
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
CAMPUS DO VALE - CAMPUS CENTRO

Samuel Huff Dieterich

DEVELOPMENT OF A CONTROL AND MONITORING
SYSTEM FOR CRYOSTAT

PORTO ALEGRE
2024

SAMUEL HUFF DIETERICH

DEVELOPMENT OF A CONTROL AND
MONITORING SYSTEM FOR CRYOSTAT

Final Course Project submitted to the
Universidade Federal do Rio Grande
do Sul, as a necessary requirement to
obtain the Bachelor’s degree in Engi-
neering Physics

Porto Alegre, August 2024

Abstract
This project aims to develop a software for control and monitoring system for a cryostat,
using the Cryomagnetics C-Mag Vari-9 Cryogen-Free as a reference located in Laboratório
de Resistividade, Magnetismo e Supercondutividade (LabRMS) at IF-UFRGS. As basic
goals, the software is intended to be able to control and monitor the temperature and
magnetic field of the cryostat, according to pre-defined sequences of operations, and
store the collected data for posterior analysis. For additional objectives, it is intended to
develop a modular application that can be easily adapted to other equipment and have
its functionalities expanded. Throughout this document, the engineering project will be
presented, including the problem statement, the technical description of the equipment, the
proposed solution, and the results achieved by this work. The main persona interested in
the development of this work is LabRMS of IF-UFRGS, which has the pose of the cryostat
that will be used for the development of this system. The laboratory is coordinated by
Professor Milton Tumelero, who is also the advisor of this work. Furthermore, students and
researchers inside and outside LabRMS can also benefit from the developed program, since,
by design, it can be adapted to other equipment and consequently to other laboratories.

Keywords: Control and Monitoring System, Cryostat, Automation.

Resumo
O objetivo do presente projeto consiste em desenvolver um software para controle e
monitoramento de um criostato, utilizando o Cryomagnetics C-Mag Vari-9 Cryogen-Free
como referência, localizado no Laboratório de Resistividade, Magnetismo e Supercondu-
tividade (LabRMS) do IF-UFRGS. Como objetivos básicos, o software deve ser capaz de
controlar e monitorar a temperatura e o campo magnético do criostato, de acordo com
sequências de operações pré-definidas, e armazenar os dados coletados para análise poste-
rior. Como objetivos adicionais, pretende-se desenvolver uma aplicação modular que possa
ser facilmente adaptada a outros equipamentos e ter suas funcionalidades expandidas. Ao
longo deste documento, o projeto de engenharia será apresentado, incluindo a declaração
do problema, a descrição técnica do equipamento, a solução proposta e os resultados
atingidos por este trabalho. A principal persona interessada no desenvolvimento deste
trabalho é o LabRMS da IF-UFRGS, que possui o criostato que será utilizado para o
desenvolvimento deste sistema. O laboratório é coordenado pelo professor Milton Tumelero,
que também é o orientador deste trabalho. Além disso, estudantes e pesquisadores dentro
e fora do LabRMS também podem se beneficiar do programa desenvolvido, uma vez que,
pelo projeto, pode ser adaptado a outros equipamentos e consequentemente a outros
laboratórios.

Palavras-chave: Sistema de Controle e Monitoramento, Criostato, Automação.

List of Figures

Figure 1 – C-Mag Vari-9 Cryogen-Free Cryostat - Cryomagnetics, Inc. - in the Lab-
oratório de Resistividade, Magnetismo e Supercondutividade (LabRMS). 16

Figure 2 – Tower with peripherals attached to the cryostat - on the left - and the
computer - on the right - and other general purpose equipment. 18

Figure 3 – Temperature Monitor TM612 . 18
Figure 4 – A playful wireframe representation of the C-Mag cryostat main compo-

nents based on the system drawing shown in the manufacturer manual. 19
Figure 5 – Temperature Controller Model 24C . 19
Figure 6 – 4G Superconducting Magnet Power Supply 20
Figure 7 – Software architecture diagram. 21

List of Tables

Table 1 – Popular data serialization file formats. From left to right: JSON, XML,
and YAML. 22

Table 2 – Comparison between the existing LabView program and the developed
solution. 53

List of Acronyms

CSV Comma-Separated Values

GHS Gas Handling System

GPIB General Purpose Interface Bus

IF Instituto de Física

IP Internet Protocol

LabRMS Laboratório de Resistividade, Magnetismo e Supercondutividade

MVP Minimum Viable Product

SCPI Standard Commands for Programmable Instruments

UFRGS Universidade Federal do Rio Grande do Sul

USB Universal Serial Bus

VTI Variable Temperature Insert

TCP Transmission Control Protocol

Contents

1 INTRODUCTION . 11
1.1 Motivation . 11
1.2 Goals . 11
1.2.1 General Goal . 11
1.2.2 Goals . 12
1.3 Interested Parties . 12
1.4 Scope . 12
1.5 Organization . 13

2 SPECIFICATION DEVELOPMENT 14
2.1 Usage Context . 14
2.2 Comparative Analysis . 14
2.3 Requirements . 15

3 TECHNICAL CHARACTERISTICS 16
3.1 Cryostat . 16
3.1.1 Superconducting Magnet . 17
3.1.2 Cryostat Operation . 17
3.2 Peripherals . 17
3.2.1 Temperature Monitor . 17
3.2.2 Temperature Controller . 18
3.2.3 Magnet Field Controller . 20
3.3 Communication Protocols . 20

4 PROPOSED SOLUTION . 21
4.1 Input . 22
4.1.1 File Format . 22
4.1.2 File Provider . 22
4.1.2.1 System . 23
4.1.2.2 User . 23
4.1.3 Types of Input Files . 23
4.2 Parser . 24
4.2.1 Serialization and Deserialization . 24
4.2.2 Objects . 24
4.3 Execute . 25
4.3.1 Main Program . 25

4.3.1.1 Communication Protocols . 25
4.3.2 Background Functions . 26
4.3.2.1 Logging . 26
4.3.2.2 Results . 26
4.3.2.3 Real-Time Charts . 27

5 DETAILED PROJECT . 28
5.1 Tech stack . 28
5.1.1 Programming Language . 28
5.1.1.1 Python . 29
5.1.1.2 C/C++ . 29
5.1.1.3 Java . 29
5.1.1.4 JavaScript/TypeScript . 29
5.1.1.5 Rust . 30
5.1.2 Tools . 30
5.1.2.1 Rustup . 30
5.1.2.2 Cargo . 30
5.1.2.3 MinGW . 30
5.1.2.4 Nix . 31
5.1.2.5 Git . 31
5.1.2.6 GitHub . 31
5.1.3 Libraries . 31
5.1.3.1 Serde . 31
5.1.3.2 Tokio . 31
5.1.3.3 Tracing . 32
5.1.3.4 Tera . 32
5.1.3.5 Regex . 32
5.1.3.6 Clap . 32
5.2 Implementation . 32
5.2.1 Input files . 33
5.2.1.1 Instructions . 33
5.2.1.2 Devices . 35
5.2.1.3 Pipeline . 36
5.2.1.3.1 Instruction . 39

5.2.1.3.2 Wait For . 39

5.2.1.3.3 Scan . 40

5.2.2 Deserialization . 41
5.2.3 Communication . 43
5.2.4 Instruction . 44
5.2.5 Wait For . 45

10 CONTENTS

5.2.6 Scan . 46

6 RESULTS AND CONCLUSIONS . 48
6.1 Results . 48
6.2 Requirements Evaluation . 50
6.3 Future Work . 51
6.3.1 Measures Block . 51
6.3.2 Scoped Variables and Attributes . 51
6.3.3 Configuration File . 52
6.3.4 Meta Instructions . 52
6.3.5 Graphical Interface . 52
6.4 Highlights . 53

References . 55

11

1 Introduction

1.1 Motivation
The use of complex instrumental systems is a necessity both in industry and

academia. While the industry requires measurement and control instruments to ensure
the specified quality of its products, academia needs top-notch equipment to conduct
research and develop new technologies. In this context, a system - as we will refer to it
here - is formed by the combination of hardware and software. The hardware represents
the physical part of the system, including electronic components, sensors, actuators, and
casing, among others. On the other hand, the software represents the logical part of the
system, in other words, the program that controls the hardware, performing predetermined
functions and interacting directly with the user.

Although good hardware is often necessary for the success of a technology, the
software sometimes is what sells the product. This is because the physical equipment is
not always what brings the greatest added value, especially when the embedded software
is essential for its use. For example, a temperature sensor can be built with relatively
simple and inexpensive materials, such as a thermocouple and a signal conditioning circuit.
However, the added value to the final product is mainly due to the software that calibrates
the sensor and presents the temperature value in a user-friendly interface.

For more robust and specific instruments, manufacturers can often sell the hardware
and software separately. In this case, the software is sold as a usage license, which can be
acquired for a fixed price or through a monthly subscription. The cost of the license can
be quite high, especially for research instruments where the number of users is low and
the equipment cost is high. Moreover, the software may be proprietary, meaning that the
user does not have access to the source code and cannot make modifications to it. This
can be a problem for the user who may require functionality that is not present in the
software or who wants to make modifications to improve its usability.

1.2 Goals

1.2.1 General Goal

Given the context presented in section 1.1, the general goal of this work is to develop
a software for control and monitoring system for a cryostat, using the Cryomagnetics C-Mag
Vari-9 Cryogen-Free as a reference located in Laboratório de Resistividade, Magnetismo e
Supercondutividade (LabRMS) at IF-UFRGS.

12 Chapter 1. Introduction

1.2.2 Goals

• Develop a communication method between the computer and the cryostat;

• Control the temperature and magnetic field of the cryostat through the software;

• Monitor the temperature and magnetic field of the cryostat storing the data for
posterior analysis;

• Write the software in a modular fashion, allowing it to be easily adapted to other
equipment and have its functionalities expanded.

With these goals, the software will be capable of controlling and monitoring the
cryostat, with minimum to no human intervention. For this manner, the system will be
able to track the temperature and magnetic field of the cryostat, storing these data for
subsequent analysis. Finally, the code will be modular, that way, it will be able to be used
for different purposes even after the end of this project.

1.3 Interested Parties

The main persona interested in the development of this work is LabRMS of IF-
UFRGS, which has the pose of the cryostat that will be used for the development of this
system. The laboratory is coordinated by Professor Milton Tumelero, who is also the
advisor of this work. Furthermore, students and researchers inside and outside LabRMS
can also benefit from the developed program, since the idea is that it can be adapted to
other equipment and consequently to other laboratories.

1.4 Scope

For this work, it is expected to develop a control and monitoring software using
the C-Mag Vari-9 cryostat present in LabRMS as a reference. To develop this interface,
programs or libraries will be used that can help speed up the implementation of this work,
but it is also expected that a specific code will be developed for this work. Furthermore,
as explained in the section 1.2, the program must be able to measure and control the
temperature and magnetic field of the equipment.

It is not part of the objectives of this work, despite being a future possibility, to
develop an interface for any other equipment. Furthermore, the development of functions
that are not essential for the cryostat in question will not be prioritized, for example,
communication with other communication protocols that are not used for the equipment
model and peripherals presented.

1.5. Organization 13

1.5 Organization
The presented work is organized as follows:

Chapter 2: Problem statement, presenting the context of this project, its goals, and
the system specifications.

Chapter 3: Technical description, presenting the main components of the cryostat
equipment and the used communication protocols.

Chapter 4: Proposed solution, describing how the software is planned to be developed
and how its main functions should work.

Chapter 5: Detailed project, showcasing how the software was developed, listing
what goals were met.

Chapter 6: Conclusion, exposing the obtained results and suggesting pieces of
advice for future works.

2 Specification Development

2.1 Usage Context

For the specific case of the studied cryostat, there is no official software made by
the manufacturer to monitor or control the equipment. To solve this problem, Professor
Milton Tumelero has developed a program using LabView that is capable of running some
experiments automatically. However, he notes that the program is not only limited but
lacks flexibility. In order to perform different tests, he finds himself modifying a significant
portion of the code, which proves far from ideal. Moreover, the program in question is not
capable of running multiple, sequential, experiments. That means that the user has to
manually start each experiment, even the ones that involve the same study material. This
inadequacy was the main motivation for the development of this work.

Within the laboratory community, most of the self-made programs are developed
using LabView or C. C is a powerful and flexible programming language, but it is not
easy to use and it is not very intuitive, especially for those who are not familiar with
programming. LabView, on the other hand, is more intuitive and easy to use, since it is a
graphical programming language, but it is not free of charge and it is not open-source.

In light of these limitations, the laboratory is receptive to exploring alternative
solutions that are both flexible and easy to maintain, not only for this cryostat but also
for other equipment. Professor Milton emphasizes that while a user-friendly interface is
appreciated, the majority of users are adept at programming. Therefore, a well-documented
program that effectively fulfills its purpose is already an interesting option.

2.2 Comparative Analysis

As discussed in section 2.1, the manufacturer of the specified cryostat does not
provide any official software for the control or monitoring of the equipment. Furthermore,
Professor Milton, this work advisor, is unaware of any alternative software that could fit
the needs of this particular purpose.

In this context, asserting that there is no competition might be too categorical.
To provide a comprehensive evaluation, we will compare the proposed work with the
existing software utilized in the laboratory, which is LabView-based. LabView, being
a graphical programming language, facilitates the control of various and occasionally
intricate equipment. However, it is a proprietary and expensive software, which makes it
less accessible to the general public. In addition to that, despite LabView’s popularity in

2.3. Requirements 15

laboratories and certain industries, it is conceivable that most students will not have any
prior or subsequent contact with it after their academic pursuits.

Additionally, LabView, as a general-purpose application, addresses a wide array
of issues but lacks specificity for the intended use case. Consequently, this work can
capitalize on the opportunity to be developed from the ground up, catering specifically to
the execution of experiment pipelines.

2.3 Requirements
Given that a cryostat’s main functions are to control and monitor the temper-

ature and magnetic field under specific conditions during an experiment, the following
requirements were identified by the laboratory representative, Professor Milton Tumelero:

• Read operations: Also known as logging, this basic requirement refers to the ability
to read some variables from the instrumentation equipment, such as temperature
and magnetic field.

• Set operations: This requirement refers to two operations: set temperature and
set field. The first one should define the temperature setpoint at the temperature
controller, while the second one should set the magnetic field value at the magnet
power supply.

• Wait for: This is a custom set of functions that allows the user to wait for a specific
condition - that can be a time or a value (temperature or magnetic field) - to be
reached before proceeding to the next step.

• Scan: This is a custom set of functions and it is the most complex requirement.
Similar to a while or for routines, this function should scan a range of values
(temperature or magnetic field) and run subroutines (measurements) during the scan
according to specified conditions.

• Run on a Windows machine: The software should be able to run on a Windows
machine, since the laboratory’s computers are running this operating system and
depend on it to run other software.

• User-defined pipelines: The software should allow the user to define a sequence
of operations to be executed, no matter its size. This is a crucial requirement, as it
allows the user to automate the process of running experiments and it is the main
motivation for the development of this work.

3 Technical Characteristics

In this chapter, a brief description of the equipment and its instrumental peripherals
is presented.

3.1 Cryostat

A cryostat is a device used to run a variety of physics and materials experiments
at low temperatures (close to absolute zero Kelvin) and high magnetic fields. To do
so, cryostats are equipped with a superconducting magnet, a vacuum chamber, and a
temperature control system. The LabRMS is equipped with the C-Mag Vari-9 Cryogen-Free
cryostat from Cryomagnetics, Inc., as shown in Figure 1.

Figure 1 – C-Mag Vari-9 Cryogen-Free Cryostat - Cryomagnetics, Inc. - in the Laboratório
de Resistividade, Magnetismo e Supercondutividade (LabRMS).

3.2. Peripherals 17

3.1.1 Superconducting Magnet

The superconducting magnet is a solenoid made of twisted multi-filamentary NbTi
wire in a copper matrix. According to the manufacturer, the magnet is designed for 90 kG
(9.0 T) at helium 4.2 K temperature. Further details about the magnet’s specifications
can be found in the manufacturer’s operating instructions manual (1).

3.1.2 Cryostat Operation

A cryogen-free cryostat is a design that does not require liquid cryogens to cool
the equipment. However, the system uses helium gas in the Gas Handling System (GHS)
to cool the Variable Temperature Insert (VTI) and as an exchange gas inside the sample
space. Therefore, both the GHS and the sample space must be filled with helium gas
before the system is cooled.

Without the GHS operating, the VTI and sample will typically cool to between
190 and 110 K (if left long enough), only by using a pulse tube refrigeration cycle. To
cool below this temperature, down to 1.8K, the GHS recirculation must be operating, and
complex steps to cool the system depending on the temperature range are described in
the manufacturer’s operating instructions manual. With that and the sample heater, the
sample temperature can be very well controlled from 1.8 K to 300 K (1).

3.2 Peripherals

The peripherals are instruments that are connected to the cryostat and are used
to control or monitor the cryostat’s physical parameters. The main peripherals are the
temperature monitor, the temperature controller, and the magnet field controller, which
are shown in Figure 2. Given that, the software planned to be developed must be able to
communicate with this instrumentation.

3.2.1 Temperature Monitor

The temperature monitor is a device that precisely measures the temperature
at some specific places inside the cryostat. The C-Mag Vari-9 Cryogen-Free cryostat in
the LabRMS is equipped with the TM612 model, figure 3, which has 2 input channels
and it supports a wide range of temperature sensors, such as Cernox™, Platinum RTD,
thermocouples, and others (2).

The temperature monitor is connected to the computer via an Ethernet cable. The
equipment offers some advanced monitor features but it can only read the temperature of
the sensors and it does not have any control over the cryostat.

18 Chapter 3. Technical Characteristics

Figure 2 – Tower with peripherals attached to the cryostat - on the left - and the computer
- on the right - and other general purpose equipment.

Figure 3 – Temperature Monitor TM612

3.2.2 Temperature Controller

The temperature controller is a device that not only measures the temperature of
some points in the cryostat but also controls the temperature of the equipment during the
experiment. The C-Mag Vari-9 Cryogen-Free cryostat in the LabRMS is equipped with
the Model 24C, figure 5, which has 4 input channels and 2 control loops (3).

In Figure 4, the estimated positions of the temperature sensors are shown in red
rings. Currently, there are 4 temperature sensors installed in the cryostat, with the names
representing the location of the sensor: Shield, Magnet, VTI, and Sample.

3.2. Peripherals 19

Insert

VTI

Magnet

Magnet

Shield

Sample

VTI

Figure 4 – A playful wireframe representation of the C-Mag cryostat main components
based on the system drawing shown in the manufacturer manual.

In opposition to the temperature monitor, the temperature controller must be con-
figured and receive commands and parameters from the user. The equipment is connected
to the computer via an Ethernet cable where via remote control the user can set the
temperature setpoint, the ramp rate, and the PID parameters.

Figure 5 – Temperature Controller Model 24C

20 Chapter 3. Technical Characteristics

3.2.3 Magnet Field Controller

The magnet field controller is a device that controls the magnetic field generated
by the superconducting magnet, since the current in the magnet is directly related to the
magnetic field, the controller is a current power supply. The C-Mag Vari-9 Cryogen-Free
cryostat in the LabRMS is equipped with the 4G Superconducting Magnet Power Supply,
figure 6, which is a true four-quadrant power supply, meaning it is capable of operating
sourcing and sinking power in both current and voltage (4).

The equipment is connected to the computer via an Ethernet cable where via
remote control the user can set the current setpoint, which is directly related to the
magnetic field, and the rate of change of the current.

Figure 6 – 4G Superconducting Magnet Power Supply

3.3 Communication Protocols
The main peripherals presented in the previous section can be controlled via

TCP/IP, which is an easy and common communication protocol. However, some advanced
instruments used in this equipment are limited to other options, such as GPIB and, in
the future, Serial USB. Given that, for the scope of this work, the proposed solution must
be capable of communicating with the devices via TCP/IP. Nonetheless, the software
architecture must also be designed to be easily extensible to other communication protocols
for future works.

21

4 Proposed Solution

The proposed solution consists of a software architecture that can be described in
three phases: input, parser, and execute. The input phase is responsible for receiving the
input files, instructions, and configurations, from the user. The parser phase is responsible
for deserializing the input files into objects that can be used by the program. Lastly, the
execute phase is responsible for executing the instructions and outputting the results.

To illustrate the proposed solution, figure 7 shows a diagram of the software
architecture which will be explained in detail in the following sections.

INPUT

PARSER

EXECUTE

load files

run plan

logging results real-time
chart

computer device

protocol

objectsfiles

deserialize

system

instructions default
config

devices

user

config pipeline

merge

Figure 7 – Software architecture diagram.

22 Chapter 4. Proposed Solution

4.1 Input
Most computer programs require some sort of input to work or to perform a specific

task. In the case of the proposed program, the input data will be initially provided by the
user through text files. Therefore, the first step of the architecture consists of reading the
input files that will be further detailed in the following subsections. Before getting into
the details of the types of input files, it is important to explain the format of these files as
well as who will be responsible for making them available to the program.

4.1.1 File Format

The chosen input file format was YAML which is a human-readable data serialization
language - a concept that will be better explained in section 4.2.1. In addition to being a
popular format so virtually all programming languages can read it using a library, it is
easier to read and write for humans as well, which can’t be said for JSON and XML which
are also popular alternatives. Those formats, as shown in the table 1, are more verbose
and harder to manipulate and can impair the user experience considering that at first
users will need to write the input files by hand.

JSON XML YAML

{
"users": [

{
"name": "John",
"age": 20

},
{

"name": "Mary",
"age": 19

}
]

}

<users>
<name>John</name>
<age>20</age>

</users>
<users>

<name>Mary</name>
<age>19</age>

</users>

users:
- name: John

age: 20
- name: Mary

age: 19

Table 1 – Popular data serialization file formats. From left to right: JSON, XML, and
YAML.

4.1.2 File Provider

As shown in figure 7, the input files can be provided by two different sources: the
system and/or the user. The system - which can be the software itself or administrator
users - will provide the default input files that are required for the program to work. The
user, on the other hand, will provide the input files that are specific to the experiment
that he wants to run.

4.1. Input 23

4.1.2.1 System

The input files provided by the system are the instructions, devices, and the default
configuration for the program. The instructions files contain the possible operations that a
set of devices can perform. The devices file contains the details of the devices that are
available to the program. Lastly, the default configuration file contains the default values
for the configuration parameters that can be changed by the advanced users.

4.1.2.2 User

The input files provided by the user are the configuration and pipeline files. The
configuration file is used to overwrite the default configuration provided by the system.
The pipeline file describes the experiment by specifying the instructions that the program
should execute and the devices that should be used to execute them.

4.1.3 Types of Input Files

The input files, as shown in figure 7, can be divided into four different types:
instructions, devices, configuration, and pipeline.

• Instructions: Contain the instructions that different devices can execute. Since
multiple devices can share the same instructions, the instructions can be separated
from the devices to avoid redundancy. For instance, all devices that follow the SCPI
standard can share the same instruction file containing the SCPI basic commands.

• Devices: Describe the devices that are available in the system. Each device must
have an identification and a definition of how to communicate with it, as well as the
instructions that it can execute. A device can also have some default configuration
parameters that can be overwritten by the user.

• Configuration: Contains the configuration parameters that can be changed by the
user. The configuration file is optional and can be used to overwrite the default
configuration provided by the system.

• Pipeline: Defines the experiment steps by specifying the instructions that the
program should execute and the devices that should be used to execute them. The
pipeline file is mandatory and is used to describe the experiment that the user wants
to run.

In chapter 5, the input files will be further detailed, showing their syntax and
examples of how they can be set up.

24 Chapter 4. Proposed Solution

4.2 Parser
The second phase of the software architecture is the parser. Generally speaking, a

parser is a program that reads some text and converts it into a data structure that can be
used by other programs. In the case of the proposed solution, the parser is responsible for
reading the input files and converting them into their respective objects. In this step, it
is possible to run some basic verifications to avoid runtime errors that could cause the
program to crash.

4.2.1 Serialization and Deserialization

While calling this process a parser is not wrong, deserialization is a more accurate
term. Deserialization is the process of converting a text format (string) into an object,
more commonly used for object-oriented programs. On the other hand, serialization is
the reverse process, converting an object into a text format. In the case of the proposed
solution, as shown in figure 7, the parser - initially - will only perform the deserialization
process. In other words, it is expected for the first version of the program to only read
already formatted and structured input files written by the user as described in section 4.1.
However, in the future, with the help of a user interface, the program could help the user
to create those objects and then the serialization process would be equivalent to saving
those configurations in the disk.

4.2.2 Objects

For each type of input file, there is a corresponding object that is used to store the
information of that file. This is not only used to convert the YAML files to “binary data”
to read its content but also to perform some functions inherited from the object.

Firstly, if it is not clear yet, there is a dependency between the objects. The pipeline
object, for instance, depends directly on the device objects since they are defined in the
input file to know which device is going to operate. Moreover, the device object has a strict
dependency on the instruction objects since they will convert the instruction names into
the actual commands that should be sent to the device. The configuration object is not as
connected to the other objects because the idea is just to add some extra parameters that
are not strictly limited to one object (experiment scoped).

With that in mind, we can understand the basic concept of object-oriented pro-
gramming languages. Objects are not only supposed to store data but also to perform
some methods or operations. Following the explanation of the previous paragraph, the
device object should be able to send a command to the device using a specific protocol.
The instruction object should be able to convert the instruction name into the actual
command that should be sent to the device. More objects and methods will be defined in

4.3. Execute 25

the program development but this can give a basic overview on how the user-defined text
will be used in the application.

4.3 Execute
The last phase of the software architecture is the execution of the instructions.

This phase is responsible for executing the pipeline instruction sequentially by sending the
commands to the devices and receiving their responses. Furthermore, given the provided
output, the application should also be able to log the program execution, store the results
in a data file, and potentially show a real-time chart with the selected physics attributes.
These functionalities will be named background functions and will be explained in the
following subsections. Nonetheless, the main program will be responsible for performing
the experiment.

4.3.1 Main Program

After the input files are parsed, the main program will be responsible for running
the plan that was defined by the user. To do so, it will iterate through the pipeline
instructions and execute them sequentially in the specified device. The main program
will also be responsible for handling the errors and exceptions that may occur during the
execution of the instructions. Since this is a program that will control a scientific and
potentially dangerous experiment, it is important to handle the errors and exceptions in a
way that the program can recover from them and continue the execution or at least go to
a safe state - which should be defined by the system (4.1.2.1). In order to perform any
of those actions, the program must be capable of communicating with the devices and,
therefore, the communication protocols will be explained in section 4.3.1.1.

4.3.1.1 Communication Protocols

The program can communicate with the devices using different communication
protocols. The communication protocols are defined in the device object and, therefore,
the main program should be able to communicate with the devices using the specified
protocol.

Given the target goal of this project, the LabRMS cryostat, the communication
protocols that are planned to be supported are TCP, GPIB, and Serial. The TCP protocol
is the most common protocol used in the industry and it is used to communicate with
devices that are connected to the network (wireless or network cable). The GPIB protocol
is a communication protocol that is used to communicate with devices that are connected
to a GPIB bus. Lastly, the Serial protocol is used to communicate with devices that are
connected to the computer using a serial port which can be an USB, for instance. The

26 Chapter 4. Proposed Solution

reason why we need to support multiple protocols is that the LabRMS cryostat uses
different communication protocols for different devices. Although the TCP protocol is
probably easier to use, some equipment only supports the GPIB protocol. In regards to
the Serial protocol, there is a plan to upgrade the equipment with some new devices - such
as an Arduino or a Raspberry Pi - that will be connected to the computer using a serial
port.

Thankfully, for most programming languages, some libraries can be used to commu-
nicate with devices using those protocols. In addition to that, most devices - which includes
the LabRMS cryostat peripherals - follow the Standard Commands for Programmable
Instruments (SCPI) standard which defines a common syntax for the commands that
should be sent to the devices. Therefore, although the program should have a generic
query command that can be adapted to different protocols, the way that the read and
write commands are sent to the devices should follow the SCPI pattern.

4.3.2 Background Functions

The background functions are functionalities that are not directly related to
the execution of the instructions or should run in parallel with the execution of the
instructions. That means that the background functions should not block the execution
of the instructions, running in parallel or asynchronously with the main program all the
time. The background functions that are planned to be implemented are: logging, results,
and real-time charts.

4.3.2.1 Logging

Logging is a common practice in software development which is not only important
during development to debug the program but also to keep track of the program execution
during production. In the case of the proposed solution, the logging will be used for both
purposes.

The logging will have two main streams: console and file. The console stream will
be used to show the user the current state of the program execution and will be especially
useful during the development of the program. The file, or multiple files, will be used
to store the program execution instructions and states for future reference. That way, if
the program crashes, the developer/user/administrator can check the log file to properly
identify the error and fix it.

4.3.2.2 Results

The results background function is responsible for storing the results of the experi-
ment in one or multiple data files. The data files will be used to store the results of the

4.3. Execute 27

scan instructions pre-defined by the user. Since different devices or measures can be used
in the same scan, it is possible that during development it will be preferred to store the
results in different files to avoid timing issues.

It is also possible that by design or user/administrator option, the program will
store all the possible data during runtime and then filter the data that is necessary for the
user in a separate process. That way, the user can roll back to the original and complete
data file if necessary. However, knowing that the experiment can take a long time to finish
and with a high-frequency collection of data, the data files can become very large and,
therefore, use a lot of disk space per experiment.

It is possible that the program could support multiple output formats since different
users may prefer different extensions and it should not be hard to implement. However,
the default output format will most probably be CSV since it is a very common and
easy-to-read and-write format.

4.3.2.3 Real-Time Charts

The program could have a graphical interface to improve the user experience. One
of the features that could be implemented in the graphical interface is a real-time chart that
could show the user the current state of the experiment. The way it will be implemented,
if it is implemented since it is part of the additional goals, is not yet defined since it could
range between some options depending on other factors. For instance, if by design the
program stores all the data it can read all the time, the graph could plot basically any of
the data that is being collected. On the other hand, the program could also be limited to
only plotting what is being measured during a scan plus some basic information such as
the temperature and magnetic field in the case of the cryostat. However, as a background
function, this process should not block any other component of the application, including
the operating system itself. So, it is important to do some tests and benchmarking to
trade-off between the performance and the features that will be implemented.

5 Detailed Project

The software developed for this project is a command-line application that allows
the user to communicate with different devices and collect data from them. The software
was developed using the Rust programming language and it is capable of reading input
files, communicating with devices, and executing pipelines. The following sections will
discuss the software in more detail, including the chosen tech stack, the main components
of the software, and the reasons they were developed that way. The main challenges and
achievements will also be discussed, as well as ideas for future projects based on this one.

5.1 Tech stack
The tech stack is a set of tools, libraries, and programming languages that are

used to develop a software project. The tech stack chosen for this project is based on the
criteria defined in section 5.1.1. The following subsections will discuss the programming
language, tools, and libraries that were used to develop the software and the reasons they
were chosen.

5.1.1 Programming Language

Many different programming languages could be used to develop this application.
Given that, it is necessary to choose one based on some criteria, such as:

• Basic capabilities: The language must be capable of performing the basic tasks
required by the software. For example, it must be able to read and write files and
communicate to devices through different protocols.

• Performance: Given that the application will mainly be used to collect as much data
as possible, it needs to be able to handle heavy loads. Furthermore, the computer
running the software will also be used for other tasks, so it is important that the
software does not consume too much resources.

• Development experience: It is convenient to choose a language that most that
attempt to improve the software are familiar with or can easily learn. This will make
it easier to maintain and update the software in the future.

• User experience: This is not directly related to the programming language, but it
is important to consider how the software will be installed and used. For example, it
is important that the software can be easily installed on different operating systems
and that it can be used without much technical knowledge.

5.1. Tech stack 29

• Extra features: In case the main goal of the project is achieved, other features
could be added to the software. For example, a graphical interface could be added
to make it easier to use.

Given these criteria, the following subsections will discuss some programming
languages that could be used to develop the software and the reasons why they are or are
not suitable for the project.

5.1.1.1 Python

Python is a great language for beginners and it is easy to use. It is also a great
language for data analysis and manipulation, because of some popular math libraries such
as NumPy and Pandas. However, Python is not the best language for performance since it
is an interpreted language which adds some overhead. For the same reason, it is not the
best language for developing desktop applications since it would require the user to have a
Python interpreter installed. Given that, Python could be used to develop the software,
but it is not the best language considering the long-term goals of the project.

5.1.1.2 C/C++

C and C++ are great languages for performance, but they are not the easiest
languages to learn and use. They are also low-level languages, requiring the programmer to
manage memory and other resources. Despite that, they are relatively popular - especially
in academia - and they can be used to develop desktop applications for different operating
systems. Some graphical libraries can be used to develop the software if we get to that
point. Given that, C/C++ could be used to develop the software, but it could be hard to
learn and use for most of the people who will attempt to improve the software.

5.1.1.3 Java

Java is a famous language but it is hard to find people that are willing to learn
it nowadays. It is also not the best language for performance since it runs on a virtual
machine. There are many different desktop applications developed in Java, showing that
it is capable of doing so. However, especially because it is not being adopted as much as
other languages, it was not considered a good option for the project.

5.1.1.4 JavaScript/TypeScript

JavaScript and TypeScript are dominant languages for web development and they
are easy to learn and use. Although they could produce great graphical interfaces, they are
not the best languages for performance and use in desktop applications. Some libraries can

30 Chapter 5. Detailed Project

help with that, but they basically run on top of a web browser which uses a lot of resources.
Given that, JavaScript and TypeScript were disqualified as options for the project.

5.1.1.5 Rust

Rust is a great language for performance, comparable to C/C++, but it is also
memory-safe. It is also a low-level language, which usually tends to be harder to learn
but it is by design develop friendly. Because of that, its popularity and community have
skyrocketed which explains its consecutive wins as the most-loved programming language
according to the Stack Overflow Developer Survey (5). Therefore, even if it is relatively
new and may not have as many developers as other languages, it is easy to convey that it
is a great language to learn. Given that, Rust was chosen as the programming language
for the project.

5.1.2 Tools

In addition to the programming language, some tools will be essential to develop
the software. The following subsections will discuss some of these tools and the reasons
they are necessary.

5.1.2.1 Rustup

Rustup is the recommended tool to install Rust. It is also used to manage different
versions of the Rust compiler and to install different targets. By different targets, it means
different operating systems and architectures. Given that, Rustup is essential to develop
the software and to compile it for different machine combinations.

5.1.2.2 Cargo

Cargo is the package manager for Rust. It is used to create, build, test, and
benchmark Rust projects. It is also used to manage dependencies and to publish the
software, similar to what Pip is for Python. Given that, Cargo is an essential tool to
develop complex libraries and applications in Rust.

5.1.2.3 MinGW

Speaking of different machine combinations, MinGW is a tool that allows compiling
the software for Windows in a Unix-like environment. That way, it is possible to compile
the software for Windows without using a Windows machine just to compile the software.

https://www.rust-lang.org/
https://rustup.rs/
https://doc.rust-lang.org/cargo/
https://www.mingw-w64.org/

5.1. Tech stack 31

5.1.2.4 Nix

Nix is a package manager and programming language that allows the creation of
reproducible builds. It has many features, such as the ability to create isolated environments,
to manage different versions of the same package, and to create custom packages. With that,
Nix can be used to create a development environment that is the same for all developers
using a Unix-like operating system, capable of compiling the software for different machine
combinations (including Windows).

5.1.2.5 Git

Git is a distributed version control system. It is used to track changes in the source
code and to coordinate the work of different developers. That way, it is possible to maintain
different versions and stages of the software, always being able to go back to a previous
version if necessary. Git is the most popular tool for version control and it will be used to
develop this project as well.

5.1.2.6 GitHub

GitHub is a web-based platform that uses Git for version control. It is also used to
host the source code and much more, such as an issue tracker, releases, project milestones,
automatic CI/CD pipelines, and more. GitHub is the most popular platform for open
source projects and it will be used to host the source code of the software.

5.1.3 Libraries

It is expected that the software will be developed using some libraries to help with
some tasks. The following subsections will discuss some of the main libraries that were
used for this project and the reasons they are necessary.

5.1.3.1 Serde

Serde is a framework for serializing and deserializing Rust data structures. It is
used to convert data from and to different formats, such as JSON, YAML, XML, and more.
Given that, Serde is essential to read and write input files that were defined in section 4.1.
Since the input files are defined in YAML, the Serde YAML library will be used for this
project.

5.1.3.2 Tokio

Tokio is an asynchronous runtime for Rust. It is used to develop asynchronous
applications, such as network servers and clients. That way, it is possible to communicate

https://nixos.org/
https://git-scm.com/
https://github.com/
https://serde.rs/
https://github.com/dtolnay/serde-yaml
https://tokio.rs/

32 Chapter 5. Detailed Project

with different devices and collect data from them without blocking the main thread. Given
that, Tokio will be used to allow this asynchronous capabilities in the software.

5.1.3.3 Tracing

Tracing is a framework for instrumenting Rust programs with context-aware,
structured, event-based diagnostic information. It is used to log information about the
software execution, such as errors, warnings, and debug information. Given that, Tracing
is essential to help with the development and maintenance of the software. It will also
be essential for some background functions, such as the logging and results explained in
sections 4.3.2.1 and 4.3.2.2.

5.1.3.4 Tera

Tera is a template engine for Rust. It is used to generate string and text outputs
based on templates, using double curly braces ({{}}) to insert variables and curly braces
with percentage signs ({% %}) to insert control structures. Given that, Tera is essential to
format the command query and also to parse the response from the devices.

5.1.3.5 Regex

Regex is a regular expression library for Rust. It is used to match patterns in
strings, such as numbers, words, and special characters. Given that, Regex is needed
to parse the response from the devices, making it possible to extract the values from it
following a pattern.

5.1.3.6 Clap

Clap is a command-line argument parser for Rust. It is used to parse the command-
line arguments and options passed to the software. Given that, Clap is included to allow
the user to configure the software and to run it with different options and input parameters.

5.2 Implementation

The software was developed using the Rust programming language and some
libraries that were discussed in the previous section. The main components of the software
were designed to allow the user to communicate and interact with different devices through
a pipeline configuration containing 3 types of steps: instruction, wait for, and scan.

The following subsections will explain the main components of the system and
the reasons they were designed that way. The code is available in the FlowLab GitHub

https://tracing.rs/tracing/
https://keats.github.io/tera
https://docs.rs/regex/latest/regex/index.html
https://clap.rs/
https://github.com/SamuelHDieterich/flowlab
https://github.com/SamuelHDieterich/flowlab

5.2. Implementation 33

repository (https://github.com/SamuelHDieterich/flowlab). It is important to men-
tion that the features and limitations explained here may not be up-to-date with the
current version of the software, as it can be updated after the submission of this work.

5.2.1 Input files

The input files are used to define the devices, instructions, and pipelines that
the software will use, as it was proposed in section 4.1. The configuration type that was
explained in subsection 4.1.3 was not implemented for this project but some use cases
were considered.

As it was explained in subsection 4.1.1, the input files are defined in YAML format,
which is a human-readable data serialization standard. The following topics will explain
the file syntax for each type of configuration and the reasons they were designed that way.

5.2.1.1 Instructions

instructions:
- name: InstructionName

command:
query: "{{command}} {{argument1}} {{argument2}} ..."
parameters:

- name: argument1
type: string|integer|float|boolean
default: <Default value> # Optional
values:

- <Value 1>
- ...

description: <Description of the argument> # Optional
- ...

response: # Optional
format: "{{output1}} {{output2}} ..."
parameters:

- name: output1
type: string|integer|float|boolean
values: # Optional

- <Value 1>
- ...

description: <Description of the output> # Optional
- ...

https://github.com/SamuelHDieterich/flowlab
https://github.com/SamuelHDieterich/flowlab
https://github.com/SamuelHDieterich/flowlab

34 Chapter 5. Detailed Project

description: <Description of the instruction> # Optional
- ...

An instruction file contains a list of instruction objects. Each instruction object
has a name, command, response (only needed for commands that expect a return), and
description.

• name: The name of the instruction that should be describable and unique, usually
specified by the device manufacturer manual.

• command: This block defines the command string and possible parameters that should
be passed to the device to execute the instruction.

– query: The command that should be sent to the device to execute the specified
instruction. The parameters, if any, are specified between double curly brackets.

– parameters: The list of parameters that the command expects.

∗ name: The name of the parameter. This name must be used in the query
field.

∗ type: The type of the parameter. The possible types are: string, integer,
float, and boolean.

∗ default: The optional default value of the parameter.
∗ values: If only a handful of values are allowed to a parameter, a list of

possible values can be used in this situation.
∗ description: An optional description of the parameter.

• response: If the command expects a return (read operation), the response object
should be defined.

– format: The format of the response. The output variables are specified between
double curly brackets.

– parameters: The list of output variables that the response should return.

∗ name: The name of the output variable. This name must be used in the
format field.

∗ type: The type of the output variable. The possible types are: string,
integer, float, and boolean.

∗ values: If only a handful of values are allowed to an output variable, a list
of possible values can be set so the user can know what to expect.

∗ description: An optional description of the output variable.

• description: A description of the instruction.

5.2. Implementation 35

The reason why the instruction file was designed to start with a “instructions” key
instead of just the list of instructions is to allow the definition of other instruction objects
in different places. This way, it is possible to define a list of instructions in different files
and then merge them into a single list.

5.2.1.2 Devices

devices:
- name: DeviceName

description: <Description of the device> # Optional
protocol:

TCP protocol
ip: 192.168.1.1
port: 1234

instructions:
- path: InstructionFile1 # Recommended approach
- name: <Instruction definition>

... # Rest of the instruction definition
default_values: # Optional

- name: <Parameter 1 value>
value: <Parameter 1 value>
description: <Description of the parameter>

- ...

A device file contains a list of device objects. Each device object has a name,
description, protocol, instructions, and default values (optional).

• name: The name of the device that must be unique.

• protocol: The communication protocol definition for the device. Depending on the
protocol, different parameters are required.

– TCP: TCP communication protocol. As shown in the example, the ip and port
fields are required.

– GPIB: GPIB communication protocol. It was not implemented in this project
but it could be defined with the address field.

– Serial: Serial communication protocol. It was not implemented in this project
but it could be defined with a port and baudrate fields.

• instructions: The list of instructions that the device supports. It is possible to
define the instructions in the same file or to reference an instruction file (recommended
approach).

36 Chapter 5. Detailed Project

– path: The file path of the instruction file that contains the instructions that
the device supports.

– name: This starts a new instruction definition that will be used only for this
device. This is an alternative approach to defining the instructions and it follows
the same pattern as described in the previous section 5.2.1.1.

• default_values: The default values that should be used when executing an instruc-
tion with this device. This is an optional field and it is useful when it is known that
some parameters are always the same.

– name: The name of the parameter.
– value: The value of the parameter.
– description: An optional description of the parameter.

• description: An optional description of the device.

In the same way as the instruction file, the device file was designed to start with
a “devices” key instead of just the list of devices to allow the definition of other device
objects in different places, such as different files, and then merge them into a single list.

It is important to mention that the same physical device can be defined multiple
times with different names and configurations. For example, the TM612 temperature
monitor has two read channels, so instead of defining a single device and setting the
channels as parameters for each instruction, it is possible to define two devices with the
same configuration (instructions and protocol) but different names and default values.

5.2.1.3 Pipeline

name: PipelineName
description: <Description of the pipeline>

Using the YAML anchor feature to reuse instructions
instructions:

- &InstructionName
name: <Instruction name>
device: <Device name>
parameters:

- name: <Parameter name>
value: <Parameter value>

- ...
- ...

5.2. Implementation 37

Define the devices to be used in the pipeline
devices:

- path: <Device file path> # Recommended approach
- name: <Device definition> # Alternative approach

... # Rest of the device definition
instructions:

Add an instruction defined on the current file
- <<: *InstructionName

- ...

pipeline:
Simple instruction call
- step: <Instruction name>

device: <Device name>
parameters:

- name: <Parameter name>
value: <Parameter value>

- ...
Wait for a metric to reach a certain value or time
- step: Wait for

Instruction to get the metric value
In case of a time condition, the metric field could be omitted
metric:

instruction: <Instruction name>
device: <Device name>
parameters: # Optional

- name: <Parameter value>
value: <Parameter value>

- ...
Condition to continue the execution
parameters:

This should be available in the metric response
name: <Metric variable name>
value: <Value to reach>
tolerance: <Tolerance>
In case of a time condition,
only the delay field should be defined
delay: <Delay in seconds>

Perform a scan through a range of values

38 Chapter 5. Detailed Project

- instruction: Scan
metrics:

List of metrics that will be performed
sequentially for each iteration
- step: <Metric name>

device: <Device name>
parameters:

One of the parameters should be the variable,
so it doesn't need to be defined here
- name: <Parameter value>
value: <Parameter value>
- ...

- ...
It is important to ALWAYS define a
Wait for step at the end of the scan.
Otherwise, the program will not wait
to reach the desired value
- step: Wait for

... # Rest of the Wait for definition but one of
the parameters should be the scan variable

type: settle|sweep
parameters:

variable: <Variable name>
start: <Start value>
stop: <Stop value>
step: <Step value>

If not defined, the measures results will not be stored
The filepath can be a template string that will be
rendered with the available variables.
Example: data/{{PIPELINE_NAME}}_{{DATE}}_{{variable_name}}.csv
datafile: <Datafile path>
measures:

List of measures that will be performed for each iteration
- step: <Measure name>

device: <Device name>
parameters:

- name: <Parameter value>
value: <Parameter value>

- ...

5.2. Implementation 39

- ...
- ...

The pipeline file defines a plan of instructions that should be executed in a specific
order. It contains a name, description, instructions, devices, and the pipeline - a list of
steps to perform. The name will be used to identify the pipeline during the execution
and can also be used as a template string that will be explained in the scan step. The
description, for now, is just a comment that can be used to describe the pipeline.

The instructions definition is optional and it can be used to define very specific
instructions that will be used only in the scope of the pipeline. Furthermore, as shown in
the example, it is possible to use the YAML anchor feature to reuse the defined instruction
into multiple devices in the pipeline. However, the recommended approach is to define the
instructions in the instruction file and reference them in the devices and pipeline files.

The devices key is used to define the devices that will be used in the pipeline. The
cleaner and recommended approach is to reference a device file that contains the devices
that will be used in the pipeline. However, it is also possible to define the devices in the
pipeline file itself. This can be used for prototyping and to also use the instructions created
in the same file using the YAML anchor feature.

Lastly, the pipeline key is used to define the steps that should be executed in the
pipeline. The steps can be of three types: instruction, wait for, and scan. The instruction
type is used to execute a single instruction, the wait for type is used to wait for a metric to
reach a certain value or time, and the scan type is used to perform a scan through a range
of values of a metric and measure different values for each step. The next paragraphs will
break down each type of step.

5.2.1.3.1 Instruction

• step: The name of the instruction that should be executed.

• device: The name of the device that should execute the instruction.

• parameters: The list of parameters that should be passed to the instruction, if
needed.

– name: The name of the parameter.
– value: The value of the parameter.

5.2.1.3.2 Wait For

• step: Since it’s a built-in instruction, the name of the instruction is Wait for to
invoke this special function.

40 Chapter 5. Detailed Project

• metric: The metric that should be monitored. In case of a time condition, the
metric field could be omitted.

– instruction: The name of the instruction that should be executed to get the
metric value. Trivially, this instruction should have a response.

– device: The name of the device that should execute the instruction.
– parameters: The list of parameters that should be passed to the instruction, if

needed.

∗ name: The name of the parameter.
∗ value: The value of the parameter.

• condition: The condition that should be met to continue the execution. In case of
a time condition, only the delay field should be defined.

– name: The name of the metric variable that should be monitored.
– value: The value that the metric should reach.
– tolerance: The tolerance of the metric value (value ± tolerance).
– delay: The time the program should wait before continuing the execution when

the condition is met.

If the condition is not met, the program will wait forever until the condition is met
and then wait for the delay time before moving to the next step. If the device does not
respond properly, the program will alert the user and fall back to the simple wait for time
condition. However, the program will continue monitoring and trying to communicate
with the device, so if any value is returned, it will revert to the original condition. This
behavior could be changed in the future to be more rigid or more flexible, depending on
the user’s needs.

5.2.1.3.3 Scan

• step: Since it’s a built-in instruction, the name of the instruction is Scan to invoke
this special function.

• metrics: The list of metrics that should be performed sequentially for each iteration.

– step: The name of the instruction that should be executed, it can be a simple
instruction or a wait for instruction. It is important to always define a wait
for step at the end of the metrics scan. Otherwise, the program will not know
when the system reached the desired value, thus not waiting for it to iterate to
the next step.

5.2. Implementation 41

• type: The type of scan that should be performed. According to the stakeholder, the
available options should be: settle and sweep. Both are linear functions but the
settle type should wait for the metric to reach the desired value before running
the measures once. On the other hand, the sweep type should keep the measures
running while the metric is changing.

• parameters: The parameters of the scan.

– variable: The name of the variable that should be changed.
– start: The start value of the variable.
– stop: The stop value of the variable.
– step: The step value of the variable. If start is greater than stop, the step

should be negative.

• datafile: The file path of the datafile that should be used to store the results of
the scan. If not defined, the measures results will not be stored. The filepath can
be a template string that will be rendered with the available variables, such as the
pipeline name, the start time of the pipeline, and the variable name. More variables
could be added in the future.

• measures: The list of measures that should be executed for each step of the scan.

– step: The name of the instruction that should be executed. This could be a
simple instruction or another scan instruction, making it possible to nest scans.
In those cases, the dynamic datafile path can be useful to store the results of
each step of an outer scan in a different file.

The scan instruction was designed to be as flexible as possible, allowing the user to
define the scan type, the metrics that should be monitored, the measures that should be
executed, and the datafile that should be used to store the results. In order to make it
as versatile as shown, it is also quite complex verbose. The user should be aware of the
possible configurations and the consequences of each one.

5.2.2 Deserialization

As explained in 4.2.1, the deserialization process is responsible for reading the input
files and converting them into data structures that can be used by the software. Therefore,
two steps are required: defining the data structures and creating the deserialization
functions.

The data structures were defined using structs and enums to represent the objects
in the input files, as it was explained in 5.2.1. Structs are used to represent objects that
have multiple fields or key-value pairs (not the same as dictionaries) and enums are used

42 Chapter 5. Detailed Project

to represent objects that have multiple types or states. Besides that, both structs and
enums can be defined with generics in Rust. Generics, as the name suggests, allow to use
of the same object with different types. This is a useful and powerful feature for scalability
and flexibility, but it can get way more complicated to code it right. Because of the Rust
borrow checker, the developer is forced to think about the lifetimes of the objects and the
references that are being used. This is a good practice and that is why Rust is considered
a safe language, but it also makes the language harder to learn and use for beginners.

The following code snippet shows the Device struct that was defined to represent
the device object in the input files. The snippet was simplified to show only the parts that
would be relevant to the explanation.

#[derive(Debug, Clone, PartialEq)]
pub struct Device<Protocol>
where

Protocol: Query
{

pub name: String,
pub description: String,
pub instructions: BTreeMap<String, Instruction>,
pub protocol: Protocol,
pub default_arguments: BTreeMap<String, Arguments>,

}

At the top, we can see what is called derive macros and they can easily generate
create some functions for the specific struct/enum. Next, the Device struct is defined
with a generic, Protocol, and it uses the protocol attribute. The where section is used to
define the constraints of the generic, in this case, Query trait. The Query trait is a custom
trait that will be later explained in the communication section 5.2.3.

Using the Serde framework, the usual process to create the deserialization functions
is using a derive macro in the object definition, automatically generating the functions
for the developer. Although the derive macro offers some parameters to customize the
deserialization process, it is not always enough. In this case, the input files are complex
and the deserialization process is not straightforward and the macro is usually not capable
of handling generic types, for instance.

Because of that, the deserialization functions were created manually following the
Serde documentation. Moreover, this is a questionable architectural choice, some business
logic was also added on these functions. The fact that the input files are also checked for
inconsistencies and malformating is great and definitely a must but the deserialization
process is probably not following the single responsibility principle. However, this was

5.2. Implementation 43

considered a good approach for the present moment, as it would guarantee that no invalid
input files would be used in the software.

In terms of what are these checks, the input files are checked for the following but
not limited to:

• Missing mandatory fields;

• Commands and responses not well formatted based on the required parameters;

• Devices incapable of executing the asked instruction;

5.2.3 Communication

The communication process is responsible for sending commands to the devices
and receiving responses their responses. To achieve that, a trait named Query was defined
to represent the communication interface. It has a single function, query, that is used to
send a command to the device and it can return a response if the used command expects
one. The query function is asynchronous, meaning that it will not block the main thread
while waiting for the response.

/// A protocol must implement the Query trait which allows
/// the device to send commands and receive responses.
#[async_trait]
pub trait Query {

/// Send a command to the device and return the response (if any).
async fn query(

&self,
command: &str

) -> Result<Option<String>, std::io::Error>;
}

The async_trait macro is used to define the trait as asynchronous, during the
early stages of development, standard Rust was not capable of defining asynchronous traits.
Nowadays, it seems to be possible to achieve the same result without this library but it
requires more setup and boilerplate code. With that, the Query trait is defined with one
asynchronous function, query, that receives a command string slice and returns a result
with an optional string.

With that, a developer can easily implement the Query trait for any communication
protocol that works with these requirements. For this project thus far, only the TCP
protocol was implemented. In Rust, it would start like this:

44 Chapter 5. Detailed Project

#[derive(Debug, Clone, Deserialize, PartialEq)]
pub struct TCP {

/// IP address of the device
pub ip: IpAddr,
/// Port of the device
pub port: u16,

}

#[async_trait]
impl Query for TCP {

#[tracing::instrument]
async fn query(

&self,
command: &str

) -> Result<Option<String>, std::io::Error> {
// Send the command to the device and return the response

}
}

First, the TCP struct is defined with the ip and port fields. The Query trait
is implemented for the TCP struct, defining the query function. The query function is
annotated with the tracing::instrument macro, which is used to log information about
the function execution using the Tracing library.

For the TCP protocol, the query function opens a stream connection, using the
Tokio net submodule, with the device and then sends the command to it. After that, it
waits for a response and stores it in a buffer. The response is then parsed and returned as
a string, if the buffer is not empty.

5.2.4 Instruction

The instruction step, as shown in 5.2.1.3, is responsible for executing single instruc-
tions defined in the input files. In the program, there is a main loop for each step in the
pipeline that will execute the instruction. If the program detects that the step is of type
instruction - through an enum - it will execute the following logic:

1. Get the device object based on the device name;

2. Get the instruction object based on the instruction name;

3. Merge the available parameters with the parameters stack;

5.2. Implementation 45

4. Render the query;

5. Send the query to the device;

6. Parse the response;

7. Return the response.

Steps 1 and 2 are used to search and get the equivalent object definitions for
the device and instruction based on their names. During the deserialization process, the
program verifies if these names exist, so this step should not fail at this point.

Step 3 introduces a new concept that will be used in all pipeline steps. The
parameters stack is a data structure that will be used to store the parameters that are
available for the current step. Since the pipeline can be defined with some special functions
that can be used to set in-scope variables and also have functions inside functions, the
parameters stack is a great strategy to keep track of the available parameters for each
instruction call. So, in step 3, the previous parameters stack is merged with the parameters
defined in the instruction step.

Step 4 is used to render the query string that will be sent to the device. The Tera
library is used to format the query string, replacing the parameters in the query string
with the values in the parameters stack. For more advance purposes, Tera can also be used
to define control structures in the query string, such as if statements and loops.

Step 5 is used to send the query to the device using the Query trait. The query
function is called with the formatted query string and the response is stored in a variable.

Step 6 is used to parse the response from the device. The response is a string that
should be parsed to extract the values from it. The Regex capture groups feature is used
to match patterns in the response string and extract the values from it. By defining the
expected format as well as the data types for each variable available in the response, the
program can “decipher” even some complex responses. For instance, it would be able to
properly parse a response like Temperature: 25.5°C and return the value 25.5 as a float
and the unit °C as a string.

Step 7 is used to return the response to the main loop. Depending on the stage of
the pipeline, the response could be used to set a variable, to check a condition, or to store
a value in a datafile.

5.2.5 Wait For

The wait for step, as shown in 5.2.1.3, is a built-in special function that is responsible
for waiting for a metric to reach a certain value or time. The program will create a while

46 Chapter 5. Detailed Project

loop that will keep executing a certain metric or instruction, if set with one, in a certain
interval until one of the conditions is met. The conditions are:

1. The wait for step is fully defined which means that a metric instruction is set. The
function will keep executing the metric instruction in a certain interval until the
metric reaches the desired value plus or minus the tolerance, starting the delay timer.
If the metric is still between the tolerance range after the delay, the loop will break.
If at any point the metric is not in the tolerance range, the delay timer will reset
and wait for the metric to reach the desired value again.

2. The wait for step is defined but no metric instruction was set. In this case, the delay
timer will start and if the delay is reached, the loop will break. This is similar to
what programming languages usually call a sleep function.

3. The wait for step is defined but the metric instruction was set and the device did not
respond properly. In this case, the delay timer will start and if the communication is
reestablished, condition 1 will be checked. If the delay is reached, condition 2 will be
satisfied.

The rest of the logic is similar to the instruction step, as explained in the previous
section, 5.2.4. The main reason for the wait for step is to allow the user to set a condition
required for the next step of the pipeline or, as we will see in the next section, the iteration
of the scan step. For instance, as explained in 3.1.1, the cryomagnet can only operate in
high magnetic fields if the temperature is equal to or below the superconductor critical
temperature. That way, as a safe measure, the user could set a wait for step to check if
the temperature is below the critical temperature before setting the magnetic field to the
desired value.

5.2.6 Scan

Last but not least, the scan step, as shown in 5.2.1.3, is also a built-in special
function that is designed to perform a scan through a range of values of on a list of
metrics and measure different values for each iteration. This step is more complex than
the previous ones and it is also really important for the users, as it is the heart of any
scientific experiment: collecting data points for a system under different conditions.

A scan has 3 main components: the variable, the metrics, and the measures. The
variable is the parameter that will be changed in each iteration of the scan, ranging from a
start value to a stop value with a certain step. Moreover, this variable value will be used to
update the parameters stack, so the metrics and measures can use it. The metrics are the
instructions that will be executed in each iteration of the scan, basically setting the system

5.2. Implementation 47

to the desired condition. The measures are the instructions that will be executed in each
iteration of the scan, collecting the experimental data for posterior analysis. It is important
to mention that the metrics and measure instructions are nested in the variable loop, so
they will repeat for each iteration of the variable. One important difference between the
metrics and measures is that the metrics are executed sequentially, you can think of them
as an inner pipeline, while the measures are executed asynchronously, so we can query
multiple instructions simultaneously.

The general steps for the scan can be summarized as follows:

1. Create the datafile if it was defined;

2. Set the variable to the start value;

3. Enter the loop;

4. Update the parameters stack with the variable value;

5. Execute the metrics;

6. Execute the measures;

7. Write the measures’ results to the datafile;

8. Go to the next iteration (step 4).

The scan step is divided into two branches: settle and sweep. The settle branch is
used to wait for the metric to reach the desired value before running the measures once.
The sweep branch is used to keep the measures running while the metric is changing. If we
look at the general steps, the settle branch will execute steps 5 and 6 sequentially, while
the sweep branch will execute steps 5 and 6 in parallel. This means that the measures will
run in a loop until the metric reaches the desired value, then repeat the cycle for the next
iteration of the variable.

During development, Milton Tumelero, the advisor of this work, provided a couple
of useful experiments that the lab would run in the cryostat. One of these examples called
“magnetoresistance” requires two inner loops: one to set the temperature and another to
set the magnetic field. Because of that, the scan step was designed to be flexible enough
to allow nested scans. In order to achieve this, the user can define a scan step inside
the measures array of another scan. This way, the program will execute the inner scan
for each iteration of the outer scan, allowing the user to perform complex experiments
with multiple variables. In light of this, the datafiles names were also upgraded to allow
template strings that will be rendered with the available variables, so that a new file can
be generated for each iteration of the scan.

6 Results and Conclusions

6.1 Results

The developed software was tested against all the available devices mentioned in
3.2 being able to communicate with them and execute simple instructions. The easiest
way to verify if the communication was working was to send the identification command
(*IDN?) to the devices and check if a response was received in a reasonable time. The
following lines will demonstrate a sample pipeline to run this test:

1 name: Check communication
2 description: Run a simple test to check if the communication with the

devices is working.↪→

3

4 devices:
5 - path: ./config/devices/TM612.yaml
6 - path: ./config/devices/24C.yaml
7 - path: ./config/devices/4G.yaml
8

9 pipeline:
10 - step: Device instruction
11 device: TM612
12 - step: Device instruction
13 device: 24C
14 - step: Device instruction
15 device: 4G

It was noticed during these simple tests that the LabView program was not releasing
the devices properly, even when it was paused/aborted. This is probably due to the way
the LabView program was implemented or the way it handles communication with the
devices. As explained in 5.2.3, the developed solution creates a stream for each query and
closes it after the response is received. This way, although it may add some overhead to
the communication, it ensures that the devices are not blocked by the program, especially
if it is improperly closed.

Other simple commands were tested, such as retrieving the temperature from the
temperature monitor and setting the temperature setpoint in the temperature controller.

6.1. Results 49

Currently, as a test, when an instruction step is used, it will print the response from the
device to the console.

The wait for step was also tested and it worked as intended for all 3 possible
conditions, as explained in 5.2.5. Since the verification is performed at a high frequency,
the response of each command is not prompted to the user in the console, although it is
stored in the log files. However, when the delay timer starts or is reset, a message is printed
to the console. During the tests, and this is a known issue with the current LabView
program as well, the communication with the devices could miss some responses. However,
the program is capable of handling this situation using the third condition of the wait for
step. A sample pipeline to test the wait for step is shown below:

1 name: Wait for the temperature to stabilize
2 description: Wait for the temperature to stabilize in the temperature

controller at 4K.↪→

3

4 devices:
5 - path: ./config/devices/24C.yaml
6

7 pipeline:
8 - step: Wait for
9 metric:

10 instruction: Get temperature
11 device: 24C
12 parameters:
13 name: temperature
14 value: 4
15 tolerance: 0.1 # 3.9 K < temperature < 4.1 K
16 delay: 120 # 2 minutes

The scan operation was also tested and it was able to loop through the specified
range of values and run the metrics for each step, preparing the system to a particular
state. As it was explained in 5.2.1.3, this usually required at least two steps in the metric
block, one to set the value and another to wait for the system to stabilize.

Unfortunately, the measures block was not working properly at the time of this
work submission. The measures block was supposed to run a set of gather instructions,
after the metric block in case of of the “settle” type or during the metric block on every
interval in case of the “sweep” type, and store the results in a file. This section of the
program was not working properly due to some issues with the asynchronous functions
in Rust, which is known to be one of the hardest parts of any programming language to

50 Chapter 6. Results and Conclusions

work with. Therefore, due to time constraints, it was not possible to fix this issue in time.
A sample pipeline to run a scan operation is shown below:

1 name: Scan temperature
2 description: Ramp the temperature from 10k to 300K in steps of 10K.
3

4 devices:
5 - path: ./config/devices/24C.yaml
6

7 pipeline:
8 - step: Scan
9 metrics:

10 - step: Set temperature
11 device: 24C - Sample
12 # temperature value will be defined by the scan parameters
13 - step: Wait for
14 metric:
15 instruction: Get temperature
16 device: 24C - Sample
17 parameters:
18 name: temperature
19 # value will be defined by the scan parameters
20 tolerance: 0.1
21 delay: 120
22 type: settle
23 parameters:
24 start: 10
25 end: 300
26 step: 10
27 datafile: ./data/temperature_scan.csv
28 # Currently, the measures block is not working
29 # measures:
30 # - instruction: Get temperature
31 # device: 24C - Sample

6.2 Requirements Evaluation

Based on the results obtained until the time of this work submission, explained in
the previous section 6.1, we can evaluate which goals, 1.2, and requirements, 2.3, were met.

6.3. Future Work 51

It is fair to say that mostly basic goals, 1.2, were fully met, except the third item which
mentions “storing the data for posterior analysis”. As it was shown in the previous section,
the measure block that is part of the scan operation is not working as intended. Aside from
that, the program is capable of communicating with all the proposed devices attached to
the cryostat; it is capable of sending any type of instruction to them, controlling its state;
and the program is modular and flexible enough to be extended to work with different
equipment and protocols.

Finally, there were 6 requirements, 2.3, that were identified by the laboratory rep-
resentative, Professor Milton Tumelero. The first two, Read operations and Set operations,
were fully met through the instruction step, 5.2.4. The Wait for requirement was also
achieved as intended, as it was detailed in 5.2.5. The Scan requirement was partially met,
as the program is capable of looping through a range of values, running the metrics for
each step, but the measures are not working properly. The Run on a Windows machine
requirement was also met, since a Rust program can be compiled to run on Windows
natively or through cross-compilation. Finally, the User-defined pipelines requirement was
fully met, as the program is capable of running a sequence of operations defined by the
user as shown in 5.2.1.3.

In conclusion, the proposed solution is feasible and it is capable of performing the
main operations it was designed for. Some tweaks and improvements are still needed to
make it useful for the laboratory but it can be considered a successful Minimum Viable
Product (MVP). In order to make it ready for production for early adopters, the measures
piece of the program needs to be fixed and some other improvements could be made, as
suggested in the next section.

6.3 Future Work

6.3.1 Measures Block

In case the project is continued, the first and most important task is to make
the measures block work properly. This is the main feature that is missing to make the
program usable in the laboratory and check all basic requirements. The problem may not
be complicated in terms of how many lines of code need to be changed, but it requires a
better understanding of how async works and how to properly set up runtimes or threads
for it.

6.3.2 Scoped Variables and Attributes

Next, a known possible problem for more complex pipelines is the repetition of the
same variable names which can lead to conflicts. Furthermore, this has already proven

52 Chapter 6. Results and Conclusions

to be a problem in the current implementation while working with the measures block.
For example, if a scan operation has two measures that return the temperature, which is
quite possible, if the program simply stores the results in a variable called temperature,
one measure could overwrite the other result. Currently, the proposed solution was to also
include the device name for that particular scenario but it is not a scalable solution. A
better approach would be to scope the variables and attributes better, or even let the user
define aliases for the variables.

6.3.3 Configuration File

Another suggestion for future work is to create a configuration file to grant the user
more flexibility over general aspects of the program. For example, the user could define
the interval between measures, what to do if a measure fails, or even the timeout value for
communication with the devices. This would improve the experience for more advanced
users and make the program more suitable for different workloads.

6.3.4 Meta Instructions

During the usage of the program, it was noticed that some pipelines could get quite
verbose, especially considering that some operations are guaranteed to be repeated in
different pipelines. For example, a scan operation that ramps the temperature will usually
interact with one device to set that temperature and maybe the same one or another to
get the temperature and wait for it to stabilize. To avoid repeating this same template in
different pipelines, a suggestion is to create custom functions with a set of parameters to
use in other pipelines. For example, a scan_temperature function specifically designed
for the cryostat could accept a minimum set of parameters, such as the start, end, and
step values, and measures to run during the scan. That way, instead of writing the scan
step from scratch, the user could simply call the scan_temperature function with the
desired parameters.

6.3.5 Graphical Interface

Finally, a graphical interface could be developed to make the program more user-
friendly. This would be especially useful for users that are not familiar with the command
line or the YAML syntax. Not only that but a graphical interface could lead to less errors in
the pipelines, since the user would not need to remember the exact syntax of the program.
This would also make the program more accessible to users that are not familiar with
programming or the command line.

6.4. Highlights 53

6.4 Highlights
To conclude this work, it is important to highlight the main points of the project

and its contributions. The goal of this project was to develop a program capable of
controlling and monitoring devices linked to a cryostat, while allowing the user to define
custom pipelines to automate experiments. Not only the program was able to communicate
with the devices and execute the main operations it was designed for, but it could also be
extended to work with different equipment and protocols. Thus, proving that the proposed
solution and software architecture are feasible to solve the initial problem and more.

Compared with the existing LabView program, described in 2.1 and 2.2, the
developed solution has some advantages and disadvantages, as shown in the table 2.

Feature LabView Developed Solution

Flexibility User must modify a significant
portion of the code to perform
different tests.

User-defined pipelines allow
the user to run an arbitrary
sequence of operations.

Scalarity Limited to work with the
cryostat. Moreover, in order to
perform different tasks, entirely
new programs are created.

Modular and flexible enough to
be extended to work with
different equipment and
protocols.

Price Proprietary and expensive
software.

Open-source and free of charge.

User-friendly LabView is more intuitive and
easy to use since it is a
graphical programming
language. Moreover, the
current program has charts to
keep track of the collected
data.

The developed solution is a
command-line program, which
may not be as user-friendly as
LabView, but it can be
extended to have a graphical
interface.

Table 2 – Comparison between the existing LabView program and the developed solution.

Moreover, it was possible to verify by this work that Rust can be used to create
complex instrumental systems solutions. As it was explained in 5.1.1.5, Rust is a modern
and safe programming language that provides some trivial and non-trivial advantages over
other languages, such as performance, lower memory footprint, and being less prone to
errors. The latter is especially important for this project and it deserves to be emphasized.
Rust’s type system and ownership model make it very clear to the developer where the
program could fail, letting the developer handle those cases properly. In other programming

54 Chapter 6. Results and Conclusions

languages, such as Python, it is not always clear what a function can return or raise, which
can lead to unexpected behavior and runtime errors that can be unacceptable in some
conditions this software may be used. In various ways, Rust teaches the developer to write
better code, following best practices and avoiding common pitfalls.

Finally, this project not only provides a solution for the initial target problem but
also serves as a proof of concept for future projects using Rust for similar applications.
Despite Rust’s steep learning curve, it has shown to be a great choice for this project and
it is recommended for future projects with similar purposes.

55

References

1 cryomagnetics, inc. Operating Instruction Manual for Superconducting Magnet
System with Variable Temperature Insert. English. Rev. 1. 30 Aug. 2015. 31 pp. Cit. on
p. 17.

2 cryomagnetics, inc. User’s Guide Models 612 and 614 Cryogenic Temperature
Monitor. English. Rev. 1. Mar. 2014. 119 pp. Cit. on p. 17.

3 cryomagnetics, inc. User’s Guide Model 24C Cryogenic Temperature Controller.
English. 2014. 227 pp. Cit. on p. 18.

4 cryomagnetics, inc. Operating Instruction Manual for 4G Magnet Power Supply.
English. Rev. 9.0. 17 Feb. 2010. 101 pp. Cit. on p. 20.

5 stack overflow. Stack Overflow Developer Survey 2024. Available from: <https:
//survey.stackoverflow.co/2024/technology#2-programming-scripting-and-
markup-languages>. Cit. on p. 30.

https://survey.stackoverflow.co/2024/technology#2-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2024/technology#2-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2024/technology#2-programming-scripting-and-markup-languages

	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Acronyms
	Contents
	Introduction
	Motivation
	Goals
	General Goal
	Goals

	Interested Parties
	Scope
	Organization

	Specification Development
	Usage Context
	Comparative Analysis
	Requirements

	Technical Characteristics
	Cryostat
	Superconducting Magnet
	Cryostat Operation

	Peripherals
	Temperature Monitor
	Temperature Controller
	Magnet Field Controller

	Communication Protocols

	Proposed Solution
	Input
	File Format
	File Provider
	System
	User

	Types of Input Files

	Parser
	Serialization and Deserialization
	Objects

	Execute
	Main Program
	Communication Protocols

	Background Functions
	Logging
	Results
	Real-Time Charts

	Detailed Project
	Tech stack
	Programming Language
	Python
	C/C++
	Java
	JavaScript/TypeScript
	Rust

	Tools
	Rustup
	Cargo
	MinGW
	Nix
	Git
	GitHub

	Libraries
	Serde
	Tokio
	Tracing
	Tera
	Regex
	Clap

	Implementation
	Input files
	Instructions
	Devices
	Pipeline
	Instruction
	Wait For
	Scan

	Deserialization
	Communication
	Instruction
	Wait For
	Scan

	Results and Conclusions
	Results
	Requirements Evaluation
	Future Work
	Measures Block
	Scoped Variables and Attributes
	Configuration File
	Meta Instructions
	Graphical Interface

	Highlights

	References

