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ABSTRACT

Two recent papers, P. H. Yoon and G. Choe, Phys. Plasmas 28, 082306 (2021) and Yoon et al., Phys. Plasmas 29, 112303 (2022), utilized in
the derivation of the kinetic equation for the intensity of turbulent fluctuations the assumption that the wave spectra are isotropic, that is, the
ensemble-averaged magnetic field tensorial fluctuation intensity is given by the isotropic diagonal form, hdBidBjik ¼ hdB2ikdij. However, it is
more appropriate to describe the incompressible magnetohydrodynamic turbulence involving shear Alfv�enic waves by modeling the turbu-
lence spectrum as being anisotropic. That is, the tensorial fluctuation intensity should be different in diagonal elements across and along the
direction of the wave vector, hdBidBjik ¼ 1

2 hdB2
?ikðdij � kikj=k2Þ þ hdB2

kikðkikj=k2Þ. In the present paper, we thus reformulate the weak mag-
netohydrodynamic turbulence theory under the assumption of anisotropy and work out the form of nonlinear wave kinetic equation.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0195994

I. INTRODUCTION

In a paper recently published, methods of the weak turbulence the-
ory developed in the context of kinetic theory have been employed to
develop a weak turbulence approach to incompressible magnetohydrody-
namics (MHD).1 The formulation employed MHD equations developed
with the use of Elsasser variables, incorporating iterative solutions that
took into account contributions up to second order. In addition to the
derivation of an equation for the time evolution of the amplitudes of
magnetic fluctuations, Ref. 1 obtained an equation for the residual energy,
which is the difference between the particle and field energies.1

In another and more recent work,2 the authors addressed the
problem of weak MHD turbulence theory with the use of the original
equations of MHD theory, without employing the Elsasser variables.
The iterative solution for the nonlinear momentum equation is kept
up to third-order terms, leading to an additional contribution to the
term describing the so-called nonlinear frequency shift. Despite this
additional effect, the wave kinetic equation obtained is the same as that
obtained in Ref. 1. However, the third-order nonlinear correction turns
out to be essential for calculation of the total and residual energies.2

The works developed in Refs. 1 and 2 had in common the use of
an assumption regarding the nature of turbulence, that is, the

turbulence fluctuation intensities are isotropic. Here, by isotropic, we
mean that the ensemble-averaged fluctuating magnetic field tensor
intensity is given by an isotropic diagonal form, hdBidBjik¼ hdB2ikdij,
where dB is the fluctuating magnetic field vector, and the bracket
denotes the ensemble average. That is, the form of diagonal tensor
implicitly assumed in Refs. 1 and 2 is in a scalar matrix form, with all
the diagonal elements being equal. Thus, the notion of isotropy in this
sense implies that the turbulent fluctuation intensity has no preferred
spatial direction with respect to the wave vector. The isotropic model
is not strictly valid in a physical sense since the magnetic field pertur-
bation cannot have a component along the k vector, as the divergence-
free conditions (Gauss’ law) dictate. That is, upon writing

dBk ¼ dB?
k þ dBk

k;

dB?
k ¼ ðk � dBkÞ � k

k2
; dBk

k ¼ kðk � dBkÞ
k2

;

it is evident that dBk
k should be zero by virtue of the fact that

k � dBk ¼ 0. As a result, the proper relationship that dictates the
ensemble average of tensorial fluctuations associated with a stationary
and homogeneous turbulence should be given by an anisotropic (or
non-scalar) diagonal form,
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hdBidBjik ¼ 1
2
hdB2

?ik dij �
kikj
k2

� �
þ hdB2

kik
kikj
k2

¼ 1
2
hdB2

?ik dij �
kikj
k2

� �
with hdB2

kik ¼ 0, leaving only the transverse fluctuations to remain non-
vanishing. In short, the isotropic diagonal form of the magnetic field spec-
trum, hdBidBjik ¼ hdB2ikdij, adopted in Refs. 1 and 2 is simply incorrect.

In the literature, the notion of “isotropic” turbulence often has a
different meaning. That is, the more widely accepted definition of iso-
tropic turbulence is that the magnetic field spectrum only depends on
the modulus of wave vector, hdB2

?ik ¼ E ðkÞ.3–8 It is important to note
that even for such an isotropic spectrum, the diagonal form of the
spectral tensor should still be anisotropic (or non-scalar),
hdBidBjik ¼ 1

2E ðkÞðdij � kikj=k2Þ. It is commonly believed that if the
mean magnetic field is weak (or even absent), then the isotropic model
of the turbulence represents an effective theory. On the other hand, in
the presence of a finite background magnetic field the incompressible
MHD turbulence is generally anisotropic in k space. Turbulence theo-
ries that emphasize the dependence of the spectrum on k? and kk,
where k? and kk are wave vector components perpendicular and par-
allel to the averaged (ambient) magnetic field vector B0, are known as
the anisotropic turbulence models.9,10 In short, according to this cate-
gorization, the isotropy vs anisotropy means the wave vector depen-
dence of the spectrum. References 1 and 2 belong to the latter
category, that is, these references deal with the anisotropic turbulence
in the sense of the turbulence spectrum having distinct dependence on
k? and kk, but these works made an unjustifiable assumption of isotro-
pic diagonal spectral function, hdBidBjik ¼ hdB2ikdij.

In the present work, we revisit the discussion of weak MHD tur-
bulence theory, starting from the equation of incompressible MHD
theory and proceeding with the use of an iterative approach, but avoid-
ing the use of assumption about the isotropic diagonal form of turbu-
lent fluctuation spectrum tensor. In the present paper, we will
re-derive the nonlinear wave kinetic equation of the weak incompress-
ibleMHD turbulence theory under the correct anisotropic formulation.

The present paper is organized as follows: In Sec. II, the equations
of weak MHD turbulence are obtained from the basic equations of
incompressible MHD theory by means of an iterative solution keeping
contributions up to third order. The correct anisotropic equation for
the time evolution of the amplitudes of the normal modes is obtained
and compared with the equation obtained in Ref. 2 under the incorrect
assumption of isotropic form of diagonal fluctuating spectral tensor.
Section III summarizes and concludes the present paper.

II. ALTERNATIVE DERIVATION OF EQUATIONS
FORWEAK MHD TURBULENCE

We start from the equations of incompressible MHD,

@

@t
þ u � r

� �
u ¼ �rP� þ ðb � rÞbþ ðcA � rÞbþ �r2u;

@

@t
þ u � r

� �
b ¼ ðb � rÞuþ ðcA � rÞuþ �r2b;

r � u ¼ 0 ¼ r � b;

(1)

where

cA ¼ B0

ð4pqÞ1=2
; b ¼ B

ð4pqÞ1=2
; P� ¼ P

q
þ b2

2
; (2)

are Alfv�en velocity, perturbed magnetic field, and total normalized
pressure, respectively. Here, u represents the fluid momentum vector,
and we have made an assumption that the viscosity and magnetic resis-
tivity are the same, both being represented by �. Finally, the fluid mass
density, q, is assumed constant, from which follows the divergence-free
condition for u. Here, we note that Eq. (1) presupposes the presence of
a finite (and constant) ambient magnetic field vector, B0. If the back-
ground field is extremely weak in comparison with the fluctuating
magnetic field b (that is, jB0j � jbj), or even entirely absent, then we
may take cA ! 0 in Eq. (1). Such a limit is appropriate for the discus-
sion of isotropic (in wave vector space) MHD turbulence.3–8 We are
not concerned with such a limit. After some manipulations and per-
forming the spectral transformation, we arrive at the following equa-
tions for the spectral components of velocity and magnetic field,

ðxþ ik2�Þuik;x þ kkcAbik;x

¼ dil � kikl
k2

� �
kj
X
k0;x0

ðujk0 ;x0u
l
k�k0;x�x0 � bjk0;x0b

l
k�k0;x�x0 Þ; (3)

ðxþ ik2�Þbik;x þ kkcAuik;x
¼
X
k0;x0

kjðujk0 ;x0b
i
k�k0;x�x0 � uik�k0;x�x0b

j
k0;x0 Þ: (4)

Suppose that we solve the velocity equation iteratively by expand-
ing uik;x as

uik;x ¼ uið1Þk;x þ uið2Þk;x þ � � � ; (5)

where the velocity field is expanded in a series with each term propor-
tional to the power of b-field,

uiðnÞk;x / ðbik;xÞn: (6)

Then, from

ðxþ ik2�Þðuið1Þk;x þ uið2Þk;x þ � � �Þ þ kkcAbik;x

¼ dil � kikl
k2

� �
kj
X
k0;x0

ðujð1Þk0;x0 þ ujð2Þk0 ;x0 þ � � �Þ
h

� ulð1Þk�k0;x�x0 þ ulð2Þk�k0 ;x�x0 þ � � �Þ � bjk0;x0b
l
k�k0;x�x0

� i
; (7)

we have order-by-order equations,

ðxþ ik2�Þuið1Þk;x þ kkcAbik;x ¼ 0; (8a)

ðxþ ik2�Þuið2Þk;x ¼ dil � kikl
k2

� �
kj
X
k0;x0

ðujð1Þk0 ;x0u
lð1Þ
k�k0;x�x0

� bjk0;x0b
l
k�k0;x�x0 Þ; (8b)

ðxþ ik2�Þuið3Þk;x ¼ dil � kikl
k2

� �
kj

�
X
k0 ;x0

ðujð2Þk0;x0u
lð1Þ
k�k0 ;x�x0 þujð1Þk0;x0u

lð2Þ
k�k0;x�x0 Þ;

� � � (8c)

Iterative solution leads to
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uið1Þq ¼ � kkcA
xþ ik2�

biq; (9a)

uið2Þq ¼ � PilðkÞkj
x

X
q0
ð1� fq0 fq�q0 Þ bjq0blq�q0 ; (9b)

uið3Þq ¼ PilðkÞkj
x

X
q0

X
q00

Pjmðk0Þk0n
x0 ð1� fq00 fq0�q00 Þfq�q0 b

l
q�q0b

n
q00b

m
q0�q00

�

þ Plmðk � k0Þðk � k0Þn
x� x0 ð1� fq00 fq�q0�q00 Þfq0 bjq0bnq00bmq�q0�q00

�
;

� � � (9c)

where

q ¼ ðk;xÞ; PilðkÞ ¼ dil � kikl
k2

; fq ¼ fk;x ¼ kkcA
x

(10)

and where in the nonlinear term the small dissipative term associated
withx is ignored.

Writing the velocity up to the second order of nonlinear correc-
tions, and using it in the equation for magnetic fluctuations, we obtain

xþ ik2� �
k2kc

2
A

xþ ik2�

 !
biq

¼
X
q0

PilðkÞfqð1� fq0 fq�q0 Þ � dilðfq0 � fq�q0 Þ
� �

kjb
j
q0b

l
q�q0 : (11)

Considering that the dissipative term in the denominator is a small
contribution, and taking into account that for the waves of interest we
expect the solution of the formx ’ kkcA, we can write in approximate
form the following expression:

DðqÞbiq ¼
X
q0

vijlðq0jq� q0Þbjq0blq�q0 ; (12)

where

DðqÞ ¼ x� kkcAfq þ 2ik2�; (13a)

vijlðq0jq� q0Þ ¼ 1
2

PilðkÞkj þ PijðkÞkl
� �

fqð1� fq0 fq�q0 Þ

� 1
2
ðdilkj � dijklÞðfq0 � fq�q0 Þ: (13b)

The nonlinear coefficients satisfy the following symmetry properties:

vijlðq0jq� q0Þ ¼ viljðq� q0jq0Þ;
vijlð�q0j � qþ q0Þ ¼ �vijlðq0jq� q0Þ: (14)

Up to this point, the derivation follows the same steps employed in
the derivation of the formulation presented in Ref. 2. For the sequence
of the development, in our previous work we have introduced at this
point an assumption, hbiðk;xÞbjðk;xÞi ¼ dijhb2ik;x, which is not
valid. That is, we have assumed that the tensorial turbulent spectrum is
given in the form of a scalar matrix, with the diagonal elements being
identical. According to this assumption, the spectral tensor is isotropic
in any spatial orientation. The general property of homogeneous and
stationary turbulent spectrum tensor dictates that the diagonal elements
should be different along and across the local magnetic field direction.
In short, the following expression should hold:

hbiðk;xÞbjðk;xÞi ¼
kikj
k2

hb2kik;x þ 1
2

dij �
kikj
k2

� �
hb2?ik;x: (15)

The factor 1
2 relates to the fact that there are two degrees of freedom

associated with the transverse direction. Since magnetic field fluctua-
tions must satisfy the Gauss law of magnetism, we must have
bkðk;xÞ ¼ ðb � kÞ=k ¼ 0. This implies that hb2?i ¼ hb2i. Therefore,
magnetic field fluctuations should be given by an anisotropic diagonal
(that is, non-scalar) matrix form

hbiðk;xÞbjðk;xÞi ¼ 1
2

dij �
kikj
k2

� �
hb2ik;x ¼ 1

2
PijðkÞhb2ik;x: (16)

In the case of incompressible MHD, the velocity fluctuations satisfy
the divergence-free condition, r � u, so the velocity fluctuations also
satisfy a relationship similar to Eq. (16), with u2 instead of b2.

Taking Eq. (12), multiplying by bj�q, and applying the averaging
procedure, we obtain

DðqÞhbiqbl�qi ¼
X
q0

vijmðq0jq� q0Þhbjq0bmq�q0b
l
�qi: (17)

To this, we substitute Eq. (16), and take the projection operator,
PilðkÞ ¼ dil � kikl=k2. We then make use of the property
PilðkÞPilðkÞ ¼ 2 to obtain

DðqÞhb2iq ¼
X
q0

PilðkÞvijmðq0jq� q0Þhbjq0bmq�q0b
l
�qi: (18)

Making use of the property PilðkÞvijmðq0jq� q0Þ ¼ vljmðq0jq� q0Þ, we
find that the nonlinear wave equation is given by

DðqÞhb2iq ¼
X
q0

vijmðq0jq� q0Þhbjq0bmq�q0b
i
�qi: (19)

This happens to be formally identical to Eq. (19) of Ref. 2, although
that equation was derived under an implicit assumption of isotropic
tensorial turbulence spectral intensity, whereas Eq. (19) was re-derived
with the anisotropic wave spectrum (16).

In order to obtain the fluctuating quantities that appear at the tri-
ple correlation on the right-hand side of Eq. (19), we utilize Eq. (12).
We consider that the magnetic fluctuations are constituted by a linear
part and a nonlinear correction, and we take into account that the lin-
ear part must satisfy the linear dispersion relation, DðqÞbð0Þiq ¼ 0.
From the nonlinear wave equation (12), we therefore obtain

DðqÞbð1Þiq �
X
q0

vijmðq0jq� q0Þbð0Þjq0 bð0Þmq�q0 þ � � � ; (20)

where we have ignored higher-order corrections in the nonlinear term.
From this expression, we can obtain

bð1Þjq0 ¼ 1
Dðq0Þ

X
q00

vjlnðq00jq0 � q00Þbð0Þlq00 b
ð0Þn
q0�q00 ;

bð1Þmq�q0 ¼
1

Dðq� q0Þ
X
q00

vmlnðq00jq� q0 � q00Þbð0Þlq00 b
ð0Þn
q�q0�q00 ;

bð1Þi�q ¼ � 1
D�ðqÞ

X
q00

vilnðq00j � q� q00Þbð0Þlq00 b
ð0Þn
�q�q00 :

(21)

The triple correlation in Eq. (19) can therefore be written as follows:
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hbjq0bmq�q0b
i
�qi¼hbð1Þjq0 bð0Þmq�q0b

ð0Þi
�q iþhbð0Þjq0 bð1Þmq�q0b

ð0Þi
�q iþhbð0Þjq0 bð0Þmq�q0b

ð1Þi
�q i

¼ 1
Dðq0Þ

X
q00

vjlnðq00jq0 �q00Þhblq00bnq0�q00b
m
q�q0b

i
�qi

þ 1
Dðq�q0Þ

X
q00

vmlnðq00jq�q0 �q00Þhblq00bnq�q0�q00b
j
q0b

i
�qi

� 1
D�ðqÞ

X
q00

vilnðq00j�q�q00Þhblq00bn�q�q00b
j
q0b

m
q�q0 i:

(22)

Here, for simplicity, we have dropped the superscript (0) in going
from the first to the second equality. The fourth-order correlations
appearing on the right-hand side of Eq. (22) can be written in terms of
products of second-order correlations. Omitting the details of the cal-
culation, we arrive at the following:

hbjq0bmq�q0b
i
�qi ¼

1
Dðq0Þ vjlnð�qþ q0jqÞhbmbliq�q0 hbibniq

h
þvjnlð�qþ q0jqÞhbmbniq�q0 hbibliq

i
þ 1
Dðq� q0Þ vmlnð�q0jqÞhbjbliq0 hbibniq

h
þvmnlð�q0jqÞhbjbniq0 hbibliq

i
þ 1
D�ðqÞ vilnðq0jq� q0Þhbjbliq0 hbmbniq�q0

h
þvinlðq0jq� q0Þhbjbniq0 hbmbliq�q0

i
: (23)

We again make use of anisotropic turbulence spectra, Eq. (16), to
express the triple correlation as follows:

hbjq0bmq�q0b
i
�qi ¼

1
4

1
Dðq0Þ Pmlðk � k0ÞPinðkÞvjlnð�qþ q0jqÞ

h

þ Pmnðk � k0ÞPilðkÞvjnlð�qþ q0jqÞ
i
hb2iq�q0 hb2iq

þ 1
4

1
Dðq� q0Þ Pjlðk0ÞPinðkÞvmlnð�q0jqÞ�

þ Pjnðk0ÞPilðkÞvmnlð�q0jqÞ�hb2iq0 hb2iq
þ 1
4

1
D�ðqÞ Pjlðk0ÞPmnðk � k0Þvilnðq0jq� q0Þ�

þPjnðk0ÞPmlðk � k0Þvinlðq0jq� q0Þ�hb2iq0 hb2iq�q0 :

(24)

Inserting this result in the wave equation (19), we arrive at the follow-
ing result:

DðqÞhb2iq ¼
1
4

X
q0

 
1

Dðq0Þ Pmlðk � k0ÞPinðkÞvijmðq0jq� q0Þ
h

� vjlnð�qþ q0jqÞ þ Pmnðk � k0ÞPilðkÞ
� vijmðq0jq� q0Þvjnlð�qþ q0jqÞ

i
hb2iq�q0 hb2iq

þ 1
Dðq� q0Þ Pjlðk0ÞPinðkÞvijmðq0jq� q0Þ

h
� vmlnð�q0jqÞ þ Pjnðk0ÞPilðkÞvijmðq0jq� q0Þ
� vmnlð�q0jqÞ�hb2iq0 hb2iq
þ 1
D�ðqÞ Pjlðk0ÞPmnðk � k0Þvijmðq0jq� q0Þ

h
� vilnðq0jq� q0Þ þ Pjnðk0ÞPmlðk � k0Þ

� vijmðq0jq� q0Þvinlðq0jq� q0Þ
i
hb2iq0 hb2iq�q0

!
: (25)

After some simplification and reshuffling of dummy indexes, it is veri-
fied that some of the terms appearing in the expression can be com-
bined, and the wave equation becomes of the form given as follows:

DðqÞhb2iq ¼
1
2

X
q0

1
Dðq0Þ Pmlðk � k0Þvijmðq0jq� q0Þ
�

� vjlið�qþ q0jqÞhb2iq�q0 hb2iq
þ 1
Dðq� q0Þ Pjlðk

0Þvijmðq0jq� q0Þvmlið�q0jqÞhb2iq0 hb2iq

þ 1
D�ðqÞ Pjlðk

0ÞPmnðk � k0Þvijmðq0jq� q0Þ

� vilnðq0jq� q0Þhb2iq0 hb2iq�q0

	
: (26)

Making use of the general definition for the second order-
susceptibilities—see Eq. (13b),

vijmðq1jq2Þ ¼
1
2

dim � ðk1 þ k2Þiðk1 þ k2Þm
ðk1 þ k2Þ2

 !
ðk1 þ k2Þj

"(

þ dij �
ðk1 þ k2Þiðk1 þ k2Þj

ðk1 þ k2Þ2
 !

ðk1 þ k2Þm
#

� fq1þq2ð1� fq1 fq2Þ

� dimðk1 þ k2Þj � dijðk1 þ k2Þm
h i

ðfq1 � fq2Þ


;

(27)

and after some straightforward but relatively lengthy calculations, we
arrive at a more explicit expression for the terms on the right-hand
side of Eq. (26). For instance, for the first term within the large paren-
thesis on the right-hand side, we obtain

Pmlðk � k0Þvijmðq0jq� q0Þvjlið�qþ q0jqÞ

¼ Pmlðk � k0Þkmk0l 1þ ðk � k0Þ2
k2k02

� �
ð1þ fqfq0 � fqfq�q0 � fq0 fq�q0 Þ

¼ ðk � k0Þ2
ðk � k0Þ2 1þ ðk � k0Þ2

k2k02

� �
ð1þ fqfq0 � fqfq�q0 � fq0 fq�q0 Þ:

(28)
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Proceeding in the same way with the other two terms, we arrive at the
following form of wave equation:

DðqÞhb2iq ¼
1
2

X
q0

1
Dðq0Þ

ðk � k0Þ2
ðk � k0Þ2 1þ ðk � k0Þ2

k2k02

� �(

� ð1þ fqfq0 � fqfq�q0 � fq0 fq�q0 Þhb2iq�q0 hb2iq

þ 1
Dðq� q0Þ

ðk � k0Þ2
k02

1þ k � ðk � k0Þ� �2
k2ðk � k0Þ2

 !

� ð1þ fqfq�q0 � fqfq0 � fq0 fq�q0 Þhb2iq0 hb2iq

þ 2
D�ðqÞ

ðk � k0Þ2
k02

1þ ðk � k0Þ2
k2ðk � k0Þ2

 !
ð1� fq0 fq�q0 Þ

"

� ðk � k0Þ2
k02

� ðk � k0Þ2
ðk � k0Þ2

 !
fqðfq0 � fq�q0 Þ

#

� hb2iq0 hb2iq�q0

)
: (29)

We note that the term associated with the inverse of Dðq0Þ and the
same associated with the inverse of Dðq� q0Þ are identical if one inter-
changes the dummy integral variables, ðq0 $ q� q0Þ. The quantities
that appear within the square bracket associated with the term
2=D�ðqÞ can be written in symmetrical form by permutating the
dummy integral variables, ðq0 $ q� q0Þ. This leads to

DðqÞhb2iq ¼
1
2

X
q0

ðk � k0Þ2 1
Dðq0Þ

1

ðk � k0Þ2 1þ ðk � k0Þ2
k2k02

� �(

� ð1þ fqfq0 � fqfq�q0 � fq0 fq�q0 Þhb2iq�q0 hb2iq

þ 1
Dðq� q0Þ

1
k02

1þ k � ðk � k0Þ� �2
k2ðk � k0Þ2

 !

� ð1þ fqfq�q0 � fqfq0 � fq0 fq�q0 Þhb2iq0 hb2iq

þ 1
D�ðqÞ

1
k02

1þ ðk � k0Þ2
k2ðk � k0Þ2

 !
ð1� fq0 fq�q0 Þ

"

þ 1

ðk � k0Þ2 1þ k � ðk � k0Þ� �2
k2k02

 !
ð1� fq0 fq�q0 Þ

�2
1
k02

� 1

ðk � k0Þ2
� �

fqðfq0 � fq�q0 Þ
#
hb2iq0 hb2iq�q0

)
:

(30)

At this stage, we introduce the slow-time derivative to the linear
response,

DðqÞhb2iq ! D k;xþ i
@

@t

� �
hb2iq ’ DðqÞhb2iq þ

i
2
@DðqÞ
@x

@hb2iq
@t

:

(31)

Taking the real part of the dispersion relation given by Eq. (30), while
ignoring nonlinear terms, we obtain the angular frequency of the nor-
mal modes,

ReDðqÞhb2iq ¼ 0; ! x� kkcAfq ¼ 0 ! x2 � k2kc
2
A ¼ 0: (32)

Therefore, we write
x ¼ rxk; xk ¼ kkcA; r ¼ 61;

hb2iq ¼
X
r¼61

Irkdðx� rxkÞ; (33)

assuming that the magnetic fluctuations are those associated with nor-
mal modes propagating in forward (r¼ 1) and backward (r ¼ �1)
directions along the direction of ambient magnetic field vector.
Moreover, we can write

fq ! r; fq0 ! r0; fq�q0 ! r00: (34)

We consider the following:

ReDðqÞ ¼ x�
k2kc

2
A

x
;

@ReDðqÞ
@x

¼ 1þ
k2kc

2
A

x2
: (35)

Proceeding, we evaluate D(q) in the proximity of the frequency of a
normal mode (neglecting the small imaginary part),

DðqÞ ’ DðqÞjx¼rxk
þ ðx� rxkÞ@DðqÞ

@x

����
x¼rxk

¼ 0þ 2ðx� rxkÞ:

(36)

We, therefore, obtain

1
DðqÞ ’

X
r

1
x� rxk

1
2
¼ 1

2

X
r

lim
D!0þ

x� rxk
zfflfflfflfflffl}|fflfflfflfflffl{’0

�iD

ðx� rxkÞ2 þ D2

¼ � ip
2

X
r

dðx� rxkÞ; (37)

which leads to
1

Dðq0Þ ¼ � ip
2

X
r0

dðx0 � r0xk0 Þ;
1

Dðq� q0Þ ¼ � ip
2

X
r00

dðx� x0 � r00xk�k0 Þ;
1

DðqÞ� ¼
ip
2

X
r

dðx� rxkÞ:

(38)

Equation (30) can therefore be written as follows:

x� rkkcA þ 2ik2� þ i
@

@t

� � X
r¼61

Irkdðx� rxkÞ

¼ � ip
4

X
q0

X
rr0r00¼61

ðk � k0Þ2
ðk � k0Þ2 1þ ðk � k0Þ2

k2k02

� �(

� 1þ rr0 � rr00 � r0r00ð ÞIrk Ir00k�k0 þ
ðk � k0Þ2

k02

� 1þ jk � ðk � k0Þj2
k2jk � k0j2

 !
1þ rr00 � rr0 � r0r00ð ÞIrk Ir

0
k0

� ðk � k0Þ2
k02

1þ ðk � k0Þ2
k2ðk � k0Þ2

 !
ð1� r0r00Þ

"

þ ðk � k0Þ2
ðk � k0Þ2 1þ ðk � ðk � k0ÞÞ2

k2k02

� �
ð1� r0r00Þ

�2
ðk � k0Þ2

k02
� ðk � k0Þ2
ðk � k0Þ2

 !
rðr0 � r00Þ

#
Ir

0
k0 I

r00
k�k0

)

� dðx� rxkÞdðx0 � r0xk0 Þdðx� x0 � r00xk�k0 Þ: (39)
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Isolating the terms
P

r¼61 dðx� rxkÞ, integrating over x, and
replacing the useful notation

P
q0 by the original integrals over k

0 and
x0, and integrating over x0, we obtain an equation for the time evolu-
tion of the spectral intensities of the normal modes,

@Irk
@t

¼ �2k2�Irk � p
4

ð
dk0

X
r0r00¼61

ðk � k0Þ2
ðk � k0Þ2 1þ ðk � k0Þ2

k2k02

� �(

� 1þ rr0 � rr00 � r0r00ð ÞIrk Ir
00

k�k0

þ ðk � k0Þ2
k02

1þ jk � ðk � k0Þj2
k2jk � k0j2

 !

� 1þ rr00 � rr0 � r0r00ð ÞIrk Ir
0

k0

� ðk � k0Þ2
k02

1þ ðk � k0Þ2
k2ðk � k0Þ2

 !
ð1� r0r00Þ

"

þ ðk � k0Þ2
ðk � k0Þ2 1þ ðk � ðk � k0ÞÞ2

k2k02

� �
ð1� r0r00Þ

�2
ðk � k0Þ2

k02
� ðk � k0Þ2
ðk � k0Þ2

 !
rðr0 � r00Þ

#
Ir

0
k0 I

r00
k�k0

)

� dðrxk � r0xk0 � r00xk�k0 Þ: (40)

We proceed by taking into account all combinations of r0 and r00,
developing and rearranging the terms. This results in the following rel-
atively compact form:

@Irk
@t

¼ �2k2�Irk

� p
ð
dk0

ðk � k0Þ2
ðk � k0Þ2 1þ ðk � k0Þ2

k2k02

� �
� Irk � Irk0

 �

I�r
k�k0dðxk � xk0 þ xk�k0 Þ

� p
ð
dk0

ðk � k0Þ2
k02

1þ jk � ðk � k0Þj2
k2jk � k0j2

 !

� Irk � Irk�k0

 �

I�r
k0 dðxk þ xk0 � xk�k0 Þ: (41)

Equation (41) describes the time evolution of the anisotropic intensi-
ties of magnetic fluctuations associated with the normal modes, i.e.,
shear Alfv�enic turbulence, which can be contrasted to the following
form, which was derived based on the incorrect notion of implicit ten-
sorial turbulent fluctuations given by a scalar matrix form (with isotro-
pic diagonal elements), and published in Ref. 2:

@Irk
@t

¼ �2k2�Irk

� 4p
ð
dk0 ðk � k0Þ 1þ ðk � k0Þ2

k2k02

� �
Irk � 2k2Irk0

� �
� I�r

k�k0 dðxk �xk0 þxk�k0 Þ

� 4p
ð
dk0 k � ðk� k0Þ� �

1þ k � ðk� k0Þ� �2
k2ðk� k0Þ2

 !
Irk � 2k2Irk�k0

" #

� I�r
k0 dðxk þxk0 �xk�k0 Þ: (42)

Note that wemay rewrite Eq. (41) in a slightly different form. In the
last line of Eq. (41), we may define k00 ¼ k � k0, so dk00 ¼ �dk0, and

then denote k00 as k0 again, since it is a dummy integral variable. With
such a procedure, Eq. (41) can be writtenmore succinctly as follows:

@Irk
@t

¼ �2k2�Irk

� 2p
ð
dk0

jk � k0j2
jk � k0j2 1þ jk � k0j2

k2k02

� �
� Irk � Irk0

 �

I�r
k�k0 dðxk � xk0 þ xk�k0 Þ: (43)

The same can be done to the previous (and erroneous) form,

@Irk
@t

¼ �2k2�Irk

� 8p
ð
dk0 ðk � k0Þ 1þ ðk � k0Þ2

k2k02

� �
Irk � 2k2Irk0

� �
� I�r

k�k0 dðxk � xk0 þ xk�k0 Þ: (44)

The difference between the time evolution ruled by the (correct) equa-
tion of anisotropic turbulence, either in the form of Eq. (41) or in the
form of Eq. (43), vs the incorrect isotropic version (42) or (44), has to
be evaluated by numerical methods, which is the subject of a follow-up
paper. However, some basic differences can be already seen by a simple
examination of both expressions. For instance, it can be seen from Eq.
(43) that the waves with k0 nearly parallel or anti-parallel to k play
negligible role in the nonlinear dynamics, while the same cannot be
concluded from Eq. (44). The implication is that according to the cor-
rect anisotropic formalism, the nonlinear cascade along the strictly
perpendicular direction, that is, along k? (as defined with respect to
the ambient magnetic field) will be ineffective, whereas the incorrect
previous formalism does indeed allow for such a process. As a matter
of fact, the earlier paper, i.e., Ref. 1, made use of such a property to dis-
cuss the perpendicular cascade of incompressible MHD turbulence,
but we now know that such a result may not be valid.

III. SUMMARY AND DISCUSSION

In the present paper, we have reformulated the theory of MHD
weak turbulence theory, by revisiting the earlier theory in Refs. 1 and
2. That is, in the previous two papers, an implicit assumption of isotro-
pic turbulence spectra was made, that is, the turbulent fluctuation spec-
tral tensor was assumed to be given by a scalar matrix form, which was
not immediately evident at the time. At this point, it is useful to remi-
nisce upon the underlying cause of how the implicit assumption of
isotropy crept in during the process of theoretical development,
although such a hypothesis was not explicitly made at the outset. The
reason was as follows: During the process of taking the ensemble aver-
age of the nonlinear wave equation (12),

DðqÞbiq ¼
X
q0

vijkðq0jq� q0Þbjq0bkq�q0;

the proper procedure should have been to take the product of this
equation with the wave amplitude bjq0 and take the ensemble average,
as in Eq. (17). Instead, in Refs. 1 and 2, this equation was simply multi-
plied with bi�q and the definition of wave spectral intensity given by

hbiqbi�qi ¼ hb2iq
was invoked. This straightforward definition hides the fact that not all
scalar product components of the vector biq are nonzero. In fact, only
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the transverse components of the scalar product should be nonzero,
while the longitudinal component should vanish, hbiqbi�qi ¼ hb2?iq
þhb2kiq ¼ hb2?iq ¼ hb2iq, where hb2kiq ¼ 0. In the present paper, we
have corrected this shortcoming by means of more rigorous defini-
tions, Eqs. (15) and (16). The result is the correct form of nonlinear
wave kinetic equation for weak anisotropic incompressible MHD tur-
bulence, Eq. (41) or Eq. (43), which contrasts with the incorrect form,
Eq. (42) or Eq. (44).
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