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Abstract: In this article, we define signless Laplacian matrix of a hypergraph and obtain structural proper-
ties from its eigenvalues. We generalize several known results for graphs, relating the spectrum of this
matrix to structural parameters of the hypergraph such as the maximum degree, diameter, and the chro-
matic number. In addition, we characterize the complete signless Laplacian spectrum for the class of power
hypergraphs from the spectrum of its base hypergraph.
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1 Introduction

The goal of spectral graph theory is to study structural properties of graphs by means of eigenvalues and
eigenvectors of matrices associated with them. Researchers, motivated by the success of this theory, have
studied many hypergraph matrices aiming to develop a spectral hypergraph theory. See for example [1–7].
In 2012, Cooper and Dutle presented a new approach, and in their article [8], they proposed the study of
hypergraphs through tensors, causing a revolution in this area. Consequently, the study of hypergraph from
its matrices has been put aside. Because determining the spectrum of a tensor has a high computational
cost [9], the application of this theory has its toll. Perhaps for this reason, recently, some authors have
renewed the interest to study matrix representations of hypergraphs, as for example in [10–16]. Therefore,
we believe that the study of hypergraphs through matrices remains important.

Let � be a hypergraph whose incidence matrix is B( )� . The signless Laplacian matrix of � is defined
as Q BBT( ) =� . The aim of this article is the study of this matrix. We say that the eigenvalues of Q are the
signless Laplacian eigenvalues of � . The matrix Q has many interesting properties such as being sym-
metric, non-negative, positive semi-definite, and irreducible. Thus, important theorems such as the Perron-
Frobenius theorem and Rayleigh’s principle can be inherited directly from matrix theory. In this article, we
prove generalizations of some results for this matrix in the context of graphs and show it is possible to
determine structural properties of the hypergraph from Q. For example, we show that the number of edges
of the hypergraph can be determined from the sum of its signless Laplacian eigenvalues. We also show that
the number of distinct eigenvalues of Q is larger than the diameter of the hypergraph. The spectral radius is
bounded by the degrees of the hypergraph, and the chromatic number is bounded by the spectral radius.
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An important property of the signless Laplacian matrix in the context of spectral graph theory is the
relation between the eigenvalue zero and the existence of bipartite components in the graph [17].
In an attempt to obtain similar results, we study when the signless Laplacian matrix has the eigenvalue
zero. Here, we prove that if the hypergraph has eigenvalue zero, then it is partially bipartite, and if the
hypergraph is balanced partially bipartite, then it has eigenvalue zero (see definitions in Section 5). We note
that the properties we prove here generalize the results already known for graphs, since a bipartite graph is
both partially bipartite and balanced partially bipartite.

Another interesting property for graphs is the fact that a regular graph is completely characterized by
spectral properties. Here we generalize this result by showing how to determine whether a hypergraph is
regular by analyzing its spectral radius or its principal eigenvector, according to the result below.

Theorem 1. Let � be a connected k-graph with n vertices, and ρ( )� its spectral radius. The following
statements are equivalent:
(a) � is regular;
(b) ρ kd( ) ( )=� � ;
(c) ρ kΔ( ) ( )=� � ;

(d) The principal eigenvector of Q( )� is x , ,n n
1 1

( )
= … .

As an application of our developed theory, we also study the spectrum of the signless Laplacian matrix
of the class of hypergraphs called power hypergraphs (see definition in Section 7). We show how to
construct the whole spectrum of the power hypergraph from the signless Laplacian eigenvalues of its
base hypergraph.

The remaining of the article is organized as follows. In Section 2, we present some basic definitions
about hypergraphs and matrices. In Section 3, we study the incidence matrix and exploit some properties of
line and clique multigraphs. In Section 4, we study the signless Laplacian matrix, extending many classical
results of this matrix to the context of hypergraphs. In Section 5, we study structural characteristics of a
hypergraph, such as being regular or partially bipartite, analyzing its signless Laplacian eigenvalues. In
Section 6, we correlate classical and spectral parameters of a hypergraph, such as chromatic number and
diameter, with spectral radius and number of distinct eigenvalues. In Section 7, we study the spectrum of
the signless Laplacian matrix of a power hypergraph. Finally, in Section 8, we discuss our results and
propose a few open problems.

2 Preliminaries

In this section, we shall present some basic definitions about hypergraphs and matrices, as well as termi-
nology, notation, and concepts that will be useful in our proofs. More details about hypergraphs can be
found in [18].

A hypergraph V E,( )=� is a pair composed of a set of vertices V ( )� and a set of (hyper)edges
E 2V( ) ⊆� , where 2V is the power set of V . � is said to be a k-uniform (or a k-graph) for k 2≥ if all edges
have cardinality k. For hypergraphs V E,( )=� and V E,( )′ = ′ ′� , if V V′ ⊆ and E E′ ⊆ , then ′� is a
subgraph of � .

The neighborhood of a vertex v V ( )∈ � , denoted by N v( ), is the set of vertices distinct from v, which
have some edge in common with v. The edge neighborhood of a vertex v V∈ , denoted by E v[ ], is the set of all
edges that contain v.

The degree of a vertex v V∈ , denoted by d v( ), is the number of edges that contain v. More precisely,
d v E v( ) ∣ ∣[ ]= . A hypergraph is r-regular if d v r( ) = for all v V∈ . We define the maximum, minimum, and
average degrees, respectively, as

d v δ d v d
V

d vΔ max , min , 1 .
v V v V v V

( ) { ( )} ( ) { ( )} ( )
∣ ∣

( )∑= = =

∈ ∈

∈

� � �

When we are working with more than one hypergraph, we can use the notation d v( )� , to avoid ambiguity.
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Let � be a hypergraph. A walk of length l is a sequence of vertices and edges v e v e e vl l0 1 1 2 … , where vi 1−

and vi are distinct vertices contained in ei for each i l1, ,= … . The distance between two vertices is the length
of the shortest walk connecting these two vertices. The diameter of the hypergraph is the largest distance
between two of its vertices. The hypergraph is connected, if for each pair of vertices u w, there is a walk
v e v e e vl l0 1 1 2 ⋯ , where u v0= and w vl= . Otherwise, the hypergraph is disconnected.

A multigraph is an ordered pair V E,( )=� , where V is a set of vertices and E is a multiset of pairs of
distinct, unordered vertices, called edges. Its adjacency matrix A( )� is the square matrix of order V∣ ∣, where
a 0ii = and if i j≠ , then aij is the number of edges connecting the vertices i and j.

Let M be a symmetric, square matrix of order n. We denote its characteristic polynomial by
P λ λI Mdet nM( ) ( )= − . Its eigenvalues will be denoted by λ λM Mn1( ) ( )≥⋯≥ . If x is an eigenvector from
eigenvalue λ, then the pair λ x,( ) will be called eigenpair of M. The spectral radius ρ M( ) is the largest
modulus of an eigenvalue.

3 Incidence matrix, clique, and line multigraphs

In this section, we will study the incidence matrix of a hypergraph. More specifically, we will analyze the
relationship of this matrix with two multigraphs associated with it: the line and clique multigraphs. The
results of this section are generalizations of well-known properties of the incidence matrix and line
graphs [19,20].

Definition 3.1. Let V E,( )=� be a hypergraph. The incidence matrix B( )� is defined as the matrix of order
V E∣ ∣ ∣ ∣× , where b v e, 1( ) = if v e∈ and b v e, 0( ) = otherwise. Itsmatrix of degrees D( )� is a square matrix of
order V∣ ∣, where d d iii ( )= and if i j≠ , then d 0ij = .

The clique multigraph ( )� � has the same vertices as � . The number of edges between two vertices of
this multigraph is equal to the number of hyperedges containing them in � . The vertices of the line
multigraph ( )� � are the hyperedges of � . The number of edges between two vertices of this multigraph
is equal to the number of vertices in common in the two respective hyperedges.

Example 3.2. The clique and line multigraphs of 1, ,5 , 123, 145, 345({ } { })= …� are illustrated in Figure 1.

Our first result is the following observation. We believe it is worth mentioning because it opens the
possibility of studying hypergraphs from the spectrum of multigraphs.

Theorem 2. Let � be a k-graph, B its incidence matrix, D its degree matrix, A� and A� the adjacency
matrices of its line and clique multigraphs, respectively. Then

k andB B I A BB D A .T T
= + = +� �

Figure 1: Clique ( )� � and line ( )� � multigraphs.
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Proof. LetC B BT
= . Note that cij is the number of vertices in common between the hyperedges ei and ej. So, if

i j≠ , then cij is the number of edges between the vertices i and j in the line multigraph ( )� � , otherwise
c kii = . Therefore, we conclude kC I A= + � .

Now, let M BBT
= . Note that mij is the number of hyperedges that contain at the same time the vertices i

and j. So we have m d iii ( )= for all i V∈ , and if i j≠ , then mij is the number of edges between the vertices i
and j in the clique multigraph ( )� � . Therefore, we conclude M D A= + �. □

Proposition 3. If � is a k-graph, r-regular, with n vertices and m edges, then

P λ λ k P λ r k .m n
A A( ) ( ) ( )= + − +

−

� �

Proof. Let B be the incidence matrix of � . Consider the following matrices:

U λ V
λ

UV λ
λ

VU
λ
λ λ

I B
0 I

I B
B I

I BB 0
B I

I 0
B I B B

, , .n

m

n
T

m

n
T

T
m

n
T

m
T

⎡

⎣⎢
⎤

⎦⎥
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

=

−

= ⇒ =

−

=

−

We know that VU UVdet det( ) ( )= . So,

λ λ λ λI B B I BBdet det .n
m

T m
n

T( ) ( )− = − (1)

Thus,

P λ λ
λ k

λ k λ k
λ k λ k r
λ k P λ r k

I A
I B B

I BB
I A

det
det

det
det

.

m

m
T

m n
n

T

m n
n

m n

A

A

( ) ( )

(( ) )

( ) (( ) )

( ) (( ) )

( ) ( )

= −

= + −

= + + −

= + + − −

= + − +

−

−

−

�

�

�

�

Therefore, the result follows. □

Lemma 4. Let � be a k-graph and ( )� � its line graph. If u V ( ( ))∈ � � is a vertex corresponding to the edge
e E( )∈ � , then

d u d v k.
v e

⎜ ⎟( )
⎛

⎝

( )
⎞

⎠

∑= −

∈

� �

Proof. Note that, for each v e∈ , there exist other d v 1( ) −� hyperedges containing it. That is, this vertex will
generate d v 1( ) −� edges containing u in ( )� � . Using the same argument for the other vertices of e,
we conclude that the degree of the vertex u in the line multigraph must be d u d v 1v e( ) ( ( ) )= ∑ −

∈
� � . □

4 Signless Laplacian matrix

In this section, we study some properties of the signless Laplacian matrix of a hypergraph, generalizing
important results of this matrix in the context of spectral graph theory. Those main results may be found in
the series of papers by Cvetković et al. [17,21–23] and references therein.

Definition 4.1. Let � be a hypergraph and B its incidence matrix. The signless Laplacian matrix is defined
as Q BBT( ) =� . We note that the eigenvalues of Q are the squares of the singular values of the incidence
matrix B, which is a fundamental object for hypergraph theory.

An oriented hypergraph H σ,( )= � is a hypergraph, where for each vertex-edge incidence v e,( ), a label
σ v e, 1, 1( ) { }∈ + − is given. In [4], Reff and Rusnak defined the incidence matrix of an oriented hypergraph

HB( ) by v e σ v e, ,b( ) ( )= if v e∈ and v e, 0b( ) = otherwise. The Laplacian matrix for oriented hypergraphs is
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defined as H TL BB( ) = . We observe that if σ v e, 1( ) = for all vertex-edge incidence v e,( ), then this defini-
tion coincides with our definition of signless Laplacian matrix.

Remark 4.2. If � is a k-graph, its signless Laplacian matrix Q has some simple but useful properties, such
as being symmetric, non-negative, and positive semi-definite. Furthermore, if � is connected, then Q is
irreducible. Therefore, Rayleigh’s principle and the Perron-Frobenius theorem are applicable to this matrix.
The normalized positive vector obtained in the Perron-Frobenius theorem is referred to as principal eigen-
vector of Q. Sometimes, we will denote the spectral radius ρ Q( ) as ρ( )� , and say it is the spectral radius
of � .

We finish this section proving some basic properties of the signless Laplacian matrix.

Lemma 5. Let � be a k-graph and qQ ij( )= its signless Laplacian matrix. Then, for each i V∈ , we have

q kd i .
j V

ij ( )∑ =

∈

Proof. By the characterization of signless Laplacian matrix of Theorem 2, we have

q d i a d i k d i kd i1 . □
j V

ij
j N i

ij( ) ( ) ( ) ( ) ( )
( )

∑ ∑= + = + − =

∈ ∈

Proposition 6. If � is a k-graph with n vertices and m edges, then

P λ λ k P λ k .m n
A Q( ) ( ) ( )= + +

−

�

Proof. Note that, by equation (1), we have

P λ λ λ k
λ k λ k λ k P λ k

I A I B B
I BB

det det
det .

m m
T

m n
n

T m n
A

Q

( ) ( ) (( ) )

( ) (( ) ) ( ) ( )

= − = + −

= + + − = + +

− −

��

Therefore, the result follows. □

Remark 4.3. Here we highlight two interesting consequences of Proposition 6. First, if λ is an eigenvalue of
A�, then λ k≥ − . Second, we see that ρ ρ kA Q( ) ( )= −� .

We now introduce the following notation. Let V E,( )=� be a hypergraph. For each non-empty subset
of vertices α v v V, , t1{ }= … ⊂ and each vector xx i( )= of dimension n V∣ ∣= , we denote x α x xv vt1( ) = + ⋯+ .
Under these conditions, we can write

d u x a x x eQx .u u
w N u

uw w
e E u

( ) ( ) ( )
( ) [ ]

∑ ∑= + =

∈ ∈

Let � and � be k-graphs. We define and denote its Cartesian product ×� � , as the k-graph, with the
following sets of vertices V V V( ) ( ) ( )× = ×� � � � and edges E v e v V e E: ,( ) {{ } ( ) ( )}× = × ∈ ∈� � � �

a u u V a E: ,{ { } ( ) ( )}∪ × ∈ ∈� � .

Proposition 7. If � and � are two k-graphs with signless Laplacian eigenvalues μ of multiplicity m1 and λ of
multiplicity m2, respectively, then μ λ+ is an eigenvalue of Q( )×� � with multiplicity m m1 2⋅ .

Proof. Suppose x is an eigenvector of λ for Q( )� and y is an eigenvector of μ for Q( )� . Consider a vertex
v u,( ) of ×� � and define a vector z by z y xv u v u,( ) = . Thus,

z α y x e y e x λy x μy x μ λ zQz .v u
α E e E

v
a E

u v u v u v u, ,
v u u v,

( ) ( ) ( ) ( ) ( )( ) ( )

[( )] [ ] [ ]

∑ ∑ ∑= = + = + = +

∈ ∈ ∈

Therefore, the result is true. □
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The result below may be seen as a corollary of Proposition 4.4 of [3].

Proposition 8. Let � be a k-graph with n vertices. For each vector x n�∈ , we have

x ex Qx .T

e E

2[ ( )]∑=

∈

Proof. Note that, for each edge e E∈ , it is true that x eB xT
e( ) ( )= . Therefore,

x ex Qx x BB x B x B x . □T T T T T T

e E

2( ) ( ) ( ) [ ( )]∑= = =

∈

Proposition 9. Let � be a k-graph. If ′� is a subgraph of � , then

ρ ρ .( ) ( )′ ≤� �

Proof. Let x be a unitary eigenvector of ρ( )′� . Define a new vector x of dimension n V∣ ( )∣= � by x xi i=

if i V ( )∈ ′� and x 0i = otherwise. By Rayleigh’s principle, we have

ρ x e x e ρ . □
e E e E

2 2( ) [ ( )] [ ( )] ( )
( ) ( )

∑ ∑≥ = = ′

∈ ∈ ′

� �

� �

5 Structural and spectral properties

In this section, we will determine structural characteristics of a hypergraph from its signless Laplacian
spectrum. More precisely, we will study regular and partially bipartite uniform hypergraphs through their
signless Laplacian eigenvalues.

Theorem 1. Let � be a connected k-graph with n vertices and ρ( )� its spectral radius. The following
statements are equivalent:
(a) � is regular;
(b) ρ kd( ) ( )=� � ;
(c) ρ kΔ( ) ( )=� � ;

(d) the principal eigenvector of Q( )� is x , ,n n
1 1

( )
= … .

Proof. We will prove the result through the following chain of implications:

a b d c a .( ) ( ) ( ) ( ) ( )⇒ ⇒ ⇒ ⇒

If � is r-regular, then for each vertex u, we have E ru∣ ∣[ ] = . Observing that the sum of the entries in the
row v of this matrix is equal to k times the degree of v, we conclude that

x e krQ1 .u
e E u

( ) ( )

[ ]

∑= =

∈

That is, 1 1, 1, ,1( )= … is an eigenvector associated with the eigenvalue kr, and since � is regular, then
r d( )= � . Since the hypergraph is connected, we can apply the Perron-Frobenius theorem, so we have
that ρ kd( ) ( )=� � .

Now, suppose ρ kd( ) ( )=� � . We note that the vector x , ,n n
1 1

( )
= … solves the following optimiza-

tion problem:

ρ kd i
n

kdy Qy x Qxmax .T T

i Vy 1
( ) { }

( )
( )

∣∣ ∣∣
∑= ≥ = =

=

∈

� �
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Since � is connected, by Rayleigh’s principle, we conclude that x is the principal eigenvector of Q.

Let x , ,n n
1 1

( )
= … be the principal eigenvector ofQ. If u V∈ is a vertex of maximum degree, since the

sum of the entries in the row u of Q is equal to kd u( ), we have that

ρ
n

x e k
n

ρ kQx1 Δ 1 Δ .u
e E u

( )⎛

⎝

⎞

⎠
( ) ( ) ⎛

⎝

⎞

⎠
( ) ( )

[ ]

∑= = = ⇒ =

∈

� � �

If ρ kΔ( ) ( )=� � is the spectral radius of the irreducible matrix Q and x its principal eigenvector, let
u V∈ be a vertex, such that x xu v≥ for all v V∈ . Thus,

k x x eΔ .u
e E u

( )
[ ]

∑=

∈

We observe that this equality is only possible if d u Δ( ) = and x xv u= for all v N u( )∈ . Hence, we
conclude that every vertex that has maximum value in the eigenvector x must have maximum degree.
Moreover, every vertex that is a neighbor of another vertex that has maximum value in the eigenvector must
also have maximum value. By the connectivity of the hypergraph, we conclude that all the vertices have
maximum value in the principal eigenvector and, therefore, maximum degree, i.e., � is regular. □

Lemma 10. Let � be a k-graph. Thus, x0,( ) is an eigenpair of Q( )� if, and only if, for each edge e E∈

we have x e 0.( ) =

Proof. If x0,( ) is a signless Laplacian eigenpair of � , then Qx 0= . So,

x e x e e Ex Qx x 0 0 0 0, .T T

e E

2[ ( )] ( )∑= = ⇒ = ⇒ = ∀ ∈

∈

Conversely, let x be a vector of dimension n V∣ ( )∣= � such that x e 0( ) = for each edge e E∈ . So,

x e u VQx x Q0 0, is an eigenpair of . □u
e E u

( ) ( ) ( ) ( )

[ ]

∑= = ∀ ∈ ⇒

∈

�

We note that for a graph, the condition x x 0v vi j+ = for all e v v E,i j{ }= ∈ implies a bipartition of vertices.

Unfortunately, for k 3≥ , we do not have such a trivial characterization.

Definition 5.1. A hypergraph � is partially bipartite, if we can separate the set of vertices into three disjoint
subsetsV V V V0 1 2= ∪ ∪ , whereV1 andV2 are non-empty and each edge is fully contained inV0 or has vertices
in both V1 and V2.

Theorem 11. Let V E,( )=� be a k-graph. If λ 0= is an eigenvalue of Q( )� , then � is partially bipartite.

Proof. Let x be a eigenvector of λ 0= . Define

V v V x V v V x V v V x: 0 , : 0 , : 0 .v v v1 2 0{ } { } { }= ∈ > = ∈ < = ∈ =

As x e 0( ) = for each edge e E∈ , then the edge is contained in V0, or it must have some vertices in V1 and
others in V2, i.e., � is partially bipartite. □

The converse of Theorem 11 is not true. For example, 1, 2, 3, 4 , 123, 124, 134, 234({ } { })=� has a partial
bipartitionV 1, 21 { }= ,V 3, 42 { }= , andV0 = ∅, but the eigenvalues of Q are ρ 9= and λ 1= with multiplicity 3.
In view of this, we leave here the following question.

Question 5.2. How to characterize uniform hypergraphs with signless Laplacian eigenvalue zero?

Definition 5.3. A hypergraph � is balanced partially bipartite, if it is partially bipartite and there exists a

constant c 0> , such that for each edge e V0⊈ , it happens ce V
e V

1

2

∣ ∣

∣ ∣
=

∩

∩

.
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Theorem 12. Let V E,( )=� be a k-graph. If it is balanced partially bipartite, then λ 0= is an eigenvalue
of Q( )� .

Proof. Since � is balanced partially bipartite, there is a constant c e V
e V

1

2

∣ ∣

∣ ∣
=

∩

∩

, where e E( )∈ � . So we define a
vector x of dimension n V∣ ∣= by

x
v V
v V

c v V

1 if ,
0 if ,

if .
v

1

0

2

⎧

⎨
⎩

=

∈

∈

− ∈

Thus, x e 0( ) = , for each edge e E∈ . By Lemma 10, we conclude the result. □

Example 5.4. We illustrate here that balanced partially bipartite hypergraphs are abundant by presenting
two examples that are easy to find. Let V E,( )=� be a k-graph in which
(1) � has a vertex v with the property that each edge containing it also contains another vertex of degree 1;
(2) � has a couple of vertices which are contained in exactly the same edges.

In both cases � is balanced partially bipartite.

6 Relating classical and spectral parameters

In this section, we will relate classic and spectral parameters of a hypergraph. More precisely, we will relate
the spectral radius to the degrees and the chromatic number, the number of edges to the sum of the
eigenvalues, and the diameter to the number of distinct eigenvalues of the signless Laplacian matrix.

Theorem 13. If � is a k-graph and ρ( )� is its spectral radius, then

d v ρ d vmin max .
e E v e e E v e

⎧

⎨
⎩

( )
⎫

⎬
⎭

( )
⎧

⎨
⎩

( )
⎫

⎬
⎭

∑ ∑≤ ≤

∈

∈

∈

∈

�

Proof. For each u V ( ( ))∈ � � , let e Eu ( )∈ � be the (hyper)edge associated with the vertex u. By Lemma 4,

we have d u d v kv eu
( ) ( )

( )
= ∑ −

∈
� � . Now, by Theorem 6, we have ρ ρ kA( ) ( )= −�� . For graphs and multi-

graphs, we know that the spectral radius of the adjacency matrix is bounded by the maximum and
minimum degrees, with the bounds being reached if, and only if, the multigraph is regular [24]. So, we have

d u ρ d uAmin max .
u V u V

( ) ( ) ( )
( ( )) ( ( ))

≤ ≤

∈ ∈� �
� �

� �
�

Therefore,

d v k ρ k d v kmin max .
v v E i

k

i
v v E i

k

i
, , 1 , , 1k k1 1

⎧

⎨
⎩

⎛

⎝
⎜ ( )

⎞

⎠
⎟

⎫

⎬
⎭

( )
⎧

⎨
⎩

⎛

⎝
⎜ ( )

⎞

⎠
⎟

⎫

⎬
⎭

{ } { }
∑ ∑− ≤ − ≤ −

… ∈

=

… ∈

=

�

Adding k in each of the three parts of the inequalities, we obtain the desired result. □

The result below may be seen as a corollary of Propositions 4.7 and 4.12 in [3].

Corollary 14. If � is a k-graph and ρ( )� is its spectral radius, then

kd ρ kΔ .( ) ( ) ( )≤ ≤� � �

Equalities hold if, and only if, the hypergraph is regular.
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Proof. If n V∣ ∣= , define x , ,n n
1 1

( )
= … . By Rayleigh’s principle and Theorem 13, we have

kd ρ d v kx Qx max Δ .T
e E v e

( ) ( )
⎧

⎨
⎩

( )
⎫

⎬
⎭

( )∑= ≤ ≤ ≤

∈

∈

� � �

By Theorem 1, we note that equalities are achieved only when the hypergraph is regular. □

Definition 6.1. For a k-graph � , a function f V r: 1, ,{ }→ … is a (vertex) r-coloring of � if for every edge
e v v, , k1{ }= … , there exists i j≠ such that f v f vi j( ) ( )≠ . The chromatic number χ( )� is the minimum integer r
such that � has an r-coloring.

The proof of next result is a reprise of the classical proof for graphs by Wilf in [25]. Our result is similar
to Theorem 3.10 in [8], where for a uniform hypergraph � , it is proved that χ λ 1( ) ≤ +� . It is worth noting
that λ is the spectral radius of the adjacency tensor of � . The theorem proved here is based on matrices, so
we believe it is computationally more efficient than the one demonstrated by Cooper and Dutle.

Theorem 15. Let � be a connected k-graph. If χ( )� is its chromatic number, then

χ
k

ρ1 1.( ) ( )≤ +� �

Proof.Wewill define an order for the vertices of � as follows. Let n( ) =� � and vn be a vertex of minimum
degree in n( )� . For each t n2, ,= … , let t 1( )−� be the subgraph obtained after removing a vertex vt with
minimum degree from t( )� .

Let us use the ordering v v v, , , n1 2 … as input of a greedy coloring algorithm, which paints vt with the
smallest color that makes t( )� properly colored.

Note that χ ρ1 1 1k
1

( ( )) ( )= ≤ +� � . Inductively, suppose t 1( )−� is properly colored with up to

ρ 1k
1

( ) +� distinct colors. We see that vt has a minimum degree in t( )� . Thus, in the worst case, each

edge containing vt has all the other vertices painted with the same color, and each of these edges uses one of
the colors d v1, 2, , t t( )( )… � . So we should paint vt with the color d v 1t t( )( ) +� . Thus,

d v δ t
k

ρ t
k

ρ1 1 1 1 1 1.t t( ) ( ( )) ( ( )) ( )( ) + = + ≤ + ≤ +� � ��

By the inductive hypothesis, we have χ t ρ 1k
1

( ( )) ( )≤ +� � . So, χ ρ 1k
1

( ) ( )≤ +� � . □

Proposition 16. Let � be a k-graph with characteristic polynomial

P λ λ q λ q λ q .n n
n nQ 1

1
1( ) = + + ⋯+ +

−

−

The number of edges of � is m q
k

1
= − , or equivalently km λ λn1= + ⋯+ .

Proof. If λ λ λn1 2≥ ≥⋯≥ are all eigenvalues of the matrix Q, then

q λ λ kmQTr . □n1 1( ) ( )= − + ⋯+ = − = −

Theorem 17. Let � be a connected k-graph with diameter D. The number of distinct eigenvalues of the matrix
Q is at least D 1+ .

Proof. First we will show the following claim.

Claim 6.2. If there is a walk with length l connecting two distinct vertices i and j, then Q 0,l
ij( ) > other-

wise Q 0l
ij( ) = .
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The proof is by induction on l. We first note that if l 1= , then the signless Laplacian matrix has the
desired properties. Now suppose the statement is true for l 1≥ . Note that

Q Q Q .l
ij

t

n
l

it tj
1

1
( ) ( ) ( )∑=

+

=

Thus, if there is no walk with length l 1+ linking i and j, then there can be no walk linking i to a
neighbor of j. This implies that if u is a neighbor of j, then Q 0l

iu( ) = and, otherwise, Q 0uj( ) = . Therefore,

Q 0l
ij

1( ) =

+ . On the other hand, assuming there is a walk with length l 1+ linking i and j, then there must be

a walk with length l linking i to a neighbor u of j. So, Q 0l
iu( ) > and Q 0uj( ) > . Therefore, Q 0l

ij
1( ) >

+ . The
claim is proven.

Returning to the proof of the theorem, we let λ λ λ, , t1 2 … be all the distinct eigenvalues of Q. So,
λ λ λQ I Q I Q I 0t1 2( )( ) ( )− − ⋯ − = . Thus, a aQ Q I 0.t t

t1
1

+ + ⋯+ =

− Suppose, by way of contradiction, that
D t≥ . Hence, there must exist i and j such that its distance is t . Thus, a aQ Q I 0t

ij
t

ij t ij1
1( ) ( ) ( )= − −⋯− =

− ,
because there should be no walk shorter than t linking the vertices i and j. This contradicts the claim.
Therefore, t D 1≥ + . □

Theorem 18. Let � be a connected k-graph with more than one edge. If the diameter of � is D, then

D x x
λ λ

1 log 1
log

,min
2

min
2

1 2

⎢

⎣
⎢

(( ) )

( )

⎥

⎦
⎥≤ +

− /

/

where λ λ1 2> are the greatest eigenvalues of Q and xmin is the smallest entry of the principal eigenvector.

Proof. AsQ is real symmetric, we may consider the orthonormal eigenvectors x x, , n1 … from the eigenvalues
λ λ λn1 2> ≥⋯≥ , respectively. In this case, x1 is the principal eigenvector. Let i and j be vertices such that its
distance is D. Using the spectral decomposition of Q, for each integer t, we have

λ

λ λ

λ x λ

λ x λ
λ x λ x

Q x x

x x x x

x x

x x1 1
1 .

t
ij

l

n

l
t

l l
T

ij

t
i j

l

n

l
t

l l
T

ij

t t

l

n

l i
l

n

l j

t t
i j

t t

1

1 1 1
2

1 min
2

2
2

2

2

2

1 min
2

2 1
2

1
2

1 min
2

2 min
2

1
2

1
2

1
2

1
2

⎜ ⎟ ⎜ ⎟

( ) ( )

( ) ( ) ( )

⎛

⎝

( )
⎞

⎠

⎛

⎝

( )
⎞

⎠

( ( ) ) ( ( ) )

( )

∑

∑

∑ ∑

=

≥ −

≥ −

≥ − − −

≥ − −

=

=

= =

(2)

Note that if the expression (2) is positive, then Qt
ij( ) is positive and, therefore, t D≥ .

λ x λ x t x x
λ λ

1 0 log 1
log

.t t
1 min

2
2 min

2 min
2

min
2

1 2
( )

(( ) )

( )
− − > ⇒ >

− /

/

Therefore, the result follows. □

7 Power hypergraph

In this section, we will study the spectrum of the class of power hypergraphs, relating its signless Laplacian
eigenvalues to those of its base hypergraph. The spectrum of this class has already been studied in the
context of tensors. See for example [26,27].
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Definition 7.1. For a k-graph V E,( )=� , let s 1≥ and r ks≥ be integers. The (generalized) power hyper-
graph s

r
� is defined as the r-graph with the following sets of vertices and edges:

V ς ς E ς ς ς e v v Eand : , , ,s
r

v V
v

e E
e s

r
e v v k1k1

⎜ ⎟ ⎜ ⎟( ) ⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
( ) { }{ }= ⋃ ∪ ⋃ = ∪ ∪ ⋯ ∪ = … ∈

∈ ∈

� �

where ς v v, ,v
s1{ }= … for each vertex v V ( )∈ � and ς v v, ,e e e

r ks1{ }= …

− for each edge e E( )∈ � .

Informally, we say that s
r

� is obtained from a base hypergraph V E,( )=� by replacing each vertex
v V∈ by a set ςv of cardinality s, and by adding a set ςe with r ks− new vertices for each edge e ∈ � .

Example 7.2. The power hypergraph P4 2
5( ) of the path P4 is illustrated in Figure 2.

Let s
r

� be a power hypergraph. For each edge e i i E, , k1{ } ( )= … ∈ � , we denote by e ςs
r

i1= ∪ ⋯ ∪

ς ς Ei e s
r

k
( )∪ ∈ � the edge obtained from e E( )∈ � . For simplicity, we will write r r

1=� � and s s
ks

=� � .

We identify a vertex in each of the sets ςv with the vertex v and say that it is a main vertex of s
k

� , while the
other vertices in ςv are called copies. The vertices in some of the sets ςe will be called additional vertices.

We start this section by proving some algebraic properties of this class.

Lemma 19. Let � be a k-graph having two vertices u and v which are contained exactly in the same edges.
If λ x,( ) is an eigenpair of Q with λ 0> , then x xu v= .

Proof. We just note that

λx x e x e λx .u
e E e E

v
u v

( ) ( )

[ ] [ ]

∑ ∑= = =

∈ ∈

Since λ 0≠ , then the result is true. □

Lemma 20. Let � be a k-graph and s 1≥ an integer. If λ x,( ) is a signless Laplacian eigenpair of s� with
λ 0> , then for each edge e Es s( )∈ � , we have x e sx es( ) ( )= .

Proof. By Lemma 19, we have x ς x x x sxu u u u us2( ) = + + ⋯+ = . Hence,

x e x ς x ς s x x sx e . □s u u u uk k1 1( ) ( )( ) ( ) ( )= + ⋯+ = + ⋯+ =

Proposition 21. Let � be a k-graph and s 1≥ an integer. If μ 0≠ is a signless Laplacian eigenvalue of � ,
then λ sμ= is an eigenvalue of Q s( )� .

Proof. Suppose y is an eigenvector of Q( )� associated with μ. Define a vector x of dimension V s∣ ( )∣� by
x yu v= if u ςv∈ . Thus,

x e sx e sμxQ x . □s u
e E

s
e E

u
s s u u

( ( ) ) ( ) ( )
( ) ( )[ ] [ ]

∑ ∑= = =

∈ ∈

�

� �

Figure 2: The power hypergraph P4 2
5( ) .
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Lemma 22. Let � be a k-graph and r k≥ be an integer. Then, for each eigenpair λ x,( ) of Q r( )� with
λ r k> − , we have

x x e
λ r k

if u is an additional vertex of edge e E .u
r r( )

( )=

− +

∈ �

Proof. Suppose ς i i, ,e e e
r k1{ }= …

− and denote u ie
1

= . By Lemma 19, we know that x x xu i ie e
r k2= ⋯= − . So,

λx x e r k x x eu
r

u( ) ( ) ( )= = − + . Thus,

λ r k x x e x x e
λ r k

. □u u( ) ( )
( )

− + = ⇒ =

− +

Proposition 23. Let � be a k-graph. If μ 0≠ is a signless Laplacian eigenvalue of � , then λ μ r k= + − is an
eigenvalue of Q r( )� .

Proof. Suppose y is an eigenvector of Q( )� associated with μ. Define a vector x of dimension V r∣ ( )∣� by

x
y i
y e

μ
i e

if is a main vertex ,

if is an additional vertex of the edge .i

i

r

⎧

⎨

⎩

( )=

If u is a main vertex, we have

x e

y e r k y e
μ

y e r k
μ

y e

μ r k y
μ r k x

Q x

.

r
u

e E

r

e E

e E e E

u

u

r r u

u

u u

⎜ ⎟

⎜ ⎟

( ( ) ) ( )

⎛

⎝
( ) ( )

( ) ⎞

⎠

( ) ⎛

⎝

⎞

⎠
( )

( )

( )

( )

( )

( ) ( )

[ ]

[ ]

[ ] [ ]

∑

∑

∑ ∑

=

= + −

= +

−

= + −

= + −

∈

∈

∈ ∈

�

�

�

� �

Now, if u is an additional vertex, we have

x e y e r k y e
μ

μ r k y e
μ

μ r k xQ x .r
u

r
u( ( ) ) ( ) ( ) ( )

( )
( )

( )
( )= = + − = + − = + −�

Therefore, the result follows. □

Theorem 24. Let � be k-graph, s 1≥ and r ks≥ be two integers. Then, λ r ks> − is an eigenvalue of Q s
r( )�

if, and only if, there is a signless Laplacian eigenvalue μ 0> of � such that λ sμ r ks= + − .

Proof. If μ is a signless Laplacian eigenvalue of � , then sμ is an eigenvalue of Q s( )� . So, λ sμ r ks= + − is
a signless Laplacian eigenvalue of s

r
s
r( ) =� � .

Conversely, let x be an eigenvector associated with λ in Q s
r( )� . Thus,

λx x e

r ks x x e

r ks x e
λ r ks

x e

λs
λ ks r

x e .

u
e E

s
r

e E
i s

e E

s
s

e E

s
r

s
r

u

s
r

s
r

u
e

s s u

u

1

( )

( ) ( )

( )
( )

( )

⎛

⎝

⎞

⎠
( )

( )

( )

( )

( )

[ ]

[ ]

[ ]

[ ]

∑

∑

∑

∑

=

= − +

= −

− +

+

=

+ −

∈

∈

∈

∈

�

�

�

�
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Therefore,

x e λ ks r
s

x .
e E

u
u

( )
( )[ ]

∑ =

+ −

∈ �

That is, � has a signless Laplacian eigenvalue μ, such that

μ λ ks r
s

λ sμ r ks. □=

+ −

⇒ = + −

We note that Theorem 24 characterizes all signless Laplacian eigenvalues greater than r ks− of a power
hypergraph s

r
� . Now we will study its other eigenvalues.

Proposition 25. Let � be a k-graph. If s 1≥ is an integer, then the multiplicity of λ 0= as eigenvalue ofQ s( )�

is s V t∣ ∣ − , where t is the rank of Q( )� .

Proof. If z is an eigenvector of λ 0= in Q( )� , define a new vector x of dimension V s∣ ( )∣� by x zv u= if v ςu∈ .
Note that

x e s z eQ x 0.s v
e E

s
e Es s v v

( ( ) ) ( ) ( )
( ) ( )[ ] [ ]

∑ ∑= = =

∈ ∈

�

� �

Hence, for each eigenvector of λ 0= in Q( )� , we build one for s� , i.e., we construct a family of V t∣ ∣ −

linearly independent eigenvectors.
Now, for each v V ( )∈ � , suppose ς v v v, ,v s2{ }= … and j s2 ≤ ≤ . We can construct the following family

of s 1− linearly independent vectors:

x
x
x u V v v

x
1,

1,
0, for , .

j

j
v

j
v

j
u s j1

j

⎧

⎨

⎪

⎩
⎪

( )

( )

( ) ( ) { }

=

=

= −

= ∈ −�

Note that these vectors are eigenvectors of λ 0= in Q s( )� . Repeating this construction for the other
main vertices of s� , we obtain s V1( )∣ ∣− linearly independent eigenvectors. Observe that these vectors are
linearly independent from those constructed from the zero eigenvectors of the base hypergraph � . To see
this, we observe that the former vectors have constant sign in each ςu, while these new vectors have more
than one sign in these sets. Therefore, we have s V t∣ ∣ − linearly independent eigenvectors of λ 0= . □

Remark 7.3. Let � be a k-graph with n vertices. For s 1≥ , the eigenvalues of Q s( )� are sλ sλ, , t1 … and 0
with multiplicity sn t− , where t is the rank of Q( )� .

Proposition 26. Let � be a k-graph. If s 1≥ and r ks> are two integers, then the multiplicity of λ 0= as
eigenvalue of Q s

r( )� is at least r ks E s V1( )∣ ∣ ∣ ∣− − + .

Proof. Let e E( )∈ � be an edge. Suppose ς u u, ,e r ks1{ }= …
−

and j r ks2 ≤ ≤ − . Similar to the proof of
Proposition 25, we can construct the following family of r ks 1− − linearly independent vectors:

y
y
y u V u u

y
1,

1,
0, for , .

j

j
u

j
u

j
u s

r
j1

j

1⎧

⎨

⎪

⎩
⎪

( )

( )

( ) ( ) { }

=

=

= −

= ∈ −�

Repeating this construction for the other edges of � , we obtain r ks E1( )∣ ∣− − linearly independent eigen-
vectors associated with λ 0= .

Now, let w V s( )∈ � and consider e e, , p1 … , all edges of s
r

� that contain the vertex w. For each edge,
take w ei i∈ to be an additional vertex. So we can build the vector

The signless Laplacian matrix of hypergraphs  339



z
z i p
z u V w w w

z
1,

1, for 1 ,
0, for , , , .

w

w

u s
r

p1

i

⎧

⎨
⎩

( ) { }

=

=

= − ≤ ≤

= ∈ − …�

Repeating this construction for the other vertices of s� , we obtain s V∣ ∣ linearly independent eigenvectors
associated with λ 0= . Together with the previously created sets, we obtain a total of r ks E s V1( )∣ ∣ ∣ ∣− − +

linearly independent eigenvectors. □

Theorem 27. Let � be a k-graph. If s 1≥ and r ks> are integers, then the multiplicity of λ r ks= − as
eigenvalue of Q s

r( )� is E t∣ ∣ − , where t is the rank of the signless Laplacian matrix Q( )� .

Proof. First, we observe that λ 0= is an eigenvalue of multiplicity E t∣ ∣ − from B BT . Let z zz , ,e em1( )= … be
an eigenvector of λ 0= in B BT . We note that

z z v Vz B Bz 0 0 .
v V e E

e
T T

e E
e

2

v v

⎛

⎝
⎜

⎞

⎠
⎟

[ ] [ ]

∑ ∑ ∑= = ⇒ = ∀ ∈

∈ ∈ ∈

Now, define a vector x of dimension V s
r∣ ( )∣� by

x z v e
x v

x if is an additional vertex of ,
0 if is not an additional vertex.

v e

v
⎧
⎨⎩

=

=

=

If u is an additional vertex, then

x e r ks z r ks xQ x .s
r

u e u( ( ) ) ( ) ( )( ) ( )= = − = −�

If u is a main or copy vertex, then

x e z r ks xQ x 0 .s
r

u
e E e E

e u
u v

( ( ) ) ( ) ( )

[ ] [ ]

∑ ∑= = = = −

∈ ∈

�

Therefore, the result follows. □

Remark 7.4. If � is a k-graph with n vertices, m edges, and having signless Laplacian eigenvalues
λ λ λ λ λ 0t t n1 2 1≥ ≥⋯≥ > = ⋯= =

+
, then the eigenvalues of Q s

r( )� are sλ r ks sλ r ks, , t1( ) ( )+ − … + − ,
and r ks( )− with multiplicity m t− , as well as 0 with multiplicity r ks m sn1( )− − + .

8 Conclusion

Here, wemade contributions to spectral hypergraph theory. More precisely, we determined many properties
and parameters associated with the signless Laplacian matrix of a hypergraph and generalized important
results of spectral graph theory. In particular, we have proved that structural properties of a hypergraph
such as being regular or partially bipartite can be studied from the eigenvalues of this matrix. We also have
shown that spectral parameters such as the number of distinct eigenvalues and the spectral radius are
related to structural parameters such as diameter, maximum degree, and chromatic number.

We note that many topics of spectral graph theory have not been explored in the context of hyper-
graphs, perhaps because the spectral hypergraph theory is a recent research area. In addition, hypergraphs
are structures with several characteristics that are not observed in graphs. Hence, we believe that spectral
hypergraph theory offers many research opportunities, and perhaps in a few years, this spectral theory will
produce results that transcend what we know for graphs.

To conclude this article, we present some research possibilities about the signless Laplacian matrix of
hypergraphs.
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(1) Here, we proved that if zero is a signless Laplacian eigenvalue of a uniform hypergraph, then it is
partially bipartite. With some additional assumptions, we prove that if a uniform hypergraph is
balanced partially bipartite, then zero is a signless Laplacian eigenvalue. It is an open problem to
determine an intermediate hypergraph class, which is characterized by the existence of zero as signless
Laplacian eigenvalue.

(2) A very important and well-developed topic in spectral graph theory is the study of the line graph and its
relation with the signless Laplacian matrix (see [19]). Here, we proved that the line multigraphs
associated with k-graphs have eigenvalues greater than or equal to k− . An interesting topic of research
is to study the spectrum of the line multigraphs and its relation with the signless Laplacian spectrum of
the hypergraph.

(3) In [28], the author defined a new spectral parameter Γ from the principal eigenvector of the signless
Laplacian matrix that can be thought of as a measure of the regularity of the edges of the hypergraph.
We believe it may be possible to obtain bounds relating Γ to structural and spectral parameters. It would
be interesting to determine which hypergraphs maximize Γ.

(4) The definition of the signless Laplacian matrix is made for general hypergraphs, so we believe that
many results proven here can be generalized or adapted to non-uniform hypergraphs. In addition, some
results obtained in the following articles could be generalized for the general case.
(a) In [29], the authors defined and studied the energy of the signless Laplacian matrix for uniform

hypergraphs.
(b) In [28], the author defined and studied the principal eigenvector of the signless Laplacian matrix

for uniform hypergraphs.
(c) In [14], the authors defined and studied the signless Laplacian Estrada index of uniform

hypergraphs.
(d) The incidence energy of a hypergraph can be computed as the sum of the square roots of its

signless Laplacian eigenvalues. In [16], the authors obtained some lower and upper bounds for
this energy. At the same time, their corresponding extremal hypergraphs were characterized.
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