
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

AUGUSTO EXENBERGER BECKER

Assessing Data Leakage Effects on the
Performance Estimates of Machine

Learning Classifiers

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Engineering

Advisor: Profa. Dra. Mariana Recamonde
Mendoza

Porto Alegre
September 2023

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Helena Lucas Pranke
Pró-Reitora de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Diretora da Escola de Engenharia: Profa. Carla Schwengber Ten Caten
Coordenador do Curso de Engenharia de Computação: Prof. Claudio Machado Diniz
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro
Bibliotecária-chefe da Escola de Engenharia: Rosane Beatriz Allegretti Borges

“Perfecting oneself is as much unlearning as it is learning.”

— EDSGER WYBE DIJKSTRA

AGRADECIMENTOS

Agradeço aos meus pais, Denis Becker e Raquel Exenberger Becker, por todo o

apoio, carinho e incentivo durante esses anos. Aos meus irmão Thales Exenberger Becker

e Pedro Henrique Exenberger Becker, que trilharam esse caminho antes de mim, por com-

partilharem suas dificuldades e aprendizados. À minha namorada Letícia Cattai Contino,

pelo apoio e incentivo durante essa trajetória. Agradeço também à minha orientadora,

Profa. Mariana Recamonde Mendoza, por aceitar essa posição e pelo conhecimento, in-

dicações e ensinamentos que foram fundamentais para este trabalho.

ABSTRACT

Data Leakage (DL) in the context of Machine Learning (ML) refers to the inadvertent in-

troduction of information from test data into the training process. This contamination can

occur in various forms, including subtle ones such as during data pre-processing stages

(e.g., normalization, handling missing values, and feature selection) and hyperparameter

tuning. When DL takes place, it can result in an inflated estimation of model performance

due to overfitting, which fails to translate into real-world predictions. In this study, we in-

vestigate the impact of DL on the performance assessment of classification models using a

set of 30 carefully chosen data sets. These data sets were sourced from the Penn Machine

Learning Benchmark repository, with an emphasis on varying their metadata (e.g., num-

ber of instances and number of features) but keeping a relative balance between classes.

The assessment encompasses six distinct ML algorithms: K-Nearest Neighbors, Support

Vector Machine, Decision Trees, Naïve Bayes, Random Forest, and Logistic Regression.

Performance evaluation is carried out using variations of the k-fold cross-validation, and

the balanced accuracy and F1 score metrics. The findings of this research reveal a consis-

tent pattern of performance overestimation when DL is present. Notably, the effect of DL

is particularly pronounced in the context of hyperparameter tuning and feature selection.

Moreover, our analysis indicates a relatively higher susceptibility of the Support Vector

Machine algorithm to DL, whereas the impact on Logistic Regression is comparatively

less significant. Categorizing the data sets based on the impact of DL on their perfor-

mance, we identified three groups: one group of 10 data sets experiences a substantial

increase in performance estimates, another group of 9 shows a marginal increase, and the

remaining 11 either maintain or exhibit decreased performance estimates in the presence

of DL. In specific cases, we observed notable improvement in performance estimates,

with average scores increasing up to 8 percentile points upon DL insertion, particularly

for certain preparation tasks and data sets. Overall, our results suggest that the effects of

DL should not be neglected since it tends to positively affect model performance, gener-

ating results that may be hard to replicate with real-world data.

Keywords: Data Leakage. Data Contamination. Overfitting. Performance Estimate.

Machine Learning.

Avaliação dos Efeitos do Data Leakage na Estimativa de Desempenho de

Classificadores baseados em Aprendizado de Máquina

RESUMO

Data Leakage (DL) refere-se à introdução inadvertida de informações de dados de teste no

processo de treinamento de modelos com aprendizado de máquina (AM) . Esse vazamento

de dados pode ocorrer de formas sutis, como durante os estágios de pré-processamento de

dados (e.g.,, normalização, tratamento de valores ausentes e seleção de atributos) e ajuste

de hiperparâmetros, e pode resultar em uma estimativa inflacionada do desempenho do

modelo devido ao overfitting, que não se traduz em previsões do mundo real. Neste

estudo, investigamos o impacto do DL na avaliação de desempenho de classificadores

usando 30 conjuntos de dados do repositório Penn Machine Learning Benchmark, esco-

lhidos com ênfase na variação de seus metadados (e.g., número de instâncias e número de

atributos) e no equilíbrio relativo entre as classes. A avaliação abrange seis algoritmos de

AM: K-Nearest Neighbours, Support Vector Machine (SVM), Árvores de Decisão, Naïve

Bayes, Florestas Aleatórias e Regressão Logística. O desempenho foi avaliado com vari-

ações da validação cruzada k-fold e com as métricas de acurácia balanceada e F1-score.

Os resultados obtidos revelam um padrão consistente de superestimação de desempenho

quando há vazamento de dados. Notavelmente, o efeito de DL é particularmente pronun-

ciado no contexto do ajuste de hiperparâmetros e seleção de atributos. Observou-se uma

susceptibilidade relativamente maior do algoritmo SVM ao DL, enquanto o impacto na

regressão logística foi menos significativo. Com base no impacto do DL na estimativa de

desempenho, identificamos três grupos dentre os conjuntos de dados: (i) 10 conjuntos de

dados exibiram um aumento substancial nas estimativas de desempenho, (ii) 9 conjuntos

de dados tiveram um aumento marginal, (iii) 11 conjuntos de dados mantiveram os redu-

ziram a estimativa de desempenho na presença de DL. Para determinadas combinações

de tarefas e conjuntos de dados, observamos uma melhoria notável nas estimativas de

desempenho, com pontuações médias aumentando em até 8 pontos percentuais após a in-

serção de DL. No geral, os nossos resultados sugerem que os efeitos de DL não devem ser

negligenciados, uma vez que tendem a afetar positivamente o desempenho dos modelos,

gerando resultados que podem ser difíceis de replicar com dados do mundo real.

Palavras-chave: Data Leakage, Contaminação de Dados, Aprendizado de Máquina,

Overfitting, Estimativa de Desempenho.

LIST OF ABBREVIATIONS AND ACRONYMS

CV Cross-Validation

DL Data Leakage

DT Decision Tree

KNN K-Nearest Neighbors

LR Logistic Regression

ML Machine Learning

NB Naive Bayes

PMLB Penn Machine Learning Benchmarks

RF Random Forest

SVM Support Vector Machine

LIST OF FIGURES

Figure 2.1 An example of KNN-based classification..14
Figure 2.2 An example of SVM decision boundary for binary classification.................15
Figure 2.3 Plot of the Sigmoid function, with the characteristic "S"-shaped curve........15
Figure 2.4 Decision diagram of a Decision Tree ..17
Figure 2.5 Decision diagram of a Random Forest ..17
Figure 2.6 Structure of a nested cross-validation with inner and outer loops.................20
Figure 2.7 Diagram showing how data leakage can be inserted during data pre-

processing. ..21
Figure 2.8 Diagram showing how to avoid data leakage during data pre-processing.....21

Figure 4.1 Diagram detailing one repetition of the cross-validation for the experi-
ments with data pre-processing tasks..30

Figure 4.2 Diagram showing one repetition of the experiments for hyperparameter
tuning with nested CV to avoid data leakage..32

Figure 4.3 Diagram showing one repetition of the experiments for hyperparameter
tuning with standard CV, causing data leakage. ...33

Figure 5.1 Overall analysis of the average scores and difference in scores consid-
ering all experiments conducted. ..34

Figure 5.2 Distributions of average scores for all experiments conducted.35
Figure 5.3 Summary of the results for feature selection experiments.............................37
Figure 5.4 Summary of the results for hyperparameter tuning experiments...................38
Figure 5.5 Summary of the results for missing value imputation experiments...............39
Figure 5.6 Summary of the results for normalization experiments.................................40
Figure 5.7 Comparison of F1 score results with and without DL for different tasks41
Figure 5.8 Average F1 scores and performance differences for data sets with sig-

nificantly increased estimates upon DL. ...43
Figure 5.9 Average F1 scores and performance differences for data sets with slightly

increased estimates upon DL. ...44
Figure 5.10 Average F1 scores and performance differences for data sets with de-

creased or unaffected estimates upon DL. ..44
Figure 5.11 F1 score results for selected data sets with significant increase in per-

formance upon DL during hyperparameter tuning. ..46
Figure 5.12 F1 score results for selected data sets with significant increase in per-

formance upon DL during feature selection. ..47
Figure 5.13 Average performance estimates and score differences per repetition for

KNN..48
Figure 5.14 Average performance estimates and score differences per repetition for

Decision Trees...48
Figure 5.15 Average performance estimates and score differences per repetition for

Naïve Bayes. ...49
Figure 5.16 Average performance estimates and score differences per repetition for

Random Forests. ...49
Figure 5.17 Average performance estimates and score differences per repetition for

SVM..50
Figure 5.18 Average performance estimates and score differences per repetition for

Logistic Regression...50
Figure 5.19 Summary of F1-score results per algorithm ..51

Figure 5.20 Distribution of score differences according to number of instances in
the data set for hyperparameter tuning experiments. ..52

Figure B.1 Detailed F1-score results for feature selection considering different per-
centiles of top-selected features. ...60

Figure C.1 Detailed F1-score results for value imputation considering different
percentage of missing values. ...61

Figure C.2 Detailed F1-score results for value imputation considering different im-
putation strategies. ..62

LIST OF TABLES

Table 3.1 Summary of the related work and expected contributions of this study..........26

Table 4.1 Selected data sets with their respective metadata..28

Table 5.1 Classification of data sets according to experimental analysis of DL effects. 42
Table 5.2 Correlation analysis between data sets metadata and performance differ-

ences per task. ...51
Table 5.3 Correlation analysis between data sets metadata and performance differ-

ences per algorithm. ..51

CONTENTS

1 INTRODUCTION...12
2 THEORETICAL BACKGROUND...13
2.1 Machine Learning...13
2.2 Supervised Learning Algorithms...13
2.2.1 K-Nearest Neighbors ...13
2.2.2 Support Vector Machine ..14
2.2.3 Logistic Regression..15
2.2.4 Naive Bayes ..16
2.2.5 Decision Trees..16
2.2.6 Random Forests ...17
2.3 Model Approximation...18
2.3.1 Pre-processing..18
2.3.2 Hyperparameter tuning ..19
2.3.3 Cross-Validation...19
2.4 Data Leakage...20
3 RELATED WORKS ...23
3.1 Data Leakage...23
3.2 Effects of Data Leakage..24
3.3 Summary..25
4 METHODOLOGY ...27
4.1 Data Sets ..27
4.2 Proposed Experiments..29
4.2.1 Experiments for normalization ..29
4.2.2 Experiments for value imputation..29
4.2.3 Experiments for feature selection ..31
4.2.4 Experiments for hyperparameter tuning ..31
5 RESULTS...34
5.1 Does data leakage impact performance evaluation? ...34
5.2 Is the effect of data leakage more prominent in a specific task?36
5.2.1 Results evaluation per task...36
5.2.2 Comparison among tasks ...40
5.3 Do data leakage effects change for different data sets?.......................................42
5.3.1 Overall results for grouped data sets..43
5.3.2 Analysis of relevant combinations of data sets and tasks45
5.4 Is there a machine learning algorithm more sensitive to data leakage effects? 45
5.5 Is there a correlation between the metadata of the data sets and the effects

of data leakage?..50
6 CONCLUSION & FUTURE WORK..53
REFERENCES...55
APPENDIX A — LIST OF HYPERPARAMETERS TESTED................................59
A.1 Logistic Regression ..59
A.2 Support Vector Classifier ..59
A.3 K-Nearest Neighbors..59
A.4 Random Forest ...59
A.5 Decision Tree...59
A.6 Naive Bayes ...59
APPENDIX B — DETAILED RESULTS FOR FEATURE SELECTION60
APPENDIX C — DETAILED RESULTS FOR VALUE IMPUTATION.................61

12

1 INTRODUCTION

Machine Learning (ML) algorithms are being used in a wide range of research

and applications, many showing promising results. However, when the process of train-

ing and validation of ML models is not done correctly, in a methodological point of

view, it can lead to Data Leakage (DL). Data contamination through DL generates models

that over-perform validation tests, creating false expectations and unreproducible results

(KAPOOR; NARAYANAN, 2022).

Data leakage is defined as the contamination of training data with privileged infor-

mation from the independent validation set (or test set) to which the algorithm or method

should not have access during model development. This can originate in the mishandling

of the data set during pre-processing and data preparation steps, by subtle mistakes in

normalization, missing values imputation, feature selection, or hyperparameter tuning,

for instance. It is essential to understand the extent of DL effects better once it has been

cited as one of the "Top 10 Data Mining Mistakes" (NISBET; ELDER; MINER, 2009).

Recently, a broad spread of research has been conducted focusing on DL. Efforts

were placed on understanding, detecting, and preventing the issue, providing formula-

tions (KAUFMAN et al., 2012), a taxonomy of leakage types (KAPOOR; NARAYANAN,

2022), and static code analysis approaches to detect leakage signs in the code (DROBN-

JAKOVIĆ; SUBOTIĆ; URBAN, 2022; YANG et al., 2022). Additionally, some studies

investigated the consequences of leakage in specific applications (SAMALA et al., 2020;

SHIM; LEE; HWANG, 2021; YAGIS et al., 2021).

Nonetheless, there is still a lack of studies that analyze the effects of unintention-

ally inserting DL in different pre-processing steps. This work aims to propose a study

of the effects of DL on the performance estimate of ML models developed for classifi-

cation tasks to understand how different data sets and algorithms are affected by each

kind of pre-processing contamination: normalization, missing values imputation, feature

selection, and hyperparameter optimization.

This work is organized as follows. Chapter 2 provides a theoretical background,

describing the key concepts for this work. Chapter 3 summarizes existing efforts based

on related works. Next, Chapter 4 presents the methods used, including the selection of

data and the experimental methodology adopted. The experimental results are unveiled

in Chapter 5, alongside five research questions that our work aimed to address. Finally,

conclusions and possible future works are presented in Chapter 6.

13

2 THEORETICAL BACKGROUND

2.1 Machine Learning

Machine Learning is a field of Artificial Intelligence focused on approximating

models to represent or describe data collections. This is accomplished by using opti-

mization or learning algorithms to approximate a target function using example data or

past experience (ALPAYDIN, 2014). ML applications exist in various fields, such as

bioinformatics (TAN et al., 2021), medicine (NAQA; MURPHY, 2015), smart cities (UL-

LAH et al., 2020), education (LUAN; TSAI, 2021), and finance (DIXON; HALPERIN;

BILOKON, 2020).

ML algorithms are divided into two major categories: supervised learning and

unsupervised learning. Supervised learning incorporates techniques based on the "map-

ping" of given inputs and outputs and uses this generated mapping to predict the output

of unseen input data (CUNNINGHAM; CORD; DELANY, 2008). The output can be

either categorical for classification tasks or numerical for regression tasks. In contrast,

unsupervised learning techniques work with data that does not have a previously defined

output, with the goal of clustering or organizing these values (GREENE; CUNNING-

HAM; MAYER, 2008), for example.

In what follows, we revise selected supervised learning algorithms commonly ap-

plied for classification tasks, which is the interest of the current work.

2.2 Supervised Learning Algorithms

2.2.1 K-Nearest Neighbors

The K-Nearest Neighbors (KNN) algorithm relies on the premise that data in-

stances with similar values should have the same classification. To predict the class of a

new instance, the KNN algorithm uses the known classes for the K nearest data instances

from the provided point. The predicted class selected for this new instance is the most

frequent class among its K neighbors (KRAMER, 2013). Figure 2.1 shows an exam-

ple of how two new instances would be classified according to their nearest neighbors,

considering a model based on a 5-Nearest Neighbors approach.

Despite being simple, the KNN algorithm can provide a very complex decision

14

boundary since every data instance is classified according to the surrounding values. How-

ever, the algorithm is also highly sensitive to the setting of its three main hyperparame-

ters: the number of nearest Neighbors (K), the distance function used to select the nearest

neighbors, and the weighting function (in case of using weighted voting among nearest

neighbors) (KANG, 2021).

Figure 2.1: An example of KNN-based classification.

Source: The Author

2.2.2 Support Vector Machine

Support Vector Machine (SVM) is an ML algorithm based on splitting the decision

space with a hyperplane that best divides the instances while maximizing the margin

between the decision surface and the nearest training data instances from distinct classes

(NOBLE, 2006). Figure 2.2 shows an example of a possible SVM classifier splitting

instances in a two-dimensional domain (i.e., two features). The dotted lines show the

margins from the splitting line and the nearest data instances, also known as the support

vectors.

The traditional SVM is able to deal only with linearly separable data. However,

different kernels and techniques used in SVMs allow the algorithm to conduct non-linear

classification. The kernel trick, for instance, consists of transforming the data points

by projecting them into higher dimensional spaces, adding extra features created as a

function of the original ones to obtain linear separability. Then, the algorithm generates a

splitting hyperplane in this new feature space and transforms it back to the original vector

space (SUTHAHARAN; SUTHAHARAN, 2016).

15

Figure 2.2: An example of SVM decision boundary for binary classification.

Source: The Author

2.2.3 Logistic Regression

The Logistic Regression (LR) algorithm is an alternative to model probabilities

for n classes as a function of the feature vector in question (HASTIE et al., 2009). For

a binary problem, the LR can use the sigmoid function (Figure 2.3) to make the binary

decision about a new observation (JURAFSKY et al., 2014). For multiclass problems, dif-

ferent approaches can be applied. The implementation from scikit-learn (PEDREGOSA

et al., 2011), adopted in our work, uses the One versus Rest approach to select the result-

ing class for multiclass classification. Consequentially, the sigmoid function can be used

to decide for each class against the remainder. The class with the largest predicted score

is then used for the prediction.

Figure 2.3: Plot of the Sigmoid function, with the characteristic "S"-shaped curve.

Source: Jurafsky et al. (2014)

16

2.2.4 Naive Bayes

As the name suggests, the Naive Bayes (NB) algorithm is based on the Bayes the-

orem. It uses the strong assumption of conditional independence between features given

a class to calculate the conditional probability of each feature to each class (ZHANG; LI,

2007). The conditional probabilities along with the a priori probability for each class are

then used to calculate a posteriori probability for each class of a new instance, given its

features (BERRAR, 2018).

The following equation is used to calculate the likelihood of a yi class for a given

data instance x with d features. As mentioned, this value is calculated by the product of

the probability of the value of each xj feature for the respective class. It also takes into

consideration the a prior probability of the class, P (yi). The predicted class is the one

that maximizes the posterior probability P (yi|x).

P (yi|x) = P (yi)
d∏

j=1

P (xj|yi) (2.1)

2.2.5 Decision Trees

The Decision Tree (DT) is a classifier trained based on a sequence of recursive

divisions of the input space. For each level, starting on the root of the tree, the DT di-

rects the model’s decision according to a discrete function defined based on a given input

feature (ROKACH; MAIMON, 2005). The algorithms chooses the feature whose split

provides the maximum impurity decrease in the training data set. The successive applica-

tion of these discrete functions is used to guide the classification of a given instance. The

leaf nodes are called terminal nodes and are related to the final classification response.

Figure 2.4 shows a diagram with the structure for a DT.

In general, DTs are good at dealing with categorical values, using discrete func-

tions that split the decision plane according to the possible categories. When dealing with

continuous numeric values, the decision plane is split using a function to discretize the

original feature values (KINGSFORD; SALZBERG, 2008).

17

Figure 2.4: Decision diagram of a Decision Tree

Source: The Author

2.2.6 Random Forests

Random Forest (RF) classifiers are ensembles of DTs. The plurality of the en-

semble comes from training different DTs, using a random selection of instances (via

bootstrap) and features (CUTLER; CUTLER; STEVENS, 2012). Figure 2.5 shows a di-

agram representing a simple RF with three DTs. The training process for each tree is the

same as described in Section 2.2.5. In the classification step, the output class is selected

based on a majority voting among all trees in the ensemble (BREIMAN, 2001).

Figure 2.5: Decision diagram of a Random Forest

Source: The Author

18

2.3 Model Approximation

Model approximation is considered here as the process of using the data available

to train, evaluate, and select the best ML model for a given task. In this section, three

concepts are presented. The data preparation steps are explained in 2.3.1. Section 2.3.2

describes the process of hyperparameter tuning. Finally, Section 2.3.3 presents two meth-

ods to evaluate model performance.

2.3.1 Pre-processing

In the context of ML model approximation, pre-processing refers to the set of

techniques performed on raw data to prepare it for use in model training. This step can

be composed of several tasks that change the input data somehow. Examples of pre-

processing tasks are: missing value imputation, normalization, and feature selection.

Value imputation is a process used to deal with missing values. Value imputa-

tion aims to replace missing points in the data instances for reasonable values (YOZ-

GATLIGIL et al., 2013). There are different strategies through which this goal can be

achieved, from more straightforward methods that use the median or average of the exist-

ing values to more complex processes that use KNN algorithms or other ML approaches

to estimate the probable values (GARCÍA; LUENGO; HERRERA, 2015).

Normalization is a form of data transformation and it aims to change the domain

of raw data features to avoid those features with more considerable variations dominating

over others in the learning process (GARCÍA; LUENGO; HERRERA, 2015). One of the

most common methods of normalization is the Min-Max Normalization. This method

uses the minimum and maximum values for the respective feature in the data set to calcu-

late the normalized feature value.

Feature Selection is an strategy commonly applied to reduce the dimensionality

of the data set. The goal of feature selection is to select the optimal subset of features

according to a selection criteria (GARCÍA; LUENGO; HERRERA, 2015). Different cri-

teria can be used to select the ideal features, including Dependence Measures, Separability

Measures, Consistency Measures, Accuracy and Information Measures (GARCÍA; LU-

ENGO; HERRERA, 2015). Therefore, this process removes irrelevant features while also

reducing the complexity of the resulting model.

19

2.3.2 Hyperparameter tuning

Hyperparameter tuning is the process of adapting the hyperparameters of the algo-

rithms, changing their values to achieve better performance (RASCHKA, 2018). These

hyperparameters can be the number of nearest neighbors in the KNN algorithm 2.2.1

or the kernel of an SVM 2.2.2, for example. The process works by changing the hy-

perparameter values iteratively, usually based on search strategies such as grid search or

randomized search, and selecting the configuration of values that produces the best results

for a selected performance metric, such as accuracy (RASCHKA, 2018).

2.3.3 Cross-Validation

Cross-validation (CV) is a technique for model evaluation, also used as basis for

model selection. The technique consists of sequential iterations of training and validation

stages, allowing every data instance to be used for training and testing the model.

In K-fold CV the data is split into K parts of the same size, called folds. These

folds are used for model training and evaluation in K different iterations. In each iteration,

one of these folds is used for validation, and the other K-1 folds are used for training

(RASCHKA, 2018). In Figure 2.6, the outer loop is equivalent to the process of K-Fold

CV. After all iterations, the average performance across all test folds is used to determine

the overall performance of the model.

Nested CV is a technique that uses multiple levels of CV. It can reduce bias com-

pared to K-Fold CV when used for hyperparameter tuning and evaluation (VARMA; SI-

MON, 2006). The process consists of two loops of CV, the outer and inner loops. Figure

2.6 presents the process of Nested CV but shows the inner loop only in the first iteration

of the outer loop. The outer loop is similar to a traditional K-Fold CV, where the folds are

used to train and evaluate the model. The inner loop is run over the training folds in every

iteration of the outer loop and executes a new round of CV each time. In the example of

hyperparameter tuning, the training data is split into new folds that are used to select the

best combination of hyperparameters. After the inner loop runs, a model is trained for the

outer loop evaluation using the selected hyperparameters.

20

Figure 2.6: Structure of a nested cross-validation with inner and outer loops.

Source: The Author

2.4 Data Leakage

Data leakage refers to the phenomenon where training data becomes contaminated

with information obtained from the validation or test set during the model development

process. To be able to evaluate the model, we usually assume that part of the available

data will be the real-world unseen data based on which we will further estimate model

performance. Once we define a subset of the data as our test set, the algorithms should not

have access to it during any step of model training and validation. When we accidentally

use information from outside the training data to prepare this data set or guide the model

development, by sharing information from the holdout test set, we have a data leakage.

Data leakage has been classified as one of the "Top 10 Data Mining Mistakes"

(NISBET; ELDER; MINER, 2009) and continues to be a critical issue1. At a minimum,

DL leads to an inflated estimation of the performance of the trained model. However, this

optimistic view of model performance often fails to translate into real-world predictions

after deploying the model into production. This discrepancy arises due to overfitting and

our limited capacity to estimate the generalization power of the model since it is being

run on data that it had already seen in some extent during training. Consequently, mod-

1Data Leakage in Machine Learning: How it can be detected and minimize the risk. <https://tinyurl.
com/2ptpub3h>, last accessed in August 26th, 2023.

https://tinyurl.com/2ptpub3h
https://tinyurl.com/2ptpub3h

21

els trained with DL tend to exhibit poorer generalization compared to models developed

without such leakage (KAUFMAN et al., 2012).

Although the most obvious cases of DL is accidentally including information

about the target variable as a feature or failing to avoid intersection between training sets

and test sets, this phenomenon can also happen in more subtle ways. In this work, our

primary focus is on a form of DL that arises when the training and testing sets are inade-

quately separated throughout all pre-processing steps and model approximation processes

(KAPOOR; NARAYANAN, 2022). These steps encompass normalization, value impu-

tation, feature selection, and hyperparameter tuning. Figure 2.7 illustrates how the data

can be improperly handled during pre-processing and model approximation, causing DL.

Figure 2.8 exemplifies the correct way that data should be handled to prevent leaking in-

formation from the test set into training data. Both examples assume a two-way holdout

division of the original data into training data and test data.

Figure 2.7: Diagram showing how data leakage can be inserted during data pre-
processing.

Source: The Author

Figure 2.8: Diagram showing how to avoid data leakage during data pre-processing.

Source: The Author

22

In what follows, we summarize how the introduction of DL may happen in the

four tasks addressed in the current work:

• Normalization: During normalization, DL occurs when the whole data set is nor-

malized once before splitting into training and test sets. The information about the

test set is leaked through normalization. To avoid contamination, the normalization

parameters should be estimated using only the training set, and later applied sepa-

rately to training and test data (DROBNJAKOVIĆ; SUBOTIĆ; URBAN, 2022).

• Value imputation: Similarly to normalization, DL during missing value imputa-

tion happens when this step is performed before the data set is split into training

and test data. When this occurs, information from the test data set is used to define

the imputed values or the imputation model that will be used for all data, includ-

ing the training set. The solution would be to learn the parameters of the imputa-

tion strategy (or the imputed values themselves) using only training data and apply

this knowledge, or the imputation model obtained, to impute values in the test set

(KAPOOR; NARAYANAN, 2022).

• Feature Selection Since feature selection incites the need to train and evaluate

models with different combinations of features, using the same train/test split that

will be used for the final model evaluation would lead to DL since the features

selected would be optimized for data they should not have access to (SAMALA

et al., 2020). When using an iterative method of feature selection, an alternative

to prevent DL in feature selection would be a method similar to the nested CV

described in 2.3.3. In this setup, the inner loop could be used for feature selection

and the outer loop to train and evaluate the performance of the models based on

selected features. On the other hand, when a more straightforward method that

only scores the importance of each feature is used, simply separating the test data

before feature selection would prevent DL.

• Hyperparameter Tuning Similarly to feature selection, hyperparameter tuning

also implicates the need to evaluate each hyperparameter configuration through

strategies such as grid search. Therefore, using the original train/test split for tuning

the hyperparameters would cause train-test contamination and overfitting (YANG

et al., 2022). The solution would also be to use a nested CV approach, with the

inner loop implementing the hyperparameter tuning and the outer loop evaluating

the model performance.

23

3 RELATED WORKS

As discussed in Section 2.4 of the preceding chapter, DL is a severe problem in

ML that can have significant consequences for the accuracy and reliability of predictive

models. Over the past few years, substantial research efforts have emerged to compre-

hend, identify, preempt, and alleviate the impact of DL on ML models. In this chapter,

we review some of the recent contributions within this domain.

3.1 Data Leakage

The concepts of DL and the forms with which it can affect performance evaluation

have been the focus of some studies in recent years. In their study of leakage in data

mining, Kaufman et al. (2012) present formulations to describe and define DL. They use

these formulations as a basis for proposing a Data Leakage Avoidance Methodology and

three techniques for leakage detection. This discussion was carried out by authors while

also addressing the issue of how to proceed when leakage is, in fact, identified.

On the other hand, the research on DL and the reproducibility crisis (KAPOOR;

NARAYANAN, 2022) presents an overview of how DL can lead to overoptimistic conclu-

sions. The study presents a survey with evidence of the so-called "Reproducibility Crisis"

in ML. They present 20 studies of 17 areas that identified pitfalls in adopting ML methods

in scientific research. Collectively, these 20 studies identified 329 affected papers, many

of which carry out pre-processing or feature selection steps on the train-test data set. The

research also proposed a taxonomy of eight types of leakage and a model for detecting

and preventing leakage. The authors also reproduced and corrected tests made by selected

papers to show the extent of the damages caused by DL.

Regarding cognitive classification methods of forum transcripts, Farrow, Moore

and Gašević (2019) demonstrate how pre-processing practices can lead to overoptimistic

results. Their results indicate that the best way to ensure that the data used for validation

is not contaminated is to split the data by processing session instead of only using the

stratified folds.

The Static Analysis methods presented in Drobnjaković, Subotić and Urban (2022)

and Yang et al. (2022) show a different approach to avoid the DL problem. The authors of

both papers propose static methods to identify DL in the code before the models are even

trained. They describe the problem in the context of code cells and notebooks and use the

24

cell structure to track how the data is being treated, looking for common signs of leakage.

Vabalas et al. (2019) study ML validation when there are limited instances in the

data set. The objective of the study was to verify if bias could be introduced in this low

sample context by using inadequate validation methods. The study simulated the effects

using five different validation approaches: Train/Test Split, K-fold, Nested, and two types

of partially nested CV. It uses data originating from a synthetic data set generated by

values from a Gaussian distribution. Simulation results showed that using only a K-

Fold CV produced strongly biased results, even when increasing the number of samples.

Additionally, the study showed that with pooled training and testing data, feature selection

contributed more to the bias than hyperparameter tuning.

3.2 Effects of Data Leakage

Different studies focused on understanding and measuring the effects of DL in

specific ML applications. Here, we summarize some representative examples.

Regarding the use of Convolutional Neural Networks for image classification, sev-

eral studies analyze the effect of DL in model generalization. Effects of using correlated

slices of 3D MRI data are presented in Yagis et al. (2021); the authors claim that the CV

accuracy results could be erroneously boosted from 29% up to 55%. Similarly, the study

of DL in digital pathology investigates the reproducibility issues of ML solutions in this

area of knowledge (BUSSOLA et al., 2021). The authors claim that, when using differ-

ent tiles from the same subject in both training and testing sets, predictive scores can be

inflated by up to 41%.

Some studies investigate the consequences of DL in feature handling. In Samala

et al. (2020), the authors tested the effect of DL on feature selection in an application

for breast cancer classification. They inserted leakage by performing feature selection

with influence from the validation group. The results show that values for Area Under

the ROC curve with the leaked model estimated performances of 75% to 99% when the

independent test showed that the values could only reach 72%. The study also showed that

when reducing the sample size, the effects of DL were increased, with higher performance

estimates and lower performance on independent tests.

In Shim, Lee and Hwang (2021), the authors investigate the effects of DL during

feature selection in applications for diagnosing neuropsychiatric diseases and predicting

patients’ treatment. The study analyses the impact of DL in two test cases: using random

25

variable features created with Gaussian distributions for 2-class predictions and using

actual clinical data. The results showed an overestimation of the performance in both

cases when feature selection was not done properly.

The study presented by Cawley and Talbot (2010) focuses on introducing bias

that occurs when not dealing with hyperparameter tuning correctly. The authors discuss

examples of biased evaluation on model selection. The bias during model selection is in-

troduced when the same data is seen in validation set used for hyperparameter tuning and

in the test set. The paper also provides an unbiased performance evaluation methodology

that, according to authors, "correctly accounts for any overfitting that may occur in model

selection".

The work by Kuncheva and Rodríguez (2018) studies the bias introduced in fea-

ture selection when the same data is used for the pre-processing step and the model eval-

uation. The focus of the study is on very low-sample data, which incites the reuse of

data. The authors also proposed an alternative protocol to avoid contamination using CV.

The results show that their protocol achieved estimates closer to the ones seen on the

independent test set compared to the biased method.

3.3 Summary

This section summarizes the related works presented. Table 3.1 contains a relation

of the topics approached by each work mentioned in sections 3.1 and 3.2, alongside the

topics of this work. As we may note, previous works did not evaluate the effects of DL in

different stages of pre-processing and model development as extensively as proposed in

the current work.

26

Table 3.1: Summary of the related work and expected contributions of this study.

D
efi

ne
an

d
U

nd
er

st
an

d
D

L

Pr
op

os
e

St
ra

te
gy

to
A

vo
id

D
L

A
ss

es
E

ff
ec

ts
of

D
at

a
R

eu
se

A
ss

es
E

ff
ec

ts
on

Fe
at

ur
e

Se
le

ct
io

n

A
ss

es
E

ff
ec

ts
on

H
yp

er
pa

ra
m

et
er

Tu
ni

ng

A
ss

es
E

ff
ec

ts
on

N
or

m
al

iz
at

io
n

A
ss

es
E

ff
ec

ts
on

V
al

ue
Im

pu
te

In
ve

st
ig

at
e

E
ff

ec
ts

va
ri

at
io

n
am

on
g

Ta
sk

s

In
ve

st
ig

at
e

E
ff

ec
ts

va
ri

at
io

n
am

on
g

A
lg

or
ith

m
s

In
ve

st
ig

at
e

E
ff

ec
ts

on
di

ff
er

en
tD

at
a

se
ts

Cawley and Talbot (2010) X X
Kaufman et al. (2012) X X

Kuncheva and Rodríguez (2018) X X
Farrow, Moore and Gašević (2019) X

Vabalas et al. (2019) X
Samala et al. (2020) X
Bussola et al. (2021) X X

Shim, Lee and Hwang (2021) X
Yagis et al. (2021) X

Drobnjaković, Subotić and Urban (2022) X
Kapoor and Narayanan (2022) X X X X

Yang et al. (2022) X
This Work X X X X X X X

Source: The Author

27

4 METHODOLOGY

This chapter will present the methodology used to select the data sets for our ex-

periments and conduct model training with and without DL. Our experiments are designed

to assess if DL affects performance estimates in classification models. Section 4.1 covers

how the data sets were selected and presents metadata about them. Section 4.2 details how

the experiments were conducted for each type of DL evaluated in our work, outlining the

approach to insert and avoid DL in each case, and also covering the parameters used in

our experiments.

4.1 Data Sets

Aiming to use data sets with standardized formats, no pre-processing, and no miss-

ing values, we selected as source for this work data set from the Penn Machine Learning

Benchmarks (PMLB)(ROMANO et al., 2021). The benchmark data provided by this cu-

rated collection comes with metadata associated with each data set. Besides that, PMLB

also provides an API to easily retrieve the benchmark data sets, facilitating the batch

analyses required for our experiments.

Prior to the selection of the subset of data sets used for the experiments, a few

filters were applied to guarantee they comply with the following guidelines: all selected

data sets must be for a classification task; the class imbalance of the chosen data set must

be lower than 0.2 according to the imbalance index provided by PMLB; the selected data

sets must have no more than 10,000 instances. These guidelines were defined to guarantee

that the models trained would all be for the same type of task, to remove the influence of

larger class imbalance in the experimental results, and to ensure that the model training

time would not be overwhelming.

In the scope of this work, a total of 30 data sets were selected from PMLB. To

make this selection, a series of Principal Component Analysis (PCA) were applied over

data sets metadata, also shown in Table 4.1. A PCA consists of reducing the dimensions

of a data set while retaining most of the variability from the data (RINGNÉR, 2008).

The selection process was run in six steps. Each step consisted of selecting the two main

metadata with PCA and selecting the five data sets farthest from the remaining data sets

when considering the two selected columns. Table 4.1 contains the 30 selected data sets,

alongside their metadata, in the order they were selected.

28

Table 4.1: Selected data sets with their respective metadata.
D

at
a

se
t

In
st

.
Fe

at
s

B
in

.F
ea

ts
C

at
eg

.F
ea

ts
C

on
t.

Fe
at

s
C

la
ss

es
Im

ba
la

nc
e

Fe
at

/C
la

ss
In

st
/C

la
ss

Fe
at

/I
ns

t
G

A
M

E
T

E
S_

E
pi

st
as

is
_2

_W
ay

_1
00

0a
tts

_0
.4

H
_E

D
M

_1
_

E
D

M
_1

_1
16

00
10

00
31

96
9

0
2

0
50

0
80

0
1.

60

ag
ar

ic
us

_l
ep

io
ta

81
45

22
5

16
1

2
0

11
40

72
.5

37
0.

23
m

us
hr

oo
m

81
24

22
5

16
1

2
0

11
40

62
36

9.
27

ri
ng

74
00

20
0

0
20

2
0

10
37

00
37

0.
00

tw
on

or
m

74
00

20
0

0
20

2
0

10
37

00
37

0.
00

cl
ea

n1
47

6
16

8
0

0
16

8
2

0.
02

84
23

8
2.

83
dn

a
31

86
18

0
18

0
0

0
3

0.
08

60
10

62
17

.7
0

ph
on

em
e

54
04

5
0

0
5

2
0.

17
2.

5
27

02
10

80
.8

0
m

fe
at

_p
ix

el
20

00
24

0
0

24
0

0
10

0
24

20
0

8.
33

ba
na

na
53

00
2

0
0

2
2

0.
01

1
26

50
26

50
.0

0
m

fe
at

_f
ac

to
rs

20
00

21
6

0
0

21
6

10
0

21
.6

20
0

9.
26

sp
am

ba
se

46
01

57
0

0
57

2
0.

04
28

.5
23

00
.5

80
.7

2
H

ill
_V

al
le

y_
w

ith
_n

oi
se

12
12

10
0

0
0

10
0

2
0

50
60

6
12

.1
2

H
ill

_V
al

le
y_

w
ith

ou
t_

no
is

e
12

12
10

0
0

0
10

0
2

0
50

60
6

12
.1

2
w

av
ef

or
m

_4
0

50
00

40
0

0
40

3
0

13
.3

3
16

66
.6

7
12

5.
00

w
av

ef
or

m
_2

1
50

00
21

0
0

21
3

0
7

16
66

.6
7

23
8.

10
m

ov
em

en
t_

lib
ra

s
36

0
90

0
0

90
15

0
6

24
4.

00
sa

tim
ag

e
64

35
36

0
0

36
6

0.
03

6
10

72
.5

17
8.

75
ch

es
s

31
96

36
35

1
0

2
0

18
15

98
88

.7
8

kr
_v

s_
kp

31
96

36
35

1
0

2
0

18
15

98
88

.7
8

op
td

ig
its

56
20

64
3

10
51

10
0

6.
4

56
2

87
.8

1
sp

lic
e

31
88

60
0

60
0

3
0.

08
20

10
62

.6
7

53
.1

3
te

xt
ur

e
55

00
40

0
0

40
11

0
3.

63
6

50
0

13
7.

50
so

na
r

20
8

60
0

0
60

2
0

30
10

4
3.

46
m

ol
ec

ul
ar

_b
io

lo
gy

_p
ro

m
ot

er
s

10
6

57
0

57
0

2
0

28
.5

53
1.

86
m

fe
at

_f
ou

ri
er

20
00

76
0

0
76

10
0

7.
6

20
0

26
.3

1
an

al
ca

td
at

a_
au

th
or

sh
ip

84
1

70
0

3
67

4
0.

08
17

.5
21

0.
25

12
.0

1
to

ky
o1

95
9

44
0

2
42

2
0.

08
22

47
9.

5
21

.7
9

so
yb

ea
n

67
5

35
1

34
0

18
0.

04
1.

94
37

.5
19

.2
9

m
fe

at
_k

ar
hu

ne
n

20
00

64
0

0
64

10
0

6.
4

20
0

31
.2

5

Source: The Author

29

4.2 Proposed Experiments

This section details how the experiments were executed to obtain performance

estimates for ML models with and without DL. The subsections 4.2.1 to 4.2.4 cover the

experimental procedure for each of the four DL possibilities presented in Section 2.4:

normalization, value imputation, feature selection, and hyperparameter tuning.

All experiments were conducted with six repetitions of a 5-fold stratified CV, with

each repetition using a different, randomized folds split. However, the same configuration

of folds split is used across different experiments, to allow comparisons of DL effects

among different tasks. The performance estimates obtained for each repetition are given

by the average across the corresponding 5-fold CV execution. During our experiments,

we monitored two selected metrics:

• Balanced Accuracy: Average accuracy by class, used to deal with imbalanced data

sets.

• F1-score: Harmonic mean of Precision (i.e., positive predictive value) and Recall

(i.e., true positive rate), representing both values in one metric.

4.2.1 Experiments for normalization

The experiments focused on normalization aimed to obtain performance estimates

for models with and without DL in the normalization stage. With that in mind, the dia-

gram presented in Figure 4.1 shows the experimental process for one repetition of the CV

process, considering the "Pre-Processing" step to be the normalization task. To simulate

the DL case, all data is normalized before the CV. In the DL-free case, the normalization

occurs internally within every iteration of the CV process, estimating the normalization

parameters only based on the training data.

4.2.2 Experiments for value imputation

Since the data sets provided by PMLB do not have missing values, as explained

in Section 4.1, the experiments for value imputation required the systematic insertion of

missing values into the data sets. For this purpose, we used the Missing at Random ap-

proach to artificially generate missing values. This strategy inserts missing data randomly

30

Figure 4.1: Diagram detailing one repetition of the cross-validation for the experiments
with data pre-processing tasks.

Input Data

Training Data

Test Data

Model
Approximation

Performance
Evaluation

Pre-Processing

Apply
Pre-Processing

Output Performance

Performance
Evaluation

Pre-Processing

Output Performance

Cross Validation with DL

Training Folds

Test Folds

Model
Approximation

Cross Validation without DL

SEED

Training Data

Test Data

Model
Approximation

Performance
Evaluation

Pre-Processing

Apply
Pre-Processing

Training Folds

Testing Folds

Model
Approximation

Performance
Evaluation

Pre-Processing

Apply
Pre-Processing

Performance
Evaluation

Training Folds

Test Folds

Model
Approximation

Performance
Evaluation

Training Folds

Test Folds

Model
Approximation

Source: The Author

into each of the data columns selected without taking into consideration any information

about the instances. We used the implementation provided by the r-miss-tastic (MAYER

et al., 2019) project. To enable a broader range of analysis, the experiments were executed

for four variations of percentage of missing values: 5%, 10%, 20%, and 30%. Neverthe-

less, to guarantee equality of the number of experiments considered when analyzing the

general effects of DL across all tasks here considered, we used only the results for 20%

missing values as the representative for value imputation experiments. Moreover, our ex-

periments also included three imputation techniques: Average value, Median value, and

KNN-based imputation.

To conduct the experiments, at first, the missing values are randomly inserted,

generating a new data set that will be used in the analyses with and without DL. Figure

4.1 depicts the testing process for each repetition after the insertion of missing values. For

the task of value imputation, the "Pre-Processing" step can be interpreted as the step of

missing values imputation. Following that, the DL experiment imputes the values using

the entirety of the data set. In other words, all instances are used to learn the parameters

for the imputation (i.e., or fit the imputer). On the other hand, the model without DL uses

only the training folds on each iteration to fit the imputer, which is then used to impute

values on the training folds and test fold, separately.

31

4.2.3 Experiments for feature selection

The experiments conducted for feature selection follow the same basic steps pre-

viously presented in Figure 4.1, except that the "Pre-Processing" step is replaced by a

feature selection analysis.

To select a subset of features, we used the SelectPercentile function from the

scikit-learn Python package (PEDREGOSA et al., 2011). This method uses a scoring

function (scikit-learn’s f_classif in the scope of this work) to evaluate the relevance of

each feature and selects a subset of features according to a percentile of the highest scores.

The experiments with DL use all instances to evaluate and select the target features with

the SelectPercentile function. On the other hand, in the experiments without DL, only the

instances selected for training on each iteration of the CV are used for feature selection.

These experiments were run for multiple configurations of the parameter that de-

fines the percentile of features to keep in the analysis: 1%, 5%, 10%, and 20%. Similarly

to the experiments described in Section 4.2.2, to guarantee equality of the number of ex-

perimental data points when analyzing the general effects of DL, only results for 10%

were used in the analysis.

4.2.4 Experiments for hyperparameter tuning

The experiments for hyperparameter tuning were implemented with a different

approach. The experiments without DL used a Nested CV, detailed in Section 2.3.3,

to ensure there would be no leakage during the process of hyperparameter tuning. The

experiments with DL used a standard k-fold CV, which means employing the same CV to

do both the hyperparameter tuning and the model performance evaluation.

Figure 4.2 shows a diagram explaining the steps involved in each repetition of

the experiments without DL. This diagram contains the outer CV and a box detailing the

inner CV. Figure 4.3 presents the diagram for the experiments that suffer of DL during

hyperparameter tuning. It is possible to notice that the whole data is used to select the

best hyperparameters and evaluate the performance. Appendix A has the complete list of

hyperparameters used for each algorithm.

32

Figure 4.2: Diagram showing one repetition of the experiments for hyperparameter tuning
with nested CV to avoid data leakage.

inner CV
Performance

Nested Cross Validation without DL

Select Best
Hyperparameters

Training Folds

Testing Folds

Model
Approximation

Performance
Evaluation

inner Cross Validation

Output Performance

Training Folds

Testing Folds

Model
Approximation

Performance
Evaluation

Select
Hyperparameters

inner Cross Validation

Input Data

SEED

inner CV
Performance

Select Best
Hyperparameters

Training Folds

Testing Folds

Model
Approximation

Performance
Evaluation

inner Cross Validation

inner CV
Performance

Select Best
Hyperparameters

Training Folds

Testing Folds

Model
Approximation

Performance
Evaluation

inner Cross Validation

Training Folds

Testing Folds

Model
Approximation

Performance
Evaluation

Select
HyperparametersTraining Folds

Testing Folds

Model
Approximation

Performance
Evaluation

Select
Hyperparameters

Source: The Author

33

Figure 4.3: Diagram showing one repetition of the experiments for hyperparameter tuning
with standard CV, causing data leakage.

Input Data

Output Performance

Cross Validations with DL

SEED

Training Folds

Testing Folds

Model
Approximation

Performance
Evaluation

Select
Hyperparameters

Select Best
Hyperperameters

Performance
Evaluation

Training Folds

Testing Folds

Model
Approximation

Output Performance

Training Folds

Testing Folds

Model
Approximation

Performance
Evaluation

Select
HyperparametersTraining Folds

Testing Folds

Model
Approximation

Performance
Evaluation

Select
Hyperparameters

Performance
Evaluation

Training Folds

Testing Folds

Model
Approximation

Performance
Evaluation

Training Folds

Testing Folds

Model
Approximation

Source: The Author

34

5 RESULTS

This chapter is dedicated to presenting and analyzing the results obtained for the

four different experiments detailed in the previous chapter (Section 4.2), involving DL

in the tasks of normalization, value imputation, feature selection, and hyperparameter

tuning. All performance estimates reported here are shown in a range of 0 to 100% for

the respective metric. By the end of this chapter, we intend to have answered the following

research questions using data acquired from our experiments:

• Does data leakage impact performance evaluation?

• Is the effect of data leakage more prominent in a specific task?

• Do data leakage effects change for different data sets?

• Is there a machine learning algorithm more sensitive to data leakage effects?

• Is there a correlation between the metadata of the data sets and the consequences of

data leakage?

5.1 Does data leakage impact performance evaluation?

This section explores the possible impacts of DL on performance evaluation. Us-

ing a combined analysis of all results from the experiments described in Section 4.2, we

aim to assess if data leakage has any consequences in the model evaluation and, if so, how

it affects performance estimate.

Figure 5.1: Overall analysis of the average scores and difference in scores considering all
experiments conducted.

(a) Balanced accuracy scores (b) F1 scores

Source: The Author

35

Figure 5.1 shows the first evidence to be analyzed. The plots show the average

scores of the experiments on each of the six repetitions of the 5-fold CV. In red, we present

the results for models with DL, while the results for models without DL are shown in blue.

The difference between the results for models with and without DL in each repetition is

depicted in the green bars.

As we can see in Figure 5.1a, the balanced accuracy scores for the models with

accidental data contamination are consistently higher than those for the uncontaminated

models. It is possible to note that the differences in the average scores for this metric

range from 0.1 to around 0.16 in favor of DL, indicating a slight average increase in every

repetition of the repeated CV. Similarly, Figure 5.1b shows consistently higher F1 scores

for the models with DL. The increases in the average repetition scores range from 0.125

to 0.175.

Figure 5.2: Distributions of average scores for all experiments conducted.

(a) Average balanced accuracy scores (b) Average F1 scores

Source: The Author

Figure 5.2 presents the results using a different type of visualization based on box

plots. We compare the distribution of the average results across all experiments con-

ducted. In Figure 5.2a, the distribution and the median values of the balanced accuracy

scores in the contaminated models (shown in red) are clearly above the values for the un-

contaminated models (shown in blue). Although the differences among the average values

are not so expressive, it still demonstrates overoptimistic results. Regarding the box plots

for the F1 score (Figure 5.2b), we also note performance advantages for the models with

DL. One interesting aspect is the apparent smaller variation of results for DL compare to

those without DL. Besides that, again, we can see slightly bigger values for the leaked

models.

Thus, we conclude that DL indeed causes impact in the performance evaluation of

36

predictive models. Given that the overall analysis provided here encompasses all experi-

ments, some of the most significant effects can be diluted by looking only at the average.

Therefore, the next sections will investigate the experiments in more detail, noting the

effects associated with variations in tasks, datasets, and algorithms.

5.2 Is the effect of data leakage more prominent in a specific task?

This section is dedicated to presenting and analyzing the results of the experiments

by type of task (i.e., data pre-processing or hyperparameter tuning), aiming to investigate

if any of these tasks seems to be more susceptible to the effect of DL. Subsection 5.2.1

focuses on presenting and analyzing the results on a task basis, discussing our findings for

feature selection, hyperparameter tuning, missing values imputation, and normalization.

The comparisons between DL effects on different tasks are presented in Subsection 5.2.2.

5.2.1 Results evaluation per task

This section comprehensively analyzes the CV scores for each selected task. These

scores provide insights into the effects of DL according to the stage in the model devel-

opment cycle in which it is inserted.

The first task to be analyzed is feature selection. Figure 5.3 presents the summary

of the results for this pre-processing step. These plots present results from all experiments

with different percentages of selected features (1%, 5%, 10%, and 20%). The box plot

of the distribution of balanced accuracy scores (Figure 5.3a) shows that the models with

DL achieved higher performance than models without DL, even when we consider the

top-performing outlier for models without DL. We also notice that the median for the

experiments with accidental data contamination is close to 68.6, while the results for the

experiments without contamination show a median close to 68.2. A similar pattern is

observed for the F1 scores (Figure 5.3b), with the DL experiments having a much higher

median than the experiments without DL, and also showing overall superior results.

Another interesting analysis can be done based on the plots of average results and

score differences for balanced accuracy and F1 scores considering the six CV repetitions,

as shown in Figures 5.3c and 5.3d, respectively. The results for both metrics show an

advantage for the models with DL, with the average values being consistently higher at

37

Figure 5.3: Summary of the results for feature selection experiments.

(a) Distribution of balanced accuracy scores (b) Distribution of F1 scores

(c) Average values and performance differ-
ences for balanced accuracy scores

(d) Average values and performance differ-
ences for F1 scores

Source: The Author

every repetition. Moreover, differences in performance range from 0.3 to 0.5 in balanced

accuracy (and similar results in F1 scores), meaning an overoptimistic evaluation. Results

for each different percentage of selected features are shown in Appendix B. We note that

the findings are very similar, with positive effects over performance observed for almost

all repetitions of CV, especially considering the results for 10% and 20% selected features.

Regarding the experiments for hyperparameter tuning, Figure 5.4 provides a sum-

mary of our results, structured similarly to the plots analyzed for feature selection. The

box plot for balanced accuracy (Figure 5.4a) shows higher scores for the models with

DL. The median value of the results for DL is around 0.3 higher than the median for

the pipeline without DL. A similar trend is observed when analyzing the distribution for

F1 scores (Figure 5.4b. Even though the experiments without data contamination show

smaller variations, the experiments with DL generated slightly higher results.

The comparisons among average values and score differences per repetition are

38

Figure 5.4: Summary of the results for hyperparameter tuning experiments.

(a) Distribution of balanced accuracy scores (b) Distribution of F1 scores

(c) Average values and performance differ-
ences for balanced accuracy scores

(d) Average values and performance differ-
ences for F1 scores

Source: The Author

shown in Figures 5.4c and 5.4d. Both plots show that the differences are consistently

positive, showing a possibly unnatural increase in performance estimates when DL is

accidentally introduced. The average performances per repetition were around 0.2 to 0.4

higher for balanced accuracy and approximately 0.2 to 0.45 more elevated for F1 scores.

The summary of our results for experiments focused on missing value imputation

(Figure C.2) shows a different scenario. This depiction of results for all value imputa-

tion experiments, considering all selected percentiles of missing data (5%, 10%, 20%,

and 30%) and imputers (Average, Mean, and KNN), indicate lower influence from DL.

Taking into consideration the distribution of performance between models with DL and

models without DL during value imputation (Figures C.2a and C.2b), we notice that there

are no significant differences in performance introduced by DL. The medians for these

experiments were very close among both scenarios and both metrics analyzed. Besides

that, the variations in performance are also very similar. Thus, we can not observe a clear

39

Figure 5.5: Summary of the results for missing value imputation experiments.

(a) Distribution of balanced accuracy scores (b) Distribution of F1 scores

(c) Average values and performance differ-
ences for balanced accuracy scores

(d) Average values and performance differ-
ences for F1 scores

Source: The Author

influence of DL over performance estimates.

Analyzing the average values and score differences across distinct repetitions (Fig-

ures C.2c and C.1d), we can see that the curves associated with the models with and

without DL are practically superimposed and that in cases where some difference in per-

formance is observed, this difference is insignificant. In general, the performance impact

appears in a much smaller scale than the ones perceived for hyperparameter tuning and

feature selection. The highest different for balanced accuracy and F1 score is around

0.015. The analysis of effects for different percentages of missing values and different

strategies of data imputation indicated similar results for all values. The detailed results

are presented in Appendix C.

Likewise, the results of the experiments for data normalization also diverge from

the results for hyperparameter tuning and feature selection tasks. The box plots depicted

in Figures 5.6a and 5.6b are practically identical for models trained with and without DL

40

during normalization. Additionally, while the analysis of score differences per repetition

show oscillations of positive and negative effects over performance (Figures 5.6c and

5.6d), without surpassing the absolute difference of 0.01, the comparison among average

scores suggest a very small impact of DL in performance estimates since the curves tend

to be superimposed.

Figure 5.6: Summary of the results for normalization experiments.

(a) Distribution of balanced accuracy scores (b) Distribution of F1 scores

(c) Average values and performance differ-
ences for balanced accuracy scores

(d) Average values and performance differ-
ences for F1 scores

Source: The Author

5.2.2 Comparison among tasks

This subsection aims to review the results presented previously in a comparative

fashion, with the intention to assess how the insertion of DL in each task affects perfor-

mance evaluation. To summarize results and compare the effects of DL among distinct

tasks addressed, Figure 5.7 unites all F1 scores box plots presented in Subsection 5.2.1.

As we may note through this direct comparison, the effects of DL in fact vary when

41

data contamination is accidentally inserted in different tasks. Models with DL have, on

average, higher scores than their counterparts without DL in the hyperparameter tuning

(Figure 5.7b) and feature Selection experiments (Figure 5.7a). In both cases, the aver-

age increase in performance estimates was close to 0.3. On the other hand, experiments

for missing value imputation (Figure 5.7c) and normalization (Figure 5.7d) did not show

evidence of a significant impact of DL on model performance evaluation. Different expla-

nations for the fact that DL inserted during Feature Selection and Hyperparameter Tuning

had more impact on the performance estimates are possible. One interpretation is that

both tasks can have high impact on the final model: Feature Selection actively selects

which data will be used for the training, while Hyperparameter Tuning adjusts the algo-

rithms’ parameters to maximize performance. Another possible reason is that both tasks

also have a high capacity to improve the model’s performance, causing higher increases

when DL is inserted.

Figure 5.7: Comparison of F1 score results with and without DL for different tasks

(a) Feature selecion (b) Hyperparameter tuning

(c) Missing value imputation (d) Normalization

Source: The Author

42

5.3 Do data leakage effects change for different data sets?

This section aims to assess and discuss the effects of DL on different data sets. We

first provide graphic examples for three groups of data sets defined based on the results

obtained (Table 5.1). We aim to use selected data sets from each group to illustrate the

general picture of all tested data sets. Next, we emphasize specific cases that showed more

significant DL impact based on the combined results of Section 5.2 and Subsection 5.3.1.

Table 5.1: Classification of data sets according to experimental analysis of DL effects.
Data set Classification
GAMETES_Epistasis_2_Way_1000
atts_0.4H_EDM_1_EDM_1_1

Significantly Increased

agaricus_lepiota Decreased or Not Changed
mushroom Decreased or Not Changed
ring Decreased or Not Changed
twonorm Significantly Increased
clean1 Slightly Increased
dna Decreased or Not Changed
phoneme Decreased or Not Changed
mfeat_pixel Decreased or Not Changed
banana Slightly Increased
mfeat_factors Slightly Increased
spambase Decreased or Not Changed
Hill_Valley_with_noise Decreased or Not Changed
Hill_Valley_without_noise Significantly Increased
waveform_40 Slightly Increased
waveform_21 Significantly Increased
movement_libras Significantly Increased
satimage Slightly Increased
chess Slightly Increased
kr_vs_kp Slightly Increased
optdigits Significantly Increased
splice Decreased or Not Changed
texture Decreased or Not Changed
sonar Significantly Increased
molecular_biology_promoters Significantly Increased
mfeat_fourier Slightly Increased
analcatdata_authorship Significantly Increased
tokyo1 Slightly Increased
soybean Significantly Increased
mfeat_karhunen Decreased or Not Changed

Source: The Author

43

5.3.1 Overall results for grouped data sets

We analyzed the overall results per data set considering all experiments conducted

(i.e., with variations in the addressed task and in the learning algorithm) and defined three

groups: (i) data sets for which the performance significantly increase upon DL; (ii) data

sets for which the performance slightly increased upon DL; and (iii) data sets for which

the performance decreased or did not change upon DL. Table 5.1 summarizes data sets

classification according to this analysis.

The first group, depicted in Figure 5.8, is composed of data sets that had a relevant

average increase in performance estimates for the average of all four experiments de-

scribed in Section 4.2. As an example of data set for this group, we emphasize the results

for the Gametes Epistasis Data set in Figure 5.8a, which showed the biggest difference in

average performances. In this case, we observed F1 score differences ranging from 1.0

to 1.6 across the CV repetitions. Another data set with a significant average increase was

the Molecular Biology Promoter data set, shown in Figure 5.8b, for which the presence

of DL caused performance boosts ranging from 0.4 to 1.0 in F1 scores.

Figure 5.8: Average F1 scores and performance differences for data sets with significantly
increased estimates upon DL.

(a) Gametes Epistasis data set (b) Molecular Biology Promoter data set

Source: The Author

The second group consists of data sets for which models had a slight increase in

performance as a consequence of DL. Figure 5.9 provides two examples of this behavior.

The results for Satimage (Figure 5.9a) and Mfeat Fourier (Figures 5.9b) data sets show

a increase in the average performance estimates that does not exceeds 0.05 and 0.08 for

each data set. Moreover, in the experiments with Mfeat Fourier there is one repetition

where performance estimates were a little bit higher for models trained wit DL. Still, the

44

Figure 5.9: Average F1 scores and performance differences for data sets with slightly
increased estimates upon DL.

(a) Satimage data set (b) Mfeat Fourier data set

Source: The Author

overall results indicate that DL artificially boosted their results to a slight extent.

Figure 5.10: Average F1 scores and performance differences for data sets with decreased
or unaffected estimates upon DL.

(a) Mfeat Pixel data set (b) Splice data set

Source: The Author

The final group of results is presented in Figure 5.10. These results show data sets

with decreased average values or no apparent changes in average values for the perfor-

mance estimates when data contamination is present in model development. The plots

of Mfeat Pixel (Figure 5.10a) show the most significant decrease in average performance

when DL is introduced. The Splice experiments (Figure 5.10b), on the other hand, show

a scenario where models with DL have smaller performances on a few repetitions and

slightly higher on others, with positive differences of at most 0.075 and maximum nega-

tive difference of 0.1.

45

5.3.2 Analysis of relevant combinations of data sets and tasks

Considering the results presented in Section 5.2 and Subsection 5.3.1, this subsec-

tion aims to analyze combinations of algorithms and tasks that showed the biggest impacts

from DL. We provide results of data sets included in the "Significantly Increased" group,

according to Table 5.1, and the tasks with the most meaningful effects of DL, hyperpa-

rameter tuning and feature selection.

The results presented in Figure 5.11 exemplify relevant cases where DL effects

over the average performance were very prominent for the hyperparameter tuning task.

Molecular Biology Promoter results (Figure 5.11a) show average increases of up to 2.5

points in the F1 score metrics. Similarly, Sonar and Gametes results (Figures 5.11c and

5.11d) show increases of up to 1.75 and 3.0 in the performance estimates. Finally, de-

spite our overall analysis per data set indicating that the Hill Valley With Noise data set

presented decreased or unaffected performance estimates upon DL, the results consider-

ing solely the hyperparameter tuning experiments for this data set (Figure 5.11b) show

an average increase of up to 4.0 in one of its CV repetitions. These results indicate the

possibility of more impactful DL effects than the averages presented previously.

Results for the selected data sets analysed for the feature selection task are pre-

sented in Figure 5.12. Similar to hyperparameter tuning, Feature Selection experiments

also indicated a high influence of DL in some data sets, including very notable increases

for the Gametes data set (Figure 5.12a). This data set had significant increases ranging

from 6.0 to 8.0 points in the performance percentages averages when DL was inserted.

The feature selection results also indicate artificially increased performance estimates of

up to 3.0 points for the Molecular Biology Promoter data set (Figure 5.12c); up to 1.4

points on the Twonorm data set (Figure 5.12d); and up to 2.5 points on the Sonar data set

results (Figure 5.12b).

5.4 Is there a machine learning algorithm more sensitive to data leakage effects?

Investigating the distinct impact that DL can have on different algorithms is es-

sential to better understanding this phenomenom. This section aims to provide evidence

about how each of the algorithms depicted in Section 2.2 is affected by the presence of

DL. The plots presented here for each algorithm consider results for every data set and

every task anlyzed in the experiments.

46

Figure 5.11: F1 score results for selected data sets with significant increase in perfor-
mance upon DL during hyperparameter tuning.

(a) Scores averages and differences for Molec-
ular Biology Promoter data set

(b) Scores averages and differences for Hill
Valley with noise data set

(c) Scores averages and differences for Sonar
data set

(d) Scores averages and differences for Ga-
metes Epistasis data set

Source: The Author

The results for the KNN algorithm (Figure 5.13) show that the average scores per

repetition for models with DL have higher values than the performance estimates without

DL. The comparison among F1 scores (Figure 5.13a reach differences of up to 0.2, close

to the average for all algorithms, presented in section 5.1. The same behavior is seen for

the balanced accuracy results (Figure 5.13b).

The results for DTs (Figure 5.14) are slightly different as they show a larger vari-

ation in the score differences among models with DL and without DL. The F1 scores

(Figure 5.14a) have a maximum difference in average results of around 0.16 and a min-

imum difference close to 0.02. Similarly, balanced accuracy results (Figure 5.14b) show

higher values for scores associated to DL experiments and higher variation in the score

differences for each repetition.

Another similar result is presented in Figure 5.15 and concerns the Naïve Bayes

47

Figure 5.12: F1 score results for selected data sets with significant increase in perfor-
mance upon DL during feature selection.

(a) Scores averages and differences for Ga-
metes on Feature Selection

(b) Scores averages and differences for Sonar
on Feature Selection

(c) Scores averages and differences for Molec-
ular Biology Promoter data set

(d) Scores averages and differences for
Twonorm data set

Source: The Author

algorithm. The average results for Naïve Bayes considering both the F1 score (Figure

5.15a) and balanced accuracy (Figure 5.15b) align with the observations for KNN and

DTs, with a slight increase in the maximum score differences for F1 score. It is possible

to note a difference of up to 0.25 in favor of DL models when considering the F1 score,

and an increase of up to 0.20 for balanced accuracy.

Along the same lines, the results for the RF algorithm, presented in Figure 5.16 has

score differences close to the average observed for the overall results and for the previous

three algorithms. The same pattern of an increase of approximately 0.2 in performance es-

timate under the presence of DL is seen in F1 score (Figure 5.16a) and balanced accuracy

(Figure 5.16b).

The results presented so far indicate similar results in KNN, DT, NB, and RF ex-

periments. Nonetheless, according to the experimental data obtained, not all algorithms

48

Figure 5.13: Average performance estimates and score differences per repetition for KNN.

(a) F1 score (b) Balanced accuracy

Source: The Author

Figure 5.14: Average performance estimates and score differences per repetition for De-
cision Trees.

(a) F1 score (b) Balanced accuracy

Source: The Author

presented the same level of influence of DL over performance estimates. The two re-

maining results presented in this section, for SVM and LR experiments, differ among

themselves and also from the standard results presented so far.

The first difference in behavior is seen in the experiments for SVM (Figure 5.17).

Differently from the previous experiments, the results for SVM show higher levels of

influence of DL in F1 scores and balanced Accuracy (Figures 5.17a and 5.17b). The

F1 scores show increases of up to 0.35 in models trained with DL in contrast to models

trained without DL, while the differences in balanced accuracy varies from around 0.15 to

0.25. This could indicate a slightly higher sensitivity of this algorithm to the phenomenon

of DL.

On the other hand, differing from the previous examples, the results for LR (Figure

5.18) show little influence of DL on the performance indicators. The balanced accuracy

49

Figure 5.15: Average performance estimates and score differences per repetition for Naïve
Bayes.

(a) F1 score (b) Balanced accuracy

Source: The Author

Figure 5.16: Average performance estimates and score differences per repetition for Ran-
dom Forests.

(a) F1 score (b) Balanced accuracy

Source: The Author

results seem to be barely affected by the introduction of DL, with a maximum increase of

0.08 on the average results, as seen in Figure 5.18a. The F1 score also does not seem to

be significantly affected by DL, with a maximum score difference close to 0.1 across all

repetitions.

Figure 5.19 shows a summary of results per algorithm. It is possible to notice that

the results for LR (Figure 5.19a show smaller levels of influence from DL. The KNN, RF,

NB, and DT results (Figures 5.19b, 5.19c, 5.19d, and 5.19e) show similar results with

slightly higher impacts from DL. Lastly SVM results (Figure 5.19f) show impact form

DL with increases higher than the ones seen on the previous group.

50

Figure 5.17: Average performance estimates and score differences per repetition for SVM.

(a) F1 score (b) Balanced accuracy

Source: The Author

Figure 5.18: Average performance estimates and score differences per repetition for Lo-
gistic Regression.

(a) F1 score (b) Balanced accuracy

Source: The Author

5.5 Is there a correlation between the metadata of the data sets and the effects of

data leakage?

Finally, we aim to investigate the possible correlation between data sets metadata

and the effects of DL observed through our experiments. With this in mind, we computed

the Kendall Correlation among data sets metadata and the average differences in perfor-

mance obtained for each task, each algorithm, and considering all results. To evaluate

the relevance of the correlation, we adopted the thresholds presented by Wechsler (1997).

Therefore, absolute correlation values from 0 to 0.19 are regarded as very weak, from 0.2

to 0.39 as weak, from 0.4 to 0.59 as moderate, from 0.6 to 0.79 as strong, and from 0.8 to

1 as very strong.

Table 5.2 presents the Kendall Correlation results for each task addressed in our

51

Figure 5.19: Summary of F1-score results per algorithm

(a) Logistic Regression (b) K-Nearest Neighbours (c) Random Forest

(d) Naive Bayes (e) Decision Trees (f) Support Vector Machine

Source: The Author

Table 5.2: Correlation analysis between data sets metadata and performance differences
per task.

Task Inst. Bin. Feat. Categ. Feat. Cont. Feat. Feats Classes Imbalance Feats/Class Inst/Class Feats/Inst.
All -0.054 0.009 0.022 0.017 0.001 0.0166 -0.007 -0.0004 -0.049 -0.046
Hyperparameter tuning -0.228 0.105 -0.079 0.054 0.043 0.048 -0.002 0.068 -0.195 -0.199
Value imputation 0.003 0.007 0.012 -0.0004 0.007 0.005 0.001 -0.0007 -0.007 -0.003
Feature selection -0.057 0.001 0.018 0.093 -0.075 -0.124 -0.052 0.063 0.001 -0.081
Normalization -0.054 0.009 0.022 0.017 0.001 0.016 -0.007 -0.0004 -0.049 -0.046

Source: The Author

experiments. There is no evidence of significant correlation in this analysis. Most values

indicate a very weak correlation, except for the correlation between the results of the

hyperparameter tuning and the number of instances in the data set, which shows a weak

negative correlation of -0.228. Similarly, the results presented for each algorithm (Table

5.3) show little evidence of correlation. All values indicate a very weak correlation.

Table 5.3: Correlation analysis between data sets metadata and performance differences
per algorithm.

Alg Inst. Bin. Feat. Categ. Feat. Cont. Feat. Feats Classes Imbalance Feats/Class Inst/Class Feats/Inst.
KNN -0.073 -0.006 0.066 0.026 -0.022 0.01 -0.009 -0.015 -0.055 -0.044
SVM -0.041 0.006 -0.002 0.007 0.013 -0.013 -0.025 0.025 -0.035 -0.05
LR -0.01 -0.007 -0.034 -0.027 0.006 0.023 0.009 -0.026 -0.013 -0.004
NB -0.051 0.046 0.089 0.098 -0.04 0.055 -0.011 0.025 -0.063 -0.069
DT -0.049 -0.001 0.014 -0.032 0.027 0.016 -0.012 -0.013 -0.044 -0.032
RF -0.087 0.024 0.008 0.036 0.01 0.018 0.006 0.003 -0.073 -0.073

Source: The Author

Figure 5.20 shows a scatter plot comparing the distributions of the score differ-

ences according to the number of instances in the data set for the experiments with hy-

perparameter tuning. It is possible to notice a small negative correlation between the

52

variables, according to what was suggested by our analysis with the Kendall Correlation

(Table 5.2). Additionally, there is a pattern of higher variation in the results for a smaller

number of instances and smaller variation for a higher number of instances. This behavior

corroborate the results reported in the study by Samala et al. (2020), which indicated a

higher influence of DL when decreasing the sample size.

Figure 5.20: Distribution of score differences according to number of instances in the data
set for hyperparameter tuning experiments.

Source: The Author

53

6 CONCLUSION & FUTURE WORK

This work proposed a systematic study of the effects of data leakage on the per-

formance estimates of machine learning classifiers. According to our literature review,

such evaluation encompassing several important tasks and a good variation in data sets

and algorithms was not conducted before. Our experiments were guided by five research

questions and allowed us to extract interesting findings, which we summarize next.

Does data leakage impact performance evaluation? The evidence presented in

Section 5.1 describes the influence of DL on model performance evaluation. Although

the average score differences observed for models with DL in relation to models with-

out DL were small through to the six CV repetitions, the results showed a tendency of

optimistic evaluation when accidental data contamination is present. Consequentially,

there are reasons to be conscious about avoiding the introduction of DL when designing

pipelines to train predictive models.

Is the effect of data leakage more prominent in a specific task? Regarding the

sensitivity of different tasks, with results presented in Section 5.2, it is possible to notice

distinct effects. It is clear that both feature selection and hyperparameter tuning showed

a more significant impact from DL. We observed a tendency for performance overesti-

mation in both tasks when the pipeline is built with accidental data contamination. Even

though the average differences presented low values of up to 0.5 of increase, we highlight

that this is the overall result for a experimental analysis covering 30 data sets and six al-

gorithms, which may masks the specificities of each scenario. On the other hand, results

for missing value imputation and normalization did not suggest a clear impact from DL

over performance estimates.

Do data leakage effects change for different data sets? Some of the most interest-

ing results can be seen when analyzing the influence of DL in each data set (Section 5.3).

The three data sets categories created show the different ways the selected data sets were

affected. Table 5.1 showed that 10 data sets had a significant increase in the performance

estimates, 9 had a slight influence from DL to increase the performance evaluation results,

and 11 had no consistent influence or even a negative influence from DL. Additionally,

results for combinations of data sets and tasks showed the extent to which DL may im-

pact on model performance evaluation. Differences in average performances of up to 8

percentile points were perceived in the results presented in Section 5.3.2.

Is there a machine learning algorithm more sensitive to data leakage effects?

54

From Section 5.4, the analysis of effects on an algorithm basis provided an interesting

perspective. According to the results from the selected data sets, most algorithms had

similar results, with KNN, DT, NB, and RF all having a small and very close performance

evaluation increases when DL was introduced. The most differently affected algorithms

were SVM and LR. SVM had slightly higher performance estimate increases than the

other algorithms, while LR had smaller increases.

Is there a correlation between the metadata of the data sets and the consequences

of data leakage? Our final analysis concerning the possible correlation between data sets

metadata and the effects of DL, as presented in Tables 5.2 and 5.3, showed little to no

correlation between these aspects. The largest absolute correlation was observed when

analyzing the number of instances in the datasets and the difference in performance of the

hyperparameter tuning, for which a correlation of -0.228 was found. We note, however,

that the absence of more correlations may be a limitation of the selected data sets and the

lack of enough sample variability.

While our conclusions are limited to the 30 selected data sets from the PMLB

repository, our findings indicated a tendency of overestimation when accidental data con-

tamination is introduced in the model development pipeline. Therefore, we emphasize the

importance of adequately treating and manipulating data to avoid DL when training ML

models in order to prevent unreproducible experimental results. For future works, it would

be interesting to expand the scope of the analysis by increasing the number and variability

of data sets, to conduct a more robust investigation about the influence of metadata in the

impact of DL, as well as investigating the effects of DL in regression tasks.

55

REFERENCES

ALPAYDIN, E. Introduction to machine learning. In: . [S.l.: s.n.], 2014.

BERRAR, D. Bayes’ theorem and naive bayes classifier. Encyclopedia of
Bioinformatics and Computational Biology: ABC of Bioinformatics, Elsevier
Science Publisher Amsterdam, The Netherlands, v. 403, p. 412, 2018.

BREIMAN, L. Random forests. Machine learning, Springer, v. 45, p. 5–32, 2001.

BUSSOLA, N. et al. Ai slipping on tiles: Data leakage in digital pathology. In:
SPRINGER. Pattern Recognition. ICPR International Workshops and Challenges:
Virtual Event, January 10–15, 2021, Proceedings, Part I. [S.l.], 2021. p. 167–182.

CAWLEY, G. C.; TALBOT, N. L. C. On over-fitting in model selection and subsequent
selection bias in performance evaluation. J. Mach. Learn. Res., v. 11, p. 2079–2107,
2010. Available from Internet: <https://dl.acm.org/doi/10.5555/1756006.1859921>.

CUNNINGHAM, P.; CORD, M.; DELANY, S. J. Supervised learning. In: .
Machine Learning Techniques for Multimedia: Case Studies on Organization and
Retrieval. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. p. 21–49. ISBN 978-3-
540-75171-7. Available from Internet: <https://doi.org/10.1007/978-3-540-75171-7_2>.

CUTLER, A.; CUTLER, D. R.; STEVENS, J. R. Random forests. In: .
Ensemble Machine Learning: Methods and Applications. Boston, MA:
Springer US, 2012. p. 157–175. ISBN 978-1-4419-9326-7. Available from Internet:
<https://doi.org/10.1007/978-1-4419-9326-7_5>.

DIXON, M. F.; HALPERIN, I.; BILOKON, P. Machine learning in finance. [S.l.]:
Springer, 2020.

DROBNJAKOVIĆ, F.; SUBOTIĆ, P.; URBAN, C. Abstract interpretation-based data
leakage static analysis. arXiv preprint arXiv:2211.16073, 2022.

FARROW, E.; MOORE, J.; GAsEVIć, D. Analysing discussion forum data: A
replication study avoiding data contamination. In: Proceedings of the 9th International
Conference on Learning Analytics & Knowledge. New York, NY, USA: Association
for Computing Machinery, 2019. (LAK19), p. 170–179. ISBN 9781450362566.
Available from Internet: <https://doi.org/10.1145/3303772.3303779>.

GARCÍA, S.; LUENGO, J.; HERRERA, F. Data preprocessing in data mining. [S.l.]:
Springer, 2015.

GREENE, D.; CUNNINGHAM, P.; MAYER, R. Unsupervised learning and
clustering. In: . Machine Learning Techniques for Multimedia: Case
Studies on Organization and Retrieval. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008. p. 51–90. ISBN 978-3-540-75171-7. Available from Internet:
<https://doi.org/10.1007/978-3-540-75171-7_3>.

HASTIE, T. et al. The elements of statistical learning: data mining, inference, and
prediction. [S.l.]: Springer, 2009.

https://dl.acm.org/doi/10.5555/1756006.1859921
https://doi.org/10.1007/978-3-540-75171-7_2
https://doi.org/10.1007/978-1-4419-9326-7_5
https://doi.org/10.1145/3303772.3303779
https://doi.org/10.1007/978-3-540-75171-7_3

56

JURAFSKY, D. et al. Speech and Language Processing. Pearson Education, 2014.
ISBN 9780133252934. Available from Internet: <https://books.google.com.br/books?
id=Cq2gBwAAQBAJ>.

KANG, S. k-nearest neighbor learning with graph neural networks. Mathematics,
v. 9, n. 8, 2021. ISSN 2227-7390. Available from Internet: <https://www.mdpi.com/
2227-7390/9/8/830>.

KAPOOR, S.; NARAYANAN, A. Leakage and the reproducibility crisis in ml-based
science. arXiv preprint arXiv:2207.07048, 2022.

KAUFMAN, S. et al. Leakage in data mining: Formulation, detection, and avoidance.
ACM Transactions on Knowledge Discovery from Data (TKDD), ACM New York,
NY, USA, v. 6, n. 4, p. 1–21, 2012.

KINGSFORD, C.; SALZBERG, S. L. What are decision trees? Nature biotechnology,
Nature Publishing Group US New York, v. 26, n. 9, p. 1011–1013, 2008.

KRAMER, O. K-nearest neighbors. In: . Dimensionality Reduction with
Unsupervised Nearest Neighbors. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013. p. 13–23. ISBN 978-3-642-38652-7. Available from Internet: <https:
//doi.org/10.1007/978-3-642-38652-7_2>.

KUNCHEVA, L. I.; RODRíGUEZ, J. J. On feature selection protocols for very
low-sample-size data. Pattern Recognition, v. 81, p. 660–673, 2018. ISSN 0031-
3203. Available from Internet: <https://www.sciencedirect.com/science/article/pii/
S003132031830102X>.

LUAN, H.; TSAI, C.-C. A review of using machine learning approaches for precision
education. Educational Technology & Society, JSTOR, v. 24, n. 1, p. 250–266, 2021.

MAYER, I. et al. R-miss-tastic: a unified platform for missing values methods and
workflows. arXiv preprint arXiv:1908.04822, 2019.

NAQA, I. E.; MURPHY, M. J. What is machine learning? In: . Machine
Learning in Radiation Oncology: Theory and Applications. Cham: Springer
International Publishing, 2015. p. 3–11. ISBN 978-3-319-18305-3. Available from
Internet: <https://doi.org/10.1007/978-3-319-18305-3_1>.

NISBET, R.; ELDER, J.; MINER, G. D. Handbook of statistical analysis and data
mining applications. [S.l.]: Academic press, 2009.

NOBLE, W. S. What is a support vector machine? Nature biotechnology, Nature
Publishing Group UK London, v. 24, n. 12, p. 1565–1567, 2006.

PEDREGOSA, F. et al. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, v. 12, p. 2825–2830, 2011.

RASCHKA, S. Model evaluation, model selection, and algorithm selection
in machine learning. CoRR, abs/1811.12808, 2018. Available from Internet:
<http://arxiv.org/abs/1811.12808>.

https://books.google.com.br/books?id=Cq2gBwAAQBAJ
https://books.google.com.br/books?id=Cq2gBwAAQBAJ
https://www.mdpi.com/2227-7390/9/8/830
https://www.mdpi.com/2227-7390/9/8/830
https://doi.org/10.1007/978-3-642-38652-7_2
https://doi.org/10.1007/978-3-642-38652-7_2
https://www.sciencedirect.com/science/article/pii/S003132031830102X
https://www.sciencedirect.com/science/article/pii/S003132031830102X
https://doi.org/10.1007/978-3-319-18305-3_1
http://arxiv.org/abs/1811.12808

57

RINGNÉR, M. What is principal component analysis? Nature biotechnology, Nature
Publishing Group US New York, v. 26, n. 3, p. 303–304, 2008.

ROKACH, L.; MAIMON, O. Decision trees. In: . Data Mining and Knowledge
Discovery Handbook. Boston, MA: Springer US, 2005. p. 165–192. ISBN 978-0-387-
25465-4. Available from Internet: <https://doi.org/10.1007/0-387-25465-X_9>.

ROMANO, J. D. et al. Pmlb v1.0: an open source dataset collection for benchmarking
machine learning methods. arXiv preprint arXiv:2012.00058v2, 2021.

SAMALA, R. K. et al. Hazards of data leakage in machine learning: a study on
classification of breast cancer using deep neural networks. In: SPIE. Medical Imaging
2020: Computer-Aided Diagnosis. [S.l.], 2020. v. 11314, p. 279–284.

SHIM, M.; LEE, S.-H.; HWANG, H.-J. Inflated prediction accuracy of neuropsychiatric
biomarkers caused by data leakage in feature selection. Scientific Reports, Nature
Publishing Group UK London, v. 11, n. 1, p. 7980, 2021.

SUTHAHARAN, S.; SUTHAHARAN, S. Support vector machine. Machine learning
models and algorithms for big data classification: thinking with examples for
effective learning, Springer, p. 207–235, 2016.

TAN, M. S. et al. A review on omics-based biomarkers discovery for alzheimer’s disease
from the bioinformatics perspectives: statistical approach vs machine learning approach.
Computers in biology and medicine, Elsevier, v. 139, p. 104947, 2021.

ULLAH, Z. et al. Applications of artificial intelligence and machine learning in smart
cities. Computer Communications, Elsevier, v. 154, p. 313–323, 2020.

VABALAS, A. et al. Machine learning algorithm validation with a limited sample size.
PloS one, Public Library of Science San Francisco, CA USA, v. 14, n. 11, p. e0224365,
2019.

VARMA, S.; SIMON, R. Bias in error estimation when using cross-validation for model
selection. BMC bioinformatics, BioMed Central, v. 7, n. 1, p. 1–8, 2006.

WECHSLER, S. Statistics at square one. ninth edition, revised by m. j. campbell,
t. d. v. swinscow, bmj publ. group, london, 1996. no. of pages: 140. price: £11.
isbn 0-7279-0916-9. Statistics in Medicine, 1997. Available from Internet: <https:
//onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0258%2819971130%
2916%3A22%3C2629%3A%3AAID-SIM698%3E3.0.CO%3B2-Z>.

YAGIS, E. et al. Effect of data leakage in brain mri classification using 2d convolutional
neural networks. Scientific reports, Nature Publishing Group UK London, v. 11, n. 1, p.
22544, 2021.

YANG, C. et al. Data leakage in notebooks: Static detection and better processes.
In: Proceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering. [S.l.: s.n.], 2022. p. 1–12.

YOZGATLIGIL, C. et al. Comparison of missing value imputation methods in time
series: the case of turkish meteorological data. Theoretical and applied climatology,
Springer, v. 112, p. 143–167, 2013.

https://doi.org/10.1007/0-387-25465-X_9
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0258%2819971130%2916%3A22%3C2629%3A%3AAID-SIM698%3E3.0.CO%3B2-Z
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0258%2819971130%2916%3A22%3C2629%3A%3AAID-SIM698%3E3.0.CO%3B2-Z
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0258%2819971130%2916%3A22%3C2629%3A%3AAID-SIM698%3E3.0.CO%3B2-Z

58

ZHANG, H.; LI, D. Naïve bayes text classifier. In: IEEE. 2007 IEEE International
Conference on Granular Computing (GRC 2007). [S.l.], 2007. p. 708–708.

59

APPENDIX A — LIST OF HYPERPARAMETERS TESTED

A.1 Logistic Regression

• Solver: [’saga’, ’lbfgs’]

• C: [0.01, 0.1, 1, 10, 100]

A.2 Support Vector Classifier

• C: [0.01, 0.1, 1, 10, 100]

• Solver: [’linear’, ’rbf’, ’poly’]/

A.3 K-Nearest Neighbors

• N Neighbors: [3, 5, 7, 9, 11]

• Metric: [’euclidean’, ’manhattan’]

A.4 Random Forest

• N Estimators: [100, 200, 500]

• Max Depth: [3, 5, 8, 10, None]

A.5 Decision Tree

• Max Depth: [3, 5, 8, 10, None]

A.6 Naive Bayes

• Var Smoothing: [1e-9, 1e-8, 1e-7, 1e-6, 1e-5]

60

APPENDIX B — DETAILED RESULTS FOR FEATURE SELECTION

Figure B.1: Detailed F1-score results for feature selection considering different per-
centiles of top-selected features.

(a) F1 scores for top 1% selected features (b) F1 scores for top 5% selected features

(c) F1 scores for top 10% selected features (d) F1 Scores for top 20% selected features

Source: The Author

61

APPENDIX C — DETAILED RESULTS FOR VALUE IMPUTATION

Figure C.1: Detailed F1-score results for value imputation considering different percent-
age of missing values.

(a) F1 Scores for 5% missing values (b) F1 Scores for 10% missing values

(c) F1 Scores for 20% missing values (d) F1 Scores for 30% missing values

Source: The Author

62

Figure C.2: Detailed F1-score results for value imputation considering different imputa-
tion strategies.

(a) F1 Scores for mean imputer (b) F1 Scores for median imputer

(c) F1 Scores for KNN imputer

Source: The Author

	Agradecimentos
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Theoretical Background
	2.1 Machine Learning
	2.2 Supervised Learning Algorithms
	2.2.1 K-Nearest Neighbors
	2.2.2 Support Vector Machine
	2.2.3 Logistic Regression
	2.2.4 Naive Bayes
	2.2.5 Decision Trees
	2.2.6 Random Forests

	2.3 Model Approximation
	2.3.1 Pre-processing
	2.3.2 Hyperparameter tuning
	2.3.3 Cross-Validation

	2.4 Data Leakage

	3 Related Works
	3.1 Data Leakage
	3.2 Effects of Data Leakage
	3.3 Summary

	4 Methodology
	4.1 Data Sets
	4.2 Proposed Experiments
	4.2.1 Experiments for normalization
	4.2.2 Experiments for value imputation
	4.2.3 Experiments for feature selection
	4.2.4 Experiments for hyperparameter tuning

	5 Results
	5.1 Does data leakage impact performance evaluation?
	5.2 Is the effect of data leakage more prominent in a specific task?
	5.2.1 Results evaluation per task
	5.2.2 Comparison among tasks

	5.3 Do data leakage effects change for different data sets?
	5.3.1 Overall results for grouped data sets
	5.3.2 Analysis of relevant combinations of data sets and tasks

	5.4 Is there a machine learning algorithm more sensitive to data leakage effects?
	5.5 Is there a correlation between the metadata of the data sets and the effects of data leakage?

	6 Conclusion & Future Work
	References
	Appendix A — List of hyperparameters tested
	A.1 Logistic Regression
	A.2 Support Vector Classifier
	A.3 K-Nearest Neighbors
	A.4 Random Forest
	A.5 Decision Tree
	A.6 Naive Bayes

	Appendix B — Detailed Results for Feature Selection
	Appendix C — Detailed Results for Value Imputation

