
Efficient Diagonalization of Symmetric Matrices
Associated with Graphs of Small Treewidth
Martin Fürer
Pennsylvania State University, University Park, PA, USA
furer@cse.psu.edu

Carlos Hoppen
Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
choppen@ufrgs.br

Vilmar Trevisan
Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
trevisan@mat.ufrgs.br

Abstract
Let M = (mij) be a symmetric matrix of order n and let G be the graph with vertex set {1, . . . , n}
such that distinct vertices i and j are adjacent if and only if mij 6= 0. We introduce a dynamic
programming algorithm that finds a diagonal matrix that is congruent to M . If G is given with a
tree decomposition T of width k, then this can be done in time O(k|T |+ k2n), where |T | denotes
the number of nodes in T .

2012 ACM Subject Classification Computing methodologies → Linear algebra algorithms; Theory
of computation → Fixed parameter tractability; Mathematics of computing → Graph theory

Keywords and phrases Treewidth, Diagonalization, Eigenvalues

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.52

Category Track A: Algorithms, Complexity and Games

Funding Carlos Hoppen: CNPq 308054/2018-0 and FAPERGS 19/2551-0001727-8.
Vilmar Trevisan: CNPq 409746/2016-9 and 303334/2016-9, CAPES-PRINT 88887.467572/2019-00,
and FAPERGS 17/2551-0001.

1 Introduction and main result

Two matrices M and N are said to be congruent, which is denoted M ∼= N , if there exists a
nonsingular matrix P for which N = PTMP . Matrix congruence naturally appears when
studying Gram matrices associated with a quadratic form on a finite-dimensional vector
space; finding a diagonal matrix D that is congruent to a symmetric matrix M allows us to
classify the quadratic form.

In a different direction, finding a diagonal matrix that is congruent to M allows us to
determine the number of eigenvalues of M in a given real interval. Indeed, fix real numbers
c < d. Let Dc

∼= N = M − cI and Dd
∼= M − dI be diagonal matrices. By Sylvester’s Law

of Inertia [16, p. 568], the number n1 of eigenvalues of M greater than c equals the number
positive entries in Dc. Moreover, the number of eigenvalues equal to c, or less than c, are
given by the number of zero diagonal entries, or by the number of negative entries in Dc,
respectively. As a consequence, if n2 is the number of positive entries in Dd, then n1 − n2 is
the number of eigenvalues of M in the interval (c, d].

Given a symmetric matrix M = (mij) of order n, we may associate it with a graph G
with vertex set [n] = {1, . . . , n} such that distinct vertices i and j are adjacent if and only if
mij 6= 0. We say that G is the underlying graph of M . This allows us to employ structural
decompositions of graph theory to deal with the nonzero entries of M in an efficient way.

EA
T

C
S

© Martin Fürer, Carlos Hoppen, and Vilmar Trevisan;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 52; pp. 52:1–52:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5354-3226
mailto:furer@cse.psu.edu
https://orcid.org/0000-0002-7581-1583
mailto:choppen@ufrgs.br
https://orcid.org/0000-0002-7053-8530
mailto:trevisan@mat.ufrgs.br
https://doi.org/10.4230/LIPIcs.ICALP.2020.52
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Efficient Diagonalization of Symmetric Matrices

One such decomposition is the tree decomposition, which has been extensively studied since
the seminal paper of Robertson and Seymour [18]. The graph parameter associated with
this decomposition is the treewidth.

A tree decomposition of a graph G = (V,E) is a tree T with nodes 1, . . . ,m, where each
node i is associated with a bag Bi ⊆ V , satisfying the following properties: (1)

⋃m
i=1 Bi = V ;

(2) For every edge {v, w} ∈ E, there exists Bi containing v and w; (3) For any v ∈ V , the
subgraph of T induced by the nodes that contain v is connected.

The width of the tree decomposition T is defined as maxi (|Bi| − 1) and the treewidth
tw(G) of graph G is the smallest k such that G has a tree decomposition of width k. Clearly,
it is always the case that tw(G) < |V |, and for connected graphs, tw(G) = 1 if and only if
G is a tree on two or more vertices. Even though computing the treewidth of a graph is
hard, this is a widely studied parameter and tree decompositions with bounded width are
known for several graph classes. Moreover, there is an extensive literature on approximation
algorithms for this problem. For instance, Fomin et al. [9] devised an algorithm such that,
given an n-vertex graph and an integer k, runs in time O(k7n logn) and either correctly
reports that the treewidth of G is larger than k, or constructs a tree decomposition of G of
width O(k2).

Often, graph widths have been used to design algorithms for NP-complete or even harder
problems that are efficient on graphs of bounded width, by which we mean that their running
time is equal to O(f(k)nc) for a constant c and an arbitrary computable function f , where
k is the width of the graph. Problems that can be solved with such a running time are
called fixed parameter tractable (FPT). For more information, interested readers are referred
to [5, 7, 8, 17], and to the references therein.

On the other hand, graph widths may be quite useful for polynomial time solvable
problems. Indeed, treewidth has a strong connection to the solution of sparse linear systems
and Gaussian elimination. For a long time heuristics have been designed to maintain
sparsity throughout Gaussian elimination. The goal is to minimize the fill-in, defined as
the set of matrix positions that were initially 0, but have received nonzero values during
the computation. Fill-in minimization has been analyzed as a graph problem in the case of
symmetric [19] as well as asymmetric [20] matrices. As in our paper, a nonzero matrix entry
aij is interpreted as an edge (or arc) from vertex i to vertex j. However, unlike here, it was
assumed that the matrix was diagonally dominant, so that all the pivots could be chosen in
the diagonal.

A major source of applications are symmetric positive definite matrices due to their
prevalence. When the ith diagonal pivot is chosen in the symmetric case, then the fill-in
consists of all missing edges between those neighbors of vertex i that have not yet been
eliminated. The minimum k over all elimination orders of the maximal number of higher
numbered neighbors is precisely the treewidth of the graph associated with a symmetric
matrix [2]. When such an optimal elimination order or, equivalently, a tree decomposition
of width k is given, then Gaussian elimination can trivially be done in time O(k2n), if the
pivot can always be chosen in the diagonal. This is clearly the case for symmetric positive
definite matrices. On the other hand, it long seemed impossible to get an efficient algorithm
when off-diagonal pivots have to be chosen. Note that, if the graph corresponding to a
symmetric matrix has treewidth k, then you can always find a diagonal element with at most
k off-diagonal nonzero elements in its row and column. But if this diagonal element is zero,
and the pivot is chosen somewhere else in its row, then there can be an arbitrary number of
nonzero elements in the pivot’s column. The main contribution of this paper is an algorithm
that deals with these diagonal elements.

M. Fürer, C. Hoppen, and V. Trevisan 52:3

The paper of Bodlaender et al. [2] is dedicated to the approximation of treewidth, path-
width, and minimum elimination tree height. (Pathwidth is defined by tree decompositions
where the tree is required to be a path.) In this context, they discuss the important matrix
tasks of Cholesky factorization (A = LLT) and Gaussian elimination for sparse matrices.
These tasks have efficient FPT algorithms parameterized by treewidth or pathwidth, while
their parallel complexity is determined by the minimum elimination tree height.

A recent paper of Fomin et al. [9] explores topics very similar to ours. For a matrix1 with
a given tree decomposition of width k, these authors present various efficient algorithms. In
time O(k3n) they solve systems of linear equations, compute the determinant and the rank of
a matrix. These problems are also solved by our approach, in the case of symmetric matrices.
They also solve various matching and flow problems and compute an O(k2) approximation
to treewidth in kO(1)n logO(1) n time.

Here, we design a dynamic programming algorithm with running time O(k2n) to find a
diagonal matrix that is congruent to an input symmetric matrix M of order n, provided that
a tree decomposition of width k for the underlying graph G is part of the input. In particular,
for bounded treewidth, we find a linear-time solution to this problem. To achieve our goal,
we were inspired by an algorithm with the same purpose for graphs with small clique-width
(clique-width is defined based on another structural decomposition introduced by Courcelle
and Olariu [4]). This algorithm was proposed by Jacobs and the current authors [12].

Astonishingly, the problem with the treewidth parameter turned out to be more challen-
ging. This is somewhat counterintuitive and unusual, because graphs of bounded treewidth
are also of bounded clique-width. Clearly, there is no direct implication. There are graphs
whose clique-width is exponentially bigger than their treewidth [3]. However the implication
of a running time of 2O(k)n for a polynomially solvable problem is rather unimpressive and
useless. The conclusion in the current paper is stronger. It is also much more useful, because
practical examples of sparse matrices often have small treewidth, while a pattern of large
minors with the same entry, typical of bounded clique-width matrices, is rather unusual.

As [9] and [12], the current paper fits into the recent trend “FPT within P”, which
investigates fundamental problems that are solvable in polynomial time, but for which a
lower exponent may be achieved using an FPT algorithm that is also polynomial in terms of
the parameter k (see [14]). For our problem, it does not seem that O(poly(k)n) algorithms
are possible for graphs of fusion-width or multi-clique-width k [10, 11]. For some problems,
like the independent set problem, there are algorithms whose running time as a function
of these parameters is not worse than as a function of the clique-width, even though the
clique-width can be exponentially larger. An O(k2n) algorithm for multi-clique-width k

would imply the same time bound when k is the clique-width or the tree-width.

I Theorem 1. Given a symmetric matrix M of order n and a tree decomposition T of width
k for the underlying graph of M , algorithm CongruentDiagonal (see Sect. 3) produces a
diagonal matrix D congruent to M in time O(k|T |+ k2n).

Naturally, we assume throughout this paper, that the input matrix M is given in a
compact form because, in standard form, just reading M would already take quadratic time.
A possible representation could be a list of triples (i, j,mij) containing all nonzero entries.
For convenience, we assume the value muv for u 6= v is just attached to the edge uv in
the given tree decomposition. Likewise the value muu is attached to the vertex u. This
representation could be obtained efficiently from the list representation. We will not discuss

1 The matrices in [9] are not necessarily symmetric (in fact, not necessarily square), and they associate
an m× n-matrix with a bipartite graph whose partition classes have size m and n.

ICALP 2020

52:4 Efficient Diagonalization of Symmetric Matrices

such a transformation even though it is not trivial. An interesting discussion by Bodlaender
et al. [1] shows how a data structure of size O(kn) enables an O(k) test whether two given
vertices are adjacent, a detail that had previously often been overlooked.

Our paper is organized as follows. In Section 2, we define the concept of an edge-explicit
tree decomposition and state auxiliary results about it. We then describe our algorithm in
Section 3 and justify why it works as claimed, ending with an example.

2 Edge-explicit tree decomposition

In this paper, we consider graph decompositions based on the concept of nice tree decomposi-
tion, introduced by Kloks [15]. The current variation is due to Fürer and Yu [13], and to
distinguish it from the original version, we call it an edge-explicit tree decomposition. (Nice
tree decompositions with explicit nodes to introduce edges have been considered by Cygan
et al. [6] before.) A rooted tree decomposition T of a graph G whose nodes are associated
with bags B1, . . . , Bm is edge-explicit if each node i is of one of the following types:
(a) (Leaf) The node i is a leaf of T ;
(b) (Introduce Vertex) The node i introduces vertex v if it has a single child j, v /∈ Bj

and Bi = Bj ∪ {v}.
(c) (Introduce Edges) The node i introduces edges if it has a single child j and |Bi| = |Bj |.

This node is labelled by a vertex v ∈ Bi and inserts all edges {u, v} of E(G) such that
u ∈ Bi.

(d) (Forget) The node i forgets vertex v if i has a single child j, v /∈ Bi and Bj = Bi ∪ {v};
(e) (Join) The node i is a join if it has two children j and `, where Bi = Bj = B`.
Unlike the other operations, the vertex v whose adjacencies are introduced by an Introduce
Edges node must be given as part of the operation. We assume that every edge uv ∈ E is
introduced exactly once. In fact, for every edge uv, we will further suppose that, if j is the
node that introduces the edge uv and it is labelled by vertex v, then the parent of j forgets v.
Another assumption that will simplify our discussion is that Br = ∅ for the root r of the
tree, so that every vertex will be forgotten.

For constant k, Kloks [15] shows how to construct a nice tree decomposition of size at most
4n from a k-tree in time O(n). We want to construct an edge-explicit tree decomposition from
an arbitrary tree decomposition efficiently. With the help of the given tree decomposition of
G of width k, we could embed G into a k-tree, apply the algorithm of Kloks, and finally add
the Introduce Edges nodes. For our application, we want to analyze the dependence of the
time on k precisely. For this purpose, we do a direct construction avoiding the k-trees.

I Lemma 2. From a tree decomposition of width k and m nodes, an edge-explicit tree de-
composition of the same width k with less than 5n nodes can be computed in time O(k(m+n)).

Proof. We assume that all bags are given by a sorted list of their vertices. If these lists were
unsorted, we could trivially sort them all in time O((k log k)m), or in a more sophisticated
manner in time O(km). As an additional preprocessing step, we produce a new node with
empty bag and declare it to be the root. It is connected to an arbitrary node of the original
tree decomposition.

Now we modify the tree decomposition in a sequence of depth-first tree traversals. Some
of these traversals could be combined, but obviously without improving the asymptotic
running time. During the first traversal, every node whose bag is contained in the bag of
its parent is merged with the parent. Initially, the number of nodes m is not bounded by
any function of the number of vertices n, because many subtrees could represent the same
subgraph. From our argument below, it follows that the tree has a size less than 4n after
this step.

M. Fürer, C. Hoppen, and V. Trevisan 52:5

In four more depth-first traversals, we produce an edge-explicit tree decomposition. In
the second traversal, whenever the bag of a node has size less than the size of the bag of
its parent, we add some nodes from the parent until both bags have the same size. This
is a crucial step. Avoiding it, could increase the number of nodes in the fourth depth-first
traversal to Ω(kn).

In the third traversal, all nodes with more than one child are replaced by binary trees
with identical bags such that the original children appear as children of their leaves. In
the fourth traversal, for any node i with a single child j, if necessary, some new nodes are
inserted such that the bags only change by one vertex in each step. This is done from j

to i by a sequence of nodes alternating between Forget nodes and Introduce Vertex nodes
possibly followed by more Forget nodes. Now we have a nice tree decomposition, which we
will show to have at most 4n nodes. Finally, in the fifth depth-first traversal, immediately
below every Forget node of a vertex v, we insert an Introduce Edges node introducing the
edges to v, to make the nice tree decomposition edge-explicit.

Now we count the nodes. Note that the root and the Leaf nodes are incident with a single
edge, the Join nodes are incident with three edges and the other nodes are incident with two
edges. As a consequence, there is one less Join node than Leaf node. Every vertex can be
forgotten only once. Thus the number of Forget nodes is at most n. Between every Leaf
node and the first Join node above it in the tree, there is at least one Forget node, otherwise,
the the leaf would have been merged with its parent in the first traversal. Thus there are
at most n Leaf nodes and at most n − 1 Join nodes. The single child of every Introduce
Vertex node is a Forget node. The same is true for the parent of every Introduce Edges node.
Therefore, the number of Introduce Vertex nodes and and the number of Introduce Edges
nodes are at most n each. J

I Remark 3. The somewhat wasteful second traversal could be avoided. Its effect is to push
Introduce Vertex nodes down the tree in order to avoid some of them when the corresponding
vertices are introduced in leaves. This guarantees a bound of O(n) rather than O(kn) on the
number of Introduce Vertex nodes.

Without changing the asymptotic running time nor the treewidth, a tree decomposition
with typically many smaller bags could be obtained by allowing Introduce Vertex nodes
introducing many vertices at once. For our application, this would work, because handling a
node introducing many vertices could still be done in time O(k2).

For later use, we state an auxiliary result that records facts about an edge-explicit tree
decomposition. We do not include a proof, as it follows directly from the definition of this
concept. Let G = (V,E) be a graph with tree decomposition T , whose bags are B1, . . . , Bm.
For v ∈ V and a node j of T , let T (v) and Tj be the subtree of T induced by the nodes
containing v and the branch of T rooted at j, respectively.

I Lemma 4. In an edge-explicit tree decomposition T of a graph G = (V,E), the following
statements hold.
(a) Every v ∈ V is forgotten exactly once in T .
(b) Let uv ∈ E and let i be the node that introduces the edge uv. If ` is an ancestor of i and

` is a join or a node that introduces a vertex, then {u, v} 6⊆ B`.
(c) For every v ∈ V , the subtree T (v) of T is rooted at the child of the node that forgets v.

Moreover, the leaves of T (v) are precisely the leaves of T that contain v and the nodes
of T that introduce v.

(d) Suppose i forgets vertex v and j is its child. If w /∈ Bi and T (v) ∩ T (w) 6= ∅, then T (w)
is a subtree of Tj. In particular, T (v) is a subtree of Tj.

ICALP 2020

52:6 Efficient Diagonalization of Symmetric Matrices

3 The Algorithm

We now describe our diagonalization algorithm, which we call CongruentDiagonal. Let M
be a symmetric matrix of order n and let G = (V,E) be the underlying graph with vertex
set V = [n] associated with it. We wish to find a diagonal matrix congruent to M . Let T be
an edge-explicit tree decomposition of G of width k. The algorithm works bottom-up in the
rooted tree T , so we order the nodes 1, . . . ,m of T in post-order and operate on a node i
after its children have been processed. It is well-known that two matrices are congruent if we
can obtain one matrix from the other by a sequence of pairs of elementary operations, each
pair consisting of a row operation followed by the same column operation. In our algorithm
we only use congruence operations that permute rows and columns or add a multiple of a row
and column to another row and column respectively. To achieve linear-time we must operate
on a sparse representation of the graph associated with M , rather than on the matrix itself.

We start with a high-level description of the algorithm, which is summarized below.
Each node i in the tree produces a pair of matrices (N (1)

i , N
(2)
i), which may be combined

into a symmetric matrix Ni of order at most 2(k + 1). The algorithm traverses the tree
decomposition from the leaves to the root so that, at node i, the algorithm either initializes a
pair (N (1)

i , N
(2)
i), or it produces (N (1)

i , N
(2)
i) based on the matrices produced by its children,

transmitting the pair to its parent. During this step, the algorithm may also produce diagonal
elements of a matrix congruent to M . These diagonal elements are not transmitted by a
node to its parent, but are appended to a global array as they are produced. At the end of
the algorithm, the array consists of the diagonal elements of a diagonal matrix D that is
congruent to M .

Algorithm 1 High level description of the algorithm CongruentDiagonal.

CongruentDiagonal(M)
input: an edge-explicit tree decomposition T of the underlying
graph G associated with M of width k and the nonzero entries of M

output: diagonal entries in D ∼= M

Order the nodes of T as 1, 2, . . . ,m in post order
for i from 1 to m do

if is-Leaf(i) then construct (N (1)
i , N

(2)
i)=LeafBox(Bi)

if is-IntroduceVertex(i) then construct (N (1)
i , N

(2)
i)=IntroVertexBox(Bi)

if is-IntroduceEdge(i) then construct (N (1)
i , N

(2)
i)=IntroEdgesBox(Bi)

if is-Join(i) then construct (N (1)
i , N

(2)
i)=JoinBox(Bi)

if is-Forget(i) then construct (N (1)
i , N

(2)
i)=ForgetBox(Bi)

In the remainder, we shall describe each operation in detail and justify that the algorithm
CongruentDiagonal yields the desired output. Step i of the algorithm refers to the ith
iteration of the loop above, and we assume that Step i processes the node i. To describe
the matrix produced by each node, we need the concept of a matrix M = (mij) in row
echelon form. This means that mij = 0 for all j < i. Moreover, let the pivot of row i be
the first j such that mij 6= 0, if such an element exists. We require that distinct rows have
different pivots.

Each matrix Ni produced by a node on the tree has the form

Ni = N
(0)
i N

(1)
i

N
(1)T
i N

(2)
i

, (1)

M. Fürer, C. Hoppen, and V. Trevisan 52:7

where N (0)
i is a matrix of dimension k′i × k′i whose entries are zero, N (2)

i is a symmetric
matrix of dimension k′′i × k′′i and N (1)

i is a k′i × k′′i matrix in row echelon form. Moreover,
0 ≤ k′i ≤ k′′i ≤ k + 1. Observe that k′1 can be zero, in which case we regard N (0)

i and N (1)
i as

empty. An important fact about Ni is that each of its rows (and the corresponding column) is
associated with a vertex of G (equivalently, a row of M). Let V (Ni) denote the set of vertices
of G associated with the rows of Ni. We say that the k′i rows in N

(0)
i have type-i and the

k′′i rows of N (2)
i have type-ii. This is represented by the partition V (Ni) = V1(Ni) ∪ V2(Ni),

where V1(Ni) and V2(Ni) are the vertices of type-i and type-ii, respectively. As it turns
out, the vertices of type-ii are precisely the vertices in Bi. When proving facts about the
algorithm, we shall often refer to the matrix Ni as the result of processing Bi, even if the
actual output is the pair (N (1)

i , N
(2)
i).

The structure of the matrix Ni is described by the following lemma.

I Lemma 5. For all i ∈ [m], the matrix Ni defined in terms of the pair (N (1)
i , N

(2)
i) produced

by node i satisfies the following properties:
(a) 0 ≤ k′i ≤ k′′i ≤ k + 1.
(b) N (1)

i is a matrix in row echelon form.
(c) V2(Ni) = Bi.

To give an intuition about how the algorithm works, consider that we are trying to
apply the strategy for Gaussian elimination described in the introduction. Vertices of type-ii
would represent the rows that have never been used to eliminate elements of other rows,
while vertices of type-i would be the nonzero rows that have already been used to eliminate
elements in other rows, but for which the basic strategy of using the diagonal element as a
pivot failed because it was equal to 0. The algorithm keeps these rows in a temporary buffer,
which is maintained in row echelon form to make sure that its size k′ satisfies k′ ≤ k + 1. In
the process of maintaining row echelon form, some of these rows become diagonalised. In
our algorithm, to preserve congruence, we perform the same Gaussian operations on rows
and columns. Any row v of the input matrix M begins as a type-ii row. It can either be
diagonalized during the application of ForgetBox to the node that forgets v, or it becomes a
type-i row at this step, and finally becomes diagonalized in a later application of JoinBox
or ForgetBox. Finally, we discuss the content of the boxes. Let M̃(i) be the matrix that
would be obtained by performing all row and column operations performed by the algorithm
up to step i to the original matrix M . It turns out that, for a type-i row u in Ni and any
row v in the matrix, the entries uv and vu in M̃(i) and Ni coincide, if v ∈ V (Ni), and the
entries uv and vu in M̃(i) are equal to 0, if v /∈ V (Ni). This is consistent with the intuition
that rows of type-i have already been partially diagonalized and that their diagonal elements
are 0. However, this connection does not hold in general for the entries of M̃(i) and N (2)

i ,
as N (2)

i can only capture changes the operations made for nodes in its branch of the tree
decomposition, but vertices of type-ii could simultaneously lie in many different branches.
This needs to be dealt with when looking at the effect of JoinBox.

To record the diagonal entries produced by the algorithm, let Di be the set of all pairs
(v, dv), where v is a vertex of G (equivalently, a row of M) and dv is the diagonal entry
associated with it, produced up to the end of step i. Let π1(Di) and π2(Di) be the projections
of Di onto their first and second coordinates, respectively, so that π1(Di) is the set of rows
that have been diagonalized up to the end of step i and π2(Di) is the (multi)set of diagonal
elements found up to this step. Note that, if we only require the algorithm to produce the
diagonal entries of a diagonal matrix that is congruent to the input matrix, it is not necessary
to actually keep track of the particular pairs in Di.

ICALP 2020

52:8 Efficient Diagonalization of Symmetric Matrices

Let M0 be the input matrix M . Let M̃(i) be the matrix that is congruent to M obtained
by performing the row and column operations performed by the algorithm up to step i. Let
Mi be the matrix obtained from M by replacing by 0 any entry muv such that u 6= v and
the edge uv has not been introduced in Ti, or such that u = v and T (v) ∩ Ti = ∅. Let
M̃i be the matrix that is congruent to Mi produced by performing the row and column
operations performed by the algorithm for all nodes in Ti, in the order in which they have
been performed. We only keep track of the matrices M̃(i),Mi and M̃i to prove the correctness
of the algorithm, they are not stored by the algorithm. In what follows, given S ⊂ V and
a matrix Q whose rows and columns are indexed by V , we write Q[S] for the principal
submatrix of M indexed by S. Moreover, if u, v ∈ V , Q[u, v] denotes the entry uv in Q.

Our main technical lemmas control the relationship between Ni and the diagonal elements
produced in step i with the matrices Mi, M̃i and M̃(i). At the start of the algorithm, we set
M̃(−1) = M̃(0) = M , D−1 = D0 = ∅, T0 = ∅ and V (N0) = ∅. The matrices N0, M0 and M̃0
are empty.

I Lemma 6. The following facts hold for all i ∈ {0, . . . ,m}.
(a) M̃(i) and M̃i are symmetric matrices congruent to M and Mi, respectively.
(b) Di−1 ⊆ Di.
(c) If a multiple of row (or column) v has been added to a row (or column) u in step i, then

v ∈ π1(Di \Di−1) ∪ V1(Ni) and u ∈ π1(Di \Di−1) ∪ V (Ni).

The second lemma relates subtrees T (v) with the matrices produced by the algorithm.

I Lemma 7. The following facts hold for all i ∈ {0, . . . ,m}.
(a) If v ∈ π1(Di) ∪ V1(Ni) and Ti ∩ T (v) 6= ∅, then T (v) is a subtree of Ti.
(b) Let v be such that T (v) ∩ Ti 6= ∅. Then v ∈ V (Ni) ∪ π1(Di).
(c) If v ∈ π1(Di \Di−1) ∪ V (Ni), then Ti ∩ T (v) 6= ∅.

The third result relates the entries of the matrices Ni and the set D produced by the
algorithm with the entries of M̃(i) and M̃i.

I Lemma 8. The following facts hold for all i ∈ {0, . . . ,m}.
(a) If T (v) ∩ T (w) = ∅ and M̃(i)[v, w] 6= 0, then v, w ∈ V (Nj), where j ≤ i is the largest

index for which T (v) ∩ Tj 6= ∅ or T (w) ∩ Tj 6= ∅. For M̃i, M̃i[v, w] 6= 0 only if
v, w ∈ V (Ni).

(b) If (v, dv) ∈ Di, the row (and column) associated with v in M̃(i), consists of zeros, with
the possible exception of the vth entry, which is equal to dv. If Ti ∩ T (v) 6= ∅, then the
row (and column) associated with v in M̃i satisfy the same property.

(c) If v ∈ V1(Ni), then the row (and column) associated with v in M̃i coincides with the row
(and column) associated with v (restricted to the elements of u ∈ V (Ni)) in M̃(i). The
entries uv and vu are equal to 0 if u /∈ Bi and are equal to the corresponding entries in
Ni if u ∈ Bi. Moreover, the entries uv and vu of M̃(i) for u /∈ V (Ni) are equal to 0.

(d) Assume that u, v ∈ Bi. The entry uv of M̃i is equal to the entry uv of N (2)
i .

The proof of Lemmas 6, 7 and 8 is by induction on i. As M0 = M , Lemma 6(a) is
obviously true for i = 0, while Lemma 8(a) holds by definition of tree decomposition. The
remaining items are vacuously true.

Before detailing each step of the algorithm, we show that, if the above lemmas hold
for i = m, where m is the the number of nodes in the tree decomposition, then Algorithm
CongruentDiagonal correctly computes a diagonal matrix congruent to M . To see why this
is true, by Lemma 6(a), we know that M is congruent to M̃(m). Moreover, by Lemma 8(b),

M. Fürer, C. Hoppen, and V. Trevisan 52:9

if (v, dv) ∈ Dm, then the row (and column) associated with v in M̃(m) consists of zeros,
with the possible exception of the vth entry, which is equal to dv. It remains to prove that
π1(D) = V . To this end, let v ∈ V and let i be the node that forgets v given by Lemma 4(a).
Let j be its child. Since v ∈ Bj , we have T (v) ∩ Ti 6= ∅, so that v ∈ V1(Ni) ∪ π1(Di) by
Lemma 7(b) (we are using that v /∈ Bi = V2(Ni), a consequence of Lemma 5(c)). Then
T (v) ⊂ Ti by Lemma 7(a). If v ∈ π1(Di) we are done, so assume that v ∈ V1(Ni). Let ` be
the parent of i. By Lemma 7(b), v ∈ V1(N`)∪π1(D`). We would again be done if v ∈ π1(D`),
otherwise we repeat the argument to show that v ∈ V (Np), where p is the parent of `. This
argument may be repeated inductively. The result now follows from the fact that the root m
of the tree satisfies Bm = ∅, which implies that V2(Nm) = ∅ by Lemma 5(c). This implies
that V1(Nm) = ∅ by Lemma 5(a), as required.

We now describe each step of Algorithm CongruentDiagonal. When the node is a leaf
corresponding to a bag Bi of size bi, then we apply procedure LeafBox. This procedure only
initializes a matrix Ni to be transmitted up the tree. The matrix Ni is such that k′ = 0 and
k′′ = bi, where N (2)

i is the diagonal matrix such that, for every v ∈ Bi, the entry vv is given
by the element vv in M . Observe that no off-diagonal entries appear in this initialization, as
the edges involving vertices in Bi have yet to be introduced.

LeafBox(Bi)
input: a set Bi of size bi

output: a matrix Ni = (N (1)
i , N

(2)
i)

Set N
(1)
i = ∅

N
(2)
i is a diagonal matrix of order bi

for each vertex v ∈ Bi set entry vv of N
(2)
i as mvv.

Figure 1 Procedure LeafBox.

By construction, the matrix Ni defined by LeafBox satisfies the properties of Lemma 5.
It is not hard to show that, if Lemmas 6, 7 and 8 hold up to the end of step i− 1 and step i
processes a leaf Bi, the lemmas must also hold at the end of step i.

Next, we explain the procedures associated with nodes of type IntroduceVertex and
IntroduceEdge. For vertices, the input is the set Bi, the vertex v that has been introduced
and the matrix Nj = (N (1)

j , N
(2)
j) obtained after processing the child Bj of Bi. The matrix

Ni is obtained from Nj by adding a new type-ii row/column corresponding to vertex v (this
becomes the last row/column of the matrix). This row is zero everywhere with the exception
of the diagonal entry vv, which is equal to mvv.

For edges, the input is the set Bi, a vertex v ∈ Bi, the set ΓBi
(v) of neighbors of v in Bi

and the matrix Nj = (N (1)
j , N

(2)
j) produced after processing the child Bj of Bi. The matrix

Ni is obtained from Nj by replacing the entries uv and vu in N (2)
j , which are equal to some

value α, by α+ β, where β is the entry uv in M .
It is obvious that the matrices Ni produced by IntroVertexBox and IntroEdgesBox

satisfy the properties of Lemma 5. In both cases, no row/column operation is performed,
M̃(i) = M̃(i− 1) and Di = Di−1.

We now address the operation associated with nodes of type join. Let i be a node of
type join and let Nj and N` be the matrices transmitted by its children, where j < ` < i.
By Lemma 5(c) and the definition of the join operation, we have V2(Nj) = V2(N`). By
Lemma 7(a), we have V1(Nj) ∩ V1(N`) = ∅.

ICALP 2020

52:10 Efficient Diagonalization of Symmetric Matrices

IntroVertexBox(Bi, v,Nj)
input: a node i with bag Bi, child j, Bj = Bi − v, and Nj = (N (1)

j , N
(2)
j)

output: a matrix Ni = (N (1)
i , N

(2)
i)

N
(1)
i = N

(1)
j

N
(2)
i = N

(2)
j

Add zero row and zero column v to N
(2)
i

Add diagonal element vv to N
(2)
i as mvv

Add zero column v to N
(1)
i

Figure 2 Procedure IntroVertexBox.

IntroEdgesBox(Bi, v,ΓBi
(v), Nj)

input: v ∈ Bi, ΓBi
(v) and a matrix Nj = (N (1)

j , N
(2)
j)

output: a matrix Ni = (N (1)
i , N

(2)
i)

N
(1)
i = N

(1)
j

N
(2)
i = N

(1)
j

For all u ∈ ΓBi
(v), set entries uv and vu of N

(2)
i as N

(2)
i [uv] +muv

Figure 3 Procedure IntroEdgesBox.

The JoinBox operation first creates a matrix N∗i whose rows and columns are labelled by
V1(Nj) ∪ V1(N`) ∪ V2(Nj) with the structure below. Assume that |V1(Nj)| = r, |V1(N`)| = s

and |Bi| = t.

N∗i =
0r×r 0r×s N

(1)
j

0s×r 0s×s N
(1)
`

N
(1)T
j N

(1)T
` N

∗(2)
i

, (2)

where N∗(2)
i = N

(2)
j +N

(2)
` −Mi[Bi]. We observe that, at this point, Mi[Bi] is a diagonal

matrix, as no edges with both endpoints in Bi may have been introduced by Lemma 4(b).
Note that the matrix

N
∗(1)
i = N

(1)
j

N
(1)
`

is an (r + s)× t matrix consisting of two matrices in row echelon form on top of each other.
We perform row and column operations on N∗i involving rows associated with V1(Nj) (the
left rows) and V1(N`) (the right rows) to turn N∗i into a matrix N∗(1)

i in row echelon form.
To do this, we proceed by steps in which we always add a multiple of a left or right row (and
the corresponding column) to a right row (and the corresponding column): to choose the
next operation, at each step we look at the pivots of the right rows and select the leftmost
such pivot that coincides with a pivot of a left row or with the pivot of another right row
(say w and v are the right and left/right rows that satisfy this, and j is the pivot. At the
first step, v is always a left row). If Rw and Cw are the row and column corresponding to w,
while αj = Rw(j) = Cw(j) and βj = Rv(j) = Cv(j), we define

Rw ← Rw −
αj

βj
Rv, Cw ← Cw −

αj

βj
Cv.

M. Fürer, C. Hoppen, and V. Trevisan 52:11

JoinBox(Bi, Nj , N`)
input: a node i with bag Bi and matrices Nj , N` associated with its two children
output: a matrix Ni = (N (1)

i , N
(2)
i)

N
(2)
i = N

(2)
j +N

(2)
`

For every v ∈ Bi, set the entry vv of N
(2)
i as N

(2)
i [v, v]−mvv

Construct N
(1)∗
i =

[
N

(1)
j

N
(1)
`

]
Do row and column operations on N

(1)∗
i , putting it in row echelon form

For each zero row of N
(1)∗
i (indexed by a vertex u), add (u, 0) to Di

N
(1)
i is N

(1)∗
i with zero row/columns removed

Figure 4 Procedure JoinBox.

This eliminates the pivot of row w. Note that the entries in N (2)
j are not affected by these

operations. Moreover, for all u, v ∈ V1(Nj) ∪ V1(N`), the entry uv in N∗i is equal to 0.
As we do this, we may create rows and columns (associated with the right rows) whose

entries are all zero (for instance, this will certainly happen if r + s > t). If Zi denotes
the set of vertices associated with rows whose entries are all zero, where |Zi| = z, we let
Di = Di−1 ∪ {(v, 0) : v ∈ Zi}, we remove the rows and columns associated with vertices in
Zi from N

∗(1)
i to produce the matrix

Ni = 0k′×k′ N
(1)
i

N
(1)T
i N

(2)
i

, (3)

where k′ = r + s− z, k′′ = t and N (1)
i is a matrix of dimension k′ × k′′ in row echelon form

and N (2)
i = N

∗(2)
i . We observe that Ni satisfies the properties of Lemma 5. Items (b) and

(c) are satisfied by construction. For (a), the inequality k′ ≤ k′′ is a consequence of the fact
that N (1)

i is in row echelon form, while k′′ ≤ k + 1 follows from k′′ = |Bi|. Proving that
Lemmas 6, 7 and 8 hold after step i uses induction and the properties discussed above.

To conclude the description of the algorithm, we describe ForgetBox. Assume that i
forgets vertex v and let j be its child, so that Bi = Bj \ {v}. By Lemma 4(c), we know
that T (v) is a subtree of Tj , and therefore all edges incident with v have been introduced.
This procedure starts with N∗i = Nj and produces a new matrix Ni so that v ∈ V1(Ni) or
v ∈ π1(Di \Di−1).

We look at N∗i in the following way:

N∗i =
dv xv yv

xT
v 0k′×k′ N

∗(1)
i

yT
v N

∗(1)T
i N

∗(2)
i

. (4)

Here, the first row and column represent the row and column in Nj associated with v, while
N
∗(1)
i and N∗(2)

i are given by the submatrices of N (1)
j and N (2)

j obtained by removing the
row and/or column associated with v. In particular xv and yv are row vectors of size k′j and
k′′j − 1, respectively.

ICALP 2020

52:12 Efficient Diagonalization of Symmetric Matrices

ForgetBox(Bi, v,Nj ,)
input: a node i with bag Bi, child j with Bi = Bj \ {v} and matrix Nj

output: a matrix Ni = (N (1)
i , N

(2)
i)

Ni = Nj

Perform row/column exchange so that Ni has the form of (4)
if xv is empty or 0 then

if yv is empty or 0 then
add (v, dv) to D

remove row v from Ni

else if dv 6= 0 then // Here {yv 6= 0}.
use dv to diagonalize row/column v

add (v, dv) do D and remove row v form Ni

else // Here dv = 0.
Set u = min{w : yw 6= 0}
do row and column operations inserting row v to N

(1)
i

if a zero row is obtained add (v, 0) to D and remove row from Ni

else // Here xv 6= 0.
use operations as in (5) to diagonalize rows u and v

add (v, dv) and (u, du) to D and eliminate rows v and u from Ni.

Figure 5 Procedure ForgetBox.

Depending on the properties of the vectors xv and yv, we proceed in different ways.

Case 1: xv is empty or xv = [0 · · · 0]. If yv = [0 · · · 0] (or yv is empty), we add (v, dv) to Di

and remove the row and column associated with v from N∗i to produce Ni.
If yv 6= [0 · · · 0], there are again two options. If dv = 0, the aim is to turn v into a row

of type-i. To do this, we need to insert yv into the matrix N∗(1)
i in a way that the ensuing

matrix is in row echelon form. Note that this may be done by only adding multiples of rows
of V (N∗(1)

i) to the row associated with v. At each step, if the pivot αj of the (current) row
associated with v is in the same position of the pivot βj of Ru, the row associated with
vertex u already in N∗(1)

i , we use Ru to eliminate the pivot of Rv:

Rv ← Rv −
αj

βj
Ru, Cv ← Cv −

αj

βj
Cu.

This is done until the pivot of the row associated with v may not be cancelled by pivots
of other rows, in which case the row associated with v may be inserted in the matrix (to
produce the matrix N (1)

i), or until the row associated with v becomes a zero row, in which
case (v, 0) is added to Di and we remove the row and column associated with v from N∗i
to produce Ni. If dv 6= 0, we use dv to eliminate the nonzero entries in yv and diagonalize
the row corresponding to v. For each element u ∈ Bi such that the component αv of yv

associated with u is nonzero, we perform

Ru ← Ru −
αv

dv
Rv, Cu ← Cu −

αv

dv
Cv.

When all such entries have been eliminated, we add (dv, v) to Di and we let Ni be the
remaining matrix. Observe that, in this case, N (1)

i = N
∗(1)
i , only the elements of N∗(2)

i are
modified to generate N (2)

i .

M. Fürer, C. Hoppen, and V. Trevisan 52:13

Case 2: xv is nonempty and xv 6= [0 · · · 0].
Let u be the vertex associated with the rightmost nonzero component of xv. Let αj be

this component. We use this element to eliminate all the other nonzero entries in xv, from
right to left. Let w be the vertex associated with the entry α`. We perform

Rw ← Rw −
α`

αj
Ru, Cw ← Cw −

α`

αj
Cu.

A crucial fact is that the entries corresponding to the matrix N∗(1)
i in the matrix produced

by these operations is still in row echelon form and has the same pivots as N∗(1)
i . If dv 6= 0,

we still use Ru to eliminate this element:

Rv ← Rv −
dv

2αj
Ru, Cv ← Cv −

dv

2αj
Cu.

At this point, the only nonzero entries in the (k′ + 1) × (k′ + 1) left upper corner of the
matrix obtained after performing these operations are in positions uv and vu (and are equal
to αj). We perform the operations

Ru ← Ru + 1
2Rv, Cu ← Cu + 1

2Cv, Rv ← Rv −Ru, Cv ← Cv − Cu

The relevant entries of the matrix are modified as follows:(
0 αj

αj 0

)
→
(

0 αj

αj αj

)
→
(
−αj 0

0 αj

)
. (5)

We are now in the position to use the diagonal elements to diagonalize the rows associated
with v and u, as was done in Case 1, when xv = [0, . . . , 0] and dv 6= 0. At the end of the
step, we add (v,−αj) and (u, αj) to Di.

Finally, it is time to analyze the complexity of Algorithm CongruentDiagonal, and prove
Theorem 1.

Proof. The correctness of Algorithm CongruentDiagonal follows from the Lemmas and the
justifications of every step of the algorithm as it is described throughout the paper. By
Lemma 2, the time bound of O(k|T |+ k2n) is sufficient to transform an arbitrary given tree
decomposition into an edge-efficient tree decomposition.

For the running time of the main computation, we have to analyze the procedures done at
each type of tree node. LeafBox initializes a matrix in O(k2) trivial steps. IntroVertexBox
and IntroEdgesBox use only O(k) steps. For the other procedures, the main cost comes
from row and column operations. As the matrices have order at most k + 1 each such
operation costs O(k). Regarding ForgetBox, when v is forgotten, either v is turned into a
type-i vertex, or its row and column, and possibly the row and column of another vertex
u, are diagonalized. The latter requires at most O(k) row and column operations. If v is
turned into a type-i vertex, then inserting it into the matrix N (1)

i in row echelon form takes
at most k + 1 row operations. JoinBox can be most time consuming. To insert just one
row vector into a matrix of order k in row echelon form, and preserving this property by
adding multiples of one vector to another, can require up to k+ 1 row operations. Each such
operation can be done in time O(k). To combine two matrices in row echelon form into one
such matrix, up to k + 1 row vectors are inserted. Thus the total time for this operation is
O(k3). This immediately results in an upper bound of O(k3n) for the whole computation.

ICALP 2020

52:14 Efficient Diagonalization of Symmetric Matrices

12

5

34

Figure 6 Graph with 5 labeled vertices.

To obtain an O(k|T | + k2n) bound for the whole computation, we have to employ a
different accounting scheme for the time spent to merge two matrices in row echelon form
into one during the JoinBox procedure. We notice that every row operation in any N (1)

i

creates at least one 0 entry in some row, meaning that its pivot moves at least one position
to the right or creates a zero row. For every vertex v, its row is added at most once to some
N

(1)
i , namely when v is forgotten. Its pivot can move at most k times and disappear at most

once. Thus for all n vertices together, at most (k + 1)n row operations can occur in all N (1)
i

together. This only uses time O(k2n). Thus, while during a single join procedure, Ω(k2) row
operations might be needed, the average is O(k) such operations per join procedure. J

4 Example

In this section, we illustrate how the algorithm acts on a concrete example. To this end, we
consider the graph in Figure 6. An edge-explicit tree decomposition representing this graph
may be seen in Figure 7.

1,3,4

L

1,2,4

L

1,3,4

E

3

1,2,4

E

2

1,4

F

3

1,4

F

2

1,4,5

V

5

1,4,5

V

5
1,4,5

J

1,5

F

4

1,5

E

5

1

F

5

F

1

Figure 7 An edge-explicit tree representing the graph, where the root is on the right. A label
above describes the type of node, a label below indicates which vertices or edges are introduced or
forgotten.

Note that G is the underlying graph of the symmetric matrix

M =


1 1 1 0 −1
1 0 0 2 0
1 0 1 −1 0
0 2 −1 1 0
−1 0 0 0 −1

 .

Suppose that we want to find the number of eigenvalues greater than 0 (and equal to and
less than 0). We apply our algorithm with c = 0, that is, originally M − cI = M .

Assume that we have ordered the nodes of the tree in Figure 7 in post order so that the
first five nodes are in the upper branch of Figure 7, followed by the five nodes on the lower
branch and by the five nodes starting from the node of type join. When we start, the node

M. Fürer, C. Hoppen, and V. Trevisan 52:15

Leaf calls the LeafBox with bag of vertices {1, 3, 4} producing the matrix N1 =

 1 0 0
0 1 0
0 0 1

,

whereas the node Introduce Edges labelled by vertex 3 introduces edges 13 and 34, leading
to the matrix

N3 =

 1 1 0
1 1 −1
0 −1 1

 .

The node Forget Vertex F3 receives the matrix N3 and, after exchanging rows and columns
1 and 2 (so that vertex 3 corresponds to first row), processes the matrix 1 1 −1

1 1 0
−1 0 1

 .

According to our description, we are in Case 1 of Procedure ForgetBox, with xv empty and
yv = [1,−1] 6= [0, 0]. Since dv = 1, the algorithm diagonalizes the row/columns corresponding
to v. To this end, we perform the operations R2 ← R2 − R1, followed by C1 ← C1 − C2,
producing the matrix

N3 =

 1 0 −1
0 0 1
−1 1 1

 ,

followed by the operations R3 ← R3 +R1, followed by C3 ← C3 + C1, giving 1 0 0
0 0 1
0 1 0

 .

We have diagonalized row 1, corresponding to vertex 3. Hence, the node F3 sets the diagonal

vector D = (v, dv) = (3, 1) and transmits the matrix N4 =
(

0 1
1 0

)
, whose rows are

indexed by vertices 1 and 4, respectively, to its parent. The node V 5 introduces vertex 5,
producing the matrix

N5 =

 0 1 0
1 0 0
0 0 −1

 ,

indexed by the vertices 1, 4 and 5, respectively. We notice that this matrix N is such that
N

(1)
5 is empty and N (2)

5 = N .
Working on the lower branch of the tree of Figure 7 in a similar way, we arrive at node

F2, after exchanging the rows/columns, with the matrix

N∗9 =

 0 1 2
1 1 0
2 0 1

 ,

indexing vertices 2, 1 and 4, respectively. This corresponds to Case 1 of Procedure ForgetBox,
with empty xv and yv = [1, 2], but dv = 0. We notice that, in this particular case, the matrix

N
(1)
9 = [1, 2] is already in row echelon form, so that N9 = (N (1)

9 , N
(2)
9), N (2)

9 =
(

1 0
0 1

)
, is

transmitted by F2 to its parent.

ICALP 2020

52:16 Efficient Diagonalization of Symmetric Matrices

Now the Introduce Vertex node V 5 processes the matrix N9 and produces matrix

N10 =


0 1 2 0
1 1 0 0
2 0 1 0
0 0 0 −1

 ,

where the rows are indexed by the vertices 2, 1, 4 and 5, respectively.
Now the JoinBox procedure will process the matrices N5 and N10. We first do the

operation N (2)
11 = N

(2)
10 +N

(2)
5 −MD[1, 4, 5], where MD[1, 4, 5] is the diagonal matrix whose

rows and columns are indexed by 1, 4 and 5 such that each entry ii is given by mii. We then
merge N (1)

10 on top of N (1)
5 . Since N (1)

5 is empty, these operation produce the matrix

N11 =


0 1 2 0
1 0 1 0
2 1 0 0
0 0 0 −1

 ,

whose rows index the vertices 2, 1, 4 and 5, respectively.
We now process node F4 of the tree, where the vertex 4 is forgotten. We first exchange

rows and columns so that the first row is indexed by 4. The matrix becomes

N∗12 =


0 2 1 0
2 0 1 0
1 1 0 0
0 0 0 −1

 ,

whose rows index the vertices 4, 2, 1 and 5, respectively. We look at this matrix as in equation
(4). We are in case 2 of Procedure ForgetBox with dv = 0,xv = [2],yv = [1, 0], N∗(1)

12 = [1, 0]

and N∗(2)
12 =

(
0 0
0 −1

)
. Since xv = [2], there is no operation to perform in order to put xv

in row echelon form. The goal now is to transform the left upper corner of the above matrix(
0 2
2 0

)
into a diagonal matrix. We perform the operations R2 ← R2 + 1/2R1, C2 ←

C2 + 1/2C1 followed by R1 ← R1 −R2 and C1 ← C1 − C2, obtaining the matrix

N∗12 =


−2 0 −1/2 0

0 2 3/2 0
−1/2 2 2 0

0 0 0 −1

 .

We now use the nonzero pivots obtained in order to diagonalize rows 1 and 2. To achieve
this, we perform the operations R3 ← R3 − 1/4R1, C3 ← C3 − 1/4C1, followed by R3 ←
R3 − 3/4R2, C3 ← C3 − 3/4C2. This produces the matrix

N∗12 =


−2 0 0 0

0 2 0 0
0 0 −1 0
0 0 0 −1

 .

At this point, the first two rows are diagonalized, corresponding to vertices 4 and 2. To the
diagonal vector D = (v, dv) we added the components (4,−2) and (2, 2). Node F4 transmits

the matrix N12 =
(
−1 0

0 −1

)
, corresponding the edges 1 and 5. The Introduce Edges node

M. Fürer, C. Hoppen, and V. Trevisan 52:17

E5 puts the edge 15, and the matrix returned by IntroduceEdgesBox is N13 =
(
−1 −1
−1 −1

)
in the form the Forget node F5 receives it. We see that xv is empty and yv = [−1] and

dv = −1, meaning that we are in case 2. Using dv as pivot we arrive at N∗14 =
(
−1 0

0 0

)
,

adding to the diagonal vector D the component (v, dv) = (5,−1), and returning the matrix
N14 = [0]. The final node F1 forgets the vertex 1. Since the matrix received is [0] already in
diagonal form, it adds to D the component (v, dv) = (1, 0). The diagonal vector D returned
by the algorithm is(

v

dv

)
=
(

3 4 2 5 1
1 −2 2 −1 0

)
,

meaning that M has 2 positive eigenvalues, 2 negative eigenvalues and 0 is an eigenvalue
with multiplicity 1.

References
1 Hans L. Bodlaender, Paul S. Bonsma, and Daniel Lokshtanov. The fine details of fast dynamic

programming over tree decompositions. In Gregory Z. Gutin and Stefan Szeider, editors,
IPEC, volume 8246 of Lecture Notes in Computer Science, pages 41–53. Springer, 2013.

2 Hans L. Bodlaender, John R. Gilbert, Hjálmtýr Hafsteinsson, and Ton Kloks. Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms, 18(2):238–255,
1995.

3 Derek G. Corneil and Udi Rotics. On the relationship between clique-width and treewidth.
SIAM J. Comput, 34(4):825–847, 2005.

4 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete
Appl. Math., 101(1-3):77–114, 2000.

5 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

6 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Joham M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In Proceedings of the 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, pages 150–159, 2011.

7 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

8 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

9 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Michal Pilipczuk, and Marcin Wrochna.
Fully polynomial-time parameterized computations for graphs and matrices of low treewidth.
ACM Trans. Algorithms, 14(3):34:1–34:45, 2018.

10 Martin Fürer. A natural generalization of bounded tree-width and bounded clique-width.
In Alberto Pardo and Alfredo Viola, editors, LATIN 2014: Theoretical Informatics - 11th
Latin American Symposium, Montevideo, Uruguay, March 31 - April 4, 2014. Proceedings,
volume 8392 of Lecture Notes in Computer Science, pages 72–83. Springer, 2014. doi:
10.1007/978-3-642-54423-1_7.

11 Martin Fürer. Multi-clique-width. In Christos H. Papadimitriou, editor, 8th Innovations in
Theoretical Computer Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA,
USA, volume 67 of LIPIcs, pages 14:1–14:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.ITCS.2017.14.

12 Martin Fürer, Carlos Hoppen, David P. Jacobs, and Vilmar Trevisan. Eigenvalue location in
graphs of small clique-width. Linear Algebra and its Applications, 560:56–85, 2019.

ICALP 2020

https://doi.org/10.1007/978-3-642-54423-1_7
https://doi.org/10.1007/978-3-642-54423-1_7
https://doi.org/10.4230/LIPIcs.ITCS.2017.14

52:18 Efficient Diagonalization of Symmetric Matrices

13 Martin Fürer and Huiwen Yu. Space saving by dynamic algebraization based on tree-depth.
Theory of Computing Systems, 61(2):283–304, 2017.

14 Archontia C. Giannopoulou, George B. Mertzios, and Rolf Niedermeier. Polynomial fixed-
parameter algorithms: A case study for longest path on interval graphs. Theor. Comput. Sci.,
689:67–95, 2017. doi:10.1016/j.tcs.2017.05.017.

15 T. Kloks. Treewidth: Computations and Approximations, volume 842 of Lecture Notes in
Computer Science. Springer Verlag, 1994.

16 Carl Meyer. Matrix analysis and applied linear algebra. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2000.

17 Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
18 Neil Robertson and Paul D. Seymour. Graph minors II. Algorithmic aspects of tree-width. J.

Algorithms, 7(3):309–322, 1986.
19 Donald J. Rose, R. Endre. Tarjan, and George S. Lueker. Algorithmic aspects of vertex

elimination on graphs. SIAM Journal on Computing, 5(2):266–283, 1976.
20 Donald J. Rose and Robert Endre Tarjan. Algorithmic aspects of vertex elimination on

directed graphs. SIAM Journal on Applied Mathematics, 34(1):176–197, 1978.

https://doi.org/10.1016/j.tcs.2017.05.017

	Introduction and main result
	Edge-explicit tree decomposition
	The Algorithm
	Example

