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ABSTRACT

Fluorescent labeling plays a crucial role in the development of new drugs and the analysis

and diagnosis of tumors. Biologists utilize these images to examine cellular morphology,

structures, and phenotypes, which can be done manually or, more recently, automated

by software providing a quantitative view. Although regarded as essential, fluorescent

labeling has limitations such as being costly, time-consuming, and error-prone due to

phototoxicity and photobleaching. Motivated by consolidated and recent advances in

image generation techniques, we explore image-to-image translation methodologies to

translate bright-field microscopy images, i.e., label-free, into fluorescence microscopy.

After training established and modern models, our findings reveal that GANs deliver the

highest-quality results, but with increased computational demands. In contrast, Latent

Diffusion Models provide slightly lower quality outcomes but require significantly less

computational power, suggesting promising results for future works, especially when

working with larger datasets.

Keywords: Deep Learning. Image-to-Image Translation. In-Silico Labeling. Fluorescent

Microscopy.



Explorando Técnicas de Translação de Imagem para Imagem para Imagens de

Microscopia

RESUMO

A marcação fluorescente desempenha um papel crucial no desenvolvimento de novos me-

dicamentos e na análise e diagnóstico de tumores. Biólogos utilizam essas imagens para

examinar a morfologia celular, estruturas e fenótipos, o que pode ser feito manualmente

ou, mais recentemente, de forma automatizada por software, proporcionando uma visão

quantitativa. Embora seja considerada essencial, a marcação fluorescente apresenta limi-

tações, como custo elevado, ser demorada e propensa a erros devido à fototoxicidade e

fotodegradação. Motivados por avanços consolidados e recentes em técnicas de geração

de imagens, exploramos metodologias de tradução de imagem para imagem para con-

verter imagens de microscopia de campo claro, ou seja, sem marcação, em fluorescência

de microscopia. Após treinar modelos estabelecidos e modernos, nossos resultados re-

velam que GANs entregam os melhores resultados em termos de qualidade, embora com

maiores demandas computacionais. Em contraste, os modelos de Difusão Latente forne-

cem resultados de qualidade ligeiramente inferiores, mas com uma necessidade de poder

computacional significativamente menor, sugerindo resultados promissores para trabalhos

futuros, especialmente ao trabalhar com conjuntos de dados maiores.

Palavras-chave: Aprendizado Profundo. Translação de Imagem para Imagem. Marcação

In-Silico. Microscopia de Fluorescência .
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1 INTRODUCTION

The use of microscopes has enabled the study of cells in biology. As an indispens-

able tool for biologists, microscopy imagery enables the exploration of cellular structures

and processes that are critical to the advancement of fields like microbiology, pharmacol-

ogy, and neuroscience. Recent technological advances, including event-driven and super-

resolution microscopy, have augmented the capabilities of this essential tool. The synergy

between technological advancements and microscopy sets the stage for a groundbreaking

alliance with deep learning (PYLVÄNÄINEN et al., 2023). This work delves into the

convergence of deep generative models and microscopy, specifically exploring the poten-

tial of in silico labeling -— an artificial staining approach -— to reshape the landscape of

biological research.

Cell staining is a crucial technique to enhance the microscopic observation of

cells. This procedure involves the application of colored or fluorescent dyes to biological

specimens, such as cells or tissues, to accentuate specific structures or molecules selec-

tively. Fluorescent staining, in particular, is commonly used in high-throughput screen-

ing assays, where automated imaging systems rapidly analyze numerous samples. The

capability to multiplex and measure fluorescence signals renders it well-suited for such

applications, which are at the forefront of, for example, drug discovery. However, it is

important to acknowledge that fluorescence labeling has limitations such as being costly,

time-consuming, variability in its application, and phototoxicity; other problems can hap-

pen in live cell imaging, like the likelihood of some protocols killing cells, which can

interfere with cell tracking.

This study centers on the approach proposed by Christiansen et al. (2018) called

in silico labeling, which hypothesizes that unlabeled images (i.e., cell images deprived

of fluorescent staining) contain more information about cell structures than initially ap-

parent, especially in the brightfield microscopy modality. Brightfield images rely solely

on the contrast of cells -— primarily composed of water —- and light, resulting in low-

contrast images not propitious to the analysis of the human eye. However, they can gener-

ate high-definition images and are widely embraced as a standard imaging method within

the scientific community. As also shown by Wieslander et al. (2021), Cross-Zamirski et

al. (2022) and Cross-Zamirski et al. (2023), deep generative models can be employed to

generate fluorescent-stained images from brightfield images to leverage this unnoticeable

information.
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Deep generative models are trained on a particular dataset to autonomously gen-

erate new, realistic data samples from an unseen input. If properly trained, the model

will exhibit the capacity to capture and replicate complex patterns within the input data

distribution, enabling the virtual staining of a brightfield image. Various architectures

and methods of generative image models have been proposed in the past. Variational Au-

toencoders (VAEs) showed impressive results reconstructing images from its latent space

representation, Kingma and Welling (2013). Generative Adversarial Networks (GANs)

(GOODFELLOW et al., 2014) are highly praised and have numerous applications and

variations. However, the use of GANs poses challenges, such as training instabilities

and the potential to generate hallucinations, compromising its utility in biological down-

stream tasks (COHEN; LUCK; HONARI, 2018). In recent years, a new family of deep

generative models has become the new state-of-art in several image generation tasks,

the so-called Denoising Diffusion Probabilistic Models (DDPMs) (HO; JAIN; ABBEEL,

2020), also called diffusion models. They offer several advantages over GANs, such as

stable training, easy scalability, and the ability to generate high-quality images.

The main goals of this work are to introduce the reader to basic concepts and

recent advances in the in-silico labeling field, explore strategies of image-to-image trans-

lation, and evaluate its effectiveness on a particular dataset of microscopy images. The

structure of this thesis is organized as follows. It begins with the Theoretical Foundations,

which explores the concepts of live cell imaging, phototoxicity and photobleaching, gen-

erative image models, and in-silico labeling, providing a solid foundation for understand-

ing the research. The Related Work chapter follows, delving into prior advancements in

Image-to-Image Translation and In-silico Labeling, highlighting key developments in the

field. Next, the Proposed Methodology outlines the dataset, tested models, and evalua-

tion techniques employed in the study, serving as the core of the research approach. The

Experimental Results chapter presents both quantitative and qualitative evaluations of the

models, offering insight into the outcomes of the experiments. Finally, the Conclusion

summarizes the findings and contributions of the work.
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2 THEORETICAL FOUNDATIONS

2.1 Microscopy

Microscopy has long been indispensable in unraveling the intricacies of cellular

structures and functions. To better capture images of cellular elements, traditional mi-

croscopy often involves fixing samples, which is the process of “freezing” the sample in

that particular state. After a sample is fixed, it can undergo further processes like staining

or sectioning. However, the fixation process has notable drawbacks, including the loss of

biological activity, potential alterations in cellular morphology, and mainly, it limits the

ability to observe dynamic cellular processes in real-time. This static nature of traditional

microscopy limits the insights that biologists can take from cell-cell interactions and other

dynamic biological events, as discussed by Haraguchi (2002).

2.1.1 Live Cell Imaging

According to Cole (2014), live-cell imaging is a microscopy modality where sam-

ples are not fixed. Alive cells offer biologists the chance to get a better understanding of

cell-cell interaction and dynamic biological events, such as cell division, migration, state,

signaling, and responses to stimuli throughout time. Such imaging modality offers valu-

able insights into cellular behavior and molecular processes not just visually but, through

image processing, quantitatively. To achieve such conditions, samples undergo a staining

process with fluorescent markers, and still, to excite and make the stained structure visi-

ble, they must be exposed to strong light. An example of a Cell Stainined sample is shown

in Fig. 2.1, and cell structures are clearly highlighted in the stained version. Despite the

advantages of cell staining, the process of adding fluorescent markers and exposing the

samples to light can harm the sample, and this damage is called phototoxicity. Optimiz-

ing imaging conditions to maximize signal-to-noise ratio (S/N) and sample health is an

ongoing challenge many researchers face in every experiment Icha et al. (2017).
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Figure 2.1: Cell Stained sample with one phase channel and two fluorescent channels.

2.1.2 Phototoxicity and Photobleach

To activate the applied fluorescent tags (fluorophores), the sample must be ex-

posed to strong light throughout its life. Explained by Icha et al. (2017), this process can

lead to phototoxicity, which is health damage, and photobleaching, which is the loss of

fluorescence signaling, both due to excessive exposure to light over time. Both have sig-

nificant negative side effects on the sample Phototoxicity can slow down its cycle, modify

processes such as cellular respiration and protein synthesis, and induce cell death which is

a valuable morphological characteristic in numerous studies, such as those investigating

the efficacy of specific drugs in cancer treatments. Photobleaching occurs when repeated

light exposure weakens or extinguishes a sample’s fluorescent signal, making long sample

observations have diminishing or even misleading results. This highlights how Phototox-

icity and Photobleaching can potentially impact study outcomes, potentially leading to

false negatives detrimentally.

Managing and understanding phototoxicity and photobleaching is essential to ob-

taining high-quality and healthy live cell imaging so that it can be transformed into quan-

titative data to make experiments reliable and reproducible. Many techniques to mitigate

these outcomes such as lowering illumination intensity, controlling time exposure, and

managing oxygen concentration in the cell culture, can preserve sample health but will

result in lower imaging quality. Although well-established, these techniques continue to

present significant challenges that researchers encounter in routine experiments.
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2.1.3 Computer Vision and Microscopy

Attaching cameras to microscopes enables scientists to capture and store images

of what is being observed. Since these images contain biological information, computer

vision algorithms can be used for analysis, assistance, or even automation of tasks that

can be time-consuming and prone to error when done manually by a biologist. These

advances might enable scientists to carry novel analysis methodologies to advance their

field of research.

One of the main computer vision-based tasks in microscopy is Cell Segmentation,

which can be used to count the number of cells in a particular image, but also to get

individual morphology features of each cell – this is called single-cell analyses. The

base of many classical cell segmentation algorithms is Intensity Thresholding (QIAO et

al., 2007), which assumes that the foreground (cell) and the background have notable

intensity differences (contrast). This intensity difference may be global or local, and

because of that, a fixed or histogram-based adaptative threshold must be used (PLISSITI;

VRIGKAS; NIKOU, 2015).

Nowadays, with the rapid progress of deep learning, more methodologies and ap-

plications are being created, many of which are fit for microscopy images. Pylvänäinen

et al. (2023) divide these techniques into two categories: Image Analysis includes tasks

such as identifying cell state with image classification, single cell analysis, including mor-

phology, and cell counting using instance segmentation, time-lapse analysis with object

tracking and profiling, the act of extracting cell features for downstream analysis; and Im-

age Acquisition that centers on enhancing the quality of the images to be analyzed, which

include diminishing phototoxicity and photobleaching by using techniques to increase

image resolution and diminish signal-to-image ratio.

2.2 Generative Image Models

Generative image models are a class of deep learning models designed to generate

new images similar to a given dataset. Training these models involves learning the data

distribution of a particular dataset, which consists of the distribution of pixels and struc-

ture patterns that constitute the images in the training set. Generative image models can

be utilized in tasks such as style transfer, image restoration, and conditioned image gen-

eration. In recent years, generative image models conditioned by text gained popularity
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due to their flexibility in generating high-quality images, and the work by Rombach et al.

(2022) is a notable example. This work focuses on image-conditioned models for the task

of Image-to-Image Translation applied to microscopy images.

2.2.1 Variational Autoencoders (VAEs)

Introduced by Kingma and Welling (2013), Variational Autoencoders (VAEs) are

a class of probabilistic generative models known for their ability to learn a probabilistic

distribution of the data resulting in efficient latent representations that can be manipulated

(PRINCE, 2023). VAEs can be applied to many image-generation tasks such as image

denoising, super-resolution, and image-to-image translation. VAEs are composed by an

encoder, which maps the input x to the latent space z and the decoder, which maps the

latent space representation z back to the pixel space, as illustrated in Fig. 2.21.

VAEs differ from regular autoencoders, proposed by Hinton and Salakhutdinov

(2006). Autoencoders’ encoder directly map the input to a point in the latent space, on

the other hand, VAE’s encoder output parameters (mean and standard deviation) for a

probability distribution from which z is sampled by the decoder through

z ∼ q(z|x) = N (z;µ(x), σ(x)). (2.1)

The objective function of a VAE consists of two components: the reconstruction

loss and the regularization term. The reconstruction loss guarantees that the decoded

output y′ closely approximates the ground truth y. The regularization term, represented

by the Kullback-Leibler (KL) divergence, prevents overfitting and aligns the learned latent

distribution q(z|x) with the prior distribution p(z). This alignment enhances the model’s

ability to handle imprecise data and unexpected outcomes. Mathematically, it is given as

L = Eq(z|x)[log p(x|z)]−DKL(q(z|x) ‖ p(z)). (2.2)

1The referred pixel space may be a paired image y on a different domain for image-to-image translation
or the original image x in the original domain when doing image reconstruction
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Figure 2.2: Standard VAE architecture.

Source: <https://shorturl.at/9pzAJ>

2.2.2 Generative Adversarial Networks (GANs)

A Generative Adversarial Network (GAN) consists of two networks: the Gen-

erator and the Discriminator. The training of a GAN can be seen as a min-max game

between both networks since the role of the Discriminator is to correctly classify whether

it’s input is the ground truth image or the image generated by the generator. A stan-

dard GAN architecture can be seen in Fig. 2.3. GANs are notoriously difficult to train

as the non-cooperative nature of a min-max game does not guarantee convergence (AR-

JOVSKY; BOTTOU, 2017). The original loss function of the entire GAN model is ex-

clusively based on the loss function of one of the networks, the Discriminator, which

is derived from the binary cross-entropy loss function, which presents limitations to the

model (GOODFELLOW et al., 2014). Alternative loss functions, such as the Wasserstein

loss proposed by Arjovsky, Chintala and Bottou (2017), have been suggested. Despite

these alternatives, the challenge persists without a mechanism allowing the flexibility to

optimize the network for specific objectives. To enhance model performance, additional

information associated with the input images, such as labels or segmentation maps, can

be included as input to the Generator during the training phase. This inclusion facilitates

convergence by introducing a supplementary loss function conditioned on these labels.

The new loss value is combined with the standard one in a weighted form. This variant of

the traditional GAN architecture is referred to as a conditional GAN (cGAN).

https://shorturl.at/9pzAJ
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Figure 2.3: Standard GAN architecture.

Source: https://sthalles.github.io/intro-to-gans/

2.2.3 Denoising Diffusion Probabilistic Models (DDPMs)

Denoising Diffusion Probabilistic Models (DDPMs) (HO; JAIN; ABBEEL, 2020)

are a class of deep-learning models typically used for image generation. DDPMs are

characterized by the diffusion process, also referred to as the forward process or noising

process, which consists of incrementally adding noise to the input image until it becomes

random in a Gaussian distribution manner. The diffusion process does not involve any

learning, the noise is added in a systematic and predictive manner, as defined by Eq. (2.3)

and (2.4) where x0 is the original data, xt, is the data at timestep t, βt is the variance

schedule, which is bound to t, N represents a Gaussian distribution and T is the final

timestep. The learning step happens in the denoising process: the model learns how

to reverse the added noise to get an approximation of the original image. The training

process is based on predicting the noise distribution and removing it so the original image

is revealed. Since the forward process is done in a systemic time-stepped manner, for each

step t + 1, a single amount of noise is added to the image, which gives room to create

many training schedules, However, the most common approach involves the denoising

network predicting the noise added to the image at time step t − 1. The reverse process

is given by Eq. (2.5) here, µθ(xt, t) is the predicted mean and, Σθ(xt, t) is the predicted

variance learned by the model at timestep t. θ represents the model’s parameters.

During inference, the model starts with a random noise image xT . The trained

denoising network iteratively takes the current noisy image xt and predicts the image

xt − 1. The prediction is the estimation of how much noise was added at the time step t,
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the final output is the image x0, which is a sample from the learned data distribution. This

image is a realistic-looking sample generated by the model.

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI). (2.3)

q(x1:T | x0) =
T∏
t=1

q(xt | xt−1). (2.4)

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (2.5)

2.2.4 Latent Diffusion Models (LDMs)

Latent Diffusion Models (LDMs) are a class of deep-learning models typically

used for image generation (ROMBACH et al., 2022). LDMs work similarly to Denois-

ing Diffusion Probabilistic Models (DDPMs), but instead of operating in the pixel space,

LDMs work in the latent space. After mapping the input image to a lower-dimensional

latent representation using an encoder, the diffusion process is performed in this com-

pressed space. It involves the same steps – forward and reverse diffusion processes – as in

regular DDPMs. The result is a new latent representation, which is then converted back

to the pixel space by a decoder.

The ability to work in the latent space has given LDMs greater flexibility, as this

allows the incorporation, called conditioning of encoded information in other formats,

see Fig. 2.4. Examples are text or segmentation masks, which can condition the model

to generate new, unseen data. Since LDMs operate on the latent space, which is a lower

dimensional representation of the image on the pixel space, they are more computationally

efficient than regular DDPMs. It is important to notice that the encoder and decoder used

by LDMs are pre-trained, further reducing the computational load compared to DDPMs.
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Figure 2.4: The architecture of a LDM

Source: Rombach et al. (2022)

2.3 In-Silico Labeling

Brightfield imaging is characterized by its low cost and accessibility. This imag-

ing technique has proven particularly advantageous for live imaging due to its minimal

invasiveness and reduced phototoxicity and photobleaching. The ability to observe bio-

logical specimens in their native state over extended periods makes brightfield imaging

an invaluable tool for capturing dynamic cellular processes (GUPTA et al., 2022).

Introduced by Christiansen et al. (2018), in silico labeling is a non-invasive tech-

nique for enhancing brightfield images. The objective is to investigate whether comput-

ers can learn and predict features in unlabeled images that are typically only discernible

through invasive labeling methods, such as fluorescence dyes. For this purpose, a deep

generative model was trained in a supervised manner, where the inputs to the network

were z-stack (with three pictures in different focal planes) brightfield unlabeled images

and the corresponding stained image, used as the target ground truth. With the intent

of building a model capable of generating several different labeled images with different

fluorescences, the authors used training pairs from different experiments across various

labs, samples, imaging modalities, and fluorescent labels. However, not every input had

all the possible fluorescence (ground truth) available. The chosen model was a U-Net

(RONNEBERGER; FISCHER; BROX, 2015) based on individual blocks inspired by the

inception architecture (SZEGEDY et al., 2015) modified so that spatial information does
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not degrade throughout the many layers of the model. The model exhibited accurate per-

pixel predictions for some labels, specifically Hoechst and DAPI, which highlight cell

nuclei; and propidium iodide (PI), which marks dead cells. The authors used pixel-wise

cross entropy as the loss function, and the metric used to assess the quality of the syn-

thesized images was the Pearson correlation; both methods consider image similarity in a

pixel-wise manner.
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3 RELATED WORK

In this section, the reader will be introduced to the main topics and methods used

throughout the experiments: image-to-image translation and in-silico labeling. First, we

introduce an overview of generic image-to-image translation techniques. We discuss ap-

plications and notable models such as VAEs, GANs, (PANG et al., 2021), and the emerg-

ing DDPMs and LDMs. Following this, we present a section on in-silico labeling, focus-

ing on how image-to-image translation is applied to the biomedical field.

3.1 Image-to-Image Translation

Image-to-image translation is a problem where generative models convert an im-

age from one domain to another, where the images in different domains may be paired

or unpaired. In a dataset with paired images, we have the exact image in two distinct

domains, one example of this is colored and black and white images, which can be seen

as supervised learning. In the unpaired scenario, we have several samples of the two do-

mains (e.g., images during the day and images at night), but not necessarily from the same

scene. CycleGAN (ZHU et al., 2017) is a classic example of unpaired domain translation,

and one example is shown in Fig. 3.1. Unpaired image-to-image translation can be seen as

unsupervised learning. For this purpose, the model should be conditioned with input from

the original domain. Examples of common and intuitive applications of image-to-image

translation are the colorization of black-and-white photos, the translation of sketches into

realistic images, and artist-style transfer.

Many image-generation architectures are suited for this task. VAEs, for exam-

ple, have seen significant success in image-to-image translation by learning shared latent

representations that enable smooth domain transformations. Their ability to handle un-

paired data makes them versatile for applications such as style transfer. However, VAEs

also excel in tasks involving paired images, leveraging their stable training and easily

manipulated latent spaces to achieve high-quality translations in tasks such as image col-

orization (DESHPANDE et al., 2017), super-resolution (LIU; SIU; CHAN, 2020), and

domain adaptation.



23

Figure 3.1: Examples of domain-translation.

Source: Zhu et al. (2017)

GANs were widely explored due to their two independent stage training process

and especially because of the discriminator part that can provide visually and contextually

consistent results. Among these methods, the pix2pix model proposed by Isola et al.

(2017) is particularly notable for its ability to generate images based on paired datasets

conditionally, ensuring high-quality outputs in domain-translation tasks. Examples of

image translation in different domains are shown in Fig. 3.1. Despite the good results

achieved by GANs, there are known problems such as training stability and the difficulty

of hyper-parameter tuning.

Denoising Diffusion Probabilistic Models (DDPMs) emerged as an alternative to

GANs on image generation, and Saharia et al. (2022) showed that this class of methods

can be used for image-to-image translation. The training of DDPMs does not struggle

with training stability and hyper-parameter tuning difficulty since it offers the possibility

of controlling the rate of noise injection and denoising. The gradual refinement of the im-

age, illustrated in Fig.3.2, also results in better quality of the generated images. However,

it is important to consider that DDPMs require more computational power, not only in

training the models but also when sampling new images (inference).
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Figure 3.2: The forward process q and the denoising process pθ on a DDPM

Source: Ho, Jain and Abbeel (2020)

More recently, Latent Diffusion Models (LDMs) have achieved state-of-the-art

results in image generation manipulating image and text on the latent space. Formulating

image-to-image translation as a Brownian Bridge process (see Fig.3.3), Li et al. (2023)

shows encouraging results on tasks such as style transfer on both the pixel and latent

space, same result can be seen in Fig 3.4.

Figure 3.3: The architecture and the forward and denoising process of the Brownian
Bridge Diffusion Model on the latent space.

Source: Li et al. (2023)

3.2 In-silico labeling

Since the seminal work by Christiansen et al. (2018), the field of in silico label-

ing, has advanced on different fronts. The JUMP-Cell Painting Consortium (JUMP-Cell

Painting Consortium, The Broad Institute, 2022) is a dataset of brightfield-to-fluorescence

paired images that have become available and can be used to train in silico labeling tech-

niques. Unlike the dataset used in Christiansen et al. (2018), JUMP uses Cell Painting

Bray et al. (2016), a particular fluorescence protocol that aims to be a standard for image-

based computer vision methods. This makes it a reliable resource for result comparison.
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Figure 3.4: Comparison of the results of image-to-image translation using BBDM with
other models such as Isola et al. (2017) Pix2Pix.

Source: Li et al. (2023)

Developing new generative image models offered an opportunity to improve the

results of Christiansen et al. (2018). Moreover, the increasing interest and potential for

adopting this method demanded more rigorous evaluation processes for the generated im-

ages. Wieslander et al. (2021) propose the use of GANs (GOODFELLOW et al., 2014),

see Fig. 3.6, to generate the fluorescence images and also the Learning Using Privileged

Information (LUPI) (VAPNIK; IZMAILOV et al., 2015) paradigm, which is a technique

that uses information that would not be available for the model on inference when training

– in this particular paper, the segmentation masks for the cells’ nuclei. For the evaluation

phase, a CellProfiller pipeline (CARPENTER et al., 2006) is used to extract features

(profiling), such as morphology, intensity, and count, from the generated images and the

original fluorescence images. The comparison is based on the extracted features rather

than the raw image pixels. Three models were generated, one for each fluorescence chan-

nel: nuclei, lipids, and the last for the cytoplasm. Each model was tailored for the task
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and only the model for predicting the lipid channel used conditional GAN. Nuclei and

cytoplasm channels were predicted by models that were based on U-Net. Note that this

study does not predict Cell Painting fluoresce.

Cross-Zamirski et al. (2022) proposed predicting the five channels of the Cell

Painting protocol using a proprietary dataset. For this task, two models were used: the

first one is based on a U-Net, and the second is built on the Wasserstein GAN (WGAN)

paradigm with penalty gradient (ARJOVSKY; CHINTALA; BOTTOU, 2017). The evalu-

ation used image-based similarity metrics and comparing features extracted via profiling.

In their study, the novelty was the use of Uniform Manifold Approximation (UMAPs)

(MCINNES; HEALY; MELVILLE, 2018), a method popular among biologists that pro-

vides a visual component to the analysis of clusters based on extracted features. In their

study, UMAP was used to separate instances based on treatments. In all metrics, the

WGAN model surpassed the U-Net.

Figure 3.5: An example of state-of-the-art in-silico labeling, here referred as Cell Paint-
ing. Three colored channels are exhibited in output and ground truth, red (AGP), green
(ER), and blue (DNA)

Source: Cross-Zamirski et al. (2023)

At last, Cross-Zamirski et al. (2023) still pushes to advance the usage of more

complex methods. They used a subset of the JUMP-Target dataset (JUMP-Cell Painting

Consortium, The Broad Institute, 2022) for predicting the five fluorescence Cell Painting

channels. For this purpose, a variant of DDPM called Class-Guided Diffusion Model was

used – Class-Guided means that extra information related to each instance is used to fit

the probability distribution of the data better. In Cross-Zamirski et al. (2023), the extra

information is the meta-data of each well1, such as the type of cell or which chemical
1In a multi-well plate, a single well is a container which holds a sample inside the microscope
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was used to produce perturbations to the sample. The authors found that the metadata did

improve overall metrics, reaching state of the art results, which can be seen in Fig.3.5.

One particular finding of this study is that when using the compound target as the label

for class guidance, the model would produce more background noise, undermining the

image level metrics but improving feature extraction metrics.

Figure 3.6: More examples of in-silico labeling, this time with the channels separated.

Source: Wieslander et al. (2021)

After understanding the relevance and potential of in-silico labeling to advancing

biological research, especially in drug development and disease diagnosis, a review of

consolidated and the latest works in in-silico labeling and image-to-image translation was

provided in this chapter. This review showed that there are still opportunities to explore,

especially regarding the advancement of image models. This is the motivation behind the

experiments that will be described in the next chapter.
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4 THE PROPOSED METHODOLOGY

This chapter presents the methodology used in this study. This includes the se-

lection of a proper dataset, followed by why the selected methodologies were chosen and

how each model was trained, along with the choices of the main parameters.

4.1 Dataset

The dataset was collected and made available for this work by University col-

leagues from the Laboratório de Sinalização e Plasticidade Celular (LabSinal), which

is associated with the Instituto de Biofísica and the Centro de Biotecnologia from the

Universidade Federal do Rio Grande do Sul (UFRGS). All images depict cells from the

U87 line (brain cancer), and they are collected from 6 different wells of the same plate.

Two of the wells are control samples, two wells are treated with dasatinib, and two wells

are treated with dasatinib and temozolomide, with the concentration of the administered

drug being also varied. The provided dataset has three channels: the phase, which is a

brightfield image consisting of one z-plane image; the green channel labeled with Green

Fluorescent Protein-LC3 (GFP-LC3) and the red channel labeled with mAple-53BP1.

Both labels are protein-based, where GFP and mAple are fused to the LC3 and 53BP1

proteins, respectively, causing fluorescence when excited by light. GFP-LC3 is indicative

of cellular autophagy, while mAple-53BP1 is typically involved in the DNA damage re-

sponse. It is important to note that previous studies, such as (CROSS-ZAMIRSKI et al.,

2022) and (CROSS-ZAMIRSKI et al., 2023), used three channels for the phase (bright-

field) images, each on a different z-plane (focal plane). Due to computational limitations,

the study centers on only two channels, phase and red.

The dataset consists of 4,536 images1, divided into training (3,174 images), vali-

dation (454 images), and test (908 images) splits. All images were pre-processed before

training the models. The pixel values of the images were normalized between −1 and 1,

and its resolution was downscaled from its original 1408 by 1040 pixels to 512 by 512

pixels. The original dataset contained 4,608 images, but some images were out-of-focus

or were out of bounds of the well. Hence, they were manually removed from the dataset.

1Number of images after defected ones were removed from the originally provided dataset
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4.2 The tested models

Building on recent advances in image generation, three different models were

selected for this work. Two of these models are diffusion-based and, although different

from the diffusion model used in Cross-Zamirski et al. (2023), they are well-suited for

the image-to-image translation task. In one model, the diffusion process occurs in pixel

space, while the other leverages latent space representation. The third model is based

on the well-established VAE-GAN architecture. This selection provides a comprehensive

overview of recent advancements and potential future improvements.

4.2.1 Brownian Bridge Diffusion Models (BBDM)

Li et al. (2023) propose a new method for image-to-image translation. Rather

than starting from random noise and conditioning each forward or denoising step with

the image on the original domain, as done in image-to-image translation task using the

original DDPM process, BBDM uses a stochastic Brownian bridge process to translate

an image from its original domain to the new one without any conditioning, making it a

bidirectional process that fits the task of in-silico labeling.

The code provided by the authors of the original paper was used to run the ex-

periments2, following the configurations of the aligned dataset. The network was trained

from scratch on a single RTX A6000 GPU, with batch size four and a learning rate of

5 × 10−6. The chosen optimizer and loss function were Adam and Mean Squared Error,

respectively. The model was trained for 200 epochs, which took 52 hours. Each image is

generated in 20 seconds. The number of diffusion steps was maintained from the original

implementation: 1000 during training, and 200 during image generation.

4.2.2 Latent Brownian Bridge Diffusion Models (LBBDM)

LBBDM follows the same idea of using Brownian Bridges to make the diffusion

process bidirectional as in the original BBDM. However, instead of occurring in the pixel

space, the forward and denoising processes now takes place in the latent space.

For this, the methodology used in the original paper by Li et al. (2023) was fol-

2<https://github.com/xuekt98/BBDM>

https://github.com/xuekt98/BBDM
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lowed. In the original LDM paper (ROMBACH et al., 2022), the VQGAN architecture,

(ESSER; ROMBACH; OMMER, 2021), is used to encode and decode the images. Al-

though VQGAN is a consolidated architecture for this, we opted to use a VAE model, also

adopted in later iterations of LDMs. For this purpose, the model is trained to reconstruct

the original image, i.e. brightfield channel images are reconstructed as brightfield channel

images, the same goes for red channel images.

The VAE was trained so the diffusion process could take place on the latent space

where the 512 by 512 image is encoded to a 4 × 64 × 64 latent representation. The

model was trained on an RTX A6000 GPU, with a batch size of 16 and a learning rate of

1 × 10−4. The chosen optimizer and loss function were Adam and Mean Squared Error

(MSE), calculated on the latent representation, respectively. The model was trained for

100 epochs, which took 8 hours. Each image is generated in 3 seconds. The number

of diffusion steps was again, maintained from the original implementation: 1000 during

training, and 200 on image generation.

4.2.3 Variational Autoencoder Generative Adversarial Network

Combining Variational Autoencoders (VAEs) with Generative Adversarial Net-

works (GANs) takes advantage of the strengths of both models, enabling high-quality

sample generation while maintaining a regularized latent space. Using the VAE archi-

tecture as the generator on a GAN model has already been explored in Rombach et al.

(2022), where this architecture is responsible for transforming the image into the latent

space for the diffusion process to be carried out. The original code3 and model weights

provided by the authors of Rombach et al. (2022) were used in this experiment. The code

was adapted from its original task of image recreation to perform domain translation, af-

ter that, the original model weights were fine-tuned for our dataset and task. To minimize

instability during the fine-tuning process, the discriminator component was introduced

after 20 epochs, this ensured that the discriminator loss did not affect the generator loss

during the initial epochs. The model was fine-tuned on a total of 60 epochs. The model

was fine-tuned on two RTX A6000 GPU, with a batch size of 4 and a learning rate of

5 × 10−5. Adam was the chosen optimizer. The loss is a combination of the genera-

tor loss, described in Section 2.2.1, and the discriminator loss, which used a pre-trained

VGG16, (SIMONYAN; ZISSERMAN, 2014), to classify the generated and ground-truth

3<https://github.com/CompVis/stable-diffusion>

https://github.com/CompVis/stable-diffusion
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images as the real one or not. With the fine-tuning process complete, the model takes 5

seconds to generate each image, on a single RTX A6000 GPU.

Due to errors stalling the training process, it was not possible to accurately de-

termine the duration it took to fine-tune this model. However, an analysis of the logs

suggests that the fine-tuning process took 28 hours given that each of the 56 epochs took

roughly 30 minutes.

4.3 Evaluation

Following the example of previous work on in-silico labeling, the idea is to eval-

uate the model performance on two fronts: using standard image-to-image translation

metrics, which evaluate the generated images on a pixel level, and with methods to assess

the biological information contained in the generated image.

4.3.1 Pixel-Level Metrics

As in the evaluation process done in previous works, various metrics are used to

evaluate the generated images at the pixel level. They aim to compare how close or distant

the generated is from the ground truth. The chosen metrics were:

Mean Average Error (MAE), calculates the average absolute differences between

the predicted and actual pixel values, measuring the average magnitude of errors with-

out considering their direction. Similar to MAE, Mean Squared Error MSE measures

the difference between the predicted and actual pixel values, but here the difference is

squared, focusing on penalizing larger errors.

Structural Similarity Index (SSIM) evaluates the structural similarity between

two images, considering luminance, contrast, and structure, and is often more aligned

with human visual perception than pixel-wise measures, (WANG et al., 2004).

Fréchet Inception Distance (FID) measures the similarity, by computing its Eu-

clidean distance, between the distributions of generated and real images by comparing

feature vectors obtained from a pre-trained Inception V3 model introduced by Szegedy et

al. (2016), where lower values indicate higher similarity.

Pearson Correlation Coefficient (PCC) measures the linear correlation between

the predicted and actual images, providing a value between -1 and 1, where 1 indicates a
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perfect positive correlation.

Peak Signal-to-Noise Ratio (PSNR) quantifies the quality of the generated images

compared to the originals, with higher values indicating better image quality and lower

noise levels.

4.3.2 Biological Information

Although pixel-level metrics evaluate the visual quality of the synthesized images,

the main goal of in-silico labeling is to extract biological information from microscopy

images. Based on the characteristics of the dataset described in Section 4.1, we can cate-

gorize the samples into six groups based on the combination and concentration of drugs.

Due to visible phenotype characterization on the red channel, we can asses how good the

preservation of such phenotypes, i.e., biological information, are on the generated images.

Using the same train, validation, and test sets as in the image-to-image translation

tasks previously described in Section 4.2, we trained an image classifier using the ground

truth stained images (red channel). More precisely, we used a ResNet-50 backbone (HE

et al., 2016) with weights pre-trained on ImageNet, and fine-tuned it with our dataset. The

accuracy of the model on the test set provides an idea of how well the six categories can

be separated using ground truth images.

To evaluate how well the virtually stained images maintain the biological charac-

teristics of the six classes, we repeated the evaluation protocol for the images produced by

the image generation models. The results can be compared to validate whether the biolog-

ical information contained in the original images was preserved in the images generated

using the in-silico labeling method.
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5 EXPERIMENTAL RESULTS

This chapter presents the experimental results obtained from our study on image

generation. The results are divided into two sections: quantitative and qualitative. After

that, a discussion on the results and limitations of each model concludes the chapter.

5.1 Quantitative Analysis

Table 5.1 provides an overview and comparison of each model performance on the

metrics mentioned in section 4.3.1. As observed, the VAE-GAN model outperformed all

others across all metrics, followed by the LBBDM model, with the BBDM model ranking

last. Notably, all metrics are correlated, especially when comparing image quality metrics

to the classification metric. Additionally, it is important to remember that the FID metric

is calculated by comparing feature vectors extracted from the generated and real images.

Table 5.1: Comparison of different models based on various metrics
Model SSIM ↑ FID ↓ PSNR↑ PCC ↑ MAE ↓ MSE ↓ Accuracy1 ↑

VAE-GAN 0.978 0.014 34.22 0.719 0.011 0.001 62.33
LBBDM 0.969 0.052 31.25 0.421 0.019 0.002 51.10
BBDM 0.963 1.296 25.06 0.448 0.077 0.011 16.41

Focusing on the comparison between the LBBDM and BBDM models, it is evi-

dent that performing the diffusion process in the latent space significantly improves the

quality metrics of the generated images in the proposed dataset. This suggests that the

information condensed in the latent representation remains highly representative of the

original data while enhancing computational efficiency.

5.2 Qualitative Analysis

This section is focused on the qualitative results by presenting visual examples

of the generated images, providing a comparative assessment of the visual fidelity and

diversity achieved by the models. Fig. 5.1 presents some of the generated images using

the test set (zoom in on the images to notice the details). In images generated by the

BBDM model, a noticeable locality error is observed, with cells either being introduced

or subtracted from the image. In tasks such as cell segmentation, this would result in sig-
1The result on the original images, which serves as a baseline for comparison, is 84.6%
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nificantly misleading analysis, characterizing the images generated by the BBDM model

as low quality, an example can be seen in zoom-in in Fig 5.2. This locality issue also

occurs in images generated by the LBBDM model, though less frequently. This can be

observed in the images on the third row, which are characterized by a high number of

cells. The VAE-GAN model, on the other hand, does not exhibit observable occurrences

of the locality problem.

Figure 5.1: Example of samples generated by each model and their respective input image

(brightfield) and ground truth.

Following the qualitative analyses, it is evident that the most common issue is

the variation in fluorescence intensity within each cell, which is observable in images

generated by all models. This variation poses a limitation since fluorescence intensity can

be a key characteristic in identifying cell phenotypes.



35

Figure 5.2: An example of the locality problem. A BBDM sample. B Groundtruth.

5.3 Discussion

As we can see in Table 5.1, the VAE-GAN model has achieved the best results,

both in metrics related to image reconstruction and in the classification task, which aims to

evaluate the representation of biological information contained in the generated images.

When evaluating the results of all models, we can observe that the metrics for image

reconstruction and the classification task are correlated, indicating that indeed maintaining

image similarity results in preserving its biological information. This is an important

result since in a real laboratory situation, for example, drug research, the generated images

will undergo further image analyses to extract phenotypes that are characterized by the

drug concentration and variability that was used to label each class. The preservation of

image similarity and structure can be qualitatively assessed by analyzing the generated

images presented in Fig. 5.1. It is noticeable that the images generated by the VAE-

GAN and the LBBDM models, both with similar quantitative results, are visually closer

to the ground truth than those generated by the one with the worst quantitative results, the

BBDM model.

It is important to emphasize that while the VAE-GAN model delivers the best

results, it also demands the most computational power when training, even as a fine-

tuned model rather than one trained from scratch, as described in 4.2.3. In contrast,
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the LBBDM model requires significantly less computational power, despite necessitating

the pre-training of a similar but smaller encoder-decoder model. When generating the

samples, on a single RTX A6000 GPU, VAE-GAN takes 5 seconds per image, a slight

edge over LBBDM, which takes 6 seconds per image, and, at last, the BBDM model

which takes 20 seconds per image.

It is also important to note that when training with a larger U-Net architecture, re-

sponsible for the denoising process in LBBDM-based models, the model tends to overfit.

This overfitting can likely be attributed to our dataset being smaller than those used in

previous works. Notably, Cross-Zamirski et al. (2023), the only prior work that explored

diffusion models, used 10 plates containing around 2, 000 images each, totaling roughly

20, 000 images, in contrast with a total of 4, 536 images used in our work. Additionally,

in their dataset, the brightfield images consisted of three channels, representing three dif-

ferent z-focal planes, in our dataset the brightfield images consist of only one channel

for a single z-focal plane, thus providing less information. Given these observations, the

LBBDM model appears promising for future research.
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6 CONCLUSION

This work introduced the reader to the importance and limitations of microscopy

in biomedical research and how computer vision can enhance this field. In particular,

we focused on the in-silico labeling application, which is a methodology for artificially

labeling microscopy images without the drawbacks of fluorescent labels. Following this

introduction, the key concepts of image-to-image translation, its applications, method-

ologies, and both established and promising models were reviewed. With this foundation,

experiments using the exposed methodologies were proposed and executed. The results

were quantitatively and qualitatively analyzed and discussed, suggesting that image qual-

ity and a classification method to analyze if biological information was preserved in the

generated images were correlated, this could also be observed by qualitatively analyz-

ing the generated images. Regarding model performance, although the VAE-GAN model

achieved the best metrics and visual results, the LBBDM model seems more promising

for future works, due to its lower computational requirements. The prominence of the

LBBDM model extends when comparing it to the BBDM model, suggesting that per-

forming the diffusion and denoising process is more efficient and results in higher-quality

image generation when done on the latent space. The judgment of these results is mean-

ingful, providing direction and insights for future research.

The research field of bioimaging is in rapid progress and the task of in-silico la-

beling is advancing with it. A key indicator of this progress is the inaugural Light My

Cell1 challenge, promoted by French BioImaging (FBI) at the International Symposium

on Biomedical Imaging (ISBI) in 2024. This challenge introduced a new dataset compris-

ing paired images from not just brightfield but three different microscopy modalities to

four different fluorescent channels (labels). Moreover, the dataset is not fully annotated,

aiming for a generalized model, a key obstacle in the application of computer vision in

biomedical imaging. The knowledge acquired and presented in this work can hopefully

serve as a foundation for new studies that can further advance the field.

1<https://lightmycells.grand-challenge.org/>

https://lightmycells.grand-challenge.org/


38

REFERENCES

ARJOVSKY, M.; BOTTOU, L. Towards principled methods for training generative
adversarial networks. arXiv preprint arXiv:1701.04862, 2017.

ARJOVSKY, M.; CHINTALA, S.; BOTTOU, L. Wasserstein generative adversarial
networks. In: PMLR. International conference on machine learning. [S.l.], 2017. p.
214–223.

BRAY, M.-A. et al. Cell painting, a high-content image-based assay for morphological
profiling using multiplexed fluorescent dyes. Nature protocols, Nature Publishing Group
UK London, v. 11, n. 9, p. 1757–1774, 2016.

CARPENTER, A. E. et al. Cellprofiler: image analysis software for identifying and
quantifying cell phenotypes. Genome biology, Springer, v. 7, p. 1–11, 2006.

CHRISTIANSEN, E. M. et al. In silico labeling: predicting fluorescent labels in
unlabeled images. Cell, Elsevier, v. 173, n. 3, p. 792–803, 2018.

COHEN, J. P.; LUCK, M.; HONARI, S. Distribution matching losses can hallucinate
features in medical image translation. In: SPRINGER. Medical Image Computing and
Computer Assisted Intervention–MICCAI 2018: 21st International Conference,
Granada, Spain, September 16-20, 2018, Proceedings, Part I. [S.l.], 2018. p. 529–536.

COLE, R. Live-cell imaging: The cell’s perspective. Cell adhesion & migration, Taylor
& Francis, v. 8, n. 5, p. 452–459, 2014.

CROSS-ZAMIRSKI, J. O. et al. Class-guided image-to-image diffusion: Cell painting
from brightfield images with class labels. arXiv preprint arXiv:2303.08863, 2023.

CROSS-ZAMIRSKI, J. O. et al. Label-free prediction of cell painting from brightfield
images. Scientific reports, Nature Publishing Group UK London, v. 12, n. 1, p. 10001,
2022.

DESHPANDE, A. et al. Learning diverse image colorization. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. [S.l.: s.n.], 2017. p.
6837–6845.

ESSER, P.; ROMBACH, R.; OMMER, B. Taming transformers for high-resolution
image synthesis. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. [S.l.: s.n.], 2021. p. 12873–12883.

GOODFELLOW, I. et al. Generative adversarial nets. Advances in neural information
processing systems, v. 27, 2014.

GUPTA, A. et al. Is brightfield all you need for mechanism of action prediction?
bioRxiv, Cold Spring Harbor Laboratory, p. 2022–10, 2022.

HARAGUCHI, T. Live cell imaging: approaches for studying protein dynamics in
living cells. Cell structure and function, Japan Society for Cell Biology, v. 27, n. 5, p.
333–334, 2002.



39

HE, K. et al. Deep residual learning for image recognition. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. [S.l.: s.n.], 2016. p. 770–778.

HINTON, G. E.; SALAKHUTDINOV, R. R. Reducing the dimensionality of data with
neural networks. science, American Association for the Advancement of Science, v. 313,
n. 5786, p. 504–507, 2006.

HO, J.; JAIN, A.; ABBEEL, P. Denoising diffusion probabilistic models. Advances in
neural information processing systems, v. 33, p. 6840–6851, 2020.

ICHA, J. et al. Phototoxicity in live fluorescence microscopy, and how to avoid it.
BioEssays, Wiley Online Library, v. 39, n. 8, p. 1700003, 2017.

ISOLA, P. et al. Image-to-image translation with conditional adversarial networks. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
[S.l.: s.n.], 2017. p. 1125–1134.

JUMP-Cell Painting Consortium, The Broad Institute. JUMP-Target. 2022.
<https://github.com/jump-cellpainting/JUMP-Target>.

KINGMA, D. P.; WELLING, M. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

LI, B. et al. Bbdm: Image-to-image translation with brownian bridge diffusion models.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern
Recognition. [S.l.: s.n.], 2023. p. 1952–1961.

LIU, Z.-S.; SIU, W.-C.; CHAN, Y.-L. Photo-realistic image super-resolution via
variational autoencoders. IEEE Transactions on Circuits and Systems for video
Technology, IEEE, v. 31, n. 4, p. 1351–1365, 2020.

MCINNES, L.; HEALY, J.; MELVILLE, J. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

PANG, Y. et al. Image-to-image translation: Methods and applications. IEEE
Transactions on Multimedia, IEEE, v. 24, p. 3859–3881, 2021.

PLISSITI, M. E.; VRIGKAS, M.; NIKOU, C. Segmentation of cell clusters in pap smear
images using intensity variation between superpixels. In: IEEE. 2015 International
Conference on Systems, Signals and Image Processing (IWSSIP). [S.l.], 2015. p.
184–187.

PRINCE, S. J. Understanding Deep Learning. The MIT Press, 2023. Available from
Internet: <http://udlbook.com>.

PYLVÄNÄINEN, J. W. et al. Live-cell imaging in the deep learning era. Current
Opinion in Cell Biology, Elsevier, v. 85, p. 102271, 2023.

QIAO, Y. et al. Thresholding based on variance and intensity contrast. Pattern
Recognition, Elsevier, v. 40, n. 2, p. 596–608, 2007.

ROMBACH, R. et al. High-resolution image synthesis with latent diffusion models.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. [S.l.: s.n.], 2022. p. 10684–10695.

https://github.com/jump-cellpainting/JUMP-Target
http://udlbook.com


40

RONNEBERGER, O.; FISCHER, P.; BROX, T. U-net: Convolutional networks for
biomedical image segmentation. In: SPRINGER. Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. [S.l.], 2015. p.
234–241.

SAHARIA, C. et al. Image super-resolution via iterative refinement. IEEE transactions
on pattern analysis and machine intelligence, IEEE, v. 45, n. 4, p. 4713–4726, 2022.

SIMONYAN, K.; ZISSERMAN, A. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

SZEGEDY, C. et al. Going deeper with convolutions. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. [S.l.: s.n.], 2015. p. 1–9.

SZEGEDY, C. et al. Rethinking the inception architecture for computer vision. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
[S.l.: s.n.], 2016. p. 2818–2826.

VAPNIK, V.; IZMAILOV, R. et al. Learning using privileged information: similarity
control and knowledge transfer. J. Mach. Learn. Res., v. 16, n. 1, p. 2023–2049, 2015.

WANG, Z. et al. Image quality assessment: from error visibility to structural similarity.
IEEE transactions on image processing, IEEE, v. 13, n. 4, p. 600–612, 2004.

WIESLANDER, H. et al. Learning to see colors: Biologically relevant virtual staining
for adipocyte cell images. Plos one, Public Library of Science San Francisco, CA USA,
v. 16, n. 10, p. e0258546, 2021.

ZHU, J.-Y. et al. Unpaired image-to-image translation using cycle-consistent adversarial
networks. In: Proceedings of the IEEE international conference on computer vision.
[S.l.: s.n.], 2017. p. 2223–2232.


	Agradecimentos
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Theoretical Foundations
	2.1 Microscopy
	2.1.1 Live Cell Imaging
	2.1.2 Phototoxicity and Photobleach
	2.1.3 Computer Vision and Microscopy

	2.2 Generative Image Models
	2.2.1 Variational Autoencoders (VAEs)
	2.2.2 Generative Adversarial Networks (GANs)
	2.2.3 Denoising Diffusion Probabilistic Models (DDPMs)
	2.2.4 Latent Diffusion Models (LDMs)

	2.3 In-Silico Labeling

	3 Related Work
	3.1 Image-to-Image Translation
	3.2 In-silico labeling

	4 The Proposed Methodology
	4.1 Dataset
	4.2 The tested models
	4.2.1 Brownian Bridge Diffusion Models (BBDM)
	4.2.2 Latent Brownian Bridge Diffusion Models (LBBDM)
	4.2.3 Variational Autoencoder Generative Adversarial Network

	4.3 Evaluation
	4.3.1 Pixel-Level Metrics
	4.3.2 Biological Information


	5  Experimental Results
	5.1 Quantitative Analysis
	5.2 Qualitative Analysis
	5.3 Discussion

	6 Conclusion
	References

