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ABSTRACT � The Extended Kalman Filter application encloses four important areas, 
related directly with the advanced control strategies implantation to an industrial process: 
state estimation, unknown process parameters estimation, dynamic data reconciliation, and 
data filtering. The main goal of this paper is to evaluate the quality of four different 
Extended Kalman Filter formulations for these four areas. The Filters are applied in a studied 
case: the Sextuple Tank-Process. This process presents a high non-linearity degree and a 
RHP transmission zero, with multivariable gain inversion. 

KEYWORDS: Extended Kalman Filters, State and Parameter Estimation, Dynamic Data 
Reconciliation, Nonlinear Models. 

1. INTRODUCTION  

It is well established that the Kalman 
filter is an optimal state estimator for 
unconstrained linear systems subject to 
normally distributed state and measurement 
noise. Many physical systems, however, exhibit 
nonlinear dynamics and have states subject to 
hard constraints, such as nonnegative 
concentrations or pressures. In these cases, 
Kalman filtering is no longer directly 
applicable. As a result, many different types of 
nonlinear state estimators have been proposed; 
Soroush (1998) provides a review of many of 
these methods. One reason for the popularity of 
the EKF is that its application encloses four 
important areas, related directly with the 
advanced control strategies implantation to an 
industrial process: state estimation, unknown 
process parameters estimation, dynamic data 

reconciliation, and data filtering. The use of 
dynamic data reconciliation techniques can 
considerably reduce the inaccuracy of process 
data due to measurement errors. In their paper, 
Abu-el-zeet et al. (2002) have shown that the 
overall performance of the model-based 
predictive controller improves considerably 
when the data is first reconciled prior to being 
fed to the controller. In their paper, Rao and 
Rawlings (2002) have considered the 
formulations of Kalman Filter and MHE to the 
problem of detecting the location and 
magnitude of a leak in a wastewater treatment 
process. While the constrained estimators 
provide a good estimate of the total losses when 
there is a leak, MHE and Kalman filter provide 
poor estimates when there are no leaks. The 
problem stems from an incorrect model of the 
process (the true model process has no leaks 
while the model assumes leaks) and, for solving 
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this problem; they have just suggested a proper 
strategy where this problem is formulated as a 
constrained signal-detection problem. However, 
they had not implemented this proposal 
strategy.  

In their work, Marcon et al. (2002) 
compared the quality in state estimation using 
two Kalman Filter formulations: Extended 
Kalman-Bucy Filter (EKF) and Constrained 
Extended Kalman Filter (CEKF). The Filters 
were applied in a quadruple cylindrical tank 
and compared for state estimation application. 
In this work, besides the Kalman filters 
formulations that had been used in Marcon et 
al. (2002), two others formulations for EKF are 
used. All the filters performances are evaluated 
not only for the state estimation, but also for the 
unknown process parameters estimation and to 
the dynamic data reconciliation. Furthermore, 
the comparison is carried out using a sextuple 
spherical tank process that exhibit higher 
dynamic nonlinearities, and also has a RHP 
transmission zero, with multivariable gain 
inversion.  

2. EXTENDED KALMAN FILTER 

The Kalman Filter is a set of 
mathematical equations that provides an 
efficient computational (recursive) solution of 
the least-square methods. The filter is very 
powerful in several aspects: it supports 
estimations of past, present, and even future 
states, and it can do so even when the precise 
nature of the modeled system is unknown 
(Welch and Bishop, 2000). In this work, four 
distinct formulations for the Extended Kalman 
Filter had been evaluated.  

The process model is described by the 
equations below.  

t,u,xgy

t,u,xf
dt

dx
       (1) 

      x (0) = x0

where x, u, y and t are, respectively, vectors of 
state variables, manipulated variables and 
measured variables, and time.  

2.1 Extended Kalman Filter (EKF) 

In this work, a filter known as 
Continuous-Discrete Extended Kalman-Bucy 
Filter (Krebs, 1980) is used. The basic 
equations of this filter can be divided in two 
stages: I) Prediction and II) Correction. 

Prediction:
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dt
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       (2) 
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xe: estimated state variables vector   
Pe: estimated error covariance matrix  

Correction:
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K: Kalman Filter gain matrix for t = tk

H: matrix that connects process outputs with 
state variables 
xc: corrected state variables vector   
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Pc: corrected error covariance matrix  

The implementation of the prediction 
stage of the EKF consists basically of the 
integration of differential equations, from the 
dynamic model, and the differential equations 
related to the covariance matrix P, which are 
made between the sampling times. With the 
values predicted in the sampling time tk and 
with the measured values y(tk), the values 
estimated for the states, xe, and for covariance 
matrix, Pe, can be corrected using the equations 
listed in the Correction stage. The corrected 
value of states, xc, and the corrected value of 
covariance matrix, Pc, are used as the new 
initial conditions of differential equations 
system for the next time interval. The matrices 
Q and R are, respectively, the covariances of 
the process and the measurements noises 
(random errors). They consist, in this way, in 
the filter adjustment basic parameters and 
reflect the reliable degree in the modeling and 
the measurements, respectively.  

2.2 Constrained Extended Kalman 
Filter (CEKF) 

CEKF is an alternative state estimator 
based on optimization, originated from Moving 
Horizon Estimation (MHE), introduced by 
(Gesthuisen et al., 2001; Muske and Rawlings, 
1994; Muske et al., 1993). MHE advantages 
(Robertson et al., 1996) over classic estimators, 
as the Extended Kalman Filter (EKF), are the 
possibility to consider physical constraints of 
the states (e.g., concentrations are always 
greater or equal to zero) and the fact that over 
the considered horizon no information about the 
non-linear system is lost. The disadvantage is 
the necessity of solving a non-linear dynamic 
program. The CEKF formulation follows from 
MHE for a horizon length equals to zero. In this 
way, the CEKF formulation is very similar to 
the conventional EKF, therefore the horizon of 

measures considered in the correction stage of 
both cases are identical. The difference is the 
fact that the system constrains directly appears 
in the optimization � filter correction stage. 

The process model is described by the 
equations below: 

txhty

x0x

tu,xfx

00    (7) 

where x, u, y,  and  are, respectively, 
vectors of state variables, manipulated 
variables, measured variables, modeling and 
measurement errors. 

The basic equations of CEKF can be 
divided, like in the EKF, in two stages: I) 
Prediction and II) Correction. In prediction 
stage it is performed only the integration of 
differential equations from the dynamic model. 
As results, it is obtained the estimated states 
and/or parameters (xe) of the system. In contrast 
to EKF, in this stage the integration of 
covariance matrix, P, is not carried through 
with the differential equations of the system, 
although this could also be made in another 
EKF formulation (not presented here due to 
lack of space). 

Prediction:

k1ke
e ttt,t,u,xf

dt

dx
                (8) 

In the correction stage is solved the 
following optimization problem: 

Correction:
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The aim of the optimization procedure is 
to achieve the correction of the states (xc)
calculated during the Prediction stage, so that 
the dynamic model trajectory is as closest as 
possible to the real process behavior. This 
procedure is done for each time interval, from 
tk-1 to tk.  The corrected states (xc) are calculated 
from xe and the optimization results. Those 
values are used as the new initial states in 
prediction stage when t = tk.

kkekc ttxtx      (11) 

The discrete covariance error matrix is 
updated using the equation below: 

T
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where, Fd is the Jacobian matrix for the discrete 
system. According to Brown and Hwang 
(1996), to make the transition from the discrete 
to continuous case, the relations below between 
Qd and Rd and the corresponding Q and R for a 
small step size t  were used.  

tQQd                (13) 

t

R
R d                              (14) 

2.4 Discrete Extended Kalman Filter 
(DEKF)

The basic difference between the DEKF 
and the EKF is that this formulation uses only 

the discrete form. In this way, the equations 
were modified. 

Prediction:
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2.3 MODIFIED DISCRETE 
EXTENDED KALMAN FILTER 
(MDEKF)  

In the MDEKF, the covariance error 
matrix, P, is not corrected. During the 
prediction stage, like in CEKF, the integration 
of matrix P is not carried through with the
differential equations of the system. This matrix 
is estimated and updated in discrete form, using 
the Equation 12 of CEKF. 

Prediction:
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e ttt,t,u,xf

dt

dx
      (20) 
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Correction:
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3. PROCESS MODEL 

The different filter formulations presented 
in the previous section have been implemented 
in the Sextuple-Tank Process Model (Escobar, 
2006) depicted in Figure 1. 

Figure 1 � The Sextuple-Tank Process 

The proposed unit consists of six 
interacting spherical tanks with different 
diameters Di. The objective consists in 
controlling the levels of the lower tanks (h1 and 
h2), using as manipulated variables the flow 
rates (F1 and F2) and the valve distribution flow 
factors of these flow rates (0 x1 1, 0 x2 1) 
that distribute the total feed among the tanks 3, 
4, 5 and 6. The complemental flow rates feed 
the intermediary tank on the respective opposite 
side. The levels of the tanks 3 and 4 are 

controlled by means of SISO PI controllers 
around the set-points given by h3s and h4s. The 
manipulated variable in each loop is the 
discharge coefficients Ri of the respective 
valve. Under these assumptions, the system can 
be described by the following equations: 
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where Ai, hi, Di, Ri are, respectively, cross 
section area, level, diameter, outlet flow 
coefficient of tank i; h3s and h4s are the 
intermediary tanks (3 and 4) level set points; 
R3s and R4s are the steady state outlet flow 
coefficient of intermediary tanks (3 and 4); F1

and F2 are the manipulated inlet flow rates; x1

and x2 are  the valve distribution flow factors;  
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KP3 and KP4 are the proportional gain of the 
level PI Controllers for the intermediary tanks 
(3 and 4); Ti3 and Ti4 are the integral time 
constant of the level PI Controllers for the 
intermediary tanks (3 and 4). 

4. KALMAN FILTERS 
ALGORITHMS  

The Kalman filters formulations were 
implemented in MATLAB and applied in the 
process dynamic model presented in Section 3 
using SIMULINK. The goal is the estimation of 
intermediary tanks (3 and 4) level, since these 
levels are the controlled variables of this 
process. The estimation of superior tanks (5 and 
6) levels also is verified. In this case, the 
inferior tanks (1 and 2) levels are measured 
directly in the process, and the filtration of 
these variables is carried out by the Kalman 
filters. The system initial condition is an 
operating point that presents a minimum phase 
behavior (1<x1+x2<2). However, due to step 
changes in the valve distribution flow factors 
during the process simulation the system moves 
to an operating region presenting non-minimum 
phase behavior (1<x1+x2<0).  

Three cases had been simulated to 
evaluate the quality of prediction and 
robustness for all the filters formulations, 
considering the afore-mentioned important 
areas related directly with the advanced control 
strategies implantation to an industrial process: 
state estimation, unknown process parameters 
estimation, dynamic data reconciliation, and 
data filtering. In all studied cases, the following 
conditions and settings were imposed: 

A PRBS (Pseudo-Random Binary Signal) is 
used in the manipulated inlet flow rates (F1 and 
F2).   

A step change is carried out in the valve 
distribution flow factors in t = 50 min. The 
values of these variable becomes: x1=0.4 and 

x2=0.5, corresponding to a minimal-phase 
operating region. 

The filter design parameter Q was considered 
as a diagonal matrix (the errors in the state 
variables are uncorrelated): nxnIQ , where n 

is the number of states. 
The filter design parameter R was considered 

as a diagonal matrix (the errors in the measured 
variables are uncorrelated) with an uncertainty 
in the measurements: mxmI10R , where m is 

the number of measured variables. 
In CEKF formulations, constrains were not 

imposed in the state variables. 
The measured variables are the inferior tanks 

(1 and 2) levels. These variables are generated 
from the model simulation with a band-limited 
white noise addition.  

All the evaluated simulations were made in 
100 minutes. 

4.1 Case 1: Parameters Estimation 

In this case, errors of 10% in the outlet 
flow coefficients of tank 1 (R1) and tank 2 (R2)
were considered. The filters performances are 
evaluated using an error criterion: Integral Time 
Absolute Error (ITAE). In Table 1 is shown the 
filters performance, obtained in the simulations. 

Table 1 � Filters Performance to Case 1. 

 ITAE 
 H1 H2 R1 R2

EKF 3050.2 3505.9 - - 
CEKF 6543.9 7553.6 - - 
DEKF  6543.7 7553.2 - - 
MDEKF 6544.3 7554.1 - - 
EKFest 77.5 88.1 3069.1 3639.8
CEKFest 36.2 41.0 4206.9 5097.9
DEKFest  36.3 41.1 4211.2 5104.8
MDEKFest 36.1 40.8 4106.6 4964.4

According to Table 1, the EKF 
presented the best performance when only state 
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estimation was applied. Furthermore, when 
unknown process parameters were also 
estimated (subscript  �est� in Table 1), the EKF 
also presented the best performance with a 
faster convergence to the parameters correct 
values and, due to a higher error in the 
simulation beginning, the EKF presented an 
ITAE higher than the other filters in state 
estimation (H1 e H2). The three other filters 
presented a similar performance in both 
situations.

4.2 Case 2: Dynamic Data 
Reconciliation

In this case, supposing a leak in the 
process, it was considered an error of 1000 
cm3.min-1 in the manipulated inlet flow rate 1 
(F1). The filters performances are shown in 
Table 2.  

Table 2 � Filters Performance to Case 2. 

 ITAE 
 H1 H2 F1 F2

EKF 2158.5 2491.3 - - 
CEKF 4833.7 5586.1 - - 
DEKF  4833.2 5585.8 - - 
MDEKF 4833.7 5586.2 - - 
EKFrec 152.9 119.7 642366 498180
CEKFrec 362.7 342.6 1109591 823808
DEKFrec  362.5 342.6 1109411 823538
MDEKFrec 361.6 342.1 1107404 822985

According to Table 2, as in the case 1, 
the EKF presented the best performance when 
only state estimation was applied. Moreover, 
when applying dynamic data reconciliation, the 
EKF also presented the best performance, 
providing a good estimate of the total losses 
when there is a leak. Besides, like in case 1, the 
three other filters presented a similar 
performance in both situations.  

4.3 Case 3: Parameters Estimation 
and Dynamic Data Reconciliation  

In this case, supposing a leak in the 
process similar to case 2, errors of 10% in the 
outlet flow coefficients of tank 1 (R1) and tank 
2 (R2) were also considered. The filters 
performances are shown in Table 3.  

Table 3 � Filters Performance to Case 3. 

 ITAE 
 H1 H2 F1 R1

EKF 1023.6 1137.5 - - 
CEKF 2185.8 2489.0 - - 
DEKF  2185.8 2488.8 - - 
MDEKF 2185.9 2489.3 - - 
EKFrec 284.1 184.2 609617.0 2922953.7
CEKFrec 774.2 556.0 756488.6 3749536.5
DEKFrec  773.1 556.1 755276.4 3745489.4
MDEKFrec 773.0 556.8 754914.6 3744539.4

Again, according to Table 3, as in the 
previous cases, the EKF presented the best 
performance when only state estimation was 
applied. Furthermore, when unknown process 
parameters estimation and dynamic data 
reconciliation were applied, all the formulations 
presented a bad performance to estimate the 
correct values of the parameter (outlet flow 
coefficients of tank 1 and 2) and the leak (flows 
variations 1 and 2). Even so, the EKF has 
presented the best performance.  

For all evaluated cases, the estimation of 
intermediary tanks (3 and 4) level has presented 
a good quality and, thereby, their simulations 
results were not shown. The situations where 
different initial conditions were used in the 
filters were also evaluated and all the filters 
formulations presented a good performance in 
state estimation, with a fast converge to the 
corrected values of the state variables. In order 
to simulate a dynamic uncertainty in the 
process modeling, it was used a cylindrical 
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tanks model in the filters, instead of spherical 
tanks used in the process, and all the 
formulations estimated the states with very 
small errors and, therefore, their results also 
were not shown here. 

5. CONCLUSIONS 

In the studied cases, all filters 
formulations presented a good performance in 
data filtering. For the situations where only 
state estimations were applied, the EKF 
presented the best performance when only state 
estimation was applied. It was shown that when 
the unknown process parameters estimation 
and/or dynamic data reconciliation were 
implemented together with the state estimation, 
the EKF also presented the best performance.
However, in these case studies no constrains 
were imposed to the state variables, which 
could improve the relative performance of 
CEKF against the others evaluated filters.
Moreover, the effects of the filters design 
parameters (Q and R matrices) and the state 
observability analysis were not evaluated in this 
work. In future studies, these possible 
improvements in filters performances will be 
considered.
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