

Volunteers want to support projects by allowing those projects to do computation

with the resources of the volunteer i.e. donate to the project. A volunteer must not be

technically skilled to collaborate with the project.

In our solution, volunteers must install the BOINC client and VirtualBox to donate

to the project. He must then attach to our BOINC project through its master URL. This

all can be done through the GUI, since both BOINC and VirtualBox installations are

graphical, and attaching to a project is also a graphical process. Nevertheless, it is a

manual process, requiring the volunteer to install each one separately and attach

manually.

Volunteers also want to set rules on this collaboration. He wants to tell the computer

that, for instance, he doesn't want his computer to be used during office hours, or if he

wants to collaborate only when the computer stays idle for more than 5 minutes.

BOINC enables that by the user preferences, and our application complies with it.

When the volunteer starts donating, according to his preferences, the BOINC client

downloads the vmlauncher application and the virtual appliance, and then run the

vmlauncher application. The vmlauncher application imports the virtual appliance into

the hypervisor and then launches it. The desktop computing agent is then launched at

the boot of the virtual appliance, running an infinite loop of fetching jobs from the OAR

server, running jobs and submiting results. When the volunteer stops donating, the

virtual machine is powered off instantly.

5.4.2 Scientist’s View

Scientists want to write the application and submit the job to be computed by the

desktop hosts. We should assume that the scientists’ knowledge of computer goes little

beyond the scope of his application.

In our solution, the scientist must submit a job to OAR. If he is already used to do

so, the only differences are the flags he must specify on the submission command.

There are two flags that are important for the scientist to make desktop computing jobs

work: the desktop_computing flag and the stagein flag.

The desktop_computing flag marks the job as a desktop computing job. This means

that it won't get scheduled to a service node, but only for the nodes marked as

desktop_computing nodes. Nodes joining through the REST API as described above are

automatically marked as desktop_computing nodes.

The stagein flag signalizes for the submission tool that it must prepare the stagein

file for the job. The stagein consists in a tar package containing the directory in which

29

the command is to be executed. It is necessary for the desktop computing jobs that are

more complex than a simple command on the virtual appliance.

5.4.3 Administrator’s View

Administrators want something easy to manage, stable and secure. Although the

administrator has a technical expertise, we should try to minimize what he has to learn

in order to deploy our solution.

When the administrator gets the request to host a project, he must deploy both

BOINC and OAR servers on a machine. It is not necessary for them to be in the same

machine.

To deploy the BOINC server, he must compile the BOINC server. Other options are

downloading a virtual appliance for VMWare or using the prebuilt packages on the

debian repository.

Once compiled, he has to use the make_project tool to create the project. He can

pass the test app flag to add a test application. Then he can test with a vanilla BOINC

client to see if there are no networking problems, and the application is downloaded, run

and uploaded successfully. Typically naming issues arise here e.g. the hostname of the

machine isn't the same that's on the DNS server.

To deploy the OAR server, he must edit the souces of the apt repository to point to

the OAR repository. Then the packages oar-server and oar-api must be installed on the

server. Also, apache's modules rewrite and ident must be set. It is also necessary to

configure apache for authentication mechanisms. The default is to use LDAP. Once

installed it can be tested by generating a virtual appliance with the OAR desktop

computing agent, point it to the server hostname and see if the host appears at the

oarnodes.

In the BOINC server, he must copy the vmlauncher app properly compiled for each

architecture to the apps directory.

It is also necessary to create a workunit that states that the virtual machine's files are

to be copied to the client, as described in the same link.

5.5 Final Remarks

This chapter presented the design of our solution, whose goal is to integrate virtual

machines running on desktop hosts into the OAR scheduler to make them computing

nodes of a virtual cluster. We described each part of the solution individually,

separating the given tools and the contributions. We also discussed the operation of the

solution from different perspectives to give a sense of the whole working of the

solution.

6 SCALABILITY TEST

We needed to assess that our solution indeed scales well for usage on the Internet.

To do so, we designed a scalability experiment: we want to run a ray tracing job using

our project. We used the Grid'5000 infrastructure to run the tests.

We will first describe Grid'5000 infrastructure and software ecosystem in order to

make the test procedure description meaningful. Then we will describe our test job.

After that we will describe the tasks performed in order to run the test and then we will

discuss its evaluation.

6.1 Tools

6.1.1 Grid’5000

Grid'5000 is a French nation-wide infrastructure for research in Grid computing. It is

designed exclusively for computer science research, allowing much more flexibility

than traditional grids. We used it because it is freely available for doing the

experiments, and because we could simulate loads in it e.g. many requests at the same

time, many clients.

Grid'5000 is composed of 10 sites distributed geographically. A site is a

geographical location that aggregates one or more clusters. A cluster is an aggregate of

one or more nodes. A node can be of two types: service node or computing node. The

computing nodes are those where the actual computation takes place. The service nodes

provide infrastructure service e.g. the frontend node. All hosts on Grid'5000 run a x86-

64 architecture. Each node has at least 80GB of local storage. Each site features its own

NFS server.

Each cluster has at least 1Gbps Ethernet connecting the nodes. The clusters might

also feature Myrinet or Infiniband, which features 10Gbps and low-latency. Nodes can't

access the internet directly; they must go through a proxy. This proxy has a list of

allowed hosts, blocking the access to any host not present in the list.

Grid'5000 uses OAR for resource management and job scheduling and Kadeploy for

images deployment into the nodes.

6.1.2 Kadeploy

Kadeploy (GEORGIOU et al., 2006) is a tool for deploying custom operating

systems in a large-scale infrastructure. It is based on the preboot execution environment

(PXE).

Kadeploy operates in a master-slave scheme. When the slaves are rebooted, they

fetch and run a basic boot program, which create the partitions and connect to the

server. When all slaves are connected to the server, the server arranges them into a

chain of TCP connections, and then uses this chain to broadcast the image to the slaves,

which will in turn deploy the image into their hard drives.

31

6.1.3 Taktuk

We start the desktop computing agents using Taktuk (CLAUDEL; HUARD;

RICHARD, 2009). Taktuk is a remote execution tool i.e. a tool to execute commands on

a group of remote hosts. It uses a work-stealing strategy to achieve better scalability.

The work-stealing algorithm is an algorithm to distribute the job in a tree-like manner,

in this case the job being the command to be executed remotely.

6.2 Test Job Details

6.2.1 POVRay

The Persistence of Vision Ray-Tracer is a ray-tracing tool used to render three-

dimensional images. It reads a scene description file, which describes the objects, the

lighting and the camera position. Ray-tracing is a time-consuming process, but it

produces very high quality and realistic images. It is also embarrasingly parallel.

6.2.2 The Job Campaign

We rendered a complex 3D scene in a definition of 1280x720 based on a camera

movement inside the scene. The camera rotates 2 times and elevate slightly. We

rendered a frame for each degree of the 2 rotations, which makes 720 frames. At 25

frames per second, this is a 28-second video. Each job renders a frame, and afterwards

we build the video out of the frames.

6.3 Method

This section describes the tasks performed in order to run the test and then we will

discuss its evaluation.

The first task was to develop the environments. We developed two environments: an

OAR server environment and an OAR agent environment. The OAR server

environment contains the OAR server and an Apache server publishing the REST API.

The OAR agent environment contains the OAR desktop computing agent.

To develop those environments, we deployed with Kadeploy a default debian Lenny

environment, modified it as specified above, and then saved it using the tgz-g5k tool,

which is a tool for creating the image of a running environment on Grid'5000.

The second task was to do the submissions. We did two OAR interactive

submissions: one for the server and another for the clients. In the client submissions we

asked for many nodes. Then we would deploy the agent environment in the group of

nodes using Kadeploy and then launch our OAR desktop computing agent on them

using Taktuk.

The third task is to run the agents. Since we can't know in which host our OAR

server environment will be deployed, we must use Taktuk to pass this information to the

agent machines, and then start the OAR desktop computing agent.

The fourth and final task is to submit the job once the agents start being managed by

the OAR server. Our job is embarrassingly task-parallel: our job campaign consists of

the same command invoked each time with different parameters.

6.4 Evaluation

For the evaluation we did the process aforementioned for a varying number of

nodes. We've started with 10 nodes/80 cores and increased repeatedly by 10 nodes. It is

important to point that Kadeploy often can't deploy the environment on all the machines

allocated. For instance, even though we had 20 nodes allocated in one of the points of

the graph, Kadeploy could deploy the agent environment on only 17 nodes. We

proceeded as it is because the exact number of nodes shouldn’t impact on scalability i.e.

regardless of the exact number of nodes we expect the scale-up to be almost linear.

We consider the execution time to be the interval between the start time of the first

job of the job campaign and the stop time of the last job. We retrieved the start time and

stop time from the OAR server.

As of the test results, from 320 cores on, it stopped working. When we investigated

the cause of the malfunction, we discovered that it was due to excessive number of

concurrent connections to the database, which is a problem that affects the whole OAR

REST API. This is because it creates a connection to the database for each HTTP

request received.

The test revealed that our solution is still unfit for the Internet, but can already be

run on a group of workstations. Two workarounds are planned for the database

connection problem: a connection pool mechanism in the OAR persistence layer and a

backoff mechanism for the agent.

6.5 Final Remarks

This chapter described how we tested our project for scalability. We described

Grid'5000 and then two of its associated software packages: Kadeploy and Taktuk. We

then described our job, which uses the POVray ray tracer to render a complex 3D scene.

We then described our steps into setting up the test and executing it. We've found that

our solution doesn't work yet beyond 40 nodes/320 cores, due to excessive simultaneous

connections, and we proposed workarounds for the problem.

33

7 CONCLUSION

In this chapter we discuss some qualitative questions about our design and some

suggested future work. We then summarize the report in order to finish the document.

7.1 Qualitative evaluation

In this section we evaluate our design qualitatively. We discuss improvements and

new challenges raised by our solution according to the properties discussed in chapters

2 and 3. We present our arguments for the claims of improvement and future directions

to face the new challenges.

7.1.1 Programmability

We claim improvements in programmability and portability, since the developer

doesn't have to write his application in any particular API. This means that he can

develop using the programming library that is more suited for him. We also claim such

improvements because now the developer can program for a single compilation target,

and thus doesn't need to keep multiple versions of his application.

Customization is also enabled by virtualization. The virtual appliance can contain

the software package necessary for the jobs, and since it would be deployed in the

virtual appliance, it is transparent for the volunteer. This software package can be a

legacy software package, so we also claim improvements on legacy support based on

the same argument.

7.1.2 Ease of use

Our proposed solution is harder to use than the vanilla BOINC client, since the

volunteer needs to install VirtualBox manually. To solve this issue, there are efforts to

bundle VirtualBox with BOINC. Another possibility is to consider QEMU with

KQEMU, since it runs on user space, but the additional overhead and the fact that

KQEMU is experimental for Windows and unavailable for Mac is to be further

investigated.

7.1.3 Security

Security can drive volunteers away if a virtual machine represents a security hazard

for them. We claim improvement in security due to the extra isolation layer, which

means that if the job contains malicious code it will be isolated from the other processes

of the volunteer. Another point in favor is the fact that the VM is unreachable through

the network, which means that the VM doesn't represent additional network security

risk.

7.1.4 Adaptability

OAR doesn't handle adaptability in the job level, only in the resource level. This

means that if a node fails or stops donating, the computation scheduled won't be

rescheduled. It is not the intent of the OAR to handle adaptability in the job level, so we

propose an integration with Cigri, which we discuss below.

7.1.5 Instalation Size and Licensing

By choosing VirtualBox, we've compromised with a modest installation size (around

50 MB), a FOSS license and we don't face standards issues due to the single

virtualization technology. The virtual appliance size was of 200MB, which is

considered modest in contrast to CernVM (800MB).

One could use an embedded Linux distribution, but the lack of packaging systems

and big package repositories is an obstacle for the programmability.

7.2 Future work

This section discusses future directions in the course of exploring improvements of

volunteer computing systems by the means of virtualization.

7.2.1 B-OAR and VM wrapper

While using BOINC as the tunnel for our virtual appliance we've wondered about

the advantages and disadvantages of another approach: integrating BOINC and OAR at

the job level, and handle the virtualization layer fully in BOINC.

B-OAR is a bridge interface for submission of BOINC jobs through OAR. We can

combine that with the upcoming default VM wrapper for BOINC or libboincexec.

With this approach, the resource management of the volunteer nodes is done fully in

BOINC, being thus potentially simpler. Also, BOINC would handle the dynamicity of

the nodes, resubmitting the jobs when necessary. Checkpointing would also be managed

inside BOINC, being transparent to OAR.

7.2.2 Cigri integration

Another option to tackle the adaptability of jobs is to use Cigri.

Cigri is a job manager for bag-of-tasks jobs. It uses OAR as resource manager, but it

is designed to interoperate with other resource managers as well.

This approach would leave the validation of volunteer's result open yet, so another

layer for solving the validation issues would be necessary.

7.2.3 On-demand file system

The problem of file staging is that if you have a task-parallel job, you will have

many times the same stagein staged. If you have a data-parallel job, you will probably

ship unneeded data to the agents.

A possible improvement is to use an on-demand file system, like CernVM-FS. It is a

mountable Linux filesystem that downloads the demanded files only when then files are

actually read by the job. It operates over HTTP in order to avoid firewalls.

For writing the results we can still use stageouts, since CernVM-FS mounted

directory is read-only.

7.2.4 Other possible works

We are unaware of any system that actually uses VMs for checkpointing in

volunteer computing, although checkpointing is greatly simplified by the use of

virtualization technology. It is relevant, since checkpointing is hard to implement, and

35

often relegated to the scientist. Thus, by achieving VM checkpointing we would be

making the job of the scientist even lighter.

Another possibility is to use Virtual Private Networks to present to the nodes the

illusion of being at the same IP network. Currently the nodes can't communicate

between themselves. The goal would be to run the n-queens problem in a volunteer

network.

We can now explore further scheduling strategies for desktop grids, since OAR is

very flexible in this sense. In particular, we'd like to cite the possibility of fair sharing,

reservations, priorities and job containers.

Further control of resource usage is possible e.g. traffic shaping. Also, management

of the number of virtual CPUs seen by the virtual machine is also possible.

A KQEMU port for Mac would make KQEMU suitable for volunteer computing,

and thus we could explore further which hypervisor would be a better fit.

7.3 Summary

This work presented clouds@home, whose goal is to integrate virtual machines

running on desktop hosts into the OAR scheduler to make them computing nodes of a

virtual cluster. We also ran scalability tests and found that it still doesn't scale well

enough for Internet usage. Nevertheless, the root causes of the scalability problems are

merely technical, and thus not inherent of any part of our design. We would like to

proceed further and achieve better scalability results, and to address questions such as

adaptability better, as proposed on the future works.

As a personal conclusion, working in this project was a nice experience with

scalable design, since I had resources to test if my design was indeed scalable, and I

could learn a few things about good and bad design in terms of scalability. I also learned

a good deal about reading research papers (particularly about reading them and the

value of keeping a journal with summaries of papers read) and writing this report, about

the need to structure my ideas and strategies to explain them.

REFERENCES

ADAMS, K.; AGESEN, O. A comparison of software and hardware techniques for x86

virtualization. In: ASPLOS-XII: PROCEEDINGS OF THE 12TH INTERNATIONAL

CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING

LANGUAGES AND OPERATING SYSTEMS, New York, NY, USA. . . .

ANDERSEN, R. Harvesting Idle Windows CPU Cycles for Grid Computing. 2006.

ANDERSON, D. P. BOINC: a system for public-resource computing and storage. In:

IEEE/ACM INTERNATIONAL WORKSHOP ON GRID COMPUTING, 5.,

Washington, DC, USA. Proceedings. . . IEEE Computer Society, 2004. p.4–10. (GRID

’04).

BARHAM, P. et al. Xen and the art of virtualization. In: SOSP ’03: PROCEEDINGS

OF THE NINETEENTH ACM SYMPOSIUM ON OPERATING SYSTEMS

PRINCIPLES, New York, NY, USA. . . . ACM, 2003. p.164–177.

BLOMER, J.; BUNCIC, P. The CernVM File System. [S.l.]: CERN, 2010.

BOINCSTATS. Available at boincstats.com. Accessed in November 2010

BOTE-LORENZO,M. L.; DIMITRIADIS, Y. A.; GóMEZ-SáNCHEZ, E. Grid

Characteristics and Uses: a grid definition. In: CROSS GRIDS 2003, LNCS 2970. . . .

[S.l.: s.n.], 2003. p.291–298.

BUNCIC, P. et al. CernVM – a virtual software appliance for LHC applications. Journal

of Physics: Conference Series, [S.l.], v.219, n.4, p.042003, 2010.

BUSYBOX homepage. Available at www.busybox.net. Accessed in November 2010

CAPIT, N. et al. A batch scheduler with high level components. In: FIFTH IEEE

INTERNATIONAL SYMPOSIUM ON CLUSTER COMPUTING AND THE GRID

(CCGRID’05) - VOLUME 2 - VOLUME 02, Washington, DC, USA. Proceedings. . .

IEEE Computer Society, 2005. p.776–783. (CCGRID ’05).

CECILE, G. F. et al. XtremWeb : a generic global computing system. In: IN

PROCEEDINGS OF THE IEEE INTERNATIONAL SYMPOSIUM ON CLUSTER

COMPUTING AND THE GRID (CCGRID’01. . . . [S.l.: s.n.], 2001. p.582–587.

CLAUDEL, B.; HUARD, G.; RICHARD, O. TakTuk, adaptive deployment of remote

executions. In: ACM INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE

http://www.busybox.net/

37

DISTRIBUTED COMPUTING, 18., New York, NY, USA. Proceedings. . . ACM,

2009. p.91–100.

DOMINGUES, P.; ARAUJO, F.; SILVA, L. Evaluating the performance and

intrusiveness of virtual machines for desktop grid computing. Parallel and Distributed

Processing Symposium, International, Los Alamitos, CA, USA, v.0, p.1–8, 2009.

DUELL, J. The design and implementation of Berkeley Lab’s linux Checkpoint/Restart.

[S.l.: s.n.], 2003.

FERREIRA, D.; ARAUJO, F.; DOMINGUES, P. Custom execution environments in

the BOINC middleware. In: IBERIAN GRID INFRASTRUCTURE CONFERENCE,

4., Braga, Portugal. Proceedings. . . [S.l.: s.n.], 2010.

FIGUEIREDO, R. J.; DINDA, P. A.; FORTES, J. A. B. A Case For Grid Computing

On Virtual Machines. In: ICDCS ’03: PROCEEDINGS OF THE 23RD

INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS,

Washington, DC, USA. . . . IEEE Computer Society, 2003. p.550.

FOSTER, I. What is the Grid? A Three Point Checklist. GRIDtoday, Vol. 1, No. 6.,

[S.l.], June 2002.

FOSTER, I.; KESSELMAN, C. Globus: a metacomputing infrastructure toolkit.

International Journal of Supercomputer Applications, [S.l.], v.11, p.115–128, 1996.

GEORGIOU, Y. et al. A tool for environment deployment in clusters and light grids.

Parallel and Distributed Processing Symposium, International, Los Alamitos, CA, USA,

v.0, p.434, 2006.

GEORGIOU, Y.; RICHARD, O.; CAPIT, N. Evaluations of the Lightweight Grid

CIGRI upon the Grid5000 Platform. In: SCIENCE AND GRID COMPUTING, IEEE

INTERNATIONAL CONFERENCE ON. . . . [S.l.: s.n.], 2007. p.279 –286.

GROPP, W.; LUSK, E.; SKJELLUM, A. Using MPI (2nd ed.): portable parallel

programming with the message-passing interface. Cambridge, MA, USA: MIT Press,

1999.

KONDO, D. et al. Cost-benefit analysis of Cloud Computing versus desktop grids. In:

IPDPS ’09: PROCEEDINGS OF THE 2009 IEEE INTERNATIONAL SYMPOSIUM

ON PARALLEL&DISTRIBUTED PROCESSING, Washington, DC, USA. . . . IEEE

Computer Society, 2009. p.1–12.

LITZKOW, M. J. Remote UNIX: turning idle workstations into cycle servers. In:

SUMMER USENIX CONFERENCES, 1987., Phoenix, Arizona, USA. Proceedings. . .

[S.l.: s.n.], 1987.

LITZKOW, M.; LIVNY, M.; MUTKA, M. Condor-a hunter of idle workstations. In:

DISTRIBUTED COMPUTING SYSTEMS, 1988., 8TH INTERNATIONAL

CONFERENCE ON. . . . [S.l.: s.n.], 1988. p.104 –111.

MAROSI, A. C. et al. Using virtual machines in desktop grid clients for application

sandboxing Technical Report TR-0140. [S.l.]: Institute on Architectural Issues:

Scalability, Dependability, Adaptability, CoreGRID - Network of Excellence, 2008.

ORACLE VM VirtualBox User Manual. [S.l.]: Oracle Corporation.

SARMENTA, L. F. G. Volunteer Computing. 2001. Thesia (PhD in Computer Science)

— Massachusetts Institute of Technology.

SEGAL, B. M. et al. Building a volunteer cloud. In: CLCAR 2009: CONFERENCIA

LATINOAMERICANA DE COMPUTACI´oN DE ALTO RENDIMIENTO. . . .

Universidad de Los Andes, 2009.

STERLING, T.; LUSK, E.; GROPP, W. (Ed.). Beowulf Cluster Computing with Linux.

Cambridge, MA, USA: MIT Press, 2003.

TOP500. Available at www.top500.org. Accessed in November 2010.

UCLIBC home page. Available at www.uclibc.org. Accessed in November 2010.

VAQUERO, L. M. et al. A break in the clouds: towards a cloud definition. SIGCOMM

Comput. Commun. Rev., New York, NY, USA, v.39, n.1, p.50–55, 2009.

VINTER, B. The Architecture of the Minimum intrusion Grid: mig. In:

COMMUNICATING PROCESS ARCHITECTURES. . . . IOS Press, 2005. p.189–201.

http://www.top500.org/
http://www.uclibc.org/

