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ABSTRACT

Inbetweening is the process of generating a new video frame whose visual content rep-

resents a moment in time that lies between two existing frames. This can be used, for

example, to increase the framerate of a video or hand-drawn animation. Since many

algorithms exist for generating inbetween frames, methods to compare results of different

algorithms are needed. Benchmarks created from video sequences can be used to compare

algorithm results to the actual middle frame, however this approach has two main limita-

tions: (i) if the ground-truth middle frame does not exist, the method has no reference with

which to compare the generated frame; (ii) even if the ground-truth middle frame exists

(extracted from a video or drawn by a human animator, for example), it does not necessarily

represent the only viable inbetween frame (i.e., many different inbetween frames may

match the movement of the input video). To address these limitations, we propose the

Feature Matching Inbetweening Score (FMIS) metric, which rates an inbetween frame

based on features present in the input frames (before and after the generated inbetween

frame). Variations of this scoring system are also discussed, taking factors like image

blurriness and distance between matched points in consideration. The objective of the

score is to provide an evaluation of inbetween frame quality similar to the analysis of a

human observer. We perform a small user study which provides evidence that our FMIS

metric aligns well with human perception.

Keywords: Inbetweening. Comparison. Image Processing.



Métrica de Qualidade Para Comparação de Algoritmos de Quadros Intermediários

RESUMO

Inbetweening é o processo de geração de um novo quadro de vídeo, cujo conteúdo visual

representa um momento temporal que fica entre dois quadros existentes. Isso pode ser

usado, por exemplo, para aumentar a taxa de quadros de um vídeo ou animação feitas a

mão. Já que múltiplos algoritmos de geração de quadros intermediários existem, métodos

para comparar seus resultados são necessários. Métricas de teste criadas a partir de

sequências de vídeo podem ser usadas para comparar resultados de algoritmos com o

quadro intermediário real, porém, essa abordagem possui duas limitações principais. (i) se

não existir um quadro intermediário real, não há referência para comparar o quadro gerado;

(ii) mesmo que o quadro exista (extraído de um vídeo ou desenhado por um animador

humano, por exemplo), isto não representa necessariamente o único quadro intermediário

viável (i.e., muitos quadros intermediários diferentes podem corresponder ao movimento

do vídeo de entrada).

Para lidar com essas limitações, nós popomos a métrica Feature Matching Inbetweening

Score (FMIS), que avalia um quadro intermediário com base nas propriedades presentes

nos quadros de entrada (antes e depois do quadro intermediário gerado). Variações deste

sistema de pontuação também são abordadas, levando fatores como nitidez e distância

entre regiões características em consideração. O objetivo da pontuação é fornecer uma

avaliação da qualidade do quadro intermediário que seja similar à análise de um observador

humano. Nós conduzimos um pequeno estudo de usuário que fornece evidências de que

nossa métrica FMIS se alinha bem com a percepção humana.

Palavras-chave: Inbetweening. Comparação. Processamento de Imagens.



LIST OF FIGURES

Figure 1.1 Example video frames with an inbetweening frame. Inbetweening frame
is in the middle of the other two frames. ................................................................10

Figure 3.1 All ORB feature matches between frame A (left) and C (right), used in
FMIS. Matching points are color coded and connected by straight lines. ..............17

Figure 3.2 All ORB feature matches used in DA-FMIS (with distance parameter
p = 0.1), which removes matches that are too far apart in the image space.
Matching points are color coded and connected by straight lines. .........................17

Figure 4.1 Test images labeled as "Animation", 1 to 6. The left column shows the
first input image (frame A) and the second columns shows the corresponding
second input image (frame C).................................................................................21

Figure 4.2 Test images labeled as "Line Art", 1 to 5. The left column shows the
first input image (frame A) and the second columns shows the corresponding
second input image (frame C).................................................................................22

Figure 4.3 Test images labeled as "Photo", 1 to 4. The left column shows the
first input image (frame A) and the second columns shows the corresponding
second input image (frame C).................................................................................23

Figure 4.4 Demonstration of the inbetween frames generated by different methods
(for Line Art 3)........................................................................................................25

Figure 4.5 Comparison of human inbetween image rankings ........................................26
Figure 4.6 Inbetween frames generated by different methods for the “Animation 2”

test image. Practical-RIFE clearly generates a better result when compared to
FILM. ......................................................................................................................27

Figure 4.7 Inbetween frames generated by different methods for the “Animation 5”
test image. All methods generate comparable results.............................................27

Figure 4.8 Comparison of average FMIS to human rankings .........................................29
Figure 4.9 Comparison of average DA-FMIS and FMIS to human rankings.................29
Figure 4.10 Comparison of average BA-FMIS and FMIS to human rankings ...............30
Figure 4.11 Comparison of average BA-FMIS and DA-FMIS to human rankings ........30
Figure 4.12 Comparison of average FMIS, DA-FMIS, BA-FMIS and BDA-FMIS

to human rankings...................................................................................................31



LIST OF TABLES

Table 4.1 Test image set description ...............................................................................22
Table 4.2 User study setup. .............................................................................................24

Table 5.1 ΣBDA-FMIS comparison for each inbetweening generation method for each
image pair. Locations marked with a “–” represent images for which the
respective inbetweening method generated an error and was not capable of
generating an output (the hardware we had available for our tests did not have
enough memory for these methods to process the respective input images). ...........32

Table 5.2 ΣBDA-FMIS based ranking for each inbetweening generation method for
each image pair .........................................................................................................33



LIST OF ABBREVIATIONS AND ACRONYMS

PSNR Peak Signal-to-noise Ratio

SSIM Structural Similarity Index Measure

AMT All-Pairs Multi-Field Transforms

FILM Frame Interpolation for Large Motion

GMFSS GMFlow Based Anime Video Frame Interpolation

RIFE Real-Time Intermediate Flow Estimation

sepconv Adaptive Separable Convolution

ORB Oriented FAST and rotated BRIEF

FMIS Feature Matching Inbetweening Score

DA-FMIS Distance Aware Feature Matching Inbetweening Score

BA-FMIS Blur Aware Feature Matching Inbetweening Score

BDA-FMIS Blur and Distance Aware Feature Matching Inbetweening Score



CONTENTS

1 INTRODUCTION.........................................................................................................9
2 RELATED WORKS ...................................................................................................12
2.1 Frame Interpolation Methods................................................................................12
2.2 Evaluation of Frame Interpolation Methods........................................................13
3 SCORING AND COMPARING INBETWEENS ....................................................14
3.1 Feature Matching Inbetweening Score (FMIS)....................................................14
3.2 Distance-Aware Feature Matching Inbetweening Score (DA-FMIS).................15
3.2.1 Choosing the relative threshold parameter p for DA-FMIS...................................16
3.3 Blur Aware Feature Matching Inbetweening Score (BA-FMIS) ........................18
4 RESULTS.....................................................................................................................20
4.1 Image Dataset ..........................................................................................................20
4.2 Inbetweening Methods Used to Evaluate Our Metrics .......................................20
4.3 Evaluation Metric and Comparison Baseline.......................................................24
4.4 Evaluation of FMIS, DA-FMIS, BA-FMIS and BDA-FMIS...............................26
5 CONCLUSION ...........................................................................................................32
REFERENCES...............................................................................................................34



9

1 INTRODUCTION

The animation industry has expanded exponentially in recent years, and with all

the advancements in streaming and entertainment technology, the industry still has a lot of

room to grow. Even though the consumption of animated content is at an all time high, the

production process behind them is really demanding, especially for 2D animation, since

frames have to be mostly drawn by hand. With the increase in demand and tight release

schedules for the animation industry, many studios employ techniques such as mixing

3D graphics with 2D animation, in order to speed up the work. However, the use of 3D

sometimes does not look good when mixed with 2D animation, so some studios still prefer

doing everything in 2D, although it takes significantly more time and a lot more work by

the artist team. Alternatives to drawing each frame in detail by hand usually lie in the

process called inbetweening, in which artists draw “smear frames” or intermediate frames

with less detail, to smooth the movement of the animated characters in the final product.

Still, even if these frames are less detailed, the amount of them and the level of detail in

the frames can result in a time-consuming inbetweening process.

With the recent advancements in machine learning and computer processing power,

it becomes increasingly viable to use software in order to automate the generation of inbe-

tween frames, as illustrated in Figure 1.1. However, current tools for frame interpolation

often output very different results for the same animation, therefore, a method of gauging

the quality of the generated frame becomes necessary, so that both animators and tool

developers can compare different methods easily. Through these comparisons, a choice

can be made between the many alternatives and the best-performing option can be selected.

The simplest approach to evaluate the quality of an inbetweening method is to rely

on a ground-truth frame to evaluate the quality of the generated interpolation. However,

this approach has two main limitations:

1. There are many cases (which includes the majority of commercially-produced

animation), where there is no ground truth frame to be used as a reference for

comparison. This limitation makes this method much harder to use for individual

cases, in a production workflow (or even in video-framerate-increasing uses, where

the middle frame doesn’t exist yet);

2. When comparing to a specific ground-truth frame, the algorithms are being compared

to one correct output, while there may be more than one inbetween frame that fits

both input frames. This means the comparison to one ground truth may hinder some
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Figure 1.1 – Example video frames with an inbetweening frame. Inbetweening frame is in the
middle of the other two frames.

Source: Author
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algorithms that provide an output that is different from the reference frame, but

may not be incorrect. This is more pronounced in the case of animations, where

sometimes, different techniques (such as deformation to convey movement and

impact, for example) are applied and may result in different results that may be

equally good.

In this work we propose a different way to compare outputs from frame interpo-

lation methods, which can be used comparatively without a ground-truth frame, using

any set of input frames. The goal is to provide an objective way to gauge how good an

inbetween frame looks for a human observer, so that the best generated frame between

many models can be selected.
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2 RELATED WORKS

We give a brief overview of recent state-of-the-art automatic inbetweening methods,

and how they are currently benchmarked. Throughout this manuscript, we use the terms

“inbetweening” and “frame interpolation” interchangeably.

2.1 Frame Interpolation Methods

Many methods for inbetween frame generation have been proposed through recent

years, seeking to solve different problems. Some methods benefit from the advancements

in machine learning in order to approximate an adequate inbetweening method. These

methods sometimes aim to tackle a specific type of video to interpolate, with some having

optimizations for animation and some for real videos. The methods that are tested in this

work are AMT (Li et al., 2023), FILM (Reda et al., 2022), Practical-RIFE (Huang et al.,

2022), GMFSS_Fortuna (98mxr, 2023) and sepconv (Niklaus; Mai; Wang, 2021).

AMT (All-Pairs Multi-Field Transforms): The AMT method works by extracting

features and image flow to build correlation volumes, refined by predictive convolutions,

which generate many different flow fields. These flow fields are then used to generate

the intermediate frame for the input images. For the purposes of model result repro-

duction and testing in our own data, we use the AMT-S pre-trained model, available at

https://github.com/MCG-NKU/AMT.

FILM (Frame Interpolation for Large Motion): The FILM method uses a

machine learning network, trained with true intermediary frames, to effectively generate

a video frame. The algorithm uses feature extraction to estimate movement flows, and

combines these features and flows to generate the inbetween frame for the video. We

use the pre-trained film_net model (obtained in https://github.com/google-research/frame-

interpolation) in order to generate inbetween frames with FILM.

GMFSS_Fortuna (GMFlow Based Anime Video Frame Interpolation): GMFSS_

Fortuna also generates an inbetween frame based on the flow of the image, obtained via

GMFlow (Xu et al., 2022), which estimates image flow using a transformer-based ap-

proach. We use the pre-trained union model to generate inbetween frames. We use the

"fortuna_union_ft_animerun" (available at https://github.com/98mxr/GMFSS_Fortuna)

Practical-RIFE (Real-Time Intermediate Flow Estimation): RIFE (Huang et

al., 2022) works by estimating intermediate flows and a fusion map using an Intermediate

https://github.com/MCG-NKU/AMT
https://github.com/google-research/frame-interpolation
https://github.com/google-research/frame-interpolation
https://github.com/98mxr/GMFSS_Fortuna
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Flow Network. The intermediate frame is obtained by warping the input frames based

on the estimated flows and then combining them. Practical-RIFE aims to implement

a practical version of RIFE, adding features and using new models to refine the frame

generation further. For the purposes of model result reproduction and testing in our

own data, we use the pre-trained model version 4.13.1, provided in the Practical-RIFE

repository: https://github.com/hzwer/Practical-RIFE.

Sepconv (Adaptive Separable Convolution): sepconv aims to generate an inter-

mediate frame using adaptive separable convolutions. After input processing, the input

frames are plugged into a neural network, that generates the interpolated frame.

2.2 Evaluation of Frame Interpolation Methods

Many of the current methods are benchmarked using datasets like Vimeo 90K (Xue

et al., 2019). The Vimeo 90K benchmark usually gives results based in a ratio between

the PSNR and SSIM values for a ground-truth frame and a given interpolation. However,

as previously mentioned, this evaluation depends on a ground-truth frame, which may

not always exist. Also, these benchmarks usually provide good metrics to evaluate an

inbetweening method, but they are hard to adapt to specific examples, which is sometimes

a necessity when dealing with a variety of animation styles and different types of video in

general.

https://github.com/hzwer/Practical-RIFE


14

3 SCORING AND COMPARING INBETWEENS

In this section, a method to compare and evaluate the quality of generated inbetween

frames will be described, so that multiple approaches can be compared and the one that

provides the best results can be automatically selected. Our goal is to provide an objective

numerical score to make analysis easier, and this score should correlate with human

perception of quality, giving preference to images that would be positively evaulated by a

human observer. This method also aims to work without requiring a ground-truth frame

and evaluate frames comparatively.

The proposed scoring method generates a number for a given inbetween image.

This image is computed, by a given inbetweening method, from a pair of input images,

representing the starting and ending frame. To explain the scoring of the inbetween frame,

we will refer to the starting image as A and the ending image as C, while the generated

inbetween image will be called B. Our numerical score takes the following metrics into

account: visual features that are shared between all three images (feature matching), the

distance between matched regions in different images, the number of matches, and the

inbetween image’s sharpness. The following subsections describe each of these metrics in

more detail.

3.1 Feature Matching Inbetweening Score (FMIS)

We first find feature points in each image using the ORB algorithm (Rublee et

al., 2011), resulting in a set of points P (X) for each image X ∈ {A,B,C}. The ORB

algorithm was chosen due to its rotation-agnostic nature and fast execution time, since

we are going to run many comparisons between images and we need these comparisons

to be fast. Points from each image are then matched against points in the other images,

using a brute force matcher with Hamming distance. This results in a collection of matches

M(X, Y ) of pairs of points (p1, p2) ∈ M(X, Y ) which are matched between images X

and Y , such that p1 ∈ P (X) and p2 ∈ P (Y ). The score for the inbetween image B is then

defined as follows:

• For each point that has been matched between A and C, and is represented in B as

well, the score in incremented by 2 units. Mathematically, the points that satisfy this
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condition can be represented by the set SA∧C , defined as follows:

SA∧C = {pB ∈ P (B) | ∃pA ∈ P (A) ∧ ∃pC ∈ P (C) where

(pA, pC) ∈ M(A,C) ∧

(pA, pB) ∈ M(A,B) ∧

(pB, pC) ∈ M(B,C)}.

(3.1)

• For each point that has been matched between A and B or B and C, but does not

occur in all three images, the score is incremented by 1 unit. The mathematical

definition for this set of points SA∨C is (where “\” denotes set difference):

SA∨C = {pB ∈ P (B) | (∃pA ∈ P (A) where (pA, pB) ∈ M(A,B)) ∨

(∃pC ∈ P (C) where (pB, pC) ∈ M(B,C))} \ SA∧C .

(3.2)

• Finally, for each point that is present in the inbetween B but not in any of the base

images (A and C), the score is decremented by 1 unit. This set of points, named S∅,

is represented by the following formula:

S∅ = {pB ∈ P (B) | (∄pA ∈ P (A) where (pA, pB) ∈ M(A,B)) ∧

(∄pC ∈ P (C) where (pB, pC) ∈ M(B,C))}.
(3.3)

After all the matches are processed, the results can be used to calculate a score, which

we call FMIS (Feature Matching Inbetweening Score). This score, denoted by ΣFMIS,

represents a baseline approach for determining which inbetween images are better when

compared with other inbetweens. It is computed by considering the cardinality of the

sets (SA∧C , SA∨C , S∅), as shown in Eq. (3.4). This score is numerical and doesn’t have a

defined range, larger numbers mean better results:

ΣFMIS = 2|SA∧C |+ |SA∨C | − |S∅|. (3.4)

3.2 Distance-Aware Feature Matching Inbetweening Score (DA-FMIS)

When observing the matches made by the ORB algorithm, it is possible to see that

while most of them are correct, in a few instances, the points matched are not related to

each other. For example, Figure 3.1 represents all the matches between the input frames
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A and C, being A the image on the left, and C the image on the right. While the figure

is very hard to read due to the number of matches, it is still possible to spot some wrong

matches, such as lines that match the character’s feet in drawing A to the character’s torso

in drawing C.

To circumvent this problem, when reviewing the matches, it is possible to filter

matches by distance, removing matches with two points that are too distant, which may

possibly be a mismatch. To define the distance threshold, it is also ideal to take image

dimensions into account, since a fixed threshold might work well for images of a certain

size, but it is going to be too big or too small for images that are bigger or smaller. In

practice, a percentage of the image’s diagonal is used as parameter to define an adaptive

distance threshold. So considering d to represent the size of the image’s diagonal and p to

be the parameter (a number between 0 and 1 representing the percentage of the diagonal

to be used), d p is used as the distance threshold, so only matches that have a distance

smaller or equal to d p between their coordinates will be considered in the scoring process.

More precisely, for a match (p1, p2) ∈ M(X, Y ), if p1 ∈ P (X) has coordinates (x1, y1) in

image X and p2 ∈ P (Y ) has coordinates (x2, y2) in image Y , the match is only considered

if: √
(x1 − x2)2 + (y1 − y2)2 ≤ d p. (3.5)

This method results in a variation of the original scoring system which is aware of the

distances between points in a match, but in its core, it uses the same scoring presented

in FMIS. Therefore, we call this method DA-FMIS (Distance-Aware Feature Matching

Inbetweening Score).

Figure 3.2 shows the effect of limiting the distance between matches. As it is

possible to see, many of the wrong matches were removed, so that now FMIS can focus on

the features that are true matches.

3.2.1 Choosing the relative threshold parameter p for DA-FMIS

A k-fold cross-validation inspired approach was used, where the image set used

was divided in 5 folds (with 3 images each), 3 used for training and 2 for testing, in all

possible fold combinations. For each fold, using a brute-force search, the best p value for

the training images was discovered through comparing the results for DA-FMIS using a

set p value, to results obtained in a user study related to inbetween frame preference (this
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Figure 3.1 – All ORB feature matches between frame A (left) and C (right), used in FMIS.
Matching points are color coded and connected by straight lines.

Source: Author

Figure 3.2 – All ORB feature matches used in DA-FMIS (with distance parameter p = 0.1), which
removes matches that are too far apart in the image space. Matching points are color coded and

connected by straight lines.

Source: Author
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will be detailed in Section 4.2). This value was applied to the images in the test set of the

fold, resulting in a Kendall Tau metric (discussed in Section 4.2) which is averaged across

folds, and the average τ of the rankings made using DA-FMIS. The obtained result that

seems to work the best is p = 0.27.

3.3 Blur Aware Feature Matching Inbetweening Score (BA-FMIS)

There is another factor that is important to determine the quality of an image, which

is image blurriness. If a blurry inbetween frame is generated for a pair of sharp input

images, the result is often not desirable, as it will often contrast too much with frames

A and C. There is another case to be considered, which is the case of images employing

motion-blurring, which is a technique in animation that reduces details of objects and

deforms their shapes, in order to represent fast movement. If one of the input frames is

using this technique, it may result in a blurrier inbetween, therefore it would be unfair to

penalize the score of image B for being blurry as well.

This problem can be solved by applying a Laplacian filter with kernel size 3 to

images A, B and C, in order to quantify their sharpness (by detecting edges). The sharper

an image is, the higher the Laplacian filter’s return values are going to be. The average of

the Laplacian filter values for every pixel of the images A, B and C will be referred to as

LA, LB and LC respectively. To better utilize these values, the function below is used to

place the blurriness values in a scale of 0 to 1:

f(LB, LA, LC) = min

(
1,

LB

min(LA, LC)

)
. (3.6)

The use of the minimal number between LA and LC as divisor ensures that we select the

most blurry of the input frames as the expected blurriness of the inbetween frame. This

function is also capped at 1, so even if the inbetween image turns out to be sharper than

the blurriest input frame, it will not receive any additional score for this fact.

After the value of the function f(LB, LA, LC) is obtained, it is used to increment

the inbetween’s FMIS score. However, since the score is not contained in a defined range,

it is hard to gauge the impact an arbitrary number will have in each case. Considering this,

it is better to use the function’s result as a multiplier to the score already calculated by

FMIS. Assuming ΣFMIS to be the FMIS score for an image, the formula for the new score
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calculation is the following:

ΣBA-FMIS = ΣFMIS + f(LB, LA, LC)×
ΣFMIS

2
. (3.7)

This score now reflects feature matches and takes the image’s sharpness into

account, therefore, this method is called BA-FMIS (Blur Aware Feature Matching Inbe-

tweening Score). This approach can also be combined with DA-FMIS, to offer a metric

that takes into consideration both distance between matches and image sharpness. To

combine them, we can replace ΣFMIS by the score ΣDA-FMIS of DA-FMIS in Eq. (3.7). We

call the resulting metric BDA-FMIS.

Finally, as was done with DA-FMIS, the value of the parameter p needs to be

adjusted, and for that, the same approach was used as when determining the value of p for

DA-FMIS. The value chosen for BDA-FMIS is p = 0.25.
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4 RESULTS

In this section we evaluate the capacity of our FMIS, DA-FMIS, BA-FMIS and

BDA-FMIS metrics in evaluating the quality of a generate inbetween frame.

4.1 Image Dataset

Different methods of inbetween frame generation work in their own way internally,

but all of them have two inputs: a starting frame and an ending frame. By using the

same pairs of images for the inputs of the various methods, we can generate comparable

inbetween frames for those pairs. For our experiments we chose images with diverse styles,

some being real life photographs, some being frames from traditional animations and

some being black and white line art. Even if some of the tested methods have a specific

focus, they were run on the whole image set, so they can be better compared with the other

methods. In total, the image set used to test the methods was composed of a total of 30

images, representing 15 pairs of starting and ending frames, shown in Figures 4.1 to 4.3.

These images can each be described as trying to test something specific, and

are labeled accordingly. Images named Animation have been extracted from traditional

animation and are colored drawings. Line Arts have been drawn with black and white only,

with much less detail than Animation images, but still easily comprehensible by humans.

Photos contain pictures of real people, animals or objects. All images can be accessed in

their original resolution and compression format at https://github.com/pefcos/fmis. A short

description of each image is specified in Table 4.1.

4.2 Inbetweening Methods Used to Evaluate Our Metrics

A total of five inbetween frame generation methods were used:

• AMT (All-Pairs Multi-Field Transforms) (Li et al., 2023);

• FILM (Frame Interpolation for Large Motion) (Reda et al., 2022);

• GMFSS-Fortuna (GMFlow Based Anime Video Frame Interpolation) (98mxr, 2023);

• Practical-RIFE (Real-Time Intermediate Flow Estimation) (Huang et al., 2022);

• sepconv (Adaptive Separable Convolution) (Niklaus; Mai; Wang, 2021).

https://github.com/pefcos/fmis
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Figure 4.1 – Test images labeled as "Animation", 1 to 6. The left column shows the first input
image (frame A) and the second columns shows the corresponding second input image (frame C).

Source: (Kyoto Animation, K-On!), (CloverWorks, Bocchi The Rock!), (TOEI, One
Piece), (David Productions, JoJo’s Bizarre Adventure), (Atlus, Persona 5), (TOEI, One

Piece)
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Figure 4.2 – Test images labeled as "Line Art", 1 to 5. The left column shows the first input image
(frame A) and the second columns shows the corresponding second input image (frame C).

Source: Author, Author, (TOEI, One Piece, Edited by Author), Author, Author

Table 4.1 – Test image set description
Image Name Description
Animation 1 Animation frame with small movement and little occlusion
Animation 2 Large image with eyes opening, inner eye occlusion
Animation 3 Animation frame with a character rotating a small amount, clothing movement
Animation 4 Animation frame with a character moving their arm back
Animation 5 Animation frames with very little change
Animation 6 Animation frames with heavy occlusion and a wide character rotation
Line Art 1 Line art with character raising their hand and clothing creases
Line Art 2 Very different frames with character rotation, pose change and hair movement
Line Art 3 Line art frame with a character rotating a small amount, clothing movement
Line Art 4 Line art with character opening their eyes and has little hair movement
Line Art 5 Very different frames of a cartoon character running sideways

Photo 1 Motion-blurred picture of a car moving
Photo 2 Girl lifting a ball with her hands
Photo 3 Child smiling, little movement but has expression change
Photo 4 Panda bear moving slightly, little movement as well

Source: Author
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Figure 4.3 – Test images labeled as "Photo", 1 to 4. The left column shows the first input image
(frame A) and the second columns shows the corresponding second input image (frame C).

Source: (Huang et al., 2022), (Huang et al., 2022), (Reda et al., 2022), (Li et al., 2023)
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Number of participants: 10
Number of rankings created per participant: 15 (one for each image in Table 4.1)

Number of inbetween images per ranking: up to 5 (one for each inbetweening algorithm)
Table 4.2 – User study setup.

Some of them did not work as intended for some image pairs, so some of the test image

sets have less than 5 generated frames. An example of the generation results for all of

these methods can be seen in Figure 4.4.

4.3 Evaluation Metric and Comparison Baseline

In order to accurately measure the effectiveness of the four scoring systems, it is

necessary to compare it against some reference. Since the desired effect of the animation is

looking good to the final consumer, it is desirable to have the metrics proposed compared

to human rankings of the inbetween frames. To achieve this, we performed a user study

where a survey was answered by 10 participants, who were asked to rank the inbetweens

generated by different methods from best to worst, in a set of 15 A-C image pairs, each

with up to 5 inbetween frames to rank (one for each inbetweening method) – Table 4.2.

This resulted in 10 different rankings for each input pair (one for each user in the study).

Considering that all rankings have the same elements and the only change is the order in

which they are ordered, the Kendall Tau rank correlation coefficient (KENDALL, 1938),

denoted by τ , was chosen to compare the different rankings. The coefficient τ between

any two rankings is a number between −1 and 1, where −1 signifies completely different

rankings, and 1 signifies completely equal rankings.

Comparing participants’ rankings among themselves revealed some interesting

information about the human opinion on some of the example images. This data is

organized in the form of a boxplot graph, to make it easier to visualize, represented in

Figure 4.5. Each of the 15 images has its own column with a statistic of all the rank-

comparisons (τ values) made for the image (for each image, the ranking from each of

the 10 participants is compared with the rankings of every other participant). This data

is divided into 4 quartiles, with the box representing the two middle quartiles, and the

horizontal line inside the box representing the median. The vertical whisker lines range

from the minimum to maximum τ values, with outliers denoted by unfilled circles. The

closer an image’s ranking comparison distribution is to 1, the more users agree on the

ranking of the inbetweening methods for that image. If the lines and box are too tall, users
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Figure 4.4 – Demonstration of the inbetween frames generated by different methods (for Line Art
3).

Source: Author
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have more divergent opinions on the correct ranking. For example, one can see that all

users agree on the ranking of the inbetween frames for the “Animation 2” test image, as it is

clear that Practical-RIFE generates the best result (Figure 4.6). On the other hand, there is

strong disagreement between users on the correct ranking of the inbetween frames for the

“Animation 5” test image, as all methods perform relatively well in this case (Figure 4.7).

Figure 4.5 – Comparison of human inbetween image rankings

Source: Author

4.4 Evaluation of FMIS, DA-FMIS, BA-FMIS and BDA-FMIS

To evaluate how well our FMIS metric represents the order established by the

survey participants, a plot of the same boxplot was made, but now with light blue dots

indicating the average τ value for comparisons of FMIS rankings to human rankings for

each image. This can be seen in Figure 4.8. For a FMIS score to be considered good, it

needs to be inside of the box plotted for its respective image. This means that the FMIS

score agrees with humans in the same measure as humans agree with themselves. Values

at the upper bounds or above the boxes are also desireable, which means that our score’s

selection of inbetweening method would please most, if not all humans in the survey,

despite their different opinions among themselves. In summary, values inside the box are
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Figure 4.6 – Inbetween frames generated by different methods for the “Animation 2” test image.
Practical-RIFE clearly generates a better result when compared to FILM.

Source: Author

Figure 4.7 – Inbetween frames generated by different methods for the “Animation 5” test image.
All methods generate comparable results.

Source: Author
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good, but the closer to the upper bound of the box, the better. In the case of FMIS, 2 values

out of the 15 are outside and below the boxes, specifically, for the tests conducted with

Line Art 1 and Photo 2. This means that while FMIS generally has an opinion similar to

humans, for these test images it tends to agree more with a minority of users.

The same statistical comparison can be performed for our DA-FMIS metric (Dis-

tance Aware FMIS), using the parameter p = 0.27. This plot is represented in Figure 4.9 by

the red markers, and is comparable to the plot of the FMIS score, represented by light blue

markers. DA-FMIS presents itself to be as good as FMIS in most cases, but proves to be

better than it in some cases (Such as Line Art 1 and Photo 4), only failing to touch the box

in Photo 2. The removal of matches that are too distant might bring the algorithm’s vision

closer to our own, removing any wrong matches that a human wouldn’t make. However,

this approach might hinder the scoring of images whose starting and ending frames have

large movement between them, since it cuts all matches more distant than a certain length.

Given that many of the algorithms tested for inbetween frame generation don’t perform

ideally for ample movements, the use of DA-FMIS is a compromise usually worth making.

Now for BA-FMIS (Blur Aware FMIS), the same base boxplot will be used,

however, it must be compared with FMIS and with DA-FMIS. Firstly, by comparing it

to FMIS in Figure 4.10, some improvements can be seen, but while in the comparison

between FMIS and DA-FMIS there was a clear DA-FMIS prevalence, in this graph there

are some cases where BA-FMIS performs worse than FMIS (such as Animation 1 and

Line Art 3). This data alone might seem to indicate that DA-FMIS is the better method, but

when comparing both DA-FMIS and BA-FMIS, as seen in Figure 4.11, it becomes harder

to indicate a clear winner, as each method performs better in different cases. BA-FMIS

also touches the box in every image, including Photo 2, where both FMIS and DA-FMIS

failed to do so, indicating its scoring is closer to human standards.

As mentioned before, both DA-FMIS and BA-FMIS can be combined into an

approach BDA-FMIS, that uses both distance and image blurriness to determine a score.

Through the comparison with all the other methods in Figure 4.12, it is clear the approach

outperforms most others, with the exception of Animation 1, in which DA-FMIS remains

the better metric, possibly because the blurring of the inbetween frame doesn’t impact the

comprehension of the animation. With BDA-FMIS, all markers are at least on the lower

boundary of the box for their image, and many of them are inside them, with no marker

outside the box or its borders. It is also notable in the comparison of the four methods, that

some images did not benefit from improvements in relation to distance and blurriness, as is
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Figure 4.8 – Comparison of average FMIS to human rankings

Source: Author

Figure 4.9 – Comparison of average DA-FMIS and FMIS to human rankings

Source: Author
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Figure 4.10 – Comparison of average BA-FMIS and FMIS to human rankings

Source: Author

Figure 4.11 – Comparison of average BA-FMIS and DA-FMIS to human rankings

Source: Author
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Figure 4.12 – Comparison of average FMIS, DA-FMIS, BA-FMIS and BDA-FMIS to human
rankings

Source: Author

the case with image pairs Animation 1, Line Art 4 and Photo 3. This is due to inbetweens

having very similar levels of blurriness and having few mismatched features.
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5 CONCLUSION

When analyzing the results, it becomes clear each factor has its own influence in

determining the feature matching score. While FMIS was a flawed metric, it was a good

starting point to improve on. Both improvements made in regards to distance (DA-FMIS)

and blurriness (BA-FMIS) could be combined to create a metric (BDA-FMIS) that can

be used reliably to compare different inbetweens. Applying the BDA-FMIS comparison

score to the full image dataset, using all compared inbetweening methods, results in the

scores seen in Table 5.1, which when ordered in a ranking, result in Table 5.2.

Table 5.1 – ΣBDA-FMIS comparison for each inbetweening generation method for each image pair.
Locations marked with a “–” represent images for which the respective inbetweening method

generated an error and was not capable of generating an output (the hardware we had available for
our tests did not have enough memory for these methods to process the respective input images).

Image Pair AMT FILM GMFSS_Fortuna Practical-RIFE sepconv
Animation 1 492.69 538.14 433.56 527.31 252.58
Animation 2 – -71.27 – -18.63 –
Animation 3 300.0 333.48 261.34 352.47 120.53
Animation 4 464.45 546.40 367.78 512.0 265.04
Animation 5 513.26 597.0 435.44 – –
Animation 6 – 96.56 56.14 64.37 –
Line Art 1 206.32 258.21 118.05 294.84 221.54
Line Art 2 -139.03 -112.30 -233.23 -220.24 -223.89
Line Art 3 97.82 34.72 25.38 11.91 -13.75
Line Art 4 617.89 611.90 400.46 631.79 –
Line Art 5 -98.46 -66.12 -116.94 -102.97 -93.46

Photo 1 612.08 607.46 351.86 612.57 483.12
Photo 2 491.85 477.25 276.74 500.09 436.61
Photo 3 455.12 504.42 378.68 485.90 –
Photo 4 – 624.10 460.97 576.26 351.29

Source: Author

The detailed algorithm ranking analysis enables some insight into which approaches

generally give the best results, in a way that mostly aligns with human spectator perception

when watching an animation. It is possible to see that FILM and Practical-RIFE usually

performed best in most test cases, while sepconv and GMFSS_Fortuna were comparatively

worse than the alternatives. AMT also had a satisfactory performance and generates good

looking inbetweens. Upon further analysis, with a specific focus in animation examples,

FILM performed the best in 4 out of 6 cases, being the second best approach in the

remaining 2.

Although the metrics proposed proved to be capable of comparing the methods in
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Table 5.2 – ΣBDA-FMIS based ranking for each inbetweening generation method for each image pair
Image Pair 1st 2nd 3rd 4th 5th

Animation 1 FILM Practical-RIFE AMT GMFSS Fortuna sepconv
Animation 2 Practical-RIFE FILM
Animation 3 Practical-RIFE FILM AMT GMFSS Fortuna sepconv
Animation 4 FILM Practical-RIFE AMT GMFSS Fortuna sepconv
Animation 5 FILM AMT GMFSS Fortuna
Animation 6 FILM Practical-RIFE GMFSS Fortuna
Line Art 1 Practical-RIFE FILM sepconv AMT GMFSS Fortuna
Line Art 2 FILM AMT Practical-RIFE sepconv GMFSS Fortuna
Line Art 3 AMT FILM GMFSS Fortuna Practical-RIFE sepconv
Line Art 4 Practical-RIFE AMT FILM GMFSS Fortuna
Line Art 5 FILM sepconv AMT Practical-RIFE GMFSS Fortuna

Photo 1 Practical-RIFE AMT FILM sepconv GMFSS Fortuna
Photo 2 Practical-RIFE AMT FILM sepconv GMFSS Fortuna
Photo 3 FILM Practical-RIFE AMT GMFSS Fortuna
Photo 4 FILM Practical-RIFE GMFSS Fortuna sepconv

Source: Author

a similar way to the average human analysis, there are still some limitations that might

need addressing. Even with the distance awareness introduced in DA-FMIS, some of the

matches detected by the brute force matcher are still inaccurate, while a human is certainly

able to match features with near perfect certainty. Also, the DA-FMIS approach of cutting

too distant matches may remove some accurate matches that are just representative of

wide movements in the animation frames. Both of these issues are still present in the

final BDA-FMIS implementation. Also, since there were relatively few testing images

(30 images in 15 pairs), further testing and comparing with larger image sets can reveal

some edge-cases in which BDA-FMIS might perform poorly when compared to human

preferences.

The BDA-FMIS metric (or any of the other proposed metrics) could also be used

to automate inbetween frame selection when using many methods for the same animation.

This workflow could greatly improve animators’ time and ensure that the best method for

automated inbetween frame generation is always used, saving resources and providing

more fluid looking animations, without any significant image quality loss. Of course, it can

also be purely used as a benchmark for inbetweening method developers, to compare their

technique to other significant techniques. This approach does not only apply to animation,

but could be valuable to streamline comparisons in AI generated video creation and image

animation as well.
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