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1 Introduction

Developmental Biology is a broad field where each type of biological data at the
molecular, tissue, or phenotype level is pertinent to uncover an organism’s origins and
developmental process. The final panorama is that each layer of information requires distinct
mindsets for accurate data interpretation.

As Theodosius Dobzhansky expressed, “Nothing in biologymakes sense except in the light of
evolution,” (Dobzhansky, 1973) and Developmental Biology flawlessly reflects Dobzhansky’s
statement. Because every piece of evolutionary characteristics are relevant to understanding an
organism’s developmental process, it is common to use model organisms to compare data or
look for indications to best invest time, resources, and efforts. When a molecular process is
conserved in multiple organisms throughout evolution, the probability of being essential for
organism survival increases. Therefore, multiple data layers are required to rigorously
understand a developmental process. The final panorama is an escalation of data
complexity. As complexity increases, the need to apply computational approaches grows
proportionally. There are numerous ways to apply computational methods to Developmental
Biology (Figure 1), each adapted to the question guiding the study and the type of data
available. The same is true for diseases that take place during the developmental process.

For example, Network Systems Biology (NSB) is one of the most interdisciplinary subareas
of Bioinformatics. NSB became an invaluable tool for understanding biological systems, for the
formulation of original hypotheses, for comparison between different organisms, and for
interpreting a massive amount of data (Vidal et al., 2011). This possibility arises because
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network topological proprieties and organization principles, such as
clustering, percolation, and centralities, can be applied to numerous
biological problems, regardless of the background study (Albert,
2005). However, despite this flexibility, how they can or should be
utilized differs from data to data (e.g., gene expression, genomics,
proteomics, epigenomics, etc.). Since the significant limitation of NSB
is data availability, the continuous effort to create new databases,
specially curated ones, directly impacts NSB studies’ success. New
network topological parameters are also necessary for a more accurate
selection of potential targets.

In silico structural analysis at the protein level is also a common
integrative approach, combined with data from the wet lab or as a
stand-alone analysis. Analyzing a single protein structure can be
considered an entire universe of complexity because numerous
investigations need to be applied to infer a molecular behavior or
a possible structural feature. In this sense, there is a demand for more
computational methods to analyze proteins essential to the
developmental process. Due to the numerous limitations of
experimental techniques at the wet lab, many proteins, such as

HOX proteins, have no complete structural data. Therefore, the
precision of protein structural modeling tools, especially using ab
initio calculations, significantly increases the success of protein
structure research (Delarue and Koehl, 2018).

Some widespread computational approaches, such as gene
expression analyses and phylogenetic studies, are also essential in
developmental biology research. Although the applicability of these
studies is straightforward, they are not without challenges. Statistical
analyzes are crucial in both cases, and the creation of new tools
implementing robust statistical treatments for multi-level and meta-
analyzes are decisive in generating accurate data. In particular,
phylogenetic studies need new tools to deal with massive amounts
of sequence.

Finally, machine learning (ML) approaches are gaining territory
in almost all biological and Biomedical Sciences. Such tools’ vast
applicability can be adapted to virtually all Big-Data problems. Either
being applied to expression (Ang et al., 2016), genomic (Libbrecht and
Noble, 2015), epigenetics (Holder et al., 2017) or biomedical image
data (Kan, 2017), new ML algorithms and elegant application

FIGURE 1
Example of an integrative computational approach to explore biological data. The concept is to integrate different computational approaches into one
single pipeline. (A) Protein-Protein Network (PPN) for Mus musculus. From the 39 Hox proteins, Hoxa1, Hoxa4, Hoxa13, Hoxb9, Hoxb13, Hoxc11, Hoxc12,
Hoxc13, Hoxd1, Hoxd10,Hoxd11,Hox12, andHoxd13were not connected to the network; (B)PPN for the 36hox genes inDanio rerio. Hoxa1, hoxa11, hoxa13,
hoxb1, hoxc10, hoxd3, hox12, and hoxd13were not connected to the network,whereas hoxa9 and hoxc3were not found by STRING; (C)PPN forHomo
sapiens. From the 39HOX proteins, HOXB13, HOXC12, HOXD1, HOXD12, andHOXD13were not connected to the network. The primary networkswere built
in the STRING v.11 (Szklarczyk et al., 2019) meta-search engine, using the following parameters (10 Oct 2020): all search options enabled, except for
textmining and gene-fusion, the confidence score of 0.4, and nomore than 20 interactions in the 1st shell. The final networks were edited in Cytoscape 3.6.1.
(Shannon, 2003). Clusters were obtained using MCODE (Bader and Hogue, 2003), and centralities were calculated by CentiScaPe 2.2 (Scardoni et al., 2009).
Protein image was created using Pymol (DeLano, 2002), system was build using GROMACS 2018.1 (Abraham et al., 2015).
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protocols are necessary for this day and age of science. In addition to
developing new algorithms, the major challenge of this field is how
they are tested. Input data is perhaps the major player in this equation
since training the algorithm with up-to-date curated quality data
would, undoubtedly, generate more accurate results than training
them with older datasets (Feltes et al., 2019; Feltes et al., 2021).

This Research Topic presents some integrative approaches
applied to developmental biology experiments from different
backgrounds.

2 The research topic

Fagny et al. employed systems biology to integrate genomic,
transcriptomic, and epigenomic data to elucidate the regulatory
relationships between transcription factors, enhancers, and potential
target genes in maze and identify regulatory key factors specific to
leaves at the seedling stage and husks at flowering. By combining
different omic data, they reconstructed tissue-specific-associated
transcriptomic factors regulatory networks and uncovered genes
crucial to tissue-specific differentiation.

Zhou et al. combined two RNA-seq datasets of human placentas
from term and preterm birth to investigate co-altered circadian
transcripts-associated long intergenic non-coding RNAs (lincRNAs).
Using a diverse set of transcriptomic analyses, they uncovered nine core
molecular clock genes deregulated by the decrease of five circadian
lincRNAs in the placenta, affecting a myriad of crucial biological
processes that could be linked to preterm birth.

Shang et al. analyzed cardiac development-associated
transcriptomic data from three Single-Cell Tagged Reverse
Transcription (STRT-Seq) datasets. Using a transcriptomic
analysis workflow, they explored lineage-specific changes in
mouse and humans regarding gene expression, subpopulation
composition, and developmental features in cardiac tissues. They
described an evolutionary conservation of cell populations and
molecular profiles during heart development in both species.

Tang et al. reviewed experimental technologies, public data, and
predictive models associated with synthetic lethal pairs. The
knowledge of synthetic lethal pairs is deeply interconnected to
developmental biology since it revolves around how the
impairment of two genes can lead to cellular or organism death,
which does not happen when one of these genes is still viable. The
authors outlined important perspectives and critical discussions on
the subject that can aid future research.

Finally, Wu et al. provided a comprehensive review of the
mathematical model of local ancestry inference (LAI) applied to
genomic data. In this sense, its application, historical aspects,
different benchmarks, and the strengths and limitations of LAI
are discussed and outlined.
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