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ABSTRACT

Autism Spectrum Disorder (ASD) is a spectrum of prevalent, highly heritable, and het-

erogeneous neurodevelopmental disorders that manifest through impairments in social

communication and interaction, sensory sensitivities, repetitive behaviors, and varying

degrees of intellectual disability. Because of the increase in the diagnosis of ASD in

recent years and the fact that its molecular mechanisms are not completely understood,

better diagnosis and better understanding of its origins is pivotal. It is known that the oc-

currence of the disorder is influenced by both genetic and environmental factors, making

biological data that combine both genetic and environmental influences such as genome-

wide gene expression levels a good candidate for this study. Machine Learning can be

used to learn complex underlying patterns in ASD through classification algorithms. Con-

sidering the difficulty and impacts in life when the diagnosis is delayed and the fact that

ASD may be influenced by prenatal, perinatal, and very early postnatal environmental

factors, this work proposes a support machine learning model to aid in the early diag-

nosis of ASD with gene expression information from samples of blood collected from

the umbilical cord at the time of birth, taking advantage of both genetic information as

well as a unique insight to the neonate’s environment in its most susceptible period. That

is achieved through a two-step ML classifier, where the first part classifies instances in

typical development (TD) or not, and the second part tries to separate those classified

as not being TD in ASD or not. An ensemble approach was used in each part, combin-

ing several of the most known algorithms tuned for each individual problem alongside

dimensionality reduction techniques. The classifiers had their hyperparameters tuned to

each problem, and the models were validated inside a k-fold cross-validation before be-

ing tested on previously separated data. Several metrics were extracted to characterize

the proposed model’s performance, and they indicated subtle but promising results that

validate the idea behind this work, suggesting this model could be an important step into

building a reliable and robust pre-diagnostic tool.

Keywords: Machine learning. autism spectrum disorder. ensemble. bioinformatics. gene

expression. transcriptomics. neurodevelopment.



Desenvolvimento de modelo de aprendizado de máquina para identificação de

assinatura molecular e auxílio ao diagnóstico precoce de Transtorno do Espectro

Autista

RESUMO

O Transtorno do Espectro do Autismo (TEA) é um grupo bastante frequente de transtor-

nos hereditários e heterogêneos do neurodesenvolvimento que se manifestam por meio

de déficits na comunicação e interação social, sensibilidades sensoriais, comportamentos

repetitivos e variados níveis de deficiência intelectual. Com o aumento recente dos diag-

nósticos de TEA e a falta de compreensão aprofundada sobre seus mecanismos, é crucial

melhorar o diagnóstico e entender melhor suas origens. Sabe-se que o TEA é influen-

ciado por fatores genéticos e ambientais, e dados biológicos que combinam influencias

genéticas e ambientais como dados de expressão gênica são promissores para investigar

essas influências. O aprendizado de máquina pode ser usado para aprender padrões sutis e

complexos em TEA, por meio de algoritmos de classificação. Considerando a dificuldade

e os impactos na vida quanto mais tardio o diagnóstico, e o fato de que o TEA pode ser

influenciado por fatores ambientais pré-natais, perinatais e pós-natais, este estudo pro-

põe um modelo de aprendizado de máquina para auxiliar no diagnóstico precoce do TEA

utilizando informações de expressão genética obtidas de amostras de sangue do cordão

umbilical no momento do nascimento, aproveitando tanto a informação genética quanto

uma visão única do ambiente do bebê em seu período mais suscetível. O modelo é com-

posto por duas etapas: a primeira classifica os indivíduos como desenvolvimento típico

(DT) ou não, e a segunda distingue TEA dentre as amostras classificadas como nao sendo

DT. Utilizou-se uma abordagem ensemble, com múltiplos algoritmos de classificação para

cada etapa, combinada com técnicas de redução de dimensionalidade. Os classificadores

tiveram seus parametros ajustados e validados através de validação cruzada k-fold antes

de serem testados em dados independentes. Diversas métricas foram extraídas para carac-

terizar o desempenho do modelo proposto, e indicaram resultados sutis, mas promissores,

validando a hipotese deste estudo sugerindo que o modelo pode ser um passo importante

para o desenvolvimento de uma ferramenta diagnóstica mais confiável e robusta para o

TEA.

Palavras-chave: aprendizado de máquina, transtorno do espectro autista, ensemble. bi-

oinformática, expresssão gênica, transcriptômica, neurodesenvolvimento..
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1 INTRODUCTION

An increase in the diagnosis of Autism Spectrum Disorder (ASD) has been ob-

served in recent years, with studies mentioning it could be as prevalent as 1 in 36 people

(ZABLOTSKY; BLACK; BLUMBERG, 2017). This has gradually encouraged more re-

search on the causes and impacts of this disorder. ASD is a group of neurodevelopmental

disorders characterized by impairment in social communication and interaction as well as

repetitive patterns of behaviors and it frequently occurs alongside other conditions. Al-

most three-quarters of children with ASD also have another medical, psychiatric, or neu-

rological disorder, leading to additional physical or mental challenges, higher treatment

costs, and increased demands on their families (SHARMA; GONDA; TARAZI, 2018).

Some of these challenges can be lessened by early interventions, which also justify the

need for early diagnosis. However, the heterogeneous origin of ASD is not completely

understood. It is known that the occurrence of the disorder is influenced by both genetic

and environmental factors, being a highly heritable disorder.

Several studies have been proposed to further understand the relationship between

the genetic and environmental components of ASD, like Tylee et al. (2017) and Hertz-

Picciotto et al. (2018), and one tool for such is the use of transcriptomic data. Gene

expression alterations by default offers a mix of genetic and enviromental factors, making

it promissing for the study of such a complex, heterogeneous disorder. Alterations have

been observed in pathways involved in immune response and neuronal activity functions

(HODGES; FEALKO; SOARES, 2020), making blood and brain expression ideal for the

study of ASD.

ASD is associated with the role of hundreds of gene variants, hence to this day di-

agnosis is given by standardized neurodevelopmental assessments applied by profession-

als. Some machine learning (ML) studies propose the idea of using supervised learning to

learn complex underlying patterns in ASD through classification algorithms, essentially

offering a preliminary diagnosis based on some specific data (OMAR et al., 2019) (LIU;

LI; YI, 2016) (ZHANG et al., 2018). The power of ML combined with the information of

gene expression has been shown to give promising results, but mostly rely on postmortem

samples of brain tissue or blood samples collected into toddlerhood.

Considering the difficulty and impacts in life the later the diagnosis, and the fact

that ASD may be influenced by prenatal, perinatal, and very early postnatal environmental

factors, this work proposes a support ML model to aid in the early diagnosis of ASD with
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gene expression information from samples of blood collected from the umbilical cord at

the time of birth, taking advantage of both genetic information as well as a unique insight

to the newborn’s environment in its most susceptible period.

That is achieved through a two-part ML classifier, where the first part classifies

subjects in typical development (TD) or not, and the second part tries to separate those

classified as not being TD in ASD or not. An ensemble approach was used in each

part, combining several of the most known algorithms tuned for each individual prob-

lem, alongside dimensionality reduction techniques. The models were trained, validated

and tested in a k-fold cross validation (CV) inside of a holdout.

The proposed architecture offered subtle but promising results in the chosen data

that validate the idea behind this work and could be used to improve the method into a

reliable and robust model. The idea of a two-step approach takes advantage of the differ-

ences between both atypically developing groups and the control group to first separate

the samples and later identify ASD subjects from a smaller pool. The plan of combining

multiple classifiers yielded a final model that could learn some of the ASD patterns even

though some of the individual classifiers could not, and even more, suggested which types

of algorithms are better fit for the problem based on their way of learning.

The remainder of this work is structured as follows. Chapter 2 expands on the

main concepts of this work in the topics of ASD, ML and gene expression. Chapter 3

presents works on a similar scope to ours. Chapter 4 introduces the data used in this study,

alongside the followed methodology and the evaluation approach. Chapter 5 presents and

analyses the results obtained through the implementation. Finally, Chapter 6 discusses

the conclusions obtained through the whole analysis.
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2 BACKGROUND

This Chapter presents the main concepts necessary to understand this research.

As the main topic of the problem being tackled, the Section 2.1 offers an overview of

Autism Spectrum Disorder, followed by some necessary knowledge in bioinformatics in

Section 2.2 to give some insight to the data being used and the interpretation of the model,

and finishing with some basic notions of ML to understand the proposed architectures in

Section 2.3.

2.1 Autism Spectrum Disorder

ASD, often referred to as autism, is a prevalent, highly heritable, and heteroge-

neous neurodevelopmental disorder characterized by a variety of cognitive characteris-

tics and frequently occurring alongside other conditions (LORD et al., 2020). The term

autism was first introduced by KANNER et al. as an independent disorder to a syndrome

observed in young children with communication and social impairments, as well as repet-

itive behaviors 1943. Nowadays, the current definition and diagnostic criteria come from

the Diagnostic and Statistical Manual of Mental Disorders—5th edition (DSM-5), that

defines it as (ASSOCIATION, 2013):

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders
characterized by persistent impairment in social communication and interac-
tion and restricted and repetitive patterns of behavior, interests, or activities.

The DSM-5 introduces the idea of a spectrum of disorders, meaning the term ASD

is used as an umbrella term to define a myriad of disorders that previously were separate

diagnoses, and offers additional clinical descriptors to better define the level of severity

and help categorize the level of support needed by an individual with the disorder.

As defined, autism manifests through impairments in social communication and

interaction, sensory sensitivities, repetitive behaviors, and varying degrees of intellectual

disability. In addition to these core symptoms, almost three-quarters of children with

ASD also have another medical, psychiatric, or neurological disorder, leading to addi-

tional physical or mental challenges, higher treatment costs, and increased demands on

their families (SHARMA; GONDA; TARAZI, 2018). Common conditions include hy-

peractivity and attention disorders like attention deficit hyperactivity disorder (ADHD),

as well as anxiety, depression, and epilepsy (LORD et al., 2020). ASD is also more fre-

quent in patients with chromosomal abnormalities, the most mentioned being Down syn-
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drome and Fragile X syndrome (GENOVESE; BUTLER, 2020) (SHARMA; GONDA;

TARAZI, 2018).

The origin of ASD is fairly uncertain, but it is known that both genetic and envi-

ronmental factors play a part in the presence of the disorder. In Subsection 2.1.1 we will

explore some of the known origins and risk factors associated to ASD. Following that,

the diagnostic methods and criteria will be explored in Subsection 2.1.2 alongside some

prevalence aspects in general population.

2.1.1 Causes of ASD

Genetics plays a prominent role in ASD susceptibility. Heritability is the propor-

tion of variation in a population trait that can be attributed to inherited genetic factors. The

heritaility of ASD risk has been well established with twin and family studies, with the

risk rate ranging from study to study, but agreeing on increased risk of diagnosis when

compared to population norms (that risk being much higher, although not absolute, in

monozygotic twins) (HODGES; FEALKO; SOARES, 2020). A study on the heritability

of medical conditions based on insurance claims for over a third of the entire United States

population even demonstrated that autism is among the most heritable common medical

conditions, and had the highets estimate in their liability-scale heritability (WANG et al.,

2017).

Although ASD is considered one of the most genetically heterogeneous neuropsy-

chiatric disorders, having been associated with the role of hundreds of gene variants with

risk effects highly variable and related to other conditions, genomics studies have broad-

ened our understanding of ASD susceptibility genes. Moreover, the study of these genes’

functions can further enlighten us on potential biological mechanisms. Some studies sug-

gest, for example, alterations in pathways involved in immune response and neuronal

activity functions (HODGES; FEALKO; SOARES, 2020).

Genetics certainly play a role, but the genetic risk may be modulated by prenatal,

perinatal, and very early postnatal environmental factors in some patients. One evidence-

based review of systematic reviews and meta-analyses of environmental risk factors for

autism included a comprehensive coverage of the literature and reported several of these

factors (MODABBERNIA; VELTHORST; REICHENBERG, 2017), illustrated in Figure

2.1 among other studies. Some of the environmental factors associated with increased

risk for autism identified by this review and other studies are:
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• Advanced parental age;

• Birth trauma, particularly if due to proxies of hypoxia;

• Maternal obesity;

• a short interval between pregnancies;

• Gestational diabetes mellitus;

• Prenatal exposure to valproic acid;

• Infants born prematurely (demonstrated to carry a higher risk for ASD and other

neurodevelopmental disorders);

• Parental history of psychiatric disorders, and in particular schizophrenia and affec-

tive disorders;

Figure 2.1: Environmental risk factors for autism. Data from studies aiming to identify
risk factors for autism with evidence supporting an association. Bars represent ranges. a

Represents recurrence risk.

Source: Lord et al. (2020)

It is important to explicitly say that all of the factors mentioned above have been

reported as having a correlation to the presence of ASD, thus no causal determinations

have been made to date.

Several studies have been proposed to further understand the relationship be-

tween the genetic and environmental components of ASD, but two significant to this

work are Early Autism Risk Longitudinal Investigation (EARLI) (NEWSCHAFFER et

al., 2012) and Markers of Autism Risk in Babies-Learning Early Signs (MARBLES)

(HERTZ-PICCIOTTO et al., 2018). Both studies are high-risk pregnancy cohorts that

enroll younger siblings of a child previously diagnosed with ASD, evaluating environ-

mental risk factors and assessing the child development from birth to up to 36 months. In
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both studies, data and biological samples were collected throughout pregnancy, at birth,

and until the child’s third birthday. The biological samples included umbilical cord blood

collected in a PAXgene Blood RNA tube, that contains an additive that yelds immediate

long-term stabilization of RNA by reducing post-collection degradation and minimizing

gene induction and repression, thereby yielding accurate and reproducible gene expres-

sion data when later sent for sequencing (RAINEN et al., 2002). The data was collected

through standardized interviews and questionnaires, and the younger child development

was assessed by trained, reliable examiners using standardized tests and an algorithmic

approach to scoring.

2.1.2 Diagnosis of ASD

Given the complexity, severity, and symptom overlap of ASD with other psychi-

atric disorders, accurate diagnosis requires the use of appropriate instruments and scales.

Effective clinical management of ASD depends on thorough assessments, including in-

terviews with parents or caregivers, direct patient interviews, observational assessments,

and an in-depth review of family history for ASD or other neurodevelopmental disorders

(SHARMA; GONDA; TARAZI, 2018). Some neural screenings like Magnetic Resonance

Imaging (MRI) can facilitate understanding of how the brain structurally and functionally

develops differently in people with autism, but, to date, these results are not definitive

(LORD et al., 2020).

Standardized neurodevelopmental assessments applied by professionals are the

current norm for a diagnosis. Some typical tool utilized in children are Autism Diagnos-

tic Observation Schedule (ADOS) (BRYSON et al., 2008), Autism Diagnostic Interview-

Revised (ADI-R) (LORD; RUTTER; COUTEUR, 1994), Modified Checklist for Autism

in Toddlers (M-CHAT) (WRIGHT; POULIN-DUBOIS, 2014), Early Screening of Autis-

tic Traits (ESAT) (SWINKELS et al., 2006), and Mullen Scales of Early Learning (MSEL)

(MULLEN, 1995).

Diagnostic methods for identifying autism in adulthood are still developing, as

this is a relatively recent focus. Currently, clinical approaches primarily extend tech-

niques from methods designed for diagnosing autism in children to adults, often relying

on developmental information from their childhood. ADOS Module 4 (HUS; LORD,

2014), for example, has shown to have good specificity and sensitivity. However, since

undiagnosed autistic adults seeking an autism assessment are often also dealing with co-
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occurring mental health disorders, any assessment method must effectively distinguish

between symptoms and behaviors related to autism and those arising from other mental

health issues (LORD et al., 2020), meaning any diagnostic method developed for adults

must be able to differentiate symptoms of ASD from those of other co-occurring disor-

ders.

2.2 Gene expression

Genes encode proteins and proteins dictate cell function. Gene expression is the

process by which the information in a gene is transformed into a functional product, usu-

ally through the transcription of RNA molecules that code for proteins or non-coding

RNAs with various roles. Gene expression regulates the timing, location, and quantity

of RNA and protein production. It is strictly regulated, changing significantly across cell

types and different conditions. Additionally, the RNA and protein products of some genes

often regulate the expression of other genes. Transcriptomics is the study an organism’s

transcriptome, which encompasses all of its RNA transcripts. The transcriptome provides

a snapshot of the total transcripts present in a cell at a specific moment (LOWE et al.,

2017).

There are different techniques in this field to study the gene expression, microar-

rrays being the one used in this work. The main objective of most microarray experiments

is to analyze gene expression patterns by measuring the expression levels of thousands of

genes in a single assay. Typically, RNA is extracted from different tissues, then labeled

and hybridized to the arrays. This approach enables the expression levels to be assayed

between appropriate sample pairs. After hybridization, the arrays are scanned to produce

grayscale images for each sample pair, which must be analyzed to identify the array spots

and measure the relative fluorescence intensities for each element. The basis of microar-

ray analysis is that the measured intensities for each gene on the array reflect its relative

expression level (QUACKENBUSH, 2002). An example of this can be seen in Figure 2.2,

where the rows are patient samples, the columns identify each probe, and each value rep-

resent the (already normalized) measured fluorescence intensities that represent a certain

gene expression for a certain instance.

Studying biological factors that combine both genetic and environmental influ-

ences, such as genome-wide gene expression levels (transcriptome), can offer valuable

insights into the developmental pathophysiology of ASD, reason why several studies have
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Figure 2.2: Exemple of microarray, where the rows are patient samples, the columns iden-
tify each probe, and each value represent the (already normalized) measured fluorescence
intensities that represent a certain gene expression for a certain instance.

Source: The Authors

already examined gene expression differences in ASD children specially in blood sam-

ples, like Tylee et al. (2017), Enstrom et al. (2009), Gregg et al. (2008) and Kong et

al. (2013). That is because immune-related alterations have consistently been observed

in ASD patients, including signs of immune dysregulation and autoimmune phenomena.

The use of gene expression in blood, then, is expected to provide insight into ASD-related

transcriptional differences in circulating immune cells.

Like mentioned in Section 2.1, environmental factors may play a role in prenatal,

perinatal, and very early postnatal development associated to ASD. Umbilical cord blood

provides a snapshot of fetal blood and the exchanges across the fetoplacental unit, offering

a unique perspective into prenatal development. It contains a very specific mixture of

cells that reflects the immune response, as well as endocrine and cellular communication

crucial for fetal development around the time of birth. This idea comes from Mordaunt

et al. (2019), inspiration for this research, who proposed a meta analysis on this data to

further our understanding of perinatal transcriptional changes that occur before an ASD

diagnosis in high-risk children.

2.3 Machine Learning

According to Goodfellow, Bengio and Courville (2016), Machine Learning sys-

tems are those capable of learning by extracting patterns from raw data and making de-

cisions based on them. But to fully define a machine that learns it is important to define

learning in this context. One such definition is that any program is considered to be learn-

ing if it improves its performance through experience acquired from data (MITCHELL,

1997).

ML is usually divided into three categories, based on the kind of learning that
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is being applied: supervised learning, unsupervised learning and reinforcement learning.

This work applies a supervised learning approach, meaning the program receive a dataset

where each instance has its defining information (called its features or attributes) and a

target, and the objective of the program is to learn how to best map each input to a suitable

target based on its features (MURPHY, 2012). Supervised learning can be divided in two

kinds of learning tasks, classification, where the target is categorical and the objective is

to assign a category to each item, and regression, where the target is a real-valued scalar

and the objective is predicting a real value for each item (MOHRI; ROSTAMIZADEH;

TALWALKAR, 2012).

This work is projected as a classification problem. Specifically, we develop a

binary model for classification on biomedical data, where the input data is gene expression

information from patients in an ASD study, the features being each individual probe, and

the target labels, or classes, for the output are related to the subjects final diagnosis.

ML has been used in biology for decades, and currently it is used in nearly every

field of biology. Recently, though, there has been na effort to better match methods to

certain scenarios. There are two main goals when using ML in biology, which are to

make accurate predictions, and to further our understanding of biology (GREENER et al.,

2022).

2.3.1 Algorithms

In total, eight ML classification algorithms were used inin each classification step

of this work. Each classification algorithm was trained twice, once for each step, in the

same data, but on different target sets.

K-Nearest Neighbors (KNN): Is an instance-based method that assumes all instances

correspond to points in the n-dimensional space (n being the number of features),

and attributes a class to the predicted instance based on a vote of the classes of the

K nearest instances in that space, the nearness being given by a distance function

(MITCHELL, 1997).

Naive Bayes (NB): A probability-based classifier that assigns to a new instance the most

probable target value based on the assumption that the attribute values are condi-

tionally independent, meaning that given the target value of the instance, the prob-

ability of observing a certain combination of attribute values is the product of the
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probabilities for each individual attribute (MITCHELL, 1997). In the scope of the

current research, since all the feature are real-valued, the Gaussian distribution was

used, meaning the likelihood of the features is assumed to be Gaussian function

(MURPHY, 2012).

Logistic Regression (LR): A method that uses a sigmoid function that takes input as

independent variables and produces a probability value between 0 and 1, to classify

an instances based on a threshold for that value (MURPHY, 2012).

Support Vector Machine (SVM): A kernel method where each data point is a vector

so that the input vectors are mapped to a high-dimension feature space, where a

decision boundary (whose location is determined by a subset of the data points

known as support vectors) is chosen by maximizing the margin, which is defined

as the smallest distance between the decision boundary and any of the samples.

It performs linear classification, but also non-linear classification with the use of

kernel functions (CORTES; VAPNIK, 1995) (BISHOP, 2006).

Multi-layer Perceptron (MLP): Also known as the feed-forward neural network, con-

sists of a input layer that represents the input features, one or more hidden layers

that transforms the values from the previous layer with a weighted linear summation

followed by a non-linear activation function, and an output layer that receives the

values from the last hidden layer and transforms them into output values (BISHOP,

2006).

Random Forest (RF): An ensemble learning method based on the aggregation of nu-

merous decision trees built on independent identically distributed random vectors,

where in the end the predicted target for a certain input is defined through a vote of

all trees’ outputs (BREIMAN, 2001). Decision trees refer to a hierarchical model of

decisions and their consequences. They are used to classify an instance into a pre-

defined set of classes based on a division of their attributes values, in hierarchical

order of attribute importance (ROKACH; MAIMON, 2014).

Extreme Gradient Boosting (XGBoost): An ensemble tree based method that utilizes

an optimized version of gradient boosting. Gradient boosting is an approach where

multiple weak models (in this case decision trees) are combined in a sequence so

that each new model corrects mistakes of the previous ones by optimizing the loss

function. XGBoost optimizes the approach for both hardware and software, hav-

ing as some key improvements the parallelization of trees, regularization to reduce

overfitting, and its flexibility by having a large number of adjustable hyperparame-
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ters (CHEN; GUESTRIN, 2016).

Light Gradient-Boosting Machine (LightGBM): Similar to XGBoost, it is a variation

of gradient boosting decision trees that aims at an optimized model with a more effi-

cient hardware usage. LightGBM has some of the same advantages as XGBoost as

well as two novel techniques, Gradient-based One-Side Sampling (GOSS), which

selectively retains instances with large gradients during training, and Exclusive Fea-

ture Bundling (EFB), a near-lossless method to reduce the number of effective fea-

ture (KE et al., 2017).

2.3.2 Model evaluation

In this Subsection, the methods used in this work for evaluating an ML model’s

performance are discussed. This includes the evaluation metrics, described in Section 2.3.3

and cross-validation, in Section 2.3.4.

2.3.3 Performance metrics

It is important to track measures of a model’s performance in order to assess its

abilities, usually through quantitative measures. To characterize the performance of this

model, six metrics were used: accuracy, precision, recall, F1 score, F-beta score and the

ROC AUC (area under the receiver operating characteristic curve). All these metrics are

better understood through the concept of a confusion matrix, that can be formally defined

as following (OPITZ, 2024):

mf,S
ij = |{s ∈ S|f(s1) = i ∧ s2 = j}|2 (2.1)

where

• mf,S
ij is the confusion matrix mf,S

ij ∈ Rn×n
≤0

• f is any classifier f : D → C = {1, · · · , n}

• S is the sample set, a finite set S ⊆ D × C

• i is the predicted labels

• j is the true labels

• D is the set of possible data entries
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• C is the set of target classes

• n is the number of classes in the problem

In simpler terms, a confusion matrix is such that each entry t, p is equal to the

number of observations known to be in group t and predicted to be in group p. In Table

2.1 an example can be seen, where TP is the True Positive, the inputs from class Positive

predicted correctly as class Positive, TN is the True Negative, the inputs from class Neg-

ative predicted correctly as class Negative, FP is the False Positive, the inputs from class

Negative predicted incorrectly as class Positive, and FN is the False Negative, the inputs

from class Positive predicted incorrectly as class Negative. The sum of all 4 values results

in the complete population n = TP + TN + FP + FN .

Table 2.1: Example of confusion matrix, where TP is the True Positive, TN is the True
Negative, FP is the False Positive, and FN is the False Negative.

Predicted
Positive Negative

True
Positive TP FN
Negative FP TN

Source: The Authors

Based on the notions presented for the confusion matrix, the six chosen metrics

can be explained as following:

Accuracy: is the rate of instances correctly predicted by the model, defined as

Acc =
TP + TN

n

Precision: shows how often the model is correct when predicting an instance as Positive,

defined as

Prec =
TP

TP + FP

Recall: also known as sensitivity or True Positive Rate (TPR), shows how often the

model predicts the Positive instances as such, and is defined as

Recall =
TP

TP + FN

F1 score: also known as F-measure, can be interpreted as a harmonic mean of the preci-

sion and recall, and is defined as

F1 =
1× TP

2× TP + FP + FN
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F-beta score: can be interpreted as the weighted harmonic mean of precision and recall,

where β ≥ 0, β < 1 gives more weight to precision, β > 1 gives more weight to

recall, and β = 1 is the same as the F1 score. It is defined as

Fβ =
(1 + β2)TP

(1 + β2)TP + FP + β2FN

ROC AUC: compute Area Under the Receiver Operating Characteristic Curve (ROC

AUC), the ROC curve being the plot of the he fraction of true positives out of

the positives against the fraction of false positives out of the negatives at various

discrimination threshold settings.

Another important concept surrounding the CM is Specificity, also called True

Negative Rate (TNR). It is the probability of a negative test result among the Negative

instances, defined as

TNR =
TN

TN + FP

The choice of performance measures typically reflects the expected characteristics

and behavior of the model being evaluated. In the context of this work a large set of

metrics can be justified in the intention to fully understand the model proposed, but in the

sense of enhancing the model’s performance a single metric was chosen as optimization

goal: F-beta score.

2.3.4 Cross-validation

It is important to evaluate how the model performs on data that it has not seen

before, since this determines its performance in real-world cases. To properly do that the

dataset used must be divided, so that the model can be trained in one part (a Train set) of

the dataset and evaluated with the other (a Test set), but the proportion of such division

must be so that the Train set is large enough to properly learn the input patterns and

the Test set is not too small that the statistical uncertainty of the computed performance

metrics may make it difficult to claim that the result is truly representative of the model’s

capabilities (GOODFELLOW; BENGIO; COURVILLE, 2016).

The performance of any ML algorithm depends heavily on the given representa-

tion of the data (GOODFELLOW; BENGIO; COURVILLE, 2016). As Libbrecht and

Noble (2015) explain, data from medical or biological applications, like genomic, epige-
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nomic, transcriptomic, proteomic or metabolomic data are high dimensional by default,

and as so are prone to some difficulties that come with high dimensionality, like poor gen-

eralization. Not only that, but they also tend to have a small number of data points, which

is the case of the dataset collected for this work. Besides all that, the proposed model

has a two-part classification process, and multiple classifiers have their hyperparameters

tuned to each step of said process.

Because of the architecture of this experiment and the low amount of data used,

cross-validation was chosen as a solution. Cross-validation (CV) is the process of dividing

a whole dataset in K equal parts, called folds, and then for each fold k = {1, · · · , K} the

algorithm is trained on all folds but k’th (GOODFELLOW; BENGIO; COURVILLE,

2016). In the context of this work, a holdout 80/20 was applied in the whole dataset, and

a nested cross-validation was used on the Train set, all stratified for all 3 classes. That

means the whole dataset was divided keeping 80% to train on and 20% to test, and then on

the Train dataset was applied a 5-fold CV, followed by a 3-fold CV on the training portion

of each iteration of the 5-fold one, always keeping the proportion of samples between

classes. The classifiers’ hyperparameters are tuned inside a 3-fold CV, and then trained

and validated for the two-step process on the outer 5-fold CV. The whole process in then

tested on the remaining Test set (separated through holdout).
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3 RELATED WORKS

This Chapter presents other works related to this research, some in the study of

ASD through ML with gene expression data and some in the findings of works utilizing

blood expression to research ASD.

It is impossible to talk about related works without mentioning Mordaunt et al.

(2019), that provided the pre-processed data for this research and has served as motiva-

tion for our work as the first study to identify gene expression differences in cord blood

specific to ASD through a meta-analysis. They used genome-wide transcript levels mea-

sured by Affymetrix Human Gene 2.0 array in RNA from cord blood samples from both

MARBLES and EARLI, two high-risk pregnancy cohorts previously mentioned in Sec-

tion 2.1, to compare gene expression between ASD and TD, and between TD and children

that were not ASD but not TD either (Non-TD), within each study and via meta-analysis,

through differential expression analysis and weighted gene correlation network analysis.

The authors discovered that while gene expression differences in cord blood between

ASD or Non-TD and TD groups did not reach genome-wide significance, 172 genes were

differentially expressed between ASD and TD and 66 genes between Non-TD and TD,

including 8 genes that were differentially expressed in both comparisons. They also iden-

tified demographic factors and cell type proportions significantly correlated to the gene

expression modules. Their final conclusion was that, since umbilical cord blood is not

the main affected tissue in ASD, it is composed of many cell types, and ASD is a het-

erogeneous disorder, the expression differences found were subtle but the enriched gene

pathways support involvement of environmental, immune, and epigenetic mechanisms in

ASD etiology.

ML has been applied in many ways regarding ASD, including ASD identification

like this work, except usually on standardized assessments, kinesthetic data, and neu-

roimaging data. Omar et al. (2019), for example, proposed a prediction model based

on ML technique for identifying ASD in people of any age. The authors used 250 in-

stances collected from people with and without autistic traits and the AQ-10 dataset, that

combines personal and social information with the results from the AQ-10 tool (Autism

Spectrum Quotient), used to identify whether an individual of any age should be referred

for a comprehensive autism assessment. The results showed that the proposed prediction

model provides good results in terms of accuracy, specificity, sensitivity, precision, and

false positive rate (FPR) for both kinds of datasets.
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Liu, Li and Yi (2016) applied ML to classify children as having ASD or not based

on the analysis of an eye movement dataset, reporting that their study is preliminary but

the results show promising evidence. Zhang et al. (2018) used feature extraction and clas-

sification techniques to identify ASD in male children through white matter abnormality

via identification of discriminative fiber tracts in diffusion magnetic resonance imaging

(dMRI). Neuroimaging has also been used to predict symptom severity, like Moradi et

al. (2017), who propose using regression techniques to predict ASD symptom severity

based on cortical thickness with smaller samples than other approaches, and demonstrate

its usefulness with the Autism Brain Imaging Data Exchange (ABIDE) database.

Regarding gene expression and ML, both Lin et al. (2020) and Gök (2019) employ

ML-based approaches to predict ASD risk genes based on brain-related data. LIN et

al. used supervised ML methods to predict autism risk genes from their spatiotemporal

expression signatures, network topology features, gene-level constraint metrics, and other

general gene features. GöK used genes expression data related to brain development and

proposed a ML model composed of feature extraction, followed by discretization methods

and a classification algorithm. Both works presented interesting results when predicting

known and new candidate genes for ASD.

Some work was also found on ASD and blood gene expression, although not all

with ML techniques. In Glatt et al. (2012), an investigation for blood-based gene expres-

sion signatures in ASD children was performed, finding potential biomarkers for ASD in

one half of the sample set through an analysis of covariance (ANCOVA) and using the

biomarkers to build a classifier tested in the remaining data. The identified genes went

through an enrichment analysis to identify particular functional, ontological, or structural

annotations. Tylee et al. (2017) combined the subject-level data from previously pub-

lished studies in blood transcriptomics by mega-analysis to increase the statistical power,

processing data with uniform methods. Covariate-controlled mixed-effect linear models

were used to identify gene transcripts and co-expression network modules that were as-

sociated with ASD diagnosis. Moreover, permutation-based gene-set analysis was used

to identify functionally related sets of genes that were over- and under-expressed among

ASD samples, and evidence for sex-differences in the ASD-related transcriptomic sig-

nature was explored. Finally, the authors demonstrated that machine-learning classifiers

using blood transcriptome data perform with moderate accuracy when data are combined

across studies.

Enstrom et al. (2009) performed a gene expression screening and cellular func-
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tional analysis on peripheral blood from children with ASD and TD children, finding

abnormalities in natural killer cells that could represent a predisposition in ASD to de-

velop autoimmunity and/or adverse neuroimmune interactions during critical periods of

development.

Using classification algorithms in ASD data is not new, and it has shown promising

results. However, few works use gene expression for diagnosis classification, especially

blood gene expression. Published researches propose the existence of information on

this kind of data that could, in theory, be learned. Specific to umbilical cord blood in

ASD cases, only Mordaunt et al. (2019) was found, so this work proposes a new kind

of exploration in the field of ASD research by using such type of data in a diagnosis

classification problem.
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4 EXPERIMENTS

In broad terms, the problem being tackled by this work is of trying to use gene ex-

pression data to classify samples as belonging to ASD patients or not. As seen previously

in Section 2.3, it is already hard to extract relevant information from biological data be-

cause of high dimensionality and small number of data points, and ASD is a particularly

complex case, being a heterogeneous disorder for which a lot of the genetic characteristics

are still unknown, as seen in Section 2.1. For these reasons, the approach used to create

an ASD early diagnosis support model was dividing the major problem into two tasks:

first classify the patients into typical and atypical development, and then separate those

classified as having an atypical development into ASD and not ASD.

Figure 4.1 shows an overview of the proposed architecture, where data is used as

input for the first smaller model, whose output is used to filter the same data, that is then

used as input of the second smaller model, whose output is the final prediction. In Figure

4.2 we show the inside of each smaller model, where 8 classifiers are trained and then

have their predictions combined using soft voting.

Figure 4.1: Architecture of the proposed classifier, where in green we have the dataset,
transformed for each individual task, in red the models equivalent to each task, the output
of the first serving to filter the input data to the next, only keeping instances not predicted
as TD, and finally, in blue, the final prediction.

Source: The Authors

To implement that, a preprocessed gene expression dataset from umbilical cord

blood samples was used, with the number of features reduced by 86%, as explained in

Section 4.1. Section 4.2 details the proposed experiment, that consisted of:

1. Dividing the dataset;

2. Scaling the data;

3. Choosing 8 classifiers;

4. Tuning and training said classifiers for the first task;

5. Combining the predictions into a single one;
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Figure 4.2: Inner architecture of each model of the proposed classifier, where 8 distinct
classifiers are trained in the same data and then have their predictions aggregated through
soft voting into a final prediction.

Source: The Authors

6. Using the combined prediction to filter the dataset for the second task;

7. Tuning and training the classifiers for the second task;

8. Combining the predictions into a final one.

In Section 4.3 it is further explained how the aforementioned model was evaluated,

by choosing which metrics to consider, analysing and selecting the best hyperparameters

for each classifier, and then training on the Train set and evaluating on the Test set.

4.1 Dataset and dimensionality reduction

Our experiments (described in details in Section 4.2) were conducted using a pre-

processed dataset collected from Mordaunt et al. (2019). The data consisted of genome-

wide transcript levels measured in umbilical cord blood samples from two studies in early

ASD, EARLI (NEWSCHAFFER et al., 2012) and MARBLES (HERTZ-PICCIOTTO et
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al., 2018). Both studies collected the blood sample at birth and carried 36 month assess-

ments, with an algorithm-based child diagnosis, from high-risk pregnancies based on the

knowledge that the families already had a older child previously diagnosed with ASD.

The younger siblings were categorized as either ASD, TD, or Non-TD.

The preprocessing applied by the authors consisted of assessing signal distribution

within each study, quality control, normalization, probe annotation and filtering, and fi-

nally surrogate variable analysis. Signal distribution was assessed in perfect-match probe

intensity and robust multi-chip average (RMA) normalized data. For quality control, out-

liers were identified and those that did not meet certain criteria were excluded, alongside

subjects without a diagnosis by the time of the study. Probes were annotated at the tran-

script level, and those not assigned to a gene were excluded as well. Surrrogate variable

analysis was then used to estimate and adjust for factors that may have substantial effects

on gene expression. From the resulting 271 samples preprocessed in the study, only the

data from those who consented to share was used.

From the original data the only information kept for this work was the gene ex-

pression, the probes’ identifiers (used as feature names), a depersonalized identification

for each patient (used as each sample’s id), and the diagnosis (which was used as the target

class). In total there were 36459 attributes and 224 samples, divided in three classes:

• 53 ASD

• 80 Non-TD

• 91 TD

Besides the imbalance seen in the classes (that was judged not significant enough

to justify altering through data augmentation, resampling techniques, or any similar ap-

proach) the collected data results in a very high dimensional dataset. As mentioned before,

transcriptomic data like the one applied to this work are high dimensional by default, and

as such are prone to some difficulties. For this reason, a few techniques were applied to

lower the dimensionality by reducing the amount of features.

The resulting dataset was first filtered based on information collected about the

platform used in the sequencing process, the "[HuGene-2_0-st] Affymetrix Human Gene

2.0 ST Array [transcript (gene) version]". Using the column "GB_ACC" on the platform

table (that specifies the GenBank and RefSeq Accessions for each transcript associated to

a probe) only the probes annotated with the prefix "NM" were kept as features, since that

means that it is associated to mRNA. That resulted in a reduction of 65% in the number
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of features, leaving 12896 columns in the dataset.

The remaining features were ranked and filtered by the top 5000 features with the

highest variance, which is defined as the following:

S2 =

∑
(xi − µ)2

n− 1
(4.1)

Where:

• S2 is the variance;

• n is the number of samples

• xi is the ith data point

• µ is the sample mean

4.2 Methods

Besides the preprocessing already implemented in the collected dataset and the

transformations done as described previously in Section 4.1, a few other manipulations,

as described in Section 4.2.1, were necessary as part of being a dataset used for a ML

classification problem.

Each of the eight classification algorithms mentioned in Section 2.3.1 was tuned

and trained twice, once for each task, resulting in 16 distinct trained models (2 of each

algorithm) for each fold of the cross validation. The hyperparameter tuning explained in

Section 4.2.2 was performed with the same hyperparameter list for each task, the only

difference being in the data.

Since the original dataset consists of 3 classes and each task consists of 2 distinct

classes, a simple transformation was applied to the target list before each step’s imple-

mentation: for the first step’s implementation the class ’TD’ was set to target 0, and both

classes ’Non-TD’ and ’ASD’ were set to 1; and for the second step, both ’TD’ and ’Non-

TD’ were set to target 0 and class ’ASD’ was set to 1. The second step does not expect

a class ’TD’, but considering that after the first model’s aggregation, described in Section

4.2.3, when the dataset is filtered to keep only the samples classified as being related to an

atypical development there is the possibility of misclassified samples, those were simply

labeled as not ASD.
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4.2.1 Data preprocessing

The reduced dataset, with 224 samples and 5000 features, was divided in two

subsets using the holdout 80/20 method, meaning the original dataset was divided in a

training set of 80% and a test set of 20% of the whole sample set, both with the same ratio

of each class as shown in Table 4.1. For the Train set, 5-fold stratified cross validation was

used, with a nested 3-fold stratified cross validation for the hyperparameter tuning. All

these steps are visible in Figure 4.3, that illustrates the data division through the holdout

and then the k-fold CV, and Figure 4.4, that illustrates what takes place at each iteration

of the 5-fold CV.

Table 4.1: Number of samples of each class in each dataset before (Total) and after (Train,
Test) the stratified holdout 80/20 split.

Dataset ASD Non-TD TD Samples
Train 42 64 73 179
Test 11 16 18 45
Total 53 80 91 224

Source: The Author

Figure 4.3: Division of the data in train and test with the holdout split, followed by the
division of the train set in 5 folds for the CV, where for each iteration a different dataset
is used for validation until every fold has been the validation set once.

Source: The Authors

All classifiers had their own pipeline consisting of a scaler and the classifier itself.

The scaler of choice for all eight classifiers was Scikit Learn’s "StandardScaler", that

scales each feature independently and centers the values around the mean at unit variance,

following the formula bellow for each sample:

z =
(xi − µ)

σ
(4.2)

Where:
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Figure 4.4: CV iteration, where for each model 4 folds are used in a grid search, which
yields the hyperparameters for each classifier that is then trained on the same 4 folds
and validated in the fifth one. The prediction of the first model filters the data, which is
transformed for the second model, that follows the same steps as the first.

Source: The Authors

• z is the scaled sample

• xi is the current sample

• µ is the mean of the training samples

• σ is the standard deviation of the training samples

4.2.2 Hyperparameter tuning

Each classifier also had a set of hyperparameters to be tuned using a grid search,

meaning an exhaustive search for the best combination of hyperparameters was performed

for each classifier at each task, over a predefined set of values, in a 3-fold cross-validation

within each iteration of the 5-fold cross validation.

In order to choose the best hyperparameter for each model it is first important to

separate the hyperparameters in 3 types: nominal, integers and real numbers. For each

type a different strategy was implemented.

For nominal hyperparameters, defined here as the those where each possible value

is independent, meaning there is no natural ordering between values. For this kind of hy-

perparameters the statistical mode was used, so the frequency was calculated and ranked,

and the value with the highest frequency was chosen, and in case of a tie the first on the

list is chosen.

Integer hyperparameters are here defined as those that have a numeric value, but

that value does not allow for fracions, like a discrete quantity of something (eg. number of

estimators). For those hyperparameters the median value was used in the final classifier.

As for real numbers hyperparameters, these are hyperparameters where its values

are any number within an interval, meaning that any value from the set of real numbers R
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is allowed, as long as it is within the hyperparameter’s limits. For these cases, the mean

was used as final value.

4.2.3 Aggregation

The metric used to determine the best estimator from the grid searches was the

F-beta score. All estimators, with their determined best hyperparameters, were fit with

the whole Train dataset and a prediction was made, resulting in eight independent target

values for each sample. In order to combine all outputs into a single prediction for each

sample a soft voting was performed, meaning the average predicted probability for each

class was calculated based on the predicted probability of each individual model, and the

class with the highest probability was selected.

For algorithms like KNN and SVM a probabilistic output is not obvious. KNN

takes a voting of the K nearest points’ classes to decide a new instance’s class. In order

to return the probability of the instance being of each class instead of a label prediction

the algorithm calculates the ratio of the K nearest instances that belongs to each class.

In the case of SVM, the algorithm maps the input data into high-dimensional feature

spaces where linear classification can be performed. To return a probability instead of a

target label, the algorithm performs a logistic regression on the SVM’s scores, fit by an

additional cross-validation on the training data.

There were two main reasons for choosing a soft voting approach instead of a

traditional hard voting. The first being to better avoid ties, since the voting is performed

on a even number of outputs, and the second being that different algorithms may be better

at identifying different sets of instances, reporting higher probability in certain cases.

A soft voting takes better advantage of each algorithm’s strong points, leading to more

robust results.

4.3 Evaluation

The main metric of interest chosen to be maximized in any decision making pro-

cess was the F-beta score, with β = 1.5. Because of the low proportion of ASD samples

it’s imperative to judge the models based on metrics that look specifically to the class of

interest. By making a model that prioritizes precision and recall, giving a higher weight
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to recall, the expectation is avoiding the case where a model would just predict most or

every case as being negative, in the context of this model meaning classifying most or all

cases as not having ASD.

In order to properly evaluate the model with the Test set, the classifiers must be

trained with the whole Train set, all 179 samples as shown in Table 4.1. For that to occur

the classifiers must have determined hyperparameter values. Since in the cross-validation

each fold had its own set of best hyperparameter a selection strategy needs to be applied to

determine the best overall value for each hyperparameter of each classifier. That strategy,

already described in Section 4.2.2, is applied as a first step in the validation process.

The classifiers are then trained in the Train dataset as described in the previous

section (Section 4.2). The set of models for the first task are trained on the whole Train

data, with the target being TD or not and their predictions are aggregated. Next, the

combined prediction is used to filter the Train dataset for the second task and the set of

models for this classification task (i.e., having as target being ASD or not) are trained on

the whole Train data, Finally, their predictions are aggregated in a final prediction, used

for labeling a new instance.

In every possible step of the evaluation process, all metrics previously mentioned

were calculated in order to characterize and judge the whole method.

4.4 Computational resources

The model was developed and tested in Python 3.10 (ROSSUM; JR, 1995), ex-

ecuted in a jupyter Notebook inside a virtual environment. The operating system was a

Ubuntu 22.04.4 LTS, 64 bits, GNOME version 42.9. The machine running the code had a

motherboard ASUS Prime B450M Gamin/BR, with a multi-core processor AMD Ryzen

7 2700x eight-core processor × 16, 16GB of RAM memory plus 2.1GB of SWAP, disc

storage of 2.3TB, and graphics card AMD Caicos (Radeon HD 6450/7450/8450 / R5 230

OEM).

Some specific Python packages were used during the implementation, like pandas

(v2.0.3) (TEAM, 2023) for data analysis and manipulation; NumPy (v1.23.0) (HARRIS et

al., 2020) for multi-dimensional arrays and matrices, along with mathematical functions

to operate on them; Matplotlib (3.7.1) (CASWELL et al., 2023) for visualization of the

results; SciPy (v1.8.0) (VIRTANEN et al., 2020) for extracting some statistical metrics;

Scikit-learn (v1.2.2) (PEDREGOSA et al., 2011) for most ML related tasks; XGBoost
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(v2.0.3) (CHEN; GUESTRIN, 2016) for implementing the XGBoost algorithm in python;

and LightGBM (v4.1.0) (KE et al., 2017) for implementing the LightGBM algorithm.
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5 RESULTS

This chapter presents the results from the evaluation of the proposed model as

described in Section 4.3. They will be reported in the following order: performance in

the cross validation in Section 5.1, evaluation of the whole model in Section 5.2, and then

a final general analysis of the model’s behavior in Section 5.3. Throughout this chapter

the part of the model regarding the first part of the problem being tackled (i.e., TD or not

TD) will be referred as model 1, and the part regarding the second classification task (i.e.,

ASD or not ASD) will be referred as model 2.

5.1 Cross validation performance

Within the 5-fold cross validation, not only the model was trained and validated

but a grid search was performed in a 3-fold nested CV in each iteration in order to better

tune the classifiers on the complex problem being tackled. Figure 5.1 and Figure 5.2,

respectively referring to the grid search executed for model 1 and the grid search executed

for model 2, show the mean and standard deviation of the best F-beta score for each

individual classifier in the grid search. The individual score at this point of the training is

not that illustrative of the final performance, since it was executed on a very small amount

of data, but was used to better tune the models to their respective tasks.

Figure 5.1: Model 1 Grid Search summary, showing the mean (point) and standard de-
viation (vertical line) of the best score (axis Y) measured through F-beta score of each
classifier (axis x) throughout the 5-fold CV.

Source: The Authors
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Figure 5.2: Model 2 Grid Search summary, showing the mean (point) and standard de-
viation (vertical line) of the best score (axis Y) measured through F-beta score of each
classifier (axis x) throughout the 5-fold CV.

Source: The Authors

For a better understanding of the performance throughout the CV, we can observe

the metrics results for each Train/Validation split. The mean and standard deviation of the

F-beta score in the Train and Validation set through the 5-fold CV can be seen in Figure

5.3 for model 1 and Figure 5.4 for model 2. Similar Figures for the other metrics can be

seen in Appendix A.

Figure 5.3: Mean (bar) and standard deviation (black line) of the performance measured
in F-beta score (axis Y) in the CV for each individual classifier (axis X) in both Train
(orange) and Test (blue) datasets, comparing to the final classifier (voting_ensemble) for
model 1.

Source: The Authors

The information collected in the grid search, combined to the performance metrics

of each fold and the final measures that will be presented in Section 5.2, can help bring



40

Figure 5.4: Mean (bar) and standard deviation (black line) of the performance measured
in F-beta score (axis Y) in the CV for each individual classifier (axis X) in both Train
(orange) and Test (blue) datasets, comparing to the final classifier (voting_ensemble) for
model 2.

Source: The Authors

some better understanding to which classifiers are better suited to solve the proposed

problem. More importantly it shows how both parts of the problem are different among

themselves. XGBoost, Naive Bayes seem to yield the best performances for model 2 in

the CV, both in the grid search and overall, with logistic regression also showing some

promise compared to the rest, although not reaching the 0.5 threshold. On the other hand,

for model 1, most classifiers present a decent result both in the grid search and overall,

some more stable than others, except for Naive Bayes and KNN.

5.2 Final model evaluation

Because of the sequential nature of this two-part classifier, the performance of the

whole model is seen in the performance of model 2 – remembering that in the scope of the

second model, a positive label means an ASD diagnosis, and a negative label means it’s

not an ASD case. As can be seen in Table 5.1, the final model had a precision of 0.5 and

F-beta score, the main metric of interest, performing in 0.54. Accuracy was the highest

reported metric, meaning the model was able to predict correctly 75% of instances never

seen. The confusion matrices for the Train set (Table 5.2) and for the Test set (Table 5.3)

illustrate better the behavior of the model.

As can be seen, the reason for such high accuracy is the amount of negative in-

stances predicted correctly, getting 27 out of the 33 right, resulting in a TNR of 82%.
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Table 5.1: Performance metrics from model 2 in the Train and Test dataset.
Accuracy Precision Recall F1 score F-beta score ROC-AUC

Train 0.98 0.95 0.95 0.95 0.95 0.97
Test 0.75 0.5 0.55 0.52 0.54 0.68

Source: The Authors

Table 5.2: Confusion matrix of model 2 in the Train set.
Predicted

Positive Negative

True
Positive 40 2
Negative 2 122

Source: The Authors

Given that in this problem 75% of all instances are negative, a higher TNR than TPR is

expected, which is one of the reasons to use F-beta score as the main measure, training the

models to be less skewed to the negative class. This approach was successful, considering

the 75% of instances predicted correctly are well divided between classes. In the end,

only 50% of cases predicted as ASD actually have it, but given that a patient actually has

ASD, the model correctly predicts 55% of cases.

On the other hand, when looking at Table 5.4 referring to the performance of

model 1, the performance appears to be a lot higher overall and interestingly very similar

between Train set and Test set. In the scope of this first model, a positive label means a

patient is not TD, or have not presented a typical development, and a negative label means

it’s a TD case. Model 1 presented a F-beta score of 0.89 and perfect recall, meaning every

instance of Non-TD and ASD have been correctly identified and were part of the dataset

for model 2. The precision of 0.61 can be better illustrated by the confusion matrices for

this model, provided in Table 5.5 for Train set and in Table 5.6 for Test set.

Since a priority has been given to make sure all positive cases be identified so

model 2 can properly classify them, the model is skewered to the positive class, which

was expected from using F-beta score with the same value of β for both problems with

different proportions between classes, considering in model 1 the positive label appears in

67% of instances and in model 2 only in 25%. That lead to a lower precision of 0.61 and

an extremely low TNR of 12%, which means a higher proportion of noise in the dataset

for model 2 caused by mislabeled instances from model 1, since the entry data to model 2

is the Train dataset filtered by model 1’s prediction, and in turn difficulty to learn correct

generalized patterns in model 2.

The predictions of both model 1 and 2 are the result of eight other models trained

for each problem, so we can also look at the individual performance of each model as well.

Figure 5.5 and Figure 5.6 show the F-beta score of each trained classifier for, respectively,
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Table 5.3: Confusion matrix of model 2 in the Test set.
Predicted

Positive Negative

True
Positive 6 5
Negative 6 27

Source: The Authors

Table 5.4: Performance metrics from model 1 in the Train and Test dataset.
Accuracy Precision Recall F1 score F-beta score ROC-AUC

Train 0.66 0.64 1.0 0.78 0.90 0.59
Test 0.62 0.61 1.0 0.76 0.89 0.53

Source: The Authors

model 1 and model 2. A characteristic observed both in the performance metrics of the

whole and in the individual graphics for each metric is that model 1 shows very little dif-

ference from the Train set to the Test set, maybe because it highly prioritizes the positive

label in both datasets. It can be seen in Figure 5.5 that characteristic extends through most

classifiers used. Other similar Figures for each of the unreported metrics can be seen in

appendix A.

Figure 5.5: Performance measured in F-beta score (axis Y) of each individual classifier
(axis X) in both Train (orange) and Test (blue) datasets, comparing to the final classifier
(voting_ensemble) for model 1.

Source: The Authors

Figure 5.6, on the other hand, shows that model 2 owes its high difference from

Train to Test to some of the classifiers used. Still it managed to perform better than most

models in the Test set across all performance measures, showing a very stable behavior,

as can be seen in Appendix A. The two models that presented a better F-beta score are

the two ensemble methods, XGBoost and LightGBM, with the third ensemble method

RF still amongst the better ones, which suggests either the data may be too noisy for sim-

pler models or this specific problem might need a different architecture composed of a
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Table 5.5: Confusion matrix of model 1 in the Train set.
Predicted

Positive Negative

True
Positive 106 0
Negative 60 13

Source: The Authors

Table 5.6: Confusion matrix of model 1 in the Test set.
Predicted

Positive Negative

True
Positive 27 0
Negative 17 1

Source: The Authors

more specific set of classifiers in order to achieve precise and robust results. Interestingly,

LightGBM was one of the worst performing classifiers in CV, suggesting it needed more

data to properly learn. On the other hand, Naive Bayes was one of the best performing

in CV, but on the final model had a F-beta score of 0 in the Test set, possibly due to clas-

sifying every instance as negative. The goal of using an ensemble approach was to take

advantage of each classifier’s strengths and avoid their issues. That is better illustrated

in the graphs for all metrics in appendix A, but compared to each individual model the

final model managed to perform decently in all metrics, as we’ve seen in Table 5.1. The

other two models worth mentioning here are LR, better performing than RF and the only

other classifier to offer a F-beta score comparable to the final model, and SVM with a

sigmoid kernel, with the lowest F-beta score above 0. The only two kinds of classifiers

that managed identify some ASD samples were the ensemble tree classifiers and the ones

based on logistic function.

5.3 General analysis

This Section will elaborate in the overall behavior of the proposed model taking

into account the main problem, and not its parts. Table 5.7 presents a view of the final

classification of each instance as a multiclass confusion matrix. It can be seen that 55%

of ASD subjects were correctly classified, and the other 45% was classified as Non-TD.

Interestingly, only 17% of instances classified as ASD were actually TD, meaning most

patterns found in model 2 may not be exclusive to ASD, but are consistent with atypi-

cal development. Of the Non-TD, 75% was correctly implicitly assigned, by not being

classified as TD in model 1 or ASD in model 2. The focus of this work is exclusively
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Figure 5.6: Performance measured in F-beta score (axis Y) of each individual classifier
(axis X) in both Train (orange) and Test (blue) datasets, comparing to the final classifier
(voting_ensemble) for model 2.

Source: The Authors

to aid in the diagnosis of ASD, so this classification of Non-TD should not be taken as a

pre-diagnosis of any sort, specially considering that 71% of all subjects were predicted as

being Non-TD, including 15 out of the 18 TD cases.

Table 5.7: True and predicted class of all instances based on the original label.
Predicted

ASD Non-TD TD

True
ASD 6 5 0

Non-TD 4 12 0
TD 2 15 1
Source: The Authors
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6 CONCLUSION

Due to the increasing prevalence of ASD and the amount of recent discoveries in

the field, several studies have been proposed investigating its genetic characteristics, the

environmental components taking part in it, or the relationship between both parts. This

work proposed a ML classifier for ASD based on gene expression data from umbilical

cord blood, aiming at a possible support tool to aid in an early diagnosis of ASD.

Overall, the proposed model shows a relatively low performance to be used as a

tool, with only 55% of all ASD cases correctly predicted, and those being only 45% of

the cases predicted as being ASD, but managed to identify patterns in the data that imply

the possibility of building one. The better performance in the first part of the model when

compared to the second, may be partly due to a better proportion between classes, but the

final results are consistent with the findings of Mordaunt et al. (2019). The authors found

only subtle differences between classes, and those were mostly between ASD and TD and

between Non-TD and TD.

This work has brought some interesting insight, though, through the results found.

Three main points to be taken into account when judging the results are that the data may

not be informative enough, the model may not be powerful enough, or the patterns in the

data may be too complex to be learned though the ML algorithms proposed. As seen

in Section 2.1, ASD is a very complex disorder, and a lot is unknown about its genetic

components. That is corroborated in Chapter 3, where we see that most patterns found

are subtle.

The first point talks about the data used. A frequent problem when using ML tech-

niques in biological data, especially genetic, is the relatively low amount of data available

and its high dimensionality. Some techniques were used to counteract its impacts in this

work, like the dimensionality reduction, the separation of the problem in two parts, and

the use of F-beta score, specially in the second part of the model, and these were impor-

tant factors into the patterns that the model did learn. Still, considering the subtle patterns

of the disorder, more data could better validate our approach for ASD. A different kind

of data could be tried as well, like blood or saliva expression from the subject as a baby,

instead of umbilical cord blood that has information about the mother as well, but the sam-

ple collected should still be from the baby if the intention is to suggest the observation

and evaluation of the child from as early as possible. Another alternative to more or dif-

ferent data is also a deeper study in dimensionality reduction, including feature selection
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algorithms. Feature selection also brings the possibility of identifying ASD biomarker

candidates in newborn babies.

The second point mentioned is regarding the choice of classifier. The idea of us-

ing multiple classifiers through an ensemble approach is promising, because it manages to

take advantage of each classifier’s different learning techniques, identifying different pat-

terns and presenting more robust results, but there is a need to better choose the classifiers

for each problem. The results show how both parts of the problem are different among

themselves and in their needs from a classifier, suggesting that maybe proposing indepen-

dent approaches for each problem might yield better results. There is here space to also

conduct a deeper study on which algorithm to use. The ones chosen used in this work

were chosen for being well established in the literature and mostly taking very different

approaches to learning, and have brought insight as to which kind of learning is better

suited for the problem. For the second part of our classifier, the best algorithms were the

ensemble ones based on decision trees, and the ones based on a logistic distribution. That

suggests different algorithms based on these kinds of learning may be a good choice for

an ensemble approach, or even simply the use of just these classifiers, ignoring the other

three selected.

Finally, the last point mentions the possibility of the patterns being too complex

for traditional ML algorithms, which is not mentioned as saying ML could not be used,

but to suggest that maybe more complex approaches, such as more elaborate ensemble

approaches, graph-based approaches like gene co-expression networks, or deep learning

algorithms may be able to learn these patterns better or more easily. These will still run

into similar issues regarding the low amount of data and its high dimensionality, as all

these issues are not independent, but it is an idea worth being explored.

The current work has its limitations as seen, but shows a promising starting point

for other projects that aim to aid in the early diagnosis of ASD. Every limitation identified

gives way to another possible future work to be explored. Working with something as

complex as human beings is a naturally challenging task, especially when talking about

something as complex as genetic material, so decisive results are rare, but that is only

more reason to investigate and deepen our collective knowledge about it.
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APPENDIX A — EXPANDED RESULTS

This appendix presents the graphic representation of the performance measured in

the metrics other than Fbeta score, of both parts of the model, for the CV in Section A.1

and for the final performance in the Test set in Section A.2.

A.1 Cross Validation performance

The Figures for model 1 and model 2 will be given for the CV performance in

each metric that was not reported in Chapter 5. Every Figure shows the mean perfor-

mance across 5 folds and its standard deviation for both train and validation sets, of each

individual classifier in each metric, comparing to the final classifier for each part, the vot-

ing_ensemble. Figures A.1 and A.2 present the accuracy, Figures A.3 and A.4 present

the precision, Figures A.5 and A.6 present the recall, Figures A.7 and A.8 present the F1

score, and finally, Figures A.9 and A.10 present the ROC AUC.

Figure A.1: Mean (bar) and standard deviation (black line) of the performance measured
in accuracy (Y axis) in the CV for each individual classifier (X axis) in both Train (orange)
and Test (blue) datasets, comparing to the final classifier (voting_ensemble) for model 1.
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A.2 Model’s performance

The Figures for model 1 and model 2 will be given for the final performance in

each metric that was not reported in Chapter 5. Every Figure shows the final performance
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Figure A.2: Mean (bar) and standard deviation (black line) of the performance measured
in accuracy (Y axis) in the CV for each individual classifier (X axis) in both Train (orange)
and Test (blue) datasets, comparing to the final classifier (voting_ensemble) for model 2.
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of each individual classifier in each metric for both train and validation sets, comparing

to the final classifier for each part, the voting_ensemble. Figures A.11 and A.12 present

the accuracy, Figures A.13 and A.14 present the precision, Figures A.15 and A.16 present

the recall, Figures A.17 and A.18 present the F1 score, and finally, Figures A.19 and A.20

present the ROC AUC.
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Figure A.3: Mean (bar) and standard deviation (black line) of the performance measured
in precision (Y axis) in the CV for each individual classifier (X axis) in both Train (orange)
and Test (blue) datasets, comparing to the final classifier (voting_ensemble) for model 1.

KN
N

LG
BM LR M
LP NB RF

SV
M

XG
B

vo
tin

g_
en

se
m

bl
e

Classifiers

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

precision
dataframe

train
validation

Source: The Authors

Figure A.4: Mean (bar) and standard deviation (black line) of the performance measured
in precision (Y axis) in the CV for each individual classifier (X axis) in both Train (orange)
and Test (blue) datasets, comparing to the final classifier (voting_ensemble) for model 2.
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Figure A.5: Mean (bar) and standard deviation (black line) of the performance measured
in recall (Y axis) in the CV for each individual classifier (X axis) in both Train (orange)
and Test (blue) datasets, comparing to the final classifier (voting_ensemble) for model 1.
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Figure A.6: Mean (bar) and standard deviation (black line) of the performance measured
in recall (Y axis) in the CV for each individual classifier (X axis) in both Train (orange)
and Test (blue) datasets, comparing to the final classifier (voting_ensemble) for model 2.
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Figure A.7: Mean (bar) and standard deviation (black line) of the performance measured
in F1-score (Y axis) in the CV for each individual classifier (X axis) in both Train (orange)
and Test (blue) datasets, comparing to the final classifier (voting_ensemble) for model 1.
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Figure A.8: Mean (bar) and standard deviation (black line) of the performance measured
in F1-score (Y axis) in the CV for each individual classifier (X axis) in both Train (orange)
and Test (blue) datasets, comparing to the final classifier (voting_ensemble) for model 2.
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Figure A.9: Mean (bar) and standard deviation (black line) of the performance measured
in ROC AUC (Y axis) in the CV for each individual classifier (X axis) in both Train
(orange) and Test (blue) datasets, comparing to the final classifier (voting_ensemble) for
model 1.
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Figure A.10: Mean (bar) and standard deviation (black line) of the performance measured
in ROC AUC (Y axis) in the CV for each individual classifier (X axis) in both Train
(orange) and Test (blue) datasets, comparing to the final classifier (voting_ensemble) for
model 2.
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Figure A.11: Performance measured in accuracy (Y axis) of each individual classifier
(X axis) in both Train (orange) and Test (blue) datasets, comparing to the final classifier
(voting_ensemble) for model 1.
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Figure A.12: Performance measured in accuracy (Y axis) of each individual classifier
(X axis) in both Train (orange) and Test (blue) datasets, comparing to the final classifier
(voting_ensemble) for model 2.
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Figure A.13: Performance measured in precision (Y axis) of each individual classifier
(X axis) in both Train (orange) and Test (blue) datasets, comparing to the final classifier
(voting_ensemble) for model 1.
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Figure A.14: Performance measured in precision (Y axis) of each individual classifier
(X axis) in both Train (orange) and Test (blue) datasets, comparing to the final classifier
(voting_ensemble) for model 2.
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Figure A.15: Performance measured in recall (Y axis) of each individual classifier (X
axis) in both Train (orange) and Test (blue) datasets, comparing to the final classifier
(voting_ensemble) for model 1.
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Figure A.16: Performance measured in recall (Y axis) of each individual classifier (X
axis) in both Train (orange) and Test (blue) datasets, comparing to the final classifier
(voting_ensemble) for model 2.
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Figure A.17: Performance measured in F1-score (Y axis) of each individual classifier
(X axis) in both Train (orange) and Test (blue) datasets, comparing to the final classifier
(voting_ensemble) for model 1.
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Figure A.18: Performance measured in F1-score (Y axis) of each individual classifier
(X axis) in both Train (orange) and Test (blue) datasets, comparing to the final classifier
(voting_ensemble) for model 2.
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Figure A.19: Performance measured in ROC-AUC (Y axis) of each individual classifier
(X axis) in both Train (orange) and Test (blue) datasets, comparing to the final classifier
(voting_ensemble) for model 1.
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Figure A.20: Performance measured in ROC-AUC (Y axis) of each individual classifier
(X axis) in both Train (orange) and Test (blue) datasets, comparing to the final classifier
(voting_ensemble) for model 2.
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