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“We build too many walls and not,

enough bridges.”

— ISAAC NEWTON
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RESUMO

A Internet das Coisas (IoT) vai além do uso de dispositivos inteligentes. Ela sim-

boliza a transformação do mundo analógico para o digital, permitindo uma tomada de

decisões mais eficiente. Para atender à crescente demanda por redes de sensores inter-

conectados, processamento e análise de dados, é essencial implementar uma infraestrutura

robusta. Esta infraestrutura deve ser capaz de fornecer respostas precisas aos usuários. O

principal objetivo deste trabalho é investigar um dos desafios críticos da IoT: a latência de

comunicação. O MiddleFog está situado entre os dispositivos IoT e a Nuvem, oferecendo

uma camada dedicada para um melhor gerenciamento das mensagens de comunicação.

Isso visa melhorar o desempenho e a confiabilidade da transmissão de dados entre difer-

entes protocolos. A arquitetura de middleware consiste em uma estrutura que permite a

seleção dinâmica do protocolo de comunicação mais apropriado entre MQTT e CoAP,

com base no estado da rede. Essa abordagem também minimiza as limitações de comu-

nicação entre o MEC e a nuvem devido à latência, perda de pacotes e baixa eficiência da

rede. Avaliações mostram uma taxa de perda de mensagens de 25% e uma melhoria de

desempenho de 48% ao utilizar o MiddleFog na camada Fog.

Keywords: IoT, Middleware, Fog computing, IoT Protocols, Interoperability,

Communication Protocols.



ABSTRACT

The Internet of Things (IoT) transcends the use of smart devices. It represents the conver-

sion of the analogue world into a digital one, facilitating more effective decision-making.

To support the growing demand for interconnected sensor networks, data processing and

analysis, it is essential to implement a robust infrastructure. This infrastructure must

be capable of providing accurate responses to users. In this context, cloud computing

emerges as an efficient solution to satisfy the demands imposed by IoT. The main focus

of this work is to study one of the most critical challenges of IoT: communication la-

tency. MiddleFog is located between the IoT devices and the Cloud, i.e. the application

at the Fog layer, providing a dedicated layer for better management of communication

messages. In order to improve the performance and reliability of data transmission be-

tween different protocols. The middleware architecture consists of an architecture that

allows dynamic selection of the most suitable communication protocol between MQTT

and CoAP based on the network status. This approach also reduces communication lim-

itations between the MEC and the cloud due to latency, packet loss, and low network

throughput. Evaluation shows message loss rate of 25% and performance improvement

of 48% when using MiddleFog in the Fog layer.

Keywords: IoT. Middleware. Fog computing. IoT Protocols. Interoperability. Commu-

nication Protocols. Sensor-based Technology.
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1 INTRODUCTION

Network connectivity is the backbone of the Internet of Things as it dynamically

affects the way Internet of Things applications are designed for the Fourth Industrial Rev-

olution [41, 44]. It seeks to provide an ecosystem that enhances process automation

through connected intelligent objects, sensor networks, and devices that operate without

any interaction with a human operator [60, 12, 70].

Internet of Things (IoT) technology provides a domain for interactions with the en-

vironment by offering an expansive ecosystem that is adept at capturing, processing, and

transforming data. Through interconnected devices and sensors that are embedded in a

wide range of objects, IoT facilitates the seamless exchange of information between phys-

ical and digital realms. These devices collect vast amounts of data from diverse sources,

ranging from smart appliances in homes to industrial machinery in factories. Once cap-

tured, the data undergo sophisticated algorithmic processing that can leverage techniques

such as machine learning and artificial intelligence to derive meaningful perceptions. Sub-

sequently, IoT systems transform them into strategic action plans for, enabling enhanced

efficiency, resource optimization, and improved decision-making in numerous sectors,

including healthcare, transportation, agriculture, and other areas. Thus, IoT technology

serves as a catalyst for innovation, can lead to smarter and more interconnected ecosys-

tems.

Helpnet1 provides a valuable illustration of the potential of the Internet of Things,

and sheds light on its transforming capabilities across various domains. It believes that,

the IoT has the capacity to revolutionize industry by enabling seamless connectivity and

data exchange between devices, systems, and people. The article emphasizes the signif-

icance of IoT as a means of enhancing efficiency, productivity, and operational perfor-

mance.

Tanenbaum [68] addresses several challenges in IoT, including massive connec-

tivity, scalability, and securitys. This scenario requires a particular infrastructure so that

it can play a critical role in a) meeting the high demand for reliability and efficiency b)

processing data c) providing efficient communication in the real time d) establishing a

system for offering feedback to the user.

IoT scenarios need open access and management models that take account of QoS

parameters and low energy criteria [47]. This system has heterogeneous constrained de-

1<https://www.helpnetsecurity.com>

https://www.helpnetsecurity.com
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vices that adopt an integrated management approach with gateway, controllers, services,

middlewares, and platforms to build an efficient and autonomous system. All these fea-

tures are connected through communication protocols such as Zigbee, message queuing

telemetry transport (MQTT), and Bluetooth Low Energy (BLE). The use of IP technology

in embedded devices has recently been recommended by the IP for Smart Objects (IPSO)

Alliance.

Some modern technologies, such as blockchain, machine learning, IoT, robotics,

and 5G, require an extensive management of QoS parameters that is aimed at improving

performance, reliability, and scalability optimization [47].

Bansal [10] provides a comprehensive analysis of contemporary technologies, to-

gether with their performance and scalability. He demonstrates how the middleware han-

dles the task of storing all the data in the database server, which involves analyzing the

data, making graphs and reports, ensuring security and privacy, and managing the entire

system in which it is located. All of the data can be supported by Cloud, which is em-

bedded within the middleware. Applications, such as smart cities and smart homes, rely

on services and analytical information provided by this middleware. These services can

be incorporated in an Application Programming Interface (API) format so that they can

provide the entire IoT information and functionality to the IoT system, thereby enhancing

the end-user experience.

Vaquero’s [74] thorough examination of cloud computing technology provides a

flexible and scalable environment that can be used for different channels, such as web and

mobile applications. Protocols such as MQTT/SMQTT/AMQP, which were designed for

PubSub, are highly significant and are currently being utilized for the integration of IoT

applications across numerous domains, including financial services, process automation

tools, transportation, and domain acquisition.

In the same area, building IoT software to support business needs in the described

domains, requires protocols, while designing a suitable architecture plays an key role. In

terms of protocol, HTTP is the most widely used application level protocol in the Internet.

It is argued in recent studies that HTTP will represent the narrow waist of the future

Internet. During the past decade, its adoption has become widespread mainly fuelled by

the expansion of its HTTP-based infrastructure, such as Content Distribution Networks

(CDNs), proxies, caches, and other middle boxes. While HTTP remains a popular choice

for IoT communication, recent research suggests that alternative protocols, such as MQTT

or CoAP, may offer better performance, scalability, and resource efficiency in certain use
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cases [8].

1.1 Problem Statement

The ability to assess an efficient model for reducing the effects of latency and

throughput on the communication protocols in the Internet of Things (IoT), depends on

the network conditions between Edge devices and Cloud Computing. Researchers have

introduced Fog Computing as an intermediate layer to mitigate the latency effects. Fog

Computing extends the Cloud Computing paradigm to the Edge networking architecture

by creating a wider range of applications and services [63].

The main feature of Fog Computing is low latency, efficiency, throughput, and

reliable of data delivery service in a heterogeneous ecosystem [40, 47]. However, this

device heterogeneity still leads to a reduction in data transfers because of the properties

that the communication protocols include. This research topic is of value because of the

convergence of factors such as performance and interoperability in Fog Computing.

The main problems in this area can be described as follows:

1. Interoperability - Lack of standardization for IoT communication protocols:

The platforms come in various shapes and sizes and there are no standards for IoT

[32, 48], although an attempt has been made to achieve uniformity [25]. When inte-

grating all the IoT elements (systems, devices, services, middleware) in an ecosys-

tem, protocols play an essential role in connecting the IoT devices and applications

and achieving seamless interoperability. Most IoT platforms and architecture do

not provide a single interface to abstract this complexity. The survey by Guthet et

al. [33, 34] analyzes eight IoT platforms to simplify the descriptions of the IoT

layer.

2. Assessing the Performance Constraints of IoT Communication Protocols in

Fog Computing:

According to the systematic review, the IoT communication protocols that are most

often used are MQTT, CoAP, AMQP, DDS [56, 52, 50]. All the listed protocols

sometimes experience problems with latency, and limitations of network throughput

[19, 57, 39]. This represents a difficulty in maintaining a stable performance with

constant gain, and affects the quality of service for end users.

3. Quality of service (QoS) insufficient to the IoT metrics:
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Quality of Service (QoS) in the Internet of Things is a key factor because there

are multiple IoT applications that have different patterns of behavior. In addition,

there are different expectations with regard to quality of services in the same range,

when they are considered more comprehensively. Manish et al. [61, 39] mentions

three pillars: QoS parameter for Things, Communication, and the Network in the

IoT ecosystem that is responsible for transporting data in close-real-time data and

computing.

A persistent challenge in Fog Computing is how to enhance the efficiency, through-

put, and data transmission reliability. Numerous studies have been conducted to assess the

performance of various communication protocols, including MQTT, CoAP, HTTP REST

(versions 1 and 1.1), DDS, and AMQP. The findings from these studies have pinpointed

the optimal protocols for deployment across the Edge, Fog, and Cloud layers. Moreover,

they provide a comprehensive performance assessment of the most commonly used pro-

tocols (MQTT, CoAP, HTTP REST - versions 1 and 1.1, AMQP), by offering valuable

insights for optimizing data delivery in diverse computing environments.

However, HTTP REST protocol, particularly versions 1.0 and 1.1, has a serious

drawback which lies in its inefficiency when transmitting small data packets intermit-

tently. Establishing a TCP connection causes time delays and generates superfluous over-

head. While HTTP relies on TCP for quality of service, and can ensure data delivery

provided the connection remains stable, it lacks additional options for optimizing service

quality.

Conversely, MQTT is able to achieve a commendable performance, especially in

scenarios characterized by small message payloads and uncongested networks, and thus

showcases its efficiency in specific conditions.

A significant drawback in the realm of IoT, as well as Fog and Edge computing, is

the absence of standardized communication protocols. This lack of standardization means

that the communication middleware does not possess the capacity to intelligently select

the most suitable protocol from the prevailing network conditions, thereby affecting the

overall efficiency and responsiveness of data transmission.

However, in the light of interoperability, performance, and quality of service con-

cerns that can be found in Fog Computing environments, there is clearly an opportunity

to make significant improvements.
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1.2 Motivation

The development of MiddleFog is driven by a critical examination of the prevail-

ing challenges in IoT communication, and is particularly concerned with interoperability,

performance limitations, and the unacceptable quality of service (QoS) with regard to

IoT metrics. The cornerstone of the factors that motivate MiddleFog’s lies in the concept

of interoperability that stems from a lack of standardization among the across IoT com-

munication protocols. This fragmentation significantly hampers the seamless interaction

between diverse IoT devices and systems, and leads to increased latency and reduced

efficiency. By providing a middleware solution that can dynamically adapt to and inte-

grate a range of communication protocols, MiddleFog seeks to foster a more cohesive

IoT ecosystem, which can enhance device compatibility and streamline data exchange

practices.

MiddleFog targets the performance limitations of existing protocols in the context

of Fog Computing, and is thus pivotal layer that bridges IoT devices and cloud services.

Fog computing is designed to process data closer to the source, and hence reduce latency.

However, the performance of IoT communication within this paradigm is often under-

mined by the failings of current protocols, which are not optimized for the high-density,

low-latency requirements of Fog Computing environments. MiddleFog adopts an inno-

vative approach to re-engineer communication workflows and protocols, as a means of

ensuring they are tailored to exploit the full potential of Fog Computing, and as a result,

significantly enhancing the overall performance of the system.

A key motivating factor for Middlefog is its desire to improve Quality of Ser-

vice (QoS) in IoT communications, as well as to meet and surpass IoT-specific metrics.

Current QoS models are often inadequate for the unique demands of IoT applications,

which require not only high bandwidth and low latency but also extreme reliability and

scalability. MiddleFog is designed to incorporate advanced QoS strategies that are closely

aligned with IoT metrics, and this ensure that services can meet the stringent requirements

of diverse IoT applications, from smart cities to healthcare.

In recent studies, informs that MQTT and HTTP REST [8] are the most widely

used protocols in solutions for IoT. The main reason for this is that they are mature stan-

dards for IoT and more stable than other protocols. They are the protocols preferred

by many developers in their Fog-Edge-Cloud computing implementations. On the other

hand, research that has been carried out on the performance of communication protocols
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(OSI layers - application and transport), has proved that the MQTT and HTTP REST

protocols (V1 and V1.1) [8] are not performative and there are other protocols such as

CoAP, DDS and XMPP that have achieved more satisfactory results in Fog and Edge

environments.

The driving-force behind this work is to carry out an evaluation test the hypoth-

esis that the operational performance of software in the Fog layer, it can have a direct

relationship with the state of the network together with the specific operations of each IoT

protocol - CoAP, MQTT – so that their accuracy and execution time can be compared.

In this evaluation, we intend to make use of an environment without any simulation

in the three layers (Edge-Fog-Cloud) and that represents Fog Computing. We also seek

to C create a middleware that observes network metadata so that it can automatically

change the IoT protocol and quality service (QoS) as a means of ensuring a satisfactory

performance and, delivering data with a low packet loss.

1.3 Goals and Contributions

The overall aim of this research is to concentrate on developing an interoperable

middleware to improve latency and manage throughput capacity by dynamically choosing

the best IoT communication protocol for network conditions. To achieve interoperability,

account will be taken of the most widely used protocols such as MQTT, CoAP, MQTT,

DDS, and HTTP will be considered to meet the demand of the IoT ecosystem [63, 39, 48,

25, 62]. A number of goals must be clarified to achieve this objective:

1. The State-of-the-art in IoT Communication Protocols;

2. Improving performance by referring to the following metrics: latency, bandwidth,

and throughput;

3. Implementing a modular algorithm that checks the network conditions and the pay-

load size of the message sent between Edge, fog, and Cloud node in order to dy-

namically decide which is the best performance protocol from a defined list that is

drawn up to improve performance;

4. Developing middleware in the Fog layer with modular that has the performance

algorithm. middleware means creating modules that group protocols of the same

nature to make middleware more customised;
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5. MiddleFog is a use case.

The main objective of this work is to develop a modular communication middle-

ware tailor-made for Fog computing environments. This middleware is designed to as-

sess the operational conditions and dynamically select the most effective communication

protocol for any given scenario, with the aim of optimizing latency. It will improve inter-

operability within the integrated Edge-Fog-Cloud Computing framework, by acting as a

versatile interface compatible with a wide range of protocols, including MQTT, CoAP.

1.4 Thesis Structure Statement

This master’s thesis is structured as follows. Chapter 2 establishes the theoretical

framework for the study and gives an explanation of the experiments that were carried out

against the background of IoT Middleware, Communication protocols, and IoT protocol

on the basis of a publish-subscribe and request-reply interaction model. The Chapter 3.1.4

examines related work, and provides an overview of the performance of protocols in the

area of Fog Computing, as well as discussing the research methodology that is employed.

In addition, there is a detailed analysis of selected articles that represent the state- of- the

-art of improvements in middleware performance in Fog Computing, as well as an out-

line a systematic review of the literature. Chapter 4 discusses the model that is used to

overcome communication problems, and define the middleware architecture and design.

In Chapter 5 there is a description of the evaluation model, together with the results and

analysis of the results. Finally, Chapter 6 discusses some research contributions and gen-

eral observations, and makes some recommendations for future work. Appendix A sets

out the different groups of experiments that were conducted, each designed to make it

easier to understand middleware performance.
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2 THEORETICAL BACKGROUND

This chapter provides an overview of Internet of Things, and is followed by an

examination of the background of middleware, communication protocols and protocols

for IoT, which form an integral part of survey. From this perspective, we provide a brief

introduction and descriptions of these features in the following sections.

2.1 Internet of Things: An Overview

The Internet of Things (IoT) is one of the driving forces constantly generates data

from network sensors, household appliances, cars, and other physical devices without re-

quiring human-to-human or human-to-computer interactions. IoT is an original paradigm

that was introduced by the British technologist Kevin Ashton in 1999 and involved a short

range of sensors embedded in network-enabled objects or devices with RFID (Radio Fre-

quency Identification) to integrate communication between people and devices [73].

IoT represents a transformative phase in the digital revolution, and marks the point

where the physical and digital worlds converge in an interconnected network of devices.

At its core, IoT is a vast network of objects and devices that are embedded with sensors,

software, and other technologies with the aim of connecting and exchanging data with

other devices and systems through the Internet. It encompasses a wide range of entities,

from simple household items like thermostats and light bulbs to more complex industrial

tools. The essence of IoT lies in its ability to bring greater intelligence to everyday objects,

by making them smarter and more responsive to human needs, and thus achieve a level of

smart automation and operational efficiency that was previously deemed unattainable.

One of the foundational pillars of IoT is its capacity to collect, transmit, and pro-

cess data in real or close-real-time, by providing insights and enabling technologies that

were not possible before. This is achieved through sensors and devices that gather data

about their environment or condition, such as temperature, location, or movement. These

data are then transmitted over the Internet to other devices or to a central system where

they can be analyzed and acted upon. The ability to monitor and control devices remotely

adds a new dimension to how we interact with our environment, and has led to innova-

tions in home automation system, smart cities, healthcare, agriculture, and various other

fields.

The synergy between the IoT and Fog Computing, alongside the critical role of
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IoT protocols, represents a significant evolution in how data is processed and managed

across interconnected devices. Fog Computing, which acts as an intermediate layer be-

tween IoT devices and the Cloud, facilitates the processing of data closer to its source,

and is thus able to reduce latency, conserve bandwidth, and enhance overall system per-

formance. This decentralized approach not only accelerates decision-making processes

but also supports more complex and real-time analytics. IoT protocols, such as MQTT,

CoAP, and HTTP, are an essential part of this ecosystem, since they employ standardized

methods for secure and efficient data transmission between devices, Fog nodes, and Cloud

services. Together, these technologies create a more robust, responsive, and scalable IoT

framework, that can lead to smarter solutions in urban planning, healthcare, industrial

automation, and beyond, while addressing the critical challenges of privacy, security, and

data sovereignty.

2.2 IoT Protocols

IoT devices naturally have a restricted number of resource capabilities in terms of

energy, memory and storage while coexisting in an ecosystem with multiple communica-

tions channels and different protocols. However, the increasingly stringent performance

requirements of IoT services, especially in terms of latency and bandwidth, are challeng-

ing their deployment. In addition to the diversity, there are differences in the types of

resources, sizes, schema of data and state of the network (i.e high / low data traffic) [49].

This communication environment poses problems that need to be tackled when

expanding IoT, such as:

• Low Power - Technologies like Zigbee, Low power WiFi, Low Power Wide-Area

Network (LPWAN), Neat Field Communication (NFC) and Wireless Sensor Net-

work (WSN) need to reduce their energy consumption in the light of the constrained

resources.

• Memory Loss - an intensive routing protocol mechanism is required to increase the

speed.

• Internet Protocol Stack - Protocols has been defined at various layers of commu-

nication in physical, network, application layer. Each layer has a varied protocol

stack.

• Network Capability - The transmission system or network should be able to collect
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all the data from sensors even when there is high network traffic congestion.

A heterogeneous IoT landscape must adopt novel and reactive strategies for deal-

ing with these issues. IoT has its own protocol stack, which is different from other pro-

tocol stacks like the OSI model and TCP/IP protocol stack. The IoT model protocol

Stack converts the different layers of models to the Application layer (Protocols are CoAP,

MQTT, AMQP, XMPP, RESTFUL), Transport layer (Protocols are UDP and DTLS), In-

ternet layer (Protocols are RPL and 6LoWPAN) and Physical/Link layer (its protocols are

IEEE 802.11 series and IEEE 802.15 series) [5].

In general, candidate communication protocols differ from interaction models:

request-reply and publish-subscribe. The Request-reply is the basic model for a com-

munication protocol, and is often especially found in client/server architectures where it

provides data exchange data mechanisms for clients, in which the server is responsible

for the management of exchange data. In protocols like REST HTTP (V1.0, 1.1 and V.2)

and CoAP, there is client/server interaction.

In contrast, publish-subscribe which is generally found in event-based architec-

tures. These provide a decoupled communication between producer and consumer data,

which leads to distributed and asynchronous interactions.

In this scenario, three basic elements can be found: publisher, subscriber and

broker. There are also protocols that suppoty different type of QoS policies like MQTT,

AMQP, DDS. There are also protocols that support both request-reply and publish-subscribe

models, like CoAP, XMPP and HTTP V2 (support server push options), as discussed later.

There are protocols support both request-reply and publish-subscribe models, like CoAP,

XMPP and HTTP V2 (support server push options) as discussed later.

However, some protocols are not suitable for the IoT ecosystem like Web Socket,

which is designed for real-time scenarios where data is pushed around from server to web

client in a simultaneous bidirectional form of communication [5]. By following these

definitions, we are able to provide an overview of the most popular protocols and their

core functionality. These approaches are discussed in detail in the subsections, where

each of the protocols is described.
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2.2.1 MQTT - Message Queue Telemetry Transport

MQTT1 is a messaging protocol, (lightweight publish/subscribe messaging pro-

tocol) designed for M2M telemetry in low bandwidth environments. It was designed by

Andy Stanford-Clark (IBM) and Arlen Nipper in 1999 with the aim of connecting Oil

Pipeline telemetry systems via satellite and standardized in 2013 at OASIS [52]. It can

be implemented on an embedded IoT device with limited processing capacity and mem-

ory resources [16]. MQTT is standardized by ISO (International Standard Organization)

standard (ISO/IEC PRF 20922) and can be used in conjunction with TCP/IP [20]. MQTT

follows a publish/subscribe o that it can be implemented in a flexible and simple man-

ner. MQTT (running above the TCP protocol) is suitable for constrained devices that

have an unreliable or low-bandwidth. There are specifications for MQTT: MQTT v.3.1

and MQTT-SN (also known as MQTT-S) [50]. MQTT consists of three key components:

subscriber, publisher, and broker. It is useful device that register as a subscriber for the

specific content in order to be informed by the central point (broker) whenever publisher

disseminates information of interest [48].

2.2.2 CoAP - Constrained Application Protocol

CoAP was Designed by the Constrained RESTful Environments (CoRE) working

group of IETF2 [56] with RFC (Request for Comments) of 7252 and updated by 7959 and

8613 for standardization [20]. It is a web transfer protocol that is concerned with optimiz-

ing resource constrained networks often found in IoT and M2M applications. Moreover, it

follows the RESTful paradigm and allows CoAP clients to use HTTP-like methods when

sending requests. In other words, clients can use GET, PUT, POST, or DELETE meth-

ods to manage the URI for identifying resources in the network [22]. Similar to HTTP,

one of its most defining characteristics is its use of the tested and well-accepted REST

architecture. With this feature, CoAP is able to support the request/response. As CoAP to

be a lightweight protocol, the headers, methods, and status codes are all binary encoded,

and thus reduce the protocol overhead unlike many other protocols. It also runs over a

less complex UDP transport protocol instead of TCP, which reduce the overhead further.

CoAP relies on its second structural layer for reliability; this is called the message layer

1<https://mqtt.org>
2<https://www.ietf.org>

https://mqtt.org
https://www.ietf.org
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and is designed for retransmitting lost packets. This layer defines four types of messages:

CON (Confirmable), NON (non-confirmable), ACK (Acknowledgment), and RST (reset)

[48, 22].

2.2.3 AMQP - Advanced Message Queuing Protocol

This is an open standard protocol that follows the publish-subscribe paradigm

defined by OASIS [51]. It is designed to enable interoperability between a wide range

of different applications and systems, regardless of their internal design. Originally, it

was developed for business messaging with aim of offering a non-proprietary solution

that could manage a large amount of message exchanges might be made in a system in a

short period of time. This AMQP interoperability feature [22, 24] is significant because

it allows different platforms that are implemented in different languages, to exchange

messages.

2.2.4 DDS - Data Distribution Service

DDS, which is defined by the Object Management Group (OMG) is designed for

M2M communication. It integrates the components of a system and, provides low-latency

data connectivity, extreme reliability, and a scalable architecture that both business and

the mission-critical Internet of Things (IoT) applications need [77]. This data-centric con-

nectivity middleware protocol provides a virtual concept called Global Data Space, which

is accessible to all interested applications. It includes a) a publish/subscribe architecture,

b) the contracts established by QoS, c) automatic discovery and d) configuration. Unlike

some other publish-subscribe protocols, DDS is decentralized and based on peer-to-peer

communication, and as such does not depend on the broker component [22]. One of the

salient features of the DDS protocol is its scalability, which comes from its support for

dynamic discovery. The discovery process, which is the outcome of the DDS built-in

discovery protocol, allows subscribers to find out which publishers are present, and to

specify the information they are interested in together with the defined desired quality of

service, and enables publishers to publish their data [18]. DDS provides developers with

a highly configurable middleware that can allow them to control the end-to-end Quality

of Service (QoS) of the applications through a wide range of attributes [39].
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2.2.5 EXMPP - Extensible Messaging and Presence Protocol

XMPP is a open standard messaging protocol formalized by the IETF. It pro-

vides communication and file-transfers among nodes in a distributed network supporting

real-time communication using Extensible Markup Language (XML) technology based

on TCP.[17] It is a text-based protocol, based on Extensible Markup Language (XML)

that allows both client-server and publish-subscribe and interaction. It is designed to

allow users to send messages in real time, in addition to acknowledging the presence

of the user. This protocol allows instant messaging applications to achieve all their ba-

sic requirements, including authentication, end-to-end encryption, and compatibility with

other protocols. Hurak [22] et. al published an article about the disadvantages of XMPP

namely i) that its authorization takes a long time while the clients are requesting access to

the server and using ii) the fact that XML Stanzas in communication causes extra latency

and delays, because of the structural unit of the XML stanza.

2.2.6 HTTP - Hypertext Transfer Protocol

HTTP is the most widely used application level protocol in the Internet3.It is the

fundamental client-server model protocol used for the Web, running over TCP. Commu-

nication between a client and a server occurs via request/response messaging. Although

TCP ensures the delivery of large amounts of data, which is an advantage in connections

that do not have strict latency requirements, it causes problems in resource constrained

environments [50]. One of the main problems is that the constrained nodes usually send

small amounts of data sporadically, which means that setting up a TCP connection takes

time and produces unnecessary overhead. With regard to QoS, HTTP does not offer addi-

tional options, but instead relies on TCP, which guarantees successful delivery as long as

the connection is not interrupted [22]. The most widely accepted version of this protocol

is HTTP/1.1, but the HTTP/2.0 allows a more efficient use of network resources and a

reduced latency by introducing compressed headers, by means of a very efficient and low

memory compression format, as well as by allowing multiple concurrent exchanges for

the same connection [22, 66, 21]

3<https://www.sandvine.com/hubfs/downloads/archive/2014-1h-global-internet-phenomena-report.
pdf>

https://www.sandvine.com/hubfs/downloads/archive/2014-1h-global-internet-phenomena-report.pdf
https://www.sandvine.com/hubfs/downloads/archive/2014-1h-global-internet-phenomena-report.pdf
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2.3 IoT Middleware

The integration of Internet of Things (IoT) middleware into Fog Computing rep-

resents a pivotal evolution in how data processing and network management are handled

in distributed environments. This background exploration delves into the foundational

aspects of IoT middleware within the context of Fog Computing, and highlights its role,

challenges, progress, and implications for the future realm of technology.

IoT middleware serves as an intermediate layer that facilitates communication,

data processing, and the management of services between IoT devices and their appli-

cations. In the context of Fog Computing, this middleware plays a crucial role in en-

abling decentralized Computing resources to process data that is closer to the data source.

This proximity to the Edge of the network is crucial for applications requiring real-time

processing and analytics, by reducing latency significantly more than Cloud Computing

models. Furthermore, IoT middleware in Fog Computing environments helps in manag-

ing the complexity and heterogeneity of devices, and ensures seamless integration and

interoperability across various platforms and protocols.

One of the most challenging tasks when integrating IoT middleware with Fog

Computing is ensuring the seamless scalability and management of vast networks of dis-

tributed devices. The middleware must efficiently handle not only the huge volume of

data but also the diverse and dynamic nature of IoT devices and their connectivity. This

requires sophisticated management strategies capabilities within the middleware to dy-

namically allocate resources, balance loads, and ensure resilient communication even in

the face of network failures or aggregate fluctuations.

Middleware fog, or fog computing middleware, is a pivotal component in the ar-

chitecture of Internet of Things (IoT) systems, designed to mitigate latency issues and

enhance computational efficiency. Situated between the cloud and edge devices, middle-

ware fog serves as an intermediary layer that processes and analyzes data closer to its

source, thereby reducing the time and bandwidth required for data transmission to cen-

tralized cloud servers. This architectural strategy is crucial for applications necessitating

real-time data processing and low-latency responses, such as autonomous driving, indus-

trial automation, and healthcare monitoring systems. By leveraging localized computa-

tional resources, middleware fog addresses the inherent latency and bandwidth limitations

of traditional cloud-centric IoT models.

The primary function of middleware fog is to facilitate efficient data processing
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and communication within IoT ecosystems. This layer supports the offloading of com-

putational tasks from the cloud to local fog nodes, which are typically situated at the

network’s edge. This decentralization not only diminishes the data volume transmitted

over long distances but also enhances data privacy and security by retaining sensitive

information within a localized context. Additionally, middleware fog is capable of pro-

viding context-aware services, dynamically adapting to varying network conditions and

the specific requirements of different IoT applications. This adaptability ensures that IoT

systems can maintain optimal performance despite the dynamic and often unpredictable

nature of their operational environments.

The study of middleware fog encompasses various aspects, including its design,

implementation, and impact on IoT system performance. Researchers focus on develop-

ing algorithms and frameworks that enable efficient resource management, data process-

ing, and communication within fog environments. Key research areas include optimizing

load balancing across fog nodes, enhancing fault tolerance and reliability, and ensuring

seamless interoperability among heterogeneous IoT devices and platforms. Middleware

fog also presents opportunities for exploring new paradigms in data security and privacy,

given its role in handling sensitive information at the network edge. As IoT continues

to expand and evolve, the academic exploration of middleware fog remains critical for

advancing the efficiency, scalability, and security of next-generation IoT systems.

The introduction of Middleware would enable researchers and developers to con-

figure and create new applications and also introduce new IoT devices into the ecosystem

and would avoid low-level reprogramming of the entire IoT ecosystem. IoT middleware

[64] can be broadly divided into three categories:

• Service-Oriented Middleware: This kind of middleware enables end-users and de-

velopers to add (and modify) IoT devices to the IoT ecosystem as services. It

provides services like access control, storage management, and event processing

engine.

• Cloud-Oriented Middleware: This middleware enables data to be collected and in-

terpreted of data with ease. However, it restricts the growth of the ecosystem in

terms of types of IoT devices. The security model in Cloud-oriented architecture is

defined by the Cloud which is being used.

• Actor-Oriented Middleware: This kind of middleware is open source and is de-

signed on a plug and play model. IoT devices can be added to the IoT ecosystem as
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a plugin and when an IoT device is not required, it can be easily removed without

affecting the IoT ecosystem. The security model considered here, is configurable

by users through a plug-and-play mechanism.

Bandyopadhyay et. al have published a classified list of IoT Middleware based on

the following functional components [64, 72] of IoT middleware: Interoperability, Device

management, Platform portability, Security and privacy and Contextual awareness.

2.4 Fog Computing

Fog Computing, which is an architectural paradigm, has emerged as a critical

extension of Cloud Computing, designed to bring computational resources closer to the

Edge of the network. This proximity to data sources ranging from IoT devices to local

Edge servers enables Fog Computing to offer reduced latency, enhanced bandwidth effi-

ciency, and improved privacy and security for distributed applications. By decentralizing

data processing and storage, Fog Computing is able to address the limitations of tradi-

tional Cloud-centric models, particularly in scenarios requiring real-time or near-real-time

analytics and decision-making.

The genesis of Fog Computing traces its roots back to in the proliferation of IoT

devices and the exponential increase in data they generate. As these devices become

more ubiquitous, there is clearly a greater need to process data locally, rather than relying

on distant Cloud data centers, becomes increasingly evident. This is especially true for

applications require immediate responses, such as autonomous vehicles, smart grids, and

health monitoring systems. Fog Computing provides a scalable and flexible architecture

that allows this data to be processed efficiently at or near its point of collection, and thus

significantly reduce the reliance on bandwidth and the need to deal with latency issues.

Moreover, Fog Computing introduces enhanced security and privacy capabilities

by enabling data to be processed within a localized environment and protecting sensitive

information from exposure to external threats. This localized data processing model is de-

signed to implement robust security protocols that can meet specific application require-

ments and regulatory standards. Additionally, Fog Computing supports a more resilient

and reliable network infrastructure by allocating processing tasks to multiple nodes. This

distribution not only enhances system performance but also ensures services continuity,

even in the event of individual node failures or network disruptions. As the digital land-
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scape evolves, the role of Fog Computing in supporting the burgeoning growth of IoT

applications and services is poised to become increasingly pivotal, since it offers a more

efficient, secure, and responsive framework for data processing and analysis.

In Chapter 3.1.4, several concepts were outlined that will be applied throughout

this work. The concepts relating to the Internet of Things, IoT protocols, and middleware

enable the reader acquire a comprehensive understanding of their various types, defini-

tions, features, characteristics, applications, and objectives. Certain middleware models

are employed to design systems that encompass several factors. aspects. These designs

will be discussed in the following chapter on related work.
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3 SYSTEMATIC REVIEW & RELATED WORK

In this chapter, We review middleware, architectures, communication IoT pro-

tocols, functionalities, and performance outcomes. This analysis helps identify current

research gaps in the Fog computing domain. we explore the related work surrounding

Fog computing middleware, which plays a crucial role in bridging the gap between cloud

and edge devices.

3.1 Systematic Literature Review

The following sections outline the methodological guidelines, followed by the

classification of the research and approach adopted. The systematic literature review was

conducted to examine related works that address the objectives, research questions, and

strategies arising from the concepts of Communication and Middleware Protocols imple-

mented in a Fog Computing environment for processing message data from Edge and

Cloud. It also takes account of the heterogeneity of the material. After the research ques-

tions had been defined, it was possible to define the attributes of the metrics employed to

extract performance data for middleware at the Fog layer. As well as this, a description

was given of the architectures, protocols, and technologies used to establish middleware

communication at the Fog layer, and develop middlewares for the IoT being employed in

Fog Computing.

3.1.1 Research Objectives

This research seeks to identify the primary studies that investigate the IoT com-

munication middleware that has been used in Fog Computing.

Fog computing systems have the advantage of enabling local recognition, and

giving support for user mobility, real-time interactions, low latency, high scalability, and

interoperability in a way that cannot be achieved by cloud computing systems. In the

contrast, it has a greater reduced processing capacity than Cloud and is subject to numer-

ous variable and unpredictable negotiations within the heterogeneous ecosystem of Edge

devices. One of the unresolved issues in Fog Computing concerns the question of how to

increase the efficiency of data delivery, the transfer rate, and reliability.
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The system plays a special role targeting the protocol middleware ecosystem,

since it is a real protagonist. At the same time, there is no standardization of commu-

nication protocols for IoT and Fog and Edge communication middlewares, and there is

no kind of intelligence that can automatically select the most suitable protocol for the

network conditions.

In a specialized study that examined the unresolved issues regarding the perfor-

mance of communication protocols at the application and transport OSI layers, a scenario

was created in which the most widely used protocols in the IoT ecosystem, were com-

pared, including MQTT, CoAP, DDS, XMPP, and HTTP REST protocol V2. These con-

cerned the protocols that are not as efficient for Fog and Edge environments, and yield

have more satisfactory outcomes.

Furthermore, this review aims at obtaining a comprehensive overview of the met-

rics that can improve middleware by:

• Determining which metrics are most widely used to improve middleware perfor-

mance: latency, bandwidth and transfer rate;

• Finding out if there is an algorithm that checks the network conditions and size of

the message sent between Edge and Fog Node devices so that it can dynamically

decide which is the best performance protocol to enhance performance, since it is a

known benefit for middleware at the Fog level.

• Identifying which are the best technologies, methodologies and algorithms that can

be used to develop middleware for IoT at the Fog level for IoT;

• Proposing an innovative resilient communication middleware for the Fog environ-

ment. The purpose of this is to check dynamic conditions for selecting the best

protocol in a particular scenario to improve performance on the basis of the metrics

established in this research study.

It is also advisable to summarise the terms that are most often used in the selected

articles to determine academic research trends.

3.1.2 Research Questions

To fill the gap about the metrics and limits of the system, a number of key question

have driven this research about communication middleware for IoT in Fog Computing &
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Cloud Computing. These include the following research questions(RQ):

RQ1 What attributes of the metrics are being used to extract performance data for mid-

dleware at the Fog layer?

RQ2 What architectures, protocols, technologies and approaches are being used to im-

prove performance in middleware communication?

RQ3 What are the middlewares for IoT that are being used in Fog Computing?

RQ1 identifies:

• Metrics used in the investigated studies about Quality of Service;

• Methods used to enhance metric visualization;

• Recommended guidelines most of then laid down in the investigated studies;

RQ2 identifies:

• Characteristics of the communication middlewares that have been used in Fog;

• Architectures most often used to build middleware for IoT such as (SOA, PubSub,

REST);

• Protocols most used to build middleware for IoT as (CoAP, MQTT, DDS);

• Limitations and obstacles to maintaining middleware arising from IoT restrictions

(memory, disk space);

• Libraries, frameworks, software languages most often used to develop middleware

in the Fog/Edge environment.

RQ3 identifies:

• Description of an empirical middleware with an improved performance in commu-

nication;

The summary of this study together with the formulated questions and their moti-

vations, are listed in Table 3.1.

3.1.3 Research Methodology

This work follows the general guidelines and procedures described in [42, 7]. It

involves searching academic publications in accordance with a protocol that is based on
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Table 3.1: Research questions and motivation factors
RQ Research Question Motivation

RQ1

What attributes of the
metric are being used to
extract performance data
for middleware at the
Fog layer?

To determine the quality of Service (QoS) at-
tributes, and guidelines applied in Fog.

RQ2

What architectures, pro-
tocols, technologies are
being used to develop a
middleware communica-
tion at Fog layer?

Identify main characteristics about architectures,
protocols, technologies, difficulties/limitations for
maintaining this middleware with regard to IoT re-
strictions (memory, disk space), elements to facil-
itate the development of middleware.

RQ3

What are the middle-
wares for IoT that are be-
ing used in Fog Comput-
ing?

To carry out an empirical study of the evidence
that shows improvements in communication per-
formance.

Figure 3.1: Systematic Review Phases

the systematic mapping process of Petersen et al. (2015), which is structured in three

phases: (A) Planning; (B) Conducting; and (C) Reporting, as illustrated in Figure 3.1.

The Planning Phase (A) consists of three steps inside. The first step (A1) entails

justifying the need for the review, and seeks to understand the features required for the

review. The second step (A2) is to define the research questions, and formulates the

need for a scientific inquiry. Finally, the third step (A3) involves developing a systematic

review protocol, which is defined in the procedural rules laid down by SLR in order to

process articles and surveys to obtain the state-of-the-art.

Since the formulation of the research questions drives the entire research method-

ology [42], they can be considered to be the most important part of any systematic review.
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Thus, the Step A2 of the Planning Phase can be regarded as the most crucial part of this

phase. After the final definition of the set of questions, the next step is to build search

strings based on these questions to retrieve information from digital databases.

The results of the Planning Phase (A) retrieved 812 papers as illustrated in the

sub-figure (a) of Figure 3.2, which included several formats (long, and poster papers)

and duplicates in three different databases: ACM Digital Library 1, IEEE Xplore2 and

SCOPUS3. In addition, ACM and IEEE are recognised for their importance in the areas

of computer science and electrical engineering; several other search engines have also

been used, although the Science Direct 4 and Web of Science 5 are valuable resources for

research, however the final result not presented new article, most of duplicate. For this

reason, they was not include in this work.

Figure 3.2: Selection Stage:(a) Retrieve papers (b) Readings by priority (c) Accepted,
Rejected and Duplicated papers

(a) (b) (c)

Furthermore, since each database has its own strategy for data mining, they re-

quire different ways of generating the search string for each database instance. The ACM

database needs the string to be re-coded in the advanced search tool and restricts the scope

of the search to records within the "ACM Guide to Computing Literature". In contrast,

the IEEE database research was carried out by means of a standard metadata search. The

strategy of SCOPUS was to consider articles and conference proceedings in the area of

computer science. Presented in table 3.2.

There are tools designed to classify, rank and filter the most significant of the

812 papers in cost-effective time, and these support the systematic review process like

1<https://dl.acm.org>
2<https://ieeexplore.ieee.org>
3<https://www.scopus.com>
4<https://www.sciencedirect.com>
5<https://www.webofscience.com>

https://dl.acm.org
https://ieeexplore.ieee.org
https://www.scopus.com
https://www.sciencedirect.com
https://www.webofscience.com
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Table 3.2: Search String
Database Search String Question

Scopus
TITLE-ABS-KEY ( ( "iot" OR "internet of Things" ) AND
( "middleware" OR "Protocols" OR "communication" OR
"interoperability" ) AND "fog" AND "performance" )

ACM

[[All: "iot"] OR [All: "internet of things"]] AND [[All:
"middleware"] OR [All: "protocols"] OR [All: "communica-
tion"] OR [All: "interoperability"]] AND [All: "fog"] AND
[All: "performance"]

IEEE
("iot" OR "internet of Things") AND ("middleware" OR
"Protocols" OR "communication" OR "interoperability")
AND "fog" AND "performance"

S.T.A.R.T. 6, and Parsifal 7. The tool chosen, for this study was S.T.A.R.T. [53], be-

cause it offers valuable assistance in a number of areas, such as: i) learning disseminated

topics; ii) defining theoretical approaches, applied methodologies, and bibliographical

references; iii) detecting possible retrieved works that escaped the cope of the research

findings; iv) highlighting innovative features in the user’s work that challenge the state-

of-the-art. Thus, this tool facilitates the process of scanning and filtering the papers in

compliance with predefined criteria [37]. In opposition to this, Parsifal [45] was rejected

since it does not contain several aspect of S.T.A.R.T. There are functionalities of [53],

such as the Technology Acceptance Model (TAM), Goal Question Metric (GQM) and

PICOC (Population, Intervention, Comparison, Outcome and Context).

For this reason, all the sub-phases of the Conductivity Phase (B), i.e. B1, B2, B3,

B4 and B5, and all the sub-phases from the Reporting Phase (C), i.e. C1, C2 and C3,

are automated by the S.T.A.R.T. [53] tool (See phases in Figure 3.1). This automation

begins with the intake of the 812 papers and ends with the 20 most useful papers, and is

carried out by S.T.A.R.T. [53] in three stages, as illustrated in Figure 3.3: (1) Planning,

(2) Execution and (3) Summarizing.

Essentially, the S.T.A.R.T.’s Planning stage serves merely to configure the main

information that will be extracted from the 812 articles, such as: their goal, search prob-

lem, keywords, name of the targeted database name, type of study and inclusion/exclusion

criteria. This Planning stage also includes some of the previously used configured speci-

fications from Steps A1, A2 and A3 of Planning Phase (A) of Figure 3.1.

This is followed by the Execution stage of S.T.A.R.T. [53], which represents the

scanning and filtering process that is carried out to find the most important papers. It

6<http://lapes.dc.ufscar.br/tools/start>
7<https://parsif.al>

http://lapes.dc.ufscar.br/tools/start
https://parsif.al


37

Figure 3.3: S.T.A.R.T stages

contains two sequential and necessary steps: Selection and Extraction.

The Selection step starts importing all the files in BibTex/RIS and others formats,

together with the metadata concepts. In this stage, 812 papers had already been retrieved

from three different databases, as represented in Figure 3.2(a). The configuration defined

in the planning stage, benefits automation by automatically ranking the papers through

scanning and filtering operations, and giving them a score and suggests a priority to de-

fine which article to read (see Figure 3.2(b)). In this work, 53 papers were selected as

most useful and 51 were given high priority, which means that the remaining 708 were

considered to be unimportant for the final selection.

In parallel with the Reading Priority, the S.T.A.R.T. Selection uses the predefined

configuration to divide the Status of these 812 works into three categories with regard to

output: Accepted, Rejected or Duplicated (see Figure 3.2(c)). With the aid of S.T.A.R.T.

52 duplicated papers were detected which do not qualify as having an acceptable output.

In addition, only 380 of the 812 papers can be considered to be important and acceptable.

The Extraction stage started by focusing on the 380 accepted papers from the

previous Selection stage. A second rigorous scanning and filtering process followed in

accordance with predefined criteria for the priority readings, namely relevance, title, ab-

stracts, keywords or another metadata page. This process reduced these 380 papers down

to 214 accepted, 149 rejected and 17 duplicated papers, as represented in Figure (b) 3.4.

Coincidentally, just as in the Selection step, the Reading Priority output from the Extrac-

tion came to 53 and 51 articles with very high and high priorities, respectively. Thus, it is

safe to say that Extraction aided the task of removing many articles that were at the end

of the reading queue.

Before the final phase of S.T.A.R.T. [53], the tool was subjected to a manual fil-

tering was required with the tool to reduce the 53 valid articles to a smaller fine-grained
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Figure 3.4: Extraction Stage:(a) By priority (b) Accepted, Rejected and Duplicated papers

(a) (b)

set of relevant articles. This study carried out a quality assessment to measure the useful-

ness and importance of the studies that investigated these research questions. After this, it

collected the required information to answer the research questions, as well as to analyze

and summarize the results. The total of valid articles came to 20, as represented in the

Figure 3.7.

The third operational phase of S.T.A.R.T. [53] is Summarizing, as seen in Figure

3.3. This last phase starts with the 20 accepted papers from the previous step and involves

scanning each of the papers. This highlights key information, such as tht given by word-

cloud 3.5, and the most commonly used words in the publication title or abstract. The

Summarizing outputs concluded with several graphical metrics one of them being graphic

visualization 3.6. This shows the frequency of the inclusion and exclusion criteria and

helps in answering the research question that was defined in the sub-phase A2 of the

Planning Phase (A) (see Figure 3.1).

Figure 3.5: A summarizing of Word Cloud from the most relevant articles
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Figure 3.6: Graph Summarization with frequency of inclusion and exclusion criteria ex-
clusion

Finally, since this thesis was first embarked on more works have been published

added to the previous 20, thus making a total of 23 related works that can be seen in

Section 3.2.3.

3.1.4 Research Results

This section classifies the different aspects of this work n accordance with the

criteria that were applied to choose the study environment and its variables, but also to

give an explanations of this experimental environment.

Addressing the research questions and presenting research interests relating to the

communication middleware on Fog environment. The identification and presenting of

communication protocols to the main terms explored in publications. We had address

three questions (R1, R2 and R3), presented in the next chapter 3.1.4 and in this session

we answer all of them.

Research is a formal and systematic procedure to what seeks to employ a scientific

method [28]. Since the beginning of this research and throughout its progress, a number
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Figure 3.7: Data Gathering and Processing Flow

of distinctive features have emerged as pivotal components of the conceptual framework.

These entail the formulation of the problem, the formulation of the hypothesis, and the

delineation of study variables, together with their correlation. It is thus essential to cat-

egorize these research features precisely in compliance with the rules that govern the

scientific method.
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The problem of the research and the theoretical overview must be addressed before

attempting to classify its type. This type usually involves two factors: objectives and

technical procedures.

With regard to objectives, this research can be regarded as exploratory and ex-

planatory. It is exploratory insofar as it gathers bibliographical material to obtain a greater

familiarity with the research problem, and thus be in a position to formulate it clearly. At

the same time, this research is explanatory because it is able to determine which factors

account for the occurrence of a particular phenomenon; moreover it gives the reasons and

motivating factors that cause the events.

In addition, since this research study follows the the recommended guidelines of

Gil [28] for classifying, research types on the basis of technical procedures, it can be re-

garded as bibliographic and experimental. It is bibliographic insofar as it is carried out on

the basis of previously established material such as articles and books. It is also experi-

mental because it defines the research object and variables that can influence patterns of

behavior, as well as defining the mechanisms of control and observation that are required

to study the effects of the variables on the object of study.

3.2 Related Work

We explore the related work, we delve into the research on Fog computing mid-

dleware, which serves as a vital link between cloud and edge technologies as result of

systematic review.

3.2.1 Metrics Attributes: QoS Component

The rapid and emerging paradigm for connecting billions of physical objects, as

well as empowering human interactions and improve quality of life (both physically and

virtually), and thus introducing automation into the environment is called IoT. There is a

sharp rise in the proliferation of IoT and it already covers many key domains and disci-

plines. In addition to the existing M2M, there are many other emerging technologies with

empowering capabilities and functionalities.

The Quality of Service(QoS) metrics are being used to test for IoT communica-

tion middleware for Fog Computing. This metrics determines attributes, and guidelines
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applied in Fog.

According to Gartner, "worldwide was 15.1 billion in 2020 and is expected to

rise to more than 29 billion IoT devices in 2030". This reflects multiple IoT products

and applications with different purposes that can provide a service quality in line with

user expectations. Quality of Services is a means of managing system capabilities and its

resources to provide IoT services. Its purpose is to obtain a clear idea of these services,

as well as performance and the usability of the services to the consumers. The Quality

of service metrics must first be defined and then the users will be able to understand how

they can meet their requirements.

Manisha et al. [61] published a research study in which they describe the main

QoS metrics that can help customers find the best IoT service for their application and

then assess the optimization of service quality on the basis of the three components of

IoT (Cloud, Fog and Edge), shown in Table 3.3.

Table 3.3: QoS for IoT Components for IoT [61]
Component Description Metrics

Computing
Compute and analyse the
mined data collected from
things.

Scalability, Dynamic Availabil-
ity, Readability, Pricing, Re-
sponse Time, Capacity, Security
and Privacy, Customer Support
Facility, User Feedback Reviews

Communication

Support the communication
between the devices and with
the external environment
through the protocols used
for communication in the
network.

Jitter, Bandwith, Thoughtput
and Efficiency, Network Con-
nection Time, Financial Cost,
Availability, Security and Pri-
vacy, Interoperability, Service
Level Agreement, Monitoring,
Readability

Things

The devices are embedded
with the sensors and are ca-
pable of connecting to the In-
ternet fals in the category of
things. It can communicate to
other entities at anywhere at
any time.

Weight, Interoperability, Flex-
ibility, Availability, Readabil-
ity, Overall Accuracy, Long-
Tearm Stability, Response Time,
Range, Sensibility, Precision,
Security, OTA Update, Power
Consumption, Drift, Mobility
Support

In the same way, Rameez et al. [40] define 19 attributes in 5 categories (Communi-

cation Attributes, Security, Connection, Operational, and Message and Payload support)

These are the essential categories that are specifically designed for MQTT, HTTP, CoAP

and XMPP protocols, as well as for IoT stakeholders, as shown in Table 3.4.

A final discussion among the authors resulted in 20 articles being selected as the
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Table 3.4: QoS classification model [40]
Name Description

Attributes

Communication Pattern, Transport Protocol, Multicast support,
Reliability/QoS, Congestion control, Communication Complex-
ity, Signaling Traffic Generated/Frequency of Updates, Connec-
tion establishment speed/performance, Session Orientation, Con-
nection Security, Communication Security, User Security, Dis-
tributed Operation/Centralized, Service/Node discovery, Message
retaining/durability, Caching, Message Overhead, Design Orien-
tation, Fragmentation/Block Transfer

Categories Communication Attributes, Security Attributes, Connection At-
tributes, Operational Attributes and Message and Payload support

most representative of the collection. The table 3.5 provides comprehensive information

about regarding these articles.

The most common QoS attributes used in the selected publications, shown in Table

3.5 are: latency, response time, scalability, reliability, energy consumption, interoperabil-

ity, security, and bandwidth. Any research findings with attributes or metrics that were

not described, were not included in Table 3.5.

3.2.2 Communication IoT Protocols

Identify main protocols, technologies, difficulties/limitations for maintaining this

middleware with regard to IoT restrictions (memory, disk space), elements to facilitate

the development of middleware is one research question to map architectures, protocols,

technologies are being used to develop a middleware communication at Fog layer.

In surveying the academic literature on communication and protocols for IoT, it

was a noticeable feature that the IoT ecosystem provides heterogeneous smart and con-

strained devices with sensors or built-in wireless connectivity, actuators, and any other

mechanism that can collect and transfer information to the network and then provide

specific smart services[35, 41] that allow machine-to-machine (M2M) and human-to-

machine (H2M) interactions.

The communication protocols used at the physical link layer for the IoT are WiFi,

Bluetooth, IEEE 802.15.4, Z-wave, LTE-Advanced, Low-Power Wide-Area Network (LP-

WAN) and GPRS. Some specialized communication technologies are also employed like

RFID, Near Field Communication (NFC) and ultra-wide bandwidth (UWB). RFID is

the first technology that was used to apply the M2M concept (RFID tag and reader)

[26]. When integrating all the IoT elements (systems, devices, services, middlewares)



44

Table 3.5: Selected Publications
Authors Title Year Journals/Proceedings Reference

Bansal, S., Kumar,
D.

IoT Ecosystem: A
Survey on Devices,
Gateways, Operating
Systems, Middleware
and Communication

2020
Int J Wireless Inf Net-
works

Bansal et
al. [10]

Kashif, H., Khan,
M. N., Awais, Q.

Selection of Network
Protocols for Internet
of Things Applica-
tions: A Review

2020
Int Conf on Semantic
Computing

Kashif et
al. [41]

Dizdarevic, J.,
Francisco C.,
Admela J. and
Masip-Bruin X.

A survey of commu-
nication protocols for
internet of things and
related challenges of
Fog and Cloud com-
puting integration

2019
ACM Computing Sur-
veys

Dizdarevic
et al. [22]

Bansal, S., and
Dilip K.

IoT Application Layer
Protocols: Perfor-
mance Analysis and
Significance in Smart
City

2019

Int Conf on comput-
ing, communication
and networking tech-
nologies (ICCCNT)

Bansal et
al. [22]

Florea, I., Rughi-
nis, R., Ruse, L.,
Dragomir, D.

Survey of Standard-
ized Protocols for the
Internet of Things

2018
Int Conf on Cont Sys-
tems and Computer
Science (ICCCNT)

Florea et
al. [9]

Ahmad, K, Mo-
hammad, O., Atieh,
M., Ramadan, H.

IoT: Architecture,
Challenges and So-
lutions Using Fog
Network and Applica-
tion Classification

2018

Int Conf International
Arab Conference on
Information Technol-
ogy (ACIT)

Ahmad et
al. [1]

Corak, B. H., Okay,
F. Y., Guzel, M.,
Murt, S., Ozdemir,
S.

Comparative Analysis
of IoT Communica-
tion Protocols

2018

Int Symposium on
Networks, Computers
and Communications
(ISNCC)

Ahmad et
al. [17]

in an ecosystem, protocols play a key role in combining the IoT devices and applications

and supporting seamless interoperability. Internet Protocols, Network Protocols are rules

for communication that allow the exchange of data (machine-to-machine and human-to-

machine) when connected to the network [27]. The network protocols are divided in

accordance with the nature of the service provided, and aligned with the layer where they

are located on the Internet network, as shown in Table 3.6.

The application layer protocols for IoT have several ways of cooperating and

achieving standardization [30]. Web-based applications and IoT applications are IP-based

and rely on TCP and UDP for transport. These protocols handle information between

gateways in the local network and Internet, have an update user with updated data and is-
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sue commands from application to end devices [25, 9]. Various services can be provided

to the users by communication protocols like MQTT, Constrained Application Protocol

(CoAP) and Data Distribution Services (DDS), as shown in Table 3.6. Currently, there

are different IoT protocols available, some are openly and others proprietary. There is

not a standardized protocol [25, 27]. However, a list of IoT protocols associated with the

current nature of the protocol network is being compiled. There is also an OSI Model

with a list of available protocols which can be used in IoT platforms or service discovery

with a selection of items to help reduce configuration efforts.

Al-Fuqaha et al. [26] published a classified list of general categories of IoT proto-

cols, namely: application protocols, service discovery protocols, infrastructure protocols

as shown in Table 3.6.

Table 3.6: Standardization strategies in support of IoT
Layer Name Layer Description Protocols

Application

Provide the services that users need. Handle in-
formation between gateways on the local net-
work and the Internet. Carry commands from
applications to end devices.

DDS, CoAP, AMQP, MQTT,
MQTT-NSS, XMPP, HTTP
REST

Transport
Provides the functional and procedural means
of transferring variable length data sequences
from a source to a destination host.

TCP, UDP, DTLS

Network
Responsible for facilitating data transfer be-
tween two different networks.

6LoWPAN, IPV4/IPv6

Link
Responsible for facilitates data transfer between
two devices on the same network.

IEEE 802.15.4

Physical/ Device
Physical equipment involved in data transfer,
such as cables. Where data gets converted into
a bit stream.

IEEE 802.11 series, IEEE
802.15 series, Z-Wave, LTE-
A, EPCglobal

Routing Protocol
Specifies how routers communicate with each
other in a distributed network

RPL

Service Discovery
Automated detection of devices and services in
a network.

mDNS, DNS-SD

3.2.3 Fog layer: Strategy Architecture

Carry out an empirical study of the evidence that shows improvements in commu-

nication performance characteristics about architectures and different strategy to leverage

the performance.

As recommended by Dizdarević [22, 1], each protocol has its main features, stan-

dardization status, interaction model, Quality of Service (QoS) options, transport proto-

col, and security mechanisms. It turns out that the communication protocols have different
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interaction models: request-reply and publish-subscribe.

The Request-Reply Model allows a client to request information from a server

that receives the request message, and then processes it and returns a response message.

This kind of information is usually managed and exchanged centrally. The two most well-

known protocols linked to the request/reply model are REST HTTP and CoAP. Protocols:

REST HTTP, CoAP, AMQP, XMPP, HTTP2.0.

The Publish-Subscribe Model provides distributed, asynchronous, and loosely

coupled communication between data generators and destinations. The solution appears

today in the form of numerous publish-subscribe Message-Oriented Middlewares (MoM).

Protocols: MQTT, CoAP, AMQP, DDS, XMPP, HTTP/2.0

A survey of all the elements of the IoT ecosystem helps in understanding the

concept of IoT, as well as its architecture, devices, operating system, middleware and

communication interfaces. Architectures for the IoT ecosystem act in response to re-

quirements like multilayer, middleware-based, service-oriented etc. The significance of

low-, middle- and high-end devices in IoT devices are explained in this work. All the

smart devices at ground level have been compared in terms of capabilities like architec-

ture, computation, memory, and communication interfaces which have been discussed.

The Operational System facilitates the development and sustainability of IoT in combina-

tion with the requirements of the hardware and there is a discussion of different IoT OS

with regard to the resource constraints.

A comparative overview with regard to factors such as kernel, scheduler, mem-

ory management, performance, simulator, security, and electric power is displayed in the

Table 3.2.3. IoT platforms and middle- ware act as a bridge between devices and appli-

cations to support heterogeneity, scalability, security and highly complex computational

capability. IoT middleware has been analyzed from a consumer-centric Cloud-based per-

spective to one that is light-weight actor-based, and heavy-weight service-based. Basic

communication have been described that can support IoT. There is a discussion of low-

power communication networks and protocols for all the layers starting from the physical

layer and going on to the application layer, to ensure the data can flow freely. Security and

privacy issues grew significantly in direct proportion to advances made in the networking

and communicating sectors.

This opens up several issues since the rise in the number of devices, technological

integration, increased traffic, data storage and processing, privacy and security, etc., have

become key areas of research. Cloud computing is technology based and designed to
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operate and integrate with other recent technologies such as big data. The technology of

Cloud computing refers to the processing power of the data at the “Edge” of a network.

Additionally, it could be said that Cloud computing operates in a “Fog” environment. The

interplay between the IoT, big data analytics, and Cloud and Fog computing makes it an

IoT ecosystem for tackling problems like mobility, availability, storage, computational

capability. As technology grows, more challenges arise and these become key areas of

research. For example, the dynamic environment of the IoT opens up unseen opportunities

for communication that will change the perception of computing and networking.
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4 PROPOSED MODEL

This chapter discusses the proposed architectural model, its components, and the

MiddleFog ecosystem. The investigation begins with a comprehensive overview of Mid-

dleFog in Section 4.1, followed by Section 4.2, which includes a full explanation of the

components of the architecture. Subsection 4.3 is devoted to MiddleFog’s important en-

tity called Decision Maker Engine (DME). Finally, Section 4.4 environmental divided

into layers.

4.1 Planned Architectural Model

The research study addresses the question of latency in the Edge-Fog-Cloud en-

vironment. This problem is a crucial factor that must be handled in an heterogeneous

ecosystem, especially as it makes use of a common protocol across platforms. For this

reason, the investigation of MiddleFog requires a use case middleware at the Fog/Cloud

layer. This middleware seeks to leverage system interoperability on account of its mul-

tiple interfaces, and improve performance through a lower latency that originated in the

automated method for changing protocols.

Latency, in the context of network communication, refers to the time delay expe-

rienced as data travels from one point to another. This delay can occur at various stages,

including the initial signal transmission, the processing of data by intermediate devices,

and the final delivery to the destination. The primary components contributing to over-

all latency are propagation delay, which is the time it takes for a signal to traverse the

physical medium; transmission delay, the time needed to push all bits of a packet onto

the transmission medium; processing delay, the time routers or switches take to analyze

and forward data; and queuing delay, the time data packets spend in queues waiting to be

processed.

Latency is a crucial factor in determining the performance of networked applica-

tions, particularly those requiring real-time interaction. For example, in online gaming,

high latency can result in noticeable lag, affecting gameplay experience. Similarly, in

video conferencing, excessive latency can cause delays between audio and video, dis-

rupting the flow of conversation. Financial trading systems also depend on low latency

to execute transactions swiftly, as even milliseconds can impact the outcome of trades.

Therefore, minimizing latency is essential for enhancing the user experience and perfor-
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mance of various applications.

Various techniques and technologies are employed to manage and reduce latency.

Optimizing network paths to avoid unnecessary routing, implementing content delivery

networks (CDNs) to cache data closer to users, and utilizing edge computing to process

data near its source are effective strategies. Edge computing, in particular, significantly

reduces latency by decreasing the physical distance data must travel, thus enabling faster

response times. As technology continues to advance, efforts to mitigate latency will be

pivotal in supporting the growing demand for high-speed, real-time communication in

diverse applications.

From an architectural perspective, the MiddleFog’s software was designed for the

Edge-Fog-Cloud computing ecosystem within a heterogeneous geographically-distributed

environment. This diversified environment corresponds to the decentralized and heteroge-

neous collection of autonomous processors (nodes) communicating over a network with

individual goals.

In the ecosystem mentioned earlier, the autonomous processors stand for the IoT

devices (Edge) that carry out the local processing. At the same time, Fog nodes usually

have more computing power than its Edge peers; this means, they are responsible for

more middleware workloads and for storing temporary data. However, the Fog is not able

to handle all high-demands in terms of computation and storage. In these, the tasks are

scheduled to the Cloud. MiddleFog is located at the Fog level, so that it can assist in

reducing the latency between Fog and the Cloud.

Figure 4.1: MiddleFog followings the three-layer architectural ecosystem

This environment of a three-tier architecture (Edge, Fog, and Cloud components -

Figure 4.2). The concept of a three-tier model separates the system into three logical and

physical computing tiers, which is the predominant software architecture for traditional

applications [22, 8].
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In addition, the three-layer architecture for Fog computing represents the Edge,

Fog, and Cloud, where each layer is partitioned into domains presented in figure 4.2.

MiddleFog stands out from this traditional approach thanks to its unique dynamic algo-

rithm that seeks the best IoT communication protocol based on network conditions.

Figure 4.2: Edge, Fog and Cloud layers

The MiddleFog workflow follows defined stages in this ecosystem. It represents

the three-tier - Edge, Fog, and Cloud components (Figure 4.2) in a distributed ecosystem

(Figure 4.1), where the IoT-constrained device (Edge) is embedded with a specific proto-

col, and does not have enough resource management for computing data. Likewise, the

IoT device is directly connected with the Fog node, the place located by the performative

middleware client/server (MiddleFog).

The MiddleFog client/server module follows a sequence of steps at the Fog node

component, namely:

1. Receiving data from the Edge, through a list of possible IoT communication proto-

cols (CoAP, DDS, MQTT, AMQP);

2. Making decision about choosing the best protocol in the network conditions and

message payload size. There is a component called Device Manager Engine (DME)

with artificial intelligence, which, provides this information;

3. Parsing data fin compliance with the protocol structure/format rules;

4. Sending the data to the Cloud using the chosen performative protocol;

5. Receiving the data from the Cloud and passing it on to the Edge, in case it is needed.

The third step at the Fog node component is important, because it enables the commu-

nication protocol to be changed to improve performance. At the Cloud component, the

MiddleFog server module follows sequence of steps:

1. Receiving the data from Fog node;
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2. Computing and processing the data;

3. Creating metrics about performance as a part of the monitoring/observability in all

the transactions;

4. The Cloud server provides support for the most widely used IoT communication

protocols to address interoperability;

5. Returning the requested data to the Fog node.

4.2 Architectural Components

MiddleFog was designed in a three-layered structure/ architecture: Device IoT

(Edge), Fog Node with the Client/Server middleware module, and Cloud node with Server

middleware module. Figure 4.3 shows the three layers represented following the Open

Systems Interconnection (OSI) Model layer.

Figure 4.3: MiddleFog three-layer architecture represented in the OSI Model

• Data Link, Physical layers - this supports Ethernet/wireless with 802.3/802.11x

specification

• Network layer - Supports the Internet Protocol

• Transport layer - Supports the Transmission Control Protocol and User Datagram

Protocol

• Session layer

This work does not implement any changes for level.



53

– Device IoT - This supports the CoAP, DDS, and MQTT protocols;

– Fog - This has the channel component to connect with the transaction AMQP

& CoAP, DDS, MQTT, AMQP, HTTP/2;

– Cloud - It has the channel component to connect with the transaction AMQP

& CoAP, DDS, MQTT, AMQP, HTTP/2.

• Presentation

– Device IoT - a constrained device is used to generate data from sensors in a

protocol format;

– Fog - Apply the Javascript Object Notation (JSON), the lightweight data-

interchange format;

– Edge - Apply the Javascript Object Notation (JSON), the lightweight data-

interchange format.

• Application

This work apply all changes at this level.

– Device IoT - The Constrained device is used to generate data from sensors in

a protocol format and process or send this data to another component;

– Fog - Middleware Application with publish/Subscribe and Request/Reply prox-

ies;

– Edge - Middleware Application with publish/Subscribe and Request/Reply

proxies.

The MiddleFog architecture which is designed in a three-layered architecture con-

tains performative and interoperability modules:

1. Edge layer - IoT Device

This layer does not have any modules or make any contribution to this research, but

is needed to intensify the valid IoT communication protocols, such as CoAP, DDS,

MQTT, and AMPQ.

2. Fog layer - Middleware Client/Server

The central part of MiddleFog is located in the Fog layer. It consists of the following

components: Application Manager, Device Manager Engine (DME), Middleware
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Channel (MDC), Proxies (PubSub and Res/Rep), Json Translator, Protocol Con-

structor, and IoT Protocols Communications, shown presented in Figure 4.4. Each

component will be described in turn.

Figure 4.4: MiddleFog Middleware Client/Server architecture at the Fog layer

This module was designed to play two distinct roles: client and server.

• Client: Represents the bidirectional transactions between IoT devices (Edge)

and Fog;

• Server: Represents the bi-directional transactions between Fog and Cloud.

(a) Workflow - Middleware Client/Server:

The Fog middleware will receive a request from the Edge device using one

of the IoT communication protocols defined(MQTT, CoAP, AMQP, DDS).

Following the sequence of steps:

i. This call will be intercepted by the Middleware Channel (MDC) respon-

sible for making the connection to the corresponding proxy, based on

the IoT protocol. It means protocols with Publish/Subscribe communica-

tion pattern will be redirected to pub/Sub proxy and protocols with Re-

quest/Reply communication patterns will be redirected to Req/Rep proxy;

ii. Proxies Req/Rep and Pub/Sub represent two different implemented and

integrated protocols. MQTT broker implements MQTT and CoAP Server

supports CoAP connections;

iii. The JSON translator supports the Req/Rep and Pub/Sub proxy structures.

It understands both the metadata structures, extracts the main data and

transforms in into a single and unique JSON format;
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iv. Decision Manager Engine (DME) is a component designed to identify

and apply best performative IoT Protocol communication, based on net-

work conditions and message payload size;

v. Protocol Constructor receives the data in JSON format from the JSON-

translator component and converts it to an IoT communications protocol

(MQTT, CoAP, AMQP, DDS, HTTP/2) structure defined by the Decision

Manager Engine (DME);

vi. IoT Protocol communication (MQTT, CoAP, AMQP, DDS, HTTP/2) -

This server will receive the JSON data in an appropriate format and pro-

tocol specifications. The is component has HTTP/2 to amplify its inter-

operability.

3. Cloud layer - Middleware Server

Module located at Cloud layer. This layer is consists of the following components:

Agent, Middleware Channel (MDC), Servers (PubSub and Res/Rep), IoT and Com-

munications Protocols, as shown in Figure 4.5.

Figure 4.5: MiddleFog Middleware Server architecture at the Cloud layer

The Cloud Server will receive the requests from Fog nodes using one of the IoT

communication protocols defined (HTTP/2, CoAP, DDS, MQTT, AMQP). It fol-

lows a state sequence:

(a) This call will be intercepted by the Middleware Channel (MDC) responsi-

ble for making the connection to the corresponding server, through the IoT

protocol. This means that protocols with a Publish/Subscribe communication
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pattern, will be redirected to Pub/Sub server and protocols with Request/Reply

communication pattern will be redirected to the Req/Rep server;

(b) Proxies Req/Rep and Pub/Sub represent different serve protocols, such as

MQTT message broker that implements the MQTT and CoAP Server to sup-

port CoAP connections;

(c) IoT Protocol communication (MQTT, CoAP, AMQP, DDS, HTTP/2) this re-

ceives the JSON data in an appropriate format, together with the protocol

specifications. The component has HTTP/2 to amplify the interoperability;

(d) Middleware Agent (MD): this combines the constantly monitoring and observ-

ability agent to gather information about performance metrics, availability of

systems, and logs.

4.3 Decision Maker Engine (DME)

This serves as the central element of the proposed model ecosystem. It is a mod-

ule that operates in isolation, and is responsible for monitoring and analyzing messages

in real-time within the network to determine the optimal IoT protocol (CoAP, MQTT,

AMQP, HTTP2) in based on the network conditions.

The main advantages of the common middleware is that it enables the most suit-

able protocol to be selected and can give assurance of its capacity to build a module of

software that can change the protocol automatically [69].

Several studies have been carried out that, comparing the performance of differ-

ent protocols of communication such as MQTT, CoAP, HTTP REST - v1, V1.1, DDS

and AMQP. Research articles have been published that can determine the optimal pro-

tocols for each layer, including Edge-Fog, Fog-Cloud, and Edge-Fog, as result of exten-

sive performance testing and these has been widely disseminated (MQTT, CoAP, HTTP

REST-V1/1.1, AMQP) [63, 13, 22, 25, 5].

The DME is required to specify the protocol requirements for extracting informa-

tion from the network packet. The published studies related to Fog performance have and

use of delay and total data (bytes) as a performance metric. Additionally, a performance

test was conducted in 2018 using different sizes of data as payload (small, medium, and

large) to measure latency, throughput, and error-rate. In the same way, it is recommended

that studies should be published that are evaluated in terms of time taken and bandwidth
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consumed for each payload transfer round-trip [69, 65].

From this perspective, the DME extracts data from the network package, by taking

note of the following metadata:

• Message payload size;

• Analysis of the package to designed the lost one or, in some cases, not to measure

the lost one;

• The fact that each message was sent or resent for each package from the network.

All of this information is important for defining the best IoT in a way that is based on the

package metadata and network conditions.

In seeking to attain the objective of the DME, a series of tests were conducted in

conjunction with the latest technology to understand the key parameters that were used.

The baseline test plan validated the following scenario in a realistic environment:

1. A division of the message payload size into three distinct sizes, namely Small

(20B), Medium (800B), and Large (2048B);

2. A configuration of the hardware Edge devices, namely NodeMCU/Raspberry Pi

and Jmeter, by integrating the CoAP plugins and Meter;

3. The codebase is embedded in all the devices to send data with all payload message

sizes in a random and automatic way,in a time interval ranging from 1 to 3 seconds;

4. An examination of the network protocol analyzer by means of using Wireshark;

5. Conduting a this test for CoAP with a small, medium, and large payload message

size and QoS: Confirmable and No confirmation. See the diagram sequence for the

CoAP Confirmable transaction, shown in the Figure 4.6;

6. Conducting the following test for MQTT with payload message sizes of small,

medium, and large, and QoS of 0, 1 and 2. Please find the diagram sequence for the

MQTT QoS 1 transaction, shown in the Figure 4.6;

7. After each run, extract the part of the information based on the metrics: package

size, package loss, total time, average of total time, number of packages sent, rate

(ms), burst rate, and burst start, shown in the Figure 4.7;

8. Compilation of the results for better decision-making, as shown in the Figure 4.7.
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Figure 4.6: Sequential diagram - CoAP CON and MQTT QoS 1 transactions of baseline
testing

Figure 4.7: Compiled DME results table for MQTT/CoAP Message Size - Large(2048B)

After drawing up the baseline plan, conducting tests for all the protocols, and

compiling the final results in the DME table, there are two complete tables:

1. The Table below shows the results from the CoAP and MQTT test, described in the

baseline plan Steps 6 and 7 of the baseline plan. It is displayed as follows: 4.2 and

4.3.
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Table 4.2 provides a visualization of the total time in seconds, package size, and

number of generated packages. It combines the data from each protocol and quality

of service based on the baseline tests. This information serves as the initial point of

departure for the creation of the proportional Table 4.3, which yields the final value

for use in the DME algorithm to determine the optimal protocol in the network

conditions.

As a result of both tables, the input data for the DME Algorithm can be expressed

as:

• Total time, package size and number of generated packages;

• The influence of QoS on the result: Latency, Jitter, Bandwidth, Throughput

2. The relevant metadata extracted from the network package, as shown in Table 4.1

The key performance metrics are the message payload size and quality of service.

As a result of the discovery process, the crucial performance metrics are signif-

icant metadata data from the network package, which aids the Decision-Making

Engine in determining the optimal protocol based on the network conditions. For

this reason, the payload message size and quality of service are used as input data

in the DME algorithm and neither network traffic, latency, nor throughput metrics

are used to extract data from the network as shown in Table 4.1.

Table 4.1: Key metadata extracted from the network packages.
NETWORK DATA SCOPE DESCRIPTION

Payload Message Size Yes Define the final number of packages that will be
created to send over the network.

Quality of Service Yes Define the type and process between the client and
server/broker.

Network Traffic No
Latency No
Thoughtput No

Not relevant to define the best protocol

Algorithm 4.8 represents all the programmatic instructions for DME when receiv-

ing as input, the network to configure the best IoT protocol.
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Table 4.2: Initial results with the aid of the key parameters
Total Time(seconds)

Protocol - QoS Small - 20B Medium(800B) Large (2048B)
MQTT - QoS 0 26.903072 15.346198 33.70308
MQTT - QoS 1 31.621311 26.435657 29.874139
MQTT - QoS 2 31.339829 25.306795 26.076454

CoAP - Confirmable 19.028300 28.112417 41.903645

Package Size(message + header)
Protocol - QoS Small - 20B Medium(800B) Large (2048B)
MQTT - QoS 0 98.81 825.33 1060.73
MQTT - QoS 1 89.47 461.51 739.2
MQTT - QoS 2 81.95 268.99 475.47

CoAP - Confirmable 91.50 481.50 340.12

Quantity of package Generated(unit)
Protocol - QoS Small - 20B Medium(800B) Large (2048B)
MQTT - QoS 0 43 43 83
MQTT - QoS 1 85 84 123
MQTT - QoS 2 166 167 203

CoAP - Confirmable 80 80 320

Table 4.3: Table with weighted average based on the Table 4.2
Total Time(seconds)

Protocol - QoS Small - 20B Medium(800B) Large (2048B)
MQTT - QoS 0 0.85 0.55 0.80
MQTT - QoS 1 1.00 0.94 0.71
MQTT - QoS 2 0.99 0.90 0.62

CoAP - Confirmable 0.60 1 1

Package Size(message + header)
Protocol - QoS Small - 20B Medium(800B) Large (2048B)
MQTT - QoS 0 98.81 825.33 1060.73
MQTT - QoS 1 89.47 461.51 739.2
MQTT - QoS 2 81.95 268.99 475.47

CoAP - Confirmable 91.50 481.50 340.12

Number of packages Generated
Protocol - QoS Small - 20B Medium(800B) Large (2048B)
MQTT - QoS 0 43 43 83
MQTT - QoS 1 85 84 123
MQTT - QoS 2 166 167 203

CoAP - Confirmable 80 80 320
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Figure 4.8: Decision-Making Engine Algorithm



62

4.4 MiddleFog Environment

This chapter describes the whole environment that is built to validate the proposed

middleware model, MiddleFog. The middleware ecosystem contemples incorporates the

three layers (Edge, Fog and Cloud), as illustrated in Figure 4.9.

Figure 4.9: MiddleFog Ecosystem - Three layers(Edge, Fog and Cloud)

• Edge Layer - This layer represents multiple devices from different manufacturers.

To ensure a heterogeneous environment, the Nodemcu1 physical devices codebase

is written in the C/C++ language and configured with a unique IoT protocol (CoAP,

MQTT, AMQP, HTTP2) and in parallel with a Jmeter emulated open-source appli-

cation2 which was used to increase the number of requests so that it could have an

environment close to a real scenario and this emulator has been combined with a

unique IoT protocol, like the physical devices.

• Fog Layer - This layer involves extending Cloud computing to the Edge of a net-

work and the main contribution made by this work, middleFog. No Fog simulator

was used, because the aim is to deal with real issues and calculate the solution for

performance purpose. This layer includes:

1<https://www.nodemcu.com/index_cn.html>
2<https://jmeter.apache.org>

https://www.nodemcu.com/index_cn.html
https://jmeter.apache.org
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– The docker machine with the IoT proxy protocols. This means all the brokers

and servers can receive/send all the system data.

– The docker machine with a monitoring service that is designed to store system

data and log information.

– The nodejs service with script technology, to apply the protocol changes to

consumer and server data (server/client).

– The Decision-Making Engine service, written in python language and libraries,

responsible for finding the best protocol based on network conditions, and

payload message size.

• Cloud Layer - This layer represents the on-demand high availability of distributed

computer system resources, especially for storage and data processing. The whole

cloud environment was built on the Amazon Cloud Infrastructure3. To achieve the

support required for multiple protocols (CoAP, MQTT, AMQP, HTTP2) the Ama-

zon Cloud infrastructure provides an interface to ensure address necessary interop-

erability. Each protocol has its own AWS Cloud environment, both isolated and

independent.

4.4.1 Hardware Setup

The proposed MiddleFog incorporates three layers (Edge, Fog and Cloud) im-

mersed in a heterogeneous IoT environment. It needs to have devices as the grounding

for generating data for the system. Moreover, it contains a small set of hardware and

a software emulator to increase the number of devices that generate data, as well as to

address a real IoT scenario. The list of hardware devices is shown in Table 4.4 and the

MiddleFog hardware in the Figure 4.10.

• NodeMCU is a low-cost, open-source Internet of things platform with ESP8266

Wifi, which comes from the Espressif Systems4 manufacturer, and has hardware

based on the ESP-12 module. Its features suggest it has easy adhesion to the IoT

ecosystem. This work has 7 physical devices in which 4 boards were configured

and embedded in the protocol MQTT and 3 boards were configured and embedded

in the CoAP protocol. All the boards publish messages with a defined payload
3<https://aws.amazon.com/about-aws/global-infrastructure>
4<https://www.espressif.com>

https://aws.amazon.com/about-aws/global-infrastructure
https://www.espressif.com
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Table 4.4: MiddleFog - Hardware Specifications for Edge-Fog-Cloud layers
Hardware Layer Description

Physical
NodeMCU,

Raspiberry Pi
Devices

Edge

Formed of 7 devices: NodeMCU ESP8266
CPU 32-bit RISC: Tensilica Xtensa LX106
- 80 MHz, Memory RAM 64 KB, Data 96
KB, External Flash QSPI 512KB/4 MB IEEE
802.11 b / g / n Wi-Fi,
- 1 device Raspiberry Pi 3B+ SoC: Broadcom
BCM2837B0 quad-core A53 (ARMv8) 64-
bit @ 1.4GHz - GPU: Broadcom Videocore-
IV, RAM: 1GB LPDDR2 SDRAM, Net-
working: Gigabit Ethernet (via USB chan-
nel), 2.4GHz and 5GHz 802.11b/g/n/ac Wi-
Fi, Bluetooth: Bluetooth 4.2 (BLE), 3.5mm
analogue audio-video jack, 4x USB 2.0, Eth-
ernet, Camera Serial Interface (CSI), Display
Serial Interface (DSI), Dimensions: 82mm x
56mm x 19.5mm

Physical
Machines Fog

Formed of 2 notebook: 8 GB 2400 MHz
DDR4 / 2.2 GHz Intel Core i7 and 16 GB
2400 MHz DDR4 / 2.2 GHz Intel Core i7

Virtual AWS
Machines Cloud

AWS 2.8GHz Intel Xeon Cascade Lake Scal-
able CPUs

size(Small, Medium and Large), following the [8] experiment for their respective

server or broker in a varied timeframe. The board is displayed in Figures 4.12 and

4.10.

• Physical Machines are 2 notebooks which seeks to host IoT protocol proxies(LibCoAP

and Mosquitto), Decision-Making Engine service, monitoring service and a service

to make the protocol changes. All these services, broker and server are operated the

whole time to keep the main engines running and computing data in the ecosystem.

The machine is shown in Figure 4.10.

• Virtual AWS Machines are machines in the Amazon infrastructure which have

elasticity of demand and host CoAP and MQTT services that are ready to use. The

Cloud environment applied in the MiddleFog host has two services, one for each

IoT protocol (CoAP and MQTT), to ingest and provide data from/to the Fog layer.

The representation of both environments is shown in Figure 4.9 and the Figure 4.11

contains image (a) This reflects the process to setup a EC2 instance and includes

the product and CloudWatch service so that it can note all the observability from

the machine (logs, metrics, performance). Image (b) represents the CloudWatch
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Figure 4.10: MiddleFog Hardware: NodeMCU, RaspberryPi and Emula-
tors(CoaP,MQTT) that send data to physical Machines

configuration applied to the EC2 machine after a few minutes/an hour.
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Figure 4.11: AWS Hardware Configuration: (a) Setup CloudWatch (b) Configured EC2
machine (c) Connect AWS Machine

(a)

(b)

(c)
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4.4.2 Software Setup

The software stack MiddleFog embrace three layers (Edge, Fog and Cloud) which

immersed in a heterogeneous IoT ecosystem. The Technologies such as language and,

libraries were chosen on the basis of the state-the-art in Table 3.2.3. However, some tools

or libraries like Pyshark, which is used in the proposed middleware, are not covered in

the state-of-the-art. Thus, owing to the compatibility between parts of architecture, it

is essential to have all the expected components for the architectural task. The list of

software is shown in Table 4.12 and the MiddleFog software in the Figure 4.10.

The most noteworthy packages used in the board and, service configurations are

listed with their versions and usage below in Table 4.5.

Table 4.5: MiddleFog - Software Specifications Edge-Fog-Cloud layers.
Software Layer Description

C/C++, Arduino IDE,
Raspiberry Pi, Jmeter Emula-
tor with CoAP/MQTT plugins

Edge
Embedded in all IoT physical
devices - NodeMCU

NodeJS, Python, bash script,
wiresharp, pySharp, In-
fluxDB, Docker, Mosquitto,
Libcoap, Grafana

Fog
Technologies used in all the ser-
vices and proxies machines at
the Fog level

NodeJS, Bash script,
Mosquitto, Libcoap Cloud

Technologies used in all the ser-
vices in Virtual AWS Machines

• C/C++, Arduino IDE, Raspiberry Pi, Jmeter Emulator with CoAP/MQTT plu-

gins form the subset of technologies used at Edge layer. The software embedded in

the physical device platform called NodeMCU boards were flashed by means of the

popular Arduino IDE5 and the codebase were written in C/C++ language. Having

a successfully embedded process is necessary in a specific setup to allow Arduino

IDE to flash the codebase on the NodeMCU board. In the same way, the Raspberry

Pi board runs C/C++ codebase as a NodeMCU board. The number of physical de-

vices is not enough to achieve an IoT scenario in which a large amount of data is

generated per second, and on the basis of these criteria the Jmeter emulator ad-

dress this need. Jmeter does not have the IoT protocol interfaces by default, and for

this reason, two plugins were added, the plugin for CoAP is CoAP-Jmeter6 and for

MQTT is MQTT-Jmeter7 as shown in Figure 4.12.
5<https://www.arduino.cc/en/software>
6<ttps://github.com/xmeter-net/coap-jmeter>
7<https://github.com/xmeter-net/mqtt-jmeter>

https://www.arduino.cc/en/software
ttps://github.com/xmeter-net/coap-jmeter
https://github.com/xmeter-net/mqtt-jmeter
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All the instructions and codebases on how to build the device were added to the

Github repositories, shown below in Table 4.6.

Table 4.6: Github Edge Repositories
Github Repositories

Edge Device - <https://github.com/desireesantos/Edge-device/tree/main/
protocols>

Jmeter Plugins CoAP/MQTT Protocols - <https://github.com/desireesantos/
jmeter-iot-protocols>

• NodeJS V12, python 3.8, bash script, wiresharp, pySharp, InfluxDB, Docker,

Mosquitto, Libcoap, Grafana form the subset of the technologies used in the Fog

layer, as shown in Figure 4.9. In this layer, there are two machines, one is a docker

machine with IoT proxy protocols monitoring service. This represents a machine

with a message broker, MQTT Mosquitto8, that implements the MQTT protocol

versions 5.0, 3.1.1(the version used in the MiddleFog due libraries compatibility)

and 3.1 and the libcoap9 CoAP server version 4.2.0 that illustrates various server-

side features to receive/send all the system data. The monitoring service is running

to store system data and log information (Graphana10 version 8.3.3 and InfluxDB11)

version 1.8. The other machine is responsible for hosting two services. The first

is the service written in node12 version 16, JavaScript EMCS6 and bash script

technologies, so that the protocol changes can be applied to consumer and server

data(server/client). The second service is the Decision-Making Engine, written in

Python language version 3.8 with Wireshark13 version 3.6.1. and Pyshark14,library

version 0.4.3, which are responsible for identifying the best protocol in network

conditions and payload message size. The technology applied in this layer is shown

in Figure 4.12.

• AWS EC2, AWS SQS, AWS CloudWatch, AWS Lambda, NodeJS, bash script,

Mosquitto, Libcoap form the subset of technologies used in the Cloud layer, shown

8<https://mosquitto.org>
9<https://libcoap.net>

10<https://grafana.com>
11<https://www.influxdata.com>
12<https://nodejs.org/en>
13<https://www.wireshark.org>
14<https://github.com/KimiNewt/pyshark>

https://github.com/desireesantos/Edge-device/tree/main/protocols
https://github.com/desireesantos/Edge-device/tree/main/protocols
https://github.com/desireesantos/jmeter-iot-protocols
https://github.com/desireesantos/jmeter-iot-protocols
https://mosquitto.org
https://libcoap.net
https://grafana.com
https://www.influxdata.com
https://nodejs.org/en
https://www.wireshark.org
https://github.com/KimiNewt/pyshark
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Table 4.7: Github Fog Repositories
Github Repositories

Decision Maker Engine Service [branch DME] - <https://github.com/
desireesantos/networkReader>

Service to apply changes - <https://github.com/desireesantos/
middlewareFogService>
Docker Container LibCoAP - <https://github.com/desireesantos/libcoap_
container>

in Figure 4.9. In this layer, there are two environments within the Amazon infras-

tructure. The first is the CoAP environment on an Amazon EC215 instant content,

where a service written in node version 16, JavaScript EMCS6 and bash script tech-

nologies are connected with libCoAP server version 4.2.0 to consume and provide

data. In the same way, the MQTT environment has AWS Simple Query Service 16

as central messaging broker and is integrated with Amazon Lambda17 to run codes

without a provisioning or managing infrastructure and Amazon CloudWatch 18 for

observability of its AWS service and applications. The technology applied in this

layer is shown in Figure 4.12.

Table 4.8: Github Cloud Repositories
Github Repositories

Service Running at Cloud - <https://github.com/desireesantos/
middlewareCloudCoAP>

Docker Container LibCoAP - <https://github.com/desireesantos/libcoap_
container>

15<https://aws.amazon.com/ec2>
16<https://aws.amazon.com/sqs>
17<https://aws.amazon.com/lambda>
18<https://aws.amazon.com/Cloudwatch>

https://github.com/desireesantos/networkReader
https://github.com/desireesantos/networkReader
https://github.com/desireesantos/middlewareFogService
https://github.com/desireesantos/middlewareFogService
https://github.com/desireesantos/libcoap_container
https://github.com/desireesantos/libcoap_container
https://github.com/desireesantos/middlewareCloudCoAP
https://github.com/desireesantos/middlewareCloudCoAP
https://github.com/desireesantos/libcoap_container
https://github.com/desireesantos/libcoap_container
https://aws.amazon.com/ec2
https://aws.amazon.com/sqs
https://aws.amazon.com/lambda
https://aws.amazon.com/Cloudwatch
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Figure 4.12: Software Technologies

4.4.3 Workloads

In this work, the MiddleFog experimental workload is formed, by describing de-

tails of the model and the configurations by testing the permutation of the IoT protocol.

In the chart 4.13 Starting-point/ part of the system/all the flow.

The experimental workload, shown in the Figure 4.13 represents the IoT heteroge-

neous ecosystem where Edge device publishes data with different sized payload messages,

quality of service, and variations of latency and time, as shown on the Table 4.9.

Table 4.9: Configurations that can be applied in the experimental workload
Category Protocols Values

CoAP ConfirmableQuality

of Service
MQTT At most once (0), At least once (1) and Exactly once (2)

Payload Size CoAP, MQTT Small - 20B, Medium - 800K, Large - 2048B
Time CoAP, MQTT variation of 1s , 5s, 10s

Latency CoAP, MQTT variation of 5% - 30%

All these configurations are applied in the experimental workload, although each

IoT protocol shares the same environment, but the data workflow requires different meth-

ods. This particular feature is shown in the Figures 4.14 and 5.1
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Figure 4.13: MiddleFog Experimental Workload

Figure 4.14: CoAP Data Workflow
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The data workflow stages for the CoAP IoT protocol:

1. The CoAP devices sends a message with variations in payload size and time to the

proxy at Fog level and the LibCoAP server receives the message created by Edge.

2. The service which is responsible for making protocol changes, observes the re-

source at Fog level to obtain all the new data created by Edge devices.

3. DME stages what is the best protocol, based on network conditions and payload

size. The service gets and applies this information from DME. As well as this

Besides that, the service processes the new data and packages in the format of the

protocol.

4. The message is sent from Fog proxy to Cloud proxy using the IoT protocol defined

by DME.

5. The proxy at Cloud receives this data from Fog.

6. The Service consumes the data posted by Cloud and delivers it to the CoAP server

at Fog level.

7. The service assesses the resources to get all the data delivered by Cloud.

8. The service processes this data and sends it to the resource at Fog level.

9. Edge consumes this data.
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Figure 4.15: MQTT Data Workflow

The phases of data workflow for the MQTT IoT protocol:

1. The MQTT device publishes a message with variations in payload size, quality of

service and time for the proxy at Fog level and the Mosquitto broker receives the

message created by Edge.

2. The service which is responsible for making protocol changes, observes the channel

at Fog level to obtain all the new data created by the Edge devices.

3. DME states what is the best protocol, based on network conditions and payload

size. The service notes the protocol definition and applies this information from

DME. As well as this, the service processes the new data and package in the format

of the protocol.

4. The message is published from Fog proxy to Cloud proxy using the IoT protocol

defined by DME. The AWS SQS channel receives this data.

5. Later, after the message has arrived in the AWS SQS input, the AWS lambda func-

tion executes the defined instructions.

6. The AWS lambda function redirects the data to another output AWS SQS channel,

and in this way the information is ready for the Fog to consume.

7. The service listens to the channel to get all the data that is delivered by Cloud.
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8. The service processes all the data.

9. The service publishes the data to proxy at Fog level.

10. Edge consumes this data.

It is worth mentioning that each transaction was executed 30 times and tested in 3

environments with the same hardware and software configuration, network conditions.
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5 RESULTS AND EVALUATIONS

In this chapter the metrics are arranged a consolidated format by presetting all the

experiments throughout this work. While to conducting this study, comparisons had to be

made to allow a better understanding of the proposed middleware since they are based on

performance validations.

5.1 Experiments

The following scenarios were grounded on a considerable amount of evidences

and thus will be discussed in the sections that follow. In addition, the Appendix 5 provides

extra information about the results of the experiments.

These result were divided into 4 distinct groups of experiments for a better un-

derstating of the middleware performance. Thus, the opportunities to validate the perfor-

mance of DME despite latency are as follows:

• Experiments without latency and without DME, described in Section 5.3;

• Experiments with latency and without the DME implementation Section 5.4;

• Experiments without latency and with the DME implementation Section 5.5;

• Experiments with latency and with DME implementation Section 5.6.

All four experiments have the same elements as A part of the architectural struc-

ture since:

• It operates 2 protocols: CoAP (confirmable) and MQTT (3 QoS);

• Publishes the messages in 3 different payload sizes(small, medium, large);

• Increases user instances to publish messages concurrently.

The difference between the four experiments is narrow in two key areas: the algorithm

for DME and latency.

The diagram shown in Figures 5.1, 5.2 provides a detailed view of the planned

experiments, as well as the metrics used throughout this work.
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Figure 5.1: Test Execution - Architectural components

Figure 5.2: MiddleFog Testing Execution (3 Layers: Edge-Fog-Cloud)

5.2 Metrics

This section sets out the metrics that were used throughout this work and also

gives a detailed view of the planned experiments.

Metrics are quantifiable measures used to analyze the outcome of a specific pro-

cess, action or strategy. Performance evaluation (or measurement) is an inseparable pro-

cess for cross-layers optimization (Cloud, fog, Edge). It highlights weaknesses and ben-

efits by determining whether the technique is fulfilling its objectives. The most common

supported metrics for all landscapes have been found to be: resource utilization, energy,

response time and latency [6]. Tables 5.1, 5.2 below display the metrics that were used in

this work, which are collated and described to results.
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Table 5.1: Performance metrics
Metrics
Latency

Response Time

Table 5.2: Variables and measurements for MiddleFog performance assessment
Measurement inputs Values

Package Message Size 20B, 800B, 2048B
Latency 5% - 30%

Time per seconds 1s , 5s, 10s
CoAP QoS Confirmable

MQTT QoS 0, 1, 2

5.3 Group I - Experiment with No Latency and No DME

The initial experiment used two protocols, namely CoAP and MQTT, which were

based on service quality (CoAP with confirmable QoS and MQTT with QoS 0,1,2), with-

out taking account of latency and without selecting the optimal protocol, and thus demon-

strating that there is no DME implementation.

After several executions, Table 5.3 followed the design architecture represented

in Chapter 4.1, and the results of the DME performance model were consolidated after

several executions. The main factors that validate the experiment, described in Chapter

4.1, are number of users, and package size.

Table 5.3: DME - Consolidated Performance without DME and Latency
Package Size SMALL MEDIUM LARGE
Number of

Users 10 100 200 10 100 200 10 100 200

Protocol
COAP 0.372 0.345 17.69 0.3777 0.3516 0.333 20.351 17.69 17.693
MQTT
QoS 0 20.34 23.83 29.93 20.34 23.83 29.93 21.09 20.14 25.01

MQTT
QoS 1 28.35 27.57 27.70 28.87 27.30 26.50 22.89 21.67 25.01

MQTT
QoS 2 19.63 19.18 19.79 20.25 19.52 25.13 19.63 19.18 19.79

The observations revealed that:

• Despite the increase in the number of user requests from 10 to 100 and later 200,

the CoAP protocol, small and medium- sized packages achieved better results than

MQTT, even if there was a change in Quality of Service (0,1,2).

• Although the number of user requests increased from 10 to 100 and later 200,
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MQTT Qos 2, large-sized packages achieved better results than MQTT, even af-

ter the Quality of Service (0,1) was altered.

5.4 Group II - Experiments with Latency and No DME

The second experiment was conducted with the two CoAP and MQTT protocols

based on quality of service (CoAP with QoS confirmed, MQTT with QoS 0,1,2) applied

latency, and without choosing the best protocol, and did not have a DME-sign imple-

mentation. The table 5.13 shown here, summarizes the results obtained from the DME

performance model, based on a series of executions that were conducted in accordance

with the design architecture displayed in Chapter 4.1. The primary components that are

essential for validating the experiment, as outlined in Chapter 4.1, are the protocol, num-

ber of users quantity, and package size.

Table 5.4: DME - Consolidated Performance without DME and applying Latency
Package Size SMALL MEDIUM LARGE
Number of

Users 10 100 200 10 100 200 10 100 200

Protocol
COAP 0.450 0.435 0.690 0.489 0.492 0.499 22.65 22.89 22.33
MQTT
QoS 0 24.34 27.96 29.35 24.44 25.09 29.14 34.13 20.14 25.01

MQTT
QoS 1 32.35 32.57 33.05 34.84 34.89 34.93 37.12 37.56 37.91

MQTT
QoS 2 23.18 23.52 24.09 23.97 24.56 26.89 24.01 24.55 24.96

The observations revealed that: the protocol selection depends on the application

requirements. If the primary concern is latency, the CoAP protocol can be used for small-

sized packaged messages sizes.

The code optimization can have a significant impact on system latency. By en-

hancing the code, it is feasible to reduce the execution time and improve the application

performance. Nonetheless, as indicated in Table 5.13, performance is not analyzed on

the basis of code optimization, but solely on latency. If the main concern is low latency,

the CoAP protocol can be used. The Table below makes a comparison between latency

values under optimized code conditions.
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Protocol Size Good Performance Worse Performance
Small COAP 0.450 0.3777
Medium CoAP 20.34 20.34

Large
MQTT
QoS 2 28.35 28.87

5.5 Group III - Experiment No latency and with DME

The third experiment was conducted with the two protocols (CoAP and MQTT)

based on quality of service (CoAP with QoS confirmed, MQTT with QoS 0,1,2) and

choosing the best protocol, and did not have a DME-sign implementation.

Table 5.14 summarizes the DME performance model results after several execu-

tions and follows the design architecture represented in Chapter 4.1. The main features for

validate an experiment, mentioned in Chapter 4.1, are: protocol, number of users quantity,

and package size.

Table 5.5: DME - Consolidated Performance without latency and with the DME
Package Size SMALL MEDIUM LARGE
Number of

Users 10 100 200 10 100 200 10 100 200

Protocol
COAP 0.184 0.186 0.199 0.208 0.212 0.250 10.10 10.39 10.86
MQTT
QoS 0 12.36 12.62 12.75 12.01 12.66 12.95 13.32 13.34 13.96

MQTT
QoS 1 14.12 14.52 14.96 19.75 19.63 19.90 15.20 16.63 17.20

MQTT
QoS 2 11.63 11.23 11.83 13.56 13.75 14.53 18.78 18.25 18.85

The observations revealed that the CoAP protocol displays a lower latency than

MQTT, and thereby reduces the time taken for CoAP to respond to a request. Nonetheless,

MQTT has a much smaller size than CoAP. It should be noted that the size of the code

is contingent on upon the number of code lines and the number of dependencies. The

smaller the code size, the faster it runs, and the less memory it consumes.

In the table, it can be seen that the CoAP protocol has the lowest latency values

of all the sizes and numbers of users. The CoAP protocol has a latency of between 0.184

and 10.86, depending on the size and number of users. The latency of the MQTT protocol

depends on the quality of service. The MQTT protocol with QoS 0 shows the lower

latency values than QoS 1 and QoS 2. Depending on the size and number of users, the

latency of MQTT with QoS 0 ranges from 12.36 to 13.96. However, MQTT with QoS
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1 and QoS 2 has higher latency values than QoS 0. MQTT with QoS 1 has a latency of

14.12 to 19.96, while MQTT with QoS 2 has a latency of 11.23 to 18.85, depending on

the size and number of users.

5.6 Group IV - Experiment with Latency and DME

The first experiment was conducted with the two protocols, CoAP and MQTT,

based on quality of service (CoAP with QoS confirmed, MQTT with QoS 0,1,2) and the

best protocol, was chosen that represents the DME-sign implementation.

Table 5.15 consolidates the results of the DME performance model after several

executions and follows the designed architecture represented in Chapter 4.1. The main

features for validating the experiment, mentioned in Chapter 4.1, are: protocol, number

of users, and package size.

Table 5.6: DME - Consolidated Performance with DME and Latency
Package Size SMALL MEDIUM LARGE
Number of

User 10 100 200 10 100 200 10 100 200

Protocol
COAP 0.192 0.195 0.298 0.252 0.259 0.270 10.731 10.83 10.90
MQTT
QoS 0 13.96 13.46 13.42 13.54 14.24 13.42 14.76 14.42 17.34

MQTT
QoS 1 16.42 16.52 16.78 21.63 21.17 20.30 16.90 17.00 18.01

MQTT
QoS 2 12.80 12.19 12.99 14.56 14.98 15.50 19.63 19.18 19.79

The observations revealed that: there are three different sizes, with corresponding

numbers of users. There are two different protocols, CoAP and MQTT, with different

quality of service levels. It should be noted that the latency values for the CoAP protocol

are relatively low, ranging from 0.192 to 0.298 seconds. This suggests that the CoAP

protocol is efficient with regard to latency. In the case of the MQTT protocol with QoS

levels 0 and 2, the latency values range from 12.19 to 21.63 seconds. This suggests that

the MQTT protocol with these QoS levels, may not be optimized for low latency. The

CoAP protocol may be a more suitable option for optimizing a code with low latency

requirements.
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5.7 Final Results

An examination of the packet behavior was conducted in a network generated by

the CoAP and MQTT protocols. This analysis seeks to establish parameters that will pro-

vide information about which protocol performs best under specific network conditions.

The analysis was based on related work that identified key factors in communication per-

formance such as packet size, number of packets generated, and total transmission time.

Initially, a load test was conducted to simulate communication between an Edge

device and Fog by making use of the CoAP and MQTT protocols. The load test involved

sending messages of different sizes to the Fog. It was configured to generate a new trans-

action every second and simulate 10 user requests. Subsequently, the packets that were

transmitted over the network were scrutinized with the aid of Wireshark, as illustrated

in Figures 5.5 and 5.4. The data from the tool’s filters and resources was subsequently

extracted. The collected data was then used to generate graphs using the R language.

This analysis seeks to provide information about the packet transmission behavior

when the CoAP and MQTT protocols are used. Load testing and packet analysis tools

provide a comprehensive understanding of communication performance, and lead to the

optimization of network protocols and the enhancement of overall efficiency. Figure 5.3

shows the configuration of the test plan created in Jmeter. This configuration is used in

both the CoAP and MQTT scripts.

Figure 5.3: Test plan configuration created in Jmeter

Different users requested different transactions, with a new transaction being gen-

erated every second. Table 5.7 provides a comprehensive description of the type of trans-

action and the size of the messages.

CoAP is a protocol designed for use in restricted devices, and is often used in the

context of the Internet of Things. One of the main features of CoAP is its support for
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Figure 5.4: MQTT wireshark

Figure 5.5: CoAP wireshark

Table 5.7: Characterization of CoAP transactions
CoAP

Type of Transaction CON( confirmable)
Message Size 20B, 800B, 2048B

confirmable transactions, which allow reliable communication over untrusted networks.

The Table 5.7 provides the results of a load test carried out by means of CoAP, together

transactions of type CON and message sizes of 20B, 800B, and 2048B. The objective of

this examination was to scrutinize the behavior of packets that were transmitted on the

network, and originated from the CoAP protocol. In addition, it sought to, establish the

parameters for obtaining data about the optimal performance of the protocol in accordance

with network conditions.
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On the basis of the data displayed, it can be seen that for all three message sizes,

the number of packets generated to transmit all the data is higher for CoAP with transac-

tion type CON than to CoAP with transaction type NON. This can be expected because

confirmable transactions require confirmation from the receiving device, which will result

in the generation of additional packets.

With regard to the total duration of the data transmission, depending on may vary

based on the size of the message. For messages with a size of 20B, the total duration is

comparable to both CoAP with CON transaction and CoAP with NON.

In the case of messages exceeding 800B and 2048B, the total duration for CoAP

with confirmable transactions is significantly longer. It is likely that additional packets

were generated during these transactions. Although confirmable transactions can guaran-

tee dependable communication, they can also lead to an increase in packet generation and

prolonged transmission times for larger messages.

The CoAP protocol test was conducted on a total number of 30 occasions, with

each session using a different message size and ensuring that the transaction type was

verified. MQTT is a lightweight messaging protocol that is widely used in the Internet of

Things to communicate between devices. It is designed to be easy and efficient, with a low

code volume and low network bandwidth usage. An overview of MQTT and how it is used

in IoT applications will be provided in this study. The system employs a publish-subscribe

model, in which devices can publish messages on a specific topic and other devices can

subscribe to that topic to receive the messages. This ensures efficient communication

between devices, as messages are only sent to those that are interested in them. MQTT

also provides support for quality of service levels, which provide a means of regulating

the reliability of message delivery.

There are three levels of quality of service in the MQTT: QoS 0, QoS 1, and QoS 2.

The Quality of Service 0 (QoS 0) is regarded as the least reliable option, as messages are

only delivered only once, with the possibility of duplication. In conclusion, the Quality

of Service 2 option is the most reliable, as it guarantees the timely delivery of messages,

albeit with some potential delays.

MQTT supports different message sizes, from small messages of 20 bytes to larger

ones of 800 bytes or even 2,048 bytes. Nonetheless, it should be recognized that the

transmission of larger messages may result in a greater use of network bandwidth and a

longer duration of transmission. MQTT is a widely utilized protocol for IoT applications

because of its simplicity and efficacy, as well as its ability to accommodate diverse levels
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of service quality.

Moreover, MQTT can able to be used in a variety of situations, from simple sensor

networks to complex industrial systems. Table 5.8 below shows the MQTT of the test.

Table 5.8: Test payload for the MQTT protocol
MQTT

Quality of Service(QoS) 0,1 and 2
Message Size 20B, 800B, 2048B

The test load for the CoAP protocol was performed 30 times for each quality.

The service was undertaken with a different message size to assist understanding. The

performance was found to be excellent since. The MQTT protocol is characterized by

a the crucial factor Quality of Service (QoS). The guarantee level for message delivery

between the sender and the recipient defines the guarantee level for message delivery

between the sender and the recipient. The receiver of QoS levels range from zero to 2,

where QoS 0 provides the lowest message delivery. Quality of Service 2 provides the

highest guarantee level, while QoS 1 provides the lowest guarantee level.

At QoS level 0, messages are delivered without any guarantee, as there is no con-

firmation from the recipient. Hence, messages with Quality of Service Zero (QoS 0) are

ideally suited for messages with low priority that do not delivery guarantees. In our anal-

ysis, it was noted that QoS 0 performed well for messages smaller than 20B, since there

was minimal overhead and latency in the message delivery. However, in the case of larger

message sizes of 800B and 2048B, the performance of QoS 0 was sub-optimal as there

was no guarantee of message delivery and messages could be lost in transit.

At quality of service level 1, messages are delivered at least once as the receiver

sends an acknowledgment to the sender upon receipt of the message. If the sender does

not receive a confirmation, it will resend the message. We found that QoS 1 was reliable

for message delivery across message sizes of 20B, 800B, and 2048B. However, there was

an increase in latency and message overhead because of the need for acknowledgments.

At QoS level 2, messages are delivered exactly once, as there is a two-way hand-

shake between the sender and receiver. The Quality of Service 2 (QoS 2) provided the

most reliable message delivery across all the message sizes. Nonetheless, there was a

significant increase in message overhead and latency owing to the need for an additional

handshake. The Table 5.9 below, shows the outcomes in accordance with the dimensions

of each package.

Table 5.9 displays the packet sizes in bytes for various message sizes, MQTT
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Table 5.9: Packet size (bytes)
Protocols 20B 800B 2048B

CoAP 121 481 616
MQTT - QoS 0 100 881 681
MQTT - QoS 1 90 480 380
MQTT - QoS 2 81 277 227

Quality of Service (QoS) levels, and CoAP confirmable transaction type (CON) The term

"packet size" refers to the size of the message transmitted in addition to its header. In

the case of message size 20B, the packet sizes for MQTT with QoS 0, QoS 1, and QoS

2 were 100, 90, and 81 bytes, respectively. Nevertheless, the packet size for CoAP with

CON was 121 bytes. For message size 800B, the packet sizes for MQTT with QoS 0, QoS

1, and QoS 2 were 881, 480, and 277 bytes, respectively. The packet size for COAP with

CON was 481 bytes. For message size 2048B, the packet sizes for MQTT with Quality

of Service 0, Quality of Service 1, and Quality of Service 2 were 681, 380, and 227 bytes,

respectively. The packet size for COAP with CON was 616 bytes. It can be seen from

the Table, that the MQTT packet size, rises significantly with the increasing size of the

message, particularly with QoS 0. In contrast, the CoAP packet size with CON remains

relatively constant in all the message sizes. Table 5.10 shows the results according to the

number of packages generated in the table.

Table 5.10: Number of packages generated
Protocols 20B 800B 2048B

CoAP-CON 20 40 74
MQTT - QoS 0 10 10 10
MQTT - QoS 1 20 20 20
MQTT - QoS 2 43 40 40

It should be noted that for message size 20B in Table 5.10, all the QoS levels

of MQTT resulted in the generation of 10 packets, whereas CoAP with CON generated

20 packets. All the QoS levels of MQTT generated 20 packets, while CoAP with CON

generated 40 with regard to the message size of 2048B, both MQTT QoS 1 and QoS 2, as

well as CoAP with CON, generated a total of 74 packets, whereas MQTT QoS 0 generated

a total of 43 packets. The number of packets generated increases with the growing size

of the message and Quality of Service level. MQTT QoS 0 generates the fewest packets,

while CoAP with CON generates the most packets. The following Table 5.11 shows the

total transmission time.

The total period required to transmit data of varying sizes through diverse proto-

cols. The protocols compared in the table are MQTT with Quality of Service 0, QoS 1
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Table 5.11: Total data transmission time (values in seconds)
Protocols 20B 800B 2048B

CoAP-CON 6.9 7.13 7.1
MQTT - QoS 0 12.7 12.8 12.8
MQTT - QoS 1 12.4 12.8 12.8
MQTT - QoS 2 12.9 12.7 12.6

and QoS 2, and CoAP with CON transaction type.

The findings indicate that CoAP achieves a better performance than MQTT in

terms of the total duration required to transmit data. For instance, in a message size of

20B, CoAP (together with transaction type CON) needed a timeframe of 6.9 seconds to

transmit data, whereas MQTT with QoS 0, QoS 1, and QoS 2 had times of 12.7, 12.4, and

12.9 seconds, respectively. This suggests that CoAP is capable of transmitting smaller

messages in a shorter duration than MQTT.

However, when it comes to transmitting larger messages, MQTT performs better

than CoAP. For instance, in a message size of 800B, MQTT with Quality of Service

0, Quality of Service 1, and Quality of Service 2 required a period of 12.8 seconds to

transmit data, whereas CoAP with the CON transaction type required a period of 7.13

seconds. This suggests that MQTT can transmit large messages more efficiently than

CoAP.

The performance of MQTT is contingent on the QoS level employed. The time

taken to transmit data is lower when there is an improvement in quality of service. For

example, for a message size of 20B, MQTT with QoS 2 took a shorter time to transmit

data than QoS 0 and QoS 1. This is because QoS 2 ensures that the message is delivered

to the receiver.

This study has attempted to compare the performance of CoAP and MQTT pro-

tocols based on parameters related to the size and number of packets, as well as the total

time required to transmit the data. According to the research findings, the protocol that

performed best varied, depending on the size of the packets transmitted.

In the case of small packets of 20B, it was noted that the CoAP protocol was more

efficient in terms of speed, despite the larger number of packets that had to be transmitted

through the network. However, when it comes to larger packets, the MQTT protocol

achieved a better performance. Furthermore, tests were conducted with average packet

sizes of 800 bytes, and it was found that the MQTT protocol with QoS level 2 had a better

performance than the MQTT protocol with QoS level 1.

On the basis of the results obtained from this study, we recommend specific con-
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figurations for each packet size. In the case of small 20B packets, it is recommended that

CoAP is used with CON. In the case of medium packets (800B), MQTT is recommended

with QoS level 2. However, in cases where the priority is higher in medium packets, it

is advisable to use MQTT with QoS Level 1. The study underlines the importance of

selecting protocol settings according to packet size to achieve optimal performance. The

ensuing Table 5.12 shows the performance of the CoAP and MQTT protocols at various

Quality of Service (QoS) levels for varying message sizes and user counts.

Table 5.12: CoAP and MQTT protocol performance with different QoS levels
Package Size SMALL MEDIUM LARGE

User
Quantity 10 100 200 10 100 200 10 100 200

Protocol
COAP 0.372 0.345 17.69 0.3777 0.3516 0.333 20.351 17.69 17.693
MQTT
QoS 0 20.34 23.83 29.93 20.34 23.83 29.93 21.09 20.14 25.01

MQTT
QoS 1 28.35 27.57 27.70 28.87 27.30 26.50 22.89 21.67 25.01

MQTT
QoS 2 19.63 19.18 19.79 20.25 19.52 25.13 19.63 19.18 19.79

Different protocols, namely CoAP and MQTT, were compared with regard to their

performance, as well as in terms of size and number of users. The code size is divided

into small, medium, and large, while the number of users is divided into 10, 20, and 100.

The CoAP protocol displays a lower latency than MQTT, an thus results in a

shorter response time needed by CoAP to respond to a request. However, MQTT has

a smaller size than CoAP. It should be noted that the code size determined by the number

of code lines and the number of dependencies. The lower the code size, the faster it will

run and the less memory it will consume.

In Table 5.12, it can be seen that the CoAP protocol shows the lowest latency

values for all sizes and numbers of users. The latency of the CoAP protocol varies from

0.184 to 10.86, contingent upon the size and number of users. The latency of the MQTT

protocol depends on the quality of service.

The MQTT protocol with QoS 0 has lower latency values than QoS 1 and QoS 2.

The MQTT protocol has lower latency values than QoS 1 and QoS 2. MQTT with QoS 0

varies from 12.36 to 13.96, depending on the size and number of users. However, MQTT,

with QoS 1 and QoS 2, has higher latency values than QoS 0. MQTT with QoS 1 ranges

from 14.12 to 19.96, while the latency of MQTT with QoS 2 ranges from 11.23 to 18.85,

depending on the size and number of users.
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The protocol selection depends on the application requirements, as described in

the DME algorithm( Figure 4.8). If the main concern is low latency, the CoAP protocol

can be used. Nonetheless, in the event of the code size being significant significance, the

MQTT protocol with QoS 0 can be used.

Table 5.13: DME - Consolidated Performance without DME and applying Latency
Package Size SMALL MEDIUM LARGE
Number of

Users 10 100 200 10 100 200 10 100 200

Protocol
COAP 0.450 0.435 0.690 0.489 0.492 0.499 22.65 22.89 22.33
MQTT
QoS 0 24.34 27.96 29.35 24.44 25.09 29.14 34.13 20.14 25.01

MQTT
QoS 1 32.35 32.57 33.05 34.84 34.89 34.93 37.12 37.56 37.91

MQTT
QoS 2 23.18 23.52 24.09 23.97 24.56 26.89 24.01 24.55 24.96

The code size has been classified into small, medium, and large, while the number

of users has been classified into 10, 100, and 200. The CoAP protocol shows a lower

latency than the MQTT protocol in a wide range of sizes numbers of users. The CoAP

protocol latency varies between 0.450 and 0.690, depending on the size and number of

users. The latency of the MQTT protocol depends on the quality of service.

The MQTT protocol with QoS 0 has higher latency values than QoS 1 and QoS

2. The MQTT protocol has higher latency values than QoS 1 and QoS 2. The latency

of MQTT with Quality of Service 0 ranges from 24.34 to 34.13, depending on the size

and number of users. Nevertheless, MQTT with QoS 1 and QoS 2 has lower latency

values than QoS 0. The latency of MQTT with QoS 1 varies from 32.35 to 37.91, while

the latency of MQTT with QoS 2 varies from 23.18 to 24.96, depending on the size and

number of users.

The optimization of the code has the potential to significantly impact the latency

of a system. By optimizing the code, it is possible to improve the execution time and

application performance. Nonetheless, it should be noted that the table displayed does not

analyze performance on the basis of code optimization, but solely on latency. If the main

concern is low latency, the CoAP protocol can be used. Table 5.14 gives a comparison of

latency values under optimized code conditions.

The code size is categorized into small, medium, and large, while the user quan-

tity is categorized into 10, 100, and 200. The latency values are lower than the MQTT

protocols in all the sizes and numbers of users. The CoAP latency varies between 0.450
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Table 5.14: DME - Consolidated Performance without latency and with the DME
Package Size SMALL MEDIUM LARGE
Number of

Users 10 100 200 10 100 200 10 100 200

Protocol
COAP 0.184 0.186 0.199 0.208 0.212 0.250 10.10 10.39 10.86
MQTT
QoS 0 12.36 12.62 12.75 12.01 12.66 12.95 13.32 13.34 13.96

MQTT
QoS 1 14.12 14.52 14.96 19.75 19.63 19.90 15.20 16.63 17.20

MQTT
QoS 2 11.63 11.23 11.83 13.56 13.75 14.53 18.78 18.25 18.85

and 0.690, depending on the size and number of users. In contrast, the latency of MQTT

with QoS 0 is higher than that of CoAP, yet still lower than other MQTT QoS levels.

Depending on the size and number of users, the latency of MQTT with QoS 0 varies from

13.96 to 17.34.

However, as one moves to higher MQTT QoS levels, the latency values will in-

crease significantly. If low latency is a concern, CoAP or MQTT with QoS 0 can be

employed. If the primary concern is the low latency, CoAP or MQTT with QoS 0 may be

utilized . However, if reliability and delivery guarantee are more important, MQTT with

higher QoS levels can be considered. The following Table 5.14 shows the level of quality

of services provided.

Table 5.15: DME - Consolidated Performance with DME and Latency
Package Size SMALL MEDIUM LARGE
Number of

Users 10 100 200 10 100 200 10 100 200

Protocol
COAP 0.192 0.195 0.298 0.252 0.259 0.270 10.731 10.83 10.90
MQTT
QoS 0 13.96 13.46 13.42 13.54 14.24 13.42 14.76 14.42 17.34

MQTT
QoS 1 16.42 16.52 16.78 21.63 21.17 20.30 16.90 17.00 18.01

MQTT
QoS 2 12.80 12.19 12.99 14.56 14.98 15.50 19.63 19.18 19.79

There exist three distinct sizes, namely small, medium, and large, each of which

caters for a specific number of users. In the case of each size and number of users, there

are latency values for two different protocols, CoAP and MQTT, with different levels

of quality of service. With regard to the CoAP protocol, it can be seen that the latency

values range from 0.192 to 0.98 seconds. This suggests that the CoAP protocol is efficient



90

in terms of latency. In contrast, the latency values for the MQTT protocol with QoS levels

0 and 2, the latency values are relatively high, ranging from 12.19 to 21.63 seconds. This

suggests that the MQTT protocol with these Quality of Service levels may not have been

optimized for low latency. CoAP may be a better option for optimizing a code with low

latency requirements. Table 5.16 shows the quality analysis without taking account of

latency and optimization.

Table 5.16: Latency-free quality and optimization
Package Size SMALL MEDIUM LARGE
Number of

Users 10 100 200 10 100 200 10 100 200

Protocol
COAP 0.372 0.345 17.69 0.3777 0.3516 0.333 20.351 17.69 17.693
MQTT
QoS 0 20.34 23.83 29.93 20.34 23.83 29.93 21.09 20.14 25.01

MQTT
QoS 1 28.35 27.57 27.70 28.87 27.30 26.50 22.89 21.67 25.01

MQTT
QoS 2 19.63 19.18 19.79 20.25 19.52 25.13 19.63 19.18 19.79

The CoAP protocol has a relatively low latency,and ranges from 0.345 to 0.377

seconds. This indicates that the CoAP protocol is effective for a certain number of users

of different sizes i.e. the latency values for the MQTT protocol with QoS level 0, range

from 20.14 to 29.93 seconds. The latency values for QoS level 1 are lower, ranging from

21.67 to 28.87 seconds. The latency values for QoS level 2 are relatively consistent,

ranging from 19.18 to 25.13 seconds.

In light of this, it may be better to use the CoAP protocol to reduce latency in

a given context. It should be noted consider that the choice of protocol and QoS level

must be based on specific system requirements and trade-offs between latency and other

factors, such as reliability and network bandwidth.

On the basis of findings, it may be feasible to select a protocol and quality of

service level that are optimized for low latency and efficient performance in a particular

setting. If low latency is a critical requirement, the CoAP protocol may be a suitable

option, since it has demonstrated relatively low latency values. This feature could be

advantageous for applications that require instantaneous communication, such as video

conferencing, online gaming, and remote control systems.

CoAP was designed to facilitate effective communication between devices that

possess limited processing power and memory, while also reducing the communication

costs of in low-power and lossy networks. In terms of cost, the CoAP protocol is designed



91

to be effective and reduce the need for network resources. The binary format employed in

this application reduces the size of messages and effectively implements compression to

reduce of the size of data payloads. This will reduce bandwidth usage and network over-

head, which can be converted into lower communication costs. This product is specifi-

cally designed for use with devices that possess limited processing power and memory,

which implies that it can require inexpensive hardware, and thus make a communications

solution affordable. Unlike other protocols, such as MQTT, which may need additional

processing power and memory, (and thus incur higher communication costs), the CoAP

protocol has been specifically designed to be lightweight and effective.

[76] The demand for effective and Internet-compatible solutions in IoT networks

was analyzed and, as a result, there is an increasing use of sensors and devices that are

interconnected via the Internet. The author discusses the limitations of many IoT devices,

such as power, processing, and limitations of memory capacity. These limitations create

a demand for protocols can improve communication without overloading the devices.

CoAP and DTLS are two protocols specifically designed for constrained devices that

provide both enforcement and security protocols.

[76] designed a prototype to solve an agricultural problem involving sensors and

an IoT device. The article provides a practical IoT solution involving CoAP and DTLS.

The results suggest that CoAP was efficient with regard to transmission quality and la-

tency, which makes it suitable for technological solutions in the agriculture.

[3] Two specific protocols, MQTT and CoAP, were examined, which are used to

ensure efficiency the management of network traffic in the Internet of Things (IoT). IoT

has become very popular in recent years and has enabled devices to connect with other

in new ways. The authors conducted a series of experiments to contrast the effectiveness

of MQTT and CoAP protocols. The results demonstrated that MQTT was more accurate

in ensuring packet delivery than CoAP. Nonetheless, CoAP had a superior performance

when transmitting a limited number of messages.

[55] The importance of maintaining the confidentiality of sensitive information in

the context of the Internet of Things is discussed. The paper evaluates various symmetrical

encryption mechanisms to guarantee confidentiality for messages sent through the MQTT

and CoAP protocol. The author analyzed the performance of different cryptographic

algorithms by means of metrics such as power consumption and response time. The study

shows that choosing a cryptographic algorithm can lead to significant energy savings of

up to 32.29% and a 41.60% in CPU usage. The findings suggest that the selection of the
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cryptographic algorithm must take into account the availability of device resources.

[75] We compared the communication delay and network traffic between the two

most common protocols, Constrained Application Protocol (COAP) and Message Queu-

ing Telemetry Transport (MQTT), by creating two systems. On average, COAP was found

to have smaller packet sizes and no keep-alive messages. The system is well-crafted to

allow interaction with systems that operate on Hypertext Transfer Protocol (HTTP) How-

ever, MQTT has a lower communication delay and is simpler to implement. It is designed

to be capable of automatically forwarding messages to multiple clients without an addi-

tional configuration. The Quality of Service (QoS) is incorporated into the MQTT design

to ensure the delivery of messages. The authors conclude that the selection of protocol

ought to be based on the specific requirements of the application. If the system requires

lightweight communication with small packet sizes and no keep-alive messages, COAP

is a suitable choice. However, if there is a need for a low communication delay and the

ability to automatically forward messages to multiple clients, MQTT would be a better

option.

[4] investigated two specific protocols, MQTT and CoAP, which are used to ensure

the efficiency and management of communication traffic in the Internet of Things. The

Internet of Things (IoT) has become increasingly popular in recent years, and enabled

devices to communicate with each other in novel ways. The authors carried out a set

of experiments to compare the performance of MQTT and CoAP protocols. The results

demonstrated that MQTT was more accurate in guaranteeing packet delivery than CoAP.

However, CoAP is superior when sending a limited number of messages.

[54] provides an overview of MQTT and its variations adapted for sensor net-

works, called MQTT-SN. The authors conducted a comparative analysis of these proto-

cols with other prevalent IoT application layer protocols, such as CoAP. The authors em-

phasize the advantages and disadvantages of each protocol. The results show that MQTT

and MQTT-SN have several advantages over CoAP, including more efficient communica-

tion, lower energy consumption, and better scalability. In the view of the authors, CoAP

still raises questions and challenges in this area, including security, interoperability, and

scalability.

[11] compared the performance of CoAP, MQTT-SN and HTTP protocols in sce-

narios that simulate smart homes to determine which are the most energy efficient and

have the lowest rate of packet loss and latency. The author created and ran scenarios

to obtain power consumption metrics, latency, and packet loss data. After analyzing the
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data, it was found that the CoAP protocol had a better performance than MQTT-SN and

HTTP in all the graphs, which corroborates the findings results of this study.

[43] underlines the importance of CoAP in attributing efficiency network resources

and reducing their use. The lightweight design and use of a binary format have the poten-

tial to reduce network resources and implement compression to reduce of the data pay-

load size, and thus cut communication costs. The type of resource is particularly useful in

countries and regions where Internet access is limited, as it provides a quality solution at

a low cost. [43] concluded that the CoAP protocol is a promising solution for the Web of

Things initiative, since it is designed to be efficient and suitable for devices with limited

resources. By bringing CoAP support to the web browser, it will be easier to develop ap-

plications for small and resource-constrained devices. This will encourage the adoption

of digital technologies and improve the overall user experience in the IoT industry.

[14] The challenge of effectively facilitating machine-to-machine communication

in the Internet of Things (IoT) was analyzed in the context of limited bandwidth, unreli-

ability, and intermittent wireless communication links. The authors compare the perfor-

mance of four IoT protocols, namely MQTT, CoAP, DDS, and a custom protocol based

on UDP, in a medical environment. The protocols were evaluated by means of a network

emulator that tested a wireless access network with low bandwidth, high system latency,

and high packet loss. DDS results in higher bandwidth usage than MQTT, but its supe-

rior performance regarding latency and data reliability makes it an attractive choice for

IoT medical applications and more. This suggests that the appropriate protocol should be

chosen on the basis of the specific requirements of the application.

[36] made a comparison between the Internet of Things (IoT) protocols that are

for data transfer in constrained IoT networks. The authors recognize that it can be a

challenging task to create a network with many interconnected physical IoT devices. One

of the main challenges in the IoT world is how to efficiently support machine-to-machine

communication in constrained networks. To address this issue, the paper conducts an

evaluation of the performance and contrasts two commonly employed protocols, namely

Message Queuing Telemetry Transport (MQTT) and Constrained Application Protocol

(CoAP) When developing IoT applications, it can be difficult to determine which protocol

to use, as there are several factors to that have to be taken into account.

As a means of to contrasting the effectiveness of MQTT and CoAP, Hedi and

[36] conducted experiments in different scenarios and assessed the effectiveness of the

two protocols on the basis of various parameters, including message delivery rate, mes-
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sage delivery time, and consumption power. The findings of the study revealed that both

MQTT and CoAP demonstrated a superior performance in various scenarios, and the se-

lection of either protocol would be contingent on the specific requirements of the IoT

application. The study revealed that MQTT had a better performance in scenarios where

the primary focus was on reliability and message delivery rate, whereas CoAP proved to

be more suitable for scenarios that required low latency and efficient communication, in

accordance with the findings of this study.

[71] The Internet of Things, which is based on IPv6 (6IoT), needs End-to-End

security (E2E) because of the sensitive nature of potential applications and the presence

of humans in the loop. The authors decided to implement Secure CoAPs (CoAPs) to

provide End-to-End security in 6IoT systems that are based on CoAPs.

Smartphones that possess sensing capabilities, Internet connectivity, and process-

ing and storage capabilities are a crucial component of 6IoT. In the paper, the authors

design, implement, and evaluate CoAPs for Android smartphones, which they refer to as

INDIGO. This is the first attempt to provide support for CoAPs on smartphones. The

authors implement and evaluate all the cryptographic cipher suites recommended in the

CoAP protocol, including certificate-based authentication using ecliptic curve cryptogra-

phy (ECC).

[23] believe that the development of a CoAP extension will support real-time com-

munication between sensors, actuators, and users in IoT applications. The authors made

modifications to the Message Options field of the CoAP header to prevent messages from

being sent unless they could be checked within set deadlines, thus reducing network traf-

fic. This extension can be implemented on low-cost smartphones that can be purchased for

less than $100, which makes it a viable solution for developing countries with vulnerable

communities.

[23] propose a scenario for the implementation of an efficient public transport

system in developing nations, where informal transport vehicles are provided with identi-

fication marks and empowered to plan their routes and fares upon request. This extension

of CoAP will enable real-time updates on transport availability to a specific destination,

and improve the overall performance of the open network. This application scenario is

having a significant impact on the standard of living of many people who must travel

across large cities in developing nations, and it plays a significant role in bringing about

what is often referred to as the social good. The authors argue that traffic quality of ser-

vice is one of the main factors related to the Internet of Things in developing countries
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with limited bandwidth. The planned CoAP extension could be used control message

transmission through the worst-case transmission delay, and avoid transmission in cases

where deadlines are not met. This will greatly improve the overall performance of the

open network.

The potential of using simple protocols to handle time-constrained IoT traffic is a

notable cost-effective means of improving the quality of life in developing countries with

poor digitization of services. The planned CoAP extension is easily implemented and

offers a viable solution to improve real-time communication in IoT applications.

CoAP [15] is an effective application protocol in an IoT environment. The authors

explain that IoT is a concept that combines the physical and digital worlds, by allowing

devices connected to the Internet to observe and act. These observations can then be

linked to cloud-based digital services, and allow intelligent decision-making which will

result in a significant uptake because of to their potential benefits.

Nonetheless, the expansion of the Internet of Things is still constrained by a num-

ber of factors, including the efficiency of network and edge sensing devices, the creation

of appropriate applications, and security concerns. To address these concerns, the authors

conducted experiments to validate the effectiveness of CoAP as a transport protocol in a

low-power personal area network.

The experiments were centered on assessing communication in an environment

with limited connectivity. The results that CoAP was an efficient transport protocol in

low signal strength environments. This study provides valuable information regarding

the effectiveness of CoAP in an IoT environment, which can assist in developing suitable

applications to ensure secure and reliable communication.

The environment of Web-based Internet of Things is a part of Mobility manage-

ment [29]. As the number of sensors and embedded devices increases, CoAP has emerged

as a widely utilized protocol. However, it is essential to support mobility management in

an environment like this. The authors plan a set of mobility management protocols based

on CoAP, referred to as CoMP-G, which is an extension of the existing CoMP protocol.

In the proposed scheme, one of the body sensors serves as a coordinator and relays all the

control messages to the web-of-things mobility management system (WMMS) on behalf

of the other body sensors. Each WMMS also stores information from the body sensor

array. The authors conduct a numerical analysis and show that the scheme provides a bet-

ter performance than the existing CoMP protocol in terms of total signaling and delivery

delay.
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The CoAP-G protocol addresses the limitations of the CoMP protocol, which was

designed for the mobility of single sensor nodes and experiences inadequacies in group-

based mobility. The CoAP-G protocol is designed to enable effective group-based mobil-

ity management in a web-based IoT environment. This constitutes a significant contribu-

tion to the field of IoT and has the potential to enhance the efficacy and effectiveness of

IoT applications involving group-based mobility. The efficiency protocol has the poten-

tial to significantly enhance the management of group-based mobility in a web-based IoT

environment, and the numerical analysis conducted by the authors provides evidence of

its that its performance is superior to that of the existing CoMP protocol.

According to research findings, it has been determined that the CoAP protocol is a

lightweight and effective protocol that was designed to establish communication between

devices with limited processing power and memory, and to reduce the communication

costs in low-power and lossy networks. CoAP has a big major, namely of its low latency

values, which can make it a suitable system for applications that require real-time com-

munication. In contrast with other protocols, such as MQTT, which may need additional

processing power and memory, (resulting in higher communication costs), the CoAP pro-

tocol has been specifically designed to be lightweight and efficient, which makes it a

promising solution for the Web of Things (WoT)

The lightweight design and binary format of this application are crucial in reduc-

ing network resources, and thus reducing communication costs. This can be particularly

useful in countries and regions where Internet access is limited. Incorporating CoAP

support into the web browser makes it easier to develop applications for diminutive and

resource-constrained devices, which assist in the adoption of digital technologies and en-

hance the overall user experience in the IoT industry.

They compared the IoT protocols used for data transfer in restricted IoT net-

works,[36] because they recognized that one of the main challenges in the IoT world

is to support machine-to-machine communication in restricted conditions. The authors

emphasize the significance of selecting a protocol and QoS level that are optimized for

low latency and efficient performance in a particular context. Furthermore, the findings

of their study suggest that CoAP may be a superior alternative to MQTT for reducing

latency in certain situations.

In general, the CoAP protocol offers numerous advantages, including low latency

values, efficient use of network resources, and suitability for devices with limited pro-

cessing power and memory. These benefits make it a promising solution for standard-
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izing Internet access, particularly in countries and regions where resources are limited.

Nonetheless, it should be noted that the selection of the protocol and QoS level ought to

be based on established system requirements and the balance between latency and other

factors, such as reliability and network bandwidth.

The CoAP solution offers a good prospect for making the Internet of Things (IoT)

more accessible in developing nations, particularly for applications that necessitate low

latency and efficient communication. It has several features that make it suitable for IoT

applications in resource-constrained environments, including low overhead and power

consumption, as well as support for unreliable networks. These features allow CoAP to

operate effectively on low-quality or limited-access networks.

This protocol can help improve the quality of the Internet in countries with limited

or low-quality access because it is designed to work efficiently in on restricted networks.

For instance, in nations with a limited network infrastructure and low Internet penetration,

CoAP-based protocols can enhance the overall user experience by overcoming the obsta-

cles of limited bandwidth and network congestion. Furthermore, it can help reduce the

power consumption of IoT devices, which is especially important in resource-constrained

environments where the battery life is limited.

CoAP uses the same underlying architecture as HTTP, which makes it easy to

integrate with existing web technologies. This means it could help expand the reach of

the Internet to new devices and applications, including those in developing countries with

limited or low-quality access.
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6 CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK

This chapter discusses the conclusions of this work and and makes recommenda-

tions for future work in which the experiments can be extended.

6.1 Closing Remarks

The Internet of Things enables billions of smart devices to capture, process, and

transform data to improve decision making. It requires a critical mobile edge computing

ecosystem to establish dependability. It also requires a highly efficient and distributed

architecture with multiple IoT communication protocols. Moreover, an intelligent mid-

dleware is needed to achieve efficiency, throughput, and reliability in data delivery across

diverse protocols without any interference from the local setup of the device.

This work has carried out a study of Middleware Fog as a use case for Proto-

col Interoperability in heterogeneous Internet of Things environments. The MiddleFog

middleware is a modular and interoperable system that selects the most appropriate com-

munication protocol among MQTT and CoAP. It establishes a decision-making heuristic

in monitoring network conditions and has the payload size of the message. Monitoring

occurs within the communication channel between Edge device-Fog Node and Fog Node-

Cloud so that a decision can be made about which protocol will have the best performance.

Currently, we are engaged in MQTT and COAP testing.

The MiddleFog is responsible for the following a) fulfilling critical tasks, b) per-

forming high computational loading, c) receiving notification from the Decision-Making

Engine about the best protocol in the network, d) introducing protocol exchange, e) op-

timizing the amount of data per package, and f) making improvements without affecting

performance.

The results of the experiments described in Chapter 5. It is evident that Middle-

Fog effectively mitigates limitations in the area of communication that result from latency,

package loss, and inadequate network throughput between MEC and Cloud. Initial eval-

uations show that the message loss rate is lower than 25% for small messages, and that

performance improves by around 48% for medium-sized delivery messages. It should be

noted that the experiments were conducted in real scenarios, and all of them were carried

out in three different machines and networks to avoid errors. No simulator was used to

handle the real problem in software environments.
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6.2 Future Work

With regard to the experiments carried out this work, some improvements and

adjustments may be needed in the light of further discoveries some of these improvements

might include the following factors:

• Since there is middleware that is currently working in the Fog layer, there is an

opportunity to create Domain Specific Language (DSL) for Edge. Focusing on this

can assist in improving performance in all three layers (Edge-Fog-Cloud);

• The middleware interoperability can be improved by supporting more protocols,

such as HTTP 2, AMQP, SMQTT, and DDS. This will increase the middleware

interface by adding IoT protocols;

• A decision not to use any type of simulator was made for the Edge or Fog layers,

after experiencing several library problems such as a publishing messages above

2K. Thus there is a need to change the library to a more scalable approach;

• There is a need to expand the measurements criteria in terms of performance of the

machine when running DME and to ask, what is the level of impact on resources, if

the devices are slower.
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APPENDIX A — GRANULAR FLOW EXPERIMENT

This chapter provides additional information about the methods employed in the

experiments that were conducted. It includes extra details addressed to a single Group I.

Part of subsection 5.3. The sequence of experiments without DME and latency is shown.

Furthermore, a detailed overview is given of the planned experiments and the metrics used

throughout this work.

When carrying out this experimental study, it was essential to make comparisons.

These provide a more comprehensive understanding of middleware types of based on

performance validations. The subsequent scenarios have provided a good deal of evidence

with success by assessing the system performance on the basis of two key elements: DME

and latency. The visualization includes scenarios based on package size and, number of

users.

A.1 Experiments No Latency and No DME

The experiments using all the protocols were based on quality of service(CoAP

with confirmable QoS , MQTT with Qos 0,1,2) without any latency and without choosing

the best protocol;in addition, it represents no DME implementation.

A.1.1 Group I - CoAP Small

This scenario evaluates the total time in seconds for CoAP transactions with a

small-sized package (20B), without any latency and in a situation where DME does not

give information about the protocol. Each payload size was executed 30 times following

the test plan outlined in Table 5.2.

The goal of the first experiment is to obtain the total response time as a metric for

CoAP transactions with small-sized messages(20B), as shown in Table A.1 and Graphic

A.1. The experiment is divided in terms of the number of users (10, 100, 200) with the

configuration described in Table 5.2. The results are based on the numbers of users: 10

users are shown in Graphic A.2, 100 users in users in Graphic A.3, 200 users in Graphic

A.4.

Table A.1 consolidates the total time in seconds for the three layers Edge, Fog and
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Table A.1: CoAP Small - Total Time in Seconds
CoAP

No Latency
No DME

Average Total Time in Seconds

Small (20B)
10 users 0.3726

100 users 0.3452
200 users 17.69

Cloud. The following graphs show the data and presented the transactions by time per

second. Each bar represents a transaction and the transactions with the same time. When

the time is equal, the transactions are displayed above the other, as shown in Graphs A.3

and A.4.

Figure A.1: CoAP Small - Total time includes the number of users

Figure A.2: CoAP Small - Transactions 10 users
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Figure A.3: CoAP Small - Transactions 100 users

Figure A.4: CoAP Small - Transactions 200 users

A.1.2 Group I - CoAP Medium

This scenario evaluates the total time in seconds for CoAP transactions with medium-

sized packages (800B), without any latency and the DME does not give information about

the protocol. Each payload size was executed 30 times following the test plan outlined in

Table 5.2.

The purpose of the first experiment is to obtain the total response time as a metric

for CoAP transactions with small-size messages (800B) as shown in Table A.2 and Graph

A.5. The experiment is divided into numbers of users (10, 100, 200) with the configura-

tion described in Table 5.2. The results are based on the number of users: 10 users are

shown Graph A.6, 100 users Graph A.7 , 200 users in Graph A.8.

Table A.2 consolidates the total time in seconds three layers Edge, Fog and Cloud.

The following graps for the data show the transactions by time per second, each bar rep-
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Table A.2: CoAP Medium - Total Time in Seconds
CoAP

No Latency
No DME

Average Total Time in Seconds

Medium (800B)
10 users 0.3777

100 users 0.3516
20 users 0.3533

resents a transaction and the transactions with the same time. When the time is equal, the

transactions are displayed in above the other, as shown in Graphs A.7 and A.8.

Figure A.5: CoAP Medium - Total time includes the number of users

Figure A.6: CoAP Medium - Transactions 10 users
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Figure A.7: CoAP Medium - Transactions 100 users

Figure A.8: CoAP Medium - Transactions 200 users



116

A.1.3 Group I - CoAP Large

This scenario evaluates the total time in seconds for CoAP transactions with large-

sized packages (2048B), without any latency and where DME does not give any informa-

tion about the protocol. Each payload size was executed 30 times following the test plan

outlined in Table 5.2.

The purpose of the first experiment is to obtain the total response time as a metric

for CoAP transactions with small-size messages (2048B), as shown in Table A.3 and

Graph A.9. The experiment is divided into number of users (10, 100, 200) with the

configuration described in Table 5.2. The results are based on the number of users: 10

users are shown in Graph A.10, 100 users in Graph A.11, 200 users in Graph A.12.

Table A.3: CoAP Large - Total Time in Seconds
CoAP

No Latency
No DME

Average Total Time in Seconds

Large (2048B)
10 users 20.351

100 users 17.6919
200 users 17.693

Table A.3 consolidates the total time in seconds displayed by three layers, Edge,

Fog and Cloud. The following graphs for the data show the transactions by time per

second each bar represents a transaction and the transactions with the same time. When

the time is equal, the transactions are displayed above the other, as shown in Graphs A.11

and A.12.

Figure A.9: CoAP Large - Total time includes all the users
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Figure A.10: CoAP Large - Transactions 10 users

Figure A.11: CoAP Large - Transactions 100 users
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Figure A.12: CoAP Large - Transactions 200 users

A.1.4 Group I - MQTT QoS 0 Small

This scenario evaluates the total time in seconds for MQTT QoS 0 transactions

with large-sized packages (20B), without latency and where DME does not give informa-

tion about the protocol. Each payload size was executed 30 times following the test plan

outlined in Table 5.2.

The goal of the first experiment is to obtain the total response time a metric for

MQTT QoS 0 transactions with small-sized messages (20B) shown in Table A.4 and

Graph A.13. The experiment is divided into numbers of users (10, 100, 200) with the

configuration described in Table 5.2. The results are based on the number of users: 10

users in Graph A.14, 100 users in Graph A.15 , 200 users in Graph A.16.

Table A.4: MQTT QoS 0 Small - Total Time in Seconds
MQTT QoS 0
No Latency

No DME
Average Total Time in Seconds

Small (20B)
10 users 20.34

100 users 23.83
20 users 29.93

Table A.4 consolidates the total time in second displayed by three layers Edge,
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Fog and Cloud. In the following graphs, the data shows the transactions by time per

second, each bar represents a transactions and the transactions with the same time. When

the time is equal, the transactions are displayed above the other, as shown in Graphs A.15

and A.16.

Figure A.13: MQTT QoS 0 - Total time includes all the users

Figure A.14: MQTT QoS 0 - Transactions 10 users
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Figure A.15: MQTT QoS 0 - Transactions 100 users

Figure A.16: MQTT QoS 0 - Transactions 200 users
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A.1.5 Group I - MQTT QoS 0 Medium

This scenario evaluates the total amount of time in seconds for MQTT QoS 0

transactions with medium-sized packages (800B), without latency andin a situation where

DME does not inform the protocol. Each payload size was executed 30 times following

the test plan outlined in Table 5.2.

The goal of the first experiment is to obtain the total response time as a metric

for MQTT QoS 0 transactions with medium-sized messages (800B) shown in Table A.5

and Graph A.17. The experiment is divided into numbers of users (10, 100, 200) with the

configuration described in Table 5.2. The results are based on the number of users: 10

users are shown in Graph A.18, 100 users in Graph A.19, and 200 users in Graph A.20.

Table A.5: MQTT QoS 0 Medium - Total Time in Seconds
MQTT QoS 0
No Latency

No DME
Average Total Time in Seconds

Medium (800B)
10 users 20.34

100 users 23.83
20 users 29.93

Table A.5 consolidates the total time in seconds displayed by three layers Edge,

Fog and Cloud. In the following graphs, the data shows the transactions by time per

second each bar represents a transaction and the transactions with the same time. When

the time is equal, the transactions are displayed above the other as shown in Graphs A.19

and A.16.

Figure A.17: MQTT QoS 0 Medium - Total time includes users
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Figure A.18: MQTT QoS 0 Medium - Transactions 10 users

Figure A.19: MQTT QoS 0 Medium - Transactions 100 users

A.1.6 Group I - MQTT QoS 0 Large

This scenario evaluates the total time in seconds for MQTT QoS 0 transactions

with a large-sized package(2048B), without latency and in a situation where DME does

not inform the protocol. Each payload size was executed 30 times following the test plan

outlined on Table 5.2.

The purpose of the first experiment is to obtain the total response time a metric

for MQTT QoS 0 transactions with large messages size (2048B) as shown in on Table

A.6 and Graph A.21. The experiment is divided into number of users (10, 100, 200) with

the configuration described in Table 5.2. The results are based on the number of user: 10

users as shown in Graph A.22, 100 users in Graph A.23, and 200 users in Graph A.24.
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Figure A.20: MQTT QoS 0 Medium - Transactions 200 users

Table A.6: MQTT QoS 0 Large - Total Time in Seconds
MQTT QoS 0
No Latency

No DME
Average Total Time in Seconds

Large (2048B)
10 users 21.092

100 users 20.14
20 users 25.01

Table A.6 consolidates the total amount of time in seconds three layers Edge, Fog

and Cloud. In the following graphs, the data shows the transactions by time per second,

each bar represents a transactions and the transactions with the same time. When the time

is equal, the transactions are displayed above the other as shown in Graphs A.23.

Figure A.21: MQTT QoS 0 Large - Total time all users
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Figure A.22: MQTT QoS 0 Large - Transactions 10 users

Figure A.23: MQTT QoS 0 Large - Transactions 100 users

Figure A.24: MQTT QoS 0 Large - Transactions 200 users
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A.1.7 Group I - MQTT QoS 1 Small

This scenario evaluates the total time in seconds for MQTT QoS 1 transactions

with a small-sized package (20B), without latency and in a situation where DME does not

give information the protocol. Each payload size was executed 30 times following the test

plan outlined in Table 5.2.

The purpose of the first experiment is to obtain the total response time as a metric

for MQTT QoS 1 transactions with small-sized messages (20B) as shown in Table A.7

and Graph A.13. The experiment is divided into number of users (10, 100, 200) with the

configuration described in Table 5.2. The results are based on the number of users: 10

users in Graph A.26, 100 users in Graph A.27, 200 users in Graph A.28.

Table A.7: MQTT QoS 1 Small - Total Time in Seconds
MQTT QoS 1
No Latency

No DME
Average Total Time in Seconds

Small (20B)
10 users 28.357

100 users 27.572
20 users 27.7

Table A.7 consolidates the total time in seconds displayed by the group. When the

time is equal, the transactions are displayed in Figure A.27.

Figure A.25: MQTT QoS 1 Small - Total time includes the all users



126

Figure A.26: MQTT QoS 1 Small - Transactions 10 users

Figure A.27: MQTT QoS 1 Small - Transactions 100 users

Figure A.28: MQTT QoS 1 Small - Transactions 200 users
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A.1.8 Group I - MQTT QoS 1 Medium

This scenario evaluates the total time in seconds for MQTT QoS 1 transactions

with a package size of 800B without applying latency. The DME does not notify the

protocol. According to the test plan displayed in the Table 5.2, each payload size was

executed on a total of 30 occasions.

The purpose of the first experiment is to obtain the total response time as a metric

for MQTT QoS 1 transactions with medium-sized messages (800B) shown in on Table

A.8 and Graph A.29. The experiment is divided into number of users (10, 100, 200) with

the configuration described in Table 5.2. The results are based on the numbers of user: 10

users in Graph A.30, 100 users in Graph A.31, 200 users in Graph A.32.

Table A.8: MQTT QoS 1 Medium - Total Time in Seconds
MQTT QoS 1
No Latency

No DME
Average Total Time in Seconds

Medium (800B)
10 users 28.873

100 users 27.30
20 users 26.50

Table A.8 consolidates the total time in second displayed by three layers Edge, Fog

and Cloud. In the following graph the data shows the transactions by time per second;

each bar represents a transactions and the transactions with the same time. When the time

is equal, the transactions are displayed above the other as presented on graphs A.31.

Figure A.29: MQTT QoS 1 Medium - Total time all users
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Figure A.30: MQTT QoS 1 Medium - Transactions 10 users

Figure A.31: MQTT QoS 1 Medium - Transactions 100 users

Figure A.32: MQTT QoS 1 Medium - Transactions 200 users
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A.1.9 Group I - MQTT QoS 1 Large

This scenario evaluates the total time in seconds for MQTT QoS 1 transactions

with a large-sized package size large (2048B), (2048B), without and in a situation where

DME does not give information about the protocol. Each payload size was executed 30

times following the test plan outlined in Table 5.2.

The goal of the first experiment is to obtain the total response time as a metric

for MQTT QoS 1 transactions with medium-sized messages (2048B) shown in Table A.9

below and Graph A.33. The experiment is divided into the number of users (10, 100, 200)

with the configuration described in Table 5.2. The results are based on the number of

users: 10 users in Graph A.34, 100 users in Graph A.35, 200 users in graph A.36.

Table A.9: MQTT QoS 1 Large - Time in Seconds
MQTT QoS 1
No Latency

No DME
Average Total Time in Seconds

Large (2048B)
10 users 22.89

100 users 21.67
20 users 25.01

Table A.9 consolidates the total time in seconds three layer Edge, Fog and Cloud.

In the following graphs, the data shows the transactions by time per second; each bar

represents a transactions and the transaction with the same time. When the time is equal,

the transactions are displayed one block above the other as shown on graph A.35.

Figure A.33: MQTT QoS 1 Large - Total time for all the users
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Figure A.34: MQTT QoS 1 Large - Transactions 10 users

Figure A.35: MQTT QoS 1 Large - Transactions 100 users

Figure A.36: MQTT QoS 1 Large - Transactions 200 users
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A.1.10 Group I - MQTT QoS 2 Small

This scenario evaluates the total time in seconds for MQTT QoS TWO transac-

tions with a small-sized package (20B), without latency and in a situation where DME

does not notify the protocol. Each payload size was executed 30 times following the test

plan outlined in Table 5.2.

The purpose of the first experiment is to obtain the total response time as a metric

for MQTT QoS 1 transactions with small-sized messages(20B) as shown on Table A.10

and Graph A.37. The experiment is divided into the number of users (10, 100, 200) with

the configuration described in Table 5.2. The results are based on the numbers of users:

10 users in Graph A.38, 100 users in Graph A.39, and 200 users in Graph A.40.

Table A.10: MQTT QoS 2 Small - Total Time in Seconds
MQTT QoS TWO

No Latency
No DME

Average Total Time in Seconds

Small (20B)
10 users 19.63

100 users 19.18
20 users 19.79

The table A.10 consolidates the total time in second three layers Edge, Fog and

Cloud. In the following graphs, the data shows the transactions by time per second; each

bar represents a transactions and the transactions with the same time. When the time is

equal, the transactions are displayed one block above the other as shown in Graphs A.39.

Figure A.37: MQTT QoS 2 Small - Total time all users



132

Figure A.38: MQTT QoS 2 Small - Transactions 10 users

Figure A.39: MQTT QoS 2 Small - Transactions 100 users

Figure A.40: MQTT QoS 2 Small - Transactions 200 users
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A.1.11 Group I - MQTT QoS 2 Medium

This scenario evaluates the total time in seconds for MQTT QoS TWO transac-

tions with a medium-sized package (800B), without latency and in a situation where DME

does not notify the protocol. Each payload size was executed 30 times following the test

plan outlined in Table 5.2.

The purpose of the first experiment is to obtain the total response time as a metric

for MQTT QoS 2 transactions with medium-sized messages (800B) a shown in Table

A.11 and Graph A.41. The experiment is divided into the number of users (10, 100, 200)

with the configuration described in Table 5.2. The results are based on the number of

users: 10 users in Graph A.42, 100 users is presented on graphic A.43, and 200 users in

Graph A.44.

Table A.11: MQTT QoS 2 Medium - Total Time in Seconds
MQTT QoS TWO

No Latency
No DME

Average Total Time in Seconds

Medium (800B)
10 users 20.25

100 users 19.52
20 users 25.13

Table A.11 consolidates the total time in seconds three layers Edge, Fog and

Cloud. In the following graphs, the data shows the transactions by time per second; each

bar represent a transactions and the transactions with the same time. When the time is

equal, the transactions are displayed one block above the other as shown in Graph A.43.

Figure A.41: MQTT QoS 2 Medium - Total time for all the users
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Figure A.42: MQTT QoS 2 Medium - Transactions 10 users

Figure A.43: MQTT QoS 2 Medium - Transactions 100 users

Figure A.44: MQTT QoS 2 Medium - Transactions 200 users
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A.1.12 Group I - MQTT QoS 2 Large

This scenario evaluates the total time in seconds for MQTT QoS TWO transac-

tions with package size large (2048B), without apply latency and DME does not inform

the protocol. Each payload size was executed 30 times following the test plan detailed on

table 5.2.

The purpose of the first experiment is to obtain the total response time as a metric

for MQTT QoS TWO transactions with medium-sized messages (2048B), as shown in

Table A.12 and Graph A.45. The experiment is divided into the number of users (10, 100,

200) with the configuration described in Table A.2. The results are based on the number

of users: 10 users in Graph A.46, 100 users in Graph A.47, 200 users in Graph A.48.

Table A.12: MQTT QoS 2 Medium - Total Time in Seconds
MQTT QoS TWO

No Latency
No DME

Average Total Time in Seconds

Large (2048B)
10 users 19.63

100 users 19.18
20 users 19.79

Table A.12 consolidates the total time in seconds three layers Edge, Fog and

Cloud. In the following graphs, the data shows the transactions by time per second;

each bar represent a transaction and the transactions with the same time. When the time is

equal, the transactions are displayed one block above the other as shown in Graphs A.47.

Figure A.45: MQTT QoS 2 Large - Total time all users
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Figure A.46: MQTT QoS 2 Large - Transactions 10 users

Figure A.47: MQTT QoS 2 Large - Transactions 100 users

Figure A.48: MQTT QoS 2 Large - Transactions 200 users
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APPENDIX B — RESUMO EXPANDIDO

A Internet das Coisas (IoT) tem um papel fundamental na transformação digital

da sociedade, indo além do uso de dispositivos inteligentes. Ela representa a transição do

mundo analógico para o digital, permitindo que decisões mais eficientes sejam tomadas

com base em dados obtidos em tempo real. A crescente demanda por redes interconec-

tadas de sensores e dispositivos tem exigido infraestruturas robustas e eficientes, capazes

de processar, analisar e fornecer respostas rápidas e precisas aos usuários. Dentro deste

contexto, um dos desafios mais críticos que emergem é a latência de comunicação en-

tre dispositivos IoT, que pode impactar diretamente a performance e a confiabilidade das

soluções baseadas em IoT.

Com o aumento da quantidade de dados gerados por dispositivos IoT, surge a ne-

cessidade de implementar arquiteturas que possam otimizar o tráfego de informações e

reduzir a latência. O conceito de MiddleFog surge como uma solução intermediária entre

os dispositivos IoT e a nuvem, focando na mitigação da latência através do gerenciamento

eficiente das mensagens de comunicação. Este trabalho se propõe a investigar esse de-

safio, explorando como o MiddleFog pode melhorar a transmissão de dados e otimizar a

seleção de protocolos de comunicação em tempo real.

A latência de comunicação é um dos maiores desafios enfrentados na implemen-

tação de soluções IoT em larga escala. Em uma rede de IoT, o tempo que uma mensagem

leva para viajar entre um dispositivo e seu destino pode ser determinante para o sucesso ou

falha da aplicação. O atraso na comunicação pode ocorrer por diversos motivos, incluindo

congestionamento da rede, baixa eficiência no processamento de pacotes e a distância

física entre os dispositivos IoT e os servidores na nuvem.

A latência se torna especialmente problemática em aplicações críticas, como em

sistemas de saúde, veículos autônomos ou cidades inteligentes, onde atrasos mínimos po-

dem causar consequências significativas. Nesse contexto, é necessário encontrar soluções

que possam minimizar esses impactos e garantir que as mensagens sejam transmitidas de

forma eficiente e confiável.

O MiddleFog é uma camada intermediária posicionada entre os dispositivos IoT e

a nuvem, atuando como um middleware que melhora o gerenciamento da comunicação.

A principal funcionalidade do MiddleFog é permitir a seleção dinâmica do protocolo

de comunicação mais apropriado, com base nas condições da rede. Entre os protocolos

utilizados estão o MQTT (Message Queuing Telemetry Transport) e o CoAP (Constrained
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Application Protocol), que são amplamente utilizados em ambientes IoT devido à sua

leveza e eficiência.

A arquitetura do MiddleFog é composta por uma estrutura que monitora constan-

temente o estado da rede e, com base nisso, faz a seleção do protocolo mais adequado

para garantir a melhor performance possível. Por exemplo, em situações onde a latência

é baixa e a rede estável, o MQTT pode ser escolhido para garantir uma comunicação efi-

ciente entre os dispositivos. Em contrapartida, em ambientes onde a latência é alta e há

perdas frequentes de pacotes, o CoAP pode ser mais apropriado, por sua capacidade de

funcionar de maneira otimizada em redes com restrições.

Além de otimizar a seleção de protocolos, o MiddleFog também atua na redução

das limitações de comunicação entre o Multi-access Edge Computing (MEC) e a nuvem,

minimizando os impactos de latência, perda de pacotes e baixa eficiência da rede. Ao de-

scentralizar parte do processamento para a camada Fog, o MiddleFog consegue responder

de forma mais rápida às solicitações dos dispositivos, sem a necessidade de enviar todas

as informações para a nuvem, o que reduz significativamente o tempo de resposta.

As avaliações realizadas com o MiddleFog mostraram resultados promissores na

mitigação de problemas de latência e perda de pacotes. Em testes realizados, foi obser-

vada uma taxa de perda de mensagens de até 25% quando a comunicação se dá direta-

mente entre dispositivos IoT e a nuvem, sem a utilização da camada Fog. No entanto, ao

incorporar o MiddleFog como intermediário na comunicação, essa taxa foi significativa-

mente reduzida, resultando em uma melhoria no desempenho de até 48

A utilização do MiddleFog demonstra que a inclusão de uma camada intermediária

entre dispositivos IoT e a nuvem pode não apenas melhorar a confiabilidade da comuni-

cação, mas também aumentar a eficiência geral do sistema. Ao permitir que o tráfego de

dados seja gerenciado de maneira mais inteligente, com uma seleção dinâmica de proto-

colos e descentralização do processamento, o MiddleFog se apresenta como uma solução

viável para otimizar as infraestruturas IoT em ambientes com alta demanda de dados.

O MiddleFog é uma solução escalável e modular que contribui para a mitigação

de um dos desafios na implementação de soluções IoT em larga escala: a latência de co-

municação. Ao posicionar-se como uma camada intermediária entre dispositivos IoT e a

nuvem, o MiddleFog otimiza a transmissão de dados e melhora a seleção de protocolos de

comunicação, adaptando-se às condições da rede em tempo real. Isso não só garante uma

melhor performance e confiabilidade do sistema, como também minimiza os impactos

causados pela latência, perda de pacotes e ineficiência da rede.
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As avaliações demonstraram que a utilização do MiddleFog pode reduzir signi-

ficativamente a taxa de perda de mensagens e aumentar a eficiência da comunicação entre

dispositivos IoT. Esses resultados mostram que soluções baseadas em middleware, como

o MiddleFog, podem ser fundamentais para o futuro da IoT, onde a demanda por redes

rápidas, confiáveis e eficientes continuará a crescer.
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