
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

GABRIEL MADEIRA

A Visualization Tool for the Exploration of
Knowledge Graphs

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. Joao Luiz Dihl Comba
Coadvisor: Dr. Heiko Maus

Porto Alegre
August 2024

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Helena Lucas Pranke
Pró-Reitora de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Marcelo Walter
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

ABSTRACT

Knowledge graphs (KGs) offer a powerful structure to organize and connect information,

providing structured data for computational analysis and insights for the user through

exploration. However, visualizing KGs presents significant challenges due to the huge

volume of nodes and relationships. This work addresses these challenges by introducing

a tool designed to visualize and explore large and generic KGs. It bridges the gap be-

tween the current node-link visualization approaches and the non-expert user within large

KGs. The tool incorporates functionalities to support interactive exploration, filtering,

and grouping. Its effectiveness is demonstrated by implementing three real-world KGs:

DBpedia and two corporate KGs. A user evaluation with ten participants was performed

in the DBpedia environment. In addition to user feedback, in one of the two formal eval-

uation tasks, the tool proved to be more efficient. Finally, it was also possible to achieve

a 79.5 score on the System Usability Scale method.

Keywords: Knowledge graph. Interactive visual exploration. User-centered design.

Uma ferramenta de visualização para a exploração de grafos de conhecimento

RESUMO

Grafos de conhecimento (KGs) oferecem uma estrutura poderosa para organizar e conec-

tar informações, fornecendo não apenas dados estruturados para análise computacional,

mas também insights para o usuário por meio de sua exploração. No entanto, a visualiza-

ção de KGs apresenta desafios significativos devido ao enorme volume de nós e relaciona-

mentos. Este trabalho aborda esses desafios introduzindo uma ferramenta projetada para

visualizar e explorar KGs grandes e genéricos. Ele contribui preenchendo a lacuna entre

as abordagens atuais de visualização node-link e o usuário não especialista. A ferramenta

incorpora funcionalidades para dar suporte à exploração interativa, filtragem e agrupa-

mento. Sua eficácia é demonstrada através de sua implementação em três KGs do mundo

real: DBpedia e dois KGs corporativos. Uma avaliação de usuário com dez participantes

foi realizada no ambiente do DBPedia. Além de feedbacks dos usuários, em uma das duas

tarefas formais de avaliação, a ferramenta provou ser mais eficiente. Por fim, também foi

possível atingir uma pontuação de 79,5 no método System Usability Scale.

Palavras-chave: Grafos de conhecimento. Exploração visual interativa. Design centrado

no usuário.

LIST OF FIGURES

Figure 1.1 Semantic web stack. ..10
Figure 1.2 Knowledge graph illustration. ...12

Figure 2.1 Force-directed layout and node-link tree layout illustrations.14
Figure 2.2 Lodlive interface. Starting from the Albert Einstein DBPedia URI, sev-

eral entities were expanded. One of them is connected with the property
“sameAs” to another representation of Albert Einstein, from data.bibliotheken.nl/sparql
endpoint...15

Figure 2.3 Aloha interface...16
Figure 2.4 KGViz interface. ..17
Figure 2.5 KGScope interface...18
Figure 2.6 Wikidata Graph Builder interface..19
Figure 2.7 KG Explorer interface in one of its in-use instances, ADASilk.19

Figure 4.1 Filtering flow. From outgoing nodes set filtered by node and relation-
ship types defined by the user, then node relevance calculation and finally
returning the N most relevant nodes according to the threshold also defined
by the user. ..25

Figure 4.2 Implementation architecture scheme. ..28
Figure 4.3 Example of a CoView dashboard with information about the CoMem

KG’s node “DFKI”. ..30
Figure 4.4 Example of a CoView dashboard with information about the EnviaM

KG’s node “Standort Le_Lennewitz”. ..31
Figure 4.5 Knowledge Graph Explorer interface implemented as a module in CoView.

Key components are displayed: a) Root node label, b) Expansion settings, c)
Context menu, d) Node expanded with normal expansion, e) Node expanded
with hierarchical expansion (expanded in a tree layout). After the root node
“DFKI” was expanded, the person node “Heiko Maus” expanded, allowing
it to get its connected nodes, some already in the graph. The topic node “ar-
tificial intelligence” was expanded using the hierarchical expansion with the
transversal property “hasSubTopic”..32

Figure 4.6 Low zoom level of the “Le_Lennewitz”’s EnviaM node grouped by
node type. At this zoom level, only a maximum of three elements are dis-
played..33

Figure 4.7 High zoom level of the “Le_Lennewitz”’s EnviaM node grouped by
node type. At this zoom level, navigating through all group elements is pos-
sible by scrolling the list. ..34

Figure 4.8 “ForgetIT”’s CoMem project node and all its outgoing nodes. Without
any filter, the canvas may become overloaded with many outgoing nodes.35

Figure 4.9 A hierarchical expansion starting from a root EnviaM’s folder node,
using the transversal property “hasSubcollection”. ..36

Figure 4.10 A hierarchical expansion starting from a root EnviaM’s person node,
using the transversal property “istVorgesetzterVon”/“isSuperiorOf”.37

Figure 4.11 Wiki Knowledge Graph Explorer’s search page. The text query “Albert
Einstein” was given as input, and a list with the most similar DBPedia entities
was returned from DBPedia Lookup API. ..38

Figure 4.12 The Albert Einstein DBPedia’s node is first expanded using default set-
tings, where the top 20 (default value) more related nodes are retrieved. The
result is called the “overview” of a node. The same expansion is performed
on Albert Einstein’s related institution node. The final results are an overview
of both Albert Einstein and the institution that connects with it, Princeton
University. ..38

Figure 4.13 The Albert Einstein DBPedia’s node is expanded with academic advi-
sors’ relationship types. Then the expansion is repeated using the same type
of relationship. The result is an academic genealogy tree.39

Figure 4.14 The Albert Einstein DBPedia’s node is first expanded with philoso-
phers node type filter then, for each philosopher, it was expanded with birth-
place relationship type filter. The result is a graph showing the philosophers
connected with Albert Einstein and their birthplaces. ..39

Figure 4.15 The World War II DBPedia’s node is expanded with the text query
“weapon”. The result shows, from a total of 1076 outgoing nodes, the top 20
(default threshold) more related nodes to the text query.40

Figure 5.1 Expected user Task I result on Wiki KG Explorer...43
Figure 5.2 Expected user Task II result on Wiki KG Explorer.45
Figure 5.3 Pie charts and histogram illustrating answer distribution for each of the

four user profile questions...46
Figure 5.4 Histogram of the scores given by the user for the four usability evalua-

tion questions. ...47
Figure 5.5 Formal evaluation score. It is calculated with the time divided by accu-

racy. The lower the result, the better. The first and second box plots are the
combined Task I and Task II metrics sets. The four next box plots indicate the
score for each task using Wikipedia and KGE. ..49

Figure 5.6 Histogram containing each user’s System Usability Scale scores and the
final score (average). A 79.5 final score is considered acceptable as it is above 70.50

Figure 5.7 Stacked bar chart displaying each question’s System Usability Scale an-
swer distribution. There are expected to be positive rates for the odd questions
and negative rates for the even ones. Considering the rate average, the ques-
tions ordered from the best to worst results are: Q7, Q2, Q6, Q10, Q5, Q8,
Q9, Q4, Q3, Q1...51

LIST OF TABLES

Table 4.1 Environments characteristics...29
Table 4.2 Implemented features for each environment. ..37

Table 5.1 Distribution of the tasks among users. ..44
Table 5.2 Task I (Socrates, events, and cities) results (* indicates that the time limit

has been reached). With a lower average time and higher average accuracy, it
is noticeable that the task performed on KGE was more efficient.47

Table 5.3 Task II (US presidents and their political party, birthplace, and spouse)
results. With a lower average time and higher average accuracy, it is noticeable
that the task performed on Wikipedia was more efficient.48

Table 5.4 Statistical tests using Task I (T1) and Task II (T2) results. T1/2 Wiki/KGE
are the sets of scores for the individual tasks/methods. Test I proved that KGE
performed better in T1. Test II proved that using Wikipedia is more efficient
in T2. Finally, Test III suggests that there is no statistical significance in the
difference in efficiency between the two approaches when combining the tasks.....48

LIST OF ABBREVIATIONS AND ACRONYMS

KG Knowledge Graph

KGE Knowledge Graph Explorer

UI User Interface

LOD Linked Open Data

IRI Internationalized Resource Identifier

URI Uniform Resource Identifier

URL Uniform Resource Locator

API Application Programming Interface

RDF Resource Description Framework

RDFS Resource Description Framework Schema

CONTENTS

1 INTRODUCTION...10
2 RELATED WORK ...14
2.1 Graph visualization...14
2.2 Knowledge graph visualization tools...15
2.2.1 Lodlive ...15
2.2.2 Aloha..16
2.2.3 KGViz ..16
2.2.4 KGScope ..17
2.2.5 Wikidata Graph Builder ...18
2.2.6 KG Explorer...18
3 DATA SOURCES ..20
3.1 DBPedia ...20
3.2 CoMem...21
3.3 EnviaM...22
4 KNOWLEDGE GRAPH EXPLORER...24
4.1 Filtering..24
4.1.1 Text query similarity ..25
4.1.2 Node relevance...26
4.1.3 Memory buoyancy threshold ...27
4.2 Grouping..27
4.3 Exploration ..27
4.4 Implementation architecture ...28
4.4.1 CoMem and EnviaM environments ...30
4.4.2 Wiki Knowledge Graph Explorer environment ...32
4.4.3 Common core modules ..36
5 USER EVALUATION...41
5.1 Usability evaluation ..41
5.2 Formal evaluation ...42
5.2.1 Task I..42
5.2.2 Task II ..43
5.2.3 User tasks distribution..44
5.3 System Usability Scale ..45
5.4 Results ..46
5.4.1 User improvement feedbacks...49
6 CONCLUSION ...52
REFERENCES...54

10

1 INTRODUCTION

A huge amount of data has been generated every day since the beginning of the

internet. Yet, many of those are unstructured and unconnected in isolated databases. For

users and applications to be able to iterate, analyze, and extract useful knowledge, it is

essential to have it structured. There is a long history of research into knowledge repre-

sentation, and with the growth of the internet, the concept of the semantic web emerged,

bringing standards to structure the data (LI et al., 2023). The Semantic Web (LASSILA;

HENDLER; BERNERS-LEE, 2001) (SHADBOLT; BERNERS-LEE; HALL, 2006) was

proposed back in 2001, and it seeks to extend the “classical web” with web standards to

structure available web data creating machine-interpretable information, making seman-

tic links between the documents, allowing reasoning, and useful complex queries. Its

architecture is composed of many layers (Figure 1.1) where semantic technologies such

as Resource Description Framework (RDF) and Web Ontology Language (OWL) support

the upper-level ones like logic, proof, and trust.

Another technical foundation present among the bottom layers is the Uniform

Resource Identifier (URI) which is defined as “a compact sequence of characters (ASCII)

that identifies an abstract or physical resource” 1. A Uniform Resource Locator (URL) is

1https://datatracker.ietf.org/doc/html/rfc3986

Figure 1.1: Semantic web stack.

Source: (BRATT, 2007)

11

a subset of URIs that provide formalized location and access information of a resource

via the internet, while URIs refer to arbitrary things.

The RDF 2 has been a W3C standard since 2004 and can describe semantic net-

works as triples <subject, predicate, object>. A URI, and the properties/predicates link

resources to other resources and literals identify each resource. Literals are atomic values

that could have a language or a data type (e.g., integer, string, dates, etc.). It can only

be an object, not a subject or predicate, i.e., they are nodes connected with just a central

resource, representing some specific information. Resources can also have a type using

a predefined property “rdf:type”. The Resource Description Framework Schema (RDFS)
3 is another standard that supports building ontologies on top of RDF. With properties

like “rdfs:Class”, “rdfs:subClassOf”, “rdfs:subPropertyOf”, “rdfs:domain”, it is possible

to define an ontology and derive new facts through deductive reasoning.
The SPARQL Query Language for RDF 4 can be used to perform queries on an

RDF network. It is another standard from W3C and similar to SQL queries. The following
example shows a query to return a person who knows the father of a second person. The
“otherPerson” variable shows how the use of recurring variables can be used to define
complex patterns.

SELECT ?person1 ?person2

WHERE { ?person1 :knows ?otherPerson

?otherPerson :fatherOf ?person2. }

The Linked Data is the result of a practical implementation of the Semantic Web

where Tim Bernes-Lee introduced four principles 5: use URIs to identify things; use

HTTP URIs so that people can look up those names; provide useful information upon

URIs, using standards like RDF; include links to other datasets. The freely available

set of this data is called Linked Open Data (LOD). LOD Cloud 6 counts with billions

of triples and millions of interlinks with a broad range of domains such as government,

publications, and social web.

The context opened the way for introducing the knowledge graph (KG) data struc-

ture, allowing it to represent a semantic network and, therefore, human knowledge. A

knowledge graph (KG) (Figure 1.2) is a graph data structure that can connect data sources,

providing structured information where human knowledge can be extracted. Although no

widely accepted formal definition for a KG was found, it can be defined (WANG et al.,

2https://www.w3.org/TR/rdf11-primer
3https://www.w3.org/TR/rdf-schema/
4https://www.w3.org/TR/sparql11-query
5https://www.w3.org/DesignIssues/LinkedData.html
6https://lod-cloud.net/

12

2017) as a multiple-relational graph composed of entities (nodes) and relations (types of

edges). Each edge can be defined as a triple of <head, relation, tail>, also called a fact.

The popularity of the term knowledge graph rose when Google announced in 2012

a KG to improve its search engine. However, many large knowledge bases and ontolo-

gies have already been published, such as DBPedia, Wordnet, Yago, and Freebase. Many

research topics cover KGs, such as knowledge graph representation learning, knowledge

acquisition and completion, temporal knowledge graph, and knowledge aware applica-

tions (JI et al., 2021). A KG can also be described with the RDF. A KG’s triple <head,

relation, tail> can be translated into the RDF’s triple format <subject, predicate, object>.

In addition, an ontology can be created to define entity types and their semantic relation-

ships.

Graph visualization approaches can be essential to extract KG’s stored knowl-

edge. Among many reasonable use cases, it can facilitate relationship exploration and

human comprehension. Visualization designs are included among KG challenges (LI et

al., 2023). One of its issues is a lack of efficacy in using node-link diagrams when users

interpret and seek insights. As the number of nodes increases, it quickly becomes a “hair-

ball”. That is the reason why end users tend to prefer Wikipedia-style interfaces. How-

ever, if a node-link visualization is required, visualization tools should provide features

Figure 1.2: Knowledge graph illustration.

Source: (SETH, 2019)

13

to select a specific point or region of interest, filter, bundle, condense, collapse, or expand

areas of the KG during exploration, and the ability to switch views while maintaining

context. Additionally, node-link diagrams can be useful for transversing the KG while

discovering new information. For this to work, it is necessary to balance digestibility and

discoverability. Otherwise, a large knowledge graph visualization can quickly become

overly complex and overwhelm the user’s information processing.

However, there are challenges in the visualization of large and generic KGs. Con-

sidering the current node-link diagram solutions, there is a scalability issue where the

view easily becomes overloaded with a few iteration levels (LI et al., 2023). In addition,

there is limited support for organic discovery, and it is even harder to make visualizations

legible to end users. A visualization KG tool with proper exploration functionalities could

assist an expert and end user in exploring a generic KG.

In this work we propose a user-centric tool to explore and visualize knowledge

graphs through filtering, grouping, and exploration features. It enables a non-expert user

to explore and obtain knowledge from large and generic KGs visually and interactively.

The solution was implemented in three environments. The first implementation was called

“Wiki Knowledge Graph Explorer”, using the DBPedia’s KG. In the other two imple-

mentations, a “Knowledge Graph Explorer” submodule was created in already existing

web platforms from two corporate KGs, CoMem and EnviaM. A user evaluation was

performed with ten participants using the implementation of Wiki Knowledge Graph Ex-

plorer. In one of the two formal evaluation tasks, the tool proved to be more efficient. It

was also possible to achieve a 79.5 score on the System Usability Scale (SUS) method.

Finally, feedback was collected from the participants.

The text is organized as follows. Chapter 2 describes related work and the main

contributions that inspired this work. The main data sources, DBPedia, CoMem, and

EnviaM, are described in Chapter 3, with respective examples of their KG relationships.

Chapter 4 is composed of the project development itself where first the filtering, group-

ing, and exploration features methodology are explained, and then the implementation

architecture is described. The user evaluation methodology and its results are explained

in Chapter 5. Chapter 6 concludes this manuscript by discussing the results implications

and future possible improvements.

14

2 RELATED WORK

2.1 Graph visualization

Many datasets across diverse application areas exhibit relational characteristics

(e.g.,, social networks, internet websites, hyperlinks, urban roadmap). Those can be rep-

resented as a graph. Graphs can provide a data structure to store and iterate very effi-

ciently this type of information. Although using it as a backend structure is often enough,

visualizing it could be useful to discover insights about its nature. Graphs can be either

directed or undirected, and, among many visualization approaches, they can be visualized

using node-link diagrams. Additionally, aesthetic criteria should be considered to reach

more effective graph visualization (BENNETT et al., 2007) such as short and uniform

edge lengths; symmetry, a uniform distribution of children; minimizing edge crossings;

minimizing edges crossing nodes; and the most compact possible layout.

The Force-directed layout (Fruchterman-Reingold algorithm (FRUCHTERMAN;

REINGOLD, 1991)) (Figure 2.1) can be used to visualize either directed or undirected

graphs. The algorithm calculates the graph layout using physical models with forces that

must be minimized. With interesting results, it is also an intuitive algorithm and easy to

implement. However, it still faces challenges, as it is commonly not deterministic, and

for densely connected graphs, the visualization can quickly become a “hairball”.

Figure 2.1: Force-directed layout and node-link tree layout illustrations.

Force-directed layout Node-link tree layout

Source: Author

15

Trees can be defined as acyclic graphs and used to represent hierarchical rela-

tions. Those can be visualized with the Node-link tree layout (Reingold-Tilford algo-

rithm (REINGOLD; TILFORD, 1981)) (Figure 2.1). As a bottom-up iterative approach,

it draws a node left and right subtrees and moves them as close as possible. The parent is

positioned between the children.

2.2 Knowledge graph visualization tools

2.2.1 Lodlive

Lodlive (CAMARDA; MAZZINI; ANTONUCCIO, 2012) (Figure 2.2) provides a

visualization tool to explore Linked Open Data (LOD) datasets (e.g., DBPedia, Freebase).

The system aims to follow and promote LOD standards such as W3C SPARQL and RDF.

It is also able to connect the resources from different configured SPARQL endpoints.

Starting from a URI node in a given dataset, the user can manually select and ex-

pand a property and entity through a ring menu. Lodlive also supports expanding entities

from multiple LOD datasets endpoints at the same view (Figure 2.2).

Figure 2.2: Lodlive interface. Starting from the Albert Einstein DBPedia URI, several
entities were expanded. One of them is connected with the property “sameAs” to another
representation of Albert Einstein, from data.bibliotheken.nl/sparql endpoint.

Source: Author

16

2.2.2 Aloha

Focusing on the context of dietary supplements (DSs), Aloha (HE et al., 2019)

seeks to inform consumers of health information about DSs’s safety and efficacy. An in-

teractive graph-based visualization system was developed based on a DSs KG. During the

system development, two design iterations were performed, with around 10 participants

paying attention to user-centered design principles.

The system UI (Figure 2.3) comprises a DS question input field with pre-defined

templates, a canvas for the graph visualization and interaction, left and right sections

containing information about the current ingredient and question, and option features like

zoom and filtering.

Figure 2.3: Aloha interface.

Source: (HE et al., 2019)

2.2.3 KGViz

KGViz (NARARATWONG; KERTKEIDKACHORN; ICHISE, 2020) (Figure 2.4)

is a generic KG visualization framework that was developed based on four dimensions:

modularity, intuitive UI, performance, and access control.

One of the most interesting features is the possibility of applying rules where the

17

user can select a target node or node type and apply specific properties like icon, color,

and whether it is visible or not. In addition, it’s possible to find the graph canvas in the

UI and input it to search for or add an entity. On the right sidebar, there are also options

to filter, sort, and even change the appearance of the nodes and links.

Figure 2.4: KGViz interface.

Source: (NARARATWONG; KERTKEIDKACHORN; ICHISE, 2020)

2.2.4 KGScope

KGScope (YUAN et al., 2024) attempts to fill a gap in data analysis tools for

KGs, summarizing insights through interactive visual exploration with embedding-based

guidance. A user study was performed to validate some usage scenarios.

The UI (Figure 2.5) comprises an embedding panel, multi-relation knowledge

graph panel, brushed groups panel, related relation panel, brush tool, relation recom-

mendation button, and schema panel button.

One of the main features is used on the embedding panel, where the user can filter

the nodes based on their peculiarity. This makes it possible to identify unexpected insights

once peculiarity can measure the level of unexpectedness. There are also filtering and

brushing tools to limit the scope and a recommendation button to recommend relations

based on embeddings.

18

Figure 2.5: KGScope interface.

Source: (YUAN et al., 2024)

2.2.5 Wikidata Graph Builder

Wikidata Graph Builder 1 (Figure 2.6) uses Wikidata KG to render graphs based

on a root item, traversal property, iterations, size property, language, and mode (forward,

reverse, bidirectional, undirected, or SPARQL query).

2.2.6 KG Explorer

KG Explorer (EHRHART; LISENA; TRONCY, 2021) is a web-based knowledge

graph search engine that can be customized to different information domains. The UI

1https://angryloki.github.io/wikidata-graph-builder

19

Figure 2.6: Wikidata Graph Builder interface.

Source: Author

components (Figure 2.7) and the queries can both be configured. Some of its features

include full-text search, facet-based advanced search, and favorite item lists.

Figure 2.7: KG Explorer interface in one of its in-use instances, ADASilk.

Source: (EHRHART; LISENA; TRONCY, 2021)

20

3 DATA SOURCES

This work used three main knowledge graph data sources to test the KG explorer

tool: DBPedia, CoMem and EnviaM.

3.1 DBPedia

DBPedia (LEHMANN et al., 2015) is a project started in 2007 to extract structured

content from Wikipedia, allowing users to create useful queries to access knowledge. Its

RDFs triples also link to several external data sources, allowing this information to be

used together. It is also one of the central nodes in the Linked Open Data (LOD), once

several sources are pointing to it. DBPedia provides several dataset variants and online

tools, such as their SPARQL endpoint 1.

The DBPedia extraction framework mainly comprises parsing, ontology map-

pings, and labeling. Their 2022 snapshot release 2, which is a small subset of the whole

DBPedia extraction (around 14% of total), counts more than 850 million triples, with an

ontology composed of more than 55 thousand properties (relationship types), 1377 being

from DBPedia ontology. It is constantly being updated with new releases.

DBPedia’s ontology 3 is formed with 768 classes and is described by 3000 differ-

ent properties counting with more than 4 million instances. Different from some other

KGs, DBPedia’s ontology instances can have more than one class (node type).

DBPedia triple example 1:

< http://dbpedia.org/resource/Albert_Einstein,

http://dbpedia.org/ontology/wikiPageWikiLink,

http://dbpedia.org/resource/Theory_of_relativity >

The Theory of relativity Wikipedia’s article was mentioned in Albert Einstein’s

article, it was mapped to the KG pointing the Theory of relativity DBPedia’s node to

Albert Einstein’s node with the “wikiPageWikiLink” property. This specific property is

one of the most common of DBpedia ontology.

DBPedia triple example 2:

< http://dbpedia.org/resource/Albert_Einstein,

1https://dbpedia.org/sparql
2https://www.dbpedia.org/blog/dbpedia-snapshot-2022-09-release
3https://www.dbpedia.org/resources/ontology/

21

http://dbpedia.org/ontology/doctoralAdvisor,

http://dbpedia.org/resource/Alfred_Kleiner >

This triple represents the available information in Albert Einstein’s Wikipedia ar-

ticle info box (present on the right side of articles), about its doctoral advisor Alfred

Kleiner.

DBPedia triple example 3:

< http://dbpedia.org/resource/Albert_Einstein,

http://dbpedia.org/property/birthDate,

1879-03-14 (xsd:date) >

As a literal example, this triple stores Albert Einstein’s birthdate information. The

object, which is a date in the format “xsd:date”, can’t be a subject in other triples.

3.2 CoMem

CoMem 4 connects several information sources through a dynamic KG aiming to

create an ecosystem to assist personal and team management, exploring the concept of a

semantic desktop. This process is made by integrating daily work systems such as email,

calendar, web browser, and file explorer. The main CoMem users are its creators, the

members of the German Research Center for Artificial Intelligence (DFKI) department of

Smart Data & Knowledge Services.

Example of CoMem environment usage: The user accesses a conference website,

and the sidebar software performs entity recognition and creates nodes in the KG for the

conference connecting with its respective entities. Now the user creates an event on the

calendar to remember its presentation at the conference. The system can now suggest

the location and possible attendees based on the information collected on the conference

website.

The KG has more than 100k resources, more than 1.5 million triplets between

resources, and more than 300k literals. In CoMem ontology, unlike DBPedia, there is a

small and limited number of types, and each entity can have only one type. It counts a total

of 65 classes and 254 properties. Many of the properties have a corresponding inverse. It

also has the RDF Schema ontology as dependent, so properties like “rdf:type” are used.

Examples of original node types (classes) are event, person, location, media/document,

project, etc.
4https://comem.ai

22

CoMem triple example 1:

< pimo:1342797660296:20 (Topic X),

pimo:thing#hasSubTopic,

pimo:1311091247326:5 (Topic Y) >

Entity recognition is present in CoMem software. The system can automatically

recognize when a topic is present on a website or in an email body. The “hasSubTopic”

property links two of those mapped topics.
CoMem triple example 2:

< (Person X) pimo:1681822035293:3,

pimo:thing#isMemberOf,

pimo:1444048778655:22 (Organization Y) >

The “isMemberOf” property can be used to link people to organizations, projects,

and groups.
CoMem triple example 3:

< (Person X) pimo:1681822035293:3,

pimo:thing#receives,

pimo:1561617483167:12 (Email Y) >

As CoMem can be integrated with email clients, the received emails can be linked

to the person with the “receives” property.
CoMem triple example 4:

< (Event X) pimo:8588b367-7e0b-4b30-b1f5-d7300278753a,

pimo:thing#hasAttendee,

pimo:1681822035293:3 (Person Y) >

Integration with a calendar client is also possible. Events can be mapped and

linked to their attendees with the “hasAttendee” property.

3.3 EnviaM

EnviaM 5 is a German energy provider company that has many separate internal

information silos. A KG similar to CoMem was built to make finding connections be-

tween the sources easier and then provide better decision-making knowledge. EnviaM’s

employees are the primary users. The KG has more than 13 million resources, more than

163 million triplets between resources, and more than 29 million literals. Its ontology has

the CoMem ontology as a dependence and counts a total of 98 classes and 397 properties.
EnviaM triple example 1:

5https://www.enviam-gruppe.de

23

< (Standort X) pimo:ilv:standort:1315632,

pimo:ilv#hatBestandsakte,

pimo:ilv:bestandsakte:Y (Bestandsakte Y) >

Two class examples introduced in EnviaM ontology are company location (Stan-

dort) and inventory file (Bestandsakte), which can be connected with the property “hatBe-

standsakte”.
EnviaM triple example 2:

< (Standort X) pimo:ilv:standort:1315632,

pimo:ilv#liegtInNetzregion,

pimo:ilv#topic:sachsen-anhalt (Sachsen-Anhalt) >

A company location (Standort) can be linked to a network region (Netzregion)

using the “liegtInNetzregion” property.

24

4 KNOWLEDGE GRAPH EXPLORER

This work proposes creating an end-user-centric tool for exploring and visualizing

large KGs through filtering, grouping, and exploration features. Once many possible

nodes and links are displayed, guiding a non-data expert user through this discovering

process is an important task. The methodology consists of starting from a root node

selected by the user to expand its outgoing nodes filtering and/or grouping according to

user intentions. An outgoing node is a neighbor node with an incoming edge from the

expanded node. The action of expanding nodes can be repeated on demand, limited only

by a sufficiently high number of nodes, due to visual pollution and performance reasons.

Choosing the right filters can be challenging for the end user. For this reason, auto-

filtering methods are important because they can smooth the learning curve and prevent

the user from giving up. Thus, choosing between specific or automatic filters creates a

balance between flexible settings for expert users and automatic settings for new users.

4.1 Filtering

There are many ways to filter the outgoing nodes on an expansion action. In this

work, we use the following:

• Node type: Select a set of node types to consider or not consider;

• Relationship type: Select a set of relationship types to consider or not consider;

• Number of links: Outgoing nodes with more links connected to the expanded node

can have more relevance;

• Relationship rarity: Outgoing nodes with rare relationship types can have more

relevance;

• Text query: Given a user text query input, calculate the similarity between the

input and the available labels (e.g.,, node, node type, relationship type);

• Memory buoyancy threshold: Filter items with low memory buoyancy (NIEDEREE

et al., 2015) value, which represents items that the user rarely accesses.

The user controls the node type filter, relationship type filter, memory buoyancy

threshold, and text query input. The number of links and relationship rarity are used as

heuristics to calculate a final node relevance score. In Figure 4.1, the filtering flow is

illustrated. First, the outgoing nodes that do not fit in the node type and/or relationship

25

Figure 4.1: Filtering flow. From outgoing nodes set filtered by node and relationship
types defined by the user, then node relevance calculation and finally returning the N
most relevant nodes according to the threshold also defined by the user.

Source: Author

filters are removed from the set of result outgoing nodes. From the remaining nodes, a

node relevance score is calculated based on the relationship rarity, number of links, and

text query similarity if the user has set.

4.1.1 Text query similarity

The text query similarity calculation is split into two methods with the same

weight in the final Text Query Score (TQS) (Equation 4.3). A Substring Search (SS1)

of the text query is performed on the concatenated string of the node, node type, and re-

lationship type labels. In addition, another Substring Search (SS2) is performed with the

concatenated labels with non-alphabetic / non-number characters removed. If any match

is found, the return is 1; otherwise, it is 0 (Equation 4.1).

The second method was based on WordNet (MILLER, 1995), which is a database

of English verbs, adjectives, and adverbs, totaling more than 150 thousand words. They

are connected based on semantic connections like synonyms, hyponyms, and meronyms.

Due to those relations between words, this work calculates the similarity between the text

query input and the node content to improve results.

To apply the WordNet similarity, both the text query and the concatenated labels

have their non-alphabetic / non-number characters replaced by space characters, which

26

will be used to split to create the words. A pairwise comparison is made between the text

query words and the concatenated label words. The average (Equation 4.2) of the similar-

ities above a 0.5 threshold (SA05) is returned. After some tests, the 0.5 threshold proved

to be useful in enabling only relevant similarities to be considered when calculating the

average.

There are several algorithms (PEDERSEN et al., 2004) to measure WordNet’s

word similarity. This project chose semantic similarity based on corpus statistics and

lexical taxonomy (JIANG; CONRATH, 1997). As the output can be greater than one, it

was limited to 1 (max(output, 1)).

SS = max(SS1, SS2) (4.1)

WNS = average(SA05) (4.2)

TQS = (WNS + SS)/2 (4.3)

4.1.2 Node relevance

The Number of Links Score (Equation 4.4) is calculated by counting the number of

links between the expanded node and the outgoing node (CNL) divided by the maximum

number of links between the expanded node and any of its outgoing nodes (MAXNL).

The Relationship Rarity Score (Equation 4.5) is given by one subtracted by the number

of nodes with a specific relationship type (CNRT) divided by the number of nodes of

any relationship type with the maximum count (MAXNRT). If a text query is given

by the user, the Node Relevance With Text Query (Equation 4.7) is returned as the final

node relevance score. Otherwise, the Node Relevance Without Text Query (Equation 4.6)

is returned. After some tests, the proportion of the weighted mean of 80% and 20% in

the equations proved to work satisfactorily. Once NLS demonstrated through tests to be

more important than the RRS in Equation 4.6 and the text query similarity (TQS) more

important than the normal node relevance in Equation 4.7, both received 80% as weight.

NLS = CNL/MAXNL (4.4)

RRS = 1− (CNRT/MAXNRT) (4.5)

27

NRWOTQ = NLS ∗ 0.8 +RRS ∗ 0.2 (4.6)

NRWTQ = TQS ∗ 0.8 +NRWOTQ ∗ 0.2 (4.7)

After the final node relevance score for each outgoing node is calculated, the nodes

are then sorted based on their relevance. The user can set a maximum number of nodes to

be returned during the expansion, and then the top-scored nodes are returned.

4.1.3 Memory buoyancy threshold

Memory buoyancy (NIEDEREE et al., 2015) represents the relevance of an item

for a user over time. The value increases as the item is accessed/modified and decreases

as the user does not interact with it. Recalculation routines are constantly triggered. This

metric was available and used to filter non-relevant items for users in one of this project’s

implementation environments.

4.2 Grouping

After the node filtering, a grouping step is performed if the user sets it. The two

ways to group are by relationship type and node type. The nodes can also be maintained

ungrouped. The grouping is applied to the filtered outgoing nodes of a specific node

expansion, i.e.,, only the newly expanded nodes in the canvas will be grouped. If there is

a new group with the same name as an existing one, they are merged.

4.3 Exploration

Exploration features were designed to assist the user in navigating through the

graph to achieve its intended objectives. They are the following:

• Node expansion: Expand the outgoing nodes of a selected node with specific fil-

tering/grouping features.

• Move nodes: Power to rearrange nodes within the graph canvas.

28

• Zoom in/out: Option to increase or decrease the graph canvas view level.

• Hierarchical node expansion: Given a relationship type, a root node, and the

depth level, then expand it hierarchically.

• Remove element from view: Power to remove nodes and groups from the canvas.

• Expansion plot order: Helpful plot order of the outgoing nodes after an expansion.

• Literals list: Display the relationship type and the values of each literal of a se-

lected node.

• Relationship information: Power to verify which relationship types (ontology re-

lation) represent each visual link in the graph on canvas.

4.4 Implementation architecture

This section covers the implementation details. Figure 4.2 provides the architec-

ture scheme, separated by front and back end, and the environment’s characteristics.

Figure 4.2: Implementation architecture scheme.

Source: Author

The frontend mainly consists of three modules: the View Component, the Com-

mon Frontend Core, and the Frontend (FE) Sender/Receiver. The View Component

is responsible for the user interface features, like the graph canvas position, context

menus, selection boxes, and general inputs. The Common Frontend Core module stores

the main frontend functions and also consumes the Graphly library methods. The FE

Sender/Receiver provides methods to access the Backend API.

The backend comprises three parts: the Backend API, the Common Backend Core,

and the Database. The backend API specifies the API endpoints called by the core meth-

ods. The Common Backend Core module defines the data structures and core methods

for processing the KG data retrieved from the database.

The frontend and backend common cores are shared between the environments

(Table 4.1). The other modules are specialized according to each environment’s needs.

29

Java is used as the backend programming language. Also, both projects share the same

frontend framework and libraries. The Vue.js 1 JavaScript framework and Vuetify 2 com-

ponent library build the major part of the front end in both environments.

Table 4.1: Environments characteristics.
Wiki KG Explorer CoMem / EnviaM

View Component New frontend project CoView module
Frontend Core Shared
Backend API Spring Boot CoMem Env. API
Backend Core Shared

Database SPARQL DBPedia API MySQL
Ontology DBPedia CoMem / EnviaM

Source: Author

The Graphly 3 library simplifies plotting, rendering, and user interaction with

graphs while providing many customization methods. It is built on top of D3.js 4, a

popular and powerful JavaScript library for rendering many types of data visualization.

Graphly has a force-directed layout engine. In addition, there are available features to

lock nodes in specific positions. Fixing a node in a specific x and y coordinate or at a

specific angle and distance from another node is possible. If the node is not fixed and is

connected to other nodes, it is possible to set a strength value to the edges, modifying the

force behavior.

The current plot order implementation arranges the expanded outgoing nodes

around the expanded node. The outgoing node’s type defines the angle, i.e., nodes of

the same type are plotted nearby at the same angle. The distance in an expansion is de-

fined by the total number of nodes in the Wiki KG Explorer environment, by memory

buoyancy in the CoMem environment, and by the last modified date in the EnviaM envi-

ronment. When a user moves a node, it is fixed exactly in the x and y coordinates in which

it was positioned. In addition, if during an expansion, an outgoing node is already in the

canvas, it loses the fixed position, and the force-directed engine arranges its position.

For the hierarchical expansion feature, in CoMem and EnviaM environments, the

D3.js method “tree” was used to build a tree node-link diagram, which implements the

Reingold-Tilford “tidy” algorithm. The positions generated by the method were converted

to Graphly fixed x and y positions. If a node appears more than once in the canvas during

the hierarchical expansion, it is moved to the position of the last hierarchical iteration.

1https://vuejs.org
2https://vuetifyjs.com
3https://docs.graphly.dev
4https://d3js.org

30

4.4.1 CoMem and EnviaM environments

For both CoMem and EnviaM environments, the Knowledge Graph Explorer fron-

tend was implemented as a module inside CoView. CoView is a user interface that man-

ages and feeds corporate KGs through dashboards and search tools. Figures 4.3 and 4.4

are examples of CoView’s dashboards built based on the CoMem and the EnviaM KGs.

Figure 4.3: Example of a CoView dashboard with information about the CoMem KG’s
node “DFKI”.

Source: Author

CoView was developed by the Smart Data & Knowledge Services DFKI depart-

ment, and it is used internally and connected with the CoMem KG. CoView was also

implemented by DFKI in the EnviaM infrastructure and is used by company employers

to navigate through EnviaM KG.

The Knowledge Graph Explorer (KGE) interface implemented as a module in

CoView is presented in Figure 4.5. The first node expansion is performed automatically

on the chosen root node (Figure 4.5(a)) with the default expansion settings (Figure 4.5(b))

(node/relationship type filters, and hierarchical settings are hidden in the “Advanced”

settings). Using the context menu in any node on the graph (Figure 4.5(c)), it is possible to

perform normal expansions (Figure 4.5(d)) and hierarchical expansions (Figure 4.5(e)). In

addition, the context menu allows for the performance of some integrated CoView actions

(e.g.,, if it is a Person node type, email this person). Normal expansions use the same

expansion settings as the root was first expanded. Hierarchical expansions use specific

settings per expansion, and they are composed of a hierarchical property and maximum

31

Figure 4.4: Example of a CoView dashboard with information about the EnviaM KG’s
node “Standort Le_Lennewitz”.

Source: Author

hierarchical depth.

The group by feature can be used to show the root’s outgoing nodes grouped by

relationship or node type. In low zoom levels, only three group elements are visible

(Figure 4.6). Once the zoom is increased (Figure 4.7) it is possible to navigate to all

group elements through a scroll bar. The group by feature is limited to one root node

level and only with the threshold as the available setting.

Many connected nodes would be plotted without any filter, possibly overloading

the graph canvas. Figure 4.8 exemplifies what could happen with the graph view setting

the threshold to zero to bring all available outgoing nodes.

32

Figure 4.5: Knowledge Graph Explorer interface implemented as a module in CoView.
Key components are displayed: a) Root node label, b) Expansion settings, c) Context
menu, d) Node expanded with normal expansion, e) Node expanded with hierarchical
expansion (expanded in a tree layout). After the root node “DFKI” was expanded, the
person node “Heiko Maus” expanded, allowing it to get its connected nodes, some already
in the graph. The topic node “artificial intelligence” was expanded using the hierarchical
expansion with the transversal property “hasSubTopic”.

Source: Author

Hierarchical expansions can be useful in scenarios with nodes with specific transver-

sal properties. Some examples of the hierarchical expansion feature in the EnviaM envi-

ronment are folder organization (Figure 4.9) and company people hierarchy (Figure 4.10).

Both CoMem and EnviaM KG databases are instances of MySQL servers, so SQL

queries were developed to access their triplets.

4.4.2 Wiki Knowledge Graph Explorer environment

Unlike the last two environments, the Wiki Knowledge Graph Explorer 5 frontend

project was created specifically for the tool described in this work. The key UI elements

are the graph canvas, selected node information, expansion settings, and central node title.

5explorer.gabrielmadeira.com

33

Figure 4.6: Low zoom level of the “Le_Lennewitz”’s EnviaM node grouped by node type.
At this zoom level, only a maximum of three elements are displayed.

Source: Author

The backend API was developed with the Java library Spring Boot 6. To retrieve

DBPedia KGs data, the DBPedia SPARQL API 7 was used. Although the system is

currently dependent on DBPedia API project managers, it would not be difficult to create

a local instance of the DBPedia SPARQL database to continue running the application.
The SPARQL query below retrieves the outgoing nodes from a specific node, in

this example, from Albert Einstein. For each row, the query returns the outgoing node
URI, its label and thumbnail, the property URI, a string list separated by “;” of the
node type URIs, and another list with its labels. Many of those are set as optional in-
side “WHERE” conditions. Some special DBPedia SPARQL API endpoint functions are
used. “isIRI” returns true if a URI is a resource or false if it is literal. “langMatches”
is used to retrieve the labels in the English language. The literals are retrieved using a
different query.

SELECT DISTINCT ?outgoingNode ?prop1

(GROUP_CONCAT(DISTINCT ?outgoingNodeTypeUri; SEPARATOR=";") AS ?outgoingNodeTypesUri)

(GROUP_CONCAT(DISTINCT ?outgoingNodeTypeLabel; SEPARATOR=";") AS ?outgoingNodeTypesLabel)

6https://spring.io/projects/spring-boot
7https://dbpedia.org/sparql

34

Figure 4.7: High zoom level of the “Le_Lennewitz”’s EnviaM node grouped by node
type. At this zoom level, navigating through all group elements is possible by scrolling
the list.

Source: Author

?outgoingNodeLabel ?outgoingNodeThumbnail

WHERE {

?mainNode ?prop1 ?outgoingNode.

?outgoingNode rdfs:label ?outgoingNodeLabel.

FILTER(

?mainNode = <http://dbpedia.org/resource/Albert_Einstein> &&

isIRI(?outgoingNode) && langMatches(lang(?outgoingNodeLabel), "EN")

).

optional{ ?outgoingNode <http://dbpedia.org/ontology/thumbnail> ?outgoingNodeThumbnail. }

optional{

?outgoingNode rdf:type ?outgoingNodeTypeUri.

FILTER(strstarts(str(?outgoingNodeTypeUri), str(dbo:))).

optional{

?outgoingNodeTypeUri rdfs:label ?outgoingNodeTypeLabel.

FILTER(langMatches(lang(?outgoingNodeTypeLabel), "EN")).

}

35

Figure 4.8: “ForgetIT”’s CoMem project node and all its outgoing nodes. Without any
filter, the canvas may become overloaded with many outgoing nodes.

Source: Author

}

} GROUP BY ?outgoingNode ?prop1 ?outgoingNodeLabel ?outgoingNodeThumbnail

In addition, a search page (Figure 4.11) was created to enable users to search for

DBpedia nodes easily. The system responsible for receiving users’ free text queries and

returning a list of node labels and URIs is DBPedia Lookup API 8. Again, although it’s

dependent on the system’s current state, it would not be difficult to run a local instance of

DBPedia Lookup once it is open source.

The Wiki Knowledge Graph Explorer’s interface is presented in Figure 4.12. The

root node is expanded at the first moment. After the root node, the selected node (initial-

ized with the root node, being able to change as the user clicks on other nodes) can be
8https://www.dbpedia.org/resources/lookup

36

Figure 4.9: A hierarchical expansion starting from a root EnviaM’s folder node, using the
transversal property “hasSubcollection”.

Source: Author

expanded with specific settings. The literal list provides additional information about the

selected node.

Several possible use cases use the filtering features provided by the Wiki Knowl-

edge Graph Explorer tool. Figure 4.13 demonstrates a use case where the relationship

type filter can be used to expand specific relationships between people. Furthermore, Fig-

ure 4.14 shows how expanding with specific settings could be beneficial when switching

between filter types. Finally, a use case for the text query feature can be found in Figure

4.15.

4.4.3 Common core modules

Both frontend and backend core modules were designed to easily share methods

between the environments. Although not all features were implemented in all environ-

ments, it would not be difficult due to this structure. It contains data structures to which

the original environment’s KG format is converted. Then, methods to perform operations

on top of the graph data structures. In addition, the WS4J (WordNet Similarity for Java)
9 library was used to calculate the WordNet similarity between the text query and node

labels.

Due to time constraints and environmental characteristics, the features imple-

mented in each environment vary. Table 4.2 describes which features were implemented

9https://code.google.com/archive/p/ws4j

37

Figure 4.10: A hierarchical expansion starting from a root EnviaM’s person node, using
the transversal property “istVorgesetzterVon”/“isSuperiorOf”.

Source: Author

in each environment.

Table 4.2: Implemented features for each environment.
Wiki KG Expl. CoMem and EnviaM

Basic: Node expansion,
move nodes, zoom

Yes Yes

Relationship Info Mouse over dialog Along link path
Node relevance methods Yes No

Remove element from view Yes No
Groups Included on expansion set-

tings
Limited to central node’s first
level, no expansion features
available

Specific settings per node ex-
pansion

Yes No

Hierarchical expansion No Yes
Threshold Max. # nodes threshold Memory buoyancy (CoMem)

and date range (EnviaM)
Text query Yes No
Literals list Yes (in selected node section) Yes (inside node template)
Node type filter options Dynamic for each node Pre-defined set
Relationship type filter op-
tions

Dynamic for each node Pre-defined set

Source: Author

38

Figure 4.11: Wiki Knowledge Graph Explorer’s search page. The text query “Albert Ein-
stein” was given as input, and a list with the most similar DBPedia entities was returned
from DBPedia Lookup API.

Source: Author

Figure 4.12: The Albert Einstein DBPedia’s node is first expanded using default settings,
where the top 20 (default value) more related nodes are retrieved. The result is called the
“overview” of a node. The same expansion is performed on Albert Einstein’s related in-
stitution node. The final results are an overview of both Albert Einstein and the institution
that connects with it, Princeton University.

Source: Author

39

Figure 4.13: The Albert Einstein DBPedia’s node is expanded with academic advisors’
relationship types. Then the expansion is repeated using the same type of relationship.
The result is an academic genealogy tree.

Source: Author

Figure 4.14: The Albert Einstein DBPedia’s node is first expanded with philosophers
node type filter then, for each philosopher, it was expanded with birthplace relationship
type filter. The result is a graph showing the philosophers connected with Albert Einstein
and their birthplaces.

Source: Author

40

Figure 4.15: The World War II DBPedia’s node is expanded with the text query “weapon”.
The result shows, from a total of 1076 outgoing nodes, the top 20 (default threshold) more
related nodes to the text query.

Source: Author

41

5 USER EVALUATION

The User Evaluation was performed in the Wiki Knowledge Graph Explorer (Wiki

KG Explorer, KG Explorer, KGE) environment, which uses the DBpedia KG. It was con-

ducted remotely, using a form with five sections: User Profile, Briefing, Usability Evalua-

tion, Formal Evaluation (Tasks), and System Usability Scale. The Briefing and Usability

Evaluation sections were guided. In addition, the user was asked to share their screen dur-

ing most of the experiment, except for the moments when answering the questionnaires.

The Formal Evaluation section was recorded for posterior analysis and time measurement.

The total expected duration of the experiment is approximately 40 minutes.

Four questions were asked in the User Profile section:

• Do you have an IT (Information Technology) background? (Yes/No)

• How often do you use Wikipedia? (Scale answer: (Never) 1-10 (Every day))

• Do you know the graph concept (from graph theory)? (Yes/No/Partially)

• Do you know the concept of a Knowledge Graph? (Yes/No/Partially)

Then, a guided briefing was made about the KGs, the Wikipedia-DBPedia context,

how the application interface works, and its purpose.

5.1 Usability evaluation

The main purpose of this section was to guide users through the first steps of

using the system. The user was asked to search and explore the specific DBpedia node

of Albert Einstein1 using the system features. The following sequence of guided actions

was performed:

• Overview first expansion outgoing nodes, checking relationship types;

• Expand an outgoing node without any filter;

• Expand it again with the group by node type option;

• Expand it again with the group by relationship type option;

• Test removing a node from a group and ungroup options;

• Expand the Albert Einstein node with just philosophers related to its node (node

type filter test);

1http://dbpedia.org/resource/Albert_Einstein

42

• Expand the Albert Einstein node with the academic advisor and birthplace relation-

ships (relationship type filter test);

• Use the system freely for some minutes;

After the user’s first interaction with the system, the following questionnaire was

applied with a scale answer range from 1 to 10:

• Q1 - How good is the node overview?

• Q2 - How useful is the node type filter?

• Q3 - How useful is the relationship type filter?

• Q4 - How useful are the groups for the exploration?

5.2 Formal evaluation

The formal evaluation aims to compare the execution performance on Wikipedia

and in the Knowledge Graph Explorer through two distinct tasks. The user was given

some general conditions beforehand:

• It is not allowed to use external search tools (e.g., Wikipedia and Google search

engines). Use only hyperlinks to navigate through pages;

• It is not allowed to copy and paste. Although the answer does not need a perfect

match of characters, as long as it is possible to understand;

• Finish in the shortest possible time. Time limit of 12 minutes.

5.2.1 Task I

Task I aims to check which approach would be more efficient for searching spe-

cific types of information connected to a root concept.

Task description: Search for four events related to Socrates and one city related

to each of those events.

Wikipedia Instructions:

1. Access Socrates’ Wikipedia page2

2. Find hyperlinks to events * cited in Socrates’ Wikipedia page; by accessing the

2https://en.wikipedia.org/wiki/Socrates

43

page for these events, find a city related to each of them.

3. Fill in what you found in this form with the following answer format: “event1: city,

... event4: city”.

* The user was informed they could ask whether a page hyperlink was considered an event

or a city.

KG Explorer Instructions:

1. Access Socrates’ Wiki KG Explorer page3

2. Select the event node types connected to Socrates’ node, then expand a city con-

nected to each event.

3. Fill in what you found in this form with the following answer format: “event1: city,

... event4: city”.

Figure 5.1 exemplifies the expected user result on Wiki KG Explorer.

Figure 5.1: Expected user Task I result on Wiki KG Explorer.

Source: Author

5.2.2 Task II

Task II determines the most effective approach for obtaining specific information

about concepts connected by some sequential relationship.

3http://explorer.gabrielmadeira.com/graphvis/?http://dbpedia.org/resource/Socrates

44

Task description: Search for recent US presidents, their political party, successor,

predecessor, birthplace, and spouse.

Wikipedia Instructions:

1. Access Biden’s Wikipedia page4

2. Search for party, birthplace, and spouse information in Biden’s Wikipedia page,

then navigate to the other presidents through predecessor/successor links to con-

tinue collecting information.

3. Fill in what you found in this form with the following answer format: “president1:

party, birthplace spouse; ... president4: party, birthplace, spouse;”

KG Explorer Instructions:

1. Access Biden’s Wiki KG Explorer page5

2. Select end expand nodes with the following relationship types: party, birthplace,

spouse, and predecessor, first for Biden’s node, then continue expanding predeces-

sor presidents. (Presidents sequence: Joe Biden - Donald Trump - Barack Obama -

George W. Bush)

3. Fill in what you found in this form with the following answer format: “president1:

party, birthplace spouse; ... president4: party, birthplace, spouse;”

Figure 5.2 exemplifies the expected user result on Wiki KG Explorer.

5.2.3 User tasks distribution

Table 5.1 displays the task distribution among the users aiming to reach indepen-

dent samples, i.e., each user performs a specific task with only one technique.

Table 5.1: Distribution of the tasks among users.
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

Task Group A B A B A B A B A B
Wikipedia T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

KG Explorer T2 T1 T2 T1 T2 T1 T2 T1 T2 T1
Source: Author

4https://en.wikipedia.org/wiki/Joe_Biden
5http://explorer.gabrielmadeira.com/graphvis/?http://dbpedia.org/resource/Joe_Biden

45

Figure 5.2: Expected user Task II result on Wiki KG Explorer.

Source: Author

5.3 System Usability Scale

In the last section of the form, the System Usability Scale (SUS) (BROOKE et al.,

1996) questionnaire was applied. SUS provides a set of standardized questions to score

the subjective usability experience of a system. The set of questions can help evaluate

criteria such as satisfaction, effectiveness, and efficiency. It expects positive answers in

the odd question numbers and negative ones in the event. SUS’s score ranges from 0 to

100, where above 70 is rated acceptable, neutral between 50 and 70, and not acceptable

below 50. It is composed of the following questions with a scale answer range from 1 to

5:

• Q1 - I think that I would like to use this system frequently.

• Q2 - I found the system unnecessarily complex.

• Q3 - I thought the system was easy to use.

• Q4 - I think that I would need the support of a technical person to be able to use

this system.

• Q5 - I found the various functions in this system were well integrated.

• Q6 - I thought there was too much inconsistency in this system.

• Q7 - I would imagine that most people would learn to use this system very quickly.

• Q8 - I found the system very cumbersome to use.

46

• Q9 - I felt very confident using the system.

• Q10 - I needed to learn a lot of things before I could get going with this system.

5.4 Results

The user profile (Figure 5.3) consists briefly of 80% with an IT background, a

normally distributed use of Wikipedia, 60% understanding of the concept of a graph, and

finally, 60% partially familiar with the Knowledge Graph concept. The average user rate

for the four usability evaluation questions was between 8 and 9 (Figure 5.4). The node

overview had the highest average score, and the node type filter feature had the lowest.

Figure 5.3: Pie charts and histogram illustrating answer distribution for each of the four
user profile questions.

Source: Author

47

Figure 5.4: Histogram of the scores given by the user for the four usability evaluation
questions.

Source: Author

Regarding the formal evaluation, overall, Task I proved to be more efficiently

performed on Wiki KG Explorer (Table 5.2). However, Task II performed better on

Wikipedia (Table 5.3).

Table 5.2: Task I (Socrates, events, and cities) results (* indicates that the time limit has
been reached). With a lower average time and higher average accuracy, it is noticeable
that the task performed on KGE was more efficient.

Wikipedia KGE
User Task Group Time(s) Accuracy(0-1) Time(s) Accuracy(0-1)

1 A 387 0.50 - -
2 B - - 393 1.00
3 A 720* 0.75 - -
4 B - - 240 1.00
5 A 720* 0.75 - -
6 B - - 400 1.00
7 A 720* 0.50 - -
8 B - - 212 1.00
9 A 720* 0.75 - -

10 B - - 245 1.00
Average 653.40 0.65 298.00 1.00

Source: Author

A statistical hypothesis test was conducted to determine if there is a significant

difference between the two methods for the two tasks. The time and accuracy metrics

were combined into a score value dividing time by accuracy, where the lower values

48

Table 5.3: Task II (US presidents and their political party, birthplace, and spouse) results.
With a lower average time and higher average accuracy, it is noticeable that the task
performed on Wikipedia was more efficient.

Wikipedia KGE
User Task Group Time(s) Accuracy(0-1) Time(s) Accuracy(0-1)

1 A - - 590 1.00
2 B 460 1.00 - -
3 A - - 624 0.92
4 B 267 1.00 - -
5 A - - 600 1.00
6 B 430 1.00 - -
7 A - - 518 1.00
8 B 415 1.00 - -
9 A - - 651 1.00

10 B 286 1.00 - -
Average 371.60 1.00 596.60 0.98

Source: Author

mean a better score (Figure 5.5). Three statistical tests were performed using Task I (T1)

and Task II (T2) results (Table 5.4). The independent-samples t-test was performed for all

three tests, as there are two sample means for each test, and all samples are independent

with a Shapiro P-value greater than 0.05. Rejecting the null hypothesis (H0) in Test I, it

is possible to conclude that T1 is more efficiently performed on KGE than on Wikipedia.

Rejecting H0 on Test II shows that T2 performs significantly better on Wikipedia. Finally,

not rejecting H0 on Test III, reveals that there is no significant difference using Wikipedia

or KGE (considering the T1 and T2 scenarios combined).

Table 5.4: Statistical tests using Task I (T1) and Task II (T2) results. T1/2 Wiki/KGE
are the sets of scores for the individual tasks/methods. Test I proved that KGE performed
better in T1. Test II proved that using Wikipedia is more efficient in T2. Finally, Test III
suggests that there is no statistical significance in the difference in efficiency between the
two approaches when combining the tasks.

Test I Test II Test III
u T1 Wiki T2 Wiki Wiki
v T1 KGE T2 KGE KGE

H0 u = v u = v u = v
H1 u > v u < v u > v

p-value 0.00029456 0.00123200 0.08731825
Conclusion Reject H0 Reject H0 Do not reject H0

Source: Author

The final System Usability Scale score indicates that the KGE usability is accept-

able (Figure 5.6). Additionally, by analyzing the answer distribution on SUS questions, it

is possible to understand which questions got the best and worst results (Figure 5.7).

49

Figure 5.5: Formal evaluation score. It is calculated with the time divided by accuracy.
The lower the result, the better. The first and second box plots are the combined Task I
and Task II metrics sets. The four next box plots indicate the score for each task using
Wikipedia and KGE.

Source: Author

5.4.1 User improvement feedbacks

Besides the positive feedback about the tool’s usability, the users gave many im-

provements feedback. They were mapped as follows:

• Improve UI arrangement. e.g., reduce the distance between type filters select boxes

and expand the node button.

• Format relationship type URIs, removing URI useless path.

• Relationship types labels along the node links instead of using a dialog.

• Short tutorial mechanism, introducing main features, how to use, and the key con-

cepts.

• Consider node types ontology tree; once in the current type filter list implementa-

tion, they are treated as different types.

• Improve automatically plotting arrangement. e.g., auto move expanded nodes to an

50

Figure 5.6: Histogram containing each user’s System Usability Scale scores and the final
score (average). A 79.5 final score is considered acceptable as it is above 70.

Source: Author

empty area of the canvas.

• Auxiliary buttons: zoom in/out; reset.

• Keep filters after changing the selected node.

• Use colors and highlight mechanisms to improve the view.

• Multi-selection to move the nodes.

• Improve high and low-level zoom font sizes.

• Shortcuts to expand nodes. e.g., double click.

• Improve grouping approach. e.g., the feature can group all the nodes in the canvas

instead of just the outgoing nodes.

• Keep the context of already expanded nodes.

51

Figure 5.7: Stacked bar chart displaying each question’s System Usability Scale answer
distribution. There are expected to be positive rates for the odd questions and negative
rates for the even ones. Considering the rate average, the questions ordered from the best
to worst results are: Q7, Q2, Q6, Q10, Q5, Q8, Q9, Q4, Q3, Q1

Source: Author

52

6 CONCLUSION

Knowledge graphs offer a powerful structure to organize and extract information

from data. Node-link diagrams are commonly used to visualize KGs. However, this

type of visualization can face scalability issues, mainly with large and generic KGs. A

tool with features to enhance exploration and filtering is essential to handle information

overload. This allows the user to iteratively and organically explore while focusing on the

specific information it seeks.

This work proposes a tool that enables end users to access a generic and large

knowledge graph through filtering, exploration, and grouping features. The features allow

the user to filter by node and relationship types, set thresholds to get the most relevant

nodes, and iteratively repeat this process toward its goals. This process can be done

without affecting the capability of the user information process. Implementing the tool in

three environments demonstrates it has modular components and could be implemented

in other contexts without much effort. Also, one of the three implementations, the Wiki

Knowledge Graph Explorer1, will remain available to the community, with its source

code2 as well.

Through a formal evaluation with the right user task distribution, aiming for inde-

pendent samples, and applying statistical tests, Task I proved to perform better with the

tool developed in this work. This shows how useful for some specific use cases it can be.

On the other hand, Task II still proved to be better performed with common methods. In

addition, acceptable usability when using the system was reflected by the 79.5 SUS score.

The application could be further improved in many aspects. A better and more

intelligent plot approach and an auto-arrange mechanism could be implemented to follow

graph visualization aesthetic criteria once it still faces overlapping problems with nodes

and edges, demanding the users to constantly move the nodes for better visualization. The

semantic zoom feature could be better implemented by bringing in-node details as the user

zooms in. It would be important to save the user context at some level, once in the current

implementation it loses progress as soon it leaves the page. Additionally, keeping track

of the current user actions, custom relevance for filtering nodes could be applied, creating

a recommender system aligned with most user content preferences. The text query could

be improved to support stop word variations and even misspelled words, and it could

even be combined with an automatic threshold set. This work focused on the English

1http://explorer.gabrielmadeira.com
2https://github.com/gabrielmadeira/wiki-kg-explorer

53

language, but it could be extended to other languages. Finally, several UI improvements

were mapped and pointed out by the users’ feedback. Additional user evaluation rounds

with a larger number of users would increase the usability and efficacy of the application

even more. These should also include non-evaluated features, such as the text query.

54

REFERENCES

BENNETT, C. et al. The aesthetics of graph visualization. In: CAe. [S.l.: s.n.], 2007. p.
57–64.

BRATT, S. Semantic Web, and Other Technologies to Watch. 2007. <https:
//www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(1)>. Accessed: 2024-08-12.

BROOKE, J. et al. Sus-a quick and dirty usability scale. Usability evaluation in
industry, London, England, v. 189, n. 194, p. 4–7, 1996.

CAMARDA, D. V.; MAZZINI, S.; ANTONUCCIO, A. Lodlive, exploring the web of
data. In: Proceedings of the 8th International Conference on Semantic Systems. [S.l.:
s.n.], 2012. p. 197–200.

EHRHART, T.; LISENA, P.; TRONCY, R. Kg explorer: a customisable exploration tool
for knowledge graphs. In: VOILA 2021, International Workshop on the Visualization
and Interaction for Ontologies and Linked Data. [S.l.: s.n.], 2021.

FRUCHTERMAN, T. M.; REINGOLD, E. M. Graph drawing by force-directed
placement. Software: Practice and experience, Wiley Online Library, v. 21, n. 11, p.
1129–1164, 1991.

HE, X. et al. Aloha: developing an interactive graph-based visualization for dietary
supplement knowledge graph through user-centered design. BMC medical informatics
and decision making, Springer, v. 19, p. 1–18, 2019.

JI, S. et al. A survey on knowledge graphs: Representation, acquisition, and applications.
IEEE transactions on neural networks and learning systems, IEEE, v. 33, n. 2, p.
494–514, 2021.

JIANG, J. J.; CONRATH, D. W. Semantic similarity based on corpus statistics and
lexical taxonomy. arXiv preprint cmp-lg/9709008, 1997.

LASSILA, O.; HENDLER, J.; BERNERS-LEE, T. The semantic web. Scientific
American, v. 284, n. 5, p. 34–43, 2001.

LEHMANN, J. et al. Dbpedia–a large-scale, multilingual knowledge base extracted from
wikipedia. In: . [S.l.]: IOS Press, 2015. v. 6, n. 2, p. 167–195.

LI, H. et al. Knowledge graphs in practice: Characterizing their users, challenges,
and visualization opportunities. IEEE Transactions on Visualization and Computer
Graphics, PP, p. 1–11, 12 2023.

MILLER, G. A. Wordnet: a lexical database for english. Communications of the ACM,
ACM New York, NY, USA, v. 38, n. 11, p. 39–41, 1995.

NARARATWONG, R.; KERTKEIDKACHORN, N.; ICHISE, R. Knowledge graph
visualization: Challenges, framework, and implementation. In: IEEE. 2020 IEEE Third
International Conference on Artificial Intelligence and Knowledge Engineering
(AIKE). [S.l.], 2020. p. 174–178.

55

NIEDEREE, C. et al. Forgetful digital memory: Towards brain-inspired long-term data
and information management. ACM Sigmod Record, ACM New York, NY, USA, v. 44,
n. 2, p. 41–46, 2015.

PEDERSEN, T. et al. Wordnet:: Similarity-measuring the relatedness of concepts. In:
AAAI. [S.l.: s.n.], 2004. v. 4, p. 25–29.

REINGOLD, E.; TILFORD, J. Tidier drawings of trees. IEEE Transactions on
Software Engineering, SE-7, n. 2, p. 223–228, 1981.

SETH, Y. Introduction to Question Answering over Knowl-
edge Graphs. 2019. <https://yashuseth.wordpress.com/2019/10/08/
introduction-question-answering-knowledge-graphs-kgqa/>. Accessed: 2024-08-
12.

SHADBOLT, N.; BERNERS-LEE, T.; HALL, W. The semantic web revisited. IEEE
Intelligent Systems, v. 21, n. 3, p. 96–101, 2006.

WANG, Q. et al. Knowledge graph embedding: A survey of approaches and applications.
IEEE Transactions on Knowledge and Data Engineering, v. 29, n. 12, p. 2724–2743,
2017.

YUAN, C.-W. H. et al. Kgscope: Interactive visual exploration of knowledge graphs
with embedding-based guidance. IEEE Transactions on Visualization and Computer
Graphics, IEEE, 2024.

