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Abstract: The very first light captured by the James Webb Space Telescope (JWST)
revealed a population of galaxies at very high redshifts more massive than expected in the
canonical ΛCDM model of structure formation. Barring, among others, a systematic origin
of the issue, in this paper, we test alternative cosmological perturbation histories. We argue
that models with a larger matter component Ωm and/or a larger scalar spectral index ns

can substantially improve the fit to JWST measurements. In this regard, phenomenological
extensions related to the dark energy sector of the theory are appealing alternatives, with
Early Dark Energy emerging as an excellent candidate to explain (at least in part) the
unexpected JWST preference for larger stellar mass densities. Conversely, Interacting Dark
Energy models, despite producing higher values of matter clustering parameters such as σ8,
are generally disfavored by JWST measurements. This is due to the energy-momentum flow
from the dark matter to the dark energy sector, implying a smaller matter energy density.
Upcoming observations may either strengthen the evidence or falsify some of these appealing
phenomenological alternatives to the simplest ΛCDM picture.
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1 Introduction

The minimal ΛCDM model of cosmology, described by only six fundamental parameters,
has successfully explained a large number of cosmological observations at different scales.
Nevertheless, in recent years, several anomalies have emerged, challenging the model across
all cosmological epochs.

Currently, the most significant problem — known as the Hubble tension [1–3] — is
represented by a mismatch at the level of ∼ 5σ between the value of the present-day
expansion rate of the Universe (H0) inferred from Planck-2018 CMB observations (H0 =
67.4±0.5 km s−1 Mpc−1 [4]) and the value of the same parameter measured directly from local
distance ladder measurements using Type-Ia Supernovae calibrated with Cepheid variable
stars (H0 = 73 ± 1 km s−1 Mpc−1 [5]).

Another conundrum, albeit less significant than the Hubble tension, is the so-called S8
tension. This parameter is closely related to the clustering of matter in the Universe, and its
value can be inferred both from the measurements of CMB anisotropies as those from Planck,
and — more directly –from the measurements of galaxy lensing made by experiments such
as the Dark Energy Survey (DES) [6, 7], and the Kilo-Degree Survey (KiDS) [8, 9]. While
Planck data favors larger values of S8, KiDS and DES seem to prefer lower ones, leading to a
well-documented discrepancy ranging between 2 and 3 standard deviations [10].1

1Very recently the actual disagreement between these experiments has been the subject of careful reevalua-
tion, see, e.g., ref. [11].
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Yet another emerging anomaly — which is the focal point of this study — pertains to
the observations recently released by the James Webb Space Telescope (JWST) of galaxies
at very high redshifts (much higher than those commonly explored by large-scale structure
galaxy surveys). Interestingly, the preliminary JWST results point towards a population of
surprisingly massive galaxy candidates (see e.g. [12–19]) with stellar masses of the order of
M ≥ 1010.5M⊙. In a recent study [20], it was pointed out that the JWST data indicates a
higher cumulative stellar mass density in the redshift range 7 < z < 11 than predicted by the
ΛCDM model, questioning one more time the canonical cosmological picture [21–23].

Despite the fact that recent comparisons of photometric and spectroscopic redshifts
in overlapping samples of galaxies solidify the evidence for a high space density of bright
galaxies at z ≳ 8 compared to theoretical model predictions [24], the JWST anomalous
observations could still hint a lack of accuracy in extracting the intrinsic galaxy properties [25–
31]. Other possibilities recently explored include the hypothesis of unusual dense regions
due to the currently limited JWST observations (which only cover an area of approximately
38 square arcminutes), as well as the possible presence of unknown systematics in CMB
Planck polarization data [32, 33].

Although it is certainly premature to draw any definitive conclusions from these pre-
liminary observations, if neither of the aforementioned possibilities can account for the
discrepancies between the JWST results and the theoretical predictions of a baseline ΛCDM
cosmology, it may be necessary to consider modifications to the model itself [34–55] or to the
galaxy formation process [31, 56–59]. In this work, we take a step forward in this direction
by testing alternative models where galaxy evolution could be notably different than in
ΛCDM. In particular, we consider extensions related to the dark energy sector of the theory
as possible phenomenological alternatives to explain the JWST preliminary findings. We
test Early Dark Energy (EDE) and Interacting Dark Energy (IDE) cosmologies as both
these extended scenarios, featuring modifications in the growth of structure, might predict a
different evolution of perturbations, potentially resulting in the formation of more massive
galaxies. We demonstrate that while EDE emerges as an excellent candidate to explain
(at least partially) the unexpected JWST preference for larger stellar mass densities, IDE
is generally disfavored by JWST measurements, despite yielding higher values of matter
clustering parameters σ8 and S8.

The structure of the paper is as follows: in section 2 we further elaborate on the reasons
why we choose Early Dark Energy and Interacting Dark Energy scenarios and also we define
the physics and the basic equations governing the cosmological evolution in these models. In
section 3 we describe the main observables considered in this work, namely, the cumulative
stellar mass density, the observational data and the likelihoods exploited in the numerical
analyses. Section 4 contains our main results. We conclude in section 5.

2 Extended Dark Energy scenarios

Despite the undeniable uncertainties surrounding the preliminary findings from JWST, one
might wonder whether these new emerging anomalies could be somehow linked to other
well-known longstanding problems in cosmology, such as the Hubble tension. This raises the
question of whether they could both originate from a common issue related to our current
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theoretical understanding of the Universe and, on a broader scale, what kind of beyond-ΛCDM
phenomenology (if any) can increase the present-day expansion rate of the Universe while
also leading to a higher cumulative stellar mass density at earlier times.

At first glance, this question can even appear misplaced, as these observations are often
believed to imply an older universe compared to the ΛCDM predictions. Since the age of
the Universe is roughly ∝ 1/H0, this would suggest that increasing the Hubble constant
could worsen the discrepancy with the observations released by JWST. However, structure
formation is influenced by the evolution of primordial density perturbations and the underlying
cosmology. Models addressing the Hubble tension often propose modifications at both the
background level and in perturbation dynamics. This could allow for comparable or greater
structure formation in a younger Universe (various N-body simulations of extension to
ΛCDM show such variations, e.g. [60–65]). Furthermore, in beyond-ΛCDM models different
correlations among cosmological parameters can shift their fitting values. These effects may
significantly impact parameters related to structure formation, such as the matter density Ωm,
and the other matter clustering parameters σ8 and S8 = σ8 · (Ωm/0.3)1/2. These correlations
are crucial as they could affect the amplitude and shape of the matter power spectrum.

An exercise certainly useful for understanding which kind of phenomenology could hit
two targets with one arrow — increasing H0 and aligning more closely with JWST — is
breaking down the problem into smaller parts. In particular, we focus on the baseline ΛCDM
model fixing all parameters to the best-fit values provided by Planck and altering each
one individually within a 4-standard-deviation range. Through this analysis, focusing on
the JWST likelihood (χ2

JWST), we identify physical adjustments for better consistency with
observations. From figure 1 we can derive a quite significant amount of information:

• First and foremost, we observe that the parameter on which χ2
JWST is most sensitive

is the matter density parameter Ωm. In particular, a larger fraction of matter in the
Universe will considerably improve the quality of the fit to JWST observations by
facilitating structure formation.2

• Secondly, we can clearly note that increasing the amplitude of the primordial pertur-
bations As or considering a larger tilt ns results in a significant reduction in χ2

JWST.
This is in line with previous findings documented in ref. [32], where it was argued
that relaxing the Planck constraints on polarization, which in turns allows τ to reach
considerably higher values [33], can substantially improve the agreement between JWST
and CMB data.3 Similarly, larger ns can substantially increase the power in the matter
power spectrum on small scales, also facilitating more structure to form.

• Finally, concerning H0, we observe that a straightforward increase in the value of this
parameter while simultaneously keeping σ8 constant worsens the fit to JWST data.
This aligns with the argument that, when fixing structure formation parameters, a
younger Universe reduces the number of structures that can form. However, the impact
of H0 on χ2

JWST is relatively small and it proves how the Hubble constant plays only a
partial role in a more complex interplay of various parameters.

2For similar discussions involving quasars at high redshifts, see, e.g., refs. [66, 67].
3Since there exists a well-known degeneracy relation Ase−2τ , high values of τ can be compensated by

higher values of As.
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Figure 1. Changes in χ2
JWST when varying a single parameter while keeping the others fixed

to the Planck ΛCDM best-fit values (bold points in the figure): Ωbh2 = 0.02238, Ωch2 = 0.1201,
H0 = 67.32 km/s/Mpc, ns = 0.9659, As × 109 = 2.1, τ = 0.0543, and Ωmh2 = 0.143. In the top
panel’s third plot, when H0 is free to vary, σ8 is kept fixed by rescaling As accordingly.

Summarizing these results, from a phenomenological standpoint, an effective model to
increase the value of H0 and improve the agreement with preliminary JWST data should
predict a higher spectral index, along with a greater quantity of matter in the Universe
and possibly higher values of σ8 and S8. On one side, this phenomenology is common in
proposals aimed at resolving the Hubble tension by introducing new physical components
that act before recombination. For this reason, we explore extensions related to the early
Universe and, as a case study, analyze EDE cosmology. On the other hand, larger values of
matter clustering parameters σ8 and S8 can also be achieved within late-time solutions of the
Hubble tension that attempt to modify physics after recombination, influencing the value of
H0 derived from the angular distance from the CMB. Therefore, in the spirit of not leaving
anything untried, we also test IDE cosmologies where both the growth of perturbations and
the matter clustering are significantly different than in ΛCDM. Below, we summarize the
basic aspects of the theoretical models we will be considering.

2.1 Early Dark Energy

Early Dark Energy models are a natural hypothesis of dark energy, see e.g., refs. [68–99].
Deviating from the traditional cosmological constant framework, EDE models account for a
non-negligible contribution from dark energy in the early Universe. In addition, these EDE
models can be based on a generic dark energy fluids which are inhomogeneous. Their density
and pressure vary over time, leading to a non-static equation of state. The phenomenological
analyses of these inhomogeneous dark energy models usually require additional dark energy
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clustering parameters, the dark energy effective sound speed and the dark energy anisotropic
stress. The effective sound speed determines the clustering properties of dark energy and
consequently it affects the growth of matter density fluctuations. Therefore, in principle, its
presence could be revealed in large scale structure observations. The growth of perturbations
can also be affected by the anisotropic stress contributions which lead to a damping in
the velocity perturbations.

Recently, EDE models have garnered significant attention, particularly due to their
potential role in addressing some of the aforementioned cosmological tensions [75, 91, 100].
Our analysis will concentrate on the EDE implementation detailed in [84]. This model
proposes that, in the early Universe, a light scalar field deviates from its potential minimum
and, constrained by Hubble friction, is functionally similar to a cosmological constant. As
soon as, at some particular redshift z⋆, the Hubble parameter reduces to be less than the
mass of the field, the scalar field rolls down its potential and begins to oscillate about the
minimum. To avoid spoiling late-time cosmology, the vacuum energy must redshift away
quicker than matter (i.e., faster than a−3), and the field should behave as a subdominant
component. A typical set of parameters used in this model is: the fractional contribution
to the total energy density of the Universe, fEDE(z) ≡ ρEDE(z)/ρtot(z) evaluated at the
critical redshift zc at which it reaches the maximum value, and θi, which is the parameter
that usually describes the initial field displacement. This particular behavior implies a larger
amount of energy-density in the early Universe (just prior to recombination), a reduction
of the sound horizon and, consequently, a larger value of the Hubble constant inferred by
CMB observations. This is the reason why EDE models have been proposed as a possible
solution to the Hubble constant tension.

2.2 Interacting Dark Energy

Interacting Dark Energy models describe a phenomenological scenario where the dark fluids
of the Universe interact with each other by allowing a transfer of energy and/or momentum
between them, see e.g., refs. [101–155]. Instead, the other components of the Universe (such
as radiation and baryons) remain unaffected. The background evolution for dark energy and
dark matter is modified, as the continuity equations for the single component present an
interaction function Q whose sign governs the energy-momentum flow. A negative value of
the interaction rate, Q < 0, implies a transfer of energy and/or momentum from pressureless
dark matter to dark energy, while the opposite, refers to an energy-momentum flow from the
dark energy sector to the dark matter one. In order to solve the background evolution, one
would need a specific interaction function Q. Depending on such a function, it can be solved
either analytically or numerically, together with the equation for the Hubble rate evolution.
In what follows we shall use the well-known interaction rate [101, 102, 156–158]:

Q = ξHρde , (2.1)

where ξ is a dimensionless coupling parameter. The equation governing the evolution of the
density perturbations for the dark sector can be found in [101, 102, 157]. IDE models may
suffer from instabilities in the perturbation evolution [101, 156]. Our analysis adheres to
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the criterion of ref. [102] in terms of the so-called doom factor

d = Q

3H(1 + w)ρde
, (2.2)

which is required to be negative in order to avoid instabilities. Consequently this stability
condition for our case is translated into a stable parameter space in which (1 + w) and
ξ must have opposite sign [102]. Therefore, in the phantom regime in which (1 + w) is a
negative quantity the dimensionless coupling ξ must be positive. On the other hand, in the
quintessence region ξ must be negative. For earlier studies, see [101, 116, 156, 157, 159–166].

We conclude this section with a final remark: even if the interaction scenario considered
here is a pure phenomenological model, some studies have shown that using a multi-scalar
field action, the coupling function (2.1) can be derived [167]. Therefore, the interaction model
of the form given by eq. (2.1) also benefits from a solid theoretical motivation.

3 Methodology

3.1 Theory

To explore the extended dark energy scenarios in relation to the JWST observations, we
strictly follow the methodology detailed in ref. [32]. We compute the predicted Cumulative
Stellar Mass Density (CSMD hereafter), which is given by

ρ⋆(M⋆) ≤ ϵfb

∫ z2

z1

∫ ∞

Mh

dn

dM
MdM

dV

V (z1, z2) , (3.1)

where we have M⋆ = ϵfbMh with M⋆ the mass of the galaxy, Mh is the halo mass, fb = Ωb/Ωm

is the cosmic baryon fraction and ϵ is the star formation efficiency of converting baryons into
stars. For our analysis, we opt for a conservative approach and fix ϵ = 0.2 following ref. [168].
However, as suggested by ref. [168], in principle star formation efficiency can be a function
of the halo mass and further adjustments to star formation physics might be needed for
more precise computations [169]. Nonetheless, for the mass scale we are working with, ϵ can
only vary smoothly as a function of mass, following a power law. Therefore, given the short
mass range we are using in our analyses, this does not change in a significant way our main
conclusions. Notice also that we consider the cosmic baryon fraction instead of computing
the baryon evolution in different halos [64, 170–175].4 All these methodological choices and
simplifications are widely used in the literature and allow us to present conservative and
credible results that, without sacrificing generality, can be directly compared with similar
works following the same approach.

Furthermore, dn(M,z)
dM is the comoving number density of the collapsed objects between

a mass range from M to M + ∆M at a certain redshift, given by

dn(M, z)
dM

= F (ν) ρm

M2

∣∣∣∣d ln σ(M, z)
d ln M

∣∣∣∣ , (3.2)

4Notice that, with the baryon fraction fb playing the role of a multiplicative factor in front of the
integral (3.1), if fb increases, the theoretical predictions are proportionally pushed towards the observed data
points. Just for reference, fixing fb as large as fb = 0.23, we find an expected decrease in the χ2 of about 55%.
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where ρm is the comoving matter density of the Universe, F (ν) the Sheth-Tormen (ST) Halo
mass function [176, 177] and σ(R, z) is the variance of linear density field smoothed at a
scale R, where we assume a Top-Hat window function. The ST formalism is theoretically
motivated in terms of the collapse of halos [178, 179] and has been exhaustively tested
by N-body simulations for different dark energy models taking different priors for Ωm and
ΩΛ [180]. In this study, we assume that the halo mass function of the ST type applies to
both theoretical frameworks examined. Nevertheless, analyses of future JWST data may
need to consider a more sophisticated fit.

3.2 Observational data

Regarding the JWST observations, given their preliminary nature and the wide research
interest they have generated, a multitude of datasets obtained following different methodologies
have been released. Consequently, a choice of which dataset to use becomes necessary. In
this study, we consider four independent datasets summarized in table 1 and listed below:5

• Confirmed CSMD measurements taken from ref. [20]. We find this dataset particularly
well-suited for our analysis as it provides explicit constraints on the CSMD that are
directly linked to cosmological structure formation. For this dataset, the errors reported
in table 1 are assumed to follow a Log Normal distribution. We refer to this dataset as
JWST-CEERS.

• Five observational CSMD coming from the photometric data of JWST coverage of the
UKIDSS Ultra Deep Survey (UDS) and Hubble Ultra Deep Field (HUDF) [182]. The
errors for HUDF & UDS displayed in table 1 are conservatively taken as the maximum
value, while the stellar masses are set to be equal to M = 108M⊙ as suggested in table 6
of ref. [182]. We refer to this dataset as JWST-HUDF&UDS.

• Two values of the observational CSMD coming from optical data in the GLASS-ERS
1324 program [12]. The stellar mass for GLASS datapoints is set to the average between
the mass interval reported in table 1 where we refer to this dataset as JWST-GLASS.

• JWST FRESCO NIRCam/grism survey [26]. This dataset spans an area of 124 arcmin2,
covering a survey volume of approximately 1.2 × 106 Mpc3 within the redshift range
z ∈ [5, 9]. We refer to it as JWST-FRESCO. Taking the JWST-FRESCO data at face
value (and barring any potential systematic errors), we consider 3 obscured galaxies
located within densely dusty regions, with redshifts in the range 5 ≲ z ≲ 6. Referring
to figure 3 of ref. [26], we can see that these galaxies show exceptionally extreme
properties such as dark matter halo masses of log (Mhalo/M⊙) = 12.88+0.11

−0.13, 12.68+0.23
−0.17,

and 12.54+0.17
−0.18. Notice also that the quantity measured by JWST-FRESCO is the

cumulative comoving number density of dark matter halos, not the CSMD. For any
given model of cosmology, the cumulative comoving number density of dark matter
halos can be computed as:

n(> Mhalo) =
∫ z2

z1

∫ ∞

Mhalo

dn

dM
dM, (3.3)

5Notice that many additional measurements have been released, see, e.g., refs. [26, 181]. In future, these
measurements could potentially serve as independent tests of our preliminary findings.
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z ln
(
ρ/M⊙Mpc−3)

ln (M/M⊙) Dataset

7 < z < 8.5
5.893 ± 0.345 10.030

CEERS [20]
5.676 ± 0.652 10.75

8.5 < z < 10
5.709 ± 0.386 9.704
5.386 ± 0.653 10.408

3.5 < z < 4.5 7.00+0.14
−0.16 10.48 ± 0.15

HUDF & UDS [182]

4.5 < z < 5.5 6.79+0.20
−0.28 10.45 ± 0.27

5.5 < z < 6.5 6.67+0.21
−0.23 10.33 ± 0.36

6.5 < z < 7.5 6.51+0.42
−0.60 10.68 ± 0.79

7.5 < z < 8.5 5.75+0.59
−0.1.10 [10.70]

6.9 < z < 8.5 5.07 ± 0.52
7.2 < ln (M/M⊙) < 9.3 GLASS [12]

3.5 < z < 4.5 4.52 ± 0.65

ln (n(> Mhalo) ln (Mhalo/M⊙)

5 < z < 6 −5.52+0.69
−0.58

12.88+0.11
−0.13

FRESCO [26]12.68+0.23
−0.17

12.54+0.17
−0.18

Table 1. Observational points for JWST for the four different dataset. The values here must
be rescaled by the corresponding comoving volume and luminosity distance for the Planck bestfit
ΛCDM model.

where the integrand in eq. (3.3) is defined by eq. (3.2). Regarding the error for the
FRESCO dataset, we use the approach of Poissonian approximation for small numbers
of observed events (the interested reader can refer to our appendix A for more details).

We highlight that in eq. (3.1), V (z1, z2) = 4
3π

[
R3(z2) − R3(z1)

]
represents the model-

dependent comoving volume of the Universe between redshifts z1 and z2 (with R(z) being
the comoving radius at z). In the values of ρobs given in table 1, the comoving volume
has been derived assuming the best-fit ΛCDM model (Planck TTTEEE+lowE+lensing CMB
measurements with h = 0.6732, Ωm = 0.3158, ns = 0.96605, σ8 = 0.8120, see [20]), making
the data points model-dependent, too. As a result, these values need to be appropriately
rescaled before interfacing them with the predicted values for dark energy scenarios. That is,
they must be corrected by a factor equal to the ratio of the two comoving volumes (VΛ/VDE).
Similarly, the conversion between luminosity fluxes and distances for the stellar masses has
been inferred, again, under the underlying assumption of the best-fit Planck ΛCDM model.
A similar rescaling has to be applied, using the squared ratios of the luminosity distances.
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3.3 Numerical analyses

For our analyses, we perform a Monte Carlo Markov Chain (MCMC) using the publicly
available package Cobaya [183] and generate theoretical predictions exploiting with a modified
version of the software CLASS [184, 185] to address the IDE scenario, while, for EDE, the
publicly available software CLASS EDE,6 which solves the evolution of the background and of
the perturbations in the presence of a scalar field by means of the Klein-Gordon equation. We
investigate the posterior distributions of our parameter space through the MCMC sampler
developed for CosmoMC [186, 187] and tailored for parameter spaces with a speed hierarchy
which also implements the “fast dragging” procedure [188].

The likelihood used for the MCMC analysis are:

• CMB temperature and polarization power spectra from the legacy Planck release [4, 189]
with plik TTTEEE+low-ℓ+lowE.

• Lensing Planck 2018 likelihood [190], reconstructed from measurements of the power
spectrum of the lensing potential.

In the following discussion, we will refer to the combinations of these two datasets simply
as CMB. The convergence of the chains obtained with this procedure is assessed using the
Gelman-Rubin criterion [191] setting a convergence threshold at R − 1 ≲ 0.02.

Once the chains have converged,7 for each sampled model we calculate the CMSD (or
the comoving number density of dark matter halos for the JWST-FRESCO mesurements)
corresponding to different parameter combinations explored in the MCMC analysis. In
particular, we set the cosmology by varying the cosmological parameters {Ωb, Ωc, θs, τ}, the
inflationary parameters {ns, As} and the extra parameters from EDE {fEDE, log10 zc, θi} and
IDE {w, ξ}. Afterwards, CLASS is employed to compute the linear matter power spectrum
P (k, z) and subsequently the variance and, taking its derivative, we estimate the Halo
mass function, see eq. (3.2). Eventually, through double integration over mass and redshift,
eq. (3.1), we arrive at ρ⋆(M). For each point in the MCMC chains obtained within a
given cosmological model, we calculate the χ2

JWST for various datasets listed in table 1.
Each dataset corresponds to a distinct χ2

JWST. Specifically, for any given dataset, χ2
JWST

is determined straightforwardly by

χ2
JWST =

∑
i

(xth
i − x̄i)2/σ2

i , (3.4)

where, x̄i is the observed value, σ2
i is its error, xth

i the theoretically predicted quantity and
i runs over the number of data points of the specific JWST dataset. We then obtain the
updated constraints on the cosmological parameters by re-weighting the MCMC chains, i.e.
performing an importance sample, using the package getdist.

4 Results

We now discuss the results obtained for the various extended models of Dark Energy considered
in this study. To promote better organization of our findings, we divide this section into

6https://github.com/mwt5345/class_ede.
7The converged chains are taken with 50% of burn-in.
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Parameter CMB JWST-CEERS CMB+JWST

ns 0.981
zlow 0.997 0.981
zhigh 0.997 0.981

H0 69.45
zlow 72.60 69.45
zhigh 72.60 69.45

σ8 0.8273
zlow 0.854 0.8273
zhigh 0.854 0.8273

τ 0.0575
zlow 0.0497 0.05753
zhigh 0.0497 0.05753

Ωm 0.307
zlow 0.304 0.307
zhigh 0.304 0.307

fEDE 0.0628
zlow 0.151 0.0628
zhigh 0.151 0.0628

χ2 2772
zlow 5.75 2782.76 (2772 + 10.76)

zhigh 7.99 2787.34 (2772 + 15.34)

Table 2. Results for EDE. We provide the best-fit values of cosmological parameters, namely the
combination that minimizes the χ2 of the fit to the CMB data alone (χ2

CMB), JWST-CEERS data
alone (χ2

JWST−CEERS), and CMB+JWST-CEERS data (χ2
CMB+JWST).

two minor subsections: in section 4.1 we focus on the results obtained for EDE, while in
section 4.2 we present the findings related to IDE.

4.1 Results for Early Dark Energy

We start by examining EDE. For this model, we summarize the best-fit values related to the
most relevant parameters in tables 2 to 5, distinguishing the results obtained by considering
the four JWST datasets independently.

First and foremost, we examine the best-fit values obtained by exclusively considering
CMB measurements from the Planck satellite (indicated as CMB in the table). In this
case, the values reported in tables 2 to 5, simply represent the combination of cosmological
parameters for which χ2

CMB (= 2772) acquires its minimum value among those obtained
within the MCMC analysis. It is worth noting that we retrieve results widely documented in
the literature. In particular, the Planck data, while not showing any substantial preference
for a non-vanishing fraction of EDE, produce a best-fit value of fEDE = 0.06. This leads to a
present-day expansion rate of the Universe H0 = 69.45 km/s/Mpc, which is generally higher
than the best-fit value obtained for this parameter within the standard cosmological model.
Another point that is worth emphasizing is that for the inflationary spectral index we get
a best-fit value ns = 0.981, confirming once more the trend of EDE models in predicting a
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Parameter CMB JWST-HUDF&UDS CMB+JWST
ns 0.981 0.997 0.997
H0 69.45 73.42 73.46
σ8 0.8273 0.854 0.8498
τ 0.0575 0.0497 0.05179

Ωm 0.307 0.295 0.2947
fEDE 0.0628 0.160 0.159

χ2 2772 46 2829 (2783 + 46)

Table 3. Results for EDE. We provide the best-fit values of cosmological parameters, namely the
combination that minimizes the χ2 of the fit to the CMB data alone (χ2

CMB), JWST-HUDF&UDS [182]
data alone (χ2

JWST−HUDFUDS), and CMB+JWST-HUDF&UDS data (χ2
CMB+JWST).

Parameter CMB JWST-GLASS CMB+JWST
ns 0.981 0.977 0.978
H0 69.45 71.30 69.88
σ8 0.8273 0.8274 0.8267
τ 0.0575 0.03343 0.05103

Ωm 0.307 0.312 0.312
fEDE 0.0628 0.130 0.0853

χ2 2772 20 2797 (2774 + 23)

Table 4. Results for EDE. We provide the best-fit values of cosmological parameters, namely the
combination that minimizes the χ2 of the fit to the CMB data alone (χ2

CMB), JWST-GLASS data
alone (χ2

JWST−GLASS), and CMB+JWST-GLASS data (χ2
CMB+JWST).

Parameter CMB JWST-FRESCO CMB+JWST
ns 0.981 0.997 0.978
H0 69.45 72.60 69.88
σ8 0.8273 0.854 0.8267
τ 0.0575 0.0497 0.0510

Ωm 0.307 0.304 0.312
fEDE 0.0628 0.151 0.0853

χ2
FRESCO 2772 21.42 2804 (2774 + 30)

Table 5. Results for EDE. We provide the best-fit values of cosmological parameters, namely the
combination that minimizes the χ2 of the fit to the CMB data alone (χ2

CMB), JWST-FRESCO data
alone (χ2

JWST−FRESCO), and CMB+JWST-FRESCO data (χ2
CMB+JWST).
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spectrum of primordial perturbations closer to the scale-invariant case than what is observed
in ΛCDM and predicted by the most typical inflationary potentials [88, 192–198].8

As a second step, following the methodology outlined in the previous section, for each
combination of parameters in the MCMC chains (i.e., for each collected model), we calculate
the χ2 against the four different JWST datasets listed in table 1.

We start discussing the results obtained re-weighting the chains in light of χ2
JWST−CEERS

resulting from the JWST-CEERS dataset. This dataset has been recently analyzed in
many similar studies and allows us for direct comparison with the existing findings in the
literature [21, 35]. In this case, we summarize the results in table 2, distinguishing between
the low (zlow) and high (zhigh) redshift bins (also see table 1). Similar to the CMB analysis, we
present the specific combination of parameters that minimizes χ2

JWST−CEERS. Furthermore,
in figure 2 we provide a triangular plot showing the distribution of sampled models and the
correlations among different parameters, together with a color-map representing the value of
χ2

JWST−CEERS. For the sake of comparison, in the same figure, we also depict the predictions
of ΛCDM. A few intriguing conclusions can be derived from both table 2 and figure 2. Firstly,
there are no significant differences between the results obtained for the high and low redshift
bins. Secondly, as for the best-fit values of cosmological parameters, we now find a pronounced
preference for a non-vanishing fraction of EDE, fEDE = 0.151. We also get higher σ8 = 0.85
and observe the same trend towards higher values of inflationary spectral index ns = 0.997,
now essentially consistent with a Harrison-Zel’dovich spectrum. As pointed out in section 2,
this is exactly the kind of phenomenology one needs to increase the agreement with JWST
data. Therefore — not surprisingly — the minimum value of χ2

JWST−CEERS for both the
high (χ2

JWST−CEERS = 7.99) and low (χ2
JWST−CEERS = 5.75) redshift bins are significantly

better than what we get in ΛCDM (where χ2
JWST−CEERS ∼ 17 [32]). This suggests that EDE

stands as a valid phenomenological alternative to explain (at least partially) the preliminary
measurements released by JWST-CEERS. Furthermore, regarding H0, the JWST-CEERS
best-fit value reads H0 = 72.60 km/s/Mpc. Therefore, not only within the context of EDE
we can improve the agreement between the theoretical predictions of the model and the
JWST-CEERS data, but to achieve this, we move through the parameter space in the same
direction needed to solve the Hubble tension, as well. This is also clearly confirmed by
the color pattern in figure 2, underscoring that it is indeed possible to address both issues
within the same theoretical framework.

Finally, always in table 2, we present the results inferred by summing up the χ2 values
of CMB and JWST-CEERS. We observe that the combination of parameters that minimizes
the total χ2

CMB+JWST is the same as that minimizing the fit to only the Planck data χ2
CMB.

At first glance, this implies that the cost of improving the fit to the JWST-CEERS data
is an overall deterioration in the fit to the CMB. On the other hand, such deterioration
is entirely expected, given the strong preference of Planck data for a ΛCDM cosmology
and the general disagreement between JWST-CEERS data and the latter. As extensively
documented in the literature and confirmed by our analysis, individual Planck data do not
provide clear evidence in favor of an EDE cosmology. In any case, the best-fit parameters

8For other discussions surrounding the value of this parameter and the agreement among the results of
different CMB probes, see, e.g., refs. [199–207].
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Figure 2. Triangular plot showing the distribution of points and the correlations among the most
relevant parameters of EDE. The color map refers to the value of χ2

JWST so that the color pattern
in the figure represents the direction towards which one needs to move in the parameter space to
improve the fit to JWST data.

suggest an inclination towards a model where the fraction of EDE remains modest and well
below fEDE ≲ 0.1. In contrast, reconciling JWST-CEERS with an EDE cosmology would
require an EDE fraction fEDE ≳ 0.1. Forcing such an EDE fraction into the model would
source significant effects in the CMB spectra that can only be partially compensated by the
observed shift in the fitting values of other cosmological parameters. Just to provide an
illustrative example, the increase in the expansion rate of the Universe before recombination
due to a substantial EDE component leads to a significant reduction in the value of the
sound horizon at the combination, forcing the value of H0 in the direction of SH0ES, which
is certainly not the direction favored by CMB data. Additionally, since EDE does not alter
the physics of post-recombination, a higher H0 implies a lower angular diameter distance
from the CMB, DA. In turn, this leads to a shift in the wavenumber associated with the
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Figure 3. Triangular plot showing the distribution of points and the correlations among the most
relevant parameters of EDE. The color map refers to the value of χ2

FRESCO so that the color pattern
in the figure represents the direction towards which one needs to move in the parameter space to
improve the fit to JWST FRESCO data.

damping tail kD, as these two parameters are related by the relationship ℓD ∼ kDDA, where
the multipole ℓD is also fixed by CMB measurements. In an attempt to maintain a good fit
to the damping scale, the value of ns is shifted towards a scale-invariant primordial spectrum
(i.e., ns → 1) which certainly improves the agreement between JWST-CEERS and EDE but is
again highly disfavored by Planck (by over 8σ in ΛCDM). Overall, all these effects and shifts
in the fitting values of cosmological parameters seem to favor JWST-CEERS observations.
However, although they partially compensate for each other, they still remain somewhat
disfavored based solely on CMB data, leading to a deterioration in the fit.

When analyzing the other JWST datasets listed in table 1, all the conclusions we have
drawn so far remain mostly true. For instance, by comparing the results obtained for JWST-
CEERS in figure 2 with those obtained for JWST-FRESCO in figure 3, at first glance, we
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can spot the very same color patterns, indicating that a non-vanishing fraction of EDE could,
in principle, help to reduce χ2

FRESCO while also yielding higher values of H0. However, paying
closer attention to the colorbar scale, we observe that as we approach the limit fEDE → 0
moving towards the ΛCDM cosmology, we get χ2

JWST−FRESCO ∼ 50 for 3 data points. This
value can be reduced all the way down to min(χ2

JWST−FRESCO) ∼ 21.42 when fEDE ∼ 0.15
and H0 ∼ 73 km/s/Mpc, as seen in table 5. On one hand, this lends weight to the idea
that EDE could potentially pave the way to partially explaining more massive galaxies and
higher values of H0. On the other hand, it is important to note a nearly threefold increase
in χ2

JWST−FRESCO compared to the results obtained for JWST-CEERS. Taking the large
χ2 at face value, we must draw the conclusion that the JWST-FRESCO dataset remains
in strong disagreement with the theoretical predictions of the standard cosmological model
and — to a lesser extent — with EDE as well.

Looking at the χ2 of JWST-GLASS and JWST-HUD&UDS, a similar conclusion can be
drawn. As a result, we conclude that while EDE represents a phenomenological possibility
to partially address the JWST data, it falls short of being exhaustive in fully addressing
issues, leaving the quest for a more comprehensive solution wide open.

Having that said, it is worth keeping in mind some caveats surrounding the joint analyses.
For instance, the total χ2

CMB+JWST is obtained by considering the sum of χ2 for each sampled
model in the MCMC chains afterward and not through a joint analysis of the two experiments
from the outset. Additionally, only CMB data are taken into account in the MCMC analysis,
which we know do not favor high values of fEDE and H0. Considering other datasets, such as
the measurements of the expansion rate provided by the SH0ES collaboration, could lead to
significantly different results in terms of the χ2 analysis, as typically pointed out by the EDE
community (see, e.g., the discussion on page 25 of ref. [75]). Hence, a full joint likelihood
analysis of all these datasets (which is beyond the aim of this work) is needed before deriving
any definitive conclusions on this matter.

4.2 Results for Interacting Dark Energy

We now move to the study of IDE. In this case, we consider three different models: the usual
IDE cosmology with a fixed dark energy equation of state w ≃ −1, and wIDE models where
the equation of state parameter w is free to vary, although limited either in quintessence
(w > −1) or phantom (w < −1) regime. For the sake of simplicity, in this subsection,
we present only the results obtained from JWST-CEERS. Several well-motivated reasons
underpin this decision. Firstly, no significant differences emerged in the results for EDE when
analyzing the four different JWST datasets listed in table 1. Overall, all these observations
converge on anomalous galaxies that are more massive than predicted by the standard
cosmological model. Therefore, no significant disparities are anticipated when analyzing the
same four datasets across the various IDE models proposed in this section. Yet another
motivation involves noting that addressing these JWST anomalous observations requires a
somewhat clear beyond-ΛCDM phenomenology that none of the three IDE models proposed
here can offer. To streamline the analysis and emphasize this point, we focus on JWST-
CEERS, which will provide the phenomenological guidelines applicable directly to all datasets
not explicitly mentioned, without exception.
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Parameter CMB JWST-CEERS CMB+JWST

ns 0.971
zlow 0.968 0.963
zhigh 0.968 0.961

H0 70.98
zlow 67.43 68.27
zhigh 67.43 66.69

σ8 1.09
zlow 0.878 0.89
zhigh 0.878 0.85

τ 0.057
zlow 0.0609 0.057
zhigh 0.0609 0.051

Ωm 0.214
zlow 0.301 0.315
zhigh 0.301 0.285

ξ −0.28
zlow −0.0734 −0.098
zhigh −0.073 −0.053

χ2 2781
zlow 12.50 2800.79 (2785 + 15.79)

zhigh 18.22 2809.29 (2788 + 21.29)

Table 6. Results for IDE, with the dark energy equation of state fixed to w ≃ −1. We provide the
best-fit values of cosmological parameters, namely the combination that minimizes the χ2 of the fit
to the CMB data alone (χ2

CMB), JWST-CEERS data alone (χ2
JWST−CEERS), and CMB+JWST data

(χ2
CMB+JWST).

Table 6 displays the results for the IDE model with a fixed dark energy equation of state.
Similar to EDE, we consider three different combinations of data: CMB, JWST-CEERS,
and CMB+JWST-CEERS. In the table, we always show the combination of parameters
that minimizes the χ2 for these three datasets. When focusing solely on the Planck CMB
data, we note that the best-fit value for the parameter encapsulating new physics — i.e.,
the coupling ξ — reads ξ = −0.28. This suggests a quite significant transfer of energy-
momentum from the dark matter sector to the dark energy sector. As widely documented in
the literature, such a transfer of energy-momentum leads to a higher present-day expansion
rate of the Universe, whose best-fit value reads H0 = 70.98 km/s/Mpc (significantly higher
than in the standard cosmological model). Furthermore, while we do not observe significant
differences in the value of the spectral index, we notice a tendency toward higher values of
σ8 = 1.09. This makes the model potentially interesting for JWST. Nevertheless, the results
we obtain from JWST-CEERS data seem to indicate precisely the opposite. In contrast to
the CMB fit (which prefers ξ < 0), when considering only the JWST-CEERS likelihood, the
coupling parameter ξ tends towards ξ → 0. Consequently, we lose any ability to increase
the present-day expansion rate, getting a best fit value H0 = 67.43 km/s/Mpc. Figure 4
further reinforces our conclusions: it is not ns but Ωm that now assumes a critical role. When
moving in the direction ξ < 0, the matter density undergoes a significant decrease due to
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Figure 4. Triangular plot showing the distribution of points and the correlations among the most
relevant parameters of IDE, when w is fixed to w ≃ −1. The color map refers to the value of χ2

JWST
so that the color pattern in the figure represents the direction towards which one needs to move in the
parameter space to improve the fit to JWST data.

the energy transfer from dark matter to dark energy. This leads to a substantial increase
in the value of σ8 to compensate for the reduced Ωm. However, as illustrated by the color
pattern in figure 4, in order to minimize χ2

JWST−CEERS, it becomes necessary to revert to
the ΛCDM framework by preventing such energy transfer, essentially moving towards ξ → 0.
This behaviour is further supported by comparing the best-fit values of Ωm (σ8) for CMB
and JWST: while in the former case Ωm = 0.214 (σ8 = 1.09), for JWST-CEERS, we get back
to more typical values Ωm = 0.301 (σ8 = 0.878). Consequently, this model fails to provide
a satisfactory fit to the JWST-CEERS observations.

The best-fit values of cosmological parameters for the wIDE model with w > −1 (i.e.,
confined to the quintessence regime) are displayed in table 7. Qualitatively, these results
mirror those previously obtained for w = −1. There are no differences between the high
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Parameter CMB JWST-CEERS CMB+JWST

ns 0.9615
zlow 0.967 0.9614
zhigh 0.967 0.9614

H0 67.35
zlow 65.44 64.92
zhigh 65.44 64.92

σ8 0.9342
zlow 0.839 0.871
zhigh 0.839 0.871

τ 0.05742
zlow 0.0686 0.055
zhigh 0.0686 0.055

Ωm 0.274
zlow 0.326 0.314
zhigh 0.326 0.314

ξ −0.1743
zlow −0.045 −0.115
zhigh −0.045 −0.115

w −0.9483
zlow −0.923 −0.90
zhigh −0.923 −0.90

χ2 2774
zlow 11.94 2790.89 (2776 + 14.89)

zhigh 17.5 2797.63 (2778 + 21.63)

Table 7. Results for wIDE, with w > −1 free to vary in the quintessence regime. We provide the
best-fit values of cosmological parameters, namely the combination that minimizes the χ2 of the fit
to the CMB data alone (χ2

CMB), JWST-CEERS data alone (χ2
JWST−CEERS), and CMB+JWST data

(χ2
CMB+JWST).

and low redshift bins, and there is no preference for ξ ̸= 0 from JWST-CEERS data. The
behaviors of the parameters depicted in figure 5 clearly indicate that introducing a coupling
while leaving w free to vary does not improve the fit to JWST-CEERS observations. Once
more, the reason behind this phenomenon is the decrease in matter density resulting from
the energy flow within the interacting model.

The situation becomes somewhat more intricate when we turn to the case where the
dark energy equation of state is confined to the phantom regime w < −1. In this case,
the best-fit values of parameters are summarized in table 8 for the usual combinations
of datasets. When considering only the best-fit values from the CMB, we find the well-
documented Planck preference for a phantom equation of state [208, 209], with the best-fit
value reading w = −2.04. Given the well-known degeneracy between the effects produced
by a phantom w and increasing the present-day expansion rate of the Universe, interacting
phantom models can provide a much larger value of H0 [147] and, in fact, we obtain a
best-fit value H0 = 103.8 km/s/Mpc. This essentially indicates that, without including
datasets at lower redshifts, breaking this line of degeneracy proves challenging and values
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Figure 5. Triangular plot showing the distribution of points and the correlations among the most
relevant parameters of wIDE, when w is free to vary in the quintessence region w > −1. The color
map refers to the value of χ2

JWST so that the color pattern in the figure represents the direction
towards which one needs to move in the parameter space to improve the fit to JWST data.

of H0 in line with those measured by SH0ES collaboration can always be reintroduced by
considering a sufficiently phantom dark energy component. In addition, due to a combination
of correlations among different parameters such as H0, w, and Ωm, we observe that for the
latter parameter, the best-fit value reads Ωm = 0.139 and is compensated by a substantial
increase in σ8 = 1.026. In light of these effects on parameters governing the matter clustering
in the Universe, the question of whether (and to what extent) a phantom wIDE model
could effectively contribute to explaining the anomalies observed in JWST remains a topic
of debate. Looking at the brighter side, when we consider the fit to JWST-CEERS data,
we observed that both for the high (χ2

JWST−CEERS = 16.3) and low (χ2
JWST−CEERS = 10.8)

redshift bins, χ2
JWST−CEERS slightly improves compared to the standard cosmological model.

Furthermore, the JWST-CEERS data seem to point toward a non-zero coupling ξ ∼ 0.2 − 0.3,
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Parameter CMB JWST-CEERS CMB+JWST

ns 0.9663
zlow 0.963 0.969
zhigh 0.967 0.969

H0 103.8
zlow 67.10 75.62
zhigh 73.88 75.62

σ8 1.026
zlow 0.685 0.760
zhigh 0.739 0.760

τ 0.05087
zlow 0.0612 0.0617
zhigh 0.0644 0.0617

Ωm 0.139
zlow 0.396 0.292
zhigh 0.319 0.292

ξ 0.05235
zlow 0.374 0.229
zhigh 0.299 0.229

w −2.0436
zlow −1.149 −1.33
zhigh −1.33 −1.33

χ2 2767
zlow 10.8 2783.90 (2771 + 12.90)

zhigh 16.3 2790.15 (2771 + 19.15)

Table 8. Results for wIDE with w < −1 free to vary in the phantom regime. We provide the
best-fit values of cosmological parameters, namely the combination that minimizes the χ2 of the fit
to the CMB data alone (χ2

CMB), JWST-CEERS data alone (χ2
JWST−CEERS), and CMB+JWST data

(χ2
CMB+JWST).

which is substantially higher than that preferred by the Planck data (whose best-fit value
is ξ ≃ 0.05). The reason underlying this preference is that to ensure the stability of the
perturbations, ξ is now required to be positive. This results in a shift of the energy flow
from the dark energy sector to the dark matter one. Consequently, increasing the value
of the coupling means injecting more power into the matter sector, facilitating structure
formation, and improving the JWST-CEERS fit. However, looking at figure 6 — where,
as usual, we plot the correlations among different parameters together with a color-map
representing the value of χ2

JWST−CEERS — it becomes really difficult to identify a color pattern
representing the direction in which we need to move in the parameter space to improve the
fit to JWST-CEERS data. Despite this, with a good degree of imagination, we can speculate
that by moving towards larger values of the coupling ξ → 0.4 (corresponding to other values
of Ωm → 0.4), the value of χ2

JWST−CEERS seems to undergo a general improvement for the
highlighted reasons, and its value becomes as good as the ΛCDM one. Interestingly, looking
again at figure 6, we note that the value of the Hubble rate corresponding to such a coupling
is H0 ∼ 70 km/s/Mpc, i.e., close to the result provided by SH0ES collaboration.
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Figure 6. Triangular plot showing the distribution of points and the correlations among the most
relevant parameters of wIDE, when w is free to vary in the phantom region w < −1. The color map
refers to the value of χ2

JWST so that the color pattern in the figure represents the direction towards
which one needs to move in the parameter space to improve the fit to JWST data.

Therefore, in the context of IDE cosmology, the only potential scenario in which we can
simultaneously slightly improve the agreement between the model predictions and JWST
data while obtaining values of H0 in line with local distance ladder measurements seems to
involve considering a phantom component of the equation of state of dark energy. That being
said, the ability of this model to address these two issues remains somewhat limited, above
all when compared to the competing EDE solutions discussed in the previous section.

5 Discussion and conclusions

Cosmological data have entered an era of high precision. Advanced telescopes with higher
sensitivity are unveiling measurements at previously uncharted cosmological scales and epochs.
However, this is a double-edged sword: while high-precision parameter extraction became
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achievable, a range of unexplained anomalies emerged, some of them growing in significance
rather than diluting as the error bars decreased.

The most recent anomaly involves the JWST observations of a population of very high-
mass galaxies at previously unexplored redshifts of z ∼ 7 − 10. This suggests a higher
cumulative stellar mass density in the redshift range 7 < z < 11 than predicted by the
standard ΛCDM model of cosmology. Assuming no systematic issue behind these preliminary
findings, one might wonder whether these emerging anomalies could be somehow connected
to other long-standing cosmological puzzles, such as the Hubble tension. All these issues
might hint at a shared limitation in our current comprehension of the Universe, motivating
the need to consider alternative theoretical scenarios.

In this paper, taking the four independent JWST datasets at face value, we first explore
the correlation between the JWST likelihood and the fundamental six-ΛCDM parameters.
We argue that, from a phenomenological standpoint, models with a larger matter component
Ωm, a higher amplitude of primordial inflationary fluctuations As and a bigger scalar spectral
index ns are able to predict larger cumulative stellar mass densities, thus providing a better fit
to JWST data. As a next step, we notice that part of this phenomenology is very common in
models featuring new physics in the dark energy sector (both at early and late times) that have
been recently proposed as possible solutions to the Hubble tension. In such models the behavior
of the dark energy fluid can also influence the growth of structure, potentially leading to the
formation of more massive galaxies able to account for the preliminary JWST measurements.
Inspired by this idea, we explore whether in the context of Early Dark Energy or Interacting
Dark Energy, the JWST findings could be explained, or at least, if within these scenarios, the
fit to JWST observations is improved with respect to the one in the minimal ΛCDM framework.

We find that EDE, which leads to an increased Ωm and ns concurrent with a rising EDE
fraction fEDE, constitutes an excellent candidate. Not only we can improve the agreement
between the theoretical predictions of the model and the JWST data (i.e., the minimum
value of χ2

JWST obtained for both the high and low redshift bins is significantly better than
what we get in ΛCDM), but to achieve this, we move through the parameter space in the
same direction needed to solve the Hubble tension. This underscores that it is indeed possible
to address both issues within the same theoretical framework.

Conversely, wIDE models featuring a dark energy equation of state w ≥ −1 are generally
disfavored from JWST, despite yielding higher values of matter clustering parameter σ8. This
is due to the energy flow from the dark matter sector to the dark energy one, implying a
smaller Ωm. On the other hand, when the equation of state is confined to the phantom regime
w < −1, the situation becomes somewhat more intricate. Whether, and to what extent, a
phantom wIDE model could effectively contribute to explaining the anomalies observed in
JWST findings remains an open question. The energy-momentum dynamics and parameter
degeneracies can lead to a significant increase in the matter component, which in turn can
slightly improve the agreement between the model predictions and the JWST data while also
yielding values of H0 in line with local distance ladder measurements. However, the ability of
this model to address these two issues simultaneously remains limited compared to EDE.

We conclude by pointing out that other studies have recently investigated dark energy
and dark matter alternatives to reconcile the JWST anomalies. Just to mention a few
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appealing possibilities, in ref. [35] it was argued that adjusting the dark energy sector to
accommodate a dynamic equation of state can be compatible with existing observations.
However, this would require considering somewhat exotic dynamical dark energy models
that necessitate specific configurations of dark energy parameters. Always in relation to the
dark energy sector of the cosmological model, in refs. [34, 47], it was argued that an evolving
DE component with positive energy density on top of a negative cosmological constant
can be consistent with JWST observations. Other different yet interesting possibilities
explored to approach the structure formation dilemma involve considering extensions related
to particle physics, such as Fuzzy Dark Matter models consisting of ultra-light axions [37] or
Warm Dark Matter [39, 40]. Axion models have the potential to mitigate the formation of
smaller structures, aligning JWST’s stellar mass density data with the CMB optical depth
near z ≈ 8. Instead, Warm Dark Matter models introduce a structural formation delay,
predicting fewer low-mass systems at higher redshifts. However, it is worth noting that up
until now, observations do not conflict with predictions from either cold dark matter or
Warm Dark Matter theories for particles heavier than 2 keV [39]. Finally, another category of
solutions competitive with those examined in this study frequently proposes new physics in
the gravitational sector. For instance, if long-range attractive forces stronger than gravity are
realized in nature, the formation of cosmic halos could begin during the radiation-dominated
era, providing a possible explanation for the excess of heavy galaxies observed by JWST.

Future JWST data will either reinforce or diminish the need for exploring physics beyond
the established ΛCDM scenario.
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A JWST-FRESCO survey uncertainty approximation

In this appendix, we provide additional details about the methodology we used to derive
the uncertainty on the cumulative comoving number density of dark matter halos ∆ log n

for JWST-FRESCO. We use the same statistical methodology adopted in refs. [35, 47] and
introduced in refs. [210, 211]. At its core, the methodology relies on approximations to the
exact Poissonian confidence limits for small numbers of observed events (that in our case
is 3). More quantitatively, we approximate the true Poissonian upper limit, by means of
eq. (4) of ref. [211], that, for 3 events, reads

∆ log nupper = 4
[35

36 + S

6 + 4c(S)b(S)
]3

, (A.1)

where we fix S ≃ 1.645 which corresponds to choosing a 95%CL interval uncertainty,9 see
also the third column of table 3 in ref. [210]. Notice also that, once S is fixed, c(S) and b(S)
are numerical coefficients that can be easily calculated by using eqs. (6)–(7) in ref. [211].
Similarly, adopting eq. (11) of ref. [211], we estimate the lower limit on the error bar as:

∆ log nlower = 4
[26

27 + S

3
√

3
+ 3γ(S)β(S) + δ(S) sin

(10π

13

)]3
(A.2)

where, as usual, S ≃ 1.645 and β(S), γ(S) and δ(S) are given by eqs. (9), (10) and (12) of
ref. [211], respectively. We stress that this statistical methodology, while accurate, necessarily
introduces an additional layer of approximation. For this reason, we remain conservative
proving the uncertainties on log n(> Mhalo) at 95% CL (corresponding to fixing S ≃ 1.645).
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