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ABSTRACT

The modeling of events is extremely important in several domains in which the temporal

evolution of data supports decision-making, but the representation limitations in the state

of the art in conceptual modeling are still a barrier to software application development.

Current solutions fail to reconcile behavior expressiveness, reuse, and technological com-

patibility. This work considers event modeling under the approach of ontologies and

focuses on the reasoning to infer the consequences of events. We propose the use of

rule description languages to improve traditional ontology reasoning with interpretation

capabilities of specific semantics, preserving the utility of current technologies (by not

depending on non-analyzable descriptions, either by representational, modeling, or tech-

nological choice) while inferring in ways that are not possible with conventional axioms.

During this work, we explore solutions compatible with the Semantic Web to represent

the behavior of events, resulting in an OWL representation of an event model supported

by SHACL-SPARQL inference and consistency check. We demonstrate our proposition

by importing the resulting model to a domain ontology of the O&G industry and showing

how the event consequences inferred affect a query over the flow of oil.

Keywords: Ontology. Conceptual modelling. Events. Reasoning. OWL. SHACL.

SPARQL.



Modelagem de Eventos Para Suporte a Raciocínio de Consequências

RESUMO

A modelagem de eventos é extremamente importante em vários domínios nos quais a

evolução temporal dos dados apoia a tomada de decisões, mas as limitações de repre-

sentação no estado da arte em modelagem conceitual ainda são uma barreira para o de-

senvolvimento de aplicações de software. As soluções atuais falham em reconciliar ex-

pressividade comportamental, reutilização e compatibilidade tecnológica. Este trabalho

considera a modelagem de eventos sob a abordagem de ontologias e foca no raciocínio

para inferir as consequências dos eventos. Propomos o uso de linguagens de descrição

de regras para melhorar o raciocínio tradicional de ontologias com capacidades de inter-

pretação de semânticas específicas, preservando a utilidade das tecnologias atuais (ao não

depender de descrições não analisáveis, seja por escolha representacional, de modelagem

ou tecnológica) enquanto permitindo inferência de maneiras que não são possíveis com

axiomas convencionais. Durante este trabalho, exploramos soluções compatíveis com a

Web Semântica para representar o comportamento dos eventos, resultando em uma repre-

sentação OWL de um modelo de eventos suportada por inferência e verificação de con-

sistência usando SHACL-SPARQL. Demonstramos nossa proposta importando o modelo

resultante para uma ontologia de domínio da indústria de óleo e gás e mostrando como as

consequências inferidas dos eventos afetam uma consulta sobre o fluxo de petróleo.

Palavras-chave: Ontologias. Modelagem conceitual. Eventos. Raciocínio. OWL.

SHACL. SPARQL.
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1 INTRODUCTION

Ontologies are extremely useful tools for complex domains where ambiguous

concepts and implicit semantics exist. We can apply Ontologies as computational arti-

facts (referred to during the remaining of this work simply as “ontologies”) for various

purposes, be it interoperability of databases, semantic search, or information discovery

through logical inference (part of a toolset of ontologies, together with consistency check,

under the name of “reasoning”). Among the computational representations capable of

reasoning, OWL (Web Ontology Language) is one of the most widely used languages

for ontology representation. However, despite its expressiveness, not everything in the

world of ontologies can be represented through it. Some representation limitations of

OWL are discussed in (Keet, 2020), where other languages are explored to address these

deficiencies, although such solutions leave the semantic web environment.

The utility of event reasoning spans multiple aspects, be it extracting what events

have occurred and what are their participants, which can, for example, help autonomous

driving in its decision-making process, mainly in such a domain where these elements

are implicitly contained in the driving environment and cannot be directly observed (Xue;

Fang; Zhang, 2018); or be it predicting future events, which can be done by reasoning

over the causal relationships of prior events (Lei et al., 2019). In most cases, this sort of

reasoning is either done through specific software implementation or by utilizing temporal

logic, but we will discuss a method that is compatible with ontologies without requiring

external computational tools or domain-specific modeling.

This work discusses a solution to address the shortcomings of OWL in repre-

senting temporal information, specifically events (also called Occurrents, Perdurants, or

Processes). For this, we use the inference capability of SHACL (Shapes Constraint Lan-

guage) for event reasoning. The proposed solution focuses on inferring the consequences

of event occurrences by proposing a set of rules that allow OWL models to describe how

events affect their participants and the concerned objects of the world. To define such

rules, we base our modeling on upper-level types of events based on ontological conser-

vation (Rodrigues; Carbonera; Abel, 2020) to not create undesired logical consequences.

Although we are dealing with temporal entities (events), as already stated, we

will specifically discuss the effects events have in the surrounding objects, leaving aside

other important aspects of this domain. in this work, we will not discuss how events

relate to time and to other events. In this sense, we will not define causal relationships or
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implement the twelve temporal relations of Allen (Allen, 1983).

The following of this work is divided in this way: chapter 2 introduces the various

base concepts of ontologies, events, and reasoning we lean on; chapter 3 explores how the

reasoning of events has been approached in other works; chapter 4 explains the decisions

we have taken in our approach of modeling, as well as reasoning, including examples of

usage; chapter 5 demonstrates our approach in a real-world use case of the O&G indus-

try; and chapter 6 discusses what we achieved, current limitations and what can still be

explored.
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2 THEORETICAL BACKGROUND

This study requires to understand of what an ontology is, how ontologies are com-

putationally treated, and how to represent events in an ontology. Ontology is a logi-

cal theory for conceptual modeling that aims to represent entities in the world based on

their intrinsic nature and structure, independent of the observer (Guarino; Daniel; Steffen,

2009). The representation of an ontology seeks to constrain the possible interpretations

of terms in a language to bring the set of models allowed by the language closer to the

set of models intended by the modeler and user (Guarino, 1995). In computer science,

we can consider an ontology as an explicit specification of a conceptualization (Gruber,

1993), meaning that an ontology is an unambiguous representation of a conceived idea

about reality. This notion was expanded by Studer (1998) to represent that an ontology

is a formal specification of a shared conceptualization of reality. Computationally, this

formalism is translated into conceptual models, traditionally represented in RDF/XML

(Resource Description Framework) format, but with a wide range of alternative formats,

most of which are standardized by the W3C.

2.1 Events in Ontology

Ontologies can represent both entities that exist entirely at each moment they exist,

called Continuants or Endurants, and entities that exist in temporal parts, not being en-

tirely present at any single moment in time, known as Events, Occurrents, or Perdurants

(Guizzardi et al., 2013). This view also culminates in events having different temporal

parts at different times, such that, at present, some of their proper parts can be miss-

ing (Masolo et al., 2003).

Another important concept for events is participation: events are entities that in-

volve continuants as participants (Rodrigues, 2019; Bennett, 2002; Davidson, 1969), be-

sides being entities directly related to time, they derive their spatial characteristics from

their participants (Quinton, 1979).

We will refer to things that happen in time with the participation of continuants

as Events. Although this definition is unclear to what it is for something to happen,

formalizing this definition is outside the scope of this work. For the sake of the reasoning

approach we present, the notion about what can be said when an event happens is more

interesting, as such, we will lean towards the definition presented in (Guizzardi et al.,
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2013), where events are transitions between situations that transform a portion of reality,

although we will be very lenient on the need of representing such situations directly. Still

following Guizzardi et al.’s definitions, events existentially depend on objects and can be

either atomic, and directly depend on an object, or complex, and directly depend on their

proper parts (and indirectly on the objects of those parts).

2.2 Ontologies and The Semantic Web

The Semantic Web is an extension of the World Wide Web where information is

given well-defined meaning (Berners-Lee; Hendler; Lassila, 2001), in this sense, the role

of ontologies on semantic interoperability is of great interest in the semantic web. Given

this circumstance, various representation languages, such as Terse RDF Triple Language

(Turtle) and Web Ontology Language (OWL). Currently, the OWL format is widely used

in applications. Its variations that support Description Logic are important as they allow

reasoning for inferences in the specified model (Horrocks; Patel-Schneider; van Harme-

len, 2003). In the Semantic Web, RDF, RDFS, and OWL represent an evolutionary trend

(culminating in OWL) of a simple graph reference model; a simple vocabulary and axioms

for object-oriented modeling; and knowledge-based oriented constructs and axioms (Ding

et al., 2007).

We will focus this work’s proposition on technological compatibility, given the

importance of the Semantic Web and, proportionally, OWL in it. As such, we explore

possible implementations that can be applied without the adoption of specific technologies

that would conflict with the environment created by the Semantic Web, or the need to use

an incompatible modeling language. In fact, we will abstain from utilizing technologies

not standardized by the W3C. With this in mind, the proposed solution to the problem

we tackle during this work (reasoning applied to event consequences) will require that

we model our events and implement our reasoning approach through some preexisting

technological solution of the Semantic Web.
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3 RELATED WORK

This chapter compares several technological solutions that deal with events from a

reasoning standpoint. In the ontology state-of-the-art, the modeling of events is receiving

plentiful attention, with widely adopted ontologies like UFO-B (Guizzardi et al., 2013)

and BFO (Otte; Beverley; Ruttenberg, 2022) offering constructs for occurent representa-

tions. However, it is rare to find technological approaches that implement reasoning solu-

tions to complement standard OWL capabilities for event information extraction through

inference. Table 3.1 summarizes the comparison made below, given the following criteria:

• Technology Compatibility: The ability of the solution to integrate with the already

widely adopted Semantic Web technological stack. This criterion can assume some

value between None, describing a solution that does not utilize the technological

stack, or that proposes another; Partial, where the solution adopts the technological

stack but increments it in some way; and Full, where the proposed solution only uti-

lizes technologies available for the Semantic Web. This also means that we cannot

categorize software solutions as Full under this criteria.

• Event Coverage: The capacity of a solution to represent (or not represent) a broad

selection of events. This criterion can assume some value between Specific, where

the solution works only for the set of events demonstrated by the authors; Strict,

where the solution works for a set of events bound by strict rules; and Broad, where

the solution covers a wide set of events, generally bound by an undefined upper

limit. Since this criterion is subjective, we will adopt the following rule as the

separation line between Strict and Broad: if the solution can only describe events

from its domain, it is Strict, if we can extrapolate the solution to other domains, or

it is domain agnostic, the solution is Broad.

• Ontological Compromise: How specific is the ontological compromise of the pro-

posed solution, that is, how committed the solution is to a specific worldview. To

define this, we adopt a minimum set of requirements that describe an event: an

event can have Continuants as participants, an event exists in time, and a descrip-

tion of events does not make additional assumptions about the role of Time in the

model. This criterion can assume some value between Loose, where the solution is

loosely committed, and we can apply it to different worldviews that adopt our mini-

mum criteria; Half, describing a solution that enforces its worldview to some aspect
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of the world, exceeding our minimum criteria; and Full, describing a solution that

only works when fully enforcing its worldview, which, in most cases, imply the

adoption of a well-founded top-level Ontology.

• Domain: What domain does the solution apply to, or whether it is agnostic or not.

This criterion is closely related to Event coverage.

The work “A Core Ontology for Business Process Analysis” (Pedrinaci; Domingue;

Medeiros, 2008) models, in Operational Conceptual Modeling Language (OCML), con-

cepts related to Business Process Management (BPM), specifically for tasks of Business

Process Analysis (BPA). To that effort, this work presents 3 ontologies: Core Ontology for

Business pRocess Analysis (COBRA), the main ontology discussed; a reference Events

Ontology (EVO) to describe business processes; and an Event Analysis Ontology that

describes relations to keep track and reason about processes, activities, actors, and roles.

Although COBRA bases definitions on other ontologies, including top ontologies like

DOLCE, the authors classify it as a Core Ontology, signifying that it represents a robust

worldview but still leaves some space to apply it to other top-level ontologies.

Most of the reasoning on Pedrinaci; Domingue; Medeiros’s work comes from the

Event Analysis Ontology, describing not only relations but also OCML rules to support

reasoning and inference. This use is outdated and may not be supported by current Se-

mantic Web standards. These rules allow for “Activity Monitoring Events to update the

current state of activity realizations, generate Life-Cycle Period instances, and contrast

the transitions with the given state model.” (Pedrinaci; Domingue; Medeiros, 2008), also

providing a general relation that links a Business Activity Realization, a Time Instant and

a Business Activity State.

The work “A Method of Emergent Event Evolution Reasoning Based on Ontology

Cluster and Bayesian Network” (Li; Chen; Liu, 2019) presents a reasoning method to deal

with emergency situation events (such as landslides and floods) based on probabilities. To

do so, it utilizes a Bayesian Network for probability computation and extends SWRL rules

to represent how events relate to each other and evolve. Although Ding, Peng and Pan

(2006) presented the idea of extending ontological description languages with Bayesian

Networks, through the BayesOWL framework, the focus on reasoning of events and on a

rule language creates more similarities with the work we will be proposing.

To represent how emergent events evolve and support decision-making from pol-

icymakers, Li; Chen; Liu extends SWRL to associate probabilities to the rules, allowing

a Bayesian Network to utilize them for deducing the probability of the occurrence of ref-
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erence scenarios. In this way, the antecedents influence mathematically the consequent,

enabling the representation of how events transition from one another. The Li and col-

leagues work presents an example of the usage of the method through a model based on

the NFP 1600 standard for crisis management capabilities composed of four elements:

an event knowledge base, a situation knowledge repository, a resource knowledge base

(for countermeasure resources) and an association knowledge base (containing how the

different knowledge bases relate). Even though there is a description of such a model, it

is not clear how the authors implement this.

The work “An Ontology of Environments, Events, and Happenings” (Ermolayev;

Keberle; Matzke, 2008) proposes a model implemented in OWL-DL and inspired by

Discrete Event Calculus (DEC), including the specificity of distinguishing between events

as objective manifestations of phenomena and happenings as the perception of an event by

an observer. Furthermore, the authors emphasize the concept of environment - the context

surrounding events and objects - where the objects it contains and the events (contained or

not) can influence environments and utilize the concept of fuzzy time to represent the time

intervals on which the phenomena occur. Regarding the definition of time intervals, the

proposed model differentiates between events and atomic actions, which can only occur

instantly, extending such differences by classifying happenings as atomic actions.

Since the model implemented by Ermolayev; Keberle; Matzke utilizes OWL-DL

only, it provides reasoning capabilities native to the OWL language, and it is possible

to utilize it with any application stack supporting this language, mainly the Semantic

Web stack. Contextually, this work addresses the use case of the PSI1, including extend-

ing its ontology (the PSI Meta Ontology), in the domain of dynamic engineering design

processes (DEDP), but, by demonstration, applies to other domains where there are ob-

servers. By extension, as denoted by the authors, it fails to correctly represent events

without observers. Given that the PSI Meta Ontology utilizes DOLCE as a top-level

ontology and SUMO as a commonsense reference ontology, there is a full ontological

compromise to the worldview defined in such ontologies.

The work “ETALIS: Rule-Based Reasoning in Event Processing” (Anicic et al.,

2011) describes an approach for dealing with Complex Event Processing (CEP) through a

proposed rule-based logical language. The ETALIS Language for Events aims to enable

reasoning and inferencing of complex events by distinguishing them from atomic events,

where atomic events are instantaneous and logically interpreted as facts. At the same time,

1Performance Simulation Initiative (PSI) is the research and development project of Cadence Design
Systems, GmbH.
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complex events have a time interval in which they happen and are logically interpreted as

deductive rules.

To describe complex events, the ETALIS language works with event patterns that

describe complex events through pattern matching of simpler events (ultimately atomic

events). This allows the reasoner to detect the occurrence of complex events using opera-

tors related to time, when an event starts, when it ends, and how events temporally relate

to other events. The language also supports Event-Driven Backward Chaining Rules (ED-

BCR) to describe how events are causally related, supporting reasoning.

The work “Event ontology reasoning based on event class influence factors” (Zhong

et al., 2012) defines a series of inference rules for an event model that describes an Event

as a five-tuple e = ⟨ A, S, T, O, L ⟩ composed of an action (A), a subject (S), an object (O)

a time (T) and a location (L).

Parting from this central definition, the notion that an Event Class is the set of

events that share the same behavior (e.g., the elements of the tuple denote the same in-

tention), the event class adjacency matrix w_ij (indicating that there is a relation between

two event classes) and the probability of the occurrence of an event class, Zhong et al.

describe three inference rules. These rules allow for events to trigger the occurrence of

other events, but the authors are not clear on how they implement the proposed inference

(especially considering that probability comes into play, which is a complicated factor

and the main focus of the software implementations already discussed in (Li; Chen; Liu,

2019; Ding; Peng; Pan, 2006)).

The work “Implementing discrete event calculus with semantic web technolo-

gies” (Mepham; Gardner, 2009) describes an implementation, utilizing OWL and SWRL,

of a model based on Discrete Event Calculus (DEC) to allow for reasoning regarding

events. To do so, the model represents Event, Fluent, and Timepoint from the DEC as

OWL classes and axiomatizes the relations between these classes with SWRL rules. Al-

though these tools allow for easy application in a semantic web environment, the authors

clarify that it was not possible to represent all axiomatizations present in the DEC with

SWRL, developing a software solution to make up for the missing axioms with SQWRL.

To contextualize the work, Mepham; Gardner brings forth the web services do-

main, explaining their interest in applying their solution to the Semantic Web. Never-

theless, the proposed model is not inherently tied to such domain and can adapt itself to

any circumstance where the DEC could represent, as demonstrated by using this model

to solve the Hanks-McDermott problem (also known as the Yale shooting problem, this
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formal situational logic problem, related to the classical frame problem, highlights how

the formalization of inertia is not enough to represent causal relationships between hap-

penings). Having this said, there is some significant ontological compromise inherent to

this representation regarding time, as worldviews do not always represent time directly,

as is the case with Timepoint.

The work “Ontology-Based Context Event Representation, Reasoning, and En-

hancing in Academic Environments” (Padilla-Cuevas; Reyes-Ortiz; Bravo, 2021) aims

to implement Ambient Intelligence in an academic environment. To do so, the authors

present ontological models for people, locations, computer networks, time and events,

while utilizing SQWRL to query the models and SWRL to infer over the models in a way

that when an event occurs, there is a network node, with some location, responsible for

registering the event, as well as what people are present and at what time it has happened.

In Padilla-Cuevas; Reyes-Ortiz; Bravo’s work, the reasoning focus for events is

the context that surrounds the event. By ingraining knowledge about the system at work

(an Ambient Intelligence system where network devices measure and trigger events) in

SWRL rules, it is possible to infer information about the event, including participants. The

proposed models are specifically created to attend to the system in question, not creating

ontologically grounded definitions that generalize the concepts explored to other domains

or systems.

The work “Time event ontology (TEO): to support semantic representation and

reasoning of complex temporal relations of clinical events” (Li et al., 2020) describes an

OWL ontology that represents temporal information, including the two main classes of

Time and Event. The focus of this representation is the different types of time relations and

intervals, allowing great expressivity of temporal data, categorizing events on when they

happened, their duration and the granularity of the temporal representation. For reasoning

support to this ontology, the authors present an implementation expanding on the HermiT

OWL reasoner, allowing for temporal reasoning to not only create a timeline of events but

also to query the uncertain relationship between events with insufficient information.

The model provided for TEO is specifically designed to model and reason clinical

events, describing events like Clinical Intervention and Diagnosis. Even though the core

of the temporal representation seems general enough to model other domains, there is no

example of this corroborated by the usage of a specific reasoner for a clinical setting.
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Table 3.1 – Related Work Comparison
Title Technology

Compati-
bility

Event Cov-
erage

Ontological
Compro-
mise

Domain

A Core Ontology for Busi-
ness Process Analysis

Partial Broad Half/Full BPM

A Method of Emergent Event
Evolution Reasoning Based
on Ontology Cluster and
Bayesian Network

None Specific Loose Emergency
Scenarios

An Ontology of Environ-
ments, Events, and Happen-
ings

Full Strict Full DEDP

ETALIS: Rule-Based Rea-
soning in Event Processing

None Broad Loose Agnostic

Event ontology reasoning
based on event class influence
factors

None Broad Half Emergency
Scenarios

Implementing discrete event
calculus with semantic web
technologies

Partial Broad Half Web Ser-
vices

Ontology-Based Context
Event Representation, Rea-
soning, and Enhancing in
Academic Environments

Full Specific Half/Full Academic

Time event ontology (TEO):
to support semantic repre-
sentation and reasoning of
complex temporal relations of
clinical events

Partial Strict Half Medical
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3.1 Creation, Destruction and Modification Events

Events regarding the creation, destruction and modification of entities are a topic

of discussion in ontology modeling. UFO explores such concepts through the specializa-

tion of Participation (a subclass of event) in object creation, object destruction and object

change (Benevides et al., 2019; Guizzardi; Guarino; Almeida, 2016). These definitions

brace themselves in the reification of situations, in which creation events require that a

created object is not present in the initial situation of the event and must be present in the

final situation of the event; destruction events are the opposite, where the object is present

in the initial situation of the event, but not in its final; and modification events require

that the object is present throughout the situations, but the properties of the object have

changed.

Earlier versions of BFO also contemplated these types of events. In this case, by

specializations of the inverse relation to participation, involvement. The relations that

contributed to describing such events were creation, when an event created a continuant;

destruction, when an event destroyed a continuant; sustaining in being, when the event

collaborated to the continued existence of the continuant; and degradation, when the event

collaborated for the continuants eventual destruction (Smith; Grenon, 2005).

3.2 Current Limitations

Although the use of rule-based reasoning proves itself useful to events (Padilla-

Cuevas; Reyes-Ortiz; Bravo, 2021; Mepham; Gardner, 2009; Zhong et al., 2012; Anicic

et al., 2011; Li; Chen; Liu, 2019; Pedrinaci; Domingue; Medeiros, 2008), some works end

up, either extending semantic web available engines (Mepham; Gardner, 2009; Li; Chen;

Liu, 2019), utilizing non-standard (again, for the semantic web) rule languages (Anicic et

al., 2011; Pedrinaci; Domingue; Medeiros, 2008) or implementing a specific reasoner (Li

et al., 2020). When the proposed solution is fully compatible with the semantic web, it

does not propose a general model that works in different domains (Padilla-Cuevas; Reyes-

Ortiz; Bravo, 2021).

The model proposed by (Ermolayev; Keberle; Matzke, 2008) is a well-founded

ontology focused on events and with support to reasoning depending only on semantic

web technologies, but, by utilizing only OWL axiomatization, it does not have the in-

ference capabilities of rule-based reasoning, failing to be able to represent behavior in
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inference. No current proposition succeeds in operationalizing ontological event descrip-

tions without extra tools or specific extensions of current tools.

This work will focus on the issue of event reasoning inside the semantic web

toolkit, specifically for reasoning on event consequences. We will borrow some concepts

regarding event patterns from (Anicic et al., 2011) to define types of events with shared

behavior between all their individuals. Additionally, inspired by the use of SQWRL to

supplement SWRL’s shortcomings (Mepham; Gardner, 2009), we will utilize SHACL,

as a rule-based language, together with SPARQL, through SHACL-SPARQL advanced

features (Knublauch; Allemang; Steyskal, 2017), making it unnecessary to implement a

software solution to tie both of them.
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4 DEVELOPING A REASONING APPROACH

This work aims to propose a domain-agnostic method to infer the consequences

of events while not requiring the modeler to utilize a description language external to the

usual development stack for the semantic web. To be able to do so, we propose a modeling

approach for events compatible with the triple-based description of ontologies.

To allow for reasoning on events as transitions to a broader selection of world-

views, the proposed modeling approach tries to make the minimum amount of compro-

mises with how to model the surrounding context. The basis of the modeling approach is

the Aristotelian Ontological Square, where we categorize Events and their types as Sub-

stantial Universals and we describe their behavior through a series of Accidental Univer-

sals. Another important distinction to keep in mind is between entities that have temporal

parts, called Occurents or Perdurants, and entities that are wholly present in every in-

stant, called Continuants or Endurants, where, for this work, events are occurrents, and

their participants are continuants.

Considering that our interest in events in this work refers to the consequences of

these events in the world, we will characterize events regarding their upper-level types.

These types are the following: States, where the only change in situations is their temporal

position; Simple Changes, where the qualities of participants change, but their identity is

preserved; Transformations, where the qualities and identity of participants change; and

Existential Occurrents, where the existence of participants change (Rodrigues; Carbonera;

Abel, 2020).

To work with these upper-level types, we decided to break them down into sim-

pler events that containerize their behavior on a “building blocks” approach. The identi-

fied event types are Creation Event, Destruction Event, Relation Modification Event, and

Quality Modification Event. With these, we can represent Existential Occurrents with

creation and destruction events, Simple Changes with relation and quality modification

events, and Transformations with a combination of them all. This approach tries to min-

imize the intersection between the events while allowing for more granular control of

expressivity.

Additionally, the behavior represented by such classes creates some dependencies

with their participants, their types, and some relations. This dependence is slightly dif-

ferent, by being more general, than the usual existential dependence between events and

their objects, but, nevertheless, represents existential dependence. As such, the following
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predicates emerge:

• Creating an individual by a Creation Event depends on the class of the created

individual.

• The destruction of an individual by a Destruction Event depends on the destroyed

individual.

• The gain and loss of a relation depends on the relation, the subject of the predicate,

and the object of the predicate.

• The gain and loss of quality depend on the class of the quality, the individual that is

(or will be) the bearer, and the relation of inherence.

Although it is possible to represent the Quality Modification Event as a combination of

the Relation Modification Event and the creation and destruction events, due to the im-

portance of the semantics regarding qualities in ontologies, we have decided to separate

them into a special class of events that we will describe in the next section.

4.1 The Model

To address the event classes aforementioned, while containing their usage to OWL

constructs, we face two interesting problems: Creation Event depends on a class (i), since

the individual it would be able to reference does not exist yet, and modification events

depend on relations (ii) since we need to make explicit how the participating individuals

should be (or not be) related after the occurrence of the event. These lead to problems

because OWL ObjectProperties are only allowed between individuals, creating a clear

separation between the intensional and extensional models. This metamodeling problem

is further discussed in (Motik, 2005), but the OWL Working Group solves this problem

with the introduction of “punning” in OWL 2, with the caveat that “To allow a more

readable syntax, and for other technical reasons, OWL 2 DL requires that a name is not

used for more than one property type (object, datatype or annotation property) nor can an

IRI denote both a class and a datatype.” (OWL Working Group, 2012).

With this addition, and while following the required restrictions for punning, it is

possible to represent the necessary predicates in OWL 2 DL. To force some restrictions on

how we utilize punning, it was necessary to define a set of metatypes that govern how our

reasoning will interact with the defined classes. To do so, we take some inspiration from
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how UFO deals with punning in their OWL implementation gUFO (Almeida et al., 2020).

While gUFO’s definitions are useful, our proposed model tries to be less compromising in

regards to ontological commitment, resulting in a simplified subset of metatypes parting

from the definitions of gufo:EventType, gufo:EndurantType and gufo:RelationshipType.

The initial separation is between TypeOfTypes (eg. metatypes) and TypeOfParticulars,

serving the same purpose of gufo:Type and gufo:Individual, which resulted in the follow-

ing taxonomy:

1. TypeOfTypes: Class of second-level types, whose individuals are other types. Equiv-

alent to gufo:Type.

1.1. EventType: The type of events.

1.2. ObjectType: The type of independent continuants.

1.3. RelationType: The type of binary predicates. Individuals of this type are ob-

ject properties.

1.4. QualityType: The type of existentially dependent continuants.

2. TypeOfParticulars: Class of particulars, whose individuals cannot be instantiated.

Equivalent to gufo:Individual.

2.1. Event: An Occurrent, something that happens in time.

2.1.1. CreationEvent: An Event that concerns the creation of an object.

2.1.2. DestructionEvent: An Event that concerns the destruction of an object.

The occurrence of this event requires the participation of the object target

of destruction.

2.1.3. ModificationEvent: An Event that entails the gain or loss of some prop-

erty.

2.1.3.1. RelationModificationEvent: A Modification Event that concerns the

gain or loss of a relation. The occurrence of this event requires the

participation of a subject and an object in the relation.

2.1.3.2. QualityModificationEvent: A Modification Event that concerns the

gain or loss of a quality. The occurrence of this event requires the

participation of the object bearer of the quality.

To represent the class dependencies presented previously, we propose the following rela-

tions to complement the taxonomy above:
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1. ConcernsType: A relation between an EventType and another TypeOfTypes. Indi-

cates that there is some correlation between the two types that manifests in every

occurrence of the individuals of the event class.

1.1. ConcernsObject: A relation between an EventType, subclass of Creation-

Event, and an ObjectType.

1.1.1. ConcernsCreationOf: Indicates that the occurrence of an individual of the

event class results in the creation of an individual of the object class.

1.1.2. ConcernsDestructionOf: A relation between an EventType, subclass of

DestructionEvent, and an ObjectType. Indicates that the occurrence of an

individual of the event class results in the destruction of an individual of

the object class.

1.1.3. ConcernsModificationOf: A relation between an EventType, subclass of

ModificationEvent, and an ObjectType. Indicates that the occurrence of

an individual of the event class results in a modification of an individual

of the object class.

1.1.3.1. ConcernsModificationAsSubject: A modification relation that makes

explicit the role of the object as the predicate’s subject in a relation.

This relation is useful when an event concerns the modification of

two objects, like in RelationModificationEvent.

1.1.3.2. ConcernsModificationAsObject: A modification relation that makes

explicit the role of the object as the predicate’s object in a relation.

This relation is useful when an event concerns the modification of

two objects, like in RelationModificationEvent.

1.2. ConcernsRelation: A relation between an EventType, subclass of Modifica-

tionEvent, and a RelationType. Indicates the concerned relation influences in

the state between occurrences of the event.

1.2.1. GivesRelation: A relation between an EventType, subclass of Modifica-

tionEvent, and a RelationType. Indicates that the occurrence of an indi-

vidual of the event class results in an instantiation of the individual of

RelationType.

1.2.2. RemovesRelation: A relation between an EventType, subclass of Mod-

ificationEvent, and a RelationType. Indicates that the occurrence of an



26

individual of the event class results in removing an instance of the indi-

vidual of RelationType.

1.3. ConcernsQuality: A relation between an EventType, subclass of QualityMod-

ificationEvent, and a QualityType. Indicates that the occurrence of an individ-

ual of the event class results in the creation or destruction of an individual of

the quality class.

2. ParticipatesIn: A relation between an owl:Thing, of metatype ObjectType, and an

Event. Indicates the participation of an object in an event.

2.1. DestroyedBy: A relation between an owl:Thing, of metatype ObjectType or

QualityType, and an Event. Indicates that the event destroys the participant.

2.2. ModifiedBy: A relation between an owl:Thing, of metatype ObjectType, and

a ModificationEvent. Indicates that the event will modify the participant in

some way.

2.2.1. SubjectModifiedBy: A relation between an owl:Thing, of metatype Ob-

jectType, and a RelationModificationEvent. It indicates that the partici-

pant is or will become subject to the relation concerned by the event.

2.2.2. ObjectModifiedBy: A relation between an owl:Thing, of metatype Ob-

jectType, and a RelationModificationEvent. It indicates that the partici-

pant is or will become an object to the relation concerned by the event.

2.2.3. BearerModifiedBy: A relation between an owl:Thing, of metatype Ob-

jectType, and a QualityModificationEvent. It indicates that the participant

is or will be the bearer of some quality concerned by the event.

Note that this proposed model has four Metatypes, under the class TypeOfTypes (repre-

sented with Turtle in listing 4.1), to represent the four main entities that we predicate

about, as well as six types of metatype EventType, under the class TypeOfIndividuals. We

also have delimited relations between types (represented with Turtle in listing 4.2), with

relation ConcernsType, and between individuals (represented with Turtle in listing 4.3),

with relation ParticipatesIn. This is the minimum amount of metatypes needed to be able

to represent all the different types of events we proposed to cover, but it is not the only

approach we analyzed. Using only these general metatypes stops us from axiomatizing

the restrictions on the classes in OWL, whose absence stops complete reasoning during

the modeling phase of the ontology by the OWL reasoners included in ontology engineer-
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ing tools. The solution to complement consistency checking, as well as the inference on

event occurrence, is further detailed in chapter 4.21.

1 omice:EventType rdf:type owl:Class ;

2 rdfs:subClassOf omice:TypeOfTypes ;

3 owl:disjointWith omice:ObjectType ,

4 omice:QualityType ,

5 omice:RelationType .

6

7 omice:ObjectType rdf:type owl:Class ;

8 rdfs:subClassOf omice:TypeOfTypes ;

9 owl:disjointWith omice:QualityType ,

10 omice:RelationType .

11

12 omice:QualityType rdf:type owl:Class ;

13 rdfs:subClassOf omice:TypeOfTypes ;

14 owl:disjointWith omice:RelationType .

15

16 omice:RelationType rdf:type owl:Class ;

17 rdfs:subClassOf omice:TypeOfTypes .

18

19 omice:TypeOfTypes rdf:type owl:Class .

Listing 4.1 – Triple definition for Metatype classes

1 :ConcernsCreationOf rdf:type owl:ObjectProperty ;

2 rdfs:subPropertyOf :ConcernsObject ;

3 rdfs:domain :EventType ;

4 rdfs:range :ObjectType .

5

6 :ConcernsDestructionOf rdf:type owl:ObjectProperty ;

7 rdfs:subPropertyOf :ConcernsObject ;

8 rdfs:domain :EventType ;

9 rdfs:range :ObjectType .

10

11 :ConcernsModificationAsObject rdf:type owl:ObjectProperty ;

12 rdfs:subPropertyOf :

ConcernsModificationOf .

13

14 :ConcernsModificationAsSubject rdf:type owl:ObjectProperty ;

1The developed model, including the reasoning rules, is available at <https://github.com/hrssilva/
omice>.
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15 rdfs:subPropertyOf :

ConcernsModificationOf .

16

17 :ConcernsModificationOf rdf:type owl:ObjectProperty ;

18 rdfs:subPropertyOf :ConcernsObject ;

19 rdfs:domain :EventType ;

20 rdfs:range :ObjectType .

21

22 :ConcernsObject rdf:type owl:ObjectProperty ;

23 rdfs:subPropertyOf :ConcernsType ;

24 rdfs:domain :EventType ;

25 rdfs:range :ObjectType .

26

27 :ConcernsQuality rdf:type owl:ObjectProperty ;

28 rdfs:subPropertyOf :ConcernsType ;

29 rdfs:domain :EventType ;

30 rdfs:range :QualityType .

31

32 :ConcernsRelation rdf:type owl:ObjectProperty ;

33 rdfs:subPropertyOf :ConcernsType ;

34 rdfs:domain :EventType ;

35 rdfs:range :RelationType .

36

37 :ConcernsType rdf:type owl:ObjectProperty ;

38 rdfs:domain :EventType ;

39 rdfs:range :TypeOfTypes .

40

41 :GivesRelation rdf:type owl:ObjectProperty ;

42 rdfs:subPropertyOf :ConcernsRelation ;

43 rdfs:domain :EventType ;

44 rdfs:range :RelationType .

Listing 4.2 – Triple definition for relations between types

1 :ModifiedBy rdf:type owl:ObjectProperty ;

2 rdfs:subPropertyOf :ParticipatesIn ;

3 rdfs:domain :TypeOfParticulars ;

4 rdfs:range :ModificationEvent .

5

6 :BearerModifiedBy rdf:type owl:ObjectProperty ;

7 rdfs:subPropertyOf :ModifiedBy ;

8 rdfs:range :QualityModificationEvent .
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9

10 :ObjectModifiedBy rdf:type owl:ObjectProperty ;

11 rdfs:subPropertyOf :ModifiedBy ;

12 rdfs:range :RelationModificationEvent .

13

14 :ParticipatesIn rdf:type owl:ObjectProperty ;

15 rdfs:subPropertyOf owl:topObjectProperty ;

16 rdfs:domain :TypeOfParticulars ;

17 rdfs:range :Event .

18

19 :RemovesRelation rdf:type owl:ObjectProperty ;

20 rdfs:subPropertyOf :ConcernsRelation ;

21 rdfs:domain :EventType ;

22 rdfs:range :RelationType .

23

24 :SubjectModifiedBy rdf:type owl:ObjectProperty ;

25 rdfs:subPropertyOf :ModifiedBy ;

26 rdfs:range :RelationModificationEvent .

27

28 :DestroyedBy rdf:type owl:ObjectProperty ;

29 rdfs:subPropertyOf :ParticipatesIn ;

30 rdfs:domain :TypeOfParticulars ;

31 rdfs:range [ rdf:type owl:Class ;

32 owl:unionOf ( :DestructionEvent

33 :QualityModificationEvent

34 )

35 ] .

Listing 4.3 – Triple definition for relations between individuals

4.2 The Reasoning

In order to extract the behavior from modeled events, we need to be able to define

some inference rules for extracting the semantics implied by the defined relations. Addi-

tionally, we define some validation reasoning rules to ensure that all aspects of the model

are correctly applied and the inference will not produce undesired results.

As already contemplated in chapter 3, OWL axioms are not expressive enough

to represent dynamic behavior, so we opt for utilizing rule-based reasoning to validate

and infer over events. We define the following reasoning rules with SHACL Shapes for
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validation and SHACL Rules for inferring, but it is important to note that these definitions

depend on SHACL advanced features (specifically for SHACL Rules and for the use of

SHACL-SPARQL), depending on the support to such features to work.

4.2.1 Rule-Based Validation

Since the restrictions that can be represented with OWL are not specific enough

for the relations between types, which can be seen in listings 4.1 and 4.2 in comparison

to listing 4.3, we define some rules to validate the correctness of the relation usage with

classes placed in the taxonomy of events.

∀e, EventType(e) ∧ subClassOf(e, CreationEvent)

→ ∃o(ConcernsCreationOf(e, o) ∧ObjectType(o))
(4.1)

∀e, EventType(e) ∧ subClassOf(e,DestructionEvent)

→ ∃o(ConcernsDestructionOf(e, o) ∧ObjectType(e, o))
(4.2)

∀e, EventType(e) ∧ subClassOf(e,ModificationEvent)

→ ∃r(RelationType(r)

∧ (GivesRelation(e, r) ∨RemovesRelation(e, r)))

(4.3)

∀e, EventType(e) ∧ subClassOf(e,QualityModificationEvent)

→ ∃o∃q(ObjectType(o) ∧QualityType(q)

∧ ConcernsModificationOf(e, o) ∧ ConcernsQuality(e, q))

(4.4)

∀e, EventType(e) ∧ subClassOf(e, RelationModificationEvent)

→ ∃o1∃o2(ObjectType(o1) ∧ObjectType(o2)

∧ ConcernsModificationAsSubject(e, o1)

∧ ConcernsModificationAsObject(e, o2))

(4.5)
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Axiom 4.1 can be expressed with SHACL-SPARQL through the use of a SHACL

Shape with constraint represented by listing 4.4 and target represented by listing 4.5.

SHACL ties both of the listing definitions through a Shape, which it will use to validate

the graph: if, by applying each constraint to each entity selected by target, constraint

returns a triple, then the entity does not conform to shape (resulting in a violation). Listing

4.6 exemplifies how a Shape is described. Axioms 4.2, 4.3, 4.4 and 4.5 follow the same

pattern of axiom 4.1.

1 :CreationEventTypeConstraint rdf:type owl:NamedIndividual ,

2 sh:SPARQLConstraint ;

3 sh:message "A CreationEvent class should

concern the creation of an individual of ObjectType." ;

4 sh:select """

5 prefix : <https://hrssilva.github.io/ontology/omice.ttl\#>

6 prefix rdfs: <http://www.w3.org/2000/01/rdf-schema\#>

7 prefix owl: <http://www.w3.org/2002/07/owl\#>

8 prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns\#>

9 SELECT \$this ?path ?objectclass

10 WHERE {

11 BIND(:ConcernsCreationOf as ?path)

12 NOT EXISTS {

13 $this ?path ?objectclass .

14 ?objectclass a :ObjectType .

15 }}""" .

Listing 4.4 – Constraint on creation events.

1 omice:CreationEventTypeTarget rdf:type owl:NamedIndividual ,

2 sh:SPARQLTarget ;

3 rdfs:comment "Targets all subclasses of

CreationEvent that are of type EventType" ;

4 sh:select """prefix : <https://hrssilva.

github.io/ontology/omice.ttl#>

5 prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

6 prefix owl: <http://www.w3.org/2002/07/owl#>

7 prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

8 SELECT ?entity

9 WHERE {

10 ?entity a :EventType ;

11 rdfs:subClassOf+ :CreationEvent .
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12 }""" .

Listing 4.5 – Target for creation events.

1 omice:CreationEventTypeShape rdf:type owl:NamedIndividual ,

2 sh:NodeShape ;

3 rdfs:comment "Validates that all type

restrictions on subclasses of CreationEvent are being correctly

modeled" ;

4 sh:sparql omice:

CreationEventTypeConstraint ;

5 sh:target omice:CreationEventTypeTarget .

Listing 4.6 – Shape for type validation on creation events.

This SHACL definitions relate to second-level logic axioms in the following way: an

axiom of the shape A → B, representing a restriction over A, can be expressed by Shape(T,

C), where T is a SHACL Target, T ≡ A, C is a constraint and C ≡ ¬ B.

There are also some implicit restrictions that permeate across type relations and

individual relations:

• (i) If an event concerns the destruction of an object class, then the individual de-

stroyed by this event should be of the concerned object class: axiom 4.6.

∀ei, E(ei) ∧ subClassOf(E,DestructionEvent) ∧ ConcernsDestructionOf(E,O)

→ ∃oi(O(oi) ∧DestroyedBy(oi, ei))

(4.6)

• (ii) If an event concerns the modification of an object class, then the individual

modified by this event should be of the concerned object class: axiom 4.7.

This topic unfolds into several cases in the proposed model, where the modification

relation branches into bearer modification, subject modification, and object modifi-

cation, but for simplicity’s sake, we will consider that all those cases are included

in the ConcernsModification relation and the ModifiedBy participation, generalizing

this axiom for the ModificationEvent class.

∀ei, E(ei) ∧ subClassOf(E,ModificationEvent) ∧ ConcernsModificationOf(E,O)

→ ∃oi(O(oi) ∧ModifiedBy(oi, ei))

(4.7)
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• (iii) If an event removes a relation of inherence, the quality destroyed by the event

should be of the concerned quality class: axiom 4.8.

∀ei, E(ei) ∧ subClassOf(E,QualityModificationEvent) ∧ ConcernsQuality(E,Q)

→ ∃qi(Q(qi) ∧DestroyedBy(qi, ei))

(4.8)

4.2.2 Rule-Based Inference

To generate the desired inferences, we must be able to include and to remove

triples from the model. The first is not a problem since SHACL processors create a new

graph with the result of any inference, but for the same reason, removing triples directly

from the model is not available. To allow for a decrement in the model, we apply the

inference engine to replicate every triple we do not want to remove, resulting in a new

inference-produced graph, the original graph where the undesired elements were not in-

cluded.

For this purpose we created three shapes, each one with a single responsibility

in constructing the new graph. Listing 4.7 describes ReplicateUniversalsShape shape

that targets uninteresting entities (listing 4.11) and only replicates triples through its rule

(listing 4.10), listing 4.8 describes StepIncrementStateShape shape that only deals with

events that cannot cause destruction of entities (listing 4.12) and listing 4.9 describes

StepDecrementStateShape shape that deals with events that may cause the destruction of

entities (listing 4.13).

1 :ReplicateUniversalsShape rdf:type owl:NamedIndividual ,

2 sh:shape ;

3 sh:rule :ReplicateTriplesRule ;

4 sh:target :UniversalsTarget .]

Listing 4.7 – Shape that deals with individuals that will not be affected by inference.

1 :StepIncrementStateShape rdf:type owl:NamedIndividual ,

2 sh:shape ;

3 sh:rule :CreationRule ,

4 :DiscardLossObjectsRule ,

5 :GainsQualityRule ,

6 :GainsRelationRule ;
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7 sh:target :UnnavoidableIndividualsTarget .

ReplicateUniversalsShape rdf:type owl:NamedIndividual ,

8 sh:shape ;

9 sh:rule :ReplicateTriplesRule ;

10 sh:target :UniversalsTarget .

Listing 4.8 – Shape that deals with individuals that do not participate in an event that removes

triples.

1 :StepDecrementStateShape rdf:type owl:NamedIndividual ,

2 sh:shape ;

3 sh:rule :DiscardLossRelationsRule ,

4 :GainsRelationRule ;

5 sh:target :PossibleLossIndividualsTarget .

Listing 4.9 – Shape that deals with individuals that participate in an event that removes triples.

1 :ReplicateTriplesRule rdf:type owl:NamedIndividual ,

2 sh:SPARQLRule ;

3 sh:construct """

4 prefix : <https://hrssilva.github.io/ontology/omice.ttl#>

5 CONSTRUCT {

6 $this ?r ?o .

7 }

8 WHERE {

9 $this ?r ?o .

10 }

11 """ ;

12 sh:order 1 .

Listing 4.10 – Rule that only replicates all the triples from targets.

1 :UniversalsTarget rdf:type owl:NamedIndividual ,

2 sh:SPARQLTarget ;

3 rdfs:comment "Targets all universals, including

individuals created through punning, annotation properties, object

properties and data properties" ;

4 sh:select """

5 prefix : <https://hrssilva.github.io/ontology/omice.ttl#>

6 prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

7 prefix owl: <http://www.w3.org/2002/07/owl#>

8 prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

9 SELECT ?entity

10 WHERE {
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11 {?entity a owl:Ontology .}

12 UNION

13 {?entity a owl:Class .}

14 UNION

15 {?entity a owl:AnnotationProperty .}

16 UNION

17 {?entity a owl:ObjectProperty .}

18 UNION

19 {?entity a owl:DataProperty .}

20 }

21 """ .

Listing 4.11 – Target for all entities that will not be affected by the inference.

1 omice:UnnavoidableIndividualsTarget rdf:type owl:NamedIndividual ,

2 sh:SPARQLTarget ;

3 rdfs:comment "Targets all

individuals that do not lose properties or cease to exist by result

of an EventType" ;

4 sh:select """

5 prefix : <https://hrssilva.github.io/ontology/omice.ttl#>

6 prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

7 prefix owl: <http://www.w3.org/2002/07/owl#>

8 prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

9 SELECT ?entity

10 WHERE {

11 ?entity a owl:NamedIndividual .

12 NOT EXISTS {?entity a owl:Class .}

13 NOT EXISTS {

14 {

15 ?entity :SubjectModifiedBy | :BearerModifiedBy ?event .

16 ?event a ?ec .

17 ?ec :RemovesRelation ?p .

18 }

19 UNION

20 {

21 ?entity :DestroyedBy ?event .

22 }

23 }

24 }

25 """ .

Listing 4.12 – Target for all individuals that do not participate in an event that removes triples.
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1 omice:PossibleLossIndividualsTarget rdf:type owl:NamedIndividual ,

2 sh:SPARQLTarget ;

3 rdfs:comment "Targets all

individuals that may lose properties or cease to exist by result of

an EventType" ;

4 sh:select """

5 prefix : <https://hrssilva.github.io/ontology/omice.ttl#>

6 prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

7 prefix owl: <http://www.w3.org/2002/07/owl#>

8 prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

9 SELECT ?entity

10 WHERE {

11 ?entity a owl:NamedIndividual .

12 NOT EXISTS {?entity a owl:Class .}

13 {

14 {

15 ?entity :SubjectModifiedBy | :BearerModifiedBy ?event .

16 ?event a ?ec .

17 ?ec :RemovesRelation ?p .

18 }

19 UNION

20 {

21 ?entity :DestroyedBy ?event .

22 }

23 }

24 }

25 """ .

Listing 4.13 – Target for all individuals that participate in an event that removes triples.

The assumption that a model going through inference rules is correctly modeled, because

it is verified by the validation rules, allows us to be pragmatic in the definitions for targets

and rules. The targets for individuals (listings 4.12 and 4.13) ignore entities that are

subjects of the relation DestroyedBy, effectively removing the destroyed entities from the

resulting model.

The inference approach we propose builds a new model, based on the input model,

with the inferred consequences of events "baked in", so, to deal with the removed rela-

tions and references to destroyed objects while replicating the maintained triples to the

new model, the rule DiscardLossObjectsRule replicates all triples where the given en-

tity is subject, while ignoring those whose object is being destroyed. In a similar way,
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the DiscardLossRelationsRule has to ignore triples when the subject and object are being

modified by a modification event, and this event class has a relation of RemovesRelation

with the relation of the analyzed triple. In this sense, while applying the DiscardLos-

sObjectsRule, the reasoning engine will look at all selected triples and try to match a

negative pattern: for a triple “T” with shape “a r b”, if there is no triple with shape

“b DestroyedBy c”, then “T” is included in the new model. By using these rules, we are

able to completely remove entities that were destroyed, as well as any reference to them,

from the newly generated model while including all other previous triples.

The inference rules are as follows:

• CreationRule: Creates a new individual of the concerned class.

1 :CreationRule rdf:type owl:NamedIndividual ,

2 sh:SPARQLRule ;

3 sh:construct """

4 prefix : <https://hrssilva.github.io/ontology/omice.ttl\#>

5 prefix owl: <http://www.w3.org/2002/07/owl\#>

6 CONSTRUCT {

7 ?s a owl:NamedIndividual, ?c .

8 }

9 WHERE {

10 $this a ?ec .

11 ?ec :ConcernsCreationOf ?c .

12 BIND(IRI(CONCAT(STR(?c), STR(NOW()))) as ?s) .

13 }

14 """ ;

• GainsQualityRule: Crates an individual of the concerned quality class and instanti-

ates the concerned inherence relation between the new individual and the bearer.

1 :GainsQualityRule rdf:type owl:NamedIndividual ,

2 sh:SPARQLRule ;

3 sh:construct """

4 prefix : <https://hrssilva.github.io/ontology/omice.ttl\#>

5 prefix rdfs: <http://www.w3.org/2000/01/rdf-schema\#>

6 prefix owl: <http://www.w3.org/2002/07/owl\#>

7 CONSTRUCT {

8 ?s a owl:NamedIndividual, ?qc .

9 ?s ?r $this .

10 }

11 WHERE {
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12 $this :BearerModifiedBy ?e .

13 ?e a ?ec .

14 ?ec :GivesRelation ?r .

15 ?ec :ConcernsQuality ?qc .

16 BIND(IRI(CONCAT(STR(?qc), STR(NOW()))) as ?s) .

17 }

18 """ ;

• GainsRelationRule: Instantiates a relation between the subject and object-modified

individuals.

1 :GainsRelationRule rdf:type owl:NamedIndividual ,

2 sh:SPARQLRule ;

3 sh:construct """

4 prefix : <https://hrssilva.github.io/ontology/omice.ttl\#>

5 prefix rdfs: <http://www.w3.org/2000/01/rdf-schema\#>

6 prefix owl: <http://www.w3.org/2002/07/owl\#>

7 CONSTRUCT {

8 $this ?r ?o .

9 }

10 WHERE {

11 $this :SubjectModifiedBy ?e .

12 ?e a ?ec .

13 ?ec :GivesRelation ?r .

14 ?o :ObjectModifiedBy ?e .

15 }

16 """ ;

• DiscardLossObjectsRule: Replicates every triple for the target, except when an

event destroyed the object of the triple.

1 :DiscardLossObjectsRule rdf:type owl:NamedIndividual ,

2 sh:SPARQLRule ;

3 sh:construct """

4 prefix : <https://hrssilva.github.io/ontology/omice.ttl\#>

5 CONSTRUCT {

6 $this ?r ?o .

7 }

8 WHERE {

9 $this ?r ?o

10 NOT EXISTS {

11 ?o :DestroyedBy ?event .
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12 }

13 }

14 """ ;

• DiscardLossRelationsRule: Replicates every triple for the target, except when an

event removes the triple relation.

1 :DiscardLossRelationsRule rdf:type owl:NamedIndividual ,

2 sh:SPARQLRule ;

3 sh:construct """

4 prefix : <https://hrssilva.github.io/ontology/omice.ttl\#>

5 CONSTRUCT {

6 $this ?r ?o .

7 }

8 WHERE {

9 $this ?r ?o .

10 NOT EXISTS {

11 $this :SubjectModifiedBy ?event .

12 ?o :ObjectModifiedBy ?event .

13 ?event :RemovesRelation ?r .

14 }

15 NOT EXISTS {

16 $this :DestroyedBy ?event .

17 }

18 }

19 """ ;

4.3 Demonstrations on Modeling for Inference

Using the proposed model and the defined inference rules, we can extract the be-

havior of events using SHACL inference. To validate this proposal, we utilize TopQuad-

rant’s implementation of a SHACL API, built on top of Jena (TopQuadrant, 2017), for its

convenience since most SHACL processors that implement SHACL-SPARQL are them-

selves a full-fledged triple store (which is the case with Jena itself). The following exam-

ples are simple models, importing only the proposed event model and demonstrating how

to use these concepts.

To demonstrate how creation and destruction events can be utilized, we modeled

an example using a simplified process of manufacturing natural coal. The manufactur-



40

ing consists of burning wood in a specific way to transform it into natural coal, as such

we define the relevant object classes: Wood and NaturalCoal; and the event Manufac-

turingOfNaturalCoal with two event parts: BurningOfWood and CreationOfCoal. The

event BurningOfWood concerns the destruction of the class Wood and the event Cre-

ationOfCoal concerns the creation of the class NaturalCoal.

Figure 4.1 – Event model for creation of natural coal

The figure 4.1 shows the instantiation of this example’s model with an individual

of each event and an individual of Wood with the DestroyedBy participation relation with

the individual of the BurningOfWood event, completing the model in the state where the

manufacturing of natural coal is about to happen. Figure 4.2 shows all the triples that were

included in the new model after inference, while Figure 4.3 shows all that were removed

in the process2. By running the inference with OMICE as a Shapes Graph over the

example as Data Graph we can see in the resulting model that the instance of the Wood

class is no longer present, while there now exists a new individual of the NaturalCoal

class.

To demonstrate how we can deal with quality modification events, we modeled

a simple example of the painting of a vase. The painting consists of giving a new color

to a vase, replacing its previous one. The object class Vase (with instance V001) and the

quality class Color (with instance C001) are created to model the relevant continuants

that will participate in the event, also defining the concerned inherence relation InheresIn

2The models, resulting models of inference and the graph difference image generation script can be
found in the “examples” and “scripts” folders at <https://github.com/hrssilva/omice>
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Figure 4.2 – New triples after Burning of Wood Event

Figure 4.3 – Removed triples after Burning of Wood Event
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and instantiating this relation between the individuals of Color and Vase. Two quality

modification events are necessary: one to remove the previous color of the vase and one

to give it a new color. As such, we create the LossOfColor event that removes the color

quality of any object and the PaintingOfVase event that gives a color quality to a vase.

Figure 4.4 – The Before and After of the painting of a vase

The instantiation of the painting model with the events allows us to reason about

the consequence of painting vase V001. Figure 4.4 shows that the triples related to color

C001 are no longer present in the model, and a new instance of Color has been created,

inhering in vase V001.

Figure 4.5 – The Before and After of the marriage event

We define a simple marriage event to demonstrate how relation modification events

can be used. The Marriage event, a subclass of RelationModificationEvent, concerns the
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class Person both as subject and object of a concerned (through the GivesRelation rela-

tion) symmetric relation MarriedTo.

The instantiation of this marriage model with two individuals of Person with re-

lationships with an individual of Marriage, one through the SubjectModifiedBy relation,

and another through ObjectModifiedBy relation, completes the model in the state where

we can reason about the occurrence of the Marriage event individual. Figure 4.5 shows

the resulting instantiation of the MarriedTo relation after inference.

Figure 4.6 – Removed relation after divorce event

Figure 4.6 shows what happens if we extend this resulting model further with

the class Divorce that concerns, through RemovesRelation, MarriedTo and change the

participation of the two Person individuals to an instance of Divorce. We can see that

after running the inference there is no more MarriedTo relation between the individuals.
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5 MODELING VALVE EVENTS FOR THE OIL & GAS INDUSTRY

We modeled a use case of the Oil & Gas (O&G) industry consisting of a Produc-

tion Well to exemplify Rule-Based reasoning’s real-world applicability. The complexity

of the industry makes data analysis one of the biggest hurdles for O&G professionals,

to the point where they can spend 80% of their time in data acquisition and conversion

tasks (Brewer et al., 2019).

In this example, we utilize O3PO (Santos et al., 2024) as a domain ontology and,

consequently, its top ontology (BFO), so we must integrate OMICE with it. This is not a

problem since there are no incompatible definitions, and the only overlapping definitions

are of Event and participation. Given that BFO does not define any subclasses for Event

and OMICE has no conflicting axioms for events, it is enough to utilize OWL’s SameAs

between BFO and OMICE definitions of Event class and between both participation rela-

tions.

O3PO defines a Production Well as “an object aggregate that is used to produce

hydrocarbons or inject fluids, and it is located in a wellbore” and allows the model to track

the path of the Oil through the feeds_fluid_to relation. In this example, we demonstrate

how to model the event of valve closing can be used to verify if closing a valve will stop

the flow of Oil from a well to a platform.

We start by instantiating the Floating Production Storage and Offloading (FPSO)

that we want the oil to reach as a component of a plant in a certain field. To determine

that oil has reached this FPSO, we create a choke valve as a sort of entry point component

to it. The path that needs to be followed to reach this entry point is modeled as a flowline,

defined as “a pipeline that carries oil, gas or water that connects the wellhead to a manifold

or to a platform”.

Looking at the other side of the oil flow, the source, we instantiate the production

well and its parts: its annular space (the oil-filled space between the reservoir and the well

tubing), its borehole, and its wellhead. The production column of the well receives the oil

from the annular space. The valves and tubing build the column for transporting the oil

to the wellhead. In this case, the annular space and the production column are separated

into three parts by three Inflow Control Valves (ICV), which manage if the oil can pass

from the respective part of the annular space to the production column. This means that

if any ICV is open, oil flows through the production column and feeds to a Downhole

Safety Valve (DHSV). From the DHSV, the oil goes to the wellhead, then leaves the well
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and goes to a subsea tree (specifically to a master valve, a component of the subsea tree),

finally reaching the flowline.

Figure 5.1 – Configuration of equipment for offshore oil extraction.

From now on, in this section, we will use the syntax A(a) to say that a is an in-

stance of class A and R(a, b) to say that a has relation R with b, so we can easily keep track

of the different instances involved. In this example the valves created are: icv(ICV001),

icv(ICV002), icv(ICV003), dhsv(DHSV001), master_valve(MASTER001) and, the desti-

nation of the oil, choke(PLATFORMCHOKE001), each with their own instance of oper-

ational state quality (either operational or not_operational). The other relevant instances

are: Production_Well(PWELL001) and FPSO(FPSO001). Figure 5.1 shows the configu-

ration of valves and equipment of this example.

To model the events, we create the ClosingOfValve and OpeningOfValve events

(our main events) and the quality modification events RemoveValveOperationalState, Give-

ValveClosedState and GiveValveOpenState. Through OWL axioms, we force the Closin-

gOfValve instances to have exactly one instance of RemoveValveOperationalState and ex-

actly one instance of GiveValveClosedState as parts, similarly, OpeningOfValve has parts

RemoveValveOperationalState and GiveValveOpenState. Figure 5.2 illustrates how we

have modeled the ClosingOfValve event, including individuals.

To know if a well is feeding oil to a platform, we will utilize a SPARQL ASK

query to test if there is a path between any of the well’s ICV and a platform compo-

nent. Additionally, there must not exist any valve in the way that has an instance of
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Figure 5.2 – ClosingOfValve example model.
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not_operational inhering in it, resulting in the query in listing 5.1.

1 PREFIX o3po: <https://www.petwin.org/o3po-resources/o3po#>

2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

3 PREFIX core: <https://purl.industrialontologies.org/ontology/core/

Core/>

4 PREFIX ex: <http://www.example.org/well.ttl#>

5 ASK

6 WHERE {

7 ?bot a o3po:ICV ;

8 o3po:feeds_fluid_to+ ?v1;

9 o3po:connected_to*/o3po:component_of* ex:PWELL001 .

10 FILTER NOT EXISTS {?bot ^core:qualityOf [ a ex:not_operational ] }

.

11 ?v1 a/rdfs:subClassOf* o3po:valve ;

12 o3po:feeds_fluid_to+ ?v2 .

13 ?q1 core:qualityOf ?v1 ;

14 a ex:operational .

15 ?v2 a/rdfs:subClassOf* o3po:valve ;

16 o3po:feeds_fluid_to* ?top .

17 ?q2 core:qualityOf ?v2 ;

18 a ex:operational .

19 ?top o3po:component_of ex:FPSO001 .

20 }

Listing 5.1 – Query to know if well is feeding oil to platform.

1 {’head’: {}, ’boolean’: True}

Listing 5.2 – Query result for the initial model state.

Figure 5.3 – Removed triples after ClosingOfValve

1 {’head’: {}, ’boolean’: False}

Listing 5.3 – Query result with a closed DHSV.
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Figure 5.4 – New triples after ClosingOfValve

In the initial state of the model, where no event has occurred, all valves are oper-

ational except for ICV002. In this scenario, the query returns True, shown in listing 5.2.

By instantiating a ClosingOfValve event, targeting DHSV001, and running the inference,

we can see that the result, seen in Figure 5.3 and Figure 5.4, ends up resulting in no avail-

able path, since DHSV001 closes the only path between the production column and the

wellhead. When rerunning the query of Listing 5.1, we then receive False, as shown in

Listing 5.3.

This example demonstrates how we can utilize the reasoning approach proposed

to dynamically query over the state of the model, given the occurrence of some event.

Through the SPARQL queries, we can attest to the consequence of a possible closing of

a valve, demonstrating the effect of the reasoning. Nevertheless, there are some problems

with the developed event model: the need for the classes Operational and NotOperational

highlights the limitation imposed by not dealing with quality values. By ontological stan-

dards, a quality is inherent to its bearer and should not be destroyed when there is a change

in quality value, but for implementation issues, dealing only with gain and loss of quality

requires that we take such an approach in this model. To correctly represent this exam-

ple, only the class OperationalState, whose individuals have the values "0" or "1", should

exist, and the ClosingOfValve event should set this value to "0".
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6 CONCLUSION

Through this work, we explored rule-based reasoning to infer the consequences

of events, successfully keeping our solution inside the boundaries of the Semantic Web

by utilizing SHACL-SPARQL as a rule description language. We also presented a model

on types of events that implement relations capable of extracting the implicit qualities

of event occurrence, how an event happens, and describing processable behavior of cre-

ation, destruction, and modification of objects. We also exemplified how this model can

be utilized and successfully modeled a use case of the O&G industry by importing our

proposed model in the domain ontology O3PO. Considering the gathered (in chapter 3)

current solutions to deal with event reasoning in ontologies, our proposed solution takes

a different direction by focusing on event consequences and also by taking technological

compatibility in high regard.

6.1 A Discussion On Different Approaches

Before reaching the proposed model, we have experimented with some taxonomy

approaches to implement the described scenario. Besides the model presented in section

4.1, two other models proved sufficient to represent the event types: the first one included

the same event classes already presented but described them as metatypes, while the sec-

ond one extended the proposed model with subtypes of the EventType metatype inspired

by the original upper-level types proposed by Rodrigues; Carbonera; Abel.

The first alternative model is the least compromising and the easiest to adopt since

it only requires the usage of the proposed metatypes as types of the modeler’s choice of

event classes. This option allows different models to utilize the given relations to repre-

sent an event behavior with minor changes (or none at all) to the original taxonomy. Ad-

ditionally, using descriptive metatypes allows for OWL axiomatization of the necessary

restrictions (as opposed to the SHACL validation rules presented), facilitating develop-

ment. Although there is axiomatization, it only supports restrictions based on classes, not

on individuals, failing to properly represent restrictions on participation. Another, per-

haps even bigger, flaw lies in the semantics implied by abstracting the descriptions to this

higher level: the event PaintingOfVase’s type might describe it as concrete and as carrying

identity, but not as a QualityModificationEvent, since it is, in fact, a specific type of this

event.
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The second alternative model fixes the issue of axiomatization by describing not

only metatypes, but also types, having the same taxonomy of events as the final proposed

model. At the same time, it alleviates the flaw in semantics by utilizing more general sub-

types of EventType, but failing to, in fact, fix it. This model is better founded and covers

all necessary restrictions with OWL axioms, but the importance of creating a consistent

model without unclear semantics outweighs the importance of representing all restrictions

with OWL. This brought us to the final proposed model, where there are no subtypes to

EventType, and to the use of rule-based validation.

6.2 Current Limitations

Although we were successful in operationalizing events, we only approached a

marginal part of all that events represent. A big missing part for real-world applicability

is the treatment of OWL DataProperties. This caused a discomforting peculiarity in our

model when dealing with qualities, which was obviously clear in our examples when re-

painting a vase by destroying its color and when choosing how to model the operational

state of valves.

Another deficit of our work is regarding how events relate to one another. When

dealing with complex scenarios, it is common to have events that happen in a certain

order or that affect the outcome of one another. By not representing this relationship, it

becomes very difficult to model complex events when the intermediary steps of the event

are of interest.

6.3 Future Works

As section 6.2 made clear, there is still much room for growth in our current propo-

sition, which we intend to do. Another interesting door this work opens is to utilize the

same reasoning approach to other aspects of events, like dealing with participant recogni-

tion and event triggers, or to implement temporal relations between events, such as those

defined by Allen.
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