
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

PEDRO HENRIQUE CAPP KOPPER

Topology-Aware Task Scheduling For
Heterogeneous Architectures

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Engineering

Advisor: Prof. Dr. Antonio Carlos Schneider
Beck Filho

Porto Alegre
August 2024

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitora de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Engenharia de Computação: Prof. Cláudio Machado Diniz
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

“Nothing in life is to be feared, it is only to be understood.

Now is the time to understand more, so that we may fear less.”

— MARIE CURIE

ACKNOWLEDGEMENTS

I believe that this work is the culmination of all the years spent on my undergrad-

uate degree. I would like to first and foremost thank my parents, Carlos and Cecy, for

their unconditional support over all those (intense) years. Across pandemics and floods,

we stayed strong and were able to achieve our dreams. I would also like to thank Prof. Dr.

Antônio Carlos Schneider for his advice and unbreakable patience with every last-minute

delivery. Finally, I would also like to thank all my friends who supported me not only dur-

ing the preparation of this works, but through all the ups and downs of growing not only

as as student and professional, but also as a human. The years spent in my undergraduate

degree were of intense growth and change, and I am forever thankful to everyone who

accompanied me throughout this process.

ABSTRACT

Due to pressing power consumption requirements, recent processors have started to fea-

ture heterogeneous, same-ISA cores. This causes modern processors to have highly

unique and asymmetric topologies, requiring special attention to task scheduling to ob-

tain high performance and avoid hitting bottlenecks. This work proposes utilizing perfor-

mance counters to profile applications online and use a machine learning model to map

them to the most appropriate cores. We start by characterizing the processor and analyz-

ing the memory subsystem for possible bottlenecks. Once that is identified, performance

counter data is collected from several real-world benchmarks. This data is organized as a

dataset for training a gradient boosting classifier, which can predict which thread should

be scheduled in the most performing core with 91.1% accuracy. This model is then used

to develop a thread placing script, which dynamically sets the CPU affinity of threads

based on the model. This strategy can lead to up to 69.9% performance gain on select

benchmarks, with a geometric average of 7.76%. Finally, regressing benchmarks are an-

alyzed to improve the model in the future.

Keywords: Heterogeneous architectures. cache. scheduling.

Escalonamento de Tarefas Ciente de Topologia para Arquiteturas Heterogêneas

RESUMO

Devido aos requisitos atuais de consumo de energia, os processadores mais recentes co-

meçaram a apresentar núcleos heterogêneos e que utilizam a mesma ISA. Essa caracte-

rística faz com que os processadores modernos possuam topologias altamente exclusivas

e assimétricas, exigindo atenção especial no escalonamento de tarefas para obter alto de-

sempenho e evitar gargalos. Começamos caracterizando o processador e analisando o

subsistema de memória para encontrar possíveis gargalos. Uma vez que isso é identifi-

cado, os dados de performance counters são coletados de vários benchmarks de mundo

real. Esses dados são organizados como um conjunto de dados para treinar um classifica-

dor de aumento de gradiente, o qual pode prever qual thread deve ser alocada no núcleo

de melhor desempenho com 91,1% de precisão. Esse modelo é então usado para desen-

volver um script de alocação de cores, que define dinamicamente a afinidade de CPU das

threads com base no modelo. Essa estratégia pode levar a um ganho de desempenho de até

69,9% em benchmarks selecionados, com uma média geométrica de 7,76%. Finalmente,

os benchmarks que regrediram são analisados para melhorar o modelo no futuro.

Palavras-chave: Arquiteturas Heterogêneas, Escalonamento.

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface

CFS Completely Fair Scheduler

CPU Central Processing Unit

EEVDF Earliest Eligible Virtual Deadline First

ISA Instruction Set Architecture

PMC Performance Monitoring Counters

SF Speedup Factor

SMP Symmetric Multi-Processor

SMT Simultaneous multithreading

TMA Top-down Microarchitecture Analysis

TSC Time Stamp Counter

LIST OF FIGURES

Figure 1.1 Intel Alder Lake Heterogeneous Architecture Announcement11

Figure 2.1 Intel Alder Lake Annotated Die Shot ..16
Figure 2.2 Pollack’s Law For Microprocessors ..17
Figure 2.3 Intel Hybrid Cache Architecture..18
Figure 2.4 i7-1260P memory architecture ..18
Figure 2.5 P-core block diagram...19
Figure 2.6 E-core block diagram...20
Figure 2.7 Intel Thread Director Working Principle ...24
Figure 2.8 Confusion Matrix Definition ...26

Figure 3.1 Core-to-core latency on a i7-1260P...31
Figure 3.2 Benchmark results (lower is better) ...33
Figure 3.3 Speedup per measured application ..38
Figure 3.4 Distribution of the speedups ..39
Figure 3.5 Performance counter data (part 1) ...40
Figure 3.6 Performance counter data (part 2) ...41

Figure 4.1 Machine learning architecture proposal ..42
Figure 4.2 Feature importance of the Gradient Boosting Decision Tree43
Figure 4.3 Topology-aware scheduler model ..45
Figure 4.4 perf overhead per sampling interval ..46
Figure 4.5 Top-N vs Performance Evaluation (Rodinia CFD).......................................47
Figure 4.6 Multi-benchmark performance evaluation...48
Figure 4.7 Java Virtual Machine performance evaluation...49

LIST OF TABLES

Table 2.1 CPPC sysfs interface..25
Table 2.2 CPPC values on the Intel i7-1260P ...26

Table 3.1 Benchmark instruction distribution ...34
Table 3.2 Tests included in the test suite...36
Table 3.3 Recorded perf events/counters..37

Table 4.1 Classification report on the test set..43

CONTENTS

1 INTRODUCTION...11
1.1 Organization..13
2 BIBLIOGRAPHICAL REVIEW ..15
2.1 Heterogeneous Architectures ...15
2.2 Intel Core i7-1260P Topology...16
2.2.1 Golden Cove (P-cores)...18
2.2.2 Gracemont (E-cores)..19
2.3 The Linux Scheduling Subsystem ...21
2.3.1 Completely Fair Scheduler (CFS)..21
2.3.2 Earliest Eligible Virtual Deadline First (EEVDF) ...21
2.4 Current scheduling approaches and optimizations ...22
2.4.1 Capacity Aware Scheduling ...22
2.4.2 Energy Aware Scheduling..22
2.4.3 Intel Thread Director..23
2.4.4 Collaborative Processor Performance Control...23
2.5 Machine learning ..24
2.5.1 Gradient boosting...25
2.5.2 Classifier performance evaluation..26
2.6 Related work..27
2.6.1 Cache sharing impact on multi-threaded workloads..27
2.6.2 Performance counter-based schedulers..29
3 DATA COLLECTION..30
3.1 Processor Characterization..30
3.2 Cache versus performance ...31
3.3 Real-world workloads...35
4 TASK-PLACEMENT PROPOSAL...42
4.1 Tournament-style scheduler overlay ...44
4.2 Performance evaluation..47
5 CONCLUSION AND FUTURE WORK ..50
REFERENCES...51
APPENDIX — MODIFICATIONS TO THE PHORONIX TEST SUITE54
APPENDIX — TASK PLACER SCRIPT ...57

11

1 INTRODUCTION

Recent demands in mobile computing have pressured the industry to drive down

power consumption rapidly, aiming to increase battery life and reduce heat dissipation.

This has led to significant changes in computer architectures, most notably the rise in

heterogeneous architectures, where more than one micro-architectures of the same ISA

are available in the same package (KUMAR et al., 2003).

One of the first of such architectures was Arm’s big.LITTLE, introduced with the

Cortex-A7 and Cortex-A15 pair (ARM, 2011). While both cores are compatible, the A7

is a simpler in-order core, while the A15 features a faster, but significantly more complex

design, featuring an out-of-order pipeline capable of speculative execution. This concept

was further expanded with the introduction of the DynamIQ technology, allowing for

even more core cluster configurations, while also allowing them to scale independently in

frequency and voltage and providing shared and coherent memory access (ARM, 2017).

Figure 1.1: Intel Alder Lake Heterogeneous Architecture Announcement

Source: Adapted from (Intel Corp., 2021)

The previously cited technologies applied mostly to smartphones, tablets, and

other mobile devices. However, with the introduction of Apple’s M1 processor in 2020

(Apple Inc, 2020), based on an Arm ISA, there was a surge in interest in heterogeneous

architectures on desktop and mobile personal computers. Intel quickly followed suit, re-

12

leasing the x86-64 Alder Lake processors, featuring a mixture of Golden Cove and Grace-

mont cores (Intel Corp., 2021) with the proposed architecture in Figure 1.1. Each core

was optimized for performance (P-cores) or area efficiency (E-cores), respectively, while

both featured out-of-order superscalar pipelines. Recent designs, such as Intel’s Meteor

Lake (Intel Corp.,) go a step further, featuring an even lower tier called LP-cores. These

cores are located on a separate die and can be powered on and off independently from the

rest of the chip, allowing for even higher power savings.

To use these processors efficiently, while still keeping a satisfactory throughput,

the operating system must intelligently schedule tasks across cores, taking into account

their performance, power consumption, and position in relation to its siblings. Also, it

might be able to turn off certain cores entirely, achieving high energy savings, but having

to handle an additional wake-up latency. Therefore, considerable strain is put into the

scheduler and various approaches have been developed to achieve these tasks quickly and

effectively, ranging from hardware feedback to user-space daemons.

One possible route for optimization is exploiting the memory hierarchy differ-

ences to provide better performance. In some special cases, the performance improvement

compared to naive thread placement can be up to 36% (ZHANG; JIANG; SHEN, 2010).

Some effort has also been made to determine an analytical model of the memory hierar-

chy of multi-core processors (MOHAMED; MUBARK; ZAGLOUL, 2023), demonstrat-

ing the performance impact of the variance in memory access time due to interdependence

between different memory layers. Other authors also suggest that cache-aware scheduling

could be beneficial for achieving higher energy savings, although this will not be explored

explicitly in this thesis (SHEIKH; PASHA, 2022).

In the past, there have been attempts to achieve better performance by improv-

ing data locality using compilation-time techniques (ZHANG; KANDEMIR; YEMLIHA,

2011) (JIANG et al., 2011) (KANDEMIR et al., 2010). In these cases, the multi-layer

cache hierarchy is characterized by a reuse distance metric, which is tied to the latency

from each core to each cache. However, this requires a priori knowledge of the program

under optimization, limiting its applications.

On the other hand, when considering raw performance differences across cores

we can optimize for different targets. For instance, on mobile platforms, authors tend

to optimize for energy efficiency, as it is usual for lower-performance cores to be more

energy-efficient. At the same time, when dealing with area-efficient cores, the energy

penalty is not as significant as the performance one, so maximizing throughput using all

13

available cores is a more interesting goal.

In this work, we will be exploring how we can optimize the scheduling of tasks for

the Linux kernel on an Intel Alder Lake microprocessor. We will do this by first exploring

the potential memory differences to identify whether there is any gain to be obtained there.

Further, we will explore the performance gap between the two tiers of cores available on

our microprocessor by running real-world workloads and measuring performance and

hardware counters. Using that data, we will then build a machine learning model that

can estimate which type of core a thread should be placed in, aiming to optimize the case

of multi-task systems where multiple programs compete for limited CPU resources. By

leaving performance cores only to the threads that will benefit the most and moving the

rest to the efficiency cores, we can achieve less throughput degradation. Finally, we will

validate our model by showcasing a CPU-affinity-based scheduling overlay, which will

run on top of a stock Linux image and be used for performance evaluation.

Overall, the main contributions of this thesis are:

1. Micro-benchmarks of the memory access differences between Golden Cove and

Gracemont cores

2. Review of the performance differences between Golden Cove and Gracemont cores

using real-world workloads

3. Development of a dataset of different applications and their performance counters

on Alder Lake processors

4. Development of a machine learning classifier for thread placement on Alder Lake

processors

5. Implementation of a scheduler-overlay using a machine model that optimizes thread-

to-core mapping on Alder Lake processors

1.1 Organization

This thesis’s main contributions are centered around modern x86 heterogeneous

architectures for consumer use. Starting in Section 2, we review the micro-architecture

of the Intel i7-1260P mobile processor. Then, we review how the Linux kernel currently

handles asymmetric topologies, both in scheduling and power management decisions. In

Section 3, we then perform a series of benchmarks based on characteristics identified

during the bibliography review, aiming to better understand how they affect performance

14

and energy consumption. We start by investigating the difference in cache access la-

tency and measuring its impact on memory-bound applications. After discarding this

hypothesis, we follow up by performing a higher-level investigation comprising a series

of application-level benchmarks monitoring hardware performance counters. Finally, we

present a machine-learning model built using this data that can pick the most suitable core

for each task based on its performance counters.

15

2 BIBLIOGRAPHICAL REVIEW

In this section, we will start by giving a basis for the work being developed. First,

fundamentals of computer architecture will be covered, as well as a review of the proces-

sor under analysis. Following that, we will review how the Linux scheduling subsystem

works as to provide a basis for the development of our own scheduler, reviewing how it

works in general and how it currently handles heterogeneous architectures. Then, we will

cover machine learning basics, as this will be a core mechanism for our thread-classifying

algorithm. Finally, we present a summary of the related work done in this area.

2.1 Heterogeneous Architectures

Traditionally, multi-core systems have been composed by having multiple cores

using the same micro-architecture. However, as the need for more energy-efficient designs

appeared, it was proposed by (KUMAR et al., 2003) to evaluate single-ISA heterogeneous

multi-core architectures as a mechanism to reduce processor power dissipation. By hav-

ing multiple core types available, each type could be optimized for a specific purpose,

e.g. high performance or area/power efficiency. At the same time, retaining the same

ISA across cores allowed software unaware of the heterogeneity to keep running with-

out modifications, easing adoption. In the cited system, the authors were able to reduce

39% on average energy while running 14 SPEC benchmarks, while sacrificing perfor-

mance by only 3%. This left the question of not only how to size these cores, but how to

schedule threads efficiently between them, especially since load characteristics can vary

during program execution. For instance, programs can spend only a small portion of their

runtime running intense computations while spending a lot of time waiting on I/O.

By implementing this technique, Intel can fit more processor cores into a single

die. For instance, in Figure 2.1 we can see the Golden Cove (performance) cores in

blue on the left, while Gracemont (efficiency) cores are in green on the right. Using

the same area of a Golden Cove core, there can be four Gracemont cores in a cluster.

This means a processor in the example can have 6 + 8 = 14 cores instead of 8 cores

if they were all performance-focused. This way, a single processor can achieve a high

core count, useful for highly parallel applications, while retaining high performance on

single-threaded ones.

When analyzing processors from the Alder Lake generation running integer bench-

16

Figure 2.1: Intel Alder Lake Annotated Die Shot

Source: Adapted from (LOCUZA, 2022)

marks, the geometric mean performance of an efficiency core is 0.8× that of a perfor-

mance core running at the same frequency, while for floating point it can reach 0.62×

(ROTEM et al., 2022). This is in line with Pollack’s rule, which states that the perfor-

mance of a processor increases proportionally to the square root of complexity as seen in

Figure 2.2 (BORKAR, 2007). Therefore, a processor twice as large as the other should

only provide a roughly 41% increase in performance, despite a much larger area. This

difference can vary per program and depends on the instruction mix and other factors,

which will be estimated during the course of this thesis. These distinctions will form the

basis of our model.

2.2 Intel Core i7-1260P Topology

For this thesis, the analysis will be focused on the Intel Core i7-1260P processor,

due to its availability to the author. According to the data on its product page (Intel Corp.,

2022), the Intel Core i7-1260P is a mobile Alder Lake processor manufactured using

the Intel 7 lithography. It provides 12 cores, of which 4 are optimized for performance

and 8 for efficiency. Considering that only the performance cores support simultaneous

multi-threading, this allows the processor to execute up to 16 threads simultaneously.

Its performance cores are based on the Golden Cove micro-architecture and can

17

Figure 2.2: Pollack’s Law For Microprocessors

Source: (BORKAR, 2007)

run up to 4.70 GHz, depending on thermal constraints. At the same time, efficiency cores

are based on the Gracemont micro-architecture and can run up to 3.40 GHz. Looking

deeper into its datasheet (Intel Corp., 2023a), we can understand the cache topology used

in Alder Lake processors. In the P-cores, the first level cache is divided into a data and an

instruction cache, providing 48KB and 32KB respectively. Both of the caches are 12-way

associative. In the E-cores, the first level cache is divided into a data and an instruction

cache. Still, they are sized differently, providing 32KB for data and 64KB for instructions,

both being 8-way associative.

The second level is private for P-cores, providing 1.25MB of a 10-way non-

inclusive associative cache. However, in the E-cores it is shared in clusters of four cores,

providing 2MB of 16-way non-inclusive associative cache for each cluster.

The third and last level is shared among all cores and processor graphics core. Its

size varies depending on the product number, being 18MB in the case of the i7-1260P. It

is 12-way non-inclusive associative.

This data is exposed in a machine-readable format to the operating system. In

Linux, this is accessible to userspace through a sysfs interface under /sys/devices/sys-

tem/cpu/. There are tools, such as hwloc, that allow parsing this data and generating

graphics, which as the one in Figure 2.4.

Processor numbering follows the Linux convention, where SMT pairs are grouped.

Thus, P#{0-7} are P-cores, where P#{1,3,5,7} are the SMT siblings of P#{0,2,4,6}. Pro-

cessors P#{8-15} are E-cores. It is important to note how each P-core has its private L2

cache, while E-cores share two L2 caches in clusters of 4. This leads to a difference in

18

Figure 2.3: Intel Hybrid Cache Architecture

Source: (Intel Corp., 2023a)

Figure 2.4: i7-1260P memory architecture

Source: The author

inter-core memory latency that will be subsequently explored. We will now present a

deeper analysis of each core type.

2.2.1 Golden Cove (P-cores)

The Golden Cove micro-architecture is used both in Alder Lake for consumer de-

vices and in Sapphire Rapids for servers. It is focused on having a wide out-of-order core,

with the infrastructure around it to keep it fed. Its frontend has a decode pipeline fetch

bandwidth of 32 bytes/cycle, used to feed its six decoders, making it capable of decoding

up to six instructions per cycle. Accordingly, the backend has a 6-wide rename/alloca-

tion unit, paired with 12 execution ports. Finally, instructions can be retired out-of-order

from a 512-entry window. They can also support simultaneous multi-threading (SMT)

19

and support extra vector extensions, such as AVX-512, that lead to higher performance

but will not be explored in this thesis (ROTEM et al., 2022). Due to all this, the core is

significantly larger in area and consumes more power, however, it can more effectively

achieve higher parallelism and, consequently, throughput.

Figure 2.5: P-core block diagram

Source: (ROTEM et al., 2022)

2.2.2 Gracemont (E-cores)

At the same time, Gracemont cores have different design goals, being optimized in

terms of area and power. We have a five-issue core with six decoders, which are grouped

in two clusters. Each cluster takes data from an instruction pointer queue, which is deliv-

ered in-order at 32 bytes/cycle. Every taken branch then toggles between clusters. In the

backend, there is a five-instruction-wide allocation unit, which reads the micro-operation

queue from both clusters in-order. Finally, up to eight instructions can be retired out-of-

order with a 256-entries window. (ROTEM et al., 2022). Combined with a smaller cache,

this design leads to a significantly smaller design, albeit slower performing as explained

in Section 2.1.

20

Figure 2.6: E-core block diagram

Source: (ROTEM et al., 2022)

21

2.3 The Linux Scheduling Subsystem

In an operating system, the job of multiplexing the CPU across multiple threads

is performed by the scheduler. Its objective is to allow multiple competing tasks to share

the same processors fairly while maximizing throughput and minimizing latency. As we

will be overriding part of the scheduler behavior using CPU affinity, it is important to first

understand how it works and its purpose. In this section, two Linux schedulers will be

described.

2.3.1 Completely Fair Scheduler (CFS)

Since Linux 2.6.23, the default scheduler has been the Completely Fair Scheduler

(CFS) (TORVALDS, 2024, 6.8). It aims to model an ideal, precise multi-tasking CPU,

which could theoretically run all tasks at equal speed in parallel. On real hardware, how-

ever, it divides the CPU using the "virtual runtime" concept, modeling when the next time

slice would start executing on an ideal CPU, normalized by the total number of running

tasks.

Ideally, all tasks would have the same virtual runtime. In practice, that does not

hold, so CFS builds a time-ordered red-black tree that models a "timeline" of future task

execution, sorted by virtual runtime. It then runs the leftmost (i.e. the least ran so far)

until a scheduler tick happens. Then it increases the virtual runtime, rebalances the tree

and, if another task becomes the leftmost, the current task is preempted and swapped.

Finally, when adding a new task it gets assigned a configurable minimum amount of

virtual runtime.

2.3.2 Earliest Eligible Virtual Deadline First (EEVDF)

Starting on the Linux Kernel version 6.6, CFS has been replaced by the Earliest

Eligible Virtual Deadline First (EEVDF) scheduler. First proposed in 1995 (STOICA;

ABDEL-WAHAB, 1995), it builds on the virtual time concept to track the work done

by each task. However, it also introduces the idea of a virtual deadline and lag. After

running a task for a given time, the scheduler updates the lag to be equal to the time the

task actually runs minus its allotted time. A task only becomes eligible when its lag is

22

positive (i.e. it is "owed" CPU time). To calculate the virtual deadline, it computes the

time remaining in its time slice to the time it became eligible. Then, the eligible task with

the earliest virtual deadline is run. This ensures that not only does each task get a fair

share of CPU time, but also that tasks with shorter time slices (presumed to be interactive

or latency sensitive) will tend to run first, improving the system responsiveness.

2.4 Current scheduling approaches and optimizations

Currently, the Linux Kernel documentation (TORVALDS, 2024, Version 6.8) spec-

ifies two core strategies for dealing with heterogeneous architectures from a scheduler

standpoint. Two models run concurrently, a capacity and an energy one, estimating pro-

cessing power and energy consumption respectively.

2.4.1 Capacity Aware Scheduling

The Linux Kernel utilizes internally a metric known as capacity to model differ-

ences between CPUs in heterogeneous architectures. This is defined as a measure of a

given CPU’s performance, normalized against the most performing CPU in the system.

This metric is then internally made frequency-invariant by dividing it by the frequency

of the highest operating point for each CPU. Finally, all task utilization metrics are also

normalized by frequency. These metrics are then fed into the Completely Fair Scheduler

(CFS) to allocate tasks to CPUs while ensuring they fit into the CPU’s capacity and are

balanced. However, this mechanism relies on capacity measurements provided by the

manufacturer and doesn’t consider other types of micro-architectural differences between

CPUs, tying everything up into a single scalar value.

2.4.2 Energy Aware Scheduling

The Energy Aware Scheduling (EAS) subsystem allows the kernel to estimate

the impact of its decisions on the energy consumption by the CPUs, using a given Energy

Model. This model is provided using a dedicated framework and maps given performance

levels to power consumption using either a mathematical approximation or feedback from

the hardware of the device. Using this information, it is possible to use the duration of

23

a task to estimate the total energy consumed by running it on a given core. Compared

to CFS alone, it extends it by prioritizing CPUs with the highest spare capacity in each

performance domain, which allows the frequency to be kept to a minimum. Finally, it

checks whether placing the task there would save energy compared to leaving it at the

previous CPU. If that is the case, the task is then moved. It is important to note that this

behavior is intrinsically tied to the accuracy of the Energy Model, as all decisions are

made on top of its data.

2.4.3 Intel Thread Director

The Intel Thread Director technology is a hardware subsystem that was first in-

troduced in the Alder Lake to help out with operating system scheduling decisions (Intel

Corp., 2023b). It is implemented alongside the Hardware Feedback Interface (HFI) as a

table in memory (described in Figure 2.7), which provides per-thread guidance to the OS

based on a proprietary algorithm. At the same time, HFI provides real-time information

on per-core performance and energy efficiency capabilities. Using these two data sources

together should provide a complete solution for choosing the appropriate CPU core per

thread.

However, although it is described as "optimal" in the official documentation, there

seems to be evidence against this case. In a study focusing on the Intel Core i9-12900K

(SAEZ; PRIETO-MATIAS, 2022), it was found that the Thread Director only predicts

a fixed speed-up factor for each of its four classes. This, combined with the fact that

99.9% of the Thread Director readings were classified only as Class 0 or Class 1, suggests

that Intel’s Thread Director might lack the granularity needed for fine-grained speed-up

estimation, leading to less-than-optimal scheduling solutions.

2.4.4 Collaborative Processor Performance Control

The Collaborative Processor Performance Control (CPPC) is a mechanism de-

fined in the APCI specification that allows the operating system to understand the per-

formance of logical processors on a continuous and abstract performance scale (TOR-

VALDS, 2024). It exposes multiple registers for each CPU via a sysfs interface as de-

scribed in Table 2.1.

24

Figure 2.7: Intel Thread Director Working Principle

Source: (ROTEM et al., 2022)

When measuring these values on the Intel i7-1260P, the values in Table 2.2 are

returned. This indicates that the performance difference between P-cores and E-cores

must be 1.76x at peak performance and 1.24x sustained, which is in line with what the

bibliography described earlier.

2.5 Machine learning

As we will be dealing with multi-modal data classification, we decided to pursue

a machine learning (ML) approach to the problem. It uses statistical models to enable

computers to learn from data, make decisions, and improve their performance on a spe-

cific task without being explicitly programmed. Machine learning is a suitable approach

for multi-modal data classification because it can effectively handle diverse data types,

such as different performance counters, by combining features from each modality into

a single representation. This allows the model to leverage the strengths of each input

type, improving overall performance and robustness. Additionally, machine learning al-

gorithms can automatically adapt to changes in the data distribution or new modalities,

making them more scalable and maintainable than traditional rule-based approaches (AL-

PAYDIN, 2014).

25

Table 2.1: CPPC sysfs interface.

sysfs entry Description
highest_perf Highest performance of this processor (abstract scale).
nominal_perf Highest sustained performance of this processor (abstract

scale).
lowest_nonlinear_perf Lowest performance of this processor with nonlinear power

savings (abstract scale).
lowest_perf Lowest performance of this processor (abstract scale).
lowest_freq CPU frequency corresponding to lowest_perf (in MHz).
nominal_freq CPU frequency corresponding to nominal_perf (in MHz).

The above frequencies should only be used to report pro-
cessor performance in frequency instead of abstract scale.
These values should not be used for any functional deci-
sions.

feedback_ctrs Includes both Reference and delivered performance
counter. The reference counter ticks up proportional to the
processor’s reference performance. The delivered counter
ticks up proportional to the processor’s delivered perfor-
mance.

wraparound_time Minimum time for the feedback counters to wraparound
(seconds).

reference_perf Performance level at which reference performance counter
accumulates (abstract scale).
Adapted from (TORVALDS, 2024)

Out of the several possible models, including neural networks and their variants,

gradient boosting was selected as the method of choice for building the classifier in this

work.

2.5.1 Gradient boosting

When building either regression or classification models from tabular data, a com-

mon approach is using gradient boosting to build the model, first proposed by (FRIED-

MAN, 2001). They allow for models to be built without having a previously specified,

expert-written model of the data. Instead of the traditional approach of building a single,

strong model, it trains an ensemble of weak learning models, which are added sequentially

to minimize the loss function (NATEKIN; KNOLL, 2013). Each new model is trained to

maximize its correlation with the negative gradient of the loss function. This process is

repeated until convergence, resulting in a final model that can be highly accurate and ro-

bust. The choice of loss function is flexible, allowing gradient boosting to be tailored to

26

Table 2.2: CPPC values on the Intel i7-1260P

Register P-core E-core
feedback_ctrs ref:40491209600 del:41968755597 ref:19009428200 del:11712204445
highest_perf 60 34
lowest_freq 0 0
lowest_nonlinear_perf 12 10
lowest_perf 1 1
nominal_freq 2100 2100
nominal_perf 26 21
reference_perf 31 25
wraparound_time 18446744073709551615 18446744073709551615

Source: The author

specific data-driven tasks. This technique has shown success in various machine learning

and data mining challenges and is particularly useful for predictive tasks involving sensor

data. Therefore, it will be used to analyze our data further down the line.

2.5.2 Classifier performance evaluation

After building a model, it is important to have metrics that evaluate how accurate

its predictions are. For this, we will be using recall, precision, and f-scores as defined by

(THARWAT, 2020). First, we define the concept of a confusion matrix, which is repre-

sented in Figure 2.8. It is a 2×2 matrix for binary classification, where the green diagonal

represents correct predictions and the pink diagonal indicates incorrect predictions. We

define true positives (TP) and true negatives (TN) as being the cases where the samples

are correctly identified as being in the positive or negative class, respectively. If a positive

sample is mispredicted to be negative, it is classified as a false negative (FN) and if the

opposite happens it is a false positive (FP).

Figure 2.8: Confusion Matrix Definition

Source: (THARWAT, 2020)

27

Using the definitions above, we can start defining our metrics. First, we define

accuracy as being:

Acc =
TP + TN

TP + TN + FP + FN

We can also define precision as the positive prediction value, defined as

Precision =
TP

FP + TP

It represents the proportion of positive samples that were correctly classified to the total

number of positive predicted samples. Recall, also called sensitivity or hit rate, is defined

as TPR = TP
TP+FN

. Finally, we can define F1-score as the harmonic mean of precision

and recall as just defined, resulting in the following expression:

F1 =
2TP

2TP + FP + FN

It ranges from zero to one and high measures indicate higher classification performance

(THARWAT, 2020). Down the line, these metrics will allow us to evaluate the perfor-

mance of our model for thread placement.

2.6 Related work

In this section, we will first analyze how the memory subsystem impacts the per-

formance of multi-threaded workloads, as this will be one of the characteristics analyzed

by our scheduler. After that, we provide an overview of previous attempts at building

schedulers optimized for heterogeneous architectures, focusing on those using perfor-

mance counters.

2.6.1 Cache sharing impact on multi-threaded workloads

The memory system plays a crucial role in the functioning of a CPU, as it provides

the necessary storage and retrieval mechanisms for data processing. A CPU relies heavily

on its memory hierarchy, comprising cache, main memory, and storage devices, to store

and access program instructions and data. A robust memory system enables efficient data

transfer between different levels of memory, reducing latency and increasing overall sys-

28

tem performance. However, it is also a fundamental performance and energy bottleneck in

almost all computing systems (MUTLU; MEZA; SUBRAMANIAN, 2015). While CPU

technology has been scaling very quickly, DRAM (Dynamic Random-Access Memory)

technology has been advancing at a much slower pace. This has been mitigated by adding

more cache levels closer to the CPU. By trading off smaller sizes for decreased latency,

they can provide a speed-up by storing commonly used data near the CPU. However, this

comes at the cost of increased complexity and fragmentation, as all these layers should be

transparent to the end-user.

On heterogeneous CPUs, it is important to note that the cache structure is not

homogeneous either, both in size and latency. This requires special attention, as the oper-

ating system scheduler must be aware of these characteristics to make efficient placement

decisions. In some special cases, the performance improvement compared to naive thread

placement can be up to 36% (ZHANG; JIANG; SHEN, 2010). Some effort has also been

made to determine an analytical model of the memory hierarchy of multi-core processors

(MOHAMED; MUBARK; ZAGLOUL, 2023), demonstrating the performance impact of

the variance in memory access time due to interdependence between different memory

layers. Other authors also suggest that cache-aware scheduling could be beneficial for

achieving higher energy savings, although this will not be explored explicitly in this pa-

per (SHEIKH; PASHA, 2022).

In the past, there have been attempts to achieve better performance by improv-

ing data locality using compilation-time techniques (ZHANG; KANDEMIR; YEMLIHA,

2011) (JIANG et al., 2011) (KANDEMIR et al., 2010). In these cases, the multi-layer

cache hierarchy is characterized by a reuse distance metric, which is tied to the latency

from each core to each cache. However, this requires a priori knowledge of the pro-

gram under optimization, limiting its applications. Finally, there have also been studies

showing the importance of reducing contention on critical shared resources, such as the

memory controller and on-chip networks, by appropriately mapping applications to cores

(DAS et al., 2013).

In this thesis, we will start by analyzing the impact of the cache directly by uti-

lizing micro-benchmarks, aiming to better understand the role that memory plays in the

performance differences among performance and efficiency cores.

29

2.6.2 Performance counter-based schedulers

In the academy, various research groups have come up with different proposals to

model the performance differences between cores better and schedule tasks on heteroge-

neous processors. For instance, a joint research group between Intel, MIT, and Ghent Uni-

versity has proposed using a Performance Impact Estimation (PIE) metric (CRAEYNEST

et al., 2012), which consists of an aggregate measurement of cycles per instruction of both

memory and non-memory-related components, and instruction and memory level paral-

lelism. This is based on the assumption that small cores are inherently in-order, while only

the big cores are out-of-order. This is not true in modern systems, such as the Gracemont

cores analyzed in this thesis. Still, the Gracemont cores have significantly smaller struc-

tures to aid in exploring instruction/memory level parallelism, making this a plausible

heuristic for determining which core is better suited to each task.

Some systems have already been put in place that allow per-thread performance

counter measurement, such as PMCTrack (SAEZ et al., 2017). This module exposes the

counters inside the kernel to the scheduler so that it can use performance data on its de-

cisions, while also storing data for offline analysis. The same group has since then built

PMCsched, which is a modular scheduling subsystem for Intel Alder Lake platforms us-

ing PMCTrack facilities to improve load distribution across asymmetric cores (BILBAO;

SAEZ; PRIETO-MATIAS, 2023). During their benchmarking, which comprised running

pairs of single-threaded programs derived from SPECcpu, they were able to improve up

to 30% throughput gain when compared to the naive Linux scheduler and up to 22% when

compared to Intel Thread Director.

Finally, there are classifier-based approaches that utilize machine learning tech-

niques to estimate the best thread-to-core mapping (BORAN; YADAV; IYER, 2020).

They utilize online hardware performance counters, similar to the previously cited ap-

proach, and break down each benchmark into several phases, classifying each of them

individually. The counter’s data is fed to a Linear Regression Neural Network (LRNN),

which outputs a binary classification. With this approach, they claim to obtain an average

speedup of 35.7% with respect to a baseline single ISA heterogeneous architecture.

30

3 DATA COLLECTION

Given the heterogeneous nature of the processor analyzed in the previous section,

combined with the asymmetric cache organization, we hypothesized that we could im-

prove task scheduling compared to the Linux 6.8 scheduler. To evaluate this, we will first

characterize the processor, aiming to identify any existing bottlenecks or other characteris-

tics that might be relevant for scheduling. We will do so by performing micro-benchmarks

that stress the memory subsystem and measure relevant performance counters.

Next, we will perform benchmarks consisting of real-world applications on both

performance and efficiency cores, measuring performance counters to build a dataset. Fi-

nally, we will analyze this dataset with machine learning techniques to build a model

capable of choosing which of two threads is the most CPU-bound one. Finally, we will

apply this model in a script that overrides part of the existing EEVDF scheduler, experi-

menting with how CPU cores are assigned to tasks aiming to achieve higher throughput

when multiple tasks are competing for CPU resources.

3.1 Processor Characterization

To be able to analyze the impact of the CPU topology on scheduling, it is inter-

esting to first gather data regarding the core-to-core communication latency, as this might

provide a useful metric to predict the impact of allocating similar threads to sibling cores.

We are interested in collecting this data as a heuristic to identify possible bottlenecks to

be explored during the development of our scheduler.

The data was collected using the c2clat tool, made available by (RIGTORP, 2020).

It measures the latency by spawning two threads, each pinned to a different core. They

alternate in locking a mutex, measuring the round-trip time to propagate the lock. The

core numbering follows the Linux convention, where SMT pairs are grouped together.

Thus, cores 0-7 are P-cores, where 1,3,5,7 are the SMT siblings of 0,2,4,6. Cores 8-15

are E-cores, with 8-11 and 12-15 being on separate clusters.

In Figure 3.1 above, we can identify the same-core latency of 0 in the diagonal.

SMT siblings, which are only available in the P-cores, show the lowest latency between

14 and 17ns. Of course, there is no true cross-core communication in this case, as they

share the same physical core. The lowest true core-to-core latency, however, shows up

in the top right quadrant. While communicating across E-core clusters causes the highest

31

Figure 3.1: Core-to-core latency on a i7-1260P

Source: The author

latency possible, around 77ns, the lowest one is achieved within E-cores on the same

cluster, dropping to between 51 and 52ns. This up to 51% difference in latency can be

significant, both for improving our scheduler or decreasing the performance of unaware

ones. The impact of this difference in latency will be analyzed in the following sections.

3.2 Cache versus performance

While the Core i7 1260P performance cores are based on the Golden Cove micro-

architecture and can run up to 4.70 GHz, depending on thermal constraints, efficiency

cores are based on the Gracemont micro-architecture and can only run up to 3.40 GHz.

When running integer benchmarks, the geometric mean performance of an E-core is 0.8x

that of a P-core running at the same frequency (ROTEM et al., 2022). To understand when

the memory latency advantage of the E-cores supersedes the performance advantage of P-

cores, a benchmark was formulated, allowing us to explore the threshold where it is more

beneficial to schedule threads on E-cores rather than P-cores, despite their performance

differences.

32

1 void *consumer_thread(void *data) {

2 consumerArguments *arguments = data;

3 message *matrix = arguments->matrix;

4 int *return_value = arguments->return_value;

5 int acc = 0;

6 int i = 0;

7 while (i < MATRIX_SIZE - 1) {

8 if (matrix[i].available) {

9 accumulator += matrix[i].value;

10 volatile int j = arguments->busy_wait;

11 while(j--);

12 i++;

13 }

14 }

15 if (acc == matrix[MATRIX_SIZE - 1].value) {

16 *return_value = true;

17 } else {

18 *return_value = false;

19 }

20

21 return NULL;

22 }

Listing 3.1 – Consumer thread source code

The benchmark is comprised of a producer and a consumer thread, where the

producer posts random numbers to a queue in shared memory and tags them as available.

The consumer takes those numbers when available and performs a busy wait incrementing

a local counter, simulating a variable workload per memory operation. This allows us

to control the ratio between memory and arithmetic operations and provides a run-time

metric for performance evaluation.

1 void *producer_thread(void *data) {

2 message *matrix = (message *)data;

3 int acc = 0;

4 srand(time(NULL));

5 for (int i = 0; i < MATRIX_SIZE - 1; i++) {

6 int temp = rand() % 10;

33

7 matrix[i].value = temp;

8 matrix[i].available = true;

9 acc += temp;

10 }

11 matrix[MATRIX_SIZE - 1].value = acc;

12 return NULL;

13 }

Listing 3.2 – Producer thread source code

In all cases, the MATRIX_SIZE was set to 1, 000, 000, which provided an accept-

able run-time in the order of hundreds of milliseconds suitable for profiling the applica-

tion. The matrix was initialized to a random number to deliberately throw off the branch

predictor. Each test case was run 100 times and averaged out.

We then follow by exploring the relationship between memory access and speedup.

This is based on the hypothesis that the lower latency of the caches in the E-cores might

benefit memory-bound workloads, as it is shared at the L2 level and has a smaller size.

Figure 3.2: Benchmark results (lower is better)

Source: The author

By varying the number of busy wait iterations, it was possible to generate a curve

34

transitioning the workload from being memory-bound (with fewer iterations) to CPU-

bound (with more iterations). Using the Linux perf tool, the benchmark instruction dis-

tribution was measured using cores 0 and 2. For measuring the total number of retired

micro-operations, the inst_retired.any event was used. To measure loads and stores, the

L1-dcache-loads and L1-dcache-stores events were used respectively. In order to measure

the execution time of the program, the CLOCK_PROCESS_CPUTIME_ID time source

was used, which is tied to the TSC (Time Stamp Counter) high-resolution timer of the

CPU. Only the execution of the matrix incrementing kernel was measured, removing any

overhead of the support code.

Table 3.1: Benchmark instruction distribution

Iterations Total Retired (106) Load/stores (106) %Mem
1 17 8 48.5%
2 18 9 48.3%
4 19 9 47.8%
8 21 10 47.0%

16 24 11 46.1%
32 30 13 44.9%
64 44 19 43.3%

128 78 33 42.2%
256 140 58 41.0%
512 268 109 40.5%

1024 526 212 40.3%
2048 1,038 417 40.2%

Source: The author

As seen in Fig. 3.2, for a smaller relative number of CPU workload versus memory

operations, the E-cores show a lower run time, despite being generally less performant

than P-cores. However, as the benchmark becomes more CPU-bound, around the 32

iterations mark, the P-cores’ raw speed advantage supersedes the higher memory latency

and thus they show a decreased run-time relative to the E-cores.

This can be explained by the lower latency between the E-cores, as demonstrated

in the characterization step. By taking advantage of the shared L2 cache, we avoid taking

an expensive trip to the L3 cache, improving performance significantly when inter-process

communication is the bottleneck. In this synthetic benchmark, we were able to obtain an

average speedup of 43% when performing fewer than 32 busy wait operations.

To predict whether an application should be scheduled on performance or effi-

ciency cores, we were able to find an average threshold of 44% memory micro-operations

per total retired instructions, as per Table 3.1. This suggests that, when the thread re-

tires fewer memory micro-operations, it is favorable to schedule it on performance cores.

35

Conversely, threads with higher loads and stores show increased shared memory com-

munications, which suggests they should be scheduled on efficiency cores, despite lower

general performance on integer workloads.

At the same time, the threshold for achieving the case of having better perfor-

mance on E-cores is rather high. It requires an application with an almost purely memory-

bound workload, with frequent inter-core communication that causes high traffic on the

L2 cache. On most applications, this can be easily optimized by batching transactions

between threads, causing this behavior to be, although verifiable in experiments, unsuit-

able as a heuristic for real-world task placement. Therefore, we will follow by collecting

data from real-world workloads to better understand how tasks behave in each core micro-

architecture.

3.3 Real-world workloads

As the benchmark proposed in the previous section is purposely synthetic, aiming

to exercise a single characteristic of the system, we decided to also include some real-

world workloads. To run this, a collection of workloads was selected from Phoronix Test

Suite, an open-source software (LARABEL; TIPPETT, 2011). Several test profiles were

selected and compiled into a test suite to simulate various usage scenarios. This was

done aiming to construct an ample dataset for future developments. The complete set of

benchmarks is available on Table 3.2.

To ensure the statistical significance of the measured data, Phoronix automatically

repeats measurements until their standard deviation falls below a preset value. In this case,

it was left at the default value of 3.50%, with a minimum of 3 runs per test. The final test

result is comprised of the average of the runs. Processor execution was controlled by

setting the CPU affinity to either only four P-cores (0, 2, 4, and 6, ignoring SMT siblings)

or only four E-cores (8, 9, 10, 11, all in the same memory cluster). On benchmarks that

supported doing so, we also passed down a flag reducing the thread count to match the

available cores. All performance counter data was collected when running on a P-core, as

they provided the most complete set of them.

During the benchmark runs, various performance counters were recorded using

Linux’s perf tool. The branch-related ones aimed to quantify how big the impact of the

branch predictor is in a given workload. At the same time, we also measured the number

of loads and misses at the first and level caches, in order to quantify how memory-bound

36

Table 3.2: Tests included in the test suite

Benchmark Type Description
system/gimp-1.1.3 Content Creator Various image operations using the GIMP image editor
system/rawtherapee-1.0.1 Content Creator Various RAW image operations using Rawtherapee
pts/blender-4.1.0 Content Creator Rendering 3D scenes using Blender
pts/ffmpeg-7.0.1 Multimedia Encoding video files using x264 and x265 codecs
pts/encode-mp3-1.7.4 Multimedia Converting a WAV file to MP3
pts/vpxenc-3.2.0 Multimedia Encoding a raw video file to VPX
pts/git-1.1.0 Developer Completing various Git commands
pts/build-linux-kernel-1.16.0 Developer Compiling the Linux kernel
pts/tensorflow-2.2.0 AI Running inference on several small models
system/tesseract-ocr-1.0.1 AI Converting images to text using Tesseract OCR
pts/rodinia-1.3.2 Benchmark CPU benchmark using OpenMP
pts/dacapobench-1.1.0 Benchmark Java CPU benchmark
pts/renaissance-1.3.0 Benchmark Java JVM test suite
pts/himeno-1.3.0 Scientific Linear solver of pressure Poisson
pts/stockfish-1.5.0 Gaming Advanced open-source C++11 chess benchmark
pts/hackbench-1.0.0 Benchmark Linux kernel stressor
pts/radiance-1.0.0 Scientific NREL Radiance, a synthetic imaging system
pts/fftw-1.2.0 Scientific Computes the discrete Fourier transform
system/octave-benchmark-1.0.1 Scientific Completes several reference files via octave-benchmark
pts/mt-dgemm-1.2.0 Benchmark Double General Matrix Multiply
pts/amg-1.1.0 Benchmark Parallel algebraic multigrid solver for linear systems
pts/dolfyn-1.0.3 Scientific Computational Fluid Dynamics
pts/cloverleaf-1.2.0 Benchmark Lagrangian-Eulerian hydrodynamics benchmark
pts/minife-1.0.0 Scientific Unstructured implicit finite element codes
pts/pennant-1.1.0 Scientific Hydrodynamics on general unstructured meshes in 2D
pts/incompact3d-2.0.2 Scientific Fortran-MPI based Navier-Stokes solver
pts/himeno-1.3.0 Scientific Linear solver of pressure Poisson using a point-Jacobi method
pts/mrbayes-1.5.0 Scientific Performs a bayesian analysis of a set of primate genome sequences
pts/mafft-1.6.2 Scientific Performs an alignment of 100 pyruvate decarboxylase sequences

Source: The author (condensed from (Open Benchmarking., 2024))

an application is. The number of total cycles and instructions were measured to provide

both CPI and a value against which other measurements could be normalized to avoid

considering run time. Finally, a set of Top-Down Micro-architecture Analysis (TMA)

events were selected. These were first proposed by (YASIN, 2014) and are now included

in many recent Intel CPUs, aiming to account for common bottlenecks in super-scalar

cores. A complete relation of the counters is available on Table 3.3. This set is similar

to what was proposed by (SINGH; BHADAURIA; MCKEE, 2009), but focusing more

heavily on the memory subsystem and branch predictor.

By collecting this data, a dataset can be built for a variety of workloads, allowing

further analysis to take place aiming to correlate different performance counters to the

performance gains achieved by placing a given task on a P-core instead of an E-core.

After running the Phoronix Test Suite with our custom test set, available in Table

3.2, we obtained the following results in Figure 3.3 for establishing the possible speed-up

obtained on P-cores. The data is normalized against the E-cores, so bars to the right of

the red line represent improvements while measurements to the left represent regressions.

With this data, along with the performance counters, we are able to construct a speedup

37

Table 3.3: Recorded perf events/counters

Perf Counter Hardware Event Description
Branches BR_INST_RETIRED.ALL_BRANCHES Both taken and not taken branches
Branch Misses BR_MISP_RETIRED.ALL_BRANCHES Mispredicted branches
L1d Loads MEM_INST_RETIRED.ALL_LOADS All memory loads
L1d Load Misses L1D.REPLACEMENT All memory loads not in L1 cache
L1i Load Misses ICACHE_64B.IFTAG_MISS Instruction loads not in L1 cache
Cache References LONGEST_LAT_CACHE.REFERENCE All Last Level Cache hits
Cache Misses LONGEST_LAT_CACHE.MISS All Last Level Cache misses
TMA Retiring TOPDOWN_RETIRING.ALL Slots used by issued µops that eventually get retired
TMA Mem Bound TOPDOWN.MEMORY_BOUND_SLOTS Execution stalls due to the memory subsystem
TMA Bad Spec TOPDOWN.BAD_SPEC_SLOTS Slots wasted due to incorrect speculations
TMA FE Bound TOPDOWN_FE_BOUND.ALL Slots when the frontend of the CPU undersupplies the backend
TMA BE Bound TOPDOWN.BACKEND_BOUND_SLOTS Slots when no µops are being delivered at the issue pipeline
Cycles CPU_CLK_UNHALTED.THREAD Number of cycles while the CPU was not halted
Instructions INST_RETIRED.ANY Number of retired instructions

Source: The author (adapted from perf manual page)

factor (SF) figure for each workload, which is defined as SF = PerfP
PerfE

, similar to what is

done in (BILBAO; SAEZ; PRIETO-MATIAS, 2023). This SF will be used to determine

which core is preferred to run each task, as it will maximize the potential throughput gain

when multiple tasks are competing for the same CPU.

Overall, the geometric mean of the speed-up was that P-cores performed 1.64x

better than E-cores, which is within the 1.76x at peak performance and 1.24x sustained

figure read from the ACPI CPPC registers. As the benchmarking suite used is comprised

of workloads of various durations, it is expected that we would fall within peak and sus-

tained figures. As seen in Figure 3.4, most of the benchmarks fell at the expected range,

with a few outliers reaching up to 2.78x, as in the case of ACES DGEMM.

As seen in Figures 3.5 and 3.6, performance counter data by itself does not present

any obvious structure to it. Due to this, a machine learning model was devised to make

sense of the data collected.

38

Figure 3.3: Speedup per measured application

Source: The author

39

Figure 3.4: Distribution of the speedups

Source: The author

40

Figure 3.5: Performance counter data (part 1)

Source: The author

41

Figure 3.6: Performance counter data (part 2)

Source: The author

42

4 TASK-PLACEMENT PROPOSAL

To utilize the data collected in a way that could potentially be used to aid in

scheduling decisions, a machine learning model was constructed. As the dataset of bench-

marks is small, comprising only 42 runs, the model was structured as a classifier that takes

as inputs the performance counters of two threads and outputs which of the two is most

likely to benefit more from being allocated in a P-core. This allows for 42 × 41 = 1722

benchmark combinations to be generated, aiding in the learning of the model. The pro-

posed model can be seen in Figure 4.1.

Figure 4.1: Machine learning architecture proposal
Thread A

Performance counters

Thread B

Performance counters

Classification
ML

Classifier max(SF) on

P-core

A or B

Source: The author

The model is then implemented using a Gradient-Boosting algorithm in the scikit-

learn Python library (PEDREGOSA et al., 2011), using the GradientBoostingClassifier

class. This algorithm was selected due to its performance on sparse tabular data and

good overfitting rejection (NATEKIN; KNOLL, 2013). All hyper-parameters were left

as the library default. The dataset was first normalized using the MinMaxScaler, which

translated every feature to be within the [0, 1] range, balancing the feature set. Then it

was split, with 80% being used for training and 20% for testing, with the results seen in

Table 4.1. Finally, the model was tested again using K-fold cross-validation with K = 5,

achieving 91.1% accuracy with a standard deviation of 4.7%. Overall, the mean squared

error on the test set was 0.0722. This is significantly above the 50% accuracy of a random

binary classifier.

43

Table 4.1: Classification report on the test set
precision recall f1-score support

0.0 0.93 0.94 0.94 210

1.0 0.92 0.91 0.91 150

accuracy 0.93 360

macro avg 0.93 0.92 0.93 360

weighted avg 0.93 0.93 0.93 360
Source: The author

As the Gradient Boosting algorithm used is comprised of multiple smaller decision

trees, it is possible to examine the contribution of each one. By backtracking on the

weights, it is possible to determine how heavily each feature influences the final decision.

This is done using the feature_importances_ attribute of the classifier exposed in scikit-

learn. This is based on the impurity of each feature and is calculated as the normalized

total reduction of the criterion brought by that feature (PEDREGOSA et al., 2011). The

higher the value, the higher the feature importance.

Figure 4.2: Feature importance of the Gradient Boosting Decision Tree

Source: The author

As seen in Figure 4.2, the classifier is dominated by performance counters in-

fluenced by the memory subsystem. Both threads’ memory activity is used to evaluate

44

the classification. This is in line with the measurements provided in the earlier section,

where we analyzed the core-to-core latency. The model values highly not only the mem-

ory activity in general, but the load misses from the L1 cache as well. This is interesting

as the E-cores have 2/3 of the data cache of the P-cores (32kB vs 48kB), but a much

larger, though shared, L2 (2048kB shared between E-cores vs. 1280kB per P-core). At

the same time, despite the E-cores having an L1 instruction cache twice as large as the

P-cores (64kB vs 32kB), the difference has much less impact on the performance as per

the model.

Below the memory subsystem, we also see a hint of the branch predictor metrics

being used in the form of the TMA counters. For instance, B TMA Bad Spec ranks just

below memory data loads/misses and is indicative of the simplistic nature of the E-core’s

branch predictor causing performance slots due to stalls caused by bad speculation events.

Finally, in the future the feature importance matrix could also be used to further

optimize the classifier to reduce the number of required inputs. This would reduce the

online profiling overhead and model complexity, leading to a more streamlined classifier.

At the present, the complete model was exported in pickle format to be used in the next

section.

4.1 Tournament-style scheduler overlay

At last, we can build the scheduler using the knowledge and models obtained

from previous sections. As the model was built to discriminate between two threads, the

implementation of the core pinning algorithm was done in a tournament-style classifier.

At its core, it maintains a list of top N preferred threads to occupy P-cores, with N

being defined further down. That is, we construct a ranking based on the relative ordering

provided by the machine learning model. Based on that ranking, it then pins threads to the

appropriate cores, as seen in Figure 4.3. This way, when multiple threads are competing

for CPU, we will delegate the fastest cores to the threads which will benefit the most,

while demoting other threads to efficiency cores as to free up the performance ones. This

way we can maximize the utility of the performance cores while minimizing degradation

caused by the efficient ones.

45

Figure 4.3: Topology-aware scheduler model

perf ML model Ranking

Assign

to P-core

Assign

to E-core

Performance Counters

Classifi
cation

Top-N

Rest

Source: The author

This is implemented using a Python script that periodically reads data fed from

Linux’s perf tool. By invoking perf stat -e <counters> --per-thread -x, -I<

interval> --interval-count 1, we are able to easily monitor performance counters

across the whole system. The -e flag allows us to specify which events to read and the

--per-thread flag indicates that we want this data to be discriminated, instead of aggre-

gate. This data is provided in tab-separated value (TSV) format as indicated by the -x,

flag and is parsed in real-time, feeding the machine learning model. Every invocation pro-

vides a single snapshot of data, as indicated by the -I<interval> --interval-count 1

flags. This is done as the --per-thread flag causes perf to only monitor threads already

existing during the command’s invocation. Finally, the script then uses the cpuset API

to place threads in the correct cores by setting the appropriate CPU affinity of each. The

complete script is available in the Appendix.

1 def __gt__(self, other):

2 my_data = [self.counters.get(f)/self.counters.get("cpu_core/instructions/") for

f in FEATURES]

3 other_data = [other.counters.get(f)/other.counters.get("cpu_core/instructions/")

for f in FEATURES]

4 scaled = scaler.transform([my_data + other_data])

5 prediction = clf.predict(scaled)

6 return prediction[0] == 1.0

Listing 4.1 – Process comparison operator

As we have built a classifier, we must find a way to build the ranking by using the

model to perform a comparison operation. We do this by building a Process class and

overriding Python’s __gt__ method. This defines a relative ordering, which is then used

by the functools.total_ordering decorator to provide a total ordering. This enables

the data to be sorted using Python’s sorted function, which utilizes Timsort under the

hood (DALKE; HETTINGER, 2024). This sorting algorithm has a complexity between

46

O(n log n) and O(n), so the model has to be executed very closely to the least possible.

As in the data collection stage, we normalize every metric by the retired instruction count,

making every feature invariant of the sampling rate.

Figure 4.4: perf overhead per sampling interval

Source: The author

A CPU utilization cutoff was defined to avoid applying the model on low-impact

threads and to reduce noise. At the current state, threads with less than 5% total CPU

utilization are ignored by the task placer. Using the gradient descent model for inference

using sklearn, the script takes approximately 10.59ms to sort 16 threads, averaging at

662µs per thread, accounting for approximately 1.6% CPU usage. At the same time,

the perf command is spawned every second, taking up to an average of 10% of a single

CPU core when monitoring 16 threads, causing the overhead shown in Figure 4.4. As

the time scale of the applications being run was multiple minutes, the refresh rate of the

algorithm was set at 1000ms, as this provided a reasonable balance between overhead and

fast settling. However, it could potentially run much faster to accommodate shorter-lived

threads and take advantage of shorter run phases at a higher cost. It is interesting to note

that the largest overhead does not come from the model itself, but from the perf utility.

That strongly suggests that the overhead could be reduced significantly if performance

counters were read directly from the kernel, without an intermediate tool.

47

4.2 Performance evaluation

As one of the core parameters of our model is a ranking, we started by evaluat-

ing for which N the Top-N allocator performed the best. At first, it was estimated that

the N for the Top-N ranking should be equal to the number of P-cores available in the

system. That is, every P-core should only handle a single thread. This was expected to

be reasonable as the benchmarks in the study utilized very closely to 100% CPU. How-

ever, by looking at how Linux scheduled tasks, it became quickly apparent that delegating

too little threads to the P-cores would lead to E-cores being overworked. Therefore, we

experimented with oversubscribing P-cores, as an attempt to lower the burden on the

lower-performing efficiency ones, achieving the results available in Figure 4.5. For the

evaluation, we utilized Rodinia as it is a well-behaved OpenMP benchmark that can run

with a configurable amount of threads. The number of threads was set to 16, deliber-

ately oversubscribing the processor, which was configured to disable simultaneous multi-

threading (Intel Hyper-Threading) and had one of the E-core clusters disabled as well,

leaving 4 true P-cores and 4 E-cores online for a total amount of 8 threads. Therefore, our

CPU was oversubscribed with a factor of 2× threads in all of the following benchmarks.

Figure 4.5: Top-N vs Performance Evaluation (Rodinia CFD)

Source: The author

As seen in Figure 4.5, the best performance happened when we oversubscribed

48

the P-cores by a factor of 2.5×, allocating 12 threads to the 4 physical cores, as seen

in the blue line. In the orange line, we can see the runtime of the benchmark using the

stock scheduler, while in green we can see the baseline performance of our scheduler.

That is, the performance with perf collecting data and the model running, but without

performing any placement. As seen in the case N = 12, we are able to achieve a speed-

up of 4.44% compared to the overhead baseline. Oversubscribing the performance cores

further degrades performance.

Figure 4.6: Multi-benchmark performance evaluation

Source: The author

For other benchmarks, the result was not as clear, as seen in Figure 4.6. miniFE

and Rodinia LavaMD presented a degraded performance in all test cases, with the least

amount of degradation happening around N = 10 and N = 12, similar to what was

evaluated before. At the same time, we won in performance in two benchmarks. In ACES

DGEMM, we were able to improve performance by up to 77.3% in the case of N = 16,

which means all threads were allocated to P-cores. Unfortunately, this also means that the

model was not used in that case. However, when lower N numbers were used a speedup

was still noted, reaching up to 69.1% in theN = 12 case, which still left 4 threads to the 4

49

remaining E-cores. Finally, with Radiance we saw an increase in performance compared

to the overhead line, in the N = 8 case, which is significantly lower than the other cases.

These four benchmarks combined with the one presented before result in a geometric

mean of 7.76% speedup.

Finally, the performance of Java applications was also analyzed. This is important

as we could not control the number of threads of these benchmarks, only the number of

workers in the fork-join pool. That means the placer got stressed with > 35 threads in

benchmarks such as DaCapo Benchmark. These threads range from proper workers in

the fork-join pool to garbage collecting and other management operations.

Figure 4.7: Java Virtual Machine performance evaluation

Source: The author

As seen in Figure 4.7, the proposed model did not cope well with the fragmented

mode of execution of Java code, causing substantial slowdowns regardless of the thread

allocation distribution. This is hypothesized to be caused by the unpredictable nature of

Java code. For instance, the thread placer is running every 1000ms, however, the garbage

collector runs frequently for much smaller time frames. Unfortunately, this causes the

model to fail as it does not react quickly enough to manage this kind of bursty workload.

50

5 CONCLUSION AND FUTURE WORK

The experimental investigation conducted throughout this thesis has examined the

scheduling strategies and optimizations for heterogeneous architectures, specifically fo-

cusing on the Intel Core i7-1260P processor and the Alder Lake generation. We were able

to verify experimentally that some synthetic workloads can benefit from being scheduled

in E-cores, despite their lower performance, due to the lower-latency memory architec-

ture. When there is intense inter-core communication, up to 43% speedup can be realized

that way.

Furthermore, a dataset was built using 42 benchmarks and collecting several per-

formance counters. They were then used to train a machine learning model based on

gradient boost, which classifies thread placement for pairs of competing threads. Using

K-fold cross-validation, we were able to achieve 91.1% accuracy on our dataset. This

dataset was then used in a script to modify the thread placement in a running system. On

select benchmarks, we were able to achieve up to 69.9% speedup, with a geometric aver-

age of 7.76%. Finally, we analyzed outliers that regressed using our approach, identifying

the high number of bursty threads as the issue behind our model’s poor performance.

In the future, a possible way to reduce experiment overhead would be ditching the

Python and perf solution and start collecting data directly inside the kernel. To do so, a

possible route would be implementing a loadable online profiling module using eBPF and

overriding part of the scheduler using the sched_ext framework, which should land in the

kernel version 6.11. As for the machine learning model, it could be reorganized to collect

different phases of the applications, as some benchmarks have significant phase variabil-

ity. This would also lead to more data points being collected, enhancing the usefulness

of the machine learning techniques applied. Finally, other performance counters could be

experimented on, as we only analyzed a small amount of them in this work.

51

REFERENCES

ALPAYDIN, E. Introduction to Machine Learning. 3. ed. Cambridge, MA: MIT Press,
2014. (Adaptive Computation and Machine Learning). ISBN 978-0-262-02818-9.

Apple Inc. Apple unleashes M1. 2020.
Https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/.

ARM. Arm Big.LITTLE. 2011. Https://www.arm.com/technologies/big-little.

ARM. Arm DynamIQ: Technology for the next era of compute. 2017.
Https://community.arm.com/arm-community-blogs/b/architectures-and-processors-
blog/posts/arm-dynamiq-technology-for-the-next-era-of-compute.

BILBAO, C.; SAEZ, J. C.; PRIETO-MATIAS, M. Flexible system software
scheduling for asymmetric multicore systems with pmcsched: A case for intel alder lake.
Concurrency and Computation: Practice and Experience, v. 35, n. 25, p. e7814, 2023.
Available from Internet: <https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.7814>.

BORAN, N. K.; YADAV, D. K.; IYER, R. Classification based scheduling in
heterogeneous isa architectures. In: 2020 24th International Symposium on VLSI
Design and Test (VDAT). [S.l.: s.n.], 2020. p. 1–6.

BORKAR, S. Thousand core chips: a technology perspective. In: Proceedings of the
44th Annual Design Automation Conference. New York, NY, USA: Association for
Computing Machinery, 2007. (DAC ’07), p. 746–749. ISBN 9781595936271. Available
from Internet: <https://doi.org/10.1145/1278480.1278667>.

CRAEYNEST, K. V. et al. Scheduling heterogeneous multi-cores through performance
impact estimation (pie). In: 2012 39th Annual International Symposium on Computer
Architecture (ISCA). [S.l.: s.n.], 2012. p. 213–224.

DALKE, A.; HETTINGER, R. Sorting Techniques. 2024. Available from Internet:
<https://docs.python.org/3/howto/sorting.html>.

DAS, R. et al. Application-to-core mapping policies to reduce memory system
interference in multi-core systems. In: 2013 IEEE 19th International Symposium on
High Performance Computer Architecture (HPCA). [S.l.: s.n.], 2013. p. 107–118.

FRIEDMAN, J. H. Greedy function approximation: A gradient boosting machine. The
Annals of Statistics, Institute of Mathematical Statistics, v. 29, n. 5, p. 1189 – 1232,
2001. Available from Internet: <https://doi.org/10.1214/aos/1013203451>.

Intel Corp. Media Presentation: Intel Core Ultra Processors.
Https://download.intel.com/newsroom/2023/ai/ai-everywhere-2023/Intel-Core-
Ultra-Processors-Media-Presentation.pdf.

Intel Corp. 12th Gen Intel® Core™ Mobile Processor Product Brief. 2021.
Https://download.intel.com/newsroom/2022/ces2022/12th-gen-intel-mobile-product-
brief.pdf.

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.7814
https://doi.org/10.1145/1278480.1278667
https://docs.python.org/3/howto/sorting.html
https://doi.org/10.1214/aos/1013203451

52

Intel Corp. Intel® Core™ i7-1260P Processor. [S.l.], 2022.
Https://www.intel.com/content/www/us/en/products/sku/226254/intel-core-i71260p-
processor-18m-cache-up-to-4-70-ghz/specifications.html.

Intel Corp. 12th Generation Intel® Core™ Processors, Volume 1 of 2. [S.l.], 2023.
Https://www.intel.com/content/www/us/en/content-details/655258/12th-generation-
intel-core-processors-datasheet-volume-1-of-2.html.

Intel Corp. Intel® 64 and IA-32 Architectures Software Developer’s Manual
Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4. [S.l.], 2023.
Https://cdrdv2.intel.com/v1/dl/getContent/671200.

JIANG, Y. et al. Array regrouping on cmp with non-uniform cache sharing. In: COOPER,
K.; MELLOR-CRUMMEY, J.; SARKAR, V. (Ed.). Languages and Compilers for
Parallel Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. p. 92–105.
ISBN 978-3-642-19595-2.

KANDEMIR, M. et al. Cache topology aware computation mapping for multicores. In:
Proceedings of the 31st ACM SIGPLAN Conference on Programming Language
Design and Implementation. New York, NY, USA: Association for Computing
Machinery, 2010. (PLDI ’10), p. 74–85. ISBN 9781450300193. Available from Internet:
<https://doi.org/10.1145/1806596.1806605>.

KUMAR, R. et al. Single-isa heterogeneous multi-core architectures: the potential for
processor power reduction. In: Proceedings. 36th Annual IEEE/ACM International
Symposium on Microarchitecture, 2003. MICRO-36. [S.l.: s.n.], 2003. p. 81–92.

LARABEL, M.; TIPPETT, M. Phoronix test suite. Phoronix Media,[Online]. Available:
http://www. phoronix-test-suite. com/.[Accessed May 2024], 2011.

LOCUZA. Die walkthrough: Alder Lake-S/P and a touch of Zen 3. 2022. Available
from Internet: <https://locuza.substack.com/p/die-walkthrough-alder-lake-sp-and>.

MOHAMED, A. M.; MUBARK, N.; ZAGLOUL, S. Performance aware shared
memory hierarchy model for multicore processors. Scientific Reports, v. 13,
n. 1, p. 7313, May 2023. ISSN 2045-2322. Available from Internet: <https:
//doi.org/10.1038/s41598-023-34297-3>.

MUTLU, O.; MEZA, J.; SUBRAMANIAN, L. The main memory system: Challenges
and opportunities. Communications of the Korean Institute of Information Scientists
and Engineers, Korean Institute of Information Scientists and Engineers, v. 33, n. 2, p.
16–41, 2015.

NATEKIN, A.; KNOLL, A. Gradient boosting machines, a tutorial. Frontiers
in Neurorobotics, v. 7, 2013. ISSN 1662-5218. Available from Internet: <https:
//www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2013.00021>.

Open Benchmarking. Open Benchmarking. 2024. Https://openbenchmarking.org/.

PEDREGOSA, F. et al. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, v. 12, p. 2825–2830, 2011.

RIGTORP, E. C2Clat. [S.l.], 2020. Https://github.com/rigtorp/c2clat.

https://doi.org/10.1145/1806596.1806605
https://locuza.substack.com/p/die-walkthrough-alder-lake-sp-and
https://doi.org/10.1038/s41598-023-34297-3
https://doi.org/10.1038/s41598-023-34297-3
https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2013.00021
https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2013.00021

53

ROTEM, E. et al. Intel alder lake cpu architectures. IEEE Micro, v. 42, n. 3, p. 13–19,
2022.

SAEZ, J. C. et al. PMCTrack: Delivering Performance Monitoring Counter Support
to the OS Scheduler. The Computer Journal, v. 60, n. 1, p. 60–85, 01 2017. ISSN
0010-4620. Available from Internet: <https://doi.org/10.1093/comjnl/bxw065>.

SAEZ, J. C.; PRIETO-MATIAS, M. Evaluation of the intel thread director technology
on an alder lake processor. In: Proceedings of the 13th ACM SIGOPS Asia-Pacific
Workshop on Systems. New York, NY, USA: Association for Computing Machinery,
2022. (APSys ’22), p. 61–67. ISBN 9781450394413. Available from Internet:
<https://doi.org/10.1145/3546591.3547532>.

SHEIKH, S. Z.; PASHA, M. A. Energy-efficient cache-aware scheduling on
heterogeneous multicore systems. IEEE Transactions on Parallel and Distributed
Systems, v. 33, n. 1, p. 206–217, 2022.

SINGH, K.; BHADAURIA, M.; MCKEE, S. A. Real time power estimation and thread
scheduling via performance counters. SIGARCH Comput. Archit. News, Association
for Computing Machinery, New York, NY, USA, v. 37, n. 2, p. 46–55, jul 2009. ISSN
0163-5964. Available from Internet: <https://doi.org/10.1145/1577129.1577137>.

STOICA, I.; ABDEL-WAHAB, H. Earliest Eligible Virtual Deadline First: A Flexible
and Accurate Mechanism for Proportional Share Resource Allocation. USA, 1995.

THARWAT, A. Classification assessment methods. Applied Computing and
Informatics, Emerald, v. 17, n. 1, p. 168–192, jul. 2020. ISSN 2210-8327. Available
from Internet: <http://dx.doi.org/10.1016/j.aci.2018.08.003>.

TORVALDS, L. The Linux Kernel. [S.l.], 2024. 6.8.0.

YASIN, A. A top-down method for performance analysis and counters architecture.
In: 2014 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). [S.l.: s.n.], 2014. p. 35–44.

ZHANG, E. Z.; JIANG, Y.; SHEN, X. Does cache sharing on modern cmp matter
to the performance of contemporary multithreaded programs? In: Proceedings of
the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. New York, NY, USA: Association for Computing Machinery,
2010. (PPoPP ’10), p. 203–212. ISBN 9781605588773. Available from Internet:
<https://doi.org/10.1145/1693453.1693482>.

ZHANG, Y.; KANDEMIR, M.; YEMLIHA, T. Studying inter-core data reuse in
multicores. In: Proceedings of the ACM SIGMETRICS Joint International
Conference on Measurement and Modeling of Computer Systems. New York, NY,
USA: Association for Computing Machinery, 2011. (SIGMETRICS ’11), p. 25–36. ISBN
9781450308144. Available from Internet: <https://doi.org/10.1145/1993744.1993748>.

https://doi.org/10.1093/comjnl/bxw065
https://doi.org/10.1145/3546591.3547532
https://doi.org/10.1145/1577129.1577137
http://dx.doi.org/10.1016/j.aci.2018.08.003
https://doi.org/10.1145/1693453.1693482
https://doi.org/10.1145/1993744.1993748

54

APPENDIX — MODIFICATIONS TO THE PHORONIX TEST SUITE

1 --- a/pts-core/modules/linux_perf.php

2 +++ b/pts-core/modules/linux_perf.php

3 @@ -71,7 +71,7 @@ class linux_perf extends pts_module_interface

4 // Set the perf command to pass in front of all tests to run

5 self::$tmp_file = tempnam(sys_get_temp_dir(), ’perf’);

6 // -d or below is more exhaustive list

7 - $test_run_request->exec_binary_prepend = ’perf stat -e branches,branch-

misses,cache-misses,cache-references,cycles,instructions,cs,cpu-clock,page-faults,

duration_time,task-clock,L1-dcache-load-misses,L1-dcache-loads,L1-dcache-prefetches,

L1-icache-load-misses,context-switches,cpu-migrations,branch-loads,branch-load-

misses,dTLB-loads,dTLB-load-misses,iTLB-load-misses,iTLB-loads -o ’ . self::

$tmp_file . ’ ’;

8 + $test_run_request->exec_binary_prepend = ’perf stat -e branches,branch-

misses,cache-misses,cache-references,cycles,instructions,cs,cpu-clock,page-faults,

duration_time,task-clock,L1-dcache-load-misses,L1-dcache-loads,L1-icache-load-misses

,context-switches,cpu-migrations,branch-loads,branch-load-misses,dTLB-loads,dTLB-

load-misses,iTLB-load-misses -M tma_core_bound -o ’ . self::$tmp_file . ’ ’;

9 }

10 public static function __post_test_run_success($test_run_request)

11 {

12 @@ -98,22 +98,28 @@ class linux_perf extends pts_module_interface

13 ’page-faults’ => array(’Page Faults’, ’Faults’, ’LIB’),

14 ’context-switches’ => array(’Context Switches’, ’Context

Switches’, ’LIB’),

15 ’cpu-migrations’ => array(’CPU Migrations’, ’CPU

Migrations’, ’LIB’),

16 - ’branches’ => array(’Branches’, ’Branches’, ’’),

17 - ’branch-misses’ => array(’Branch Misses’, ’Branch Misses

’, ’LIB’),

18 + ’cpu_core/branches’ => array(’Branches’, ’Branches’, ’’)

,

19 + ’cpu_core/branch-misses’ => array(’Branch Misses’, ’

Branch Misses’, ’LIB’),

20 ’seconds user’ => array(’User Time’, ’Seconds’, ’LIB’),

21 ’seconds sys’ => array(’Kernel/System Time’, ’Seconds’,

’LIB’),

22 - ’stalled-cycles-frontend’ => array(’Stalled Cycles Front

-End’, ’Cycles Idle’, ’LIB’),

23 - ’stalled-cycles-backend’ => array(’Stalled Cycles Back-

End’, ’Cycles Idle’, ’LIB’),

24 - ’L1-dcache-loads’ => array(’L1d Loads’, ’L1d Cache Loads

’, ’’),

25 - ’L1-icache-loads’ => array(’L1i Loads’, ’L1i Cache Loads

’, ’’),

26 - ’L1-dcache-load-misses’ => array(’L1d Load Misses’, ’L1

Data Cache Load Misses’, ’LIB’),

27 - ’L1-icache-load-misses’ => array(’L1i Load Misses’, ’L1

Instruction Cache Load Misses’, ’LIB’),

28 - ’cache-misses’ => array(’Cache Misses’, ’Cache Misses’,

55

’LIB’),

29 - ’branch-load-misses’ => array(’Branch Load Misses’, ’

Branch Load Misses’, ’LIB’),

30 - ’dTLB-load-misses’ => array(’dTLB Load Misses’, ’dTLB

Load Misses’, ’LIB’),

31 - ’ex_ret_mmx_fp_instr.sse_instr’ => array(’SSE

Instructions’, ’SSE Instructions’, ’’),

32 - ’fp_ret_sse_avx_ops.all’ => array(’SSE+AVX Instructions’

, ’AVX Instructions’, ’’),

33 - ’instructions’ => array(’Instructions’, ’Instructions’,

’LIB’),

34 + ’cpu_core/L1-dcache-loads’ => array(’L1d Loads’, ’L1d

Cache Loads’, ’’),

35 + ’cpu_core/L1-icache-loads’ => array(’L1i Loads’, ’L1i

Cache Loads’, ’’),

36 + ’cpu_core/L1-dcache-load-misses’ => array(’L1d Load

Misses’, ’L1 Data Cache Load Misses’, ’LIB’),

37 + ’cpu_core/L1-icache-load-misses’ => array(’L1i Load

Misses’, ’L1 Instruction Cache Load Misses’, ’LIB’),

38 + ’cpu_core/cache-references’ => array(’Cache References’,

’Cache References’, ’LIB’),

39 + ’cpu_core/cache-misses’ => array(’Cache Misses’, ’Cache

Misses’, ’LIB’),

40 + ’cpu_core/branch-load-misses’ => array(’Branch Load

Misses’, ’Branch Load Misses’, ’LIB’),

41 + ’cpu_core/dTLB-load’ => array(’dTLB Load’, ’dTLB Load’,

’LIB’),

42 + ’cpu_core/dTLB-load-misses’ => array(’dTLB Load Misses’,

’dTLB Load Misses’, ’LIB’),

43 + ’cpu_core/iTLB-load-misses’ => array(’iTLB Load Misses’,

’iTLB Load Misses’, ’LIB’),

44 + ’cpu_core/TOPDOWN.slots’ => array(’Core Bound Slots’, ’

Core Bound Slots’, ’’),

45 + ’cpu_core/topdown-retiring’ => array(’TMA Retiring’, ’

TMA Retiring’, ’’),

46 + ’cpu_core/topdown-mem-bound’ => array(’TMA Mem Bound’, ’

TMA Mem Bound’, ’’),

47 + ’cpu_core/topdown-bad-spec’ => array(’TMA Bad Spec’, ’

TMA Bad Spec’, ’’),

48 + ’cpu_core/topdown-fe-bound’ => array(’TMA FE Bound’, ’

TMA FE Bound’, ’’),

49 + ’cpu_core/topdown-be-bound’ => array(’TMA BE Bound’, ’

TMA BE Bound’, ’’),

50 + ’cpu_core/instructions’ => array(’Instructions’, ’

Instructions’, ’LIB’),

51 + ’cpu_core/cycles’ => array(’Cycles’, ’Cycles’, ’LIB’),

52);

53

54 foreach($perf_stats as $string_to_match => $data)

55 diff --git a/pts-core/modules/turbostat.php b/pts-core/modules/turbostat.php

56 index a51bf1ae0..0348c6bc9 100644

57 --- a/pts-core/modules/turbostat.php

56

58 +++ b/pts-core/modules/turbostat.php

59 @@ -50,11 +50,6 @@ class turbostat extends pts_module_interface

60 echo PHP_EOL . pts_client::cli_just_bold(’turbostat not found in

PATH.’) . PHP_EOL;

61 return pts_module::MODULE_UNLOAD;

62 }

63 - if(!phodevi::is_root())

64 - {

65 - echo PHP_EOL . pts_client::cli_just_bold(’turbostat requires

root access.’) . PHP_EOL;

66 - return pts_module::MODULE_UNLOAD;

67 - }

68 if(!is_dir($dump_dir) || !is_writable($dump_dir))

69 {

70 echo PHP_EOL . pts_client::cli_just_bold(’TURBOSTAT_LOG is not

pointing to a directory, output will be appended to PTS test run log files.’) .

PHP_EOL;

57

APPENDIX — TASK PLACER SCRIPT

1

2 #!/usr/bin/env python3

3

4 from functools import total_ordering

5 from pickle import load

6 from subprocess import DEVNULL, Popen, PIPE, CalledProcessError

7 import sys

8 from time import time

9

10 import psutil

11

12 # TODO: Dynamically detect this

13 P_CORES = [0, 2, 4, 6]

14 E_CORES1 = [8, 9, 10, 11]

15 E_CORES2 = [12, 13, 14, 15]

16

17 PERF_COUNTERS = [’branches’, ’branch-misses’, ’L1-dcache-loads’, ’L1-dcache-load-misses’

,

18 ’L1-icache-load-misses’, ’cache-references’, ’cache-misses’,

19 ’cycles’, ’instructions’]

20

21 FEATURES = [’cpu_core/branches/’, ’cpu_core/branch-misses/’, ’cpu_core/L1-dcache-loads/’

,

22 ’cpu_core/L1-dcache-load-misses/’, ’cpu_core/L1-icache-load-misses/’,

23 ’cpu_core/cache-references/’, ’cpu_core/cache-misses/’,

24 ’cpu_core/topdown-retiring/’, ’cpu_core/topdown-mem-bound/’,

25 ’cpu_core/topdown-bad-spec/’, ’cpu_core/topdown-fe-bound/’, ’cpu_core/topdown-be

-bound/’,

26 ’cpu_core/cycles/’]

27

28

29 with open("classifier.pkl", "rb") as f:

30 clf = load(f)

31 with open("scaler.pkl", "rb") as f:

32 scaler = load(f)

33

34 @total_ordering

35 class Process():

36 def __init__(self, name, pid):

37 self.latest_update = 0

38 self.counters = {}

39

40 self.name = name

41 self.pid = pid

42 try:

43 self.process = psutil.Process(pid)

44 except psutil.NoSuchProcess:

45 print("Ghost process with PID", pid)

46 self.process = None

58

47 print("Hi, I’m new process", name)

48

49 def add_measurement(self, counter, value, timestamp):

50 self.counters[counter] = value

51 self.latest_update = timestamp

52

53 def __eq__(self, other):

54 return False

55

56 def __gt__(self, other):

57 try:

58 my_data = [self.counters.get(f)/self.counters.get("cpu_core/instructions/")

for f in FEATURES]

59 other_data = [other.counters.get(f)/other.counters.get("cpu_core/

instructions/") for f in FEATURES]

60 scaled = scaler.transform([my_data + other_data])

61 prediction = clf.predict(scaled)

62 #print(prediction)

63 return prediction[0] == 1.0

64 except Exception as e:

65 print(e)

66 return False

67

68

69

70 INTERVAL = 1000

71

72 CMD = ["perf", "stat", "-x,", "--interval-count", "1", "-I", str(INTERVAL), "-e", ",".

join(PERF_COUNTERS), "-M", "tma_core_bound", "--per-thread"]

73

74 process_table = dict()

75 N = int(sys.argv[1])

76

77 def rebalance_affinity():

78 print("Update completed, rebalancing")

79 processes = list(process_table.values())

80 start_time = time()

81 priority_list = sorted([p for p in processes if p.process and p.process.is_running()

and (p.process.cpu_percent() > 20)])

82 delta_time = start_time - time()

83 print("Took", delta_time, "s to sort", len(priority_list), " threads, avg = ",

delta_time/len(priority_list) if len(priority_list) else 1, "s per thread")

84 print([p.name for p in priority_list])

85 for p in priority_list[-N:]:

86 print("Promoting", p.name, "to P-core")

87 if p.process.is_running():

88 p.process.cpu_affinity(P_CORES)

89 for p in priority_list[:-N]:

90 print("Demoting", p.name, "to E-core")

91 if p.process.is_running():

92 p.process.cpu_affinity(E_CORES1)

93

59

94 # Example data line from perf

95 # 1.462438020,kworker/u64:6-ext4-rsv-conversion-3087065,4022580,,cycles,1467413,100.00,,

96 class PerfDict:

97 TIMESTAMP = 0

98 NAMEPID = 1

99 VALUE = 2

100 UNIT = 3

101 NAME = 4

102 RUNTIME = 5

103 PERCENTAGE = 6

104

105 LENGTH = 9

106

107 def update_table(line):

108 global latest_rebalance

109 # We should be receiving a CSV, so I’ll be parsing it manually

110 datum = line.split(’,’)

111 #print(len(datum))

112 if len(datum) != PerfDict.LENGTH:

113 return

114 timestamp = float(datum[PerfDict.TIMESTAMP])

115 pid = int(datum[PerfDict.NAMEPID].split("-")[-1])

116 #print(pid)

117 if not process_table.get(pid):

118 process_table[pid] = Process(datum[PerfDict.NAMEPID], pid)

119 try:

120 process_table[pid].add_measurement(datum[PerfDict.NAME], int(datum[PerfDict.

VALUE]), timestamp)

121 except ValueError:

122 print("Error getting values for", datum[PerfDict.NAME])

123

124 while True:

125 with Popen(CMD, stdout=DEVNULL, stderr=PIPE, bufsize=1, universal_newlines=True) as

p:

126 for line in p.stderr:

127 update_table(line)

128 rebalance_affinity()

129

130

131 if p.returncode != 0:

132 raise CalledProcessError(p.returncode, p.args)

	Acknowledgements
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Organization

	2 Bibliographical Review
	2.1 Heterogeneous Architectures
	2.2 Intel Core i7-1260P Topology
	2.2.1 Golden Cove (P-cores)
	2.2.2 Gracemont (E-cores)

	2.3 The Linux Scheduling Subsystem
	2.3.1 Completely Fair Scheduler (CFS)
	2.3.2 Earliest Eligible Virtual Deadline First (EEVDF)

	2.4 Current scheduling approaches and optimizations
	2.4.1 Capacity Aware Scheduling
	2.4.2 Energy Aware Scheduling
	2.4.3 Intel Thread Director
	2.4.4 Collaborative Processor Performance Control

	2.5 Machine learning
	2.5.1 Gradient boosting
	2.5.2 Classifier performance evaluation

	2.6 Related work
	2.6.1 Cache sharing impact on multi-threaded workloads
	2.6.2 Performance counter-based schedulers

	3 Data collection
	3.1 Processor Characterization
	3.2 Cache versus performance
	3.3 Real-world workloads

	4 Task-placement proposal
	4.1 Tournament-style scheduler overlay
	4.2 Performance evaluation

	5 Conclusion and future work
	References
	Appendix — Modifications to the Phoronix Test Suite
	Appendix — Task Placer Script

