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ABSTRACT

Over time, several studies have attempted to predict the term structure of interest
rates, each study has proposed a methodology for this purpose, but there is still
no predominant method. In this article, we propose the use of machine learning
models applied to a database of macroeconomic variables. The results show
that machine learning models are capable of making predictions as expected,
however, in the short term they still do not consistently outperform Random
Walk, only as the horizon increases. Using the Diebold-Mariano test, it was not
possible to find evidence indicating the superiority of machine learning models,
and further studies are needed to advance on the subject.
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RESUMO

Ao longo do tempo, diversos estudos tentaram prever a estrutura a termo das
taxas de juros, cada estudo propôs uma metodologia para tal, mas ainda não há
um método predominante. Neste artigo, propomos a utilização de modelos de
machine learning aplicados a um banco de dados de variáveis macroeconômicas.
Os resultados mostram que os modelos de machine learning são capazes de
fazer previsões conforme o esperado, no entanto, no curto prazo ainda não
superam consistentemente o Random Walk, apenas à medida que o horizonte
aumenta. Utilizando o teste de Diebold-Mariano, não foi possı́vel encontrar
evidências que indiquem a superioridade dos modelos de machine learning,
sendo necessários mais estudos para avançar no assunto.
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1 INTRODUCTION

The term structure of the interest rate is a function that relates time and interest rates
as defined by (Fisher, 1930) where he introduced his expectations hypothesis theory to
explain the dynamics of the term structure. This model describes how the term structure of
interest rates was formed by agents’ preferences for more liquid assets and their expectation
of future changes in interest rates. Investors would accept the risk of holding less liquid
assets in their portfolios, as long as they could be remunerated at a higher rate in the future
(liquidity premium), in such case the long-term interest rate would tend to be higher than
the short-term rate. The setup of Fisher was purely deterministic though, which makes it
hard to analyse the consequences of random shocks in most variables that affects the term
structure.

On the other hand, the general model of asset pricing available around the 1930’s,
introduced by (Bachelier, 1900), have already described asset prices movement as a
continuous-time stochastic process called Brownian motion. It is stated that the change
value of an asset varies at each given moment and is independent of previous prices. This
is the basic assertion on (Fama, 1970)’s theory of efficient markets, which states that it is
not possible to predict the future based on past information, in particular, its random walk
formulation. In an attempt to fully incorporate the term structure theory to the stochastic
setup firmly established by (Black; Scholes, 1973), (Vasicek, 1977) formulated a continuous
time stochastic model where the spot interest rate follows a diffusion process, the price of a
discounted security depends on the spot rate over time and markets are efficient, concluding
it was possible to forecast the curve using a mean-reverting stochastic model.

Nearly a decade later, (Nelson; Siegel, 1985) introduced a stochastic term structure
expectations theory which was able to generate enough smoothness to reveal specific
maturity patterns. The model was also capable of reflecting the primary shape of the term
structure and not just an approximation providing a better setup for predicting the curve
beyond the sampling range. In the following years, there were extensions to the Nelson-
Siegel Model, such as (Svensson, 1995), which introduced a model that allowed capturing
more points along the interest curve, making a more accurate model for analyzing and
predicting the term structure of the interest rate.

One of the most famous models developed in recent years is the Diebold-Li model
(Diebold; Li, 2006), since it allowed the incorporation of macroeconomic variables in addition
to recognizing the existence of price arbitrage, something that was not clearly done by
previous models. The results presented by Diebold and Li show that a good model can exist
without assuming any price arbitrage, however the model did not outperform Random Walk
in short-term forecast horizons, only beating it in long-term horizons.

(Pooter, 2007) deals with the uncertainty of the parameters in addition to the un-
certainty of the model itself. The main result obtained was that predictive performance of
the models depends on the time period analyzed, that is. models that rely heavily on the
most recent observation outperform any other more sophisticated model on the short term,
something that is not always true on the long term. Therefore, till this date we cannot point to
a single model that is capable of accurately forecasting the term structure for all scenarios.

Our objective is to determine whether machine learning (ML) methods are able to
outperform Random Walk (Bachelier, 1900) in all forecast horizons or are restricted to just
one given horizon; our null hypothesis, thus, can be formulated as: both ML models and
random walk have the same accuracy. Our approach consists of creating a macroeconomic
database and feeding it to various models and determine their accuracy when compared to a
Random Walk benchmark and if any could be a potential candidate for an ”all horizons model”.
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The models tested were: Linear Regression, Least Absolute Shrinkage and Selection
Operator (LASSO) (Tibshirani, 1996), Support Vector Machines (Cortes; Vapnik, 1995) and
Random Forest (Breiman, 2001).

This work is organized as follows. In section 2, it is presented a brief review of the
models that were created throughout the literature to predict the term structure, going from
more classic models to the most modern ones today. In section 3, it is shown the data that
was collected to feed the tested models, some data statistics, as well as some graphs to
illustrate the behavior of the variables over the period. In this same section it also presented
the methods used to process the data, and the machine learning models used. In section 4,
the results are presented alongside a comment on them. In section 5, a conclusion regarding
the work.

2 A PIECE ON TERM STRUCTURE MODELLING

Below is an exposition of the Random Walk model, which will be used as a benchmark
for this study, in addition to the two models that have been widely studied and that have
managed to outperform the benchmark in some situations. The idea is to verify whether
machine learning models can outperform the benchmark in situations where the other two
did not.

2.1 RANDOM WALK

Brownian motion is a continuous-time stochastic process where the value of a variable
changes unpredictably at each time and each next step is independent of the previous step
as defined by (Bachelier, 1900). A discrete-time formulation of Brownian motion is often
called Random Walk and is described below:

Pt+1 = Pt + ϵt+1 (1)

Where:

• Pt is the value of the variable in time t.

• Pt+1 is the value of the variable in time t+ 1.

• ϵt+1 is a random error term in time t+ 1

The work proposed by (Bachelier, 1900) is based on the assumption that it is not
possible to predict future movements based on past information, thus consolidating a solid
basis for the Efficient Markets Theory, formulated by (Fama, 1970).

2.2 NELSON-SIEGEL MODEL

The model created by (Nelson; Siegel, 1985) aimed to present a parsimonious way of
describing the yield curve, using few parameters but, at the same time, providing a clear and
precise structure, level, curvature and steepness of the yield curve. The proposed model
was based on the expectations theory of (Fisher, 1930), it was able to reflect the primary
shape of the curve rather than just an approximation, which resulted in the possibility of
predicting the curve beyond the sampling range.

The Nelson-Siegel model is described by:

y(t) = β0 + β1

(
1− e−λt

λt

)
+ β2

(
1− e−λt

λt
− e−λt

)
(2)
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Where:

• y(t): Interest rate for a bond with maturity t.

• β0: Long-term level of the yield curve.

• β1: Inclination.

• β2: Curvature.

• λ: Exponential decay rate.

2.3 DIEBOLD-LI MODEL

(Diebold; Li, 2006) took the Nelson-Siegel model and introduced a number of changes
to it, more specifically in the exponential component structure. The model sought to maintain
the essence of the Nelson-Siegel model, but adding a temporal component to the equation.
The goal was to not only fit the curve to the present moment, but to provide good future
predictions.

The Diebold-Li model is described by:

yt(τ) = β0t + β1t

(
1− e−λτ

λτ

)
+ β2t

(
1− e−λτ

λτ
− e−λτ

)
(3)

Where:

• yt(τ): Interest rate over time t for a security with maturity τ .

• β0t: General level of the time yield curve t.

• β1t: Inclination t.

• β2t: Curvature t.

• λ: Exponential decay rate.

Furthermore, the authors proposed dynamic parameters to the temporal components
using an auto-regressive (AR) models to describe the evolution of parameters over time.

In this way, it was possible to implement the Nelson-Siegel model with the insertion
of dynamism in the parameters, which, according to the authors, would allow for good future
predictions of the yield curve. The model ends up losing to Random Walk in short horizons,
but proved to be superior when forecasting in the long term, (Diebold; Li, 2006).

3 DATA AND METHODS

This section aims to objectively present the data that were used to carry out the
application of the methods, in addition to this, the methods used to carry out the study will
also be presented.
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3.1 DATA

First, we set the analysis period to encompass the last three Brazilian federal admi-
nistrations, meaning that our sample ranges from 2010 to 2022. This choice aims to capture
the latest trends in interest rates in Brazil, while also providing a large enough sample to
perform statistical inference.

We use not only a metric for interest rates, but also the most common variables asso-
ciated with macroeconomic performance, since any monetary variable must be understood
in its macroeconomic environment. The variables were chosen based on the work of (Junior,
2021), they are assumed to have an influence on the term structure. Those are: the basic
interest rate, the exchange rate, the consumer price index, and the credit default swap.

The basic interest rate was measured by the SELIC rate, which is the average of
government bonds traded in the Special System for Settlement and Custody of the Brazil
Central Bank (SELIC). We used the PTAX800 as a measure of the exchange rate. Both the
SELIC and the PTAX800 were extracted from the time series system of the Brazil Central
Bank. As for the inflation index, the Broad Consumer Price Index (IPCA) was used, which
is used as a structure for Brazilian inflation targets. We extracted it from the website of the
Brazilian Institute of Geography and Statistics (IBGE). The National Treasury Bill (LTN) is a
public debt security issued by the Brazilian Government. It is a fixed-rate security that does
not have coupon payments. We used data from the term structure of the LTN with maturities
of 1, 3, 6 and 12 months to construct a proxy for the yield curve, since we did not obtain the
data necessary to construct the term structure of the interest rate. To do so we collected
data from the Brazilian Association of Financial and Capital Market Entities. Finally, the
Brazilian 5-year Credit Default Swap (CDS), which is a financial instrument that functions as
a contract against the risk of default of a given agent, traded on the over-the-counter market
of the stock exchange, the data were taken from Investing website.

The data collected consist of daily observations (4185 observations). Since there
are no trades on non-business days, missing data were disregarded.

In fact, SELIC rate, as shown in Figure 1, had a very tumultuous trajectory throughout
the period analyzed from 2010 to 2012. The scenario was one of recovery after the 2008
financial Subprime Crisis when the Central Bank of Brazil maintained a policy of monetary
tightening control inflation. SELIC rate went from 8.75% in 2010 to 12.5% in 2011 and was
soon to 7.25% in 2012 in an attempt to stimulate economic growth.

In subsequent years, from 2013 to 2016, Brazil went through an economic crisis
during former president Dilma Rouseff’s government, with persistent inflation worsened by
the political and economic crisis, so the Central Bank increased the rate aggressively to
combat inflation. During this period, we went from a SELIC of 7.25% in 2013 to 14.25% in
2015, a level that remained until the end of 2016, resulting in a period of high inflation and
economic recession.

After the impeachment of the then president Dilma, the country entered a slow
economic recovery to control inflation. The SELIC, which was at 14.25%, was reduced to
6.5% in 2018. From 2019 onwards, the world faced the COVID-19 pandemic, resulting in a
global economic crisis, the BCB reduced the SELIC rate to its historic low of 2% in 2020,
from 2021 onwards, with the return of the upward trend in the inflation, the Central Bank
resumed the upward cycle, raising the Selic rate again to levels that would exceed 11%.

https://www.anbima.com.br/en_us/institucional/a-anbima/quem-somos.htm
https://br.investing.com/
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Figure 1 – Selic Rate

Note: Own work using data from Brazil Central Bank.

Just like the SELIC rate, in the years 2010 to 2012 the IPCA (Figure 2) also reacted
to the recovery from the 2008 crisis, however it fluctuated within the inflation target, in the
following years from 2013 to 2016, the IPCA ended up having a big jump, especially in the
year 2015, the height of the economic crisis under Dilma Rouseff’s government, reaching
10.67%. In the years 2017 to 2019, the IPCA came back under control despite the slow
economic recovery, returning to high levels only in 2021, during the crisis generated by the
COVID-19 pandemic, reaching around 10.06% in the same year.

Figure 2 – IPCA

Note: Own work using data from IBGE.

The BRL/USD exchange rate (Figure 3) behaved similarly to the other variables, in
2010 it fluctuated between R$ 1.70 and R$ 1.80 and closed in 2012 at R$ 2.04. Again, during
the economic crisis from 2013 to 2016, the Brazilian currency suffered a strong devaluation,
the dollar continued on an upward trajectory, reaching a value of R$ 3.90 in 2015. In 2017
the dollar fell again due to economic policies. Even with the fiscal and economic recovery,
the North American currency rose again due to the uncertainty caused by the Brazilian
elections. Moving forward in time, to 2020, the dollar reached historic values, reaching a
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price of R$ 5.20, due to the COVID-19 pandemic that impacted the entire world, in 2021 the
currency continued its upward trend, closing the year close to R$ 5.60.

Figure 3 – Exchange

Note: Own work using data from Brazil Central Bank.

The CDS (Credit Default Swap) Figure 4 is a financial instrument that, in general
terms, measures the credit risk of a given issuer, in short, it reflects the cost of protecting
itself against the risk of default by an issuer. In Brazil, the CDS also went through fluctuations
over time (Figure 5), in 2010 the CDS fluctuated between 100 and 150 basis points, rising
to between 150 and 200 in 2011. In the period from 2013 to 2016, due to the economic
crisis in Brazil, which increased distrust around the country, the CDS rose aggressively,
surpassing 480 basis points in 2015. In the following years, the CDS returned to lower levels,
remaining between 150 and 200 basis points in 2019. It rose again during the period of the
COVID-19 pandemic, oscillating between 200 and 300 basis points, but did not reach levels
as observed in 2015.

Figure 4 – CDS 5 Year

Note: Own work using data from Investing.

Below are presented the descriptive statistics of the variables. Table 1 and Figure
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5 shows the data on the LTN term structure, used as a proxy for the yield curve. Table 2
shows the data on the features used to train the models.

Table 1 – Descriptive Statistics

Mean Std Min Max 25% 50% 75%

1m 9.207 3.464 1.914 14.884 6.588 9.636 11.981
3m 9.231 3.528 1.899 14.841 6.522 9.770 12.135
6m 9.313 3.533 1.875 15.408 6.613 9.878 12.281
12m 9.558 3.371 2.230 16.218 7.023 10.168 12.462

Note: Own work using data from Anbima.

Figure 5 – LTN Term structure

Note: Own work using data from Anbima.

Table 2 – Features Descriptive Statistics

Mean Std Min Max 25% 50% 75%

Selic (%) 9.1253 3.5292 1.8763 14.1579 6.4000 9.4000 11.9101
IPCA (%) 0.0001 0.0001 -0.0002 0.0005 0.00008 0.0001 0.0002
Dollar (R$) 3.3264 1.2930 1.5345 5.9372 2.0561 3.2369 4.1008
CDS (bps) 196.37 79.367 91.160 538.63 137.43 177.38 233.78

Note: Own work using data from Brazil Central Bank, IBGE and Investing website.

3.2 METHODS

The present study was carried out using machine learning, a subfield of artificial
intelligence that aims to create a machine that, based on a certain set of data and answers,
learn the rules that govern that system on its own. A regressor based in machine learning is,
therefore, a machine that can estimate future events based on prior knowledge given by the
user whithout explicitly being told what is the exact relation between those points of data,
(Samuel, 1959).
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Machine learning tries to simulate a human brain, and one of the essential parts of
a functioning brain is learning. Today, the machine has shown that it can perform this type
of task much faster than a human being could. This type of technology has opened up an
unprecedented range of areas of knowledge, including economics.

For the development of this work, machine learning algorithms were used to make
predictions. Based on the above, if we provide the machine with a sufficient quantity of data
correlated to the variable we want to predict, the machine will be able to learn from this
data and make predictions. In the following subsection it is explored the different types of
algorithms that were used in this research.

Thinking about the nature of the data, as they are variables that have outliers, in
addition to having different measurement units, data normalization was applied using the
Robust Scaler (Pedregosa et al., 2011) algorithm. The algorithm was chosen because
it is robust to outliers, thus preventing the models from being influenced by values and
adding more precision to the models. Furthermore, preference was given to models that are
resistant to overfitting, as presented below:

3.2.1 LINEAR REGRESSION

The first method applied is linear regression, which has the ability to make predictions
by fitting a linear model to a set of data points given its target variable, the dependent and
the independent, the dependent variables being the one that is the target of the prediction.
Through this relationship, a linear equation is generated which shows how the values of the
target variable tend to change as a result of the independent variables, (Rencher; Schaalje,
2008). Although the linear regression model depends on the linear independence between
the variables, it is noted that the curves observed for the target are smooth, therefore, as
there are no major differences between outliers, the model is valid for observation without
representing a bias.

The model used aims to fit a linear model with coefficients

w = (w1, ..., wp) (4)

in order to minimize the residual sum of squares between the variables observed in the
database and the targets predicted by the linear approximation (Pedregosa et al., 2011).
This linear approximation is described mathematically as:

min
w

||Xw − y||22 (5)

3.2.2 LASSO MODEL

The LASSO model (least absolute shrinkage and selection operator) is a model that
estimates sparse coefficients, using this method to select and regularize variables in order
to increase the accuracy of forecasts. The model assumes that the coefficients of the linear
model are, as mentioned above, sparse, which means that few of them are equal to zero
(Tibshirani, 1996). The mathematical formulation behind the model used is given by:

min
w

1

2nsamples
||Xw − y||22 + α||w||1 (6)

The LASSO model solves the minimization of the least squares penalty by adding
||w||1 where α is a constant and ||w||1 is the ℓ1 norm of the vector of coefficients (Pedregosa
et al., 2011).
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3.2.3 SVM MODEL

The SVM model (support vector machines) is a model that classifies and regresses
data. The aim of the model is to find a hyperplane that best separates the points between
the target classes, this hyperplane is chosen in order to maximize the margin between the
closest data points in different classes, and those points are given the name of support
vectors, (Cortes; Vapnik, 1995). The model used is represented by the following equation:

min
w,b

1

2
wTw + C

n∑
i=1

max(0, 1− yi(w
Tϕ(xi) + b)), (7)

3.2.4 RANDOM FOREST

The Random Forest model (Breiman, 2001) is a machine learning model that uses
decision trees that together work to increase the accuracy of the model. In this algorithm,
each tree is an individual classifier, when the prediction of each tree is aggregated, it results
in a more accurate output. A tree is a data structure that has nodes and branches, when this
structure is complete, it is called a decision tree.

In this model there are so-called nodes and branches, each node itself represents a
decision that is linked to an attribute of the data, while the branches represent the results of
that decision. For each node, the model constructs a subset of attributes randomly. Attributes
are nothing more than the data provided for training the models, in a straightforward way,
they are features. The best division for the model is chosen through the generated subsets,
instead of using all attributes, thus avoiding a larger domain of a specific tree. Additionally,
the model trees are deepened as much as possible, to be defined by the user, to become
highly specialized on this training data.

A problem that can be caused by the use of decision tree models is called overfitting,
when the model fits very well to the training data, but ends up not being very effective for
unobserved data. The Random Forest model, as explained above, separates the trees
randomly using the attributes that were chosen for each subgroup, to perform the prediction,
the model considers the attributes of each subgroup, which were chosen randomly, in this
way, it ends up avoiding overfitting, because when a group of trees use the same attributes
for their divisions, their correlation increases and they end up being induced to the same
errors, with the random forest method, this problem is eliminated due to their division into
subgroups with random attributes.

Below, you can analyze an example of what the structure of decision trees would be
like in a random forest model:
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Figure 6 – Random Forest Model

Note: Extracted from the IBM website.

3.2.5 CRITERION FOR METHOD COMPARISON

After making the forecasts, the results obtained for the maturities in each forecast
horizon were compared with the reference Random Walk (Bachelier, 1900), which for the
purpose of this study will be used as a benchmark because of its extensive use in literature
as a benchmark for other models.

In order to determine the effectiveness of the models and make them comparable to
each other, it is necessary to use a method that can capture the error between the observed
variable and the predicted variable, for this study RMSE (Root Mean Squared Error)was
chosen, which is also widely used in the literature to calculate the effectiveness of models
(Arantes, 2013), the RMSE is described by the following equation:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (8)

The parameters are described as follows:

• ŷ1, ŷ2, . . . , ŷn are the predicted values

• y1, y2, . . . , yn are the observed values

• n is the number of observations

The RMSE method is a very objective way of verifying the adherence of models to
reality, since it is calculated using the predicted rates and the true rates (Arantes, 2013).
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Additionally, the Diebold-Mariano (Diebold; Mariano, 2002) test was performed to
determine whether there is statistical relevance between the model predictions and the
benchmark. A significance level of 5% was used, where a p-value less than 5% indicates
that there is a significant difference between the benchmark and the model prediction, while
a p-value greater than 5% indicates that there is no evidence to reject the null hypothesis.

The equation for the Diebold-Mariano test is presented below:

DM =
d̄√
σ̂2
d/T

(9)

Where:

• d̄ = 1
T

∑T
t=1 dt is the average of the loss differences between the predictions of the

two models, with dt = g(e1,t)− g(e2,t) being the difference between the loss functions
of the prediction errors (e1,t)e(e2,t) of models 1 and 2 in time (t).

The variance (σ̂2
d) is adjusted for autocorrelation and can be calculated as:

• σ̂2
d = γ0 + 2

∑M
k=1 γk where (γk) are the autocovariances of the loss differences (dt) in

the gap (k) and (M) is the number of lags used in the adjustment.

The p-value can be calculated following the equation below, where CDF is the
cumulative distribuition function and T refers to the degrees of freedom.

p-value = 2 · (1− CDF (|DM | , T − 1))

3.2.6 THE SOFTWARE

To apply the methods described in subsection (3.2) we develop a application written
in Python language (Foundation, 2023), helped by the following software libraries:

• Numpy - (Harris et al., 2020)

• Pandas - (McKinney, 2010)

• Scikit-Learn - (Pedregosa et al., 2011)

• Plotly - (Inc., 2015)

• Scipy - (Virtanen et al., 2020)

The source code is available on GitHub. The code was developed in an integrated
development environment (IDE), using VS Code, developed by Microsoft Corp.

4 RESULTS AND DISCUSSION

Below will be presented the results obtained through the methods exposed in 3.2, in
addition to discussing them, carrying out the analysis of the data resulting from the study.
For the study, 80% of the database was used to train the model, predictions were made with
out-of-sample data.

https://github.com/natanael-teixeira/predicting_term_structure
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4.1 THE RESULTS

Following the methods presented in the previous section, tables 3, 4, 5 and 6 were
constructed, showing the results obtained with the models presented above. The results
show the scores obtained using the RMSE method, described in 3.2.5, where we can
compare the accuracy of the machine learning models with the random walk benchmark.
As described, horizons of 1, 3, 6 and 12 were used, the aim being to compare the effective-
ness of the models in the short, medium and long term, so that it is possible to determine to
what extent the models are effective and, if they fail, at what point this occurs.

The results can be seen below:

Table 3 – 1 month ahead forecast

Random Walk Linear Regression LASSO SVM Random Forest

1m 0.737 0.339 2.960 0.341 0.606
3m 0.770 0.663 2.943 0.711 0.984
6m 0.828 1.090 3.034 1.174 1.327
12m 0.877 1.523 3.136 1.647 1.571

Note: RMSE for the 1-month horizon. Own Work.

Table 4 – 3 month ahead forecast

Random Walk Linear Regression LASSO SVM Random Forest

1m 2.113 0.365 3.109 0.361 0.975
3m 2.190 0.758 3.080 0.794 1.338
6m 2.220 1.254 3.163 1.340 1.860
12m 2.078 1.749 3.242 1.912 2.266

Note: RMSE for the 3-month horizon. Own Work.

Table 5 – 6 month ahead forecast

Random Walk Linear Regression LASSO SVM Random Forest

1m 4.191 0.408 3.279 0.401 1.507
3m 4.347 0.902 3.219 0.909 1.861
6m 4.365 1.508 3.271 1.556 2.408
12m 4.014 2.117 3.292 2.265 2.818

Note: RMSE for the 6-month horizon. Own Work.
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Table 6 – 12 month ahead forecast

Random Walk Linear Regression LASSO SVM Random Forest

1m 7.416 0.488 2.612 0.472 1.173
3m 7.867 1.176 2.469 1.147 1.427
6m 8.036 1.992 2.478 2.005 2.200
12m 7.525 2.821 2.375 2.874 2.460

Note: RMSE for the 12-month horizon. Own Work.

4.2 DISCUSSION

The tables above, 3, 4, 5 and 6, show the values obtained by the RMSE method to
predict the term structure of interest rates in different maturities (1m, 3m, 6m and 12m) for
different time horizons, comparing several machine learning models with the benchmark
used, the random walk.

Analyzing the results, it is possible to see that the machine learning models cannot
outperform the Random Walk in the short term. In some specific cases, the models manage
to perform better, but this is not maintained constantly, as we can see in table 3.

Looking at the short-term horizon, which here will be the forecasts for 1 month and 3
months ahead, starting with the 1-month horizon, we can see that for the 1- and 3-month
maturity, in some scenarios, some models outperform the benchmark, but for the 6- and
12-month maturities, all the machine learning models demonstrate a greater deterioration
than the Random Walk. In the 3-month forecast horizon (table 4), we can a prevalence of
machine learning models, with emphasis on SVM and Linear Regression models. In this
horizon, the benchmark was surpassed by at least one machine learning model. However,
other models were unable to surpass the benchmark, such as the LASSO model, which was
inferior for all maturities in this horizon.

Comparing the two forecast horizons, 1 and 3 months, we can see that Random Walk
is relatively superior to machine learning models 1 month in advance. However, it is defeated
in some cases. However, there is no consistent superiority for this horizon. Furthermore, we
can observe that as the horizon increases, the benchmark begins to deteriorate in a more
notable way than other machine learning models.

Regarding the 6-month forecast (table 5) , once again the machine learning models
demonstrate superiority over Random Walk. This time, all models outperform the benchmark,
despite the deterioration of some of them. As we can see in Table 5, for all maturities, the
Linear Regression and SVM models are superior to the benchmark and the other models.
We can see that the Random Walk model deteriorates considerably as the forecast horizon
continues to increase.

When it came to the 12-month horizon (table 6), the expectation was that the models
would deteriorate considerably. However, the models managed to remain stable as the
period increased, and the LASSO model even showed an improvement in relation to the
previous period, demonstrating slightly better adaptability to longer horizons.

On the other hand, the Random Forest, Linear Regression and SVM models proved
to be quite consistent, despite the horizon increasing and, therefore, the forecast becoming
increasingly complex to execute. We can see that the random walk benchmark degrades
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more and more as the forecast horizon increases, which shows the failure of the model at
long horizons compared to shorter horizons such as the 1-month horizon where it was quite
accurate.

In the 12-month horizon, the longest, the superiority of machine learning models is
evident, surpassing the benchmark for all observed horizons, in line with what was observed
by (Diebold; Li, 2006), where its model, despite not being a machine learning model, began
to demonstrate superiority over Random Walk only in longer horizons.

Machine learning methods have proven to be quite effective in predicting the time
structure of interest rates. They have demonstrated an excellent ability to understand data
and learn from it. However, despite being effective, they have not demonstrated the ability to
consistently outperform Random Walk, outperforming it in longer horizons but being inferior
in shorter horizons.

The objectives of this study were to verify the possibility of making time structure
predictions using machine learning, and to verify whether any model could, on its own,
outperform the benchmark in all cases. The first objective was met. We were able to de-
monstrate that the learning methods are quite consistent and accurate in making predictions.
However, they show deterioration in some cases and end up falling behind the benchmark.
Therefore, we cannot say that machine learning methods are superior to Random Walk for
all horizons and maturities.

Furthermore, we were also able to verify that, although its predictive capacity is quite
remarkable, a model alone is not capable of performing better in all horizons and for all time
periods, in some cases a model was superior, but in others it ended up being surpassed
by another model, therefore, the hypothesis that there could be a single machine learning
model that was capable of surpassing the benchmark in all cases cannot be validated.

To validate the significance of the results of the machine learning models, the Diebold-
Mariano (Diebold; Mariano, 2002) test was applied, which compares the results (tables 7, 8,
9 and 10) of each model with the Random Walk. The test compares the accuracy between
two models to tell us if there is a statistically significant difference between the accuracy
of the models. For this, the p-value was used. A result lower than 0.05 indicates that the
result is significant, while higher values demonstrate that there is no evidence to support the
superiority of the models.

The tables below show the p-values for each forecast horizon for each model compa-
red to Random Walk:

Table 7 – 1 month ahead forecast

Linear Regression LASSO SVM Random Forest

1m 0.002 0.000 0.002 0.267
3m 0.076 0.000 0.216 0.001
6m 0.004 0.000 0.006 0.001
12m 0.001 0.000 0.018 0.000

Note: p-values for the 1-month horizon. Own Work.
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Table 8 – 3 month ahead forecast

Linear Regression LASSO SVM Random Forest

1m 0.063 0.425 0.063 0.181
3m 0.071 0.457 0.069 0.209
6m 0.099 0.407 0.109 0.389
12m 0.299 0.307 0.602 0.478

Note: p-values for the 3-month horizon. Own Work.

Table 9 – 6 month ahead forecast

Linear Regression LASSO SVM Random Forest

1m 0.118 0.728 0.118 0.240
3m 0.118 0.656 0.117 0.251
6m 0.124 0.648 0.125 0.314
12m 0.137 0.743 0.146 0.416

Note: p-values for the 6-month horizon. Own Work.

Table 10 – 12 month ahead forecast

Linear Regression LASSO SVM Random Forest

1m 0.196 0.348 0.195 0.241
3m 0.139 0.223 0.138 0.167
6m 0.072 0.086 0.072 0.098
12m 0.005 0.000 0.004 0.003

Note: p-values for the 12-month horizon. Own Work.

We can see that for the 1-month horizon, the p-values indicate that there is a
significant difference for most of the models tested, indicating that there is statistical relevance
in the results. When we analyze the 3 to 12 months horizons (tables 8, 9 and 10), we can
see that the test indicates that there is no evidence to support the hypothesis of superiority
of the models in relation to the benchmark, thus, there is no evidence to reject the null
hypothesis. Taking into account the results of the Diebold-Mariano test, we conclude that,
although machine learning models are capable of making accurate predictions, it is not
possible to state that these models are superior to Random Walk and more studies will be
necessary to try to reject the null hypothesis.

5 CONCLUSION

The objective of this work was to determine whether it was possible to perform
forecasts superior to Random Walk across all forecast horizons or whether machine learning
methods would still be outperformed by the benchmark at a given time. To this end, a
database of macroeconomic variables was built and applied to the models explained above.
It was found that the machine learning models were able to make accurate predictions, but
in the short term they were inferior to Random Walk, surpassing it in some cases, but not



17

maintaining consistent superiority.

This brings us in line with the work carried out by (Pooter, 2007), where, through
his study, he concludes that a forecasting model is not capable of producing good num-
bers alone in all horizons, therefore a combination of models is necessary according to the
scenario so that we can have a good metric for the variable we want to predict (Pooter, 2007).

Bringing this context to the work carried out, we were able to realize that despite the
good capacity of the machine learning models, none of them managed to make the best
predictions for all horizons and all maturities. What we can observe is that, as the forecast
horizon increases, the benchmark deteriorates more in relation to the other models.

In general, we can conclude this study with two considerations: a) The machine
learning models tested here, with the incorporation of macroeconomic variables, are capable
of making good forecasts of the target variable; b) The machine learning models tested
are not capable of outperforming Random Walk for all forecast horizons, differing more
significantly in the long term.

Furthermore, the Diebold-Mariano test was applied and the p-value calculated. The
test results indicate that for the shorter horizon there is a statistical difference between the
model results and the Random Walk results. However, for all other forecast horizons, the
vast majority of results exceeded the value of 0.05 (5%), indicating that there is no evidence
to reject the null hypothesis. Therefore, the final conclusion we can draw from this study
is that machine learning models, despite being capable of making predictions, are still not
superior to the Random Walk for all horizons.

Thus, the models tested do not differ much from models already existing in the
literature, such as the Nelson-Siegel Model (Nelson; Siegel, 1985) and the Diebold-Li Model
(Diebold; Li, 2006). At this point, further research is needed to test other models, in addition
to trying to expose the models to other databases, to verify whether the models can improve
their performance or whether they are really not superior enough to discard Random Walk.
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