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1 INTRODUCTION

This work is a three-article compilation about the Maritime Cargo Routing and Scheduling

Problem and its variants. These articles are listed as follows:

• Cargo routing and scheduling problem in deep-sea transportation: Case study from a

fertilizer company. Published in Computers & Operations Research (2020);

• Multi-objective optimization of the maritime cargo routing and scheduling problem. Pu-

blished in International Transactions on Operations Research (2022);

• The segregated storage multi-ship routing and scheduling problem. In review by Informa-

tion Systems and Operational Research (2023).

The “Cargo routing and scheduling problem in deep-sea transportation: Case study

from a fertilizer company” was initially motivated by a real-life problem faced by the Brazilian

branch of a Norwegian chemical company. The problem consists in generating an operational

ship routing and scheduling planning of multi-bulk fertilizers from European ports to meet

an estimated demand of fertilizer mixer units in Brazil. The main objective proposed in I is

to generate a minimum cost plan, subject to a set of constraints and operational requisites.

This plan is used by the company to define the amounts to buy of each fertilizer, and their

respective collection ports in Europe, as well as to charter maritime transportation from shipping

agencies/companies. The multiple product bulk cargo is transported by a fleet of tramp bulk

vessels, where each ship is able to carry different raw materials at the same time, using one

compartment for each product. First, the products are collected in different ports in Europe. The

cargo is then discharged in one or more destination Brazilian ports. No transshipment among

origin and destination ports is allowed. The planning specifies each vessel routing and scheduling,

and the amount of each product loaded/unloaded at each visited port, called as route. However,

the planning is not responsible for product assignment to compartments, since the vessel’s master

is responsible for this task, taking into account issues such as vessel stability and structural

strength.

Deep sea bulk cargo pickup and delivery is a complex operation due to several reasons.

The high costs involved (such as vessel hiring and cargo handling in ports) impose the selection

of a plan able to deliver the fertilizers with the shortest cost and time. Further, the problem is

subject to several constraints and requirements, especially when multiple products, ports, and

ships are involved (ARNESEN et al., 2017). Ports and ships have strict capacities and draft limits
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that should be respected. Products cannot be mixed in the ship compartments. The demand of

destination ports should also be met and preferentially within a time window (TW) specified

by each production unit, imposing time limits in the long-time consuming loading/unloading

operations in ports. The real-problem investigated in this work presents some characteristics of

the static pickup and delivery problem with TWs (PDPTW) as described by Savelsbergh e Sol

(1995), a well-known extension of the classic Vehicle Routing Problem (VRP).

The PDPTW and its variants, such as multiple type vehicles (m-PDPTW), have attracted

the attention of several researchers in the last decades. Parragh et al. (2008) present a comprehen-

sive survey of the problem and its variants. However, the majority of the research on PDPTW is

directed to road-based applications, with different attributes of the maritime problem, in terms

of the number of origins and destinations to visit, the time horizon planning, the small quantity

of items to be delivered, in comparison with the vehicle capacity (PAPAGEORGIOU et al.,

2014). Further, on one hand, a vessel route can have a flexible structure P-P-D-P-P-D-D in the

PDPTW, where P denotes a pickup location, and D a delivery location. This is not the case

of the deep-sea cargo routing and scheduling problem, where a vessel route has a more rigid

structure P-P-P-P-D-D-D, making our problem simpler to solve in comparison with the PDPTW.

On the other hand, our problem presents flexible cargo sizes and split loads as characterized in

Fagerholt e Ronen (2013), making the problem more complicated to solve in comparison with the

PDPTW. As a consequence, the deep-sea cargo routing and scheduling problem requires specific

formulations and solution methods, capable of incorporating the peculiar aspects involved in

each application. Article I considers a real-life short-term ship routing and scheduling problem

of a fertilizer company. The problem was formulated as a mixed integer linear programming

(MILP) model with the objective of minimizing costs, based on the m-PDPTW, incorporating

several additional constraints, representing the particular requisites of the problem. The resulting

formulation can be solved for small-medium size instances using a powerful MILP solver.

Given the complexity of the problem, a matheuristic method was developed for solving

large instances. The matheuristic comprises of three steps, namely a relaxation algorithm phase,

a modified relax-and-fix (RaF) algorithm, and a post-optimization process. The optimization

approach was evaluated using real cases provided by the company, not only offering significantly

better solutions than than human schedulers, but also reducing the solution process time from

months/days to hours/minutes.

In “Multi-objective optimization of the maritime cargo routing and scheduling problem”

is introduced a new problem class in the context of maritime transportation, the multi-objective,
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multi-commodity heterogeneous fleet cargo routing and scheduling problem with time windows,

draft limits, and split loads (MO-m-CRSPTW-DL-SL) which generalizes the CRSP characterized

by Christiansen et al. (2013). In the MO-m-CRSTW-DL-SL setting, a heterogeneous fleet of

vessels operates highly constrained routes to load multiple bulk products from a set of pickup

ports and unload them in a set of delivery ports, fulfilling a deterministic demand from a set of

customers. Early or late arrivals/departures of a vessel in a port are very costly, and therefore

the synchronization of vehicle scheduling and port operating time windows is an important

characteristic of the problem. Also, delays in deliveries may cause disruptions in the companies’

manufacturing process, jeopardizing the productivity of customers. The nature of the products

prevents them from being mixed, they must be transported in dedicated compartments of the

vessels. Further, the routes are constrained by several operational requirements such as draft

limits and berth utilization of the ports. The solution of the problem specifies (i) the sequence

of ports to be visited by each vessel; (ii) the amount of each product to be loaded/unloaded

in each port by a vessel; and (iii) the arrivals and departures schedule of the vessels in/from

ports. However, as the vessel master is solely responsible for allocating the products in the

compartments (CHRISTIANSEN et al., 2011; STANZANI et al., 2018), due to the stability

and structural strength of each vessel, and sea conditions on the route, this task is partially

addressed in the route planning, only guaranteeing that the transported diversity and amounts

of products respect the number and nominal capacity of the ships’ compartments, respectively.

Furthermore, cargo allocation is a very difficult sub-problem to solve in the context of the CRSP

(HVATTUM et al., 2009). The overall plan should simultaneously minimize total transportation

costs, scheduling makespan, and delays in some deliveries.

The MO-m-CRSPTW-DL-SL is a maritime variant of the multi-objective pickup and

delivery problem with time windows (MO-PDPTW) (DUMAS et al., 1991), a vehicle routing

problem (VRP). Although the single objective of minimizing the cost is still dominant in the VRP

literature (BRAEKERS et al., 2016), the problem is multi-objective in nature (JOZEFOWIEZ

et al., 2008). In real life, decision-makers (DMs) consider additional objectives beyond costs,

such as the optimization of the number of customer visits, the minimization of total lengths,

and optimization of the makespan. There is crescent literature in the MO-VRP, and also in the

MO-m-PDPTW. In a succinct analysis, the multi-objective approach is formulated by introducing

extensions or adaptations to the single-objective modeling. The MO-VRP has been solved using

(JOZEFOWIEZ et al., 2008): (i) scalar methods, mainly weighted aggregation using local search

algorithms (PAQUETE; STÜTZLE, 2003), specific heuristics (ZOGRAFOS; ANDROUTSO-
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POULOS, 2004), and genetic algorithms (OMBUKI et al., 2006); (ii) Pareto dominance methods,

mainly using multi-objective evolutionary (WANG et al., 2016; BRAVO et al., 2019), and hybrid

algorithms (ZHANG et al., 2020); and (iii) non-scalar and non-Pareto algorithms, which includes

ant colony systems (ZHANG et al., 2019), and particle swarm (ZOU et al., 2013) optimization.

Studies in using multi-objective in the maritime routing and scheduling problem are still

scarce. In a review by Mansouri et al. (2015) about the consideration of multi-objective decisions

in sustainable maritime shipping, no explicit multi-objective optimization (MOO) approach was

cited. Multiple objectives were mainly considered as constraints. Chan et al. (2014) developed a

dynamic scheduling of oil tankers with the splitting of cargo at pickup and delivery ports, using

a multi-objective ant colony-based approach. The developed algorithm proved very efficient

in comparison with a non-dominated sorting genetic algorithm II (NSGA II) towards finding

good solutions for instances with dozens of pickup and delivery ports with a heterogeneous

fleet of oil tankers. Although containing interesting ideas, the problem considered by Chan

et al. (2014) is much less restrained than the problem tackled in this paper, neglecting time

windows, port drafts, and dedicated compartments. The problem only considers a single product.

Recently, MOO approach for planning liner shipping service considering uncertain port times

were introduced by Song et al. (2015). The problem was formulated as a stochastic nonlinear

programming model, considering three objectives, as follows: (i) annual total vessel operating

costs; (ii) average schedule unreliability; and (iii) CO2 emissions. The model was solved using an

NSGA II algorithm and applied to a container shipping service route. De et al. (2017) developed

a bi-objective model addressing the sustainable ship routing and scheduling with time windows

and draft restrictions, maximizing the overall profit incurred of providing shipping operations

within a planning horizon, and minimizing the total carbon emission incurred by the ship fleet.

The model was solved by combining NSGA-II and multi-objective particle swarm optimization

(MOPSO). However, both problems are directed to container ships, which are large ocean

vessels that operate, in general, as line service, transporting goods using regular transit routes on

fixed schedules. Further, cargoes are aggregated in containers, without considering the products

individually. To the best of our knowledge, no previous research work uses MOO for handling

the maritime CRSP.

“The segregated storage multi-ship routing and scheduling problem” presents a La-

grangian relaxation (LR)-based solution method for the m-CRSP-TW-SS-SL. LR is widely

used in solving hard integer programming problems (FISHER, 1981). The central concept is

to decompose the problem into two different types of constraints: “hard” and “soft”. The hard
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constraints are incorporated into the objective function so that they are penalized by the cor-

responding Lagrangian multipliers. The resulting relaxed problem should be easier to solve,

offering reasonable bounds for the original problem. The LR-based method is developed using

an expanded formulation of the MILP presented in Santos e Borenstein (2022), incorporating

segregated storage and ship stability constraints. Experiments were conducted in real-world

instances, and in a case study in one of the largest fertilizer companies in Brazil. The results

show that our Lagrangian approach effectively and efficiently solves the m-CRSP-TW-SS-SL.
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2 CARGO ROUTING AND SCHEDULING PROBLEM IN DEEP-SEA TRANSPORTA-
TION: CASE STUDY FROM A FERTILIZER COMPANY

ABSTRACT

This study presents a mixed-integer linear programming (MILP) model and a solution

method for a maritime cargo routing and shipping problem faced by a chemical company in

Brazil. This problem is associated with the operational planning of multiple raw materials,

collected from European ports and delivered to Brazilian ones to supply mixing production

plants. First, the problem is modeled as a pickup and delivery problem with time windows,

incorporating several constraints and operational requisites of the specific problem. In order to

solve large real-world instances, a matheuristic was developed, employing a modified relax-and-

fix strategy, a relaxation procedure, and repair and polishing routines for MILP solutions. The

matheuristic was evaluated using real-life instances provided by the company, demonstrating the

efficiency and efficacy of the developed solution method.

2.1 INTRODUCTION

This study was motivated by a real-life problem faced by the Brazilian branch of a

Norwegian chemical company. The problem consists in generating an operational ship routing

and scheduling planning of multi bulk fertilizers from European ports to meet an estimated

demand of fertilizer mixer units in Brazil. The main objective is to generate a minimum cost

plan, subject to a set of constraints and operational requisites. This plan is used by the company

to define the amounts to buy of each fertilizer, and their respective collection ports in Europe,

as well as to charter maritime transportation from shipping agencies/companies. The multiple

product bulk cargo is transported by a fleet of tramp bulk vessels, where each ship is able to

carry different raw materials at the same time, using one compartment for each product. First, the

products are collected in different ports in Europe. The cargo is then discharged in one or more

destination Brazilian ports. No transshipment among origin and destination ports is allowed.

The planning specifies each vessel routing and scheduling, and the amount of each product

loaded/unloaded at each visited port, called as route. However, the planning is not responsible

for product assignment to compartments, since the vessel’s master is responsible for this task,

taking into account issues such as vessel stability and structural strength.

Deep sea bulk cargo pickup and delivery is a complex operation due to several reasons.

The high costs involved (such as vessel hiring and cargo handling in ports) impose the selection
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of a plan able to deliver the fertilizers with the shortest cost and time. Further, the problem is

subject to several constraints and requirements, especially when multiple products, ports, and

ships are involved Arnesen et al. (2017). Ports and ships have strict capacities and draft limits

that should be respected. Products cannot be mixed in the ship compartments. The demand of

destination ports should also be met and preferentially within a time window (TW) specified

by each production unit, imposing time limits in the long-time consuming loading/unloading

operations in ports.

The real-problem investigated in this work presents some characteristics of the static

pickup and delivery problem with TWs (PDPTW) as described by (SAVELSBERGH; SOL,

1995), a well-known extension of the classic Vehicle Routing Problem (VRP). The PDPTW and

its variants, such as multiple type vehicles (m-PDPTW), have attracted the attention of several

researchers in the last decades. (PARRAGH et al., 2008) present a comprehensive survey of

the problem and its variants. However, the majority of the research on PDPTW is directed to

road-based applications, with different attributes of the maritime problem, in terms of the number

of origins and destinations to visit, the time horizon planning, the small quantity of items to

be delivered, in comparison with the vehicle capacity Papageorgiou et al. (2014). Further, on

one hand, a vessel route can have a flexible structure P-P-D-P-P-D-D in the PDPTW, where P

denotes a pickup location, and D a delivery location. This is not the case of the deep-sea cargo

routing and scheduling problem, where a vessel route has a more rigid structure P-P-P-P-D-D-D,

making our problem simpler to solve in comparison with the PDPTW. On the other hand, our

problem presents flexible cargo sizes and split loads as characterized in (FAGERHOLT; RONEN,

2013), making the problem more complicated to solve in comparison with the PDPTW. As a

consequence, the deep-sea cargo routing and scheduling problem requires specific formulations

and solution methods, capable of incorporating the peculiar aspects involved in each application.

This paper considers a real-life short-term ship routing and scheduling problem of

a fertilizer company. The problem was formulated as a mixed integer linear programming

(MILP) model with the objective of minimizing costs, based on the m-PDPTW, incorporating

several additional constraints, representing the particular requisites of the problem. The resulting

formulation can be solved for small-medium size instances using a powerful MILP solver.

Given the complexity of the problem, a matheuristic method was developed for solving large

instances. The matheuristic comprises of three steps, namely a relaxation algorithm phase, a

modified relax-and-fix (RaF) algorithm, and a post-optimization process. The optimization

approach was evaluated using real cases provided by the company, not only offering significantly
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better solutions than than human schedulers, but also reducing the solution process time from

months/days to hours/minutes.

The contributions of this paper are as follows: (i) to introduce the multi-objective deep-

sea maritime cargo routing and scheduling problem, simultaneously considering multi-product,

heterogeneous fleet with dedicated compartment, draft limits, flexible cargo sizes, split loads, and

time windows; (ii) to present a MILP formulation for the problem; (iii) to develop a matheuristic

framework capable of offering good solutions in for the size range of evaluated real life instances.

The paper is organized as follows. Section 2.2 reviews the related literature on ship routing

and scheduling problem. Section 4.3 describes the problem, explicitly defining its particular

constraints and requisites. The developed mathematical formulation of the problem is presented

in Section 2.4. The solution method is described in detail in Section 2.5. Section 2.6 describes

the evaluation of the developed solution method using real-life instances. Finally, a summary of

the results and areas of future research are provided in Section 2.7.

2.2 LITERATURE REVIEW

The literature on ship routing and scheduling has considerably increased in the last two

decades Lin e Tsai (2014). After a surprisingly slow start, considering the relevance of maritime

transportation in global trade, some of the ideas developed for ground transportation have been

successfully applied to sea transportation. As this problem has several different applications,

depending on the type of ship (liner, tramp or industry), goods transported, and port operations,

the literature presents several different categorizations (CHRISTIANSEN et al., 2013). For

convenience, we assume the classification provided by Christiansen et al. (2013) that separates

the maritime routing and scheduling problem into cargo routing and scheduling and inventory

routing problems. The former focuses on the cargo to be transported, specified by the demand

and supply of the involved ports and the wished time windows (TWs) for loading and unloading

the products; while the latter incorporates inventory management constraints to the routing

problem. Below, we first succinctly relevant maritime inventory routing problem (MIRP) related

to our case. Next, we discuss the cargo routing and scheduling models and solution methods,

highlighting our contributions to this most closely related to the problem dealt in this study.

The MIRP is currently a very studied problem, as demonstrated by the surveys from

Andersson et al. (2010) and Papageorgiou et al. (2014). As pointed out by Christiansen et al.

(2013), the majority of research in MIR was initially directed to the transportation of a single

product, in general oil or liquified natural gas (LNG) Christiansen et al. (2004). Several heuristic,
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metaheuristics, and optimization methods were developed to solve this problem. The first applied

methods were developed using arc-flow and path-flow integer linear or nonlinear programming

models, presenting some analogy with the road based formulations for the vehicle routing and

scheduling problem. The former formulation generates feasible schedules, while the latter uses

a set partitioning problem to define the final schedule. Column generation was initially the

most widely technique to solve large problems Jetlund e Karimi (2004), Kobayashi e Kubo

(2010). Al-Khayyal e Hwang (2007) extended the MIRP by studying a multi-product problem.

The major contribution of this work is the reformulation of a non-linear integer programming

formulation into an equivalent MILP by linearizing several constraints, process used by several

subsequent studies. The introduction of multi-products significantly increased the complexity of

the problem, introducing new solution methods, such as branch-and-cut and large neighborhood

search (SONG; FURMAN, 2013), hybrid heuristics Agra et al. (2014), genetic algorithms

Christiansen et al. (2011), relax-and-fix (UGGEN et al., 2013), and matheuristics Stanzani et al.

(2018). Although the literature on MIRP has interesting and useful ideas towards solving the ship

routing and scheduling problem, the developed models have focused on the inventories located

in the visiting ports in extended horizon planning. However, in the case study here, the company

is not worried about inventory levels outside the short-term planning horizon. The emphasis is

on the delivery of demanded amounts of products within a time windows, minimizing the total

costs involved. Therefore, our problem can be characterized as a classical maritime cargo routing

and scheduling problem.

The cargo routing and scheduling problem is much less studied than the MIRP. Fagerholt

(2001) developed one of the first studies in this problem, using a similar formulation approach

mixing arc and path flow to study ship scheduling with soft TWs. The same described approach

was used by some researchers to study the tramp ship routing and scheduling problem and its

variant. In general, the problem is formulated as an arc-flow formulation based on the m-PDPTW,

and solved using the path-flow model. Brønmo et al. (2007a) and Brønmo et al. (2010) solved

the multi-ship pickup and delivery problem with time windows and flexible cargo sizes using a

multi-start local search heuristic and a column generation approach, respectively. (BRØNMO

et al., 2007b) solved a similar problem, using an enumeration process to generate a priori all

schedules for each ship. Andersson et al. (2011) developed a similar decomposition and a priori

generation of columns to solve the maritime Pickup and Delivery Problem with Time Windows

and Split Loads (PDPTWSL), a problem introduced by Korsvik et al. (2011). Subsequently,

Stålhane et al. (2012) developed a branch-and-cut method to solve the PDPTWSL. However, the
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complexity of generating all schedules a priori or the well-known convergence and stabilization

problems with column generation Lübbecke e Desrosiers (2005) motivated researchers to solve

the problem using heuristics, such as tabu search Korsvik et al. (2010), genetic algorithm Lin e

Tsai (2014), and neighborhood search approach Korsvik et al. (2011), Malliappi et al. (2011).

Nevertheless, the above cited studies still neglect several aspects presented in real life

problems, such as draft limits, multi-compartment cargo transportation, multi-products, and hete-

rogeneous fleet. Despite introducing considerable complexity to the problem, the consideration

of real features is fundamental towards solving practical problems Fagerholt e Ronen (2013).

(FAGERHOLT; CHRISTIANSEN, 2000a) combined ship scheduling and the allocation problem

(SSAP), solving them in an iterative way. The first problem is modeled as a Traveling Salesman

Problem with Allocation, TW and Precedence Constraints (TSP-ATWPC), and solved by a

dynamic programming algorithm for each vessel in the fleet. After a set of candidate schedules

is generated for each ship, the SSAP is solved using a set partitioning problem. However, no

draft limits were considered. Rakke et al. (2012) and Battarra et al. (2014) incorporated draft

issues in the TSP, using branch and cut algorithms to solve the problem. (MALAGUTI et al.,

2018) solved the TSP with pickup and delivery (TSPPD), integrating heuristic procedures and

a branch-and-cut exact algorithm. However, the problem was modeled without incorporating

TWs. Arnesen et al. (2017) expanded the TSPPD, considering TWs and draft limits (TSPPD-

TWDL), using a solution approach based on the dynamic programming developed in Fagerholt

e Christiansen (2000b). Rodrigues et al. (2016) developed an arc flow MILP to represent a

single-product, heterogeneous fleet PDPTW with draft limit for maritime oil transportation.

Given the difficulty of CPLEX to solve some instances, a relax-and-fix and a time decomposition

based heuristics were developed. As expected, the heuristics were much more efficient, but with

lower quality solutions, than CPLEX. The problem was simplified by considering that split loads

are not allowed. As a result, the amounts of products to be picked up or delivered at each visiting

site are modeled as constants, rather than decision variables. More recently, Trottier e Cordeau

(2019) solved a short-sea vessel routing and scheduling problem for a fleet of dry bulk vessels

in tramping operations, considering TWs, heterogeneous fleet, split cargoes, and draft limits.

The problem was solved using tabu search, incorporating a constraint relaxation mechanism that

avoids the need of a feasible initial solution. The method was successfully applied in a Canadian

maritime company. As the modeling approach was developed to be used by a maritime company,

the transported cargo was aggregated, without considering the products individually.

In this paper we expand the cargo routing and scheduling problems described in Arnesen
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et al. (2017) and Rodrigues et al. (2016) by considering a heterogeneous fleet with dedicated

compartment, and multiple products in different ports, respectively. To the best of our knowledge,

this is the first study on the multi-product, split-load, flexible size cargo, time-windows, and

heterogeneous fleet with dedicated compartment on the deep-sea cargo routing and scheduling

problem.

2.3 PROBLEM BACKGROUND AND DESCRIPTION

We consider the short-term planning of the cargo routing and scheduling from pickup

ports in Europe to delivery ones in Brazil faced by a chemical company. This plan is carried

out by the logistic department of the Brazilian branch to define the fertilizer supply of around

twenty-four mixing units located in Brazil. Currently, the company uses EXCEL to define

the plan, based on data and information from the its enterprise resource planning. Due to the

complexity of the plan, the process starts 90 days before its actual implementation. The units are

responsible to estimate the monthly consumption of each raw material. Based on this information

and the experience of the logistics department, the plan is elaborated and made available in the

company’s enterprise resource planning system for the raw material buying process and vessel

chartering by the Norwegian central administration. It is important to notice that this is a very

strategic process, since the company has been increasing the participation of premium products

in the Brazilian market. The main objective of the company is to generate a plan that minimizes

the logistics costs, determining the number of vessels to be used, their routing and scheduling

of collections and deliveries, in addition to the quantities of products which each vessel will be

load/unload in each port of its route, taking into account the deadlines and demand of each raw

material.

The planning horizon involves the deep-sea transportation of up to 12 different fertilizers

stored in warehouses in ports near to the production plants, located in North Africa and Europe.

Due to coordination issues, up to six origin ports can be visited by each planning horizon. The

mixing units in Brazil can use up to 13 delivery ports by each planning horizon to receive their

demanded raw material. Each pickup port can offer one or more products, while one or more

delivery ports may have the need for several raw materials, with different quantities. Although

some destinations ports may have several berths, only one berth can be used by the chartered

vessels at any time, avoiding competition in the use of resources. Further, almost all origin and

destination ports have severe draft limitations, imposing restrictions in its use given the load

condition of a vessel. We assume that all terminals in a port have their respective draft limits
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defined by its Port Authority.

The vessels responsible for the deep-sea transportation are voyage chartered. In general,

handymax or handysize bulk carriers are used, with capacity of around 40,000 DWT. Each vessel

has several compartments that can carry different products. Since the demands of some mixing

units are lower than the vessel capacity, a route may comprise the pickup and delivery of several

products. To avoid low usage of the vessels, there are restrictions in the minimum load of 20

kt per vessel, and the value of four kt per product transported by a vessel. We assume that all

vessels, independently of the size, navigate using an average cruise speed of fifty knots. As

a consequence, the sailing times between ports are only dependent on the distances between

them. The speed in each port is also constant and follows the Port Authority. Unfortunately,

the vessel draft is quite complex to estimate without detailed real time information. Towards

simplification, we assume that the vessel draft is fundamentally dependent on its current cargo,

following (ARNESEN et al., 2017).

Feasible routes should comply with several requisites and constraints. Any vessel route

should be based on a simple rule, all cargoes are picked up in European and African ports, and

then delivered in their destination ports. Transshipment is neither allowed among origin ports,

nor among destination ports, however partial loading/unloading of a vessel compartment by the

same product is allowed. Another important requisite in a route is the delivery of fertilizers as

close as possible to the date demanded for each mixing plant to fulfill its production plan. As a

consequence, TWs are created for each delivery port. Further times should be considered when

designing a route, as follows: loading/unloading time for every cargo, compartment washing

time after delivering a cargo, waiting time for release of the product for transport on land, in

accordance with customs legislation, and the waiting time for a vessel to dock at a terminal.

Therefore, to respect the delivery TWs, it is necessary to establish a TW in the collection of

products in each origin port of a route. Normally, a delivery TW has a total duration of ten

to sixteen days. Although it is extremely important for the company to respect the specified

TWs, sometimes it is difficult to find a viable plan capable of simultaneously respecting all

values, giving the large number of operational constraints. As a result, TWs can be seen as soft

constraints. The initial time of each route also defines the contractual laycan (abbreviation for

laydays and canceling), a clause defining the TW in which the charterers are obliged to accept

the vessel in the first loading port. If the vessel arrives before the first date agreed, the vessel

probably has to wait. If the vessel arrives too late, the charterers are entitled to not accept the

vessel. The laycan is around five days. Figure 1 illustrates possible vessel routes.
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Figura 1 – Examples of vessel routes

As the company does not know the position of the vessels to be chartered, we assume

that vessels start their routes from a pool that allows them to respect the laycan time. Another

peculiarity of our problem is the adoption of a geographical orientation for the route. By adopting

an orientation (for example North/South), the vessel may not change it until the end of its route,

subject to a severe penalty in freight costs. In a route, vessels cannot return to an already visited

port. Further, there is a limit for the number of collection ports in a route. This limit is associated

with reducing the risk of delivery delays when the vessel starts its journey.

The following costs are taking into account in the minimization of total transportation

costs of the fertilizers: (i) Chartering of the vessel, which varies according to the time used

for each vessel; (ii) Demurrage costs, which are charges levied by the shipping charter to the

company in cases where they have not taken delivery of the cargo and move it out of the port

area within the allowed free days; (iii) Usage of the ports, which varies with the number of times

each port is used by different vessels; (iv) Inversion of the geographical orientation of a vessel

route; and (v) Fee for early or late arrival of a vessel in a port, penalizing the service at each port

outside the given time window of each port. Note that storing costs in the ports are not explicitly

considered in our modeling, since they are implicitly contemplated by item (v) above.

2.4 PROBLEM MODELING

The problem described below presents characteristics of an m-PDPTW. We used the

formulations introduced by Al-Khayyal e Hwang (2007) and Stanzani et al. (2018) as a basis
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for our MILP formulation, specially the ingenious linearization processes describe in both

studies. The peculiarities of our specific problem were introduced as constraints. As demands

are considered fixed during the planning horizon, we used a continuous-time formulation as

recommended by Agra et al. (2013) with the notation presented below. Sets and parameters are

expressed as upper case letters, while variables use lower case letters.
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Indices and Sets
h, i, j, k ∈ NV set of pickup and delivery ports
h, i, j, k ∈ NP set of pickup ports
h, i, j, k ∈ ND set of delivery ports
h, i, j, k ∈ N set of all ports, including the start (s) and finish (f ) ports
p ∈ P set of products
v ∈ V set of vessels

Parameters
Qip stock level of product p in port i (ton) in the beginning of the planning horizon
TDjp estimated date of arrival of product p in port j (days)
TDAj earliest starting time for the delivery of products in port j (days)
TDLj superior starting time for the delivery of products in port j (days)
TOj loading/unloading time in port j (days)
TCj custom clearance time of products in port j (days)
TQj estimated queuing time in port j (days)
TPSj earliest starting time for the pickup of a cargo in port j (days)
TPFj superior starting time for the pickup of a cargo in port j (days)
TSijv sailing time of vessel v between ports i and j (days)
KPj draft limit in port j (ton)
MAXv capacity of vessel v (ton)
MINv minimum amount of cargo for vessel v (ton)
PMINpv minimum amount of product p to be loaded in vessel v (ton)
Gv number of compartments of vessel v
CDv demurrage cost of vessel v ($)
CPi fixed utilization cost of using port i ($)
CVv freight price of vessel v ($)
CUD daily cost for disrespecting the TWs of a pickup/delivery ($)
CSNv change fee of geographical orientation of loaded vessel v ($)
V PLv maximum number of pickup visits of vessel v
V DLv maximum number of delivery visits of vessel v
PV Lj maximum number of berths in port j ∈ ND

SNij binary matrix that indicates a geographical orientation between ports i, j ∈ ND

Decision variables
lijpv amount of product p transported using arc (i, j) by vessel v (ton)
etaijv estimated arrival time of vessel v at port j from port i (days)
etdijv estimated departure time of vessel v from port j for etdijv (days)
etudijpv early arrival or delay of vessel v carrying product p using arc (i, j) (days)
xijv binary variable that indicates if arc (i, j) is used by vessel v
yijpv binary variable that indicates if arc (i, j) is used by vessel v to transport product p
ydijpv binary variable that indicates if product p is unloaded of vessel v in port j ∈ ND,

using arc (i, j)
gpv binary variable that indicates if product p is transported by vessel v
auxvw binary variable that indicates if vessels v and w are simultaneously using the same port

We model the problem as a multi-commodity arc-flow formulation defined on a directed

graph G = (N,A), where set N = NV ∪ {s} ∪ {f} is the set of nodes and A = {(i, j)|(i ∈

NP , j ∈ NV ) ∧ (i ∈ ND, j ∈ ND) ∧ (i ∈ {s}, j ∈ NP ) ∧ (i ∈ ND, j ∈ {f})} is the set of
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arcs. Dummy nodes s and t represent artificial arrival and departure nodes, respectively. The set

of arcs is defined towards avoiding that a delivery port is connected to a pickup port. Each path

in the graph from s to f , that respects all TWs, draft, and capacity constraints, corresponds to a

feasible vessel route. The objective is to find the minimum cost feasible routes. Based on the

above described network and notation, the problem can be formulated as a MILP, as follows:

min
∑
v∈V

CVv

 ∑
i∈ND

etaifv +
∑
j∈NP

etasjv

+
∑
i∈N

∑
j∈NV

∑
v∈V

CPj xijv

+
∑
i∈N

∑
j∈NV

∑
v∈V

CDv TQj xijv +
∑
i∈NV

∑
j∈ND

∑
p∈P

∑
v∈V

CUD etudijpv

+
∑
i∈NV

∑
j∈NV

∑
v∈V

SNij CSNv MAXv xijv

(1)

Objective function (1) minimizes the freight costs, the utilization of ports costs, the
demurrage costs, the penalty for disrespecting the TW of a product delivery, and the penalty for
changing the sailing geographical orientation of vessels. These costs are computed in the same
way planners do in the company.

subject to:

Supply-demand constraints

Qip −
∑
j∈NV

∑
v∈V

lijpv +
∑

h∈NV

∑
v∈V

lhipv ≥ 0 ∀i ∈ NV , ∀p ∈ P (2)

Constraints (115) ensure that the supply and demand of each product are respected in the
pickup and delivery ports, respectively.

Draft constraints ∑
j∈N

∑
p∈P

lijpv ≤ KPi ∀i ∈ NV , ∀v ∈ V (3)

∑
j∈N

∑
p∈P

lijpv ≤ KPj ∀j ∈ NV , ∀v ∈ V (4)

Constraints (127) and (128) assure that a vessel is entering or leaving a port, respecting
the port maximum cargo draft.
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Ship load constraints

Qip −
∑
j∈NV

lijpv +
∑

h∈NP

lhipv ≥ 0 ∀i ∈ NP , ∀p ∈ P, ∀v ∈ V (5)

∑
h∈NV

lhipv −
∑

j∈ND

lijpv ≥ 0 ∀i ∈ ND, ∀p ∈ P, ∀v ∈ V (6)

∑
i∈NP

∑
j∈ND

∑
p∈P

lijpv ≤MAXv ∀v ∈ V (7)

∑
i∈NP

∑
j∈ND

∑
p∈P

lijpv ≥MINv

∑
j∈NP

xsjv ∀v ∈ V (8)

lijpv ≥ PMINpvyijpv ∀i ∈ NP , ∀j ∈ NV , ∀p ∈ P, ∀v ∈ V (9)∑
p∈P

gpv ≤ Gv ∀v ∈ V (10)

Constraints (116) guarantee that a vessel cannot leave a pickup port with a product that is
not stocked in its warehouses or to unload any cargo in a pickup port. Likewise, constraints (117)
do not allow a vessel to discharge a larger amount of a product in a delivery port than its current
loading. Both restrictions avoid cargo transshipment in ports. Constraints (119) ensure that the
maximum capacity of each vessel is respected. Constraints (59) assure that vessels are not under
utilized. Constraints (60) define the minimum amount of each product to be transported by a
vessel. Constraint (121) limit the number of different products to be transported by a vessel to
the number of its compartments.

Flow constraints∑
j∈N

xijv ≤ 1 ∀i ∈ N, ∀v ∈ V (11)

∑
i∈N

xijv ≤ 1 ∀j ∈ N, ∀v ∈ V (12)∑
j∈N

xijv −
∑
h∈N

xhiv = 0 ∀i ∈ N, ∀v ∈ V (13)

∑
i∈NP

∑
j∈ND

xijv ≤ 1 ∀v ∈ V (14)

xijv = 0 ∀i ∈ ND, ∀j ∈ NP , ∀v ∈ V (15)

xfsv = 0 ∀v ∈ V (16)

xfjv = 0 ∀j ∈ NV , ∀v ∈ V (17)

xisv = 0 ∀j ∈ NV , ∀v ∈ V (18)∑
p∈P

lijpv −Mxijv ≤ 0 ∀i, j ∈ N, ∀v ∈ V (19)

lijpv −Mgpv ≤ 0 ∀i, j ∈ N, ∀p ∈ P, ∀v ∈ V (20)

lijpv −Myijpv ≤ 0 ∀i, j ∈ N, ∀p ∈ P, ∀v ∈ V (21)

where M represents a very large number.
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Constraints (133) and (134) limit that any arc (i, j) in the network is transversed more
than once by the same vessel. Constraints (135) are flow conservation constraints. Constraints
(136) establish a connection between pickup and delivery ports, while constraints (137) prevent
the existence of arcs connecting delivery to collection ports. Constraints (138), (139) e (140)
delimit the possibilities of arcs with the dummy ports s and t. Constraints (141) and (20) define
that the flow of an amount of product p in arc (i, j), being transported by vessel v, only occurs if
it transverses arc (i, j), carrying product p in one of its compartment. Constraints (21) link the
continuous variable lijpv to the its binary counterpart, yijpv.

Time Constraints

etaijv ≥ TPSjxijv ∀i ∈ N, ∀j ∈ NP ,

∀v ∈ V (22)

etdijv ≤ TPFjxijv ∀i ∈ N, ∀j ∈ NP ,

∀v ∈ V (23)

etdijv ≥ etaijv + TQj + TOj +M(xijv − 1) ∀i ∈ N,

∀j ∈ NV , ∀v ∈ V (24)

etaijv ≥ etdhiv + TSijv +M(xijv − 1) ∀h ∈ N,

∀i ∈ NV , ∀j ∈ NV , ∀v ∈ V

(25)

etudijpv ≥| TDjp − TCj − etdijv | +M(ydijpv − 1) ∀i ∈ NV ,

∀j ∈ ND, ∀p ∈ P, ∀v ∈ V

(26)

etaifv ≥ etdhiv +M(xifv − 1) ∀i, h ∈ NV ,

∀p ∈ P, ∀v ∈ V (27)

etasiv ≤ etaijv − TSij − TOi − TQi −M(xijv − 1) ∀i, j ∈ NV ,

∀p ∈ P, ∀v ∈ V (28)

etaijv + TQj −M(xijv − 1) +Mauxvw ≥ etdkjw +M(xkjw − 1) ∀i, k ∈ N,

∀j ∈ NV , ∀v, w ∈ V, v ̸= w

(29)

etakjw + TQj −M(xkjw − 1) +M(1− auxvw) ≥ etdijv +M(xijv − 1) ∀i, k ∈ N,

∀j ∈ NV , ∀v, w ∈ V, v ̸= w

(30)

etdijv ≤ TDjp + TDLj − TCj +M(−ydijpv + 1) ∀i ∈ NV ,

∀j ∈ ND, ∀p ∈ P, ∀v ∈ V

(31)

etdijv ≥ TDjp − TDAj − TCj −M(ydijpv − 1) ∀i ∈ NV ,

∀j ∈ ND, ∀p ∈ P, ∀v ∈ V

(32)

Constraints (144) and (145) are related to the time windows in the collection of products,
which affect the arrival and departure times, respectively, of each vessel in/from each port.
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Constraints (145)– (153) follow Miller-Tucker-Zemlin inequalities for sub-tour elimination.
Constraints (146) define that the departure time of each vessel from a port depends on its arrival
time, estimated queuing time, and load/unloading time in the port. Constraints (147) determine
the arrival time in port j of each vessel as related to its departure time from port i plus the sailing
time TSijv by vessel v. Soft constraints (148) account for the specified TWs of the delivery of a
product in a port. They are only considered if an early arrival or a delayed departure of a vessel
in a port for each product being transported happens. Constraints (149) and (150) define the
initial and ending route times of each vessel. Constraints (151) and (30) ensure that two vessels
can not simultaneously use the same port. Constraints (152) and (153), similarly to (144) and
(145), establish the departure TW of each vessel from a port, considering the estimated arrival
TDjp of product p in port j.

Routing Constraints∑
i∈NP

∑
j∈NP

xijv ≤ V PLv − 1 ∀v ∈ V (33)

∑
i∈ND

∑
j∈ND

xijv ≤ V DLv − 1 ∀v ∈ V (34)

∑
i∈N

∑
v∈V

xijv ≤ PV Lj ∀j ∈ NV (35)

yijpv − xijv ≤ 0 ∀i, j ∈ N, ∀p ∈ P, ∀v ∈ V (36)

yijpv − gpv ≤ 0 ∀i, j ∈ N, ∀p ∈ P, ∀v ∈ V (37)

etdijv −Mxijv ≤ 0 ∀i, j ∈ N, ∀v ∈ V (38)

etaijv −Mxijv ≤ 0 ∀i, j ∈ N, ∀v ∈ V (39)

yijpv − TDjpydijpv ≤ 0 ∀i ∈ NV , ∀j ∈ ND, ∀p ∈ P, ∀v ∈ V (40)

Constraints (33) and (34) limit the number of pickup and delivery ports, respectively, that
each vessel can dock in its route. Constraints (35) limit the number of vessels that can dock at
each port during the planning horizon. Constraints (129) and (124) stipulate that each vessel can
only transport a product using arc (i, j) if: (i) the vessel uses arc (i, j) in its route; and (ii) the
vessel is carrying the product in one of its compartments. Constraints (130) and (131) stipulate
that each vessel has an arrival time and a departure time, respectively, in/from a port j coming
from port i, if it uses arc (i, j) in its route. Finally, constraints (132) guarantee that a product is
only unload from a vessel in a port if: (i) there is a demand for the product in this port; and (ii)
the vessel is carrying this product in its route.
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Domain of the variables

lijpv ≥ 0 ∀i, j ∈ N, ∀p ∈ P, ∀g ∈ V (41)

etdijv ≥ 0 ∀i, j ∈ N, ∀v ∈ V (42)

etaijv ≥ 0 ∀i, j ∈ N, ∀v ∈ V (43)

etudijpv ≥ 0 ∀i, j ∈ N, ∀p ∈ P, ∀v ∈ V (44)

xijv ∈ {0, 1} ∀i, j ∈ N, ∀v ∈ V (45)

yijpv ∈ {0, 1} ∀i, j ∈ N, ∀p ∈ P, ∀v ∈ V (46)

ydijpv ∈ {0, 1} ∀i, j ∈ N, ∀p ∈ P, ∀v ∈ V (47)

gpv ∈ {0, 1} ∀p ∈ P, ∀v ∈ V (48)

auxvw ∈ {0, 1} ∀v, wv ̸=w ∈ V (49)

It should be noticed that variables auxvw and constraints (29), (30), (33), (34), and
(35) are very specific to our problem. If we disregard them, the problem becomes a general
multi-product, split load, heterogeneous fleet with dedicated compartment cargo routing and
scheduling problem with time windows and draft limits, that can be applied to different real-world
problems that involve the deep-sea transportation of bulk products. Further, the above mentioned
variables and constraints add reasonable complexity towards obtaining a good quality solution
with efficiency in comparison with the more generic problem. Given the extensive number of
constraints and binary variables in model (115) – (49), commercial MILP packages may have
difficulties of solving large instances of the problem. Since our objective is to solve real-world
instances, involving large number of products and ports, we develop a heuristic approach fully
described in the next section.

2.5 SOLUTION METHOD

To overcome the computational difficulties associated with producing a good solution
for very large instances, we develop a modified a RaF based decomposition matheuristic to
solve the problem. The solution approach can be characterized as a matheuristic, since it
integrates heuristics and MIP strategies and software. RaF is a solution strategy employed in
many production planning problems, such as the lot-sizing problem (MOHAMMADI et al.,
2010) and scheduling (KELLY; MANN, 2004). More recently, RaF has been successfully applied
to solve MIRPs Uggen et al. (2013), Friske e Buriol (2018) and a maritime cargo routing and
scheduling problem Rodrigues et al. (2016). RaF is based on an intuitive idea that a planning
problem can be decomposed into n time intervals or sub-problems, that are solved sequentially.
In the first iteration, the sub-problem is solved with the integer variables corresponding to the
first interval, while the remaining variables remain continuous. In subsequent iterations, the
previously integer variables are fixed with the values of a solution obtained in the previous step.
A new interval receives the integrality condition and the remaining variables remain continuous
and unfixed at each new iteration. This process is repeated until n iterations are executed when
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a complete solution to the original problem is found. (POCHET; WOLSEY, 2006) present a
comprehensive description of this solution method.

The developed matheuristic is basically a three-step approach. In the first step, a simple
and fast relaxation algorithm is applied to find partial feasible solutions, since some constraints
are relaxed on purpose. Next, a modified RaF algorithm is employed towards finding good
feasible solutions to the problem. Finally, an improvement phase, based on powerful MILP solver
developed routines, is executed in attempt to decrease the final gap of the solution provided by
the modified RaF algorithm. Algorithm 8 outlines the matheuristic framework.

Algorithm 1: Matheuristic approach

1. Apply the relaxation heuristic described in Algorithm 2.

2. Apply Algorithm 3.

3. Apply the improvement procedure described Algorithm 4.

2.5.1 Relaxation algorithm

The main objective of the relaxation phase is to find a solution that may be infeasible for
the complete model, but can accelerate the process of finding a good solution in the subsequent
step. Due to the complexity of the model, it is pretty hard to find a feasible solution to the
problem within a reasonable time. Further, during experimentation, we note that the CPU time
used in finding a feasible initial solution was not being compensated either in quality or efficiency
in the further step, considering the whole solution process.

Based on these observations, we decided to apply a simple and fast relaxation heuristic
able to find very quickly a relaxed initial solution to improve the convergence process of the next
step of Algorithm 8. The following requisites were either neglected or relaxed: (i) The maximum
number of ports visited by a vessel in the delivery was not taken into consideration; (ii) TWs
were implicitly considered, but not enforced. Priority was given to pickup ports in which the
average TWs is smaller; (iii) Vessels can leave pickup ports without considering the draft limit;
(iv) The number of simultaneous vessels in a port is not considered; and (v) The geographical
orientation of vessels is neglected.

Before describing the algorithm, it is necessary to introduce some additional notation.
Let O be the set of vessels in non-descending order of their freight costs, clv be the current load
of vessel v, npv be the number of visited pickup ports by vessel v, visiv be a binary variable that
define if port i was visited by vessel v, and uv be the last port visited by vessel v. Algorithm 2
presents the pseudocode of the relaxation heuristic.

The algorithm is a process approach routine that follows vessels through two intercon-
nected time-ordered sequences, cargo pickup and delivery. First, the algorithm handles the load
of all demanded products in the origin ports, using the required number of vessels to respect the
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Algorithm 2: Relaxation heuristic
1. Pickup initialization. Compute αk = TPSk+TPFk

2 , k ∈ NP . Set clv, uv ← 0,∀v ∈ V ,
visip ← 0,∀i ∈ NP , ∀v ∈ V ← 0, gpv ← 0, ∀p ∈ P,∀v ∈ V,Q

′
ip = Qip, lijpv ← 0,∀i, j ∈

N, ∀p ∈ P,∀v ∈ V .

2. Pickup. For all v ∈ O do:

2.1. If ((clv < Maxv) ∧ (
∑

p gvp < Gv) ∧ (npv < V PLv)) then select port
k∗ ← k ∈ NPαk|(

∑
pQ

′
kp > 0) ∧ (clv < KPk) ∧ (viskv = 0)). Otherwise, go to Step 2.

2.2. While ((clv < Maxv) ∧ (
∑

p gvp < Gv) do

2.2.1. Select product p∗ ← pQ
′
k∗p. Load vessel v with amount loadp∗ ← min[Q

′
k∗p∗ , clv].

2.2.2. Update clv ← clv + loadp∗ , Q
′
k∗p∗ ← Q

′
k∗p∗ − loadp∗ , gp∗v ← 1, and

luvk∗p∗v ← luvk∗p∗v + loadp∗ .
2.2.3. Set xuvk∗v ← 1, and yuvk∗p∗v ← 1.

2.3. Set etauvk∗v ← etduvk∗v + TSuvk∗v, etduvk∗v ← etauvk∗v + TOk∗ + TCk∗ , visk∗v ← 1,
npv ← npv + 1, and uv ← k∗. Go to Step 2.1.

3. Delivery. Set npv ← 0. For all v ∈ O do:

3.1. If ((clv > 0) ∧ (npv < VDLv)) then select port k∗ ←
k ∈ ND[

∑
j∈ND

∑
p∈P luvjpv,−

∑
pQ

′
kp] | ((clv < KPk) ∧ (clv < KPk) ∧ (viskv = 0)).

Otherwise, go to Step 3.

3.2. For all p ∈ P |((Q′
k∗p > 0) ∧ (gpv = 1)) do

3.2.1. Unload amount uloadp ← min[Qk∗p, luvk∗pv] from vessel v. Update Qk∗p′ , luvk∗pv,
and clv with amount uloadp, accordingly. Set xuvk∗v ← 1, yuvk∗p∗v ← 1, and
yduvk∗p∗v ← 1.

3.2.2. If (luvk∗pv = 0) then gpv ← 0.

3.3. Set etauvk∗v ← etduvk∗v + TSuvk∗v, etduvk∗v ← etauvk∗v + TOk∗ + TCk∗ , uv ← k∗,
npv ← npv + 1, and visk∗v ← 1. Go to Step 3.1.

4. Output. Return obtained solution S.

considered constraints (Step 2). Each vessel visits a set of pickup ports with available products
and enough draft, giving preference to the ones with more strict TWs. The algorithm attempts
to load the maximum amount of each stored product in each port, respecting the capacity and
the number of compartments in the vessel. Products are prioritized based on the current amount
stocked in the port. All variables of the problem, with the exception of etudijpv, and auxvw

are updated accordingly with the cargo load in the vessel. This process is repeated until the
vessel is incapable of loading any extra cargo or all products are collected. The whole process
is then repeated with a new vessel, until all products are collected. After all vessels are loaded,
the algorithm starts the delivery process by each vessel (Step 3), following the same order of
the pickup stage. The delivery process is simpler. Each vessel unload the maximum amount
transported of all products in each port, respecting the demand for each product. The ports to be
visited are ordered by their maximum demand of all products. The process of delivery finishes
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when all vessels are empty. The same variables are updated accordingly with the cargo unload. A
vessel only visits a port, during both the pickup and delivery processes, if it was not previously
visited in its route.

2.5.2 Modified relax-and-fix algorithm

The developed algorithm is a modified RaF strategy. A key aspect in designing a RaF
algorithm is to select a suitable strategy to partition the integer variables set into sub-sets.
In a previous applications on maritime PDPTW problems, the variables were grouped by
forward time-based division of the problem (RODRIGUES et al., 2016). Unfortunately, some
experimentation has demonstrated that this traditional strategy was not appropriate for our
formulation. In opposite to the problem solved by Rodrigues et al. (2016), we consider multiple
products and split load/unload in visiting ports, considerably increasing the number of continuous
and binary variables. Our formulation also involves a much larger number of time variables
related with vessel routes in comparison with Rodrigues et al. (2016), making it difficult to
find suitable time intervals employing the usual RaF strategy. Further, these variables were
considerable interconnected with other binary variables, making the problem very difficult to
solve and decompose. Several intervals were tested and either very bad integer solutions or
infeasible ones were obtained for tested instances.

Our developed algorithm presents a different strategy in which the set of integer variables
are partitioned into non-divisible blocks. Each block is defined by a strategy set vector (SB)
that can be seen as a permutation of the integer variables set. In the first iteration, only the
variables in the first block are considered as integer, while all the remaining ones are relaxed
in the model. Then, the current sub-model is solved for the entire horizon planning. As it is
difficult to find a feasible solution to the current MILP being solved due to the excessive number
of constraints, the repairing algorithm developed by Fischetti e Lodi (2008) is employed in the
solution process. The repairing procedure is a hybrid algorithm that uses the feasibility pump
method to provide initial solutions to the local branching. More specifically, the original current
MILP being solved is augmented with artificial variables. The augmented model is then solved
iteratively to reduce the infeasibility by driving the values of the artificial variables to zero. The
objective is not only to repair solutions, but also to repair infeasible MILP models. At the next
iterations of the algorithm, the subsequent variables in a block are defined as integer (but not
fixed) and incorporated in the current sub-model, obeying the position of the variable in the
block, defining our strategy as a relax-and-define (RaD) algorithm. The solutions obtained in
previous iterations are used as initial ones for the current sub-model. In the last iteration, all
variables are considered as integer in the current sub-model, and solved to find the best possible
solution. The number of iterations is equal to the cardinality of the integer variables set (IS).
As a consequence, our RaD strategy solves a smaller number of larger sub-models rather than a
larger number of smaller sub-models used by the traditional RaF. Further, the values of integer
variables are not fixed in the interactions, but included in a MILP solution pool.
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Before presenting the algorithm, it is necessary to introduce additional notation. Let SBk

be the strategy vector k, consisting of indexes to each integer variables in IS, Bs be the set of
fixed integer variables at iteration s, ordered by a FIFO strategy. The total number of iterations is
denoted by |IS|. Let SP be the a MIP solution pool, ts be the execution time limit of iteration s,
hi be an index to the variable in i-th position of vector SBk, and S be a vector of MIP solutions.
Algorithm 3 outlines the developed routine.

Algorithm 3: Relax-and-define algorithm

1. Bs ← ∅

2. SP ← relaxation heuristic solution

3. For s = 1, . . . , |IS|

3.1. hs ← index to the variable in the s-th position of vector SBk

3.2. Bs ← Bs−1 ∪ {hs}
3.3. Set current MILP as model (1) – (45) with the integral constraints related to variables in Bs

3.4. Solve current MILP using the repair algorithm by Fischetti e Lodi (2008) with initial
solutions in SP within time limit ts

3.5. SP ← feasible solutions of the current MILP

4. Return best solution in SP

The algorithm has some customizable parameters, which according to the instance of
the problem, can be altered so that the algorithm might improve the performance. Among these
parameters, we highlight the relaxation strategies and the size of parameters ts. Particularly for
the latter, it should be observed that the heuristic priority at each iteration is to obtain several
feasible solutions for the current model being solved rather than intermediary optimal ones. The
majority of the solutions, if not all, will be infeasible for the complete model. In general, as more
solutions in Ps, more effective is the repair routine in offering more promising intermediary
solutions towards good final ones in Ps+1, considering a threshold in the memory usage. In order
to deal with the usual quality-efficiency trade-off, we use ts as a control parameter. Depending
on the ability of the MILP solver to obtain good solutions, ts can be increased or decreased. The
parametrization is discussed with more details in Section 2.6.

Table 1 presents the definition strategies considered to solve our problem, e.g, the different
orders in which the decision variables are defined as integers in each iteration of the solution
process. The number of strategies is defined by the permutation of the integer variables in set
vector SB. This process requires some experimentation, but it is facilitated by the resources of
current MILP solvers in terms of quickly defining infeasible solutions and difficult constraints to
be solved, among others. Further, a pruning process can be performed by an analysis of the MILP
formulation. Particularly, we used the connection among the variables to determine their position
in vector SB. All strategies considered to solve our problem uses variables xijv as the first
variable to be fixed as integer, since the flow in an arc defines the values of almost all remaining
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integer and continuous variables in our model. Note that variable ydijpv is always positioned
after its dominant variable yijpv. Strategy A uses variable gpv as the next one to become integer,
since both variables define the values of all remaining ones in the formulation. Strategies B and
C are similar, but altering the position of variable auxvw in the vector. Strategy D and E are
variations of strategy A, altering the position of variable gpv.

Tabela 1 – Definition block strategies

Strategy Strategy vector (SBk)

A [xijv, gpv, yijpv, ydijpv, auxvw]
B [xijv, gpv, auxvw, yijpv, ydijpv]
C [xijv, auxvw, gpv, yijpv, ydijpv]
D [xijv, yijpv, gpv, ydijpv, auxvw]
E [xijv, yijpv, ydijpv, gpv, auxvw]

Figure 2 illustrates the RaD workflow using strategy A. At iteration 1 (s = 1), only the
variables in the first block (xijv) were defined as integer, while the remaining ones are relaxed.
When s = 2, the first block of variables are set as integer for all subsequent iterations, and
variables gpv are defined as integer. When a variable is defined as integer at any iteration, this
condition is maintained for all remaining iterations. This process is repeated until s = 5, when
the last block of variables (auxvw) receive the integrality constraints, restoring the original
complete model. It is expected that the matheuristic provides a feasible solution to the problem.
Each iteration s is executed within a time limit ts.

Figura 2 – RaD phase diagram, strategy A

2.5.3 Improvement phase

After the RaD step is finalized, a post-processing phase is applied in order to improve
the best solution found by the algorithm. The improvement phase is composed of a two-step
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procedure. First, the improvement phase polishes the solution from the RaD algorithm, solving
the whole problem (model (1)–(49)) using the polishing algorithm by Rothberg (2007). Next,
the same problem is re-solved employing the repair algorithm by Fischetti e Lodi (2008). The
solution pool generated in the polishing step is used as input of the repair heuristics. It is
important to notice that if the polishing step is not able to find any new solution, the polishing
heuristic is not activated and the matheuristic finishes its processing.

The polishing algorithm is based on Rothberg (2007), an evolutionary approach in
which the usual operations of crossover and mutation are built within a large-neighborhood
search framework. The solutions of the polishing algorithm are then integrated into the MILP
search tree, and the solutions found by the MILP solver are used in the evolutionary algorithms,
characterizing a benefiting integration of information during the search solution process.

Considering p as the best solution from the RaD step, the improvement phase can be
outlined by Algorithm 4.

Algorithm 4: Improvement phase algorithm

1. SP ← p

2. Set MILP as model (1)–(49)

3. Solve the MILP using the polish routine by Rothberg (2007) with SP as initial solution within time
limit ti

4. SP ← SP ∪MILP solutions obtained in polishing

5. If |SP | ≥ 2

5.1. Solve the MILP using the repair algorithm by Fischetti e Lodi (2008) with initial solutions in
SP within time limit ti

6. Return best solution in SP

Based on experimentation, we observed that the polishing routine can have a significant
effect in improving integer solutions, but sometimes requires a considerable amount of time
to fulfill this task. We decided to limit the execution of each step of the improvement phase to
a limit time of ti = maxs=1,...,|IS|ts, in order to find a good compromise between quality and
efficiency.

2.5.4 Implementation

The matheuristic was implemented in C++, using IBM ILOG CPLEX 12.8.0 to solve the
MILP models. Also, it uses several inherent capabilities of contemporary MILP solvers, such as
parallel branch-and-cut, multiple default heuristics, non-traditional tree-of-trees search, solution
improvement, symmetry detection, and cutting planes. CPLEX parameter names are used to
specifically identify the capabilities utilized. Although the denominations are specific, similar or
analogous parameters are available in other powerful MILP solvers, such as Gurobi or SAS.
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Tabela 2 – CPLEX parameters controlling cuts

Parameter Value Meaning

Cliques 2 Generate clique cuts moderately
Covers 2 Generate cover cuts moderately
DisjCuts 2 Generate disjunctive cuts moderately
FlowCovers 1 Generate flow cover cuts moderately
FlowPaths 1 Generate flow path cuts moderately
GUBCovers 2 Generate generalized upper bound (GUB) cuts moderately
ImplBd 1 Generate implied bound cuts moderately
MIRCuts 1 Generate a moderate number of MIR cuts (mixed integer rounding cuts)
MCFCuts 1 Generate a moderate number of MCF cuts (multi-commodity flow cuts)
ZeroHalfCuts 1 Generate zero-half cuts moderately

Parameters Repair.Tries and SubMIPNodeLim were employed in the RaD algo-
rithm to attempt to repair infeasible MIP solutions in SP . The former modifies the number of
attempts by the repair heuristic, while the latter modifies the depth of the repair. Both parameters
are stepped up, with the former being changed from default 1 to 1000, and the latter from 500
to 10000, respectively. Parameters PolishAfterIntSol and PolishTime were used in
the improvement phase. In addition, parameter Probe was activated at its maximum level of 3
in each step of the algorithm. Probing is a technique that analyzes the logical implications of
the problem by fixing each binary variable to 0 or 1, thus increasing the probability of finding a
viable solution for the subproblem in question. Parameter Emphasis_MIP was also used to
modify the emphasis of the optimization engine. CPLEX default is 2, so the optimizer processes
an “equilibrium” between optimality and feasibility. In the matheuristic, this value is changed to
1, which prioritizes the viability of the solution. Since the matheuristic has limited ability to see
how an initial decision affects the subsequent intervals, it may not be advantageous to solve each
subproblem at optimality (UGGEN et al., 2013).

Given the success of using cutting planes for solving the TSP-DL Rakke et al. (2012),
Battarra et al. (2014), several CPLEX parameters related with cutting planes were activated with
different values than the defaults, as presented in Table 2. Although aggressive values would
increase the contribution of the generated cuts in the process of finding a good solution, moderate
values offer better compromise between efficiency and solution quality.

2.6 EXPERIMENTS

In this section, we describe the experiments carried out using real cases provided by the
chemical company. Intentionally, we used instances with a wide range in the problem dimensions
(ports and products), representing the seasonality involved in the fertilizer business (see Table
5). Experiments were carried out using real-life planning cases to evaluate the performance of
the optimization approach. The used instances are real plans executed by the company from
2013–2019. Computations were performed using an AMD Ryzen 5 2600 six-core computer with
3.4Ghz and 16 GB RAM. Our objective was demonstrate to company managers that planning
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can be accomplished using easily available and cost-effective computational resources.

2.6.1 Matheuristic parameters tuning

Before evaluating the matheuristic, we carried out experiments to select the best set of
parameters. For economy’s sake, we only present results related to some of the most important
parameters. Table 3 presents a comparison of the solution quality in five runs of each strategy
vector proposed in Table 3 for instance 5 (a middle size one in Table 5). Each run uses random
values of ∀s, ts ∈ [150, 200]. Average and standard deviation of the objective functions for each
strategy are also presented. The best values found for each run are presented in bold. Strategies
A or C obtained the best values for all tested instances. These are not surprising results, given the
similarity between the two strategies and the natural dependency of all remaining binary variables
with xijv, and gpv. Although strategy A has not always obtained the best value, it presented the
most overall robust behavior, with the best compromise between average values and standard
deviation. Figure 3 illustrates the solution method process of each strategy on the same instance
5 for five iterations of the RaD algorithm, and two improvement steps. As expected, the solution
process is quite disturbed by the introduction of relevant new integer variables for each strategy
in the sub-problems. Observe that the post-processing phase was not relevant for almost all
strategies for this instance. In general, we noticed that this stage is more relevant for large size
instances. Based on the obtained results, we selected strategy A as the most appropriate choice,
and limit further experimentation to this strategy vector.

Tabela 3 – Results for instance 5 for different strategy vectors

Objective Function
SBk Run 1 Run 2 Run 3 Run 4 Run 5 Average SD

A 2182262 2089586 2183361 2147773 2105837 2141764 43069
B 2204890 2239481 2232796 2144956 2282726 2220970 50826
C 2254921 2168180 2123997 2123997 2233216 2180862 60938
D 2182262 2105837 2315293 2183671 2147773 2186967 78452
E 2238943 2222102 2286424 2213727 2182684 2228776 38151

Another very important parameter in the matheuristic is the size of ts. A small value can
avoid the matheuristic to find a feasible solution, while a very large value can guarantee a very
good solution, but unnecessarily increasing the computational time. In order to properly tune
this parameter, we tested several values in four different size instances: 4 (small), 5 (medium), 6
(large), and 14 (extra-large). Table 4 presents the best solutions for different values of parameter
ts for the four instances. The total computational time in seconds (CPU) is expressed as 7ts.
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Figura 3 – Definition strategy behavior by step of the RaD algorithm, instance 5

Tabela 4 – Impact of parameter ts on different instance types

Instance Instance Type ts(s) CPU(s) Solution

10 70 1216330
4 Small 20 140 1206560

30 210 1206560
40 280 1206560

120 840 2144956
5 Medium 180 1260 2123997

240 1680 2118370
300 2100 2105837

200 1400 3651044
6 Large 300 2100 3587072

400 2800 3578946
500 3500 3578946

400 2800 –
14 Extra-large 500 3500 4771420

600 4200 2568760
700 4900 2423750

The results in Table 4 ratify the expected behavior. Larger values of ts led to better
solutions. However, there is a clear upper threshold in the value of ts for each instance. Beyond
this value, the marginal contribution in the objective function is small, considering the additional
CPU time. Although the choice of an appropriate value is highly dependent on the instance
being solved, the obtained results were helpful in selecting useful initial balanced values of
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parameter ts, towards good compromising solution in terms of efficiency and efficacy. As small
instances are relatively easy to solve, it is possible to set ts ≤ 20s. For medium instances, a
balanced ts can be set to above 180s, with a relative deviation of less than 0.9% in comparison
with the best solution with ts = 300s. For large instances, a balanced value of 300s seems
quite sound. Finally, for extra-large instances, a minimum value of 600s is recommended, but
depending of the instance it would be necessary to increase this value, given the difficulty of
solving the intermediary complex sub-problems during the execution of the RaD algorithm.
Nonetheless, it should be noted that the above values are reference values, requiring validation
by experimentation.

2.6.2 Real Instances

Table 5 presents a comparison of the solution obtained from the company, the MILP
solver with default parameters (CPLEX), the MILP solver with the parameters defined in the
Table 2 (P-CPLEX), and the matheuristic. Each instance is defined in terms of the number of
origin ports (OP)/delivery ports (DP)/products to be transported (P). In the table, we compare the
quality and efficiency of the obtained solutions, in terms of final costs (Solution), CPU time in
seconds to obtain the presented solution (CPU), and the number of vessels (V). The number and
characteristics of the vessels, and the costs computation follow the data made available by the
company. Further, a vessel should visit, at most, two pickups and three deliveries ports, following
an operational policy of the company.

The company solution was the planning costs computed by the logistics department.
However, the managers were not only interested in minimizing costs, but also in delivering
good customer services. For some historic cases, the cargo delivery was considered as the most
important criteria to be met, causing significant increase in the final cost. Due to commercial
confidentiality, the company did not disclosure the information of when this fact happened. As a
consequence, the comparison between the company’s solutions and the optimization methods
must be viewed very carefully.

We limited the execution of CPLEX to six hours for instances 1–23. For instance 24,
a time limit of twelve hours was considered. The matheuristic was executed with strategy A
and values of ts following the recommendations from the previous section in accordance with
the instance size. Note that in the CPLEX and P-CPLEX cases, “–” indicates that they fail to
produce any feasible solution within the time limit considered.

The optimization approach offered solutions with smaller total costs than the logistics
department of the company. CPLEX and P-CPLEX were not able to find solution for five
instances (12, 18, 19, 20, and 23) and four instances (18, 19, 22, and 23), respectively, within 2
hours. Moreover, P-CPLEX was not able to solve instance 24 within 12 hours. The matheuristic
proved to be the most robust solution method, being capable of offering average better solutions
for all instances in less than 6300s. As a consequence, we focus our qualitative comparison in the
matheuristic. The reduction in the total costs is dependent on the instance. For instances 3 and 8,
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Tabela 5 – Company-optimization methods comparison

Company CPLEX P-CPLEX Matheuristic
Inst OP-DP-P Solution V Solution CPU V Solution CPU V Solution CPU V

1 2-4-7 2577470 2 1206770 281 2 1206770 454 2 1206770 70 2
2 2-5-5 1513310 4 1035600 848 4 1035600 932 4 1035600 70 4
3 2-5-6 2086000 3 827910 84 2 827910 100 2 827910 70 2
4 2-5-6 3244746 3 1575446 11132 3 1575446 10848 3 1575446 1260 3
5 3-3-8 2619014 3 1279264 110 3 1279264 217 3 1279264 70 3
6 3-5-6 1075550 3 998740 138 2 998740 144 2 998740 70 2
7 3-5-7 1701770 3 1206560 2490 3 1206560 2212 3 1206560 140 3
8 4-5-6 5311625 3 2177327 21600 3 2131213 21600 3 2123997 1260 3
9 5-7-6 5343392 4 4046932 21600 3 4046932 21600 3 3578946 2100 3

10 4-4-6 5756646 4 2225366 21600 4 2215006 21600 4 2215006 2100 4
11 4-4-6 2592598 4 1618622 21600 4 1618622 21600 4 1681913 2100 4
12 3-6-8 3657060 4 - 21600 - 2344300 21600 4 2391940 2100 4
13 5-5-7 3780400 4 3120770 21600 4 2150800 21600 4 2153570 2100 4
14 5-5-8 6470280 4 5703900 21600 4 4102690 21600 4 3710430 2100 4
15 5-5-7 5109720 5 3250960 21600 4 3786290 21600 4 2732850 2100 4
16 5-7-5 3389492 4 2361882 21600 4 2347459 21600 4 2299431 2100 4
17 5-7-9 4088320 4 2749840 21600 3 2135550 21600 3 1964790 2100 3
18 5-8-10 5250760 4 - 21600 - - 21600 - 2439760 2100 3
19 6-9-10 4470320 4 - 21600 - - 21600 - 2568760 4200 4
20 6-5-9 5297050 4 - 21600 - 3449212 21600 4 3314918 2100 4
21 4-5-8 3068690 4 1783480 21600 4 1726020 21600 4 1688320 1260 4
22 6-7-11 8848112 6 7201920 21600 6 - 21600 - 4661604 2100 6
23 7-7-10 9090452 7 - 21600 - - 21600 - 5501930 2100 7
24 6-8-10 9655370 7 6704940 43200 7 - 43200 - 3810510 6300 7

the reduction was quite high, while for instance 6 the reduction was around 7%. In six instances,
the matheuristic reduced the number of vessels. The decrease in total costs might be explained
by several reasons, as follows: (i) better distribution of cargo/routing; (ii) use of fewer vessels;
(iii) reduced number of inversions of the geographical orientation of vessels’ route; or (iv) the
company’s decision to prioritize customer service rather costs. Although we cannot objectively
measure the matheuristic impact in terms of improving the solution due to different objectives
prioritization for some instances, the matheuristic was more efficient than the company’s current
method. The company requires several days to obtain a feasible solution for each plan using
EXCEL, while the optimization approach can find better solutions in minutes, for small and
medium instances, and in hours, for large and extra-large ones.

If we only compare the optimization approaches, we can observe that there was no
significant differences in the final solution for the small to medium instances. The differences
began to appear to the medium instances onwards. Solutions from CPLEX were dominated
by the remaining methods. In general, the use of cutting planes in P-CPLEX allowed better
solutions than CPLEX. Instance 13 is a good example. However, P-CPLEX was not able to find
a feasible solution within 12h for instance 24. Given the complexity of the models, it is difficult
to justify this observed behavior. It seems that P-CPLEX probably generated excessive cuts in
some nodes of the branch-and-bound during the solution process of instance 24, losing overall
efficiency. Nevertheless, it is possible to affirm that the simple use of cutting plane parameters
does not guarantee a robust solution process for this specific problem. The matheuristic obtained
very competitive quality solutions in comparison with CPLEX and P-CPLEX for all instances.
The matheuristic solved all 24 instances, and obtained better or equal solutions in 21 instances,
specially for the large and very large ones. The matheuristic was able to offer solutions with
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an average relative deviation reduction of 10.8% and 3.1% in comparison with CPLEX and
P-CPLEX, respectively, considering the instances solved by these two optimization methods.
CPLEX, P-CPLEX and the matheuristic found the same number of vessels, with the exception
of the instances not solved by one of the two first approaches. The reduction of the total costs
by the matheuristic was obtained by a better usage of the vessels’ capacity, lower cost routes,
and lower utilization of port resources. Succintly, the greater the complexity of the instance,
larger the difference in solution between CPLEX/P-CPLEX and the matheuristic. This fact is
exemplified by instance 24, a very difficult one to solve, in which the heuristic reduced the total
costs in 43.1% in comparison with the solution obtained by CPLEX. All computed costs were
reduced by the matheuristic in comparison with CPLEX, but the savings were mainly due to the
capability of the matheurisitc to find, very quickly, vessel routes that reduced the inversion of the
geographical orientation costs as indicated in Table 6.

Tabela 6 – Solution costs of instance 24

Solution Costs ($) CPLEX Matheuristic
Usage of the ports 1228500 1094500
Vessel chartering 1440500 1261800
Demurrage Cost 1150000 1030000
Inversion of orientation 2880000 420000
Early or late arrival 5940 4210

Results in Table 5 shows that the matheuristic is more efficient than CPLEX and P-
CPLEX, regardless of the instance dimension. The matheuristic decreased the required CPU time
by average speed factors of 9.5 and 9.8 in comparison with CPLEX and P-CPLEX, respectively.
However, better results could be obtained by the matheuristic if a loss in efficiency was tolerated,
with a possible decrease in the solution quality. We could not find a correlation between the
instance dimensions and the CPU time reductions. Further experimentation may be needed.

Overall, the developed matheuristic offered a very competitive approach to solve the
problem, independently of the instance dimension. Although the matheuristic did not offer the
best solution for all tested instances, it obtained near optimal solutions very fast. For large
instances, it was the most effective and efficient method by far. The results were presented to
the logistics department staff of the company and the schedulers responded positively to the
optimization approach.

The efficiency and quality of the solutions by the matheuristic caused a very good
impression. The possibility of shortening the planning time, from months to days, and to obtain
better solutions can lead to very desirable effects, as follows: (i) to reduce the overall planing
time, allowing better estimations of the demand of each products by the units’ managers based
on historical and current orders. As a result, the plan would better match supply and demand
of each unit, simultaneously reducing stocks and increasing the service level (specially for
premium products); and (ii) to offer an effective negotiation tool for decreasing costs with
vessel chartering. Both issues are very important in the current strategy of consolidating the
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sustainability of the company in Brazil by offering customized fertilizers for customers, rather
than simple commodities.

2.6.3 Solving a more general problem

Towards better evaluating the optimization approach, we decided to carry out additional
experiments, validating the developed matheuristic using a diverse setting. We considered a more
generic cargo routing and scheduling problem (GCRSP), without some of the peculiarities of
the fertilizer company, as discussed in the last paragraph of Section 2.4. The three optimization
methods were applied to solve model (1)–(28), (31), (32), (36)–(49). In addition to the restrictions
(29)–(30) and (33)–(35), decision variables auxvw were also disregarded. We used the same
CPLEX and P-CPLEX CPU time limitations as in the previous experiments, six hours for
instances 1–23, and twelve hours for instance 24. We also used strategy A and the same ts values
for running the matheuristic. As the cardinality of the integer variables set is smaller for the
more general problem, the matheuristic solved the problem with six iterations. Table 7, with a
similar layout of Table 5, compares the performance of the three optimization methods for the
new problem, using the same real-life planning instances of the previous experiments.

Tabela 7 – Comparison of the optimization methods for the GCRSP

CPLEX P-CPLEX Matheuristic
Inst OP-DP-P Solution CPU V Solution CPU V Solution CPU V

1 2-4-7 1206330 10 2 1206330 11 2 1206330 2 2
2 2-5-5 1035600 901 4 1035600 932 4 1035600 60 4
3 2-5-6 795570 112 2 795570 125 2 795570 60 2
4 2-5-6 1575336 12086 3 1575336 12409 3 1575336 360 3
5 3-3-8 1279264 60 2 1279264 60 2 1279264 60 2
6 3-5-6 998740 120 2 998740 131 2 998740 60 2
7 3-5-7 1205990 4812 3 1205990 4257 3 1205990 120 3
8 4-5-6 2063252 21600 3 2142267 21600 3 2096902 1260 3
9 5-7-6 3971404 21600 3 3896134 21600 3 3578946 1800 3

10 4-4-6 2161936 21600 4 2161936 21600 4 2161936 1800 4
11 4-4-6 1592063 21600 4 1592063 21600 4 1623734 1800 4
12 3-6-8 3556860 21600 4 2344300 21600 4 2050900 1800 4
13 5-5-7 2137020 21600 4 2137020 21600 4 2094670 1800 4
14 5-5-8 3771470 21600 4 3972390 21600 4 3154250 1800 4
15 5-5-7 3541250 21600 4 3765360 21600 4 2356310 1800 4
16 5-7-5 2248891 21600 4 2302556 21600 4 2189441 1800 4
17 5-7-9 1610440 21600 3 1577120 21600 3 1696610 1800 4
18 5-8-10 3251900 21600 4 3138110 21600 4 2069070 1800 4
19 6-9-10 3614220 21600 4 3491380 21600 4 2189720 1800 4
20 6-5-9 2975949 21600 4 2989081 21600 4 2963128 1800 4
21 4-5-8 1695690 21600 4 1704610 21600 4 1679530 1800 4
22 6-7-11 6898418 21600 7 7210425 21600 4 3919573 1800 7
23 7-7-10 6289491 21600 7 - 21600 - 4410214 1800 7
24 6-8-10 5891770 43200 7 - 43200 - 3858310 4260 7

As expected, the solutions for the GCRSP (Table 7) generally have lower costs than the
solutions presented in Table 5, independently of the optimization approach. The decrease in the
final solution was of 7.3% and 6.5%, on average, for CPLEX and the matheuristic, respectively.
However, for some instances, this difference can be as large as 40% for CPLEX (instance 17),
and 19% for the matheuristic (instance 23). The influence of the peculiarities of the rel-life
problem in the final solution is dependent on the instance. In general, but not always, as large the
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instance, greater the influence. However, this behavior could not be observed concerning CPU
time for CPLEX and P-CPLEX. Some instances were solved quicker for the real-life problem
than for the GCRSP by these two solution methods. It seems that the deleted constraints can
speed up the solver to find worse solutions faster, for some instances. We were no able to find a
pattern for this behavior. Surprinsigly, for instance 24, the matheuristic found a slightly better
solution for the real-life problem than for the GCRSP. A possible explanation for this counter
intuitive result is the CPU times used for solving this instance (6300s for the real-life problem
versus 4260s for the GCRSP).

Comparing the optimization approaches, the behavior of the results for the GCRSP
was quite similar with the ones obtained in the specific problem of the company. There is no
significant differences in the total solution costs for the small to medium instances among the
three solving methods. CPLEX and the matheuristic were able to solve all instances given the
CPU time limitations used. Although P-CPLEX has obtained better results than CPLEX for
some instances, the former was not able to solve the two largest instances (23 and 24). It seems
that P-CPLEX can only be applied to small–medium instances, lacking robustness to solve all
possible real-world problems within a reasonable computation time. For large instances, the
matheuristic obtained better solutions than CPLEX. The matheuristic equaled or outperformed
CPLEX and P-CPLEX solutions in 21 instances. The matheuristic was able to offer solutions with
maximum relative deviations of around 5% and 7% in comparison with CPLEX and P-CPLEX,
respectively. As the instance dimensions increased, the matheuristic was able to improve the
solution quality. If we consider the instances with more than 5 origins or destinations ports, the
matheuristic improved on average 19.8% in comparison with CPLEX solutions. Simultaneously,
the matheuristic is more efficient than both CPLEX and P-CPLEX, regardless of the instance
dimension. The matheuritic decreased the required CPU time by an overall average factor of 13 in
comparison with CPLEX and P-CPLEX. With the exception of instance 17, CPLEX, P-CPLEX
and the matheuristic found the same number of vessels. It seems the value of ts was too small
for the matheuristic to solve the problem with 3 vessels as carried out by CPLEX and P-CPLEX.
Overall, the set of presented results have proved that the matheuristic is a robust method to solve
the heterogeneous fleet with dedicated compartments, multi-product, flexible cargo sizes, split
load deep-sea cargo routing and scheduling problem, considering different settings.

2.7 CONCLUSIONS

This paper introduces an optimization approach for solving a real-life shipping cargo
routing and scheduling problem faced by a chemical company in its raw material supply for
Brazilian mixing units. The problem can be characterized as a multi-product pickup and delivery
problem with heterogeneous fleet, dedicated compartments, TWs, and draft limits. Feasible
routes should comply with several constraints, some peculiar to the particular real-life problem.
Although our optimization approach was developed based on a case study, it can be easily
implemented in analogous maritime problem faced by companies transporting large quantities of
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bulk multi-products using tramp shipping as pointed out in Section 2.6.3.
We extended previous MILP formulations developed for the tramp cargo routing and

scheduling (ARNESEN et al., 2017; MALAGUTI et al., 2018), introducing heterogeneous fleet
and multi-products. CPLEX, including controlled cuts set to moderate, was applied for solving
small to medium instances, obtaining relatively good solutions within a reasonable time. For large
real-life instances, we developed a matheuristic approach, integrating a relax-and-define strategy
with several in-built cutting plan heuristics within CPLEX. The matheuristic was evaluated
using real-life instances, proving to be quite appropriate to solve the maritime problem, since
it outperformed CLEX results in almost all instances tested, both in efficiency and efficacy.
Particularly, the matheuristic significantly obtained better solutions, much quicker, than human
schedulers and CPLEX, specially for large and extra-large instances, demonstrating its ability
to cope with different planning contexts. Similar results were obtained when the optimization
approaches were applied to a more general problem, without the specific peculiarities of the
company context.

The research team is proceeding to develop a decision support systems with a friendly
graphical interface for the effective use of the optimization approach by the company. Further,
new algorithms and models are being considered to enhance the optimization approach. One idea
is to tighten the formulation by introducing different families of valid inequalities developed by
solving VRPs (ROPKE; CORDEAU, 2009). Further, a multi-objective formulation, considering
simultaneously total costs and planning makespan minimization, is a special request by company
managers.
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3 MULTI-OBJECTIVE OPTIMIZATION OF THE MARITIME CARGO ROUTING
AND SCHEDULING PROBLEM

ABSTRACT

This paper addresses the multi-objective maritime cargo routing and scheduling problem
(MO-CRSP), in which the delivery of bulk products from pickup to delivery ports is served
by a heterogeneous fleet of vessels. A mixed integer linear programming (MILP) model is
formulated to simultaneously minimize total operation costs, the scheduling makespan, and
delays in selected deliveries. The model accounts for several real features, such as time windows,
capacity of the vessel’s compartments, and ports requirements. A fuzzy weighted max–min
method was applied to solve the problem. Two heuristics were developed to effectively handle
the complex generated MILP models during the solution process. Experiments were conducted
to evaluate the optimization approach using real life instances provided by a fertilizer company.
Finally, a case study shows that the developed model and algorithmic framework are flexible
and effective in coping with real problems, incorporating specific business rules from different
companies.

3.1 INTRODUCTION

We introduce a new problem class in the context of maritime transportation, the multi-
objective, multi-commodity heterogeneous fleet cargo routing and scheduling problem with
time windows, draft limits, and split loads (MO-m-CRSPTW-DL-SL) which generalizes the
CRSP characterized by Christiansen et al. (2013). In the MO-m-CRSTW-DL-SL setting, a
heterogeneous fleet of vessels operates highly constrained routes to load multiple bulk products
from a set of pickup ports and unload them in a set of delivery ports, fulfilling a deterministic
demand from a set of customers. All cargo should firstly be collected and only then delivered
within specified time windows in each port in a route. Early or late arrivals/departures of a
vessel in a port are very costly, and therefore the synchronization of vehicle scheduling and
port operating time windows is an important characteristic of the problem. Also, delays in
deliveries may cause disruptions in the companies’ manufacturing process, jeopardizing the
productivity of customers. The nature of the products prevents them from being mixed, they
must be transported in dedicated compartments of the vessels. Further, the routes are constrained
by several operational requirements such as draft limits and berth utilization of the ports. The
solution of the problem specifies (i) the sequence of ports to be visited by each vessel; (ii) the
amount of each product to be loaded/unloaded in each port by a vessel; and (iii) the arrivals
and departures schedule of the vessels in/from ports. However, as the vessel master is solely
responsible for allocating the products in the compartments (CHRISTIANSEN et al., 2011;
STANZANI et al., 2018), due to the stability and structural strength of each vessel, and sea
conditions on the route, this task is partially addressed in the route planning, only guaranteeing
that the transported diversity and amounts of products respect the number and nominal capacity
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of the ships’ compartments, respectively. Furthermore, cargo allocation is a very difficult sub-
problem to solve in the context of the CRSP (HVATTUM et al., 2009). The overall plan should
simultaneously minimize total transportation costs, scheduling makespan, and delays in some
deliveries.

This study is motivated by the problem faced by fertilizer companies in Brazil that
manage their raw material logistics planning. The companies use charter vessels to execute the
transportation of the required raw materials from European ports to fulfill the demand for mixing
units in Brazil. The planning is executed by experienced managers using spreadsheets, without
the help of any optimizing tool. The planning process starts well ahead of its execution due to
the difficulty of finding an acceptable, feasible solution by the logistics team. The increasing
introduction of customized products to specific clients led the companies to optimize their raw
material logistics towards simultaneously offering better service levels and obtaining higher
profit margins, decreasing the operational costs. The new market environment has fomented the
use of multi-objective optimization approaches.

The MO-m-CRSPTW-DL-SL is a maritime variant of the multi-objective pickup and
delivery problem with time windows (MO-PDPTW) (DUMAS et al., 1991), a vehicle routing
problem (VRP). Although the single objective of minimizing the cost is still dominant in the VRP
literature (BRAEKERS et al., 2016), the problem is multi-objective in nature (JOZEFOWIEZ
et al., 2008). In real life, decision-makers (DMs) consider additional objectives beyond costs,
such as the optimization of the number of customer visits, the minimization of total lengths,
and optimization of the makespan. There is crescent literature in the MO-VRP, and also in the
MO-m-PDPTW. In a succinct analysis, the multi-objective approach is formulated by introducing
extensions or adaptations to the single-objective modeling. The MO-VRP has been solved using
(JOZEFOWIEZ et al., 2008): (i) scalar methods, mainly weighted aggregation using local search
algorithms (PAQUETE; STÜTZLE, 2003), specific heuristics (ZOGRAFOS; ANDROUTSO-
POULOS, 2004), and genetic algorithms (OMBUKI et al., 2006); (ii) Pareto dominance methods,
mainly using multi-objective evolutionary (WANG et al., 2016; BRAVO et al., 2019), and hybrid
algorithms (ZHANG et al., 2020); and (iii) non-scalar and non-Pareto algorithms, which includes
ant colony systems (ZHANG et al., 2019), and particle swarm (ZOU et al., 2013) optimization.

However, peculiar characteristics of the CRSP setting it apart from the m-PDPTW
(SANTOS et al., 2020), such as: (i) ports and vessels have rigorous capacities and draft limits that
must be regarded; (ii) there is no central depot; and (ii) partial loading/unloading of products in
the same vessel. So, it is unclear whether the approaches specifically developed for the the more
generic MO-PDPTW/MO-VRPTW can be directly applied to the MO-m-CRSPTW-DL-SL.

In the domain of shipping routing and scheduling, the CRSP is a very important research
topic, being a typical problem of bulk products transported by tramp or industrial shipping
(CHRISTIANSEN et al., 2013). The CRSP is focused on the cargo to be load/unload in pic-
kup/delivery ports, respectively, to fulfill the fixed demand of customers, respecting the time
windows imposed by contractual deadlines (AL-KHAYYAL; HWANG, 2007). Given the di-
versity of real world applications and case studies described in the literature, the CRSP has
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been applied to several contexts. The problem was considered an m-PDPTW (FAGERHOLT,
2001) or a traveling salesman problem with time windows (FAGERHOLT; CHRISTIANSEN,
2000b) and draft limits (ARNESEN et al., 2017), incorporating real features such as split loads
(KORSVIK et al., 2011), flexible cargoes (KORSVIK; FAGERHOLT, 2010), and dedicated
compartments (FAGERHOLT; CHRISTIANSEN, 2000a). The problem was modeled as a single-
objective multi-commodity arc-flow and solved using column generation (BRØNMO et al.,
2010), branch-and-cut (MALAGUTI et al., 2018), tabu search (TROTTIER; CORDEAU, 2019),
and neighborhood search (KORSVIK et al., 2011). More recently, Santos et al. (2020) modeled
and solved the CRSP, simultaneously considering the following real features: heterogeneous
fleet, multiple products, time windows, draft limitation, flexible cargoes, and split loads. A
matheuristic, based on a modified relax-and-fix algorithm, was developed to find good solutions
towards minimizing the total transportation costs with efficiency.

Studies in using multi-objective in the maritime routing and scheduling problem are still
scarce. In a review by Mansouri et al. (2015) about the consideration of multi-objective decisions
in sustainable maritime shipping, no explicit multi-objective optimization (MOO) approach was
cited. Multiple objectives were mainly considered as constraints. Chan et al. (2014) developed a
dynamic scheduling of oil tankers with the splitting of cargo at pickup and delivery ports, using
a multi-objective ant colony-based approach. The developed algorithm proved very efficient
in comparison with a non-dominated sorting genetic algorithm II (NSGA II) towards finding
good solutions for instances with dozens of pickup and delivery ports with a heterogeneous
fleet of oil tankers. Although containing interesting ideas, the problem considered by Chan
et al. (2014) is much less restrained than the problem tackled in this paper, neglecting time
windows, port drafts, and dedicated compartments. The problem only considers a single product.
Recently, MOO approach for planning liner shipping service considering uncertain port times
were introduced by Song et al. (2015). The problem was formulated as a stochastic nonlinear
programming model, considering three objectives, as follows: (i) annual total vessel operating
costs; (ii) average schedule unreliability; and (iii) CO2 emissions. The model was solved using an
NSGA II algorithm and applied to a container shipping service route. De et al. (2017) developed
a bi-objective model addressing the sustainable ship routing and scheduling with time windows
and draft restrictions, maximizing the overall profit incurred of providing shipping operations
within a planning horizon, and minimizing the total carbon emission incurred by the ship fleet.
The model was solved by combining NSGA-II and multi-objective particle swarm optimization
(MOPSO). However, both problems are directed to container ships, which are large ocean
vessels that operate, in general, as line service, transporting goods using regular transit routes on
fixed schedules. Further, cargoes are aggregated in containers, without considering the products
individually. To the best of our knowledge, no previous research work uses MOO for handling
the maritime CRSP.

In this paper, we develop a multi-objective optimization approach for the m-MO-CRSPTW-
DL-SL, considering three objectives, extending the single-objective formulation presented by
Santos et al. (2020). The main objective of the optimization approach is to find good solutions, as
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close as possible to the Pareto front, towards supporting the decision-making process of human
planners. These objectives include: total costs, makespan, and delays in selected deliveries. A
fuzzy weighted max–min multi-objective method has been developed to solve the problem.
Towards finding solutions for the complex mixed integer linear program (MILP) models involved
in the weighted max-min, two methods were introduced, using mathematical programming
technologies offered by contemporary commercial MILP solvers. The proposed algorithms were
compared using real-world planning instances kindly provided by a fertilizer company. Further,
the MOO approach was applied to a case study, illustrating the effectiveness and the ability of
the modeling approach to incorporate several additional requirements. The major contribution
of this paper is to introduce an MOO approach for the maritime CRSP, not only capable of
incorporating the several aspects of the problem, but also to integrate operational peculiarities
and business rules of different companies and chartering modalities.

This paper is organized as follows. The problem is described and formulated in Section
4.3. Section 3.3 introduces the solution method, detailing the algorithms developed to solve
the several MILP models generated during the solution process. In Section 3.4, computational
experiments to evaluate the performance of the algorithms are presented. Section 4.7 describes a
real-case study carried out using data from a multinational fertilizer company’s Brazilian branch.
In the concluding Section 4.8, an overview of the results is presented and future research are
elaborated.

3.2 PROBLEM DESCRIPTION AND FORMULATION

We consider in this study a multi-objective short-term deep-sea CRS planning. The plan
is mainly used by chemical companies for the chartering process to transport raw materials
from Europe to Brazil. Cargoes are transported by dry bulk tramp shipping, using contracts
of affreightment (COA), in which a charterer agrees to pay freight, daily, for a shipowner to
carry goods in the vessel for a specified time. The COA specifies a period, known as laytime,
for loading and unloading the cargo. If laytime is exceeded, the charterer must pay a daily
charge, known as demurrage. The contract also specifies the laydays, the period within which
the shipowner has to make the vessel fully operative to the charterer at the place and time agreed
in the charter party. The shipowner pays the fuel costs and crew costs during the term of the
COA. The vessel may be delivered at an agreed port following a ballast voyage, which costs are
paid by the charterer to the shipowner as a “ballast bonus”. Laycan and ballast voyages are not
addressed in our cargo route and schedule planning. The plan is used for internal consumption,
mainly to negotiate product deliveries to end customers. Vessels’ locations are unknown during
this planning phase. Both aspects become relevant in the next contracting phase of the chartering.
In general, handymax or handysize bulk carriers are used, presenting a capacity of approximately
35,000–60,000 deadweight tonnage (DWT). Each vessel contains multiple compartments that
can be used to transport different products. Because the supplies and the demands of products in
some ports are lower than the vessel capacity, a route may include the pickup and delivery of
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products in several ports. Each pickup port may have a high supply for one or more products,
whereas one or more delivery ports may have a high demand for the same product in different or
equal quantities. Furthermore, most origin and destination ports have severe draft restrictions,
limiting vessel usage based on its load condition. We assume that the Port Authority has defined
the draft limits for each terminal in a port, which are expressed in terms of the maximum weight
a vessel can safely carry on board.

There are restrictions on the minimum load per vessel and the minimum amount per
product transported by a vessel to avoid underutilization. We assume that all vessels, regardless
of size, travel at a cruise speed of fifteen knots. As a consequence, the sailing times between ports
are solely determined by the distance within them. The speed in each port is also constant and
regulated by the Port Authority. The vessel draft after each load and unload operation depends
highly on its physical dimensions, cargo weighting, hydrostatic curves, and sea conditions.
For the sake of simplicity, we assume that the vessel draft is determined by its current cargo,
following (ARNESEN et al., 2017).

Feasible vessel routes must meet a number of requirements and constraints. All cargo
must be collected before any delivery can occur, without the possibility of transshipment in any
port. A vessel route in the CRSP has a rigid structure P, P, . . . , P,D,D, . . . , D, where a delivery
port (denoted by D) cannot appear before any pickup port (denoted by P ) in the sequence.
Furthermore, as presented in (FAGERHOLT; RONEN, 2013), our problem involves flexible
cargo sizes and split loads. Another critical requirement in a route is the delivery of a product
close to the date specified by each mixing plant in order to fulfill its production schedule. As a
result, time windows are imposed for cargo loading and unloading at each port in order to comply
with negotiated delivery dates of final products to clients by the commercial department. When
designing a route, the following times should be considered: loading/unloading time for each
cargo, compartment washing time after delivering a cargo, waiting time for the product to be
released for land transport in accordance with customs legislation, and waiting time for a vessel
to dock at a terminal. The load/unload times at each port are dependent on the amount and type
of cargo handled and the capacity and speeds of available equipment (ship-loaders and conveyor
belts). As a consequence, the same quantities of raw materials present a reasonable variability
of load/unload times in different ports, the fertilizer companies define average values, based
on historical data, for each port, regardless of the quantities moved. Since it is a pre-contract
planning of the real transportation, we used these values for simplification, reducing the number
of required parameters to run the model.

Our problem consists of defining: (i) each vessel’s route and schedule; and (ii) which
product, and the respective amount, is to load/unload into which vessel at which port. The
overall plan should simultaneously minimize three objectives. The first objective is related to the
completion time of the last delivery by a vessel in the planning horizon, known as makespan.
As deep-sea transportation is prone to various disruptions caused by weather conditions and
port problems, the main objective of minimizing makespan in the CRSP is to better integrate
the supply of raw materials and the production master plan in the mixing units. Furthermore,
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by reducing the variability of deliveries of the same raw material by different vessels, possible
delays can be reduced to all demands involved in the planning. The second objective refers
to the total costs faced by the deep-sea operations. Although costs and makespan are rarely
considered as separated objectives in the general MO-VRP literature (JOZEFOWIEZ et al.,
2008), since they are some way related (minimizing the makespan also reduces the freight costs),
this is not the case in the specific context of the maritime CRSP. The minimization of costs
often implies in vessels visiting more ports, frequently increasing the makespan of a plan. The
reduction in costs can significantly increase the makespan in the CRSP for some instances, as
demonstrated in our experiments. They are considered independent in the preference by all
contacted managers/schedulers. They always prefer minimum cost, independent on the value
of the makespan, and vice-versa. In summary, managers of the fertilizer companies approach
costs and makespan as a classic trade-off in the real world, justifying their choice in the multi-
objective formulation of the CRSP. To minimize the delay of some deliveries is the third objective.
This objective has become highly relevant since Brazilian fertilizer companies are focusing on
producing premium products rather than commodities to increase profit from operations. These
products are customized according to the specific customers’ needs. Possible delays in the
delivery of final products can have a very negative effect on the long-term relationship with these
customers. Nowadays, to minimize delay is a very important strategic objective, strictly linked
to the sustainability of the fertilizer companies.

The MO-m-CRSPTW-DL-SL is modeled using the network and formulation by (SAN-
TOS et al., 2020) as a starting point, but considering modifications to account for multi-objective,
delays in deliveries, and multi-vessel utilization with overlapping docking times. Table 4.4
presents the mathematical notation following (SANTOS et al., 2020). Sets and parameters are
expressed as upper case letters, while variables and indexes use lower case letters.

The problem is defined on a directed graph G = (N,A), where set N = NV ∪{s}∪{f}
is the set of nodes and A = {(i, j)|(i ∈ NP , j ∈ NV ) ∧ (i ∈ ND, j ∈ ND) ∧ (i ∈ {s}, j ∈
NP ) ∧ (i ∈ ND, j ∈ {f})} is the set of arcs, where NV is the set of pickup and delivery ports,
NP is the set of pickup ports, and ND is the set of delivery ports. Dummy nodes s and f represent
artificial start and end depots, respectively. All out-going arcs from s and in-going arcs to f are
travelled without costs and with null time, since laycan and ballast voyages are unconsidered.
There are no arcs in graph G, connecting delivery to pickup ports. Each elementary path in the
graph from s to f , in which the constraints related to TWs, draft, and capacity are respected,
corresponds to a feasible vessel route. Fig. 4 illustrates feasible routes of two vessels associated
with 3 pickup and 2 delivery ports. In the MO-m-CRSPTW-DL-SL,

• pickup ports i ∈ NP has a supply (Qip) of product p, and a demand (-Qip) in the delivery
ports i ∈ ND;

• pickups and deliveries are performed by a heterogeneous fleet of charter vessels that differ
on dimensions, capacity, and number of compartments;
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• products cannot be mixed in the vessels’ compartments, but feasible bulkheads can be
used to divide the nominal cargo compartments;

• vessel v must transport cargo within the interval [RV
v ,

∑
c∈C(v) Y

V cv];

• the number of vessels being simultaneously loading/unloading cargo in port j is limited by
parameter UN

j . If UN
j is set to zero, only a vessel can be served anytime in port j;

• although transshipment is strictly forbidden, partial loading/unloading of a vessel compart-
ment by the same product is allowed;

• products can be loaded in pickup ports j ∈ NP in the TW interval [ST
j , F

T
j ], and unloaded

in delivery ports j ∈ ND in the interval [AT
j , L

T
j ];

• products p ∈ P are expected to be delivered in port j ∈ ND in time DT
jp.

Based on the network and notation presented, the MO-m-CRSPTW-DL-SL can be
formulated as a MILP, as follows:

minZ1 = α (50)

minZ2 =
∑
v∈V

CV
v

 ∑
i∈ND

tAifv +
∑

j∈NP

tAsjv

+
∑
i∈N

∑
j∈NV

∑
v∈V

PC
j xijv

+
∑
i∈NV

∑
j∈ND

∑
p∈P

∑
v∈V

HC tEijpv +
∑
i∈N

∑
j∈NV

∑
v∈V

WC
v ET

j xijv

(51)

minZ3 =
∑
i∈NV

∑
j∈N ′

∑
p∈P ′

∑
v∈V

tLijpv (52)
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Sets
NV set of pickup and delivery ports
NP set of pickup ports
ND set of delivery ports
N set of all ports, including the dummy start (s) and finish (f ) ports
P set of products
V set of vessels
C(v) set of compartments of vessel v
Parameters
Qip stock level of product p in port i
DT

jp expected date of arrival of product p in port j
AT

j earliest starting time for the delivery of products in port j
LT
j latest starting time in days for the delivery of products in port j

OT
j loading and unloading time in port j

ET
j estimated queuing and clearance times in port j

ST
j estimated earliest starting time for the pickup of a cargo in port j

F T
j estimated latest starting time for the pickup of a cargo in port j

LT
ij sailing time of vessel v between ports i and j

PN
j draft limit in ton of port j

BN
j maximum number of berths in port j ∈ ND

UN
j maximum number of vessels being simultaneously served in of port j

KP
v minimum amount of product p to be loaded in vessel v

RV
v minimum amount of cargo in compartments of vessel v

WC
v demurrage cost of vessel v

PC
j cost of using port j facilities

CV
v freight price of vessel v

HC daily cost for disrespecting the time window of a pickup/delivery
Y V
cv nominal capacity of compartment c of vessel v

Decision variables
lijpcv amount of product p transported using arc (i, j) by vessel v at compartment c
tAijv arrival time of vessel v using arc (i, j)

tDijv departure time of vessel v using arc (i, j)

tEijpv early arrival or delay of vessel v carrying product p using arc (i, j)

tLijpv arrival delay of vessel v at port j carrying product p using arc (i, j)

xijv binary variable that indicates if arc (i, j) is used by vessel v
yijpv binary variable that indicates if arc (i, j) is used by vessel v

to transport product p
yDijpv binary variable that indicates if product p is unloaded off vessel v

in port j, using arc (i, j)
zvwj binary variable that indicates if vessel v starts to be served in port j

while vessel w has already been served in the same port

The objective function Z1 minimizes the scheduling makespan (α), computed by cons-
traints (53). Objective function Z2 minimizes the total transportation costs. Objective function
Z3 minimizes the delay of the delivery of a set of products P ′ ⊆ P for a set of ports N ′ ⊆ ND

connected to special clients.
Subject to:

α ≥ tAifv ∀i ∈ ND, ∀v ∈ V (53)
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Figura 4 – Illustration of two vessel routes

Supply-demand constraints

Qip −
∑

j∈NV

∑
v∈V

∑
c∈C(v)

lijpcv +
∑

h∈NV

∑
v∈V

∑
c∈C(v)

lhipcv ≥ 0 ∀i ∈ NV , ∀p ∈ P (54)

Constraints (115) ensure that the supply and demand of each product are respected in the
pickup and delivery ports.

Ship load constraints

Qip −
∑

j∈NV

lijpcv +
∑

h∈NV

lhipcv ≥ 0 ∀i ∈ NV ,∀p ∈ P,∀v ∈ V,∀c ∈ C(v) (55)

∑
h∈NP

lhipcv −
∑

j∈NV

lijpcv ≥ 0 ∀i ∈ NP ,∀p ∈ P,∀v ∈ V,∀c ∈ C(v) (56)

∑
i∈NP∪{s}

lijpcv −
∑

k∈NV

ljkpcv ≤ 0 ∀j ∈ NP , ∀p ∈ P,∀v ∈ V,∀c ∈ C(v) (57)

∑
i∈NP

∑
j∈ND

∑
p∈P

∑
c∈C(v)

lijpcv ≤
∑

c∈C(v)

Y V
cv ∀v ∈ V (58)

∑
i∈NP

∑
j∈ND

∑
p∈P

∑
c∈C(v)

lijpcv ≥
∑

j∈NV

RV
v xsjv ∀v ∈ V (59)

∑
c∈C(v)

lijpcv ≥ KP
v yijpv ∀i ∈ NP , ∀j ∈ NV , ∀p ∈ P, ∀v ∈ V (60)

lijpcv ≤ Y V
cv yijpv ∀i, j ∈ NV ,∀p ∈ P,∀v ∈ V,∀c ∈ C(v) (61)∑

i∈NP

∑
j∈NV

∑
p∈P

yijpv ≤ |C(v)| ∀v ∈ V (62)

Constraints (116) assure that only stocked products in a pickup port can be loaded in a
vessel. Constraints (117) satisfy the demand of any product at each delivery port. Constraints
(118) prohibit that a vessel discharge cargo in a pickup port. Constraints (119) respect the
vessel capacity. Constraints (59) avoid the under utilization of vessels. Constraints (60) limit the
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minimum amount of a product being transported by a vessel. Constraints (120) guarantee that
the capacity of each compartment of a vessel is respected. Constraints (121) limit the number of
products transported by a vessel to the number of its compartments.

Flow constraints∑
j∈N

xijv ≤ 1 ∀i ∈ N, ∀v ∈ V (63)

∑
i∈N

xijv ≤ 1 ∀j ∈ N, ∀v ∈ V (64)∑
j∈N

xijv −
∑
h∈N

xhiv = 0 ∀i ∈ N, ∀v ∈ V (65)

∑
i∈NP

∑
j∈ND

xijv ≤ 1 ∀v ∈ V (66)

xijv = 0 ∀i ∈ ND, ∀j ∈ NP , ∀v ∈ V (67)

xfsv = 0 ∀v ∈ V (68)

xfjv = 0 ∀j ∈ NV , ∀v ∈ V (69)

xisv = 0 ∀j ∈ NV , ∀v ∈ V (70)∑
p∈P

lijpcv − Y V
cvxijv ≤ 0 ∀i, j ∈ N, ∀v ∈ V,∀c ∈ C(v) (71)

Constraints (133) and (134) impose that a vessel cannot re-use any arc in the network.
Constraints (135) are conservative flow constraints. Constraints (136) and (137) guarantee that
no delivery can occur before all collects have been carries out. Constraints (138), (139) and (140)
delimit that nodes s and f are super source and super sink nodes, respectively. Constraints (141)
guarantee that a cargo can only be transported by an effectively used vessel and respecting the
capacity of each vessel compartment, logically connecting continuous flow and binary variables
concerning the vessel utilization.
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Time Constraints

tAijv ≥ ST
j xijv ∀i ∈ N, ∀j ∈ NP ,

∀v ∈ V (72)

tDijv ≤ FT
j xijv ∀i ∈ N, ∀j ∈ NP ,

∀v ∈ V (73)

tDijv ≥ tAijv + ET
j +OT

j +M(xijv − 1) ∀i ∈ N,

∀j ∈ NV , ∀v ∈ V (74)

tAijv ≥ tDhiv + LT
ij +M(xijv − 1) ∀h ∈ N,

∀i ∈ NV , ∀j ∈ NV , ∀v ∈ V (75)

tEijpv ≥| DT
jp − ET

j − tDijv | +M(yDijpv − 1) ∀i ∈ NV ,

∀j ∈ ND, ∀p ∈ P, ∀v ∈ V (76)

tAifv ≥ tDhiv +M(xifv − 1) ∀i, h ∈ NV ,

∀v ∈ V (77)

tAsiv ≤ tAijv − ST
j −OT

i − ET
i −M(xijv − 1) ∀i, j ∈ NV ,

∀p ∈ P, ∀v ∈ V (78)

tAijv + ET
j −M(xijv − 1) +Mzvwj ≥ tDkjw +M(xkjw − 1) ∀i, k ∈ N,

∀j ∈ NV , ∀v, w ∈ V, v ̸= w (79)

tDijv ≤ DT
jp + LT

j − ET
j +M(−yDijpv + 1) ∀i ∈ NV ,

∀j ∈ ND, ∀p ∈ P, ∀v ∈ V (80)

tDijv ≥ DT
jp −AT

j − ET
j −M(yDijpv − 1) ∀i ∈ NV ,

∀j ∈ ND, ∀p ∈ P, ∀v ∈ V (81)

tLijpv ≥ tAijv + ET
j −DT

jp +M(yDijpv − 1) ∀i ∈ NV , ∀j ∈ N
′

∀p ∈ P
′
, ∀v ∈ V (82)

where M represents a very large number.
Constraints (144) and (145) link the TW to the arrival and departure times of each vessel

in/from each port, respectively. Constraints (146) specify when each vessel departs from a port.
Constraints (147) determine the arrival time of each vessel from port i in port j. Constraints
(148) account for a vessel’s early arrival or late departure in each port. The starting and ending
route times of each vessel are defined by constraints (149) and (150). The arrival time of each
vessel in a port is determined by constraints 151. The departure time of each vessel from a port
is determined by constraints (152) and (153). Constraints (154) are used to compute the delivery
delay of product p in port j of vessel v using arc (i, j).
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Port related constraints∑
v∈V

∑
w∈V |w ̸=v

zvwj ≤ BN
j ∀j ∈ NV (83)

∑
v∈V

∑
w∈V |w ̸=v

zvwj ≤ UN
j ∀j ∈ NV (84)

∑
j∈N

∑
p∈P

∑
c∈C(v)

lijpcv ≤ PN
i ∀i ∈ NV , ∀v ∈ V (85)

∑
i∈N

∑
p∈P

∑
c∈C(v)

lijpcv ≤ PN
j ∀j ∈ NV , ∀v ∈ V (86)

Constraints (125) guarantee that the berth capacity of port j is respected. Constraints
(126) restrain the number of vessels being simultaneously served in port j to parameter UN

j .
Constraints (127) and (128) assure that the port draft is respected when both entering or leaving
a port, respectively.

Routing Constraints

yijpv − xijv ≤ 0 ∀i, j ∈ N, ∀p ∈ P, ∀v ∈ V (87)

tDijv −Mxijv ≤ 0 ∀i, j ∈ N, ∀v ∈ V (88)

tAijv −Mxijv ≤ 0 ∀i, j ∈ N, ∀v ∈ V (89)

yijpv −DT
jpy

D
ijpv ≤ 0 ∀i ∈ NV , ∀j ∈ ND, ∀p ∈ P, ∀v ∈ V (90)

Constraints (129) state that each vessel can only transport a product using arc (i, j) if: (i)
the vessel follows the path of arc (i, j), and (ii) the vessel is transporting the product in one of its
compartments. Constraints (130) and (131) assure that arrival/departure times and vessel routes
are compatible. Finally, constraints (132) ensure that a product is only unloaded from a vessel in
a port if the product is being transported by the vessel on its route.

Domain of the variables

tDijv, t
A
ijv, lijpcv, t

E
ijpv ≥ 0 ∀i, j ∈ N, ∀p ∈ P,∀v ∈ V,∀c ∈ C(v) (91)

xijv, yijpv, y
D
ijpv ∈ {0, 1} ∀i, j ∈ N, ∀p ∈ P, ∀v ∈ V (92)

zvwj ∈ {0, 1} ∀v, wv ̸=w ∈ V, ∀j ∈ NV (93)

As a VRP variant, the MO-m-CRSPTW-DL-SL is also a NP-hard problem. As a plan-
ning problem, our goal is to find non-dominant solutions, with acceptable values for the three
objectives, for model (114) – (158). Further, the decision making process should be capable of
interacting with planners, since the importance of each objective is highly context dependent.
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3.3 SOLUTION METHOD

The general multi-objective model can be formulated, as follows:

maxZ1, Z2, . . . , Zk (94)

minZk+1, Zk+2, . . . , Zl (95)

st

x ∈ X (96)

where Z1, Z2, . . . , Zk are the positive objectives for maximization, Zk+1, Zk+2, . . . , Zl are the
negative objectives for minimization, and X is the set of feasible solutions.

The main objective in MOO is to choose non-dominant solutions, based on different
levels of trade-off among the different objectives, from the Pareto front. In the planning of dry
bulk cargoes, the main objective is to support the logistics team in finding the most preferred
Pareto optimal solution according to the company’s preferences and needs. The underlying
assumption is that a good solution to the problem must be identified as implementable in practice
and in accordance with each planning context. For instance, if some special order of a customer is
involved, the level of service becomes more important. Otherwise, the cost is the most important
objective. The human DMs play an important role in the planning process.

Scalar techniques and Pareto methods are very popular in handling the MO-VRP (JO-
ZEFOWIEZ et al., 2008). The former is a set of a priori methods, in which decisions are made
(based on DM) before searching a solution, while the latter is a posteriori method, in which
a search is performed before making decisions by the DM. Both methods have well known
strengths and weaknesses (EHRGOTT, 2008). Although Pareto methods, especially evolutionary
algorithms, are becoming very popular to solve MOO (ZITZLER et al., 2000), they are not well
suited to our specific problem, since they generate excessive “unnecessary” solutions, making
the decision process for the planners a little bit confusing. Scalar methods can find solutions of
interest to DMs. A scalar technique is more suited to solve the real MO-m-CRSPTW-DL-SL.
There are several ways of converting the MOO to a single-objective program described in the
literature (EHRGOTT, 2008), being the weighted sum the simplest and most used. However,
literature in MOO addresses several drawbacks of this method in depicting the Pareto optimal
set, and the proper scaling or normalization of the objectives (DAS; DENNIS, 1997; MARLER;
ARORA, 2010). Based on these deficiencies, we choose another scalar technique, the fuzzy
weighted max-min method, as introduced by Lin (2004). The key advantage of the weighted
max-min method is that it can provide almost all the Pareto optimal points, even for a nonconvex
Pareto front. It is relatively well suited for generating, with variation in the weights, a Pareto
front. However, this method requires the minimization of individual single-objective optimization
problems to determine the utopia point, which can be computationally expensive (CHANG,
2014), particularly for mixed integer multi-objective problems. Considering this drawback,
special algorithms were customized/developed to overcome this difficulty.
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In several real problems, a fuzzy perspective is assumed by the DMs. Membership
functions µZj

(x) are defined for each objective, and the solution achieves all objectives given a
certain tolerance limit under the constraints. The problem consists of finding a solution for the
reformulated formulation (AMID et al., 2011):

Z̃i ≥∼ Zo
i i = 1, . . . , k (97)

Z̃j ≤∼ Zo
j j = k + 1, . . . , l (98)

st

gs(x) =
n∑

i=1

asixi ≤ bs ∀s (99)

xi ≥ 0 ∀i (100)

where Zo
k and Zo

l are the levels that the decision maker wants to reach, asi and bs are crisp values,
and symbol ∼ indicates the fuzzy environment.

To solve this problem, Lin (2004) expanded the max-min operator approach (ZIMMER-
MANN, 1978), by proposing a weighted max-min model, in which the decision-maker provides
relative weights (θk, k = 1, 2, . . . , l) for the l fuzzy objectives with corresponding membership
functions. This model finds an optimal feasible solution such that the ratio of the levels achieved
is as close to the ratio of the weights as possible. This model can be stated as follows (AMID et
al., 2011):

maxλ (101)

st

θkλ ≤ fµZk
(x) k = 1, 2, . . . , l (102)

l∑
k=1

θk = 1 (103)

θk ≥ 0 k = 1, 2, . . . , l (104)

gs(x) ≤ bs ∀s (105)

xi ≥ 0 i = 1, 2, . . . ,m (106)

where the fuzzy membership function for maximization objectives (µZk
(x)) and for minimization

ones (µZl
(x)) are as follows, respectively:

µZl
(x) =


1, Zl ≤ Z−

l

0, Zl ≥ Z+
l

fµZl
=

Zl(x)−Z−
l

Z+
l −Z−

l

, Z−
l ≤ Zl(x) ≤ Z+

l

(107)
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µZk
(x) =


0, Zk ≤ Z−

k

1, Zk ≥ Z+
k

fµZk
=

Z+
k −Zk(x)

Z+
k −Z−

k

, Z−
k ≤ Zk(x) ≤ Z+

k

(108)

where Z+
k and Z−

l are the optimal single objective functions (individual maximum and minimum
solutions) of positive objective Zk and negative objective Zl, respectively, and Z−

k and Z+
l are the

minimum and maximum values (worst solutions) of objectives Zk and Zl, respectively (AMID
et al., 2011).

Algorithm 5 presents the customized version of the algorithm by Amid et al. (2011) to
solve the fuzzy weighted max-min model for the MO-m-CRSPTW-DL-SL. The single-objective
formulations to find the best solution and nadir points for each objective can be solved using
the very efficient matheuristic by Santos et al. (2020). The algorithm solves several complex
MILP formulations, mainly in Step 6. Model (101) – (104), (53) – (158) is a very difficult
MILP to solve. Unfortunately, this model is solved several times, considering several weight
combinations during a real decision making process. Using the traditional branch and bound
algorithm implemented in powerful MILP solvers when applied to the maritime CRSP leads
to low quality solutions and requires excessive computational time for instances with more
than 6 products and 9 ports, that is incompatible with the solution of real-world problems as
demonstrated in Santos et al. (2020). Another possibility, considering the limited number of
ports, is to use a path flow based solution method, such as column generation or a previous
enumeration of all possible feasible routes. However, both methods have difficult problems to
overcome in practice. On one hand, the use of column generation involves the solution of a very
complex NP-hard resource constrained shortest path as the dual problem (FEILLET et al., 2004),
considering the number of the different constraints of the CRSP. On the other hand, to elicit
several feasible routes for the path model requires the development of an effective and efficient
algorithm, considering simultaneously the voyage sequences, use of the compartments, and the
hard constraints. These issues and the tight due deadline to solve real cases have motivated the
development of the two algorithms described next.

3.3.1 CPLEX-based algorithm

The developed algorithm has a major objective to improve and accelerate solutions obtai-
ned by the well-known CPLEX solver. Using the traditional branch-and-bound was inefficient in
dealing with the weighted max-min model for real case instances during initial experimentation.
The branch-and-bound got stuck in a node of the search tree, avoiding finding Pareto front soluti-
ons. Instead of developing a heuristic method, we used the contemporary validated resources
offered by CPLEX to improve the solution search process.

The algorithm uses several inherent capabilities of the well-known IBM ILOG CPLEX
12.9, such as non-traditional tree-of-trees search, multiple default heuristics, solution improve-
ment, symmetry detection, and cutting planes. Further, we used the same cutting planes routines
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Algorithm 5: Fuzzy MOO solution method for the MO-m-CRSPTW-DL-SL,
based on Amid et al. (2011)

1. Define model (114) – (158) as the MOLP to be solved.

2. Solve the MOLP as a single objective problem for each objective i, i = 1, . . . , k, using the
matheuristic developed by Santos et al. (2020). As this is the best value for each objective,
set Z+

i as the upper bound of the i-th objective.

3. Solve the MOLP as a single objective, changing the optimization direction of each objective
j = k + 1, . . . , l, using the matheuristic developed by Santos et al. (2020). As this is the
nadir point for each objective, set Z−

j as the lower bound of the j-th objective.

4. For each objective i = 1, . . . , k find the membership function by using (108).

5. For each objective j = k, . . . , l find the membership function by using (107).

6. For each weight combination (θ1, θ2, . . . , θl) do:

6.1. Formulate the problem as a multi-objective weighted max-min model (101) – (104),
(53) – (158).

6.2. Solve the model of Step 6.1, using Algorithms 6 or 7, so as to find a non-dominant
solution for the weight combination in analysis.

as in Santos et al. (2020), given the success of branch-and-cut algorithms when applied to the
VRP and its variants (BRAEKERS et al., 2016). We call P-CPLEX the solver with implemented
cutting planes routines by CPLEX. It should be noted that several powerful commercial MILP
solvers have analogous routines to perform the same cutting planes.

Algorithm 6 outlines the developed algorithm. In the first step, the main objective is to
obtain a good feasible integer solution to the problem, by applying P-CPLEX. Step 2 entails
polishing the solution obtained in Step 1 using the algorithm proposed by Rothberg (2007),
an evolutionary approach in which crossover and mutation operations are built within a MILP
branch-and-bound. The solutions of the evolutionary approach are incorporated into the MILP
search tree, and the solutions obtained by the MILP solver are utilized in the evolutionary
algorithms, indicating a beneficial integration of information during the search solution process.
In Step 3, the repairing algorithm developed by Fischetti e Lodi (2008) is employed, a hybrid
algorithm that employs the feasibility pump approach to solve local branching at the beginning.
The current MILP that is being solved is extended with artificial variables. This augmented
model is then solved iteratively to reduce the number of infeasible solutions equaling by zero
the values of the artificial variables. The goal is not to repair solutions only, but also infeasible
MILP models. Although these two routines are time consuming and therefore should be used
with parsimony, they effectively enhance the solution quality.

Step 2 of Algorithm 6 is implemented using the CPLEX parameter PolishAfterIntSol,
while Step 3 is implemented using Repair.Tries. Time parameters t1 and t2 depend on the
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Algorithm 6: CPLEX based algorithm (PC++)
1. Solve the current MILP model, using P-CPLEX until time limit ts1. Create set SP with all

feasible solutions found by the solver.

2. Solve the MILP using the polish routine by Rothberg (2007) with SP as initial solutions
within time limit t2. Set SP as the solution pool.

3. If |SP | ≥ 2 then solve the MILP using the repair algorithm by Fischetti e Lodi (2008) with
initial solutions in SP within time limit t2. Keep SP as the solution pool.

4. Return the best feasible solution in SP . If no feasible solution is obtained, the problem
cannot be solved considering parameters ts1 and ts2.

problem dimensions in terms of the number of products and ports.

3.3.2 Matheurisitc

A second algorithm was developed to solve the weighted max-min model of Step 6 in
Algorithm 5 as a possible alternative to generate the Pareto front. The developed algorithm is a
slightly modified version of the matheuristic presented in Santos et al. (2020). The algorithm
has two interconnected phases. The first phase is inspired by a fix-and-relax solution strategy,
and called relax-and-define step. In our algorithm, each set of integer variables are reduced into
non-divisible blocks. Each block is defined by a strategy set vector (SB), which is a permutation
of the set of integer variables. Only the variables in the first block are treated as integers in the
first iteration, while the others are relaxed in the model. Due to the difficulty in finding a feasible
solution to the current MILP, the repairing algorithm proposed by Fischetti e Lodi (2008) is used.
For the entire horizon planning, the current sub-model is solved within the time limit ts. The
following variables in vector SB are defined as integers (but not fixed) and incorporated into the
current sub-model at the next iteration of the algorithm, satisfying the position of the variable in
vector SB. The solutions obtained in previous iterations are used as the starting point for the
current sub-model. In the previous iteration, all variables are treated as integer in the current
sub-model. The sub-model is solved to find the best solution. The number of iterations equals the
cardinality of the set of integer variables. It should be noticed that the values of integer variables
are not fixed in the interactions, and are instead included in a MILP solution pool.

After the first phase is finalized, an improvement phase is applied in the best solution
obtained so far. The improvement phase uses Steps 2–4 of Algorithm 6, but with a time limit of
ts, following the limit used in each iteration step of the previous phase. Algorithm 7 outlines the
developed routine.
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Algorithm 7: Matheuristic algorithm

1. Relax and define. Let SP be a solution pool and IV the current set of integer variables. Set
SP ← ∅ and IVs ← ∅. For each s = 1, ..., |SB| do

1.1. Define a variable in position s in vector SB as an integer. Insert the variable in set
IV .

1.2. Consider the weighted max-min model (101) – (104), (53) – (132) with only the
variables in set IV constrained as an integer. Relax the remaining integer variables.

1.3. Solve the MILP model in Step 1.2 using the repair algorithm by Fischetti e Lodi
(2008) with initial solutions in SP within time limit ts. Insert all feasible solutions
in solution pool SP .

2. Improvement. Apply Steps 2 and 3 of Algorithm 6 within a time limit ts for each step.
Return the best feasible solution.

3.4 COMPUTATIONAL EXPERIMENTS

There are some measures that compare the performance of a designed algorithm with
the true Pareto front. They are based on the distance between the obtained Pareto front by the
algorithm and the true Pareto front. Unfortunately, these metrics can be applied only to test suite
functions (VELDHUIZEN; LAMONT, 1998). These functions present special mathematical
properties that allow the computational generation of the true Pareto front. Veldhuizen e Lamont
(1998) presents several examples of these functions. Unfortunately, the true Pareto front of the
MO-CRSP is unknown, and therefore there is no way of defining how far the Pareto solutions
obtained by the developed algorithms from the true Pareto front. For this situation, we can only
evaluate the performance of the two developed algorithms, comparing their performance using
well-known convergence and diversity measures defined in Zitzler et al. (2000).

The objective of the computational experiments is to compare the effectiveness of the
different developed algorithms to obtain the Pareto front. The algorithms were tested using
sixteen real planning cases provided by a fertilizer company. The tested instances present
different dimensions, in terms of the number of products to be transported, and pickup and
delivery ports. The time windows of the deliveries and pickups were also included in the instance
definition. Further, the company has made available vessel’s options to transport the goods,
based on its chartering database. The transportation costs were computed following the logistics
department of the company. All computations were performed on an AMD Ryzen 5 2600 six-core
computer, with 3.4 GHz and 16 GB RAM. Based on analysis and experimentation, big-M values
were constrained to 1,000, strengthening the formulation. The trade-off frontiers were compared
using the following performance metrics:

Set Coverage Metric (C-metric): Introduced by Zitzler et al. (2000), it is a very common
metric to compare two sets of non-dominated solutions (denoted as X and Y ). The function C

maps the ordered pair (X, Y ) to the interval [0,1], as follows:
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C(X, Y ) :=
|{y ∈ Y ;∃x ∈ X : x ⪰ y}|

|Y |
The value C(X, Y ) = 1 means that all solutions in Y are dominated by or equal to

solutions in X . If C(X, Y ) = 0, none of the solutions in Y are covered by the set X . Both
C(X, Y ) and C(Y,X) have to be considered since solutions in X and Y might not Pareto
dominate each other.

Hypervolume (HV): It measures the size of the objective space covered by an approxi-
mation set (ZITZLER; THIELE, 1999), using a reference point to calculate the covered space.
The reference point, in general, is defined from the given set having the values of its coordinates
higher than the largest ones seen in the set. If an approximation set dominates another set, the
HV of the former will be greater than the HV of the latter. This measure is widely accepted since
it simultaneously considers accuracy, diversity, and cardinality.

Table 8 presents the values of the performance metrics found by PC++ and Mat to sixteen
real-life instances. Each instance is defined in terms of the number of used origin ports (OP)-
delivery ports (DP)-products to be transported (P). OP refers to the historical records of product
offerings in the ports actually used by the plan. The companies did not have records of the offers
of unused ports, reducing the complexity of the route planning. In the table, we compare the C-
metric and HV measures for each method using 21 solutions generated by different combinations
of θ1 θ2, and θ3, varying between 0 and 1 by 0.05. We also present the CPU time per weight
combination required for each instance in seconds (CPU), following the experiments carried out
in Santos et al. (2020). Both algorithms were run with the same total CPU time for all instances.
For PC++, t1 = 2t2, while for the matheuristic, ts =CPU/6. Also, vector SB = [xijv, yijpv, y

D
ijpv]

was used to solve the matheuristic.

Tabela 8 – Values of the performance metrics found by PC++ and Mat

C-metric HV

Instance OP-DP-P C-metric(PC++,Mat) C-metric(Mat,PC++) PC++ Mat CPU

1 2-4-7 0.4286 0.524 2.500 2.4621 300
2 2-5-5 0.5238 0.4762 0.3974 0.3974 300
3 2-5-6 0.5238 0.5238 0.8532 0.7709 300
4 3-3-8 0.5714 0.2857 1.1980 1.1958 300
5 3-5-6 0.6190 0.5238 1.9790 1.9225 300
6 3-5-7 0.2857 0.3333 2.3583 2.3857 300
7 4-5-6 0.1905 0.3810 4.2101 4.6261 900
8 5-7-6 0.3333 0.1905 3.0501 2.8091 900
9 4-4-6 0.1429 0.1905 4.9758 4.4073 900
10 3-6-8 0.3333 0.4762 3.8189 2.8545 900
11 5-5-7 0.5714 0.5238 2.3504 1.5543 900
12 5-5-8 0.2857 0.1905 4.5490 4.6044 900
13 5-5-7 0.2857 0.0952 2.7310 2.7030 1800
14 5-7-5 0.1905 0.0952 3.7730 2.8060 1800
15 5-5-7 0.2381 0.2381 5.3109 5.3422 1800
16 5-7-5 0.1905 0.1905 4.3121 4.2367 1800

Average – 0.3571 0.3273 2.9917 2.8173 –
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The results obtained in Table 8 show that the algorithms present a similar behavior
regarding the two performance metrics. It seems both algorithms obtained similar Pareto fronts.
Regarding C-metric, the algorithms tied in terms of the number of instances in which one
exceeded (with a higher value of C) the other. For two instances, they presented the same values
of C. Algorithm PC++ obtained better or equal HV values for ten instances, evidencing a slightly
general better coverage of the solutions in the Pareto front than algorithm Mat. A justification
for the behavior of both algorithms is the highly constrained nature of the problem, leading to a
few feasible solutions. But, it is possible to note that PC++ presented, in general, slightly better
values of both metrics for larger instances, with over five origin and destinations ports.

Figure 5 illustrates the convergence and diversity of the projected solutions obtained
by PC++ (denoted as ◦) and Mat (denoted as ×) for Instance 7, a medium-sized one, at Z1 −
Z2, Z1 − Z3, and Z2 − Z3 planes, considering 21 weight combinations. Given the number of
constraints and the integrality of some variables, the number of different solutions was small.
The same solution was shared by different weight combinations. Both methods could not find
non-dominated solutions for all weight combinations, given both the complexity of the MILP
and the CPU time used to solve the instances. The methods obtained very similar distribution
and diversity of solutions, ratifying the results in Table 8. In summary, both algorithms are
very competitive towards finding solution for Step 6 of Algorithm 5. However, considering the
somewhat superior performance of the PC++ algorithm for the largest instances, we adopted this
algorithm as the solution method to be used in the additional experiments of this study.

3.5 REAL APPLICATION

We consider the short-term planning of the cargo routing and scheduling problem from a
large fertilizer company, involving the deep-sea transportation of up to 12 fertilizers stored in
warehouses in North Africa and Europe to a maximum of 24 mixing units closely located to
Brazilian destination ports. The plan is carried out by the logistics department. The company
applies EXCEL to define the plan, using data from its enterprise resource planning (ERP). Due
to the complexity of the plan, the process starts 90 days before its actual implementation. The
units are responsible for estimating the monthly consumption of each raw material. Based on this
information and the experience of the logistics department, the plan is elaborated and provided in
the company’s ERP for the raw material acquisition process and vessel chartering by the central
administration located outside Brazil. This case study was dealt with in Santos et al. (2020),
but considering a single-objective approach, the minimization of costs. However, during this
research project, we realise this is only one of the several objectives used to elaborate a plan by
the logistics department, motivating the development of this MOO.

In the real case study, some additional operational requirements arise to the more generic
model introduced earlier. These requirements are specific to the analyzed company. They are
described and formulated as follows. Due to coordination issues, up to 6 origin ports can be
visited per plan, while the mix plants in Brazil can use up to 13 delivery ports per plan to receive
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Figura 5 – Solutions obtained by PC++ (denoted as ◦) and the matheuristic (denoted as×) on the
selected instance 7 for (a) Z1 − Z2, (b) Z1 − Z3, and (c) Z2 − Z3 planes, respectively

their demanded raw materials. Although some destinations’ ports may have several berths, only
one berth can be used by the chartered vessels at any time, avoiding competition in using the
port’s resources by vessels serving the same route plan. To avoid a low usage of the vessels,
there are restrictions on the minimum load of 20 kt per vessel, and the value of 4 kt per product
transported by a vessel.

Further, feasible routes should comply with additional requisites and constraints. A
vessel should visit, at most, two pickup ports and three delivery ports. Due to the large amounts
transported by the company per year, the chartering is often negotiated with only two or three
shipowners. These shipowners offer considerable discounts in the freight rates to secure the client.
However, the COA with these shipowners includes an additional cost if there is a change in the
geographical orientation in the delivery sequence of a vessel route. By adopting an orientation in
the contract (in general, north to south), the company must pay a high fee each time the next port
in a route sequence is located further north to the previous port. The fee is computed based on
the vessel load when departing the latter port.

To model the problem, considering the operational peculiarities of this real case, it is
necessary to define additional parameters as follows. Let W V

v be the maximum number of pickup
visits of vessel v, Y V

v be the maximum number of delivery visits of vessel v, γC
v be the fee for
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geographical orientation change of loaded vessel v, and βV
ij be a binary matrix that indicates a

geographical orientation between ports i, j ∈ ND. Further, binary decision variable avw replaces
variable zvwj , indicating if vessels v and w are simultaneously using the same port. The real case
can be formulated as follows:

(114), (52)

minZ
′

2 = Z2 +
∑
i∈NV

∑
j∈NV

∑
v∈V

βV
ij γ

C
v MV

v xijv

st

(114)− (150), (152)− (154), (127)− (158)

tAijv + ET
j −M(xijv − 1) +Mavw ≥ tDkjw ∀i, k ∈ N, ∀j ∈ NV ,

+M(xkjw − 1) ∀v, w ∈ V, v ̸= w (109)

tAkjw + ET
j −M(xkjw − 1) +M(1− avw) ≥ tDijv ∀i, k ∈ N, ∀j ∈ NV ,

+M(xijv − 1) ∀v, w ∈ V, v ̸= w (110)∑
i∈NP

∑
j∈NP

xijv ≤WV
v − 1 ∀v ∈ V (111)

∑
i∈ND

∑
j∈ND

xijv ≤ Y V
v − 1 ∀v ∈ V (112)

avw ∈ {0, 1} ∀v, w|v ̸= w ∈ V (113)

Objective function Z
′
2 refers to the minimization of total costs, adding the penalty for a

change of orientation of vessel routes, as computed by the company. Constraints (109) and (110)
ensure that two or more vessels cannot be at the same port simultaneously. Constraints (142) and
(143) limit the number of pickup and delivery ports, respectively, that each vessel can visit in its
route. The domain of the additional decision variable is defined by constraints (113).

The model was applied to a medium size instance involving deliveries of 8 raw-materials
to fulfill the demand of mixing units located close to 5 delivery ports in Brazil. Due to the
seasonality of the crops, the demand for a plan can be concentrated in only a few ports. Delivery
port 3 is closely located to a very important customer. The pre-programmed delivery of demanded
products in this port is an important strategic issue for the company, being represented in
objective Z3. The demands and supplies of products and the TWs at the corresponding ports were
informed by the fertilizer company. A list of possible vessels, with information in dimensions,
compartments and drafts, were also kindly provided. We briefly report the decision making
process, using the optimization approach.

Table 9 presents the weight combinations (characterized as runs) and the corresponding
values of the three objective functions. The runs were numbered in the same order as the weight
combinations were interactively defined by the DMs. The optimization approach found non-
dominant solutions for all combinations of weights, proving the robustness of the developed
solution process. The first three runs aimed to find the best solutions of each objective function,
separately. They are assumed as the best individual solutions and used as the minimum values for
each objective. In the next six runs, the DMs wanted to better understand the trade-off magnitude
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between two of the three objectives. The solutions in Runs 1, 4, and 7 show that the trade-off
between costs and makespan is manageable. The introduction of the change of direction cost
seems to reduce the trade-off between costs and makespan, by significantly reducing the number
of possible sequences in a vessel route, mainly ones with excessive makespan and low cost.
However, considering the objective delay increased the complexity of the decision process, since
the trade-offs between costs and delay, and makespan and delay are difficult to compromise (see
Runs 3, 5, 6, 7, 8, and 10). The perception of the trade-off issue among the three objectives was
consolidated with the results of Run 11, in which all objectives have the same weights. If we
carefully analyze the solutions until Run 11, we can raise two important observations: (i) good
solutions for the makespan can be obtained with high weights of objective cost (see Runs 1, 4,
and 7); and (ii) the decrease by one in the objective delay results in a considerable increase in
costs, but without considerable change in the makespan, as demonstrated comparing solutions
of Runs 2–4, and Runs 8–11. So far, the DMs found solutions of Runs 6 and 8 as good ones,
capable of obtaining reasonable costs and acceptable delays in the selected deliveries. The first
one prioritizes delay, while the second prioritizes costs.

Tabela 9 – Results of the case study

Weight Solution

Run θ1 θ2 θ3 Z1 Z
′
2 Z3

1 1 0 0 67 1702760 8
2 0 1 0 66 2301260 10
3 0 0 1 95 2968620 0
4 0.5 0.5 0 66 1882890 9
5 0 0.5 0.5 76 2795860 3
6 0.5 0 0.5 87 2769750 1
7 0.75 0.25 0 67 1702760 8
8 0.75 0 0.25 75 2336380 5
9 0.25 0.75 0 66 2301260 10

10 0.25 0 0.75 98 2838590 0
11 0.33 0.33 0.33 75 2764170 4
12 0.6 0.2 0.2 78 2719640 4
13 0.2 0.2 0.6 85 2944100 1
14 0.4 0.2 0.4 79 2588470 3
15 0.7 0.1 0.2 75 2336380 5
16 0.2 0.1 0.7 85 2944100 1
17 0.6 0.1 0.3 80 2534750 3
18 0.45 0.1 0.45 87 2769750 1

Based on the two previous conclusions, the DMs decided to find solutions considering
all three objectives, but always assigning to objective makespan the smallest weights. Given the
high number of constraints of the problem and the integrality of several variables, some solutions
(see Runs 15, 16 and 18) were equal to previously obtained ones with similar combination of
weights, limiting the range of possible adopted solutions. There was a consensus it could be
counter-productive to consider additional weight combinations. From Runs 12–18, the solution
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of Run 17 stands out. Although similar to the solution of Run 14, Run 17 presents a better
cost values, with the same delay value. The unitary worsening in the makespan was considered
acceptable, given the decrease in the total costs. The solution of Run 17 has joined solutions
from Runs 6 and 8 as the set of preferable solutions by the DMs. The solution of Run 17 offers a
mid-term solution between the best cost solution of Run 8 and the best delay of Run 6, making it
a good solution alternative.

We also compared the optimization approach with the logistics department solving
process. Solutions of Run 6 and Run 17 reduced the total logistics costs, makespan, and delay
by about 34%, 17%, and 90%, and 40%, 13%, and 70%, respectively, in comparison with the
company’s solution. On one hand, the improvement in the cost by the optimization approach
was direct consequence of obtaining routes without any changes in the direction north-south
by loaded vessels, while 75% of the routes presented a change of direction in the company’s
solution. On the other hand, the improvements in makespan and delays were consequence of more
homogeneous vessel’s routes in terms of the number of visited ports. The company’s solving
process is based on obtaining a viable solution in terms of all hard constraints. After a solution is
obtained, an improvement step is applied where minimization of delays comes first, next costs,
and finally makespan. In both stages, the staff faces difficulties in finding/improving the initial
solution due to the complexity of simultaneously dealing with the operations requirement and
the trade-off of the objectives. In general, the plans generated by the company disrespect soft
constraints, such as the change of direction, in order to both respect the hard constraints, and to
obtain reasonable values for the objectives. Due to confidentiality issues, solutions cannot be
detailed in this paper.

A sensitivity analysis is performed on the best indicated solutions – Runs 6, 8, and 17,
by decreasing the cost of inverting the direction of a loaded vessel during its route. Santos
et al. (2020) experimentally determined this is a very influential term in defining different
cost solutions. The majority of the remaining cost parameters are fixed by port and regulatory
authorities. The DMs believe that a discount can be obtained in the applied penalty through a
negotiation process with the more frequently used charter companies. Table 10 presents the new
solutions, considering discounts of 10%, 15%, and 20% in the current value.

As we can note from Table 10, the total costs have decreased for all discounts considered,
showing the relevance of this cost term. For a 10% discount, Runs 6, 8, and 17 reduced, on
average, the total cost by 2.73%, 3.54%, and 8.38%, respectively. In terms of makespan, Runs
6 and 8 obtained the same number of days, while Run 17 was able to find a makespan with a
reduction of 5% (around 4 days). Concerning delay, all solutions found the same values obtained
in Table 9. The 15% discount presented a similar pattern, with the total cost being reduced by
6.59%, 5.80%, and 12.51% for Runs 6, 8, and 17, respectively, while the makespan and delay
remained the same as obtained in the 10% category. Finally, the 20% discount also presented
reductions in total cost by 9.01%, 6.84%, and 13.58%, respectively. Solution of Run 17 was the
most impacted in terms of cost reduction while maintaining acceptable values for makespan and
delay. If a 20% discount is obtained, the solution of Run 6 obtains zero delays with an acceptable
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value of cost, being recommendable in the case delay is the number one priority. Solution of
Run 8 was discarded, given its similar cost results with Run 17, but with worse delay values.
Solutions of Runs 6 and 17 were used by the DMs during the chartering process.

Overall, the company managers become very satisfied with the optimization method,
being a scientific alternative to the current trial and error method based on Excel. There was
a consensus among the managers that the developed optimization approach can capture the
conflicting nature of decreasing costs and improving the service level to customers. The flexibility
of the optimization approach, allowing the incorporation of specific peculiarities of different
operations, and the efficiency and efficacy of the optimization approach of dealing with difficult
strategic trade-offs were highly praised by the managers.

Tabela 10 – Results considering reduction on penalties of changing geographic orientation

Penalty Weight Solution

Discount Run θ1 θ2 θ3 Z1 Z
′

2 Z3

6 0.5 0 0.5 87 2694120 1
10% 8 0.75 0 0.25 75 2253630 5

17 0.6 0.1 0.3 76 2322230 3

6 0.5 0 0.5 87 2587160 1
15% 8 0.75 0 0.25 75 2200900 5

17 0.6 0.1 0.3 75 2217520 3

6 0.5 0 0.5 90 2520290 0
20% 8 0.75 0 0.25 75 2176520 5

17 0.6 0.1 0.3 75 2190530 3

3.6 CONCLUSION

This paper introduces a multi-objective approach for the maritime CRSP, a variant of the
multi-product, heterogeneous fleet pickup and delivery problem with time windows and draft
limits. The problem is formulated as a MILP model in which the constraints represent the several
real-life requirements of sea transportation. The solution of the problem specifies an operational
plan, consisting of (i) the sequence of ports to be visited by each vessel; (ii) the amount of each
product to be loaded/unloaded in a port by a vessel; and (iii) the arrivals and departures schedule
of the vessels in/from ports. The overall plan should simultaneously minimize total transportation
costs, scheduling makespan, and delays in some deliveries.

A weighted max-min fuzzy solution approach was developed to solve the multi-objective
formulation. Considering the complexity of the MILP models generated during the solution
process, two heuristics were developed based on several in-built cutting plan heuristics within
contemporary MILP solvers. The first one uses developed polishing and repairing algorithms
to improve and accelerate the solution search of the CPLEX solver. The second algorithm is a
matheuristic that integrates the first developed algorithm with a modified relax-and-fix strategy.
The former heuristic presented a slightly better behaviour towards obtaining the Pareto front in
experiments using real-world instances from a Brazilian company. Finally, our approach was
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applied to a real case. Given the peculiarities of the real case, new constraints were added to the
more generic formulation. From the findings of this real application, it is clear the flexibility and
effectiveness of the optimization approach in handling diverse real-life problems.

Future research can be directed in two main directions. First, the proposed model can be
improved by expanding its capabilities. Some of the deterministic assumptions could be relaxed,
introducing stochastic travel times, loading/unloading times, and demand. Pollution objectives,
such as CO2 emissions, could be considered to reflect environmental costs. Second, evolutionary
multi-objective optimization-based algorithms should be studied to improve the efficiency of the
solution process.
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4 THE SEGREGATED STORAGE MULTI-SHIP ROUTING AND SCHEDULING
PROBLEM

ABSTRACT

This paper addresses the segregated storage multi-ship routing and scheduling problem
with several products, heterogeneous fleet, time windows, split load, and draft limits in deep-sea
transportation. The study is motivated by the real raw material supply problem of fertilizer
companies operating in Brazil. First, bulk grain products are collected in European ports, then
delivered to several Brazilian ones close to mixing plants. The main objective is to minimize the
total logistics costs, respecting the several requisites of the problem, such as the capacity of ships’
compartments, delivery delays, and change of direction in a ship’s route in the Brazilian coast.
Considering the complexity of the generated mixed integer linear programming models for real-
life problems, a Lagrangian-based solution method was developed. Based on experimentation
using 24 real-life instances, and a real case study, we attest to the effectiveness and relative
efficiency of the optimization approach.

4.1 INTRODUCTION

This research work studies the ship routing and scheduling problem (SRSP) arising from
the inbound logistics of fertilizer companies operating in Brazil. Brazil is the fourth-largest
fertilizer importer in the world, accounting for around 8% of global fertilizer utilization (??).
Most products come from Russia and Belarus. The logistic problem consists of transporting dry
fertilizers by chartered ships. The products are first collected from ports in Europe and only then
delivered to ports in Brazil, strategically located near mixing units.

According to the classification of Christiansen et al. (2013), the problem can be cate-
gorized as a cargo routing and scheduling problem (CRSP). The CRSP is a typical problem
involving tramp shipping. This paper deals explicitly with a multi-commodity, heterogeneous
multi-fleet CRSP with time windows, draft limits, split load, and segregated storage. Further,
the problem involves several operational requisites concerning bulk grain transportation, such
as: (i) respect the capacity of each ship compartment, (ii) the number of vessels that can be
simultaneously served in a port, (iii) limits in the visited pickup and delivery ports in a route, and
(iii) penalties for route inversion, from north to south or south to north, in the Brazilian coast.
The main objective is to find ship routes and schedules with the lowest logistic costs, which
include: (i) the quantity of products loaded/unloaded in each ship’s compartment in each port;
(iii) the routes of each ship; and (iv) the ship schedules in/from visited ports in its route.

In some previous studies (SANTOS et al., 2020; SANTOS; BORENSTEIN, 2022), the
authors have formulated and solved the single and multiple objective CRSP, respectively. They
considered the multi-product, heterogeneous fleet, time windows, dedicated compartments, and
split load variant (m-CRSP-TW-DC-SL). The problem was formulated as a mixed-integer linear
programming (MILP) model and solved by a matheuristic method. Although the matheuristic
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can efficiently solve real-world plans involving dozens of ports and products, the COVID-19
pandemic and the Ukraine war have significantly changed some requisites of the problem.
Since the end of the pandemic peak and the beginning of the war, the increase in both the
demand for bulk products and the oil prices have raised the shipping freight by more than
170% compared with pre-pandemic values1. Further, the war has inflicted severe supply chain
disruptions, exacerbating the port congestion and crew crisis caused by the prolonged pandemic.
The sanctions imposed on one side of the conflict resulted in severe problems in international
freight with the disruption of trade with the belligerent countries and the loss of vessels2.
Particularly, charter companies are facing unexpected challenges such as availability and cost of
fuel and crew.

Before the conflict, companies carried out CRS planning before the chartering process to
estimate costs, dates, and quantities to be collected and delivered in each port and quantities of
ships to be contracted. However, with this new crisis scenario, the planning should be as detailed
as possible, considering all the real features to guarantee the timing supply of raw materials at
a reasonable cost in the mixing units. Premium products must reach customers at the proper
use time on the plantation. Delays lead to essential productivity losses for the end customer
and result in a painful customer loss for the fertilizer companies. The developed modeling
approaches by Santos et al. (2020) and Santos e Borenstein (2022) obtain solutions that do not
implicitly consider the following two important problem requisites: (i) segregated storage for
partially loaded cargo in a ship compartment; and (ii) ship stability conditions concerning the
load of cargo in multi-compartments. However, considering both requisites in the problem might
significantly change the solution by an increase in the number of required ships to fulfill the
demand. This paper expands the previous modeling approaches for the CRSP by simultaneously
considering segregated storage and ship stability so that an optimization approach can be used
both in the new international commerce scenario of our particular problem and in real-world
problems with similar specifications. We refer to this problem as the heterogeneous CRSP
with time windows, segregated storage, and split load (m-CRSP-TW-SS-SL) that integrates
the tank allocation problem (TAP) (HVATTUM et al., 2009) to the maritime multi-ship CRSP.
Considering all resulting requisites and constraints, this integration results in a complex problem
to solve.

This study presents a Lagrangian relaxation (LR)-based solution method for the m-CRSP-
TW-SS-SL. LR is widely used in solving hard integer programming problems (FISHER, 1981).
The central concept is to decompose the problem into two different types of constraints: “hard”
and “soft”. The hard constraints are incorporated into the objective function so that they are
penalized by the corresponding Lagrangian multipliers. The resulting relaxed problem should
be easier to solve, offering reasonable bounds for the original problem. The LR-based method
is developed using an expanded formulation of the MILP presented in (SANTOS; BORENS-
TEIN, 2022), incorporating segregated storage and ship stability constraints. Experiments were
1 https://unctad.org/news/war-ukraine-raises-global-shipping-costs-stifles-trade
2 https://ifa-forwarding.net/blog/sea-freight-in-europe/impact-of-the-ukraine-conflict-on-maritime-shipping/
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conducted in real-world instances, and in a case study in one of the largest fertilizer companies
in Brazil. The results show that our Lagrangian approach effectively and efficiently solves the
m-CRSP-TW-SS-SL.

This paper is structured as follows. Section 4.2 provides a concise literature review
of previous related work. The problem is described in Section 4.3. Section 4.4 describes the
mathematical notation and the extended MILP formulation. The LR-based method developed
to solve the problem is described in detail in Section 4.5. Section 4.6 presents computational
experiments to evaluate the performance of the solution method, while a real-life planning carried
out by a fertilizer company is described in Section 4.7. An overview of the results and some
directions for future research are given in the last section.

4.2 PREVIOUS RELATED WORK

The ship routing and scheduling problem and its variants have gained increasing attention
since the seventies (RONEN, 1983; CHRISTIANSEN et al., 2013). The problem was initially
studied as a single-vessel scheduling problem, where the routes were previously defined (AP-
PELGREN, 1969; RONEN, 1993). Time windows (FAGERHOLT; CHRISTIANSEN, 2000b)
and multi-ship routes (FAGERHOLT, 2001) were considered soon after, enlarging the real-world
application of the developed optimization approaches. In natural development, real attributes
were being increasingly incorporated, such as draft limits (MALAGUTI et al., 2018), flexible
cargoes (KORSVIK; FAGERHOLT, 2010), and split loads (KORSVIK et al., 2011), substantially
increasing the complexity of the mathematical formulation involved. As this study’s main contri-
bution concerns dealing with segregated storage in the CRSP, we focus our literature review on
integrating cargo allocation into the CRSP.

The segregated storage CRSP is associated with the multi-compartment vehicle routing
problem (McsRP) (OSTERMEIER et al., 2021). However, the deep-sea problem has characteris-
tics that differentiate it from the usual truck-based McsRP, such as draft restrictions, cargo size
flexibility, split loads, and long travel times. These attributes demand specific solution approaches
for the maritime problem (OSTERMEIER et al., 2021). Segregated storage in marine transporta-
tion was introduced in Barbucha e Filipowicz (1997), where several simple optimization models
were developed to maximize profit while satisfying the various requirements imposed by proper
segregation. The problem was expanded and called tank allocation problem (TAP) by Hvattum et
al. (2009). The authors introduced an embracing MILP formulation for the TAP and its variant,
showing the computational intractability of the problem. Numerical experiments were conducted
for single-ship instances using a commercial MILP solver. Vilhelmsen et al. (2017) developed a
heuristic framework to solve the tactical TAP in a concise amount of time. The paper reports
an apparent increase in the solution efficiency compared to the optimal method by Hvattum et
al. (2009). However, all these works specifically dealt with cargo allocation, disregarding ship
routes and the load/unload operations associated with cargo.

Al-Khayyal e Hwang (2007) is the first study to consider the integration of cargo alloca-
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tion to an inventory routing and scheduling problem involving multi-commodity and heteroge-
neous fleet, following the developments of the McsRP (OSTERMEIER et al., 2021). However,
no constraints related to segregation storage are included in the developed mathematical model.
Fagerholt e Christiansen (2000a) introduce a combined ship scheduling and allocation problem
(SSAP), in which vessels are equipped with flexible bulkheads that can easily increase or decre-
ase the nominal capacity of the compartment. The problem is breakdown into two sequential
and iterative processes. First, a list of candidate schedules is generated. Next, a subsequent
set partitioning problem is applied to allocate the ships to the previously generated schedules.
Fagerholt e Christiansen (2000b) detail how the generation of candidate schedule is solved as a
traveling salesman problem with allocation, time windows, and precedence constraints, using a
forward dynamic programming algorithm. However, ship stability and draft limits in ports are
not considered. Kobayashi e Kubo (2010) consider a similar multi-vehicle pickup and delivery
problem with time windows and allocation constraints. They decompose the problem into a TAP
and a routing problem, both of which are solved as set partitioning problems. The main goal is
to find feasible routes for the ships in the fleet to minimize the overall cost. However, cargoes
may be rejected or carried out by spot charters, allowing the use of simple procedures to allocate
cargo in the compartments for each ship.

Santos et al. (2020) and Santos e Borenstein (2022) consider dedicated compartments to
the multiple commodity and heterogeneous fleet CRSP, as previously mentioned. However, a
solution is either obtained by using a set of ships with compartment and capacity attributes to
respect this requisite or by using the strategy of ships equipped with flexible bulkheads, following
Fagerholt e Christiansen (2000a). Both requisites are guaranteed by constraints on the values of
binary variables related to the products to be loaded in each compartment. However, choosing a
proper set of ships depends on historical data of previous plans and the logistic staff’s experience
in deep-sea transportation of the involved products.

The above papers, focusing on combining the TAP and the ship routing and scheduling
problem, do not consider explicit set partitioning constraints in their modeling approaches to
guarantee segregated storage. Neo et al. (2006) is the forerunner of incorporating set partitioning
and ship stability constraints into a previous routing and cargo allocation MILP developed
by Jetlund e Karimi (2004). The model is solved using CPLEX for a case study involving a
single parcel tanker with 10 compartments, 10 possible cargoes, and 5 pickup ports. Wang
et al. (2018) and Ladage et al. (2021) expanded the work by Neo et al. (2006), incorporating
draft requirements and cargo incompatibilities for tankers. In Ladage et al. (2021), cargo swaps
between compartments are allowed. Both papers use heuristic methods to cope with the problem’s
complexity. Wang et al. (2018) decompose the problem into two phases: (i) the generation of
feasible routes and (ii) the solution of a TAP problem for each route generated until a feasible
solution is found. A neighborhood search-based heuristic is developed by Ladage et al. (2021).
Although the ideas in these two articles are interesting, they restrict the modeling to a single ship.
Furthermore, they do not allow the same product to be loaded in a ship compartment in different
pickup ports.
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Compared with previous work (SANTOS et al., 2020; WANG et al., 2018; LADAGE
et al., 2021), the main contributions of our paper is to formulate and solve a CRSP variant that
simultaneously considers heterogeneous fleet, multi-products, time-windows, segregated storage,
split load, and draft limits. This is the first study to simultaneously consider all these real features
in the deep-sea CRSP.

4.3 PROBLEM STATEMENT

Table 11 summarizes the problem structure, in terms of characteristics, assumptions,
and constraints. The problem is encountered in the raw-material supply logistics of the largest
fertilizer companies in Brazil, responsible for around 73% of the market share. The problem to be
studied is the short-term CRS planning of bulk grain products. The plan aims at minimizing the
transportation costs, determining: (i) the ships that will be used, (ii) each ship route and schedule;
and (iii) the quantity of each product to be loaded/unloaded in/from ship’s compartment at each
port. Fig. 6 illustrates feasible ships’ routes, schedules, and cargo allocation to compartments.
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Tabela 11 – Problem characteristics and assumptions

Operations

• Bulk dry products
• Contracts of affreightment (COA)
• Many pickup and delivery ports
• No return cargo

Ships

• Heterogeneous fleet, with different dimensions, capacities, and number of compartments
• The draft of a ship is defined by its current load
• All ships, independent of their dimensions, travel at the same speed between ports

Ports

• Pickup and delivery ports may be visited by several ships
• Load and unload times at each port are previously known
• Draft limits are expressed by the maximum cargo which a ship can carry to enter or leave a port
• Ports can handle several products
• There are limits on the number of ships simultaneously berthed in a port
• Time windows [AT

j , L
T
j ] are imposed for the pickup/delivery of products in port j

Ship Routes

• Sequences where a pickup port always appears before any delivery port
• Ships only visit a port once
• Limits on the number of ports for a specific route

Shipment

• Flexible cargo sizes
• Split load
• Segregated storage
• No transshipment allowed

Costs

• Chartering
• Demurrage
• Use of port facilities
• Inversion of the geographical orientation north-south or south-north by a ship during delivery
• Fee for non-compliance with time windows in ports
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Figura 6 – Example of ships’ routes, schedules, and cargo allocation
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4.4 PROBLEM FORMULATION

We used the underlying network and formulation by Santos e Borenstein (2022) as a basis
to develop an extended MILP formulation, in which modifications to account for segregated
storage allocation of products to ships’ compartments and ship stability were incorporated. The
mathematical notation following (SANTOS; BORENSTEIN, 2022) is presented below. Sets and
parameters are expressed in upper case letters, while lower case letters are used for variables and
indexes.
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Sets
NV set of pickup and delivery ports
NP set of pickup ports
ND set of delivery ports
N set of all ports, including the artificial start (s) and finish (f ) ports
P set of products
V set of ships
V ∗ set of ships used in a solution of the problem
P ∗ set of products transported in a solution of the problem
C(v) set of compartments of ship v
Parameters
Qjp quantity of product p in port j
DT

jp arrival due time of product p in port j
OT

j estimated time for loading/unloading in port j
ET

j estimated waiting times in port j
LT
ij travel distance from port i to port j

PN
j draft of port j in ton

BN
j berths in port j

UN
j limit of ships simultaneously berthed in port j

Ms
s nominal capacity of ship s

WC
s demurrage rate of ship s

PC
j port j facility costs

CS
s daily freight cost of ship s

HC fee for not respecting the loading/unloading time windows of a port
Y S
cs capacity of compartment c of ship s

RS
cs longitudinal distance of compartment c from ship s’s centre of flotation

KS
cs lateral distance from compartment c from ship s’s centre of flotation

WS
s allowed number of pickup visits of ship s

Y S
s allowed number of delivery visits of ship s

α maximum absolute permissible moments causing trim of a ship
β maximum absolute permissible moments causing heel of a ship
γs fee for route inversion of loaded ship s in Brazilian coast
θij binary matrix that specifies a geographical orientation between ports i, j
M very large number
Decision variables
lpijcs quantity of product p transported within compartment c of ship s using arc (i, j)
tAijs time of arrival of ship s at port j, coming from port i
tDijs time departure of ship s from port j, coming from port i
tEpijs early arrival or delay of ship s carrying product p using arc (i, j)
tLpijs arrival delay of ship s at port j carrying product p using arc (i, j)
xijs binary variables indicating if arc (i, j) is used by ship s
ypijcs binary variables indicating if product p transported by ship s uses arc (i, j)
yDpijs binary variables indicating if product p is unloaded of ship s in port j
gpcs binary variables indicating if product p is loaded in compartment c of ship s
zswj binary variables indicating if ships s and w can be simultaneously berthed in port j
sps quantity of product p that cannot be transported in ship s due to segregated storage

The problem can be represented on a directed graph G = (N,A), where N is the set of
nodes, and A = {(i, j)|(i ∈ ND, j ∈ ND) ∧ (i ∈ NP , j ∈ N s) ∧ (i ∈ ND, j ∈ {f}) ∧ (i ∈
{e}, j ∈ NP )} is the set of arcs. The graph has no arcs between delivery and pickup ports,
respecting the routing structure in Table 11. An elementary path from e to f is a feasible route
for a ship if it respects all flow, shipload, time, port, and routing constraints of the problem.

Based on the formulation presented in Santos e Borenstein (2022), the mathematical
formulation of the m-CRSP-TW-SS-PL is presented below:
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min
∑
s∈S

CS
s

 ∑
i∈ND

tAifv −
∑
j∈NP

tAejs

+
∑
i∈N

∑
j∈Ns

∑
s∈S

PC
j xijs

+
∑
p∈P

∑
i∈NS

∑
j∈ND

∑
s∈S

HC tEijps +
∑
i∈N

∑
j∈NS

∑
s∈S

WC
s ET

j xijs

+
∑
i∈ND

∑
j∈ND

∑
s∈S

θsijγsM
S
s xijs

(114)

subject to

Qip +
∑
h∈Ns

∑
s∈S

∑
c∈C(s)

lphics −
∑
j∈NS

∑
s∈S

∑
c∈C(s)

lpijcs ≥ 0 ∀p ∈ P,∀i ∈ N s, (115)

Qip +
∑

h∈NP

lphics −
∑
j∈NS

lpijcs ≥ 0 ∀p ∈ P,∀i ∈ NP ,∀s ∈ S,∀c ∈ C(s)

(116)∑
h∈NS

lphics −
∑

j∈ND

lpijcs ≥ 0 ∀p ∈ P,∀i ∈ ND, ∀s ∈ S, ∀c ∈ C(s)

(117)∑
i∈NP∪{e}

lpijcs −
∑
k∈NS

lpjkcs ≤ 0 ∀p ∈ P,∀j ∈ NP , ∀s ∈ S, ∀c ∈ C(s)

(118)∑
p∈P

∑
i∈NP

∑
j∈NS

∑
c∈C(s)

lpijcs ≤MS
s ∀s ∈ S (119)

lpijcs ≤ Y S
csgpcs ∀p ∈ P,∀i ∈ NP , j ∈ NS ,∀s ∈ S,∀c ∈ C(s)

(120)∑
p∈P

gpcs ≤ 1 ∀s ∈ S, ∀c ∈ C(s) (121)

− α ≤
∑
p∈P

∑
i∈NS

∑
j∈NS

RS
cslpijcs ≤ α ∀s ∈ S, ∀c ∈ C(s) (122)

− β ≤
∑
p∈P

∑
i∈Ns

∑
j∈NS

KS
cslpijcs ≤ β ∀s ∈ S, ∀c ∈ C(s) (123)

ypijs −
∑

c∈C(s)

gpcs ≤ 0 ∀p ∈ P,∀i ∈ NS ,∀j ∈ ND, ∀s ∈ S

(124)∑
s∈S

∑
w∈S|w ̸=s

zswj ≤ BN
j ∀j ∈ N s (125)

∑
s∈S

∑
w∈S|w ̸=s

zswj ≤ UN
j ∀j ∈ N s (126)

∑
p∈P

∑
j∈N

∑
c∈C(s)

lpijcs ≤ PN
i ∀i ∈ NS , ∀s ∈ S (127)

∑
p∈P

∑
i∈N

∑
c∈C(s)

lpijcs ≤ PN
j ∀j ∈ N s, ∀s ∈ S (128)

ypijs − xijs ≤ 0 ∀p ∈ P,∀i, j ∈ N, ∀s ∈ S (129)
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tDijs −Mxijs ≤ 0 ∀i, j ∈ N, ∀s ∈ S (130)

tAijs −Mxijs ≤ 0 ∀i, j ∈ N, ∀s ∈ S (131)

ypijs −DT
jpy

D
pijs ≤ 0 ∀p ∈ P,∀i ∈ NS , ∀j ∈ ND, ∀s ∈ S

(132)∑
j∈N

xijs ≤ 1 ∀i ∈ N, ∀s ∈ S (133)

∑
i∈N

xijs ≤ 1 ∀j ∈ N, ∀s ∈ S (134)∑
j∈N

xijs −
∑
h∈N

xhiv = 0 ∀i ∈ N, ∀s ∈ S (135)

∑
i∈NP

∑
j∈ND

xijs ≤ 1 ∀s ∈ S (136)

xijs = 0 ∀i ∈ ND, ∀j ∈ NP , ∀s ∈ S (137)

xfes = 0 ∀s ∈ S (138)

xfjs = 0 ∀j ∈ NS , ∀s ∈ S (139)

xies = 0 ∀j ∈ NS , ∀s ∈ S (140)∑
p∈P

lpijcs − Y S
csxijs ≤ 0 ∀i, j ∈ N, ∀s ∈ S, ∀c ∈ C(s) (141)

∑
i∈NP

∑
j∈NP

xijs ≤WS
s − 1 ∀s ∈ S (142)

∑
i∈ND

∑
j∈ND

xijs ≤ Y S
s − 1 ∀s ∈ S (143)

tAijs ≥ AT
j xijs ∀i ∈ N, ∀j ∈ N s,

∀s ∈ S (144)

tDijs ≤ LT
j xijs ∀i ∈ N, ∀j ∈ N s,

∀s ∈ S (145)

tDijs ≥ tAijs + ET
j +OT

j +M(xijs − 1) ∀i ∈ N,

∀j ∈ NS .∀s ∈ S (146)

tAijs ≥ tDhiv + LT
ij +M(xijs − 1) ∀h ∈ N,

∀i ∈ NS , ∀j ∈ NS , ∀s ∈ S (147)

tEpijs ≥| DT
jp − ET

j − tDijs | +M(yDpijs − 1) ∀i ∈ NS ,

∀j ∈ ND, ∀p ∈ P, ∀s ∈ S (148)

tAifs ≥ tDhis +M(xifs − 1) ∀i, h ∈ NS ,

∀s ∈ S (149)

tAeis ≤ tAijs −AT
j −OT

i − ET
i −M(xijs − 1) ∀i, j ∈ NS ,

∀p ∈ P, ∀s ∈ S (150)

tAijs + ET
j −M(xijs − 1) +Mzswj ≥ tDkjw +M(xkjw − 1) ∀i, k ∈ N,

∀j ∈ NS , ∀s, w ∈ S, s ̸= w (151)

tDijs ≤ DT
jp + LT

j − ET
j +M(−yDpijs + 1) ∀i ∈ N s,

∀j ∈ ND, ∀p ∈ P, ∀s ∈ S (152)

tDijs ≥ DT
jp −AT

j − ET
j −M(yDpijs − 1) ∀i ∈ N s,

∀j ∈ ND, ∀p ∈ P, ∀s ∈ S (153)
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tLpijs ≥ tAijs + ET
j −DT

jp +M(yDpijs − 1) ∀p ∈ P,

∀i, j ∈ NS ,∀s ∈ S (154)

lpijcs, t
D
ijs, t

A
ijs, t

E
ijps ≥ 0 ∀p ∈ P,∀i, j ∈ N, ∀s ∈ S,∀c ∈ C(s) (155)

xijs, ypijs, y
D
pijs ∈ {0, 1} ∀p ∈ P,∀i, j ∈ N, ∀s ∈ S (156)

gpcs ∈ {0, 1} ∀p ∈ P, ∀s ∈ S, ∀c ∈ C(s) (157)

zswj ∈ {0, 1} ∀s, w|s ̸= w ∈ S, ∀j ∈ N s (158)

The objective function (114) minimizes the total transportation costs, including freight
costs, costs of using port facilities, penalties for disrespecting the time window of each port,
ships’ demurrage rates, and penalties for route inversion on the Brazilian coast. Constraints (115)
guarantee that the quantities loaded/unloaded of product p in ship s are compatible with the
supply/demand of port j. Constraints (116) assure that a product can only be loaded in a ship if
a corresponding stock of this product exist in a pickup port. Constraints (117) satisfy product
demand at delivery ports. Constraints (118) prevent transshipment in a pickup port. Constraints
(119) and (120) guarantee that the nominal capacity of ships and compartments are satisfied,
respectively.

Constraint set (121) guarantees segregated ship compartment storage. Constraints (122)
and (123) assure that the moments causing trim and heel, respectively, of a ship, have to be less
than their respective limits to ensure stability (NEO et al., 2006). Constraint set (124) guarantees
that a product is transported in ship s using arc (i, j) if loaded in at least one of the ship’s
compartments.

Constraints (125) respect the berth capacity of port j. Constraint set (126) limits the
number of ships simultaneously served in port j. Constraints (127) and (128) are port draft-
related constraints. Constraints (129) establish connections between a ship’s loading and its
route, while constraints (130) and (131) establish connections between the times of a ship and its
route. Constraint set (132) connects the cargo allocated to a ship when arriving to a port with the
unloading of a product in the port.

Constraints (133) and (134) guarantee that a ship only uses once an arc in the graph.
Constraints (135) are flow conservative ones. Constraints (136) and (137) ensure that products
are first collected and only then delivered in any route. Constraint sets (138), (139) and (140)
define nodes e and f as super source and super sink nodes. Constraint set (141) assures that
the nominal capacity of ships’ compartments are respected. Constraints (142)–(143) limit the
number of pickup and delivery ports to be visited by a ship in its route.

Constraints (144) and (145) connect sailing times of ship s to the time windows of port
j. Constraints (146) and (147) compute the departure and arrival times of ship s from/in port
j, respectively. Constraint set (148) computes the deviation from the expected delivery time
of product p by ship s in port j. Constraints (149) and (150) compute the starting and ending
times of a ship’s routes, respectively. Constraint set (151) determines if ship w is already being
served in port j when ship s arrives at this port. The departure time from port i to port j by ship
s is computed by constraints (152) and (153). Constraints (154) determine the late delivery of
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product p in port j. Constraints (155)–(158) define the domain of the variables.

4.5 SOLUTION METHOD

Commercial MILP solvers are restricted to tiny instances for the m-CRSP-TW-DL-PL
(SANTOS et al., 2020). As our problem is an extension of this CRSP variant, we developed a
heuristic approach for solving model (114)–(158). Several heuristic methods were employed to
solve the SRSP in different environments and decision levels, such as cutting plane algorithm
(MALAGUTI et al., 2018), column generation (COCCOLA et al., 2015), multi-start heuristic
(YAMASHITA et al., 2019), metaheuristics (KORSVIK; FAGERHOLT, 2010; TROTTIER;
CORDEAU, 2019), and Lagrangian relaxation (SHEN et al., 2011). We recommend Christiansen
et al. (2013) for a detailed review of solution methods applied to the SRSP and its variants.

It should be noted that the above MILP formulation without constraints (121)–(123)
becomes a similar problem addressed by Santos e Borenstein (2022). The Lagrangian relaxation
is a natural strategy as the model can be efficiently solved without the complicated dedicated com-
partment constraints (121) (SANTOS et al., 2020). We use multipliers λcs for each compartment
c in ship s to relax constraints (121). The LR problem is formulated as follows:

LR(λ) = minZ +
∑
s∈S

∑
c∈C(s)

λcs(
∑
p∈P

gpcs − 1) (159)

st (160)

(122)− (124), (115)− (119), (133)− (158) (161)∑
p∈P

∑
i∈NP

∑
j∈NS

lpijcs ≤ Y S
cs ∀s ∈ S,∀c ∈ C(s) (162)

Without constraints (121), the constraint set (120) allows the capacity of compartments
to be disrespected and replaced by constraints (162). Using constraints (162), different products
can be transported simultaneously in one compartment while maintaining the nominal capacity
of each compartment.

Algorithm 8 summarizes the overall Lagrangian relaxation method developed.

Algorithm 8: Solution approach
Step 1 (Lagrangian relaxation): Use Lagrangian relaxation on model (114)–(158), relaxing constraints

(121). Solve the Lagrangian subproblem LR(λ), using the relax and define algorithm introduced
in (SANTOS et al., 2020).

Step 2 (Primal Solution): Based on the solution of Step 1, apply the heuristic described in Algorithm 9
to obtain a solution for the primal problem.

Step 3 (Subgradient optimization): Update the Lagrangian multipliers using a subgradient search.

Step 4 (Halt Condition): Repeat Steps 1—3 until a solution with a required accuracy is achieved or a
prescribed time-limit is surpassed.
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4.5.1 Solving the Lagrangian Dual

The Lagrangian dual L(λ) = maxλ≥0 LR(λ) is solved by the subgradient optimization
introduced by (HELD; KARP, 1971). To each Lagrange multiplier λcs, a subgradient vector
associated is defined by: vcs = 1 −

∑
p∈P gpcs, s ∈ S, c ∈ C(s). A sequence λ0, λ1, . . . of

Lagrangian multiplier vectors are generated during the subgradient optimization. The multipliers
are updated, as follows: λk+1

cs : k ≥ 1 = max[0;λk
cs +

αk(UB−L(λk)
||vcs(λk)||2 ], s ∈ S, c ∈ C(s), where UB

is an upper bound in the primal problem, LR(λk) is the lower bound obtained by solving the
dual Lagrangian problem for the multiplier λk, and 0 ≥ αk ≤ 2 is a given step-size parameter.
Following Fisher (1981), α0 is set to 2, being halved whenever the upper bound UB has not
decreased in some fixed number of iterations.

Each model LR(λk) is solved by the relax-and-define (RaD) algorithm proposed by
(SANTOS et al., 2020). In this algorithm, the set of binary variables is partitioned into blocks.
Only variables in the first block are considered binary in the first iteration. The resulting MILP
is solved for the whole horizon planning. At the next iterations of the algorithm, the variable
in the next block is defined as binary in the MILP of the previous step. The resulting MILP
is again solved for the whole horizon planning. The process is repeated until all variables are
defined as binary. Each iteration uses the best solutions of previous ones as initial solutions
for the current MILP. At each iteration, we incorporate the polishing algorithm developed by
Rothberg (2007) in the commercial MILP solver towards improving the solution process. Next,
the repairing algorithm developed by Fischetti e Lodi (2008) is applied to the pool of solutions
obtained considering all variables as binary. The best solution obtained in this repairing step is
returned.

4.5.2 Primal heuristic

Obtaining a primal solution for our problem is challenging due to the several constraints
in the problem, especially when the constraint set (121) is considered. However, the solutions
of the dual Lagrangian problems can be used to find a suitable primal solution. The solution of
the Lagrangian relaxation allows that a ship compartments can be loaded with more than one
product. To obtain a feasible primal solution, we need to fix this unwanted situation, if it occurs
for any ship.

To solve the primal feasible solutions, we employ a strategy to introduce new ships to
the current Lagrangian dual solution to comply with the segregated storage rather than trying
to adjust the cargo of already used ones, and only then consider the utilization of new ships.
The strategy is justified by the difficulty of finding feasible solutions adjusting ships’ capacity,
considering the interconnection of the several constraints of the original problem. Therefore, the
primal heuristic is based on the following two interconnected phases, as follows:

Phase 1: In this phase, we guarantee that all utilized ships in the dual solution obey constraint
set (121), solving a segregated storage problem per ship;
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Phase 2: In the second phase, we serve the uncovered demands resulting from the first phase by
using extra ships.

The first phase is solved using the segregated storage model in Evans e Tsubakitani
(1993) for each effectively used ship s ∈ S∗, and product quantities l∗ijpcs transported in the
current dual solution, indicated by the use of the superscript ∗. Two additional decision variables
need to be defined, upcs as the quantity of product p ∈ P ∗ to be transported in compartment c of
ship s ∈ S∗, and sps as the amount of product p ∈ P ∗ that cannot be transported in ship s ∈ S∗,
due to the segregated storage constraints (121). The segregated storage problem for each s ∈ S∗

can be formulated as follows:

max
∑
p∈P ∗

∑
c∈C(s)

upcs (163)

st∑
c∈C(s)

upcs + sps = Lps ∀p ∈ P ∗ (164)

∑
uijpcs − Y s

csgpcs ≤ 0 ∀p ∈ P ∗,∀c ∈ C(s) (165)∑
p∈P ∗

gpcs ≤ 1 ∀c ∈ C(s) (166)

upcs, sps ≥ 0 ∀p ∈ P ∗,∀c ∈ C(s) (167)

where Lps =
∑

i∈NP

∑
j∈NP l∗pijcs, p ∈ P ∗, c ∈ C(s). The objective is to load the maximum

amount of products p ∈ P ∗ in ship s ∈ S∗ without changing its route and schedule. Constraints
(164) ensure that the availabilities of products from the dual solution are respected. Constraints
(165) respect the capacity of each compartment of ship s. The solution of the segregated storage
problem guarantees that ship s ∈ S∗ carries quantities upcs of a single product p in each of its
compartment c ∈ C(s), respecting constraint set (121).

The problem now is how to allocate the amounts sps > 0, p ∈ P ∗, s ∈ S∗ no longer
delivered since they cannot be transported in ship s ∈ S∗, due to constraints (121). This problem
is addressed in the second step. Instead of trying to develop a specialized algorithm for solving
the problem, we used an intuitive idea of assigning the amounts sps > 0, p ∈ P ∗ of ship s to a
new ship s′, with the same route used by ship s to collect and delivery products p. In order to
obtain the primal solution, we need to incorporate the transportation costs related to new ships
into the solution of the current LR problem. The complete process is outlined in Algorithm 9.

Due to time limitations to solve the problem, we designed two different methods to
define the route and schedule of ship s′ in Step 2.4. One efficient way is to copy the ship route s,
adjusting the schedule to respect all constraints of the problem. An alternative is to consider the
same ports in the route of ship s, but focusing only on the supply/demand of products p′. The
schedule is then adjusted in the same way as in the previous methods. Although the latter method
offers lower upper bounds, both yielded the same results and number of iterations when applied
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Algorithm 9: Primal heuristic
Step 1: Consider the solution of the current Lagrangian dual problem, in terms of products transported,

l∗pijcs, routes and schedules of ships s ∈ S∗. Set variable UB as the objective function of the
current LR(λk).

Step 2: For each ship s ∈ S∗ do

Step 2.1: Solve the segregated problem (163)–(167) considering product quantities transported in
the dual solution, l∗pijcs.

Step 2.2: If all cargo assigned to ship s respect the shipload constraints (e.g., sps = 0, ∀p ∈ P ∗,
go to Step 2. Otherwise, go to Step 2.3.

Step 2.3: Define set P ′ = {p ∈ P ∗|sps > 0}.
Step 2.3: Segregate storage cargo sps > 0,∀p ∈ P ′ in a new ship s′ with capacity

M s
v′ ≥

∑
p∈P ′ sps and number of compartments |C(s′)| ≥ |P ′| by solving a segregated

storage problem.

Step 2.4: Define the route and schedule of ship s′ based on the route and schedule of ship s.

Step 2.5: Compute the transportation costs associated with ship s′, TCs′ , using the formula in
Equation (114). Set UB ← UB + TCs′

Step 3: Return a primal solution with the value of UB.

to real and randomly generated instances. For efficiency’s sake, the first method was adopted.
Nevertheless, we are developing a heuristic method towards improving the upper bounds to
improve the solution search.

It should be noted that the primal heuristic is quite efficient since the number of segregated
storage problems, in general, decrease as the Lagrangian multipliers are updated, using both the
LR solution (as lower bound) and the primal solution (as upper bound). However, the convergence
of the whole solution process can be slow, especially for large problems, in terms of products
and ports. The bounds of the primal heuristic can be quite high in the first iterations of Algorithm
8. The focus of our primal heuristic is on the feasibility of the solution toward updating the
Lagrangian multipliers.

4.6 NUMERICAL EXPERIMENTS

This section describes the experiments carried out to evaluate the optimization approach.
The algorithms were coded in C++, using Visual Studio 2022 compiler. To solve the MILP
formulations within the optimization approach, we used CPLEX 12.8 with several cut-related
parameters active, which values are listed in Santos et al. (2020). We refer to this parameterized
variant as P-CPLEX. The experiments were carried out on a six-core AMD Ryzen 5 2600
3.4 GHz CPU and 16 GB RAM. A fertilizer company kindly provided real-life instances from
2013–2019. The instance data include the logistics costs, the set of available ships, and the supply
and demand quantities of products in the pickup and delivery ports, respectively. Furthermore,
the company informed the final chartering costs. Table 12 presents each instance’s characteristics
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by the number of pickup (PP), delivery ports (DP), products in demand (P), and the number of
ships in set s (|V |). The table also presents the number of constraints and variables of model
(114)–(158) of each instance, offering an idea of the dimensions of each problem. However, it
should be noted that the complexity of the model is not only a function of the number of variables
and constraints but also of the attributes of ships in set s and the ports index set N s, as well the
prescribed time windows and expected time of delivery of products to ports. Several different
ships were considered, with a median size of 35,000 DWT and 4 to 5 compartments. Product
demand ranges from 80,000t to 200,000t.

Tabela 12 – Instances’ characteristics

Model (114)–(158)
Instance OP DP P |V | Total Variables Binary Variables Constraints

1 2 4 7 4 7853 2525 44986
2 2 5 5 3 7341 2049 36159
3 2 5 6 3 8681 2409 40957
4 2 5 6 3 11056 3216 59133
5 3 3 8 4 8492 3020 52082
6 3 5 6 3 10566 2898 51632
7 3 5 7 5 13660 4444 82980
8 4 5 6 4 14022 4600 103539
9 5 7 6 4 28582 9550 257554
10 4 4 6 4 14022 4600 99781
11 4 4 6 4 14022 4600 99781
12 3 6 8 6 24147 7785 154551
13 5 5 7 5 25270 7670 171640
14 5 5 8 5 32160 8660 185170
15 5 5 7 6 25270 7670 171640
16 5 7 5 4 27752 8212 179844
17 5 7 9 5 47665 13825 324085
18 5 8 10 5 61735 17795 374983
19 6 8 10 5 77805 24930 678936
20 6 5 9 5 63545 20797 482440
21 4 5 8 4 23462 8916 194475
22 6 7 11 7 84060 26262 715211
23 7 7 10 7 99840 28496 801080
24 6 8 10 7 97062 28110 795672

We follow the parameters defined in Santos et al. (2020) to execute the RaD algorithm.
The variables are considered as an integer in the following order xijs, gpcs, ypijs, y

D
pijs, zswj for all

executions of the RaD algorithm. As the initial λ might have a significant effect on the efficiency
of the solution process (CAPRARA et al., 1999), we define, based on experimentation, that our
Lagrangian solution works very well with λ0

cs = 10, 000, s ∈ S, c ∈ C(s).
Table 13 compares the quality of our optimization approach, LRM, with the real executed

plan in terms of final costs (Solution), the number of ships (S), and the number of route inversions
(RI) (north to south or south to north) by ships in the Brazilian cost. We included this last
performance criterion in the table because it impacts logistics costs and deliveries within the
desired time windows, as evidenced in Santos et al. (2020). Further, we compare the efficacy
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and efficiency of the Lagrangian approach with possible alternative optimization techniques,
running model (114)–(158) using P-CPLEX and RaD. Both methods were run within a 6h limit.
An additional column with the running time in seconds (CPU) is inserted in the table for each
optimization approach. If an optimization approach cannot find a feasible solution within the
CPU time limit, it is indicated by a “–”. Table 13 also presents the initial Lower Bound (LB) for
each instance, computed by the LR problem solved by the RaD algorithm, without considering
segregated storage constraints.

Tabela 13 – Solution methods comparison

Company LRM P-CPLEX RaD
Instance LB Solution S RI Solution S RI CPU Solution CPU Solution CPU

1 1206330 3152660 3 4 1392850 2 0 900 1406300 21600 1395320 21600
2 1035600 2774190 4 2 1164240 4 0 600 1184480 21600 1163900 21600
3 795570 1906450 3 2 937450 3 0 300 942400 21600 937450 21600
4 1575336 3450412 3 4 1722464 3 0 600 2211328 21600 1762496 21600
5 1279264 3010396 3 4 1353830 3 0 900 1422790 21600 1361200 21600
6 998740 2295640 3 4 1359070 3 1 900 1620450 21600 1593660 21600
7 1205990 2440570 5 3 1487050 5 0 1200 1702660 21600 1572910 21600
8 2096902 4112966 4 3 2670454 4 2 2100 4100810 21600 2966322 21600
9 3578946 8103942 4 7 4156718 4 2 5400 - 21600 - 21600
10 2161936 5211984 4 6 2663214 4 1 3600 - 21600 3399678 21600
11 1623734 4721258 4 6 1916256 4 0 7200 2225242 21600 2198456 21600
12 2050900 8402950 6 8 3566800 6 6 20000 - 21600 - 21600
13 2094670 5120470 5 4 2649620 5 1 8100 - 21600 - 21600
14 3154250 5624250 5 4 4187300 5 3 7200 - 21600 - 21600
15 2356310 6611860 6 5 3010780 6 2 7200 - 21600 - 21600
16 2189441 4212340 4 6 2974217 4 5 9000 - 21600 3810620 21600
17 1696610 3774270 5 4 2253500 5 1 9000 - 21600 - 21600
18 2069070 4522410 5 5 2795940 5 2 9000 - 21600 - 21600
19 2189720 6513390 5 5 3130520 5 3 20000 - 21600 - 21600
20 2963128 7190086 5 6 3626458 5 3 4500 - 21600 - 21600
21 1679530 3862170 4 6 1969390 4 0 6300 3102600 21600 2567210 21600
22 3919573 10566748 6 8 4762912 6 4 20000 - 21600 - 21600
23 4410214 11996254 7 7 5596070 7 4 20000 - 21600 - 21600
24 3858310 9863612 7 8 4958622 7 4 20000 - 21600 - 21600

The results in Table 13 show that the inclusion of segregated storage significantly affects
the SRSP. Let us compare the solutions obtained by LB (without segregated storage) with the
corresponding ones by the Company, LRM, P-CPLEX, and RaD. It is possible to observe con-
siderable increases in the transportation costs. If we compare the LB solutions with the ones
obtained by the Company and the LRM (both have solutions for all instances), the values increa-
sed on average 148% and 27%, respectively. These results ratify the importance of considering
segregated storage (when this condition is a problem requisite) in the deep-sea SRSP.

Let us first compare the performance of the optimizing methods. Considering the CPU
time limit imposed, P-CPLEX and RaD could only find feasible solutions for 10 and 12 instances,
respectively. In general, they have solved instances with up to 9 ports in total, which can be
categorized as small or medium. Although P-CPLEX and RaD can generate feasible solutions for
some minor instances (1–7) in 3 hours, a good solution was only obtained when the CPU limit
was increased to 6 hours. If we only consider the instances solved by either P-CPLEX or RaD,
LRM has found better or equal solutions than the two remaining methods for all instances. LRM
has significantly decreased the objective function compared with P-CPLEX and RaD, on average,
in 14.4% and 9.4%, respectively. The optimization approaches have obtained similar solutions
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for tiny instances (up to seven ports and 6 products), especially LRM and RaD. However, LRM
was significantly more efficient than P-CPLEX and RaD in obtaining good-quality solutions.
LRM has solved all instances requiring, on average, 7666s, while P-CPLEX and RaD have
required 21600s for solving small and medium size instances. When limiting the comparison
to the instances solved by P-CLEX or RaD, LRM has solved them on average in 2100s and
2800s, being 10 and 7.7 times faster than P-CPLEX and RaD, respectively. In summary, LRM
outperformed P-CPLEX and RaD both in quality and efficiency.

In comparison with the company’s costs, the optimization approach provided solutions
with lower total costs. On average, the LRM reduced the total costs by around 47.66%. Naturally,
the reduction in total costs is dependent on the instance dimensions, number of products and
ports, and the informed time window. However, this reduction should be carefully approached.
The values informed by the company incorporate several real unexpected events that were not
considered in our optimization approach, such as crew-related problems and extreme weather
conditions. They can significantly increase the costs involved in transportation.

Nevertheless, the significant decreases in the objective function might be explained by
the following three primary reasons: (i) the use of fewer vessels; (ii) the smaller number of route
inversions by ships on the Brazilian coast due to a better distribution of cargo in the ships; or
(iii) the company prioritized customer service over cost. Unfortunately, given the need for more
information concerning the third item, we can only analyze the first two items. Company and
LRM had the same number of used ships for all evaluated dimensions. Although there were
differences in the ships’ characteristics in the solutions, they were of little contribution to the
obtained total cost differences, considering how the total costs were computed. In this way, the
significant reduction in the number of route inversions by ships on the Brazilian coast assumed a
more relevant role in cost reduction. LRM reduced by about 66.66%, on average, the number
of route inversions, representing a decrease of 3 RI per plan, when comparing the company’s
and LRM’s plans. In general, there was a proportionality between the reduction in the route
inversions and costs. The average relation between route inversion reduction and total reduction
cost was equal to 1.39, indicating that the reduction of the total costs also increased as the route
inversion increased. However, there were some exceptions. In eight instances, the values were
smaller than one. This effect can be explained by how the route inversion is accounted for in the
total cost, considering the ship’s load at the time of route inversion, justifying the direct lack of
proportion between RI and cost reduction in some instances tested. We used instances 8, 12, and
19 to validate this argument. These instances presented a slight percentage reduction in route
inversions, but significant cost reductions. In all three instances, route inversions occurred when
ships were at more than 80% capacity, justifying that route inversions significantly reduced costs.
In summary, the LRM outperformed the company’s final costs in all evaluated instances, defining
cargo routing and scheduling plans at a significantly lower cost while respecting all operational
requirements of the problem, including port drafts, time windows, berth utilization, segregated
stowage, and ship’s stability.
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4.7 CASE STUDY

This section describes the short-term planning carried out in mid-August/2022 for a
fertilizer company operating in Brazil. The logistics department managers applied the developed
optimization approach, given the results obtained in the previous section. Since most of the
products came from Russia and Belarus, direct belligerents in the Ukraine war, there was an
unprecedented necessity to evaluate different scenarios very quickly since several parameters
changed values during the execution of the plan, a consequence of the uncertainties related to the
conflict. The analysts were not directly involved with the negotiation processes with the contacted
deep-sea chartering companies. The company managers provided all data and information to run
the optimization approach.

The case study involved five pickup ports in Eastern Europe and five delivery ports on
the Brazilian coast. The pickup ports are primarily located in Eastern Europe: 1 - St. Petersburg,
RUS; 2 - Muuga, EST; 3 - Ventspils, LVA; 4 - Klaipeda, LTU; and 5 - Gdansk, POL. The delivery
ports are in Southern Brazil: 1 - Aracruz; 2 - Vitória; 3 - Santos; 4 - São Francisco; and 5 - Rio
Grande. Seven products were involved, as follows: (i) Muriate of potash; (ii) Sulphate of potash;
(iii) Kainit; (iv) Sylvanite; (v) Potash + sodium admixture; (vi) Potash + magnesium admixture;
and (vii) Sodium.

As usual, the company’s main objective was to minimize transportation costs, respecting
the time windows of each delivery port. Due to the Ukraine war, the main difference to previous
planning processes was the limitation in the number and size of available vessels. During
the analysis, as usual, all considered ships had five compartments with deep-sea handysize
or handymax bulk carriers. Due to confidentiality issues, the ships were grouped into three
categories based on their real load capacity, namely 30,000, 35,000, and 40,000 DWT, with
associated daily freights of 1,000, 1,150, and 1,300 USD/day.

Table 14 presents a subset of the analyzed scenarios during planning. This table shows
the number of ships in each category that composes set s. In the subsequent columns, we show
the results obtained by the optimization approach in terms of the best solution (in US$), the
actual fleet in terms of the three categories, the minimum utilization of a ship in the used fleet
in percentage (MI), the number of route inversions (RI), and the maximum delay in days (MD)
of a ship in any port of its route. These later performance measures are becoming increasingly
relevant, as the company has directed its production towards premium products with customized
specifications for large customers. A CPU time limit of 6300s was fixed for each scenario.

The first three scenarios analyzed consider that all ships are of the same category. Ships
with 35k DWT presented the best results, closely followed by 40k DWT ships. Both ship
categories could transport all products with five ships without route inversion. Although ships
with 30k DWT are the cheapest ones to hire, it is necessary to hire an additional ship to transport
all demanded products with segregated storage. Furthermore, one additional route inversion
penalizes the total costs, as well a delay of 2 days in a shipping route. Scenario 2 presents the
best total costs, but it introduces a small delay of one day in a port. Next, scenarios considering
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Tabela 14 – Case study results for different scenarios

# Ships per DWT Optimization Approach
Scenario 30k 35k 40k Solution 30k 35k 40k RI MD

1 – – 6 1815780 – – 5 0 0
2 – 6 – 1767210 – 5 – 0 1
3 6 – – 2128840 6 – – 1 2
4 2 2 2 2788910 2 2 2 2 0
5 3 – 3 2181580 3 – 3 1 0
6 3 3 – 1794010 2 3 – 0 1
7 – 3 3 1890350 – 3 3 0 1
8 4 – 2 2059750 3 – 2 0 0
9 2 – 4 2053360 1 – 4 0 0
10 4 2 – 1874340 3 2 – 0 2
11 2 4 – 2167310 2 4 – 0 1
12 – 4 2 1867450 – 3 2 0 1
13 – 2 4 1831440 – 1 4 0 0

a fleet with different combinations of ship categories were analyzed. Scenario 4 considers the
same number of ships for the three categories. This scenario ratifies the fact that the use of 30
DWT ships affects the objective function, increasing the number of route inversions. Scenarios 5,
6, and 7 consider the same number of ships but distributed in only two categories. Most of the
best results are obtained in scenarios where 35 DWT ships are used. Scenarios 8–13 are requests
from the company managers, possibly after receiving quotations from chartering companies.
Scenario 13 dominates these six additional scenarios both in costs and in delays; however, it is
closely followed, in costs, by scenarios 10 and 12, but with some delays. Although scenarios 8
and 9 use different compositions of ships 30 DWT and 40 DWT, they present almost the exact
transportation costs without delay. Scenario 11 presents a high transportation costs. In summary,
scenarios 2 and 6 present the best costs, with acceptable delays, followed by scenarios 1 and
13, with slightly higher costs but without delays in any route. These results were discussed with
the company managers, offering them some important highlights during the negotiation process
with charter companies.

During the chartering process, the possibility of increasing the number of products to
be collected in the ports appeared due to negotiations between Brazil, Russia, and Belarus
governments. Faced with this possibility and considering the difficulty of supply due to the
Ukraine war, the company considered increases in the initial demands. The company managers
exploited several values after directly contacting the suppliers in Europe. For economy sake,
Table 15 shows the results, for scenarios 1, 2, 6, and 13 (the best ones by the previous analysis),
of 10% and 20% increases in the total amount of all products to be collected in the pickup ports.
These increases were equally applied to all products and used to illustrate the complete sensitivity
analysis.

Scenarios 1 and 13, with larger ships, present the best results for both cargoes increasing.
Scenarios 2 and 6 are dominated on the performance measures, requiring considerably higher
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Tabela 15 – Sensitivity analysis considering increases in the amount of each product to be
transported

Optimization Approach

Scenario Cargo increase (%) Solution 30k 35k 40k AV RI MD

1
10% 1852980 – – 5 0 0 0
20% 2114640 – – 6 0 0 1

2
10% 1935540 – 5 – 0 1 1
20% 2381860 - 6 – 0 1 2

6
10% 2454860 3 3 - 0 2 3
20% 3166190 3 4 – 1 3 1

13
10% 1861400 – 1 4 0 0 0
20% 2097320 – 2 4 0 0 1

transportation costs, route inversions, and port delays than scenarios 1 and 13 for both demand
increase situations. These results were expected since more cargo to be transported demands
additional or larger ships. Both scenarios do not consider 40k DWT ships. Scenario 1 presents
slightly better results when the cargo increases by 10%, while the opposite is observed when
the increase is 20%. If we compare with the solutions in Table 14, there is an increase of 2%
and 1.6% in the solutions of scenarios 1 and 13, respectively, for a 10% of increase in the cargo.
In both scenarios, a single ship changes a pickup port in its route. For a 20% of increase in
demand, the transportation costs have a more significant increase, of around 16.45% and 14.51%
for scenarios 1 and 13, respectively. Almost all ship routes are changed for this cargo condition,
reflecting higher transportation costs.

In summary, scenarios 2 and 6 were the best options for initial cargo demand. However,
scenarios 1 and 13 were more robust solutions, with better handling possible cargo increases,
due to the higher number of larger ships. The company’s managers used the results of the whole
planning process to sign the COA. Due to confidentiality issues, we cannot disclose the final
CRS plan used for this supply.

The optimization approach was generally well-received by the company managers. The
capacity of the optimization approach to offer good quality solutions in a reasonable running time
was the main advantage pointed out by the managers. The managers also praised the possibility of
performing sensitivity analysis. Furthermore, incorporating segregated storage and ship stability
was relevant for an efficient negotiation with the chartering companies. However, there needs
to be more clarity between the existence of an optimization approach and its application to
real-world problems. A user-friendly decision support system is being implemented, ensuring
flexibility and adaptability.
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4.8 CONCLUSION

This paper proposes a Lagrangian relaxation approach for solving the deep-sea segregated
storage multi-ship routing and scheduling problem of bulk carriers, simultaneously considering
multi-commodity, heterogeneous fleet, time windows, draft limits, split load, and flexible cargoes.
The problem is formulated as a MILP model, which objective function minimizes the total
logistics costs, while the constraints represent the operational requirements associated with
real-world problems. The solution to the problem specifies a fully operational plan, consisting of
(i) each ship route as a feasible sequence of ports; (ii) the arrival and departure times in/from
ports of each ship route; (iii) the quantities of each product to be loaded in a ship compartment in
each pickup port; and (iv) the quantities of each product to be unloaded from a ship compartment
in each delivery port.

Computational tests, using real-world instances, indicate that the Lagrangian heuristics
effectively and efficiently solve the problem. The segregated storage constraints significantly
impact the final solution value, increasing by around 140% and 30%, on average, the soluti-
ons obtained by the company and by the Lagrangian method, respectively. Furthermore, this
constraint led CPLEX and the matheuristic introduced in Santos et al. (2020) to fail in finding
a viable solution for most instances tested, given a CPU timeout of 6 hours. The Lagrangian
method obtained the best solutions for all tested instances at a reasonable time, decreasing by
around 40%, on average, the cost values informed by the company. The optimization approach
was also evaluated in a real-world planning process, playing a relevant role in chartering.

There are several possible future extensions to this work. The proposed formulation can
be improved by incorporating stochastic parameters, such as travel times, loading/unloading
times, and demand. We also plan to evaluate the application of the developed optimization
approach for chemical tanker routing and scheduling problems. Tankers have a much larger
number of compartments and transport products with stricter security requirements than bulk
carriers. Furthermore, a multi-objective version of the problem is being envisaged, in which
environmental and service level aspects would be incorporated into the model. Remarkably, this
reformulation of the problem is very challenging in developing a solution method capable of
finding the Pareto frontier within a reasonable time.



89

5 CONCLUSIONS

“Cargo routing and scheduling problem in deep-sea transportation: Case study from a

fertilizer company” presents an optimization approach to solving the real-world cargo routing
and planning problems faced by chemical companies in supplying their blending plants in
Brazil. The problem can be characterized as a multi-product pickup and delivery problem with
heterogeneous fleets, dedicated compartments, TWs, and draft limits. A feasible route must
satisfy several constraints, some of which are specific to the real-world problem at hand. Our
optimization approach was developed on the basis of case studies, but as outlined in Section
2.6.3, it also applies to similar maritime problems faced by companies using trampers to transport
large volumes of bulk cargo. It is relatively easy to implement.

We have extended his previous MILP formulation developed for tramp freight routes and
planning (ARNESEN et al., 2017; MALAGUTI et al., 2018) to introduce heterogeneous fleets
and multiple products. CPLEX was used to solve small and medium instances and provided
relatively good solutions in a reasonable amount of time. For real large-scale instances, we
have developed a mathematical approach that integrates a relaxed definition strategy and some
built-in cutting planning heuristics into CPLEX. This matheuristic was evaluated using real-
world examples and proved to be highly suitable for solving maritime problems, surpassing
CPLEX results in both efficiency and effectiveness for nearly all cases tested. The matheuristic,
in particular, demonstrated its ability to achieve much faster and better solutions than the human
planner and CPLEX, especially in large and very large instances, and to deal with a wide variety
of planning contexts. Similar results were obtained when applying the optimization approach to
a more general problem without considering the details of the company context.

“Multi-objective optimization of the maritime cargo routing and scheduling problem”

presents a multi-objective approach to maritime CRSP. This is a variant of the heterogeneous
fleet collection and delivery problem with multiple products, time windows and draft limits.
This problem is formulated as a MILP model, whose constraints represent different real-world
requirements for marine transportation. The solution to this problem is (i) the order of ports
that each vessel calls; (ii) the quantity of each product to be loaded and unloaded from the
vessel at the port; Overall planning should simultaneously minimize overall transportation costs,
scheduling, and partial shipment delays.

A weighted max-min-fuzzy solving approach was developed to solve the multi-objective
formulation. Given the complexity of the MILP models generated during the analysis process,
two heuristics were developed based on several cutting plan heuristics built into modern MILP
solvers. The first uses the developed polishing and repairing algorithms to improve and speed up
the CPLEX solver’s solution search. The second algorithm integrates the first matheuristic-based
algorithm with a modified relaxation and correction strategies. The former heuristic performed
slightly better in preserving the Pareto front in an experimentation based on a real instance of
the Brazilian company. New constraints have been added to the more general formulation to
consider details of the real case. Insights gained from this real-world application demonstrate
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the flexibility and effectiveness of optimization approaches to address a variety of real-world
problems.

“The segregated storage multi-ship routing and scheduling problem” proposes a Lagran-
gian relaxation approach for solving the deep-sea segregated storage multi-ship routing and
scheduling problem of bulk carriers, simultaneously considering multi-commodity, heterogene-
ous fleet, time windows, draft limits, split load, and flexible cargoes. The problem is formulated
as a MILP model where the objective function minimizes total logistics costs, and the constraints
represent operational requirements related to real-world problems. The solution to this problem
is to (i) specify a fully functional plan that composes each vessel’s route as a sequence of possible
ports. (ii) the time of arrival and departure from each port of each route; (iii) the quantity of each
product to be loaded into the hold of the vessel at each port of collection; (iv) the quantity of
each product unloaded from the hold at each port of delivery.

Computer tests using real-world instances show that the Lagrangian heuristic can solve
problems effectively and efficiently. Individual storage limits have a large impact on the value
of the final solution, averaging approximately 140% and 30% increases for the enterprise and
Lagrangian solutions, respectively. Furthermore, this constraint led CPLEX and the matheuristic
introduced in Santos et al. (2020) to fail in finding a viable solution for most instances tested,
given a CPU timeout of 6 hours. The Lagrangian method achieved an optimal solution within a
reasonable time for all tested instances, reducing the company’s reported costs by an average
of about 40%. The optimized approach was also evaluated in the actual planning process and
played a relevant role during the charter.
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