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ABSTRACT

Programmable switches are networking forwarding devices that allow customized,
stateful functionalities to run at line rate. Unlike fixed-functionality switches, pro-
grammable switches offer higher versatility and innovation potential. The advan-
tages of programmable switches have led researchers to move functionality previously
performed on servers to the network itself, resulting in the concept of In-Network
Computing (INC). However, offloading functionalities to the data plane is subject
to several distinctions compared to how computation is traditionally performed on
servers. This thesis investigates the in-network computing paradigm under three dif-
ferent aspects that set it apart from traditional computation. Firstly, we study the
constraints imposed by the data plane, which can impact the offloading of applica-
tion functionality to the switch hardware. We propose a terminology and taxonomy
of design considerations to be used when offloading a functionality. We then present
a system called NetGVT that employs the considerations to build a customized de-
sign that offloads virtual time synchronization to switches. Furthermore, we show
that NetGVT can accelerate distributed simulations and outperform a traditional
server-only solution. However, once we move the computation to the data plane,
INC failures can disrupt the system and make it unavailable. Therefore, the sec-
ond aspect we investigate is the impact of failures and the necessary consistency
requirements for existing INCs for correctness after failure. In response, we pro-
pose RESIST, a system that applies lightweight techniques and building blocks to
provide fault tolerance for in-network computing. Although we observe that fault
tolerance can be achieved without compromising the performance gains achieved
with INC, managing the functionality at forwarding devices reveals a complex and
time-consuming process compared to running them on traditional servers. To un-
derstand this configuration challenge, we investigate methods for simplifying INC
fault tolerance management using high-level intents. We propose a system called
Araucaria, which facilitates the specification of fault tolerance intents in a struc-
tured natural language and a process for intent refinement that instruments INCs
with fault tolerance building blocks. Finally, we demonstrate a running example
using NetGVT as a concrete use case, showing the feasibility and scalability of the
proposed approaches in this thesis both in a testbed with real programmable switch
hardware and in a behavior model emulator.



Keywords: Programmable data planes. In-network computing. Hardware con-
straints. Fault-tolerance. Intent-based networks.



Computação em rede: superando restrições, falhas, e desafios de
configuração

RESUMO

Switches programáveis são dispositivos de encaminhamento de rede que permitem
a execução de funcionalidades personalizadas que funcionam na taxa de linha. Ao
contrário de switches com funcionalidade fixa, switches programáveis oferecem maior
versatilidade e potencial de inovação. As vantagens dos switches programáveis leva-
ram os pesquisadores a transferir funcionalidades anteriormente realizadas em servi-
dores para a própria rede, resultando no conceito de In-Network Computing (INC).
No entanto, a transferência de funcionalidades para o plano de dados está sujeita
a várias distinções em comparação com a forma como a computação é tradicional-
mente realizada em servidores. Esta tese investiga o paradigma de computação em
rede sob três aspectos diferentes que o diferenciam da computação tradicional. Em
primeiro lugar, estudamos as restrições impostas pelo plano de dados, que podem
impactar a transferência de uma funcionalidade de aplicação para o hardware do
switch. Propomos uma terminologia e uma taxonomia de considerações de design
a serem utilizados ao transferir uma funcionalidade para o plano de dados dos dis-
positivos de rede. Apresentamos então um sistema chamado NetGVT, que utiliza
as considerações para construir um design personalizado para transferir a sincro-
nização de tempo virtual para switches. Além disso, mostramos que o NetGVT
pode acelerar simulações distribuídas e superar uma solução tradicional que utiliza
apenas servidores. No entanto, uma vez que movemos a computação para o plano
de dados, falhas na INC podem interromper o sistema e torná-lo indisponível. Por-
tanto, o segundo aspecto que investigamos é o impacto das falhas e os requisitos
de consistência necessários para INCs existentes permanecerem corretas após uma
falha. Em resposta, propomos o RESIST, um sistema que aplica técnicas eficientes
e blocos de construção para fornecer tolerância a falhas para a computação em rede.
Embora observemos que a tolerância a falhas pode ser alcançada sem comprome-
ter os ganhos de desempenho obtidos com a INC, gerenciar a funcionalidade em
dispositivos de encaminhamento revela um processo complexo e demorado em com-
paração com a execução em servidores tradicionais. Para entender esse desafio de
configuração, investigamos métodos para simplificar o gerenciamento de tolerância



a falhas na INC usando intenções de alto nível. Propomos um sistema chamado
Araucaria, que facilita a especificação de intenções em uma linguagem semelhante à
natural, e um processo para refinamento de intenções para instrumentar INCs com
blocos de construção de tolerância a falhas. Em seguida, demonstramos um exemplo
prático usando o NetGVT, mostrando a viabilidade e escalabilidade das abordagens
propostas nesta tese, tanto em um testbed com hardware de switches programáveis
reais quanto em um emulador de modelo de comportamento.

Palavras-chave: Planos de dados programáveis. Computação na rede. Restrições
de hardware. Tolerância a falhas. Redes baseadas em intenções.
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1 INTRODUCTION

This thesis investigates the notion of offloading computing tasks to pro-
grammable data plane devices, using the paradigm of in-network computing. This
chapter provides an introduction to the thesis. We present the contextualization in
Section §1.1. Next, in Section §1.2, we present the research problems we investigate
in this thesis. Section §1.3 describes our motivation and goals, also presenting our
contributions. Finally, Section §1.4 details the outline of this document.

1.1 Contextualization

Programmable networks allow the behavior of the network to be modified.
The idea of programmable networks dates back to the 90s when researchers inves-
tigated a paradigm called Active Networks. Active networks were motivated by the
claim that it was necessary to move functionality to network devices (TENNEN-
HOUSE; WETHERALL, 1996), requiring a more flexible switch or router architec-
ture. Furthermore, some researchers considered the standardization of new protocols
by the IETF to be a slow process. As a response to that concern, research efforts were
made to develop a novel architecture enabling operators to incorporate novel features
into the network without waiting for the standardization process. The community
proposed several functionalities that could be enhanced by in-network processing,
including data fusion and caching (FEAMSTER; REXFORD; ZEGURA, 2014a).
Although the active network could provide performance benefits, the architecture
was too complex to adopt, and the industry had no real problems that needed so-
lutions with these performance benefits (WETHERALL; TENNENHOUSE, 2019).
Instead, because of the increasing traffic demands, network operators were looking
for solutions for management tasks, such as efficient traffic engineering.

Managing networks was challenging, requiring network operators to under-
stand complex distributed protocols from equipaments of different vendors. Sepa-
rating the control and data plane was an alternative for addressing this management
problem. By making the network decision-making centralized in the control plane
and only forwarding packets in the data plane, this separation enabled more pro-
grammability and flexibility for networking (CASADO et al., 2007). The creation
of the OpenFlow protocol solidified the separation between data and control plane
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and led to the Software-Defined Networking (SDN) concept (MCKEOWN et al.,
2008). The SDN logically centralized control plane provides a programmable API
and OpenFlow as a standardized protocol, facilitating the network management
and the creation of new applications. In addition, the match+action abstraction of
OpenFlow enabled its implementation without requiring arduous modifications to
the networking hardware, motivating a widespread adoption of the protocol. These
characteristics from OpenFlow provide the opportunity to create new applications
in a centralized manner using software, accelerating the innovation cycle.

Although SDN provides opportunity and innovation, the match+action ab-
straction only allows the configuration of a fixed set of switch operations, allowing
switches to forward packets from an input port to an output port based on a subset
of header fields. Precisely, a packet matches forwarding tables with a fixed set of
matching keys in fixed functionality switches. For example, OpenFlow 1.0 supports
matching IP addresses and submasks. After matching an entry, the switch may
perform actions on the packet, including dropping it, forwarding it to an output
port, and sending it to the controller. The protocol also allows populating match
entries with parameters for actions, such as the IP source and destination ports.
However, due to the fixed set of matching keys and actions supported by OpenFlow,
a firmware update from the equipment vendor is necessary whenever a different
matching or action set is required, which delays the innovation cycle and hinders
the deployment of new functionalities.

Programmable switches are network forwarding devices that allow cus-
tomized, stateful functionalities to run at the line rate. Programmable switches
offer higher versatility and innovation potential by enabling the network operator
to develop new functionalities for his network without waiting for industry protocol
updates. This flexibility is possible because state-of-the-art programmable switches
are based on the reconfigurable match tables (RMT) (BOSSHART et al., 2013) tech-
nology that enables modification of the logic of matching tables and packet parsers
without changing the hardware.

The advent of programming languages such as P4 (BOSSHART et al., 2014a)
enables the specification of the functionality of switches that support reconfigurable
hardware. The reconfigurable hardware allows programmers to change the packet
processing pipeline at runtime. P4 provides the abstractions that hide specific details
of the packet processing pipeline from developers. The abstractions include ways
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to define how a packet is parsed and deparsed or how packet headers reflect on the
switch stateful elements. After specified, it is the job of a compiler to map the
packet processing logic set in P4 to the stages of the switch pipeline.

The advantages of programmable switches and the P4 language have led
researchers to move functionality previously performed on servers to the network
itself, resulting in the paradigm called In-Network Computing (INC) (SAPIO et al.,
2017). By performing these functions directly on the switch data plane, it is possible
to reduce the time it takes to receive a response (propagation delay) by completing
requests faster than a typical round-trip time while reducing the workload of the
server. There are several successful examples of INC systems, including NetCache
(JIN et al., 2017a), which caches frequently accessed key-value items on the switch;
NetLock (YU et al., 2020a), which offloads lock management to the switch; and
DAIET (SAPIO et al., 2017), which performs aggregation for distributed machine
learning training.

In this thesis, we aim to study how to offload functionalities of distributed
systems to the network and also understand the advantages and disadvantages of
this paradigm. In addition, we aim to investigate and address problems that emerge
when we offload functionality to the network, such as fault tolerance and configu-
ration management. To achieve the goals mentioned above, we aim to provide a
comprehensive literature overview of the techniques employed to offload the func-
tionality to a programmable data plane and analyze practical case studies in the
field. By analyzing a practical use case, we aim to investigate the challenges and
limitations of dealing with constraints imposed by the existing data plane hardware,
also showing a contrast with other techniques from the literature. We aim to in-
vestigate the implementation details of the analyzed methods and the impact on
performance according to different factors such as latency, throughput, and resource
utilization in different offloading scenarios.

1.2 Research problems

Moving functionalities to the data plane has already presented promising
results and benefits but poses several challenges, including finding abstractions for
offloading, fault tolerance, and expressiveness. There has been tremendous progress
in solving these challenges in the last few years, yet several are still open. Therefore,
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in this work, we are going to address the following specific research questions:

Research Question #1: What techniques, including customized designs,
optimized algorithms, and data structures, can be used to overcome the com-
putational constraints from the data plane programming model?

Building an application with functionality offloaded to the data plane is chal-
lenging because of the constraints of the existing hardware (HOGAN et al., 2022).
The state-of-the-art switches have a limited amount of memory available (around
10MB) and often limit the amount of arithmetic logic unit (ALU) operations we can
perform in the pipeline. Consequently, to offload functionality to a switch, a devel-
oper must build tailored designs to deal with those constraints. Examples of tailored
designs include approximations of floating points (COELHO; SCHAEFFER-FILHO,
2022), using probabilistic data structures instead of deterministic ones (NAMKUNG
et al., 2023), and using primitives such as recirculation or resubmit that can be used
for performing additional processing passes for the same packet, but that impact the
switch throughput (SENGUPTA et al., 2022). Therefore, developers must evaluate
the trade-off between accuracy and performance when building those customized
designs.

Research Question #2: How can we mitigate the impact of switch failures
on the data plane of distributed systems and prevent their negative effects on
the correctness and performance of the corresponding applications?

Once we move an application computation from a traditional server to a
switch, a failure can make the overall system inconsistent (KIM et al., 2021). Failures
in switches can happen and have 2% chances of occurring every 3 months, according
to a recent study (SINGH et al., 2021). Because applications may rely on the data
plane to keep stateful elements like key-value stores in the switch memory (JIN et
al., 2017a; YU et al., 2020a), a switch failure (e.g., crash in fail-stop mode) can
affect the corresponding application’s correctness and performance. For instance, if
the key-value functionality is used to manage the locks of a distributed system, a
naive restoration of the system state may lead to deadlocks or race conditions.



19

Research Question #3: What approaches can simplify data plane program-
ming and configuration, and how can we systematize this process to reduce
complexity?

Manually dealing with the programmable data plane constraints and deploy-
ing fault-tolerance mechanisms for every new functionality is difficult and may take
precious time. Creating an INC customized design requires the developer to deal
with the constraints using low-level constructs from the P4 language, such as reg-
isters entries or match+action tables. Consequently, programming and configuring
an INC system is complex and often involves manual intervention for each device in
the network, which can be time-consuming and error-prone. Manual configuration
was acceptable in the past when network devices had fixed functionality. How-
ever, with the increasing adoption of programmable data plane technologies and the
emergence of complicated INC designs, the complexity of configuring the network
is exacerbated. The network configurations need to be more dynamic and flexible,
and as such, INC requires new approaches to manage network programmability.

1.3 Contributions

At a high level, this thesis is divided into three main parts, summarized in
Figure 1.1s: (1) studying the constraints of the data plane programming model,
investigating techniques to circumvent those constraints, and showing a use case for
in-network computing, including a tailored design for dealing with the data plane
constraints; (2) investigating the impact of switch failures for INC and identifying
which are the essential building blocks for making INC systems fault-tolerant; and
(3) understanding the need for having more abstract techniques for the data plane
programming and configuration, enabling the deployment of different applications
without having to configure them or establish protocols to tolerate failures manually.

In the first part of this thesis, our goal is to study the constraints of the
data plane programming model and identify common design techniques employed
in the literature. Using these design techniques, we aim to understand how to de-
ploy customized data structures and algorithms to overcome those constraints. We
focus specifically on the computational limits of the existing PISA hardware, which
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Figure 1.1 – Summary of contributions

is limited to a specific amount of ALU operations and memory at each pipeline.
By offloading into the programmable ASIC computation that requires more ALU
operations than available in a single pipeline, developers are usually left with imple-
mentation choices that lead to throughput degradation. This leads us to our first
contribution.

Contribution (1): We first study the data plane constraints, mainly
regarding available memory and supported operations of existing programmable
switches. After that, we proposed a terminology and categorization for different
considerations developers can take when offloading functionalities. We also classify
existing INCs from the literature according to our categorization. Next, we benefit
from the investigated considerations for designing and implementing NetGVT,
which moves virtual time synchronization to programmable switches. Computing
the virtual time synchronization in a programmable switch would consume more
stages than what is available in a single pipeline of state-of-the-art switches. Thus,
we designed an efficient data structure to make the virtual time synchronization
fit in the data plane with minimal throughput degradation. NetGVT experiments
in a Tofino testbed show that our in-network solution outperforms a server-based
solution in terms of simulation completion time.
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After offloading the functionality to the data plane, we identified a critical
limitation for INC: switches can fail! Then, we decided to study the impact of fail-
ures on the application’s correctness in the second part of this thesis. To investigate
the effects of failures, we analyze a widely studied set of INC systems (e.g., aggrega-
tion, key-value storage), contrasting whether different applications require different
consistency notions to be correct. Then, we investigate techniques to recover from
INC failures without adding significant overhead for non-failure scenarios. This leads
us to our second contribution:

Contribution (2): We show that different INCs may be affected differently
by switch failures and that different consistency semantics could be employed to
circumvent them. We also present techniques to tolerate INC failures, aiming to
cut the overhead for non-failure scenarios. To demonstrate the feasibility of our
methods, we implement them in RESIST, a system to make INC fault-tolerant.
RESIST is a system that enables us to augment INCs with fault tolerance building
blocks, allowing us to define the necessary consistency semantics to operate. The
central insight in RESIST is that we can decouple consistency from the replication
mechanism, achieving strong consistency notions without overhead for non-failure
scenarios. Our experiments in a Tofino testbed show that an INC system augmented
with RESIST can tolerate failures with minimal overhead in non-failure scenarios.
We also present BMv2 emulations that reveal the behavior of the system during
recovery time, enabling us to better understand the results in scenarios with an
increasing number of hosts.

We observe that offloading functionality to the data plane and making it
resilient to failures is a complex and specialized process. INC operators must man-
ually set the code that implements fault tolerance requirements in P4 using domain
knowledge and source code analysis. This includes a logic constrained by the asyn-
chronous behavior of programmable switches, requiring the implementation of cus-
tomized failover mechanisms. These manually implemented designs may take time
to configure and impact latency, throughput, and correctness if the parameters are
misconfigured. For example, deploying a new RESIST experiment requires special-
ized knowledge and may take time. In the third part of this thesis, we investigate
techniques to automate the INC configuration using more abstract specification tech-
niques. We work to understand this subject in a specific INC scenario, considering
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the need to configure multiple devices for fault tolerance.
Contribution (3): This study investigates the concept of intent-based net-

works (IBN). We study a particular use case on specifying intents for INCs in which
we want to define fault tolerance for INC at an abstract level. Our study provides a
precise process that enables us to refine high-level fault tolerance requirements into
concrete INC configurations. We propose the architecture of Araucaria, a system
that provides a high-level language and a refinement process for INC fault tolerance.
To that end, we investigate the structure of intents used in the literature and define
the necessary constructs for an intent-based language that enables the specification
of fault tolerance requirements. Aiming to translate the high-level language intents
to low-level INC code, we propose a refinement process that translates and instru-
ments the INC code and generates configuration for the instrumented P4 switch. To
conclude the intent-refinement life-cycle, we conduct an investigation to ensure that
an intent is consistently guaranteed, even in the event of network modifications.
This involves monitoring availability metrics and reconfiguring the data plane in
the event of crashes. We show a working use case, illustrating how we generate
configurations and source code for making NetGVT fault-tolerant with RESIST.

1.4 Outline

The rest of this thesis is organized as follows. We begin discussing some
background on programmable data plane technologies and in-network computing
(Chapter 2). The programmable data plane background includes the historical per-
spective and a detailed description of the packet processing architectures and the
P4 programming language. The in-network computation background introduces the
concept, highlighting its advantages and exemplifying a use case. The following
chapters describe the research we have been doing for each part of this thesis. In
particular, the needed additional background and related work for each part of this
thesis will be provided in each chapter. In the first part of the thesis, we present our
study of how we can offload functionality to the data plane subject to the constraints
of the programmable devices (Chapter 3). We present the NetGVT system design,
including a tailored design for the data plane and its evaluation. In the second part
of this thesis, we describe our investigation of the need for fault tolerance (Chapter
4). We propose the system design of RESIST, including the building blocks for
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decoupled fault tolerance and our evaluation of the system. Chapter 5 provides an
overview and architecture of Araucaria, a system that enables the refinement of fault
tolerance requirements for INC. We also present a detailed use case, showing how to
make the INCs studied in this thesis fault tolerant. Finally, Chapter 6 summarizes
our contributions, discusses future research on in-network computing, and concludes
the thesis.
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2 BACKGROUND AND MOTIVATION

In this chapter, we present the essential background for reading this the-
sis. First, we discuss programmable networks in Section §2.1, briefly discussing its
history and OpenFlow. Secondly, we present details about data plane programma-
bility in Section §2.2, including packet processing architectures and programming
languages. Finally, we present background on in-network computing in Section §2.3.

2.1 Programmable networks

Programmable networks are a type of network architecture that enables net-
work functionality to be defined and modified dynamically through software (FEAM-
STER; REXFORD; ZEGURA, 2014b). Programmable networks can include various
components, such as programmable switches and routers, FPGAs, SmartNICs, and
virtualized servers. These components can be programmed to perform specific tasks
or implement custom protocols, making the network more flexible and adaptable to
changing requirements.

2.1.1 Historical perspective

Although programmable networks are becoming more common, the idea
traces back to the 90s, when active networks were introduced. The concept of
active networks aims to allow developers to run customized programs on switches
and routers. This was motivated by the need for researchers to implement their
protocols and functionalities without waiting for the IETF standardization process
to deploy new functionality, as mentioned in (WETHERALL; TENNENHOUSE,
2019).

In active networks, researchers idealized two ways of processing code in
routers:

• Capsules: the first one is replacing packets by capsules. Capsules refer to
a forwarding routine that an active node processes. Some of these routines
are common to all nodes; others are application-specific and rely on a code
distribution engine to find an active node (WETHERALL; GUTTAG; TEN-
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NENHOUSE, 1998).

• Programmable Switch/Router: the other approach was the programmable
switch, enabling the loading of programs in the switch that would control the
infrastructure (TENNENHOUSE; WETHERALL, 1996).

However, the idea of active networks had no “transference of results” to
industry and ended up not having a widespread deployment (WETHERALL; TEN-
NENHOUSE, 2019). Despite not being widely deployed, researchers envisioned a
programmable network for the first time, a radically different network design. Ac-
tive networks envisioned network devices exposing their state to a programmable
interface, a concept later revisited by OpenFlow and data plane programmability
with P4 (FEAMSTER; REXFORD; ZEGURA, 2014b).

Meanwhile, network operators needed help managing and configuring their
networks. Networks were composed of devices from different vendors, including dis-
tributed protocols, often requiring too much manual effort to configure them. Typ-
ically, the data and control plane were tightly integrated with the devices, making
performing traffic engineering or debugging tasks challenging. To simplify man-
agement, researchers started arguing for separating the control from data planes,
building a more centralized controller instead of the distributed one required by
the tight integration of the planes (FEAMSTER; REXFORD; ZEGURA, 2014b).
Several researchers made significant contributions showing that it was possible to
separate the planes, but this separation was only concretely achieved with the emer-
gence of OpenFlow (MCKEOWN et al., 2008).

2.1.2 SDN and OpenFlow

OpenFlow was conceived as an approach for researchers to run experiments
in their networks efficiently (MCKEOWN et al., 2008). OpenFlow leveraged a neces-
sary common abstraction between multiple switches and routers: the match+action
abstraction. Using this abstraction, an OpenFlow API allowed external programs
to change entries of flow tables from the switch chip, typically implemented as
TCAM. The match+action abstraction was simple but powerful and quickly be-
came widespread because the flow table hardware was common between existing
switch chips. This was advantageous for equipment vendors because they did not
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need to change their switch chips completely.
Meanwhile, researchers and operators could use SDN to study and deploy

their network solutions. For example, a network operator could write a control
plane application to balance the network load effectively. This application could
require the switch to forward packets from a new flow to the controller, run a custom
routing algorithm, and define new forwarding entries for subsequent packets. The
strategy of changing table entries is opposed to how load balancing was implemented
in traditional networks. A conventional network would be limited to changing the
link weights of the control plane protocol (e.g., OSPF) implemented by the vendor,
not allowing operators to build their solution.

OpenFlow played a significant role in developing the Software-Defined Net-
working (SDN) technology. SDN provides a logically centralized controller abstrac-
tion, being able to interact with the data plane using APIs such as OpenFlow
(KREUTZ et al., 2014). The rise of SDN motivated the notion of network op-
erating systems, such as ONOS (BERDE et al., 2014) and NOX (GUDE et al.,
2008). In addition, because of concerns about the risks of having a centralized con-
troller, the SDN community has pushed into the idea of having a distributed control
plane, maintaining consistency across the distributed state, and providing support
for general networking applications.

By motivating an open interface between the data and control planes, Open-
Flow networks allowed researchers to experiment with new ideas and simplified
management. Although OpenFlow has brought those benefits to network opera-
tors, the degree of programmability in the network using SDN is still small. An
OpenFlow switch has a Flow Table that maps flows to a specific action. The only
programmability in the switch is made by changing the flow table entries through
the OpenFlow API. This allows for executing particular actions, but the OpenFlow
match+action hardware can match only a fixed set of packet header fields and pro-
tocols. In addition, the set of available actions is fixed, including only dropping,
forwarding, and sending to the controller actions. However, this has changed with
programmable packet processing architectures.
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2.2 Programmable packet processing architectures

A packet processing pipeline defines a network device’s sequence of opera-
tions to process a packet (GUNTURI; JOHNSON; SEOW, 2005). The components
of a packet processing pipeline may vary according to different pipeline architec-
tures. The programable packet processing architecture allows the network owner
to define data plane functionality using software artifacts. The switch functional-
ity is often expressed using domain-specific languages (BOSSHART et al., 2014a;
SONG, 2013) and then is tailored into an abstract data plane model (HAUSER et
al., 2021). The resulting code is then compiled into a packet processing architecture
that supports the data plane model. A concrete example of packet processing archi-
tecture is the Protocol Independent Switch Architecture (PISA), which generalizes
the Reconfigurable Match-Table (RMT) (BOSSHART et al., 2013) model.

Reconfigurable Match-Table. The RMT model is a technology that
makes match+action tables dynamically programmable without modifying the hard-
ware. This distinguishes switches that use RMT from OpenFlow switches in several
ways. In OpenFlow, the packet processing architecture transitioned from the Single
Match Table (SMT) architecture to the Multiple Match Tables (MMT) (PFAFF et
al., 2012). While in the SMT, the switch is composed of a single match+action
table, the MMT has multiple match+action tables. However, the number of tables,
their pipeline, their match types, and sizes are determined during the manufacture.
Consequently, these parameters always remain the same, limiting flexibility.

In contrast to OpenFlow switches, RMT allows network administrators to
define the fields within the match+table for their specific needs. Furthermore, the
RMT model enables changing the width and depth of a match+table, supporting
different sizes of entries and tables with other types. The action triggered and the
number of available actions by a match are also programmable, being able to run
customized functionality in case a packet matches an entry in a table. Finally, the
programmer can define the topology between match+action tables in the pipeline
instead of determining it during manufacture.

PISA Architecture. The PISA architecture leverages the RMT technology
to provide line-rate packet processing. Figure 2.1 illustrates the PISA architecture.

In the PISA architecture, packets go through a packet parser, which instanti-
ates user-defined protocols to the packet header vector (PHV). The PHV stores the
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Figure 2.1 – PISA Architecture

necessary header fields for the program, such as TCP, IP destinations, and essential
metadata. Metadata are per-packet variables that store temporary values to assist
packet processing, such as input and output ports. After the parser processes a
packet, it follows to a packet processing pipeline. A packet processing pipeline can
comprise several constructs, such as match+action tables and registers. Matches
can be in several forms, such as the longest prefix match, ternary match, or exact
match. Each match corresponds to executing an action that runs computation and
performs storage operations. Match+action tables can run on TCAM or SRAM,
while actions are implemented using ALUs and must be able to run at line rate
(SIVARAMAN et al., 2015). Each pipeline has a fixed set of stages, and each stage
has available registers that store persistent states. Each stage also has a constrained
set of ALU operations, divided between stateless and stateful. After the control
flows process a packet, packet headers are emitted by a deparser. The deparser
reconstructs the packet headers using the PHV variables and sends the resulting
packet to an output port.

2.2.1 P4 language

The P4 language (BOSSHART et al., 2014b) is a high-level specification
language for packet processing processors. The language is designed to make it
easier for developers to describe the packet processing pipeline. P4 provides an
abstraction layer above the PISA architecture, making the P4 compiler’s job to
map the specified functionality to the hardware stages (HOGAN et al., 2022).

P4 is commonly referenced as a declarative language (SHAHBAZ; FEAM-
STER, 2015; KHERADMAND; ROSU, 2018; EICHHOLZ et al., 2022), aiming to
provide a high-level abstraction, and releasing developers from the need to worry
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about how the high-level specification is implemented using the low-level data plane
hardware. Packet headers can be declared similarly to structs in C. The parser can
be determined using a state machine approach, where states often correspond to a
portion of the packet header, and transitions between states are transitions between
headers. During runtime, the parser processes the packet by extracting the values of
bits from the packet to internal variables of the program, which can then be accessed
and modified in the other processing elements.

1 header ethernet_t { macAddr_t dstAddr ;
2 macAddr_t srcAddr ;
3 bit <16> etherType ; }
4 par s e r MyParser ( packet_in packet , out headers hdr ,
5 inout metadata meta ,
6 inout standard_metadata_t standard_metadata ) {
7 s t a t e s t a r t {
8 packet . ex t r a c t ( hdr . e the rne t ) ;
9 t r a n s i t i o n s e l e c t ( hdr . e the rne t . etherType ) {

10 0x800 : r e j e c t ;
11 d e f a u l t : accept ;
12 }}}

Figure 2.2 – P4 header and parser examples

Figure 2.2 presents an example of a P4 header and parser. The header type
ethernet_t expresses the standard format of ethernet frames. The parser consists
of only one state that extracts the bits from the ethernet header and instantiates
them to an internal program variable. A transition selects the following state by
checking the ethernet etherType and rejecting it if it is 0x800 (the IPv4 type),
accepting it otherwise.

The P4 language also provides the abstraction of a control block. A control
block can be used to specify how to process packets. Each control block may include
primitives to modify the contents of a header and the actions the program may
contain. Tables can be used in control blocks. A packet can match a table entry
the way the programmer defines it. Once a packet matches a table entry, the table
may process the packet using an action. Actions may be composed of primitive
actions that change the header or modify switch variables. An action can have input
parameters; an external program configures those parameters and the table entries
that initiate the action. A control block may also maintain stateful or stateless
registers that can be modified at runtime without external input. Finally, control
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blocks include an apply block, which enables specifying in an imperative way how
packets flow from one table to another. The control flow may consist of specific
functions, conditions, tables, and action references.

1 c o n t r o l MyIngress ( inout headers hdr , inout metadata meta ,
inout standard_metadata_t standard_metadata ) {

2 ac t i on drop ( ) {
3 mark_to_drop ( standard_metadata ) ; }
4

5 ac t i on forward ( egressSpec_t port ) {
6 standard_metadata . egress_spec = port ; }
7

8 t ab l e eth_table {
9 key = { hdr . e the rne t . dstAddr : exact ; }

10 a c t i o n s = { forward ; drop ; }
11 }
12 apply { eth_table . apply ( ) ; }
13 }

Figure 2.3 – P4 Control and forwarding examples

Figure 2.3 exemplifies a control block written in P4 language. The control
block definition begins with the name MyIngress and two input variables: hdr for
packet headers, meta for user-specified metadata, and standard_metadata for prim-
itive metadata. The control block manipulates those variables during its execution.
Two actions are defined inside the control: the drop and the forward actions. The
drop action, which has no parameters, calls a primitive function mark_to_drop,
that marks standard metadata accordingly. The forward action has a parameter
port, which sets the standard metadata corresponding to the packet output port to
the value passed as an argument.

Subsequently, a table called eth_table is defined. This table uses the packet
header named hdr.ethernet.dstAddr as a key and matches packets using the exact
primitive. Two actions can be called when a packet matches an entry in this table,
namely drop or forward. In the apply block, this table is referenced using a primitive
function called apply. It is important to note that the entries in the table are
typically installed by the control plane.
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2.2.2 Data plane programming challenges

Although P4 and the programmable packet processing pipelines provide more
flexibility for building and managing networks, they come with several challenges.
The state-of-the-art hardware and the languages used to specify functionalities
present characteristics that make data plane programming challenging.

2.2.2.1 Hardware constraints

Despite their flexible processing capabilities, programmable switches have
several design constraints to ensure that in-network functionalities run at line rate.

Limited memory. The state-of-the-art switch hardware has limited mem-
ory. For example, the amount of SRAM in a Tofino switch is around 10MB (LI et
al., 2022). In addition, the amount of concurrent memory access is also constrained.
When a packet arrives, the switch program can read only one memory address, re-
trieving a limited set of elements stored in a memory block. Consequently, we can
not create a program that reads the entire memory block allocated for a register
vector at once (BEN-BASAT et al., 2018).

Static Memory Allocation. State-of-the-art switches also do not enable
dynamic memory allocation, limiting developers to allocate space for variables dur-
ing development statically. Changing the memory allocation would require modify-
ing the data plane source code, recompiling and reloading it. In the meantime, the
switch needs to be stopped and restarted (ZHU et al., 2022). Also, match+action
tables can not be modified at the data plane, requiring the intervention of the control
plane to change table entries.

Read/Write only once. The switch programming model also does not en-
able multiple accesses to the same memory region in the same pipeline. This implies
that if a stateful variable was accessed once when a packet traverses the pipeline,
the same stateful variable could not be reaccessed in the same traversal1. Conse-
quently, operations that depend on the same memory element must be performed on
different pipelines or unrolled using primitives such as recirculation or resubmission,
i.e., send the packet back to a loopback port (BEN-BASAT et al., 2018). However,
recirculation primitives are costly in terms of throughput.

1Only once semantics differs from the limitation on concurrent access, which is about the number
of memory addresses a single read can access from a memory block.
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Limited computation on stages. A switch pipeline is composed of a few
stages. Each stage can run simple ALU operations, restricted to simple arithmetic,
logical, and bit manipulation (BOSSHART et al., 2013). Because float-point oper-
ations are often expensive, they are often not implemented in hardware and thus
unavailable for use on stages. The number of ALU operations performed in each
stage is also limited to preserve the line rate. In addition, branches are limited
inside a stage, not allowing complex comparisons or more than two branches inside
the same stage.

Fixed amount of stages. The switch pipeline is short to ensure the line
rate is achieved (BEN-BASAT et al., 2018). Because the pipeline is short, the num-
ber of stages is limited; consequently, the amount of ALU operations a program
can compute is limited accordingly. An alternative design is necessary if a program
requires more ALU operations than can be performed in a single pipeline. Recircu-
lation can be a possible solution, as pointed out in (BEN-BASAT et al., 2018).

Lack of shared memory. Modern switches are composed by multiple
pipelines (CHIESA; VERDI, 2023). These multiple pipelines improve parallel pro-
cessing in switches and help diminish race conditions, but they come with their costs.
Typically, each pipeline has its own variables, including registers and match+action
tables. Switches do not share memory between pipelines, thus creating synchroniza-
tion problems for offloaded functionalities.

2.2.2.2 P4 programming challenges

Naturally, the P4 programming language inherits the constraints from the
hardware. However, beyond the hardware limitations, the language poses its own
set of challenges.

Lack of loops. The current language specification does not allow developers
to use loops to iterate over state variables. The absence of loop structures requires
unrolling strategies to iterate over memory elements using if-else statements and
decomposing memory elements. This occurs because programmable data planes do
not enable recursion and require sending the packet back to the beginning of the
pipeline to process the same packet more than once (SHAH et al., 2018). However,
due to the lack of loops at the language level, implementing simple operations may
lead to more code voluminosity because of code repetition (ALCOZ et al., 2022).

Code Repetition. Code repetition is easily visible in P4 programs (HOGAN
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et al., 2022). Repeated data-structure declarations are often found in data plane
programs, as well as repeated actions to manipulate those data structures (HOGAN
et al., 2020). Finally, the apply blocks often reference the repeated data structures
multiple times. This is a consequence of both the lack of parametrization in the
language and the lack of abstractions in the language, which requires manually
dealing with the hardware constraints (ALCOZ et al., 2022) and repeating the action
code for different registers or tables, even running the same logic.

Ineffective Abstractions. Although P4 is meant to be a high-level lan-
guage, engineers and developers often say it is not abstract enough (LI et al., 2022;
GYÖRGYI; LAKI; SCHMID, 2023; HOGAN et al., 2020). P4 often subjects the
developer to hardware constraints, thus requiring to reason about low-level hard-
ware while coding, often leading to trial and error and suboptimal designs (LI et
al., 2022; GYÖRGYI; LAKI; SCHMID, 2023). Nonetheless, the P4 programming
language mixes two programming paradigms: a state-machine definition style for
parsers and an imperative definition for control flows (SONI et al., 2020). This can
hinder development, making it a time-consuming task compared to writing the code
for the same functionality for a server.

Limited feedback. The lack of feedback from the P4 compiler is also limited
or even may present bugs (GYÖRGYI; LAKI; SCHMID, 2023). If the compilation
fails, it is not uncommon for the compiler not to show the reason for the problem in
the specific code. This may lead developers to debug code using adhoc ways, such as
changing parameters to “magical values” or simplifying comparisons in if/else state-
ments. This makes development and debugging a trial-and-error process (HOGAN
et al., 2020).

2.3 In-network computing

In-network computing (INC) is an emerging concept in computing networks.
Also called In-network Computation (SAPIO et al., 2017), NetCompute or In-
Network Compute (BENSON, 2019), should not be confused with Computing in
the Network (COIN) (KUNZE et al., 2023b), that still has the scope open (KUNZE
et al., 2023a). INC has been used to characterize systems with functionality of-
floaded to the programmable data plane of networking devices (MICHEL et al.,
2021). Instead of introducing new equipment to the infrastructure, in-network com-
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puting leverages existing devices within the infrastructure, particularly those that
are P4-configurable, to not only handle traffic forwarding but also to execute cus-
tomized functionality (ZILBERMAN, 2019). This approach can potentially reduce
the need for specialized equipment, such as accelerators or middleboxes.

2.3.1 The advantages of INC

Adopting an offloading strategy to the network is mainly motivated by the
performance benefits it can provide.

Latency. With INC, it is possible to reduce latency by intercepting and pro-
cessing packets in the data plane of networking devices instead of sending packets to
be processed by the end servers. As such, instead of requiring a request to complete
an entire RTT by sending the packet to a server, some application packets can be
quickly processed in the network hardware and forwarded to their end destination.
This can save the latency required to send the packet to the end host and all the
other nodes in the path (ZILBERMAN, 2019).

Bandwidth. By processing packets at the network devices, INC also saves
bandwidth in links from the switch running the INC to the servers running the
end host functionality. By saving bandwidth, it is possible to avoid congestion
and obstructions that often cause buffer occupancy, packet drops, and performance
degradation. Thus, INC can enhance application performance, freeing a portion
of network links to process packets from other applications at higher rates (KIAN-
PISHEH; TALEB, 2022).

Throughput. Another possible advantage is throughput increase. Once
existing switch hardware can process packets at 12Tb/s, applications can be con-
tinuously served. This occurs because switches are designed as pipelines and do not
delay packets because of queuing or stalling delays (ZILBERMAN, 2019). In addi-
tion, programmable switches ensure the program runs at line rate, ensuring that any
offloaded program can operate at this scale. Therefore, beyond reducing the time
to process packets (e.g., latency), they can keep processing operations per second
in the scale of terabits/s (e.g., throughput), which is higher than the rate usually
observed on servers.

Energy Consumption. Power consumption is a surprising advantage
of INC. Programmable switches hosting INCs consume less or the same amount
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Figure 2.4 – In-network computing example

of resources compared to traditional switches. By offloading INC functionalities
to a programmable device, it is possible to observe the same amount of resource
consumption observed in an idle switch (TOKUSASHI et al., 2019). Furthermore,
increasing the traffic rate increases energy consumption according to the rate in
a constant way. Therefore, when compared to servers, which can double the con-
sumption as the rate increases, switches can scale to larger traffic rates with small
increases in energy consumption. Nonetheless, although a server consumption is
generally lower than a switch, if we assume switches are already available in the in-
frastructure, it is possible to save server consumption by moving functionality using
INC (TOKUSASHI et al., 2019).

2.3.2 Use-cases

Recent efforts in INC have shown many applications that can be used in the
network. The most straightforward use cases are network functions, such as DDoS
detection, load balancing, and NAT. More unexpected use cases include systems
like ML aggregation (SAPIO et al., 2021) for data-parallel training and inference
(SANVITO et al., 2018), which has been studied in several applications such as
traffic classification, controlling robot arms, and even computer vision (GLEBKE et
al., 2019a). Caching key-value storage (JIN et al., 2017a; JIN et al., 2018a) and lock
management (YU et al., 2020a) is also possible, enabling fast database transactions
in data centers.

To better illustrate the usage of INC, Figure 2.4 presents an example of an
INC system for aggregation. The figure shows a system that performs machine
learning aggregation inside the programmable data plane of the network device,
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such as DAIET (SAPIO et al., 2017). Instead of requiring a centralized server to
perform the aggregation, workers send their gradients to a switch responsible for
aggregating them. The resulting gradient is encapsulated into a packet and sent
back to workers to update their local model. In particular, the machine learning
aggregation has some characteristics in common that make their offloading suitable
for programmable data planes (MICHEL et al., 2021). By running the aggrega-
tion on switches, it is possible to reduce the amount of data exchanged and thus
reduce network utilization. The resulting gradients can be computed faster because
programmable data plane devices are closer to the workers and run at a line rate.
Finally, since most of the operations are commutative and associative, they can
be applied in an arbitrary order, being suitable for processing packets at a high
concurrency rate on the programmable hardware (MICHEL et al., 2021).
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3 OFFLOADING COMPUTATION SUBJECT TO LIMITATIONS OF

THE PDP

In this chapter, we discuss the first part of this thesis, which addresses the
research problem related to dealing with the hardware limitations of the data plane.
Section §3.1 first introduces the research problem and proposes a terminology and
categorization for design guidelines that circumvent these constraints. Section §3.2
motivates a use case to study how to handle the constraints when offloading com-
putation to the data plane. Section §3.3 presents the design of NetGVT, used to
study in practice the customized solutions by offloadind virtual time synchroniza-
tion to switches. Section §3.4 presents the results we obtained with a prototype of
the system. Section §3.5 presents the related work for this chapter. Finally, Section
§3.6 sheds light on the complexities and lessons learned in the chapter, categorizing
design guidelines to other existing INCs from the literature.

3.1 Investigating INC design guidelines

Distributed systems are often highly versatile and can support rich require-
ments due to the abundant hardware and general-purpose architectures employed.
However, replicating the same functionalities of a traditional distributed system
in an in-network solution is a significant challenge due to the limitations of pro-
grammable switches. The capabilities of programmable switches are considerably
more constrained than their server-based counterpart, often resulting in a reduced
feature set. In-network solutions must operate within the constraints of pro-
grammable switches and often face difficulties in supporting complex functionalities
with rich requirements.

Devising a tailored design for in-network solutions can be a challenging task.
The system designer must often consider different optimization goals, such as max-
imizing throughput while minimizing switch resources. In addition, identifying
whether alternative solutions can fulfill the essential application requirements is
necessary but is only possible with knowledge of application behavior. For exam-
ple, a solution that considers only the network functionality may create a solution
that violates correctness conditions of an application. Although some research pa-
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pers propose solutions to automatically deploy a functionality described at a high
level (XU et al., 2023; HOGAN et al., 2022), the existing INCs are still manually
developed using P4, the de-facto programming language for the data plane.

Instead of attempting to automate the resolution of data plane constraints,
we adopt a developer-centric approach. We investigate common design considera-
tions that programmers use while developing INCs to work around these restrictions.
Next, we categorize these considerations and provide terminology that developers
can use to discuss different design alternatives. Specifically, this categorization de-
scribes design considerations developers can use when a functionality does not pre-
serve specific programmable switches’ constraints.

We divide the design considerations based on the constraints they aim to
address, including the lack of memory and limited computation resources.

3.1.1 Memory management

When offloading a functionality, the constrained memory of existing pro-
grammable data planes requires intelligent memory management mechanisms. As
the layout of conventional data structures often cannot be directly mapped to pro-
grammable switches memory, it is necessary to tailor them and employ specific
memory management techniques. We categorize these techniques according to dif-
ferent aspects: (1) those employed to handle memory-intensive functionalities and
(2) the functionalities that require multiple read and write operations.

Memory Intensive Functionalities. Different techniques can be em-
ployed to offload functionalities that consume a large amount of memory:

• Distributed Designs. To support functionalities that consume a large
amount of memory, it may be necessary to consider building designs that
incorporate methods for storing only the most crucial features in the data
plane memory and use servers as a fallback option (JIN et al., 2017b). One
approach to achieve this is by selectively keeping in the data plane elements
relevant to a specific optimization objective (YU et al., 2020a). For example,
instead of storing the entire key-value storage in the data plane, keeping only
the most frequently accessed key-value pairs in the data plane is an alternative
for optimizing throughput. In addition, distributed designs in the data plane
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can also offer benefits (LAO et al., 2021). This points to using the memory of
multiple data plane devices, such as smartNICs and switches, to collaborate.
When a key miss occurs in one device, it can be routed to the subsequent
data plane device with the key-value item. However, distributed designs may
introduce additional overhead due to the delay in accessing the distributed
memory.

• Approximations. Another approach to tailor memory-intensive functionali-
ties is to utilize approximations instead of storing only raw data. For specific
applications, instead of storing complete data streams in the data plane, it is
possible to consider keeping a combination of statistical or aggregated values
(KIM et al., 2015), such as quantiles or moving averages (BASAT et al., 2020).
Approximations can be achieved using data structures like bloom filters, hash
maps, or sketches, which organize elements based on a hash of their key and
are easily implemented in the existing hardware since they use fewer memory
elements. While storing approximations in these data structures allows for
practical implementation, it might lead to some loss of accuracy due to col-
lisions caused by overlapping keys. Therefore, this approach is only suitable
for certain applications as an alternative solution and is not enough for cases
like storing locks for concurrency control (YU et al., 2020a), which can lead to
race conditions in cases shared across multiple processes. In such cases, more
precise data storage techniques are necessary to ensure proper synchronization
and avoid conflicts.

• Compression. Compressing the information to fit in the data plane is also
an alternative. Data can be compressed before transmission and decompressed
upon reception or compressed by the switch using tables and ALUs (SAPIO
et al., 2021). A concrete example of compression is found in in-network ag-
gregation, which uses quantization to transform floating point values used as
parameters during aggregation into smaller integers. By using quantization,
existing works on in-network aggregation (INA) reduce the size of models and
make their aggregation possible in the network.

Read/Write. Functionalities that require intensive reading or writing into
switch stateful memory are also subject to tailored designs. Because the state-of-the-
art hardware does not allow reading or writing the same register more than once in
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the same pipeline, tailored designs often can either reiterate a packet or decompose
the data structures into different registers.

• Reiterate. To circumvent the constrained memory access in the same
pipeline, we can leverage recirculation or resubmitting primitives, allowing
a packet to traverse the pipeline more than once. These primitives can be
employed to iterate over the same memory element repeatedly (SONCHACK
et al., 2021). After resubmitting or recirculating, the switch code can identify
a reiterated packet and read or write the memory element once more (SEN-
GUPTA et al., 2022). However, this benefit comes with a cost. Once the
packet is recirculated, the packet will occupy the buffers again, degrading the
switch throughput (WU et al., 2019).

• Decomposition. Another alternative to circumvent constrained memory ac-
cess is to divide the memory element that needs to be accessed more than
once into multiple elements. Decomposing a data structure (e.g., an array)
into different data structures allows a packet to read/modify them at the same
pipeline, creating the same effect of reading/modifying the original data struc-
ture multiple times. While reiterating packets can impact the throughput, the
decomposition can lead to the use of more pipeline stages.

3.1.2 Computational resource

Beyond dealing with the limited memory of the existing data plane hardware,
the small amount of computational resources in the data plane also requires tailored
designs. Computational resources in this discussion refer to both (1) the set of
primitive operations available and (2) constraints regarding the limited number of
pipeline stages (around 12 stages) and the number of operations in each stage. These
constrained characteristics make running functionalities that require more complex
operations or a large number of operations hard.

Complex Operations. Complex operations, such as tensor aggregations,
matrix multiplication, or division, can be easily implemented on servers. However,
implementing those operations is not easy in the existing programmable hardware.
Instead, alternative approaches need to be used.

• Approximations. Computing approximations of the desired complex op-
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erations are often employed (SAPIO et al., 2019). This is especially rel-
evant for calculations involving floating-point numbers, which can be ap-
proximated within the data plane hardware itself (COELHO; SCHAEFFER-
FILHO, 2022).

• Simplifications. In some cases, a viable approach is not trying to approxi-
mate the computations but instead finding a condensed and simplified algo-
rithm or operation by removing unnecessary elements. An illustrative example
is the deployment of a Neural Network. Neural networks (NN) comprise ag-
gregation operations on weights and activation functions, which are complex
to run in a programmable switch. An alternative is translating the NN into a
binary neural network (bNN) by simplifying aggregation and activation func-
tions to binary operations. This makes executing an NN more feasible in the
data plane (SIRACUSANO et al., 2022).

Compute Intensive. Functionalities that require the computation of a
large amount of instructions are limited by several constraints of the data plane.
This is not only because pipelines have a limited amount of stages but also because
those stages may need to run essential functionality for the network, consuming
some of the resources available.

• Memoization. One alternative for handling an intensive amount of opera-
tions for a packet is memoization. Memoization can take form by processing
a packet in the pipeline and storing preliminary states. Subsequent packets
that need to compute the same state can rely on the memorized result instead
of calculating it again.

• Division of Labor. Another alternative for more intensive computation is
partitioning the calculation between multiple smaller packets that perform the
calculation as they traverse the pipeline (BASAT et al., 2020). One example
of this approach is investigated in Qpipe (IVKIN et al., 2019), which com-
putes quantiles from a sample of packets in the data plane. To compute the
quantiles efficiently, it relies on packets not sampled, named worker packets,
to traverse the pipeline and perform part of the tasks before being forwarded
to their output port. Since the data plane functionalities are enforced to run
at the line rate, this technique does not affect the performance of the worker
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packets. Furthermore, it does not rely on primitives such as resubmission or
recirculation to perform the remaining tasks, which could reduce throughput.

3.1.3 Summary and takeaway

In summary, we observe that offloading functionality to the existing data
plane models requires customized designs to overcome problems such as the lack of
memory and limited computation capabilities. Figure 3.1 categorizes the methods
we can rely on.

Constraints

Memory

Intensive

Distribute

Approximation

Compression

Read/Write
Decomposition

Reiterate

Computation

Complex
Approximations

Simplifications

Intensive
Memorization

Division of Labor

Figure 3.1 – Summary of techniques for each specific functionality category

In the first part of the thesis, we aim to investigate more concretely the ex-
isting techniques used to deal with the limitations in the data plane. To achieve
this, we present a case study in which we propose and design a new functionality
to be offloaded from a distributed system to the switch. Specifically, we focused
on offloading the global virtual time synchronization functionality from distributed
simulations to the switches. The computation of virtual times requires calculating
a minimum value between several values, which is not easily performed in the data
plane, especially considering that virtual times change discretely. Thus, a tailored
design suitable to the switch constraints becomes necessary. By devising this dis-
tributed design, we illustrate a practical use case of how we can use the design
considerations discussed in this section to handle the data plane constraints.
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3.2 Motivating in-network GVT

Large-scale distributed simulations play an essential role in scientific research
and many other domains, including weather forecast (MAZZURANA, 2021), mili-
tary training (HANNAY; BERG, 2017), large-scale system design simulation accel-
eration (e.g., VLSI layout (GONSIOROWSKI; CAROTHERS; TROPPER, 2012;
BRITO et al., 2015)), manufacturing and supply chains design (MORINAGA;
ARAI; WAKAMATSU, 2012; SARLI; LEONE; GUTIÉRREZ, 2016), etc. Tradi-
tionally, different parts of a simulation model run on distributed servers or in a
cluster and need to be periodically synchronized to exchange timing information
and establish a global virtual time for consistent event processing (ABEYDEERA;
SANCHEZ, 2020). Global virtual time (GVT) (JEFFERSON, 1985) significantly
impacts the performance of distributed simulations. Efficient computation and prop-
agation of GVT ensure synchronization across distributed processes, reducing wait-
ing periods and improving overall system performance and simulation speed.

Developers usually have two choices for synchronizing simulations using
GVT: a centralized server-based mechanism to coordinate the computation or a
decentralized synchronization algorithm for application processes to perform the
calculation on servers. Examples are the Chandy and Misra Null-message protocol
(CHANDY; MISRA, 1979), the Granted Time Window algorithm based on the Dis-
tributed Snapshot protocol proposed by Mattern (MATTERN, 1989), and the Time
Warp Mechanism (JEFFERSON, 1985), which uses rollback to recover from causal
consistency violations. However, these schemes impact the simulation completion
time due to the RTT message propagation delay and the software stack latency while
computing a new GVT value in servers. As such, server-only implementations may
become a bottleneck for synchronization because of the processing, buffering, and
transmission operations (KUZNIAR et al., 2022; NORONHA; ABU-GHAZALEH,
2002). Even if GVT computation is pushed to a server placed in an optimal location
in the network to minimize RTT, the delay will still be imposed because of the server
software stack.

In this context, the recent advances in programmable data planes create a
different alternative for GVT computation. Instead of using server-based protocols,
we can write a P4 program to intercept synchronization packets and perform the
computation necessary in the networking devices. By offloading the computation to
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Figure 3.2 – An example of GVT value in an event diagram.

the network, there is an opportunity to revisit GVT synchronization protocols and
process their information, saving bandwidth and reducing the propagation delay.

Different deployment scenarios can benefit from offloading GVT synchro-
nization to the network. For example, a cloud provider can run an in-network GVT
service for its tenants that need to run simulations. Alternatively, an enterprise
can incrementally deploy switches near a server cluster to accelerate existing sim-
ulations. Devising an in-network GVT synchronization mechanism that relies on
programmable switches will reduce the propagation delay compared to a server-
based deployment. As such, it can speed up GVT synchronization and accelerate
large-scale distributed simulations.

3.2.1 Distributed Simulations and GVT

A distributed simulation can be partitioned into a set of processes (P ). Each
process in P can simulate an entire simulation component (LI; LI; KAUFMANN,
2022). For example, a component can be the physics of a hurricane or a gate from a
circuit. During the simulation, the GVT is used to synchronize these components’
events (JEFFERSON, 1985). It is used to measure progress and define barriers to
synchronization. The GVT is defined as the minimum value among all local virtual
times (LVTs) and timestamps of all events in transit (JEFFERSON, 1985).

Figure 3.2 presents, in an event diagram, a snapshot of three different pro-
cesses, P0, P1, and P2. An arrow represents a message exchange between two pro-
cesses, and its endpoints consist of send and receive events. The Global Virtual
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Time (GVT) is defined by checking the timestamps of the last events processed by
each individual process. GVT is calculated as the minimum of these timestamps,
representing the earliest point in time among all processes where we are secure that
all events have been processed. In this example, GV T = LV T (P2) = 70, the times-
tamp of event e22. Ideally, we want to have fast GVT computations so that the
simulation will be subject to less wait time to order events.

The frequency at which GVT is computed depends on the synchronization
algorithm implemented by the distributed simulator: it can be synchronous or asyn-
chronous (JUNIOR et al., 2020). In a synchronous algorithm, events are performed
in a lock-step manner (BREITNER; SMITH, 2017). Each event is processed only
when its local virtual time meets the GVT, and all the distributed components
simulate the same virtual time. In an asynchronous algorithm, the processes can
simulate the component events without a barrier in a lock-free manner (EKER et
al., 2019), leading to increased performance. However, by allowing this freedom,
events can be processed out-of-order, violating causal consistency and possibly lead-
ing to inaccurate simulation results. Thus, to address this problem, simulators rely
on checkpoint-rollback mechanisms to save consistent states of a process and restore
the state when a causal violation occurs, ensuring the simulation remains accurate.
In this case, GVT can be used as a barrier to define the moment a process should
take a checkpoint of its state. By ensuring checkpoints are created using GVT as
a barrier, there is also a guarantee that a single rollback will lead to a consistent
state. Thus, in asynchronous scenarios, computing a GVT faster can lead to a faster
reaction of mechanisms that create a checkpoint, avoiding unnecessary rollbacks to
earlier points in time.

3.2.2 Why in-network computing?

We aim to reduce server and network bottlenecks and increase the perfor-
mance of GVT synchronization by leveraging programmable data planes and in-
network computing to offload the virtual time synchronization to programmable
switches. Our solution is an alternative to server-based synchronization proto-
cols. Offloading the GVT computation to switches is beneficial for several reasons
(TOKUSASHI et al., 2019). Firstly, performing the computation as early as possible
decreases network traffic, reduces congestion, and cuts the number of network hops
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necessary to complete a GVT computation. Secondly, because the GVT computa-
tion computes the minimum value of a set of events, simple arithmetic operations
that run at a line rate with modern switch hardware can be easily implemented.
Finally, since the computation on switches occurs at line rate, the switch can im-
plement the GVT comparison for an increasingly high number of processes with no
significant impact on processing delay. Thus, we propose a system that can speed
up distributed simulations running in data centers or clouds, which is common in
the distributed simulation field (FUJIMOTO et al., 2010).

3.3 NetGVT system design

This section presents NetGVT1, a system for performing GVT computation
using programmable data planes. The system can intercept event messages and en-
capsulate logical clocks in a custom protocol header, which switches use to compute
the logical clock barriers.

3.3.1 Challenges

As we already discussed in Chapter 2, performing computation in pro-
grammable switches has many advantages, including line rate processing and the
reduction in propagation delay. However, the switch programming constraints im-
pose challenges for calculating virtual time synchronization.

Limited set of ALU operations. There are restrictions on which op-
erations are allowed and how these operations are performed. For example, the
number of ALUs at each pipeline stage is fixed. This creates a challenge if the
program’s layout requires more ALU operations than those available in the pipeline
stage (HOGAN et al., 2022). Additionally, P4 does not support loops, making it
challenging to implement the GVT computation considering the constraints of the
switch programming model. To overcome this challenge, NetGVT unrolls the GVT
computation using resubmission. However, since using too many resubmissions can
negatively impact throughput, we judiciously use it by decomposing multiple logi-

1Contents of this chapter have been published in Parizotto, Ricardo, et al. "NetGVT: offloading
global virtual time computation to programmable switches." Proceedings of the Symposium on
SDN Research. 2022.
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Figure 3.3 – NetGVT architecture overview.

cal clocks into hierarchical chunks and only traversing the essential chunks for the
required computation.

Limited amount of memory. Within a processing pipeline, we use stateful
registers to store logical clocks inside the switch. However, stateful registers consume
SRAM space, which is limited. Such constraints limit the virtual clocks we can keep
in the switch. To overcome this challenge, we propose a compression mechanism
for virtual clocks that only needs to store an absolute difference between the virtual
clock and an integer scalar. We periodically update the scalar to keep the memory
demand low, ensuring that the fundamental difference between process clocks and
the scalar can fit in short bit vectors.

3.3.2 Overview

The architecture of NetGVT, presented in Figure 3.3, consists of multiple
servers connected to a programmable switch and an SDN controller.

Programmable switch. The switch is the main component of NetGVT.
Simulation processes exchange event messages, and the switch is responsible for
intercepting packets and storing a compressed version of their local virtual time
to compute a new GVT value. First, the switch intercepts and processes a new
protocol header that encapsulates virtual clocks. Next, the comparisons required
to determine the new GVT are unrolled across multiple pipeline stages, subject to
ALUs constraints. Finally, the switch sends the resulting computed value to all
servers participating in the simulation using multicast primitives.
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Shim layer. Existing distributed simulations often hardcode the synchro-
nization protocol and how simulation nodes update their GVT. These traditional
protocols do not consider any computation in the network and often operate over
TCP, which is not suitable for INC. Instead of relying on TCP, NetGVT work over
UDP and provides a shim layer that resides in simulation nodes. The shim layers
intercept event messages and encapsulate the local clocks within a custom protocol
header to offload the GVT computation to switches.

SDN controller. Besides deploying simple forwarding rules, the NetGVT
SDN controller is responsible for updating the switch when the set of servers in
a cluster is modified (addition/removal) or when there are changes in the set of
processes participating in a distributed simulation. When a simulation starts, the
logical clock of each process is reset to zero. Finally, the controller is also responsible
for configuring multicast rules to deliver GVT values to all the servers.

3.3.3 Handling event messages

Distributed simulation processes execute events according to a global virtual
time. Consequently, processes must have ways to read the current GVT before
running an event. Additionally, after processing events, a process will have a different
local virtual time, possibly leading to a new GVT value. Consequently, it is necessary
to provide ways for the simulation processes to encapsulate these values so that the
NetGVT switch can intercept and process them.

Intercepting packets. The shim layer intercepts event messages from dis-
tributed simulation processes. After intercepting a message, the shim extracts the
virtual time of the process and encapsulates this information using a custom packet
header as shown in Figure 3.4. The custom header added by the NetGVT shim
layer is composed of the following attributes:

• Type: denotes an operation, whether the packet is proposing, delivering a new
value, or starting a new execution.
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• Process ID (Pid): is the unique identifier of a process and specifies the
process that created a message.

• Value: stores a value to be exchanged between servers and the network device.
It can be a GVT or an LVT, depending on the context of the operation.

These header fields are modified by the switch and by shim layer instances
during event message transmission. Finally, the shim layer intercepts packets ar-
riving from switches to maintain a common timing reference among the distributed
processes and stores the new GVT.

Packet losses. Although packet losses are uncommon in a cluster environ-
ment, NetGVT employs a mechanism for dealing with this loss. Because switches
can not create new packets, we delegate most tasks for dealing with packet losses to
the shim layers running on servers. The shim uses timeouts and re-transmissions to
detect and recover from packet losses. The shim associates a timer to each proposal.
If the timer triggers a timeout, the system assumes a packet was lost and retransmits
it to the switch. Duplicate messages are identified by their LVT, i.e., if the received
LVT from a process p is smaller than the one stored in the switch, we consider it a
duplicate and acknowledge the receivement of the most recent packet.

3.3.4 Data plane layout

Figure 3.5 presents the layout of the NetGVT switch data plane. Upon
receiving a packet, the switch checks whether it is an event or a standard forwarding
packet. Standard forwarding packets are forwarded normally to an output port, thus
enabling our system to be incrementally deployable. This also allows us to deploy
NetGVT into existing distributed simulators without requiring us to change how
event message exchange occurs.

3.3.4.1 Updating virtual times

In the case of event packets, the switch updates the respective LVT in a
LVTList according to the process identification. The LVTList could be implemented
either using match+action tables or as an array of on-chip registers. The former
would require interaction with the control plane to update the list’s contents, im-
posing the overhead of a control loop as part of the GVT computation. Because
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of these drawbacks, which could impact the overall performance of the GVT com-
putation, we opt for the usage of on-chip registers. By using on-chip registers, we
can easily update the virtual time of each process without any interaction with the
control plane, avoiding the need for a control loop. This also enables these updates
to be processed at line rate, providing further improvements in terms of speed.

The LVTList holds a local virtual time for each simulation process and is
indexed by a unique identifier. To read the identifier of each specific packet, NetGVT
employs a match+action, that maps the PID as obtained from the header to an
internal index of the data plane program. Once we obtain the index using this
match+action mapping, the index is written in metadata, which is further used
to index the proper LVT value from the list. Because metadata is a per-packet
variable, this ensures the operation is atomic. Atomicity guarantees that the correct
index is consistently managed for each packet without the possibility of concurrency
problems.

Saving memory. However, as mentioned in Section §2.2.2.1, the switch has
a small amount of memory, and registers consume precious SRAM memory. Conse-
quently, naively allocating registers for the LVTList can consume a critical memory
percentage. To address this limitation, we propose a compression mechanism that
stores only the absolute difference between the LVT and a scalar to keep SRAM
memory usage low. For example, in a scenario where the simulation process time is
t = 100000, and the scalar is s = 99070, NetGVT only needs to store the difference
d = 930, which can be represented with a bit vector of size 12, instead of regular
32-bit integers. By periodically updating the scalar to a value close to the processes
LVT (e.g., the last GVT value), we ensure that the absolute difference is a small
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integer that can fit in a tiny bit vector.
Although using a scalar can save precious memory resources, naively updating

the scalar can face computational limitations. A naive approach would be to update
all the LVTs in the switch once a process exceeds the range of a scalar. Although
this can ensure all the LVTs are consistent according to the scalar, updating all
the LVTs would require reading and writing all the LVTs in the list. However, this
can easily exceed the number of operations available in a single pipeline traversal, as
discussed in Section §2.2.2.1. We take an alternative approach to avoid the overhead
of traversing all the elements.

Instead of updating all LVTs during a scalar update, the NetGVT switch
detects and changes on demand only the LVTs that exceed the scalar range. Specif-
ically, the system defines a shadow scalar, based on the current GVT, corresponding
to the scalar that will succeed the current one. The switch then identifies any LVT
that needs a new scalar and uses the shadow one2. The remaining LVTs still keep
using the current scalar. Over time, all LVTs will exceed the current scalar range
and converge to the shadow one, becoming the current scalar. Supporting the notion
of a shadow in addition to the existing scalar avoids updating all LVTs at once when
the scalar needs to change, at the cost of only two extra registers.

3.3.4.2 Computing the global virtual time

After updating the LVT of the process, the switch will start computing the
GVT. Computing the GVT requires iterating through other virtual times and cal-
culating the minimum value among all the LVTs. However, as discussed in Section
2.2.2.1, iterating through many values and computing a minimum value is subject
to several hardware constraints.

Design Alternatives. Given that the P4 language does not support loops,
we unroll GVT calculation as a set of if-else statements that iterate through the list
of local virtual times. However, having a large number of processes leads to a large
number of local virtual times. Consequently, the chain of if-else statements may
not fit in the pipeline because it would require more ALU operations than what is
available in a pipeline. To address this challenge, our design partitions the if-else

2Since these LVTs are on a different scale, we invalidate them by setting up a bit in a bitmask.
This does not affect the GVT computation accuracy because it only occurs in processes that are
not the new GVT.
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chain into different chunks, where each chunk compares a portion of virtual times.
Assuming that n virtual times are partitioned into chunks that can fit in the pipeline
width size, a naive approach to computing the GVT is to use resubmissions to iter-
ate through all the chunks. This would enable a correct computation by iterating
through the list of virtual times, even if the list is extensive. However, this approach
still requires r = n/width = |chunks| = O(chunks) resubmissions, imposing addi-
tional overhead for packet processing. Minimizing the number of resubmissions is
essential to optimize throughput from the switch and reduce the overhead of packet
processing.

Our Approach. In NetGVT, we thus aim to provide an approach that
judiciously uses resubmissions. Our insight into reducing the number of necessary
resubmissions relies on the observation that a packet event only modifies the virtual
time of a single chunk in each pipeline pass. However, the packet must observe the
minimum value from each chunk to compute the global minimum value. Therefore,
we propose to employ memorization techniques, where the minimum value of each
chunk computed by processing previous events is stored in a cache. This cache acts
as a repository of pre-compute local minimum values. When calculating the GVT,
only the iteration of the cache values is utilized instead of iterating through all
the virtual clocks. This approach minimizes redundant computations and reduces
the overhead associated with resubmissions. Figure 3.6 illustrates how this design
performs the GVT computation. In the approach presented in the figure, the system
identifies the chunk that should be updated when a packet arrives. After updating
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that specific chunk, the switch reiterates the packet. Next, the system compares
only the minimum between the chunks to compute the GVT.

Hierarchical approach. However, reading and comparing the memorized
values can also exceed the ALU operations available in a single pipeline. We devise
another strategy that generalizes the memorization approach to also occur between
the cached values. To achieve this, we employ a hierarchical approach for processing
chunks. First, we create chunks of minimum values of lower-level chunks. This
process continues recursively from the bottom up, creating multiple levels of chunks
that fit in the pipeline. The creation of chunks occurs until the number of operations
required to compute the local minimum is, at most, the amount of ALU operations
available in the pipeline.

A mapping of a set of virtual clocks in our hierarchical approach is presented
in Figure 3.7. The example shows a recursion tree with a depth of three in a switch
capable of performing two comparisons at each pipeline. Each layer comprises a set
of chunks, and only a single chunk is modified at each pipeline pass. Once a packet
traverses the pipeline and is resubmitted to the beginning, the match+action tables
use the layer and chunk as keys. The table will match an action that updates these
variables according to the current layer and specific chunk. For example, consider
an update performed at layer 0 chunk 3. The next iteration will match the first
entries in the table, mapping it to layer 1, chunk 1, and index 1 in the chunk. This
process repeats until a new minimum is found.

Complexity analysis. We can represent the computation of the minimum
using the following recurrence relation:

T (N) =


T (N/width), if n > width.

min(N), otherwise.
(3.1)

As we can observe in Figure 3.8, performing these operations to the pipeline
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can be seen as a recursion tree, with the branching factor of width. Each node has
at most width operations, which can run at a line rate. In contrast, the following
levels have more width operations associated with each of the width chunks, and so
on. The tree has height logwidth(n), and at the leaves is our base case, which has as
the default n

width
leaf chunks. Since sometimes n

width
can not fit in a single pipeline,

we perform the hierarchical process by dividing the entry size by the pipeline width

at each recursion level. In level i, we remove ⌊n/widthi−1⌋ − 1 chunks from the
list of chunks the switch needs to visit using resubmission. Computing a new GVT
value will require starting from a leaf node and resubmitting until reaching the root
chunk. In the worst-case scenario, the amount of resubmissions is O(log chunks)
instead of O(n) from the naive approach. At that point, NetGVT can compute the
current GVT value.

Delivering the GVT. After computing and saving the new GVT value,
the switch inserts this value in the packet header and sends the packet to match
the MulticastTable. MulticastTable will create a copy of the packet with the
updated GVT for each shim instance and change the output ports. Finally, all
packets are forwarded to their destination.

3.4 Experimental results

In this section, we present the experimental results. Our experiments focus on
answering two main questions: (i) How does the performance of NetGVT compare
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to a server-only solution, and (ii) How does NetGVT scale with different workloads?
Experimental setup. We implemented the switch logic as a P4-

16 (BOSSHART et al., 2014b) program based on the TNA model in approximately
600 lines of code. The controller is a Python program (∼40 lines of code). The P4
compiler generates an API that the controller uses to modify the multicast groups
and addresses according to the mechanism described earlier. We developed the shim
layer in Python using Scapy (∼120 lines of code). The source code is available in
(NETGVT, 2022). The experiments were conducted in a testbed with two servers
connected by a Wedge 100BF-32X 32-port programmable switch with a 3.2 Tbps
Tofino ASIC. Each server is an Intel(R) Xeon(R) Silver 4210R CPU @ 2.4 GHz,
with ten cores and 32 GB memory.

Workload. We run a microbenchmark that instantiates one process at each
server of our testbed. We configured the processes to repeatedly send proposals that
update the GVT value for the microbenchmark and used tcpdump to measure the
latency. We compared our system to a server-only solution implemented with the
same functionality as NetGVT. We configured the server-only solution in one of the
servers, but instead of using the NetGVT switch, we used a simple L2 switch to
forward event messages to the central server.

Computation time. We measured the latency to propose, compute, and
deliver a new GVT value using both NetGVT and the server-only solution. Figure
3.9 presents the CDF for the latency with a sample of 1,000 GVT updates. This
experiment demonstrates that our solution consistently outperforms the server solu-
tion. We observed that the latency using NetGVT is not higher than 0.65ms for 50%
of the proposals. Conversely, the server solution takes about 0.85ms. This happens
because NetGVT cuts a network hop, avoiding a round trip to a server solution.
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Job completion time. To understand the impact of the GVT computation
time in a distributed simulation, we implemented a lock-step (synchronous) simu-
lation that executes different amounts of events. In this simulation, the processes
keep a local virtual time (LVT) and only run the next event when the LVT is less or
equal to the current GVT; otherwise, the process is locked. We measured the time
to complete the simulation and presented it in Figure 3.10. We can see that for 4096
events, the server solution performs similarly to NetGVT. However, as the number
of events increases, we observe that NetGVT can complete simulations considerably
faster than the server-only solution. This happens because events that the GVT de-
lays will start earlier when using NetGVT. For example, instead of a process waiting
0.8 ms for a new GVT value to begin processing a new event, it will wait for about
0.6 ms. This early start makes a considerable difference as the number of events
processed in a simulation increases. As part of ongoing work, we are studying the
integration of NetGVT with existing simulators, such as NS-33 and NEST4.

Resource utilization. We evaluated resource consumption of NetGVT on
top of a simple L3/L4 forwarding switch and configured NetGVT for an increasing
number of processes. Because we observed that the majority of simulations Net-
GVT aims to deal with often require around 2-128 processes (EKER et al., 2019;
WILLIAMS et al., 2021; MOHAMMAD et al., 2017; PELKEY; RILEY, 2011), we
assumed this setup in our analysis. To handle 128 processes, we compare LVTs of
up to 8 processes (8 is the pipeline width) at each pipeline stage and need up to
3 levels of chunks, incurring two resubmissions for updating the GVT. Unlike the
previous experiments on the testbed, we used Intel P4 Insight to measure resource
consumption as the number of processes increases (Figure 3.11). For 128 processes,
the virtual time storage increases the consumption of SRAM and MAP RAM up to
less than 10% of the memory available in the switch. ALU consumption is close to
40%, and the logical table ID to 20%.

Resubmission analysis. As mentioned earlier, NetGVT may use resub-
missions to enable the GVT computation. We note that resubmission adds around
0.65 − 0.75 ns to latency (WU et al., 2019). Figure 3.12 shows the number of re-
submissions required by the naive approach (which does not use the hierarchical
approach) compared to NetGVT. For 128 processes, NetGVT requires only two
resubmissions; resubmitting adds only 2 × ±0.7 ns to the latency of the scenario

3https://www.nsnam.org/docs/models/html/distributed.html
4https://www.nest-simulator.org/
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using only two processes. Instead, the naive approach would need to traverse all
128 LVTs without optimizations, requiring up to 16 resubmissions (considering a
pipeline width of 8). Thus, minimizing the number of resubmissions is necessary for
the overall computation performance.

3.5 Related work

Synchronization protocols. Fujimoto et al. (FUJIMOTO; HYBINETTE,
1997) proposed a GVT protocol for shared-memory processors. Their protocol re-
quires a round of communication for computing GVT since there is no need for
message exchange between processors. Mattern (MATTERN, 1993) presented an
algorithm for GVT computation for distributed simulations. This algorithm uses
a variant of a distributed snapshot to compute the GVT value. However, none of
these works considers network programmability. The most similar to our work is
(NORONHA; ABU-GHAZALEH, 2002), which migrates the GVT computation to
a programmable NIC. Although using the NIC avoids the overhead of the server
software stack, this approach still requires an entire RTT to estimate the GVT.
Differently, our work supports the GVT computation using programmable switches,
thus avoiding the overhead and latency of an end-to-end communication.

In-network computing. Research efforts have proposed several solutions
related to in-network computing, such as in-network concurrency control (JEPSEN
et al., 2018; YU et al., 2020a; LI; MICHAEL; PORTS, 2017). Coordination services
(DANG et al., 2020; ISTVÁN et al., 2016) offload the Paxos consensus protocol
to the network hardware in order to minimize exchanges with servers. HovercRaft
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(KOGIAS; BUGNION, 2020) uses programmable switches to collect quorum and
accelerate communication. Others run vertical Paxos between switches to build a
reliable storage (JIN et al., 2018a) or between servers to tolerate failures of network
applications running on switches (KIM et al., 2021). However, the purpose of con-
sensus is to make sure the same value is delivered to all participants without any
calculation in the switch to decide which value should be agreed upon. Instead,
NetGVT performs the GVT calculation before returning it to servers. Further, dif-
ferently from these works, NetGVT captures the notion of causality which is required
for GVT computation.

Our work is also aligned with recent efforts that leverage the benefits of
in-network computing to accelerate the processing of scientific workloads for high-
performance computing. Kim et al. (KIM et al., 2020) presented NSinC, an archi-
tecture that provides a closed control-loop for in-network acceleration of scientific
workloads and simulations. However, NSinC does not focus on synchronization but
instead enables telemetry over scientific data using programmable data planes.

A related area of research is moving physical clock synchronization to data
plane devices. HUYGENS (GENG et al., 2018) improves the synchronization of
datacenter servers by moving it to the NIC. Also, DTP (LEE et al., 2016) improves
the synchronization by moving it to the physical network layer. Further, DPTP
(KANNAN; JOSHI; CHAN, 2019) leverages high-resolution clocks available in pro-
grammable switching ASICs to respond to physical synchronization queries entirely
in the data plane. Although keeping a reference to a real clock in the data plane
improves accuracy, the clock skew of physical clocks could make it impossible to
define precisely if an event happens before another. Instead, virtual clock synchro-
nization ensures causal consistency, preserving the Lamport happens-before relation
(LAMPORT, 1978). We propose ways to offload virtual time synchronization using
logical clocks to programmable switches to speed up distributed simulations.

3.6 Discussions

In this chapter, we investigated how to deal with the constraints of the pro-
grammable data planes when offloading computation from a distributed system to
the switch. We discussed techniques that we can use to customize functionalities to
fit them in the data plane of forwarding devices. After studying these techniques,
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we analyzed a practical use case of those techniques. Our use case is the offloading
of the global virtual time synchronization for a distributed simulator to the network
switches. More specifically, we proposed NetGVT, a system that offloads GVT syn-
chronization into programmable switches. Since computing the GVT requires cal-
culating the minimum value between a set of LVTs, which is not a primitive readily
available in the P4 language or PDP hardware, we designed an efficient approach
to compute the minimum. Our approach’s design considers the memory constraints
and the limited amount of ALU operations at each pipeline. We presented our de-
sign and an evaluation of our prototype and showed the scalability of our solution.
Our results demonstrated that offloading the GVT computation to programmable
switches is possible, promoting reduced time to complete a simulation compared
to techniques that do not rely on network programmability. We also show that by
employing our approach, we may be able to compute the global virtual time over a
more significant number of clocks compared to a naive solution.

Although NetGVT has been primarily designed to compute the minimum
value between a subset of logical clocks, being able to run experiments on real
hardware allowed us to understand the different customizations and designs from
the literature. This section briefly discusses several lessons we learned about the
design considerations applied in the literature. Table 3.1 provides a comprehensive
summary of considerations being employed in the literature according to the
categorization presented in this Chapter. The table categorizes the functionalities
(i.e., operations, services) offloaded to the network according to the respective
design considerations. By employing these design considerations, the in-network
implementation of the functionality employs several customizations compared to
the server counterpart. It is clear that various functionalities, such as real-time
computer vision, computing quantiles, and aggregation, are addressed with dif-
ferent algorithms and data structures, each tailored to the specific needs of the
functionality, but can rely on the same design consideration.

Bellow we discuss the lessons learned in this chapter.
Lesson 1 - Commonality and Variation in Customizations: Although

several techniques are available, different INC functionalities rely on a common
subset of techniques from other data plane problems. For example, caching hot
key-value items (JIN et al., 2017c) and detecting heavy hitters (SIVARAMAN et
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Table 3.1 – Summary of techniques from the literature classified according to the
customizations studied in this chapter

Technique Funcionality Customization References

Division of Labor Quantiles Sketch Unsampled packets
to compute argmin (IVKIN et al., 2019)

Memoization Sketch Optimization Reuse hash values (NAMKUNG et al., 2022)

Simplification
&

Approximations

Computer Vision Limited size of filters &
assumes high contrast (GLEBKE et al., 2019b)

HH Detection Compute min in constant
accesses (SIVARAMAN et al., 2017)

NN Inference Converts NN into
Binary NN (SANVITO et al., 2018)

Lock management Identify hot-keys not
present in the cache. (YU et al., 2020a)

Key-Value Cache Identify hot-keys not
present in the cache. (JIN et al., 2017a)

ML training Quantize large
floating point gradients (SAPIO et al., 2021)

Reiterate

RTT monitoring Recirculate entry
for another chance (SENGUPTA et al., 2022)

IoT fingerprinting Update state machine
for signature checking (KUZNIAR et al., 2022)

Lock management The same request
can release/lock (YU et al., 2020a)

Computer vision Loop to complete
convolution (GLEBKE et al., 2019b)

Quantiles Sketch Carry value to
the first stage (IVKIN et al., 2019)

Graph Mining Obtain next sub-graph (HUSSEIN et al., 2023)

Decompositions

Aggregation Decomposes gradients
smaller ones (SAPIO et al., 2021)

Sketch Optimization Decompose sketches
into multiple stages (SIVARAMAN et al., 2017)

Load Balancing Decompose resources
from different devices (TAJBAKHSH et al., 2022a)

Graph Mining Creates a copy of
edges in multiple stages (HUSSEIN et al., 2023)

Compression
Quantiles Sketch Compacts a set of

integers into half of its size (IVKIN et al., 2019)

Load balancing Reduces bits to
store resources (TAJBAKHSH et al., 2022a)

Aggregation Sparsification &
quantization (SAPIO et al., 2021)

Distribute
Key-Value Cache Keeps only hot-keys (JIN et al., 2017a)

Aggregation Trains ML models
on different devices (LAO et al., 2021)

Lock management Keeps only hot locks (YU et al., 2020a)

al., 2017) for traffic analysis requires the computation of packet statistics. In the
case of caching, switches need to keep track of statistics about key-value pairs stored
in the server. Based on these statistics, the system can identify the hot key-value
items that need to be in the cache. Conversely, keeping a counter for flows is
necessary for heavy hitter detection. Both of those applications accept a few errors,
and thus, a common solution to these problems includes using probabilistic data
structures (e.g., bloom filters and count-min sketches). They trade the accuracy for
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the enhanced performance of programmable data planes.
Although we can reuse these data structures in multiple systems, deciding if

the functionality accepts the inaccuracies is difficult. For example, load balancers
can also use probabilistic data structures to keep per-connection status to maintain
consistency (TAJBAKHSH et al., 2022a). The solution to these problems includes
keeping a bloom filter or sketch that maps all packets from an existing connection
to the same (consistent) destination. However, using these data structures may lead
to conflicts because of hash collisions, resulting in approximated value. To avoid
conflicts, sketches can be divided into multiple-level sketches held in the data plane
(one sketch at each stage) and a conflicting key at each sketch, or rely on the control
plane to solve conflicting entries. This enables updating only the sketch that stores
the value corresponding to the key, making the system more robust. However, how
could a framework guess the level of robustness a functionality will tolerate? This
question is hard to answer because a desired functionality may require a tailored
design that only makes sense at the application level. An example functionality is
performing NN inference, in which the tailored design requires redesigning the entire
NN into a simplified model. How do we infer such specific simplification without
knowledge of the application? (PAN et al., 2023).

We can also apply different customizations to solve similar problems. For
example, obtaining the argmin() of a set of integers for computing quantiles in the
data plane is fundamental. Instead of doing several recirculations or approximating
the minimum value, as done in NetGVT and for heavy hitter detection, the
quantile approach from (IVKIN et al., 2019) uses unsampled packets to work
the computation of the minimum. In NetGVT, we unroll the computing of the
min() between multiple pipelines and employ memorization to avoid unnecessary
resubmissions. Given this scenario, it is difficult to choose the best alternative
implementation for each application.

Lesson 2 - The Role of Reiteration. The applicability of reiterations has
a broad scope and occurs in at least two scenarios: reading data structures multiple
times and unrolling large functionalities.

Firstly, reiterating is essential in scenarios where it is necessary to read or
update the same register value or table more than once. A concrete example of
this is seen in in-network lock management (YU et al., 2020b). When a lock is
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released, the corresponding object becomes available for acquisition by another
request waiting in the queue. The reiteration enables the packet to read the queue
again by sending the packet to the beginning of the pipeline, enabling enqueued
requests to acquire the lock. The second reason reiteration is applied is to allow
functionalities to use more ALU operations than in a single pipeline. A concrete
example is computing a convolution in a switch for computer vision (GLEBKE
et al., 2019b). The convolution process includes creating a matrix composed of
several filters. Even after simplifying the filters, computing the entire convolution
is not feasible within a single pipeline pass because of the small amount of available
operators. A concrete solution to this problem is iterating (or looping) over the
pipeline using recirculation. This iterative approach ensures that the convolution
computation can continue processing after a packet reaches the end of the pipeline,
effectively addressing the limitation imposed by a single pass through the pipeline.

Lesson 3: Importance of Decompositions: By combining reiteration,
memoization, and decomposition, NetGVT reduces the complexity of resubmissions
from linear to logarithmic. Without decomposing the set of virtual times into
multiple arrays (but still employing the hierarchical approach), the complexity of
recirculations would fall to O(width log chunks) because it would be necessary for
each branch of the tree to reiterate for width times. Thus, decomposition is a
powerful design technique for NetGVT. Decomposition is also essential for other
systems. For load-aware load balancing, for example, it is necessary to distribute
load into different servers according to the available resources (TAJBAKHSH et
al., 2022a). Thus, keeping this information on switches is essential for computing
a load-balancing policy. Once resources from multiple servers have to be checked,
an array is a natural way for programmers to store this information. However,
because of the constraints, their resources must be decomposed and saved in
different variables to be accessed in various stages of the same pipeline. Another
alternative would be to reiterate, but this would cost in throughput, thus making
decomposition an attractive solution to this problem.

Lesson 4: The Benefits of Compression. For similar reasons to Net-
GVT, resource-aware load balancers employ compression techniques. The reasoning
is to release resources for other functionalities running in the same switch. In the case
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of load balancing, compressing the resource releases switch resources to store state
about a higher number of connections. In NetGVT, it is possible to keep a higher
number of LVTs. Other functionalities also need to employ compression techniques.
In-network aggregation would not be possible without compressing gradients (that
are large floating points) (SAPIO et al., 2021). Compressing the gradients makes it
possible to fit them in the switch memory and reduce the bandwidth between servers
and the aggregator. The same occurs with quantile sketches, which compress a set
of integers into a smaller set.

Functionalities that can not fit into the pipeline memory even after com-
pressing may rely on a distributed design. Aggregating gradients for multiple jobs
simultaneously requires a switch to keep gradients for the training throughout the
entire aggregation process. Supporting multiple jobs needs a distributed design
where multiple gradients are aggregated in collaboration between various switches,
for example, by using a switch for each job and servers as a fallback, as adopted in
ATP (LAO et al., 2021). Deciding how to distribute those tasks is a challenging
task. Simply distributing the aggregation functionality by optimizing switch
resources without inferring the frequency of traffic or priority of jobs could lead to
deployments that do not maximize throughput and latency.
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4 INVESTIGATING THE IMPACT OF INC FAILURES TO CONSIS-

TENCY

In this chapter, we answer the second research question investigated in this
thesis, regarding studying the impact of failures on INC. Section §4.1 presents a
study of the effects of failures on existing INCs and the different consistency notions
required by each system. Section §4.2 presents the overview of RESIST, the system
we propose to mitigate the effects of failures. Section §4.3 presents how RESIST
synchronizes state between multiple devices, which is a fundamental building block
for providing fault tolerance. After discussing how to synchronize INC state, Section
§4.4 presents how the system can provide different consistency notions for INC even
in case of failures. Next, Section §4.5 presents the data plane building blocks and
how we can use them to configure state-of-the-art INC systems. Section §4.6 presents
implementation details of a RESIST proof-of-concept and the results obtained from
experiments running both in a testbed and an emulator. Section §4.7 presents the
related work. Finally, Section §4.8 presents our discussions.

4.1 Understanding the INC fault tolerance requirements

The idea behind INC is to perform computing tasks close to the data source,
reducing the data transmission overhead and thus improving the overall system
efficiency. However, this offloading also brings new challenges, and one of the sig-
nificant issues is failures. INC failures can negatively affect the operation of a
distributed system, disrupting and potentially creating an end-to-end system incon-
sistency. When computing tasks are executed in the data plane, switches act as
the critical infrastructure that supports these tasks. Hence, failures can result in
significant downtime, data loss, and a negative impact on system performance and
consistency. In order to emphasize the potential impact of failures, we examine an
in-network concurrency control system, an in-network event synchronization system,
and an in-network aggregation system, which work as exemplary examples of the
issue.
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4.1.1 Concurrency control

In-network concurrency control offloads the concurrency control (CC) into
switches, thus enabling the processing of transactions with reduced RTT compared
to server-based approaches. For example, in Netlock (YU et al., 2020a), when a client
wants to acquire a lock for an object, the system first tries to obtain the lock from
the switch. The switch checks in a forwarding table (e.g., key-value data structure)
whether the switch is responsible for locking that object. If the switch manages the
lock for the object, the packet is processed by another table responsible for writing
the lock into a persistent register array. However, if the switch is not responsible, the
system will acquire the lock from the server. This process is illustrated in Figure 4.1.

Client

check_lock
_exist

[meta.lock_exist == 1]

acquire_
lock

1.Acquire (lock ID) 4.Grant Lock

Switch
lock ID

register_
array

Server

[meta.lock_exist != 1]

2.Acquire
(lock ID)

2. acquire_lock_action

Locks

Server_
Forward

3.Grant 
Lock

Figure 4.1 – Netlock Overview

Impact of failures: However, if the switch fails (fail-stop mode) and the switch
state is erased, the locks managed by the switch will be lost, making the system
inconsistent. For example, suppose an exclusive lock is acquired by application A
and managed by the switch. In case of failure, another application, C, requires a
lock for the same key in the server since the switch is unavailable. Naively restoring
the switch state allows two applications to have an exclusive lock for the same key,
enabling different clients to simultaneously change the same critical element.

4.1.2 Event synchronization

As we saw in the last chapter, NetGVT (PARIZOTTO et al., 2022) is a
system that employs in-network computing to achieve efficient event synchronization
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in distributed systems. It is designed to offload the computation of a global virtual
time (GVT) into network switches, enabling them to synchronize events with a
reduced round-trip time (RTT) compared to a traditional server-based solution.
The system operates by intercepting event packets sent between processes running
on servers and storing the local virtual time of the sender process in a register within
the switch. The system then compares the virtual time stored in the registers and
the minimum virtual time of all existing processes in the system. If the virtual time
from the process is the new minimum, the switch performs a register action that
writes the new minimum into a persistent register and multicasts the new value to
all processes. On the other hand, if the virtual time from the process is not the new
minimum, the event packet is forwarded normally to its destination. This process
is illustrated in Figure 4.2. The system’s design leverages the network devices’
processing capabilities and reduces the overhead of transmitting data to a centralized
server for processing. This results in improved performance for distributed systems
that require event synchronization.
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Figure 4.2 – NetGVT Overview

Impact of failures: When a failure occurs in the NetGVT system (fail-stop
mode), it erases the switch’s state. This has significant implications, as the failure
results in the loss of the barriers managed by the switch, leading to inconsistencies.
These inconsistencies can cause serious problems, such as starvation of processes
and incorrect computation of the GVT. For instance, consider a scenario where one
process waits for another, and the switch manages the GVT barrier between them.
In the event of a switch failure, a naive recovery approach can cause one of the
processes to starve, as the system can not coordinate the communication between
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Figure 4.3 – DAIET Overview

the processes. Additionally, a naive recovery approach can lead to incorrect com-
putation of the GVT, potentially resulting in causality violations in the distributed
system running on the servers. Therefore, it is crucial to have robust and effec-
tive recovery mechanisms in place to handle switch failures in the NetGVT system.
Such mechanisms should ensure that the system remains consistent and that the
computation of the GVT is accurate, even in the presence of failures.

4.1.3 In-network aggregation

DAIET (SAPIO et al., 2017) is a system for map reduce that leverages the
programmable switch for efficient aggregation. Map reduce models are mapped
across multiple servers, called workers, who can perform operations in parallel, which
are aggregated later in the reduce phase. By offloading the aggregation process to
the switch hardware, DAIET can avoid the overhead of server-only solutions and
bring the aggregation closer to the workers. The model is divided into s parts, and
each part is sent to a switch for aggregation. The switch maps each packet to an
action, aggregating and storing the values into a register pool (values). Once all
the values have been aggregated, they are returned to the workers. This process
is repeated for each of the s parts of the model in a synchronous manner. The
overall process is illustrated in Figure 4.3. DAIET offers several advantages over
traditional aggregation systems, including improved scalability, reduced latency, and
higher efficiency due to the close proximity of the aggregation to the workers and
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Required
Consistency

Model
INC Functionality State

Strong
Consistency

Concurrency Control (YU et al., 2020a)
(JEPSEN et al., 2018; JEPSEN et al., 2021) Lock/Queues

L4 Load Balancing
(BARBETTE et al., 2020; MIAO et al., 2017)

(TAJBAKHSH et al., 2022b)

Connection
Status

Virtual Time Synchronization
(PARIZOTTO et al., 2022)

Logical
Clocks

Eventual
Consistency

Key-Value Cache (JIN et al., 2017a; LIU et al., 2017) Key-Value
Aggregation (SAPIO et al., 2021)
(LAO et al., 2021; HE et al., 2023)

Gradients/
Iteration

Table 4.1 – INCs by their consistency requirements

the line rate capabilities of switches.
Impact of failures. In the event of a failure during the training process in

DAIET, the workers must recompute the model and send it back for aggregation in
a different switch. This is because the failed switch would have lost all of its pre-
computed aggregation data. As a result, the workers must train, at minimum, the
last iteration again to obtain their gradients. However, unlike the event synchroniza-
tion example described above, there is no need to recompute the lost gradients in
the same order to ensure correctness in DAIET. This is because the aggregation op-
eration is associative, meaning it can be executed in any order and yield the correct
result. This associativity property allows for more relaxed notions of consistency
for fault tolerance of in-network aggregation. By leveraging this property, DAIET
can provide a robust and efficient solution for aggregation, even in the presence of
switch failures.

4.1.4 Takeaway

In summary, these examples have two different requirements regarding con-
sistency. On the one hand, global virtual time computation and concurrency control
require a strong notion of consistency to ensure correctness. On the other hand, the
in-network aggregation would require a weaker notion of consistency. Still, the fail-
ure recovery process can enhance the aggregation performance by avoiding restarting
the aggregation after a failure.

Table 4.1 generalizes the discussion presented in this section to a list of INC
systems. The table also identifies, for each system, the switch functionality (i.e., the
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state) that must preserve the respective notion of consistency.

4.2 RESIST overview and workflow

RESIST provides fault tolerance for In-Network Computing (INC). The goal
is to provide fault tolerance reducing the performance impact in non-failure scenar-
ios. To achieve this goal, our insight is to decouple the replication strategy from the
consistency assurance, ensuring consistency using a log-replay mechanism.

4.2.1 System model

INC assumptions. Servers are directly connected to a network of pro-
grammable switches. We assume that servers can temporarily store packets before
transmitting them to the NIC output port. For systems with clients outside the
network, we expect a proxy attached to our network to intercept and store packets.
Besides forwarding network packets, a switch may also run an INC functionality. We
do not make any assumptions about using cryptography to packet payloads or INC
headers. We assume the same in-network functionality runs in different switches
and that the functionality is deterministic.

Failure model. We assume several disruptions can occur in message trans-
mission, such as lost, duplicated, or unordered messages. RESIST focuses on switch
failures, and thus we assume servers can rely on traditional mechanisms for fault
tolerance, for example, using well-established state machine replication mechanisms,
such as Paxos (LAMPORT, 2019) or Raft (ONGARO; OUSTERHOUT, 2014). The
system comprises f + 1 replica switches, where f replicas can fail. We assume fail-
ures can occur by crashing, but switches do not experience an arbitrary behavior
(i.e., no byzantine cases). Finally, failures may occur simultaneously, both in the
main switch and in its replicas, without blocking the processing, but we assume that
at least one INC replica remains non-faulty.
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4.2.2 Architecture and workflow

RESIST provides fault tolerance primitives to instrument INCs, deploying
the instrumented source code on master and replica switches for asynchronous repli-
cation (§4.3). To ensure the fault tolerance mechanism is transparent to applica-
tions, RESIST implements a shim layer on servers (§4.4.3). This shim layer can
replay packets in case of a failure, ensuring the application remains available and
consistent (§4.4.4). To enhance the system’s expressiveness further, developers can
choose between different consistency requirements using a high-level control plane
configuration interface (§4.5).

Figure 4.4 describes the workflow of RESIST. RESIST enables developers to
instantiate fault tolerance building blocks to restore the INC to a consistent state
after a failure ( 1 ). The framework instruments the data plane with the essential
replication building blocks ( 2 ). After instrumenting the code, RESIST deploys
the INC into master and replica switches and configures them for replication ( 3 ).
The master switch runs the main INC functionality and will process packets in
non-failure scenarios ( 4 , green arrows). Every packet processed by the master will
be processed in the same order by the replica INC, ensuring linearization ( 5 ). In
addition to replication, RESIST employs log-replay mechanisms to restore the INC
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to a consistent state. We co-design our log replay mechanism between servers and
switches: a shim layer on servers intercepts and logs the essential information for
failure recovery. RESIST controller is accountable for identifying the failures and
collecting the necessary information ( 6 ). After the failure is detected, the controller
gathers information from the shim layers, and triggers recover using a model-based
replay mechanism that meets the desired consistency requirement. Finally, after
the recovery, the INC will start processing packets again using the replica ( 7 , blue
arrows).

4.3 INC state synchronization

We now discuss how to replicate the INC state between master and replica
switches and how RESIST can ensure linearization during the replication.

Alternative solutions. Periodic snapshot collection is a widely used
method for synchronizing replicas in distributed systems. However, this approach
comes with its own set of challenges. For example, when considering INCs, there are
two alternatives for collecting snapshots: exporting the switch state to the switch
CPU or using in-band telemetry to export data. Exporting the state elements to the
switch CPU can be costly, as the PCI-Express interface is slower than the data plane,
leading to performance degradation (SONCHACK et al., 2018). On the other hand,
the in-band telemetry approach would require additional resources in the switch
to dump register information into packets, which can increase the system’s com-
plexity. To overcome these challenges, RESIST employs packet replication to send
operations to a switch replica instead of collecting snapshots periodically.

Our Approach. Coordinating the packet replication synchronously could
ensure linearization by guaranteeing that the main switch only processes a packet
and forwards it to servers once all replicas acknowledge the receipt. However, this
type of coordination would impose additional overhead for processing the INC. In-
stead, to avoid the performance overhead of a synchronous approach, RESIST uses
an asynchronous design for fault tolerance. In this design, the primary INC pro-
cess packets speculatively, similarly to (PARK; OUSTERHOUT, 2019). Packets are
replicated from the master to the replicas, but the master does not need to wait for
an acknowledgment from the replicas to process a packet. This approach eliminates
the need to coordinate the replication, as the master does not need to be completely
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synchronized with the replicas to continue processing. This design enables the sys-
tem to operate more efficiently, at the cost of requiring a more complex recovery
process in case of failures.

However, naively replicating could lead to packets being processed out of
order or cause inconsistencies because of packet losses. Instead, to preserve lin-
earization (HERLIHY; WING, 1990) and reliability, RESIST takes inspiration from
Redplane (KIM et al., 2021). In particular, the master switch attaches a round num-
ber (a monotonically increasing sequence number) to each packet before replicating.
Replicas identify out-of-order packets by comparing the packet round number with
the round number from the previous packet. Whenever an out-of-order packet ar-
rives at the replica, the system reorders it. Since buffering packets is prohibitive in
the switch because of memory limitations, replicas send out-of-order packets back
to the primary. The primary then forwards them to the replica again. This process
repeats until all previous packets have been processed in order.

Besides ensuring linearization, to recover from packet losses, the master
switch mirrors packets in RESIST header in the switch egress. The mirrored packet
recirculates in the master until a replica sends an acknowledgment. If a packet ex-
ceeds a timeout in the master switch because it was lost, the mirrored headers are
resent to the replica.

4.4 Maintaining consistency after INC failures

After identifying a failure, RESIST orchestrates a recovery procedure to re-
store the replica to a consistent state.

4.4.1 Consistency models

RESIST supports different consistency models by relying on packet replaying
to ensure the replica INC is consistent with the state that the master INC had before
failure:

• Strong Consistency (SC): The goal of strong consistency is to ensure
multiple replicas act as a single sequential process. All replicas will have the
same state at a specific time. Any updates applied to replicas will consistently
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Figure 4.5 – Inconsistent cut created after failure because packet p2 became an orphan
packet

result in an identical state as if the updates were executed in a total order
sequence on all replicas.

• Eventual Consistency (EC): In EC, there is no need to ensure ordering.
All packets lost during failure must be replayed, but a replayed packet is not
guaranteed to be delivered to the replica switch in any specific order.

4.4.2 The need to preserve dependency

Recovering from a failure requires preserving the consistency models RESIST
provides and the dependency relation between events processed before the switch
crashes. The dependency can, however, be violated due to asynchronous replication.
Our key observation is that asynchronous replication enables a packet to show up in
the server state without being seen by the replica, indicating a dependency violation;
we call this type of packet an orphan packet. If a failure occurs in the INC switch,
and there are orphan packets, the state of replicas becomes inconsistent with servers.

Example. Figure 4.5 presents an example of an inconsistent state created
after a switch failure. In this example, nodes A and B exchange messages intercepted
and asynchronously replicated by the INC running in the switch. Node A sends
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packet p1 to the INC that replicates the packet. Concurrently, Node B sends packet
p2 to the INC, which is sent to Node A and to the replica. However, the main
switch crashes, and packet p2 never reaches the replica switch. After noticing the
failure, the RESIST framework will resume using the replica switch. However, a
naive recovery procedure would make the system inconsistent because there is an
orphan packet – in the example, packet p2 is an orphan because it is reflected in the
state of Node A but was never reflected as a send event by the replica state. This
can be observed because Node A has information that the switch is in state S = 2,
but the replica has state S = 1, which is inconsistent.

To detect dependency violations, it is necessary to provide ways to define and
correlate the current replica state with the information already reflected on servers.

4.4.3 How to keep essential information

For detecting dependency violations and later having the necessary informa-
tion to correct that, our insight is to augment application requests with an additional
header that includes a monotonically increasing logical clock. By logging packets and
correlating the corresponding logical clocks that the packets observe while being pro-
cessed by the INC, RESIST identifies dependency violations. However, logging this
information at the switches would be prohibitive because of their limited storage
space (around ∼10MB). We take a different approach in which we rely on servers
that interact with the INC to maintain logging information in a distributed and col-
laborative manner. The logs will help identify and fix dependency violations using
a (consistency) model-based packet replaying in case the primary switch fails. This
process is transparent to the applications because we assume the existence of a shim
layer at the clients and servers that can help interface this communication.

Logging at shim layers. Figure 4.6 provides an overview of shim layers.
Each shim layer maintains its monotonically increasing logical clock and two logs,
the input and output logs. A logical clock is supported independently by each shim
layer, helping to identify and repair any violation of dependencies in the event of
a switch failure. The output log stores information about packets sent from the
application to the network; the input log stores information about packets received
from the network.
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• Output Log: When intercepting a packet from the application, the shim layer
encapsulates the packet with a custom protocol header and keeps a copy in
the output log (along with additional metadata) before forwarding it to the
network. The custom header encapsulation adds the logical clock value to the
packet and a unique identifier for the shim layer (e.g., a shim layer ID created
from its IP and port) before forwarding the packet to the output interface.

• Input Log: When receiving a packet, the shim layer stores the RESIST
custom header information, which includes the shim layer ID, the logical clock,
and a round number (added by the switch) in its Input log. After we log this
information in the shim layer, we take out the custom header and deliver the
packet to the application.

The shim layer logs will be crucial in identifying which packets should be
replayed after a failure; however, it could also harm the system’s memory consump-
tion. To address this, the RESIST framework periodically garbage collects the shim
layer logs by removing information from packets already reflected at the replica
switches.

One key observation is that once a replica switch has processed a packet,
the corresponding packet logs are no longer needed for system restoration and can
thus be removed from the shim layers. The RESIST framework periodically garbage
collects the shim layer logs by collecting determinants1 from the replica switch. Due
to hardware constraints, the switch only logs the last round number seen by the
replica. We utilize this information to determine which packets from the server can

1Determinants (SHERRY et al., 2015) is the kind of information required to restore a system
to a consistent state. In RESIST, determinants include the round number from the replica switch
and logs kept in the shim layer of the communicating nodes.
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be removed. Specifically, the system clears all packets in the shim layer with a times-
tamp less than the current round number collected from the switch. This mechanism
ensures the fault tolerance process can be performed with minimal memory usage
on the shim layers.

4.4.4 Replay-based recovery process

RESIST can recover from failures by reconstructing the switch state using
a replay mechanism. This process has three different steps. The first step of the
recovery process involves collecting the determinants stored in the shim layers and
in the replica switch. The next step involves identifying the subset of packets that
must be replayed based on the collected determinants. Finally, the third step sends
the necessary operations to the new master switch, ensuring that the necessary co-
ordination is employed to preserve the consistency model. These steps are explained
next.

Algorithm 1: Determinants collection and pre-processing
Data: N : the number of RESIST servers
pool: the set of servers in the RESIST pool;

1: inlog[N ], sw.rnd ← Collects determinants from servers and replicas
/* aggregates the determinants */

2: for each server ∈ pool do
3: for each p ∈ inlog[server] do
4: Log(p)← Log(p) ∪ {server}
5: Round(p)← pkt.round

/* send determinants to servers */
6: Send⟨Log, Round, sw.rnd⟩

Step #1: Determinants collection and pre-processing. The determi-
nants collection aims to gather the essential information to identify orphan packets.
Initially, the RESIST framework collects determinants from the set of servers in-
volved in the recovery procedure and stores these determinants in inlog and sw.rnd

(Algorithm 1, line 1). Next, the system checks the input logs to identify packets
received by the shim layers. For each packet p, we map in a data structure Log(p)

the set of servers that have logged that packet (according to their input log). In
addition, we keep in Round(p) the information about the round number of each
packet p and the replicas (Algorithm 1, lines 2-5). Once all this information has
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been collected and aggregated, the RESIST framework encodes the values from Log,
Round and sw.rnd and uses them to trigger the replay process (Algorithm 1, line
6).

Step #2: Detecting orphan-packets. Next, RESIST uses the infor-
mation collected in Step #1 to detect orphan packets. This process occurs for
all the shim layers in the system. First, packets previously received are sorted
in non-descending order, according to their round number (Algorithm 2, line 3).
The system identifies orphans as packets that are logged by the input log of a
server (Log(pkt) ̸= ∅) but whose round number was not seen by the replica switch
(pkt.round > sw.round) (Algorithm 2, lines 4). RESIST maintains those pack-
ets to replay their execution so a new master switch can reach a consistent state
(Algorithm 2, line 5).

Algorithm 2: Identifying orphan packets for replaying
Data: N : the number of RESIST servers
outlog[N ]: the output log for each server;
pool: the set of servers in the RESIST pool;
Log: the mapping of servers that saw each packet;
sw.rnd: the last round number seen by the switch;
Round: the information about packets round number;
/* repeating for all the servers in the pool */

1: for each server ∈ pool do
2: Sort the outlog[server] in nondescending order

/* replay messages in order */
3: for pkt ∈ outlog[server] do
4: if Log(pkt) ̸= ∅ and pkt.rnd > sw.round then
5: orphan← orphan ∪ {pkt} ; ▷ pkt is orphan

Step #3: Model-based replay. The replay process is the core mech-
anism for achieving the consistency of the replicas in RESIST. This process aims
to eliminate the inconsistencies that may have arisen from the existence of orphan
packets by identifying and replaying these packets according to a pre-defined con-
figuration. RESIST replay is customizable, allowing operators to choose between
three replay models: Strong Replay, Eventual Replay, and Strong Eventual Replay.
Figure 4.7 presents an example of valid replica states after a failure according to
each supported model. The primary INC state is presented at the top after pro-
cessing events from three servers: x, y, and z. Each event updates the state of the
switch and is processed in a specific order. Events not received by the replicas are
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Main INCSequence of operations

Speculative Operations

x←2 x←4 x←7 x←6 y←8 z←6 y←12 ...

Strong Eventual Replay: 
Merged operations (lastWriterWins)

x←2 x←4 y←12 z←6 x←6 ...

INC Replicas

x←2 x←4 x←7 x←6 y←8 z←6 y←12 ...

Strong Replay: Total order of operations

Eventual Replay: Unordered Operations

x←2 x←4 y←8 x←6 z←6 y←12 x←7 ...

Figure 4.7 – Valid states for RESIST replay mechanisms

marked as operations that run speculatively. The figure presents operations in a
replica after a failure according to each of these replay mechanisms.

• Eventual Replay (ER): The replay provides EC by allowing multiple shim-
layers to send all the replay packets without worrying about the ordering.
Switches will process packets replayed as soon as they arrive without re-
ordering operations. The replay ends when all the packets are acknowledged.
In the example in the figure, the replica processes the packets in an order that
is different from the order that the main switch processed before the failure.

• Strong Replay (SR): Packets are replayed, ensuring a strict total order.
Before starting the detection, the system blocks the processing of the applica-
tion running on servers, buffering new requests and preventing the application
from sending new packets to the switches. After blocking the application, the
shim layers send a message notifying the switch at which round number the
replay finishes. RESIST must guarantee that the order of packets processed
by the replica corresponds to the order of the round number included in the
packets. The replica does this by employing a reordering mechanism similar
to the one used in the replication. For any packet pi processed before pj in the
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main switch before the failure (pi ≺ pj), we must ensure that the delivery of
pi happens before pj in the replica switch. If a replica receives an unordered
replay packet, the packet is forwarded back, and the process continues until
it has been processed in the correct order. The figure shows that all replayed
packets are processed in the replica in the same order as the master before the
failure.

• Strong Eventual Replay (SER): Similarly to SR, it can also block the
application processing. But before starting the replay, the shim layers can
go through a customizable merge function that pre-processes packets locally
within each shim layer, solving conflicts between them. The merge function
outputs a subset of packets replayed with no ordering constraints compared
to packets replayed by other nodes. One example of a merge function is the
Last-Writer-Wins that selects only the most recent packet from each shim
layer to be replayed. The figure presents the state of a replica that received
merged packets using the Last-Writer-Wins but processed packets from dif-
ferent shim layers in any order.

Takeaway. While ER and SR can provide strong and eventual consistency,
SER depends on the system model of applications. In particular, SER can be helpful
in applications where shim layers have to replay multiple packets, and the operation
performed by those packets in the INC is commutative. Commutative operations are
those whose order of operations can change without affecting the result (SHAPIRO
et al., 2011). Examples of commutative operations are updating monotonically in-
creasing logical clocks from different processes (PARIZOTTO et al., 2022), summing
gradients for in-network aggregation (SAPIO et al., 2021), or even updating different
keys of a key-value storage (as pointed out in (PARK; OUSTERHOUT, 2019)).

Consider the example of computing barriers for logical clocks. Shim layers
can employ a merge function locally to solve conflicts between the packets from the
output_logs. The resulting packet can be processed by the replica in any order
while still achieving strong convergence at the end of the replay.
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4.5 Data plane and replay configuration

We now discuss how to instrument existing INCs to include RESIST fault
tolerance capabilities and how to configure an application’s consistency semantics.
In summary, RESIST allows data plane developers to instantiate pre-existing build-
ing blocks that implement asynchronous replication in their INC code. Further,
the network operator can configure the replay strategy according to the consistency
requirement and define a merge function when necessary.
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Figure 4.8 – The control flow of a switch with an instrumented fault tolerant INC

Switch building blocks. Figure 4.8 illustrates the control flow of an INC
that has been instrumented with RESIST. Heartbeat packets are transmitted peri-
odically between the RESIST shim layers running in the servers and the main switch,
to which the switch responds with pong packets. Regular packets are received in the
switch and will be replicated and forwarded to replicas using a multicast primitive.
To ensure a switch replica process requests in a specific order, our building blocks
ensure that once a replica receives an out-of-order replicated packet, it automatically
forwards this packet back to the main switch as a reordered packet. These requests
are retransmitted to the replica, which will process the requests in the desired or-
der in the user INC. This mechanism assembles the approach from RedPlane (KIM
et al., 2021), and it is necessary because buffering the packet in the data plane is
unsuitable.

During the recovery phase, collection packets gather the replica round num-
ber and forward it to the shim layers. Further, replay packets ensure that the INC
will be restored consistently. Before the INC processes a replayed packet, the switch
maps the specific consistency requirement configured by the operator: packets can
be strictly ordered by the round number, ensuring linearization or processed in the
order they arrive. Finally, after the INC processes the last replayed packet, the
switch is fully recovered and can process regular packets again.

Replay configuration. A control plane API enables developers to modify
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Replay Mode Blocks
Application Ordering Merge

Function
SR ✓ ✓ ✗

ER ✗ ✗ ✗

SER ✓ ✗ ✓

Table 4.2 – Operators used by each replay mode

the replay model of the replicated INC without needing to modify the underlying
data plane code, thus reducing the complexity of expressing fault tolerance require-
ments. The configuration choice is entirely up to the developer, who can make
trade-offs between performance and consistency based on the application’s require-
ments. RESIST offers a Resist_API(model, app) control plane API call. The
model parameter provides ways to change the replay model required. The app pa-
rameter is the name of the application. When a developer selects a replay model
for an application, a configuration is updated at the shim layers and switches corre-
sponding to the selected model. The configuration reflects the selected model and
customizes the replay process to match the behavior of the chosen model.

Table 4.2 presents the configuration used by each replay model. The config-
uration can set shim layers to replay packets asynchronously, i.e., without blocking
the application, or to operate synchronously. The switch is configured to guarantee
the sequential order of the retransmitted messages, thereby achieving total order,
or alternatively, it can permit replayed packets to be executed without any order.
Finally, the merge function is optional and only used for SER. RESIST can support
the three replay modes by combining the configurations mentioned above.

4.6 Evaluation

This section presents the experimental evaluation of RESIST. Our experi-
ments focus on answering the following questions: (1) How does RESIST impact
the overall INC performance in non-failure scenarios? (2) How does RESIST be-
have in failure scenarios, and what is the performance of the replay mechanisms?
(3) How does the replay behave for different amounts of servers and workloads? (4)
What is the hardware resource consumption of RESIST?
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4.6.1 Experiments setup

Proof-of-Concept implementation. In our PoC prototype, we developed
the shim layer as a multi-threaded Python program using Scapy2. The shim layer
sniffs the network interfaces and filters the captured packets using eBPF filters.
The RESIST switch was built using P4-16 code and is based on the TNA model
utilizing the Tofino SDK. The switch operates a 32-bit register to store the switch’s
round number, which is updated at the beginning of the ingress pipeline for every
INC operation. The framework uses multicast groups to facilitate asynchronous
replication, implemented using the mcast_grp_a metadata.

Evaluation Setup. We evaluate our PoC of RESIST in a Tofino testbed.
The experiments were conducted with two servers connected to two Wedge 100BF-
32X 32-port programmable switches with a 3.2 Tbps Tofino ASIC. Each server is an
Intel(R) Xeon(R) Silver 4210R CPU @ 2.4 GHz, with ten cores and 32 GB memory.
Each server has a network interface card with two interfaces (one per switch). In
addition, the server has a programmable NIC. The SmartNIC is a dual-port SFP28,
PCIe Gen3.0/4.0 x8, BlueField(R) G-Series, with 16 cores and 16GB of onboard
DDR4 RAM.

Applications. We evaluate RESIST by instrumenting the Tofino code of
two INC systems, NetGVT (PARIZOTTO et al., 2022) and a modified version of
Serene (NUNES et al., 2023). NetGVT synchronizes distributed simulation events
using an in-network solution to compute the global virtual time (GVT). The mod-
ified version of Serene can perform in-network aggregation for distributed training
in real hardware, as opposed to the original version that runs in BMv2. The sys-
tem trains a CNN for image classification with one hidden layer using the MNIST
dataset.

4.6.2 Performance benchmarks

Job completion time. To assess how RESIST impacts in non-failure sce-
narios, we performed a lock-step (synchronous) simulation that executes different
amounts of events using NetGVT. In this experiment, the processes keep a local

2Optimizing the implementation of the shim layer using packet processing frameworks such as
DPDK is planned as future work.
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virtual time (LVT) and only run the next event when their LVT is less or equal
to the GVT. We measured the time to complete the simulation and presented it
in Figure 4.9. For 8,192 events, the time to complete a simulation is not affected
by RESIST replication mechanism, meaning our asynchronous approach does not
add any delays for non-failure scenarios. As we increase the number of events in a
simulation to 65,536, we see only a negligible impact on the JCT.

Iteration time. We train the CNN model in the in-network aggregation
with and without RESIST and measure the time to complete each training iteration.
Because the aggregation is an associative and commutative operation, we configured
the asynchronous replication using the SER replay. Figure 4.10 presents the CDF
of the training iteration time with and without RESIST. We observe that RESIST
imposes around 0.02s overhead for each iteration. That occurs because the shim
layer instrumentation intercepts packets for logging and appending new headers.
However, this overhead does not significantly affect the job completion time (i.e., the
system added only around 20 seconds to the 3h:21m of the entire training process).
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Figure 4.11 – SmartNIC vs Switch

Comparison with server solution. We implemented an alternative ver-
sion of a synchronous replication mechanism that runs on a server (an approach
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similar to the one in RedPlane (KIM et al., 2021)) to compare to our in-switch
solution. This approach, as opposed to the asynchronous one used in RESIST, re-
lies on coordination. In our setup, this alternative replication mechanism runs on
a SmartNIC. We then measure the impact in the replication in cases where we use
a server instead of a switch as a replica. We ran the experiment and recorded the
time required to process each event in the SmartNIC-based fault tolerance. Figure
4.11 presents the CDF for the request processing time with RESIST switches and
with the alternative server solution. We observe that RESIST completes requests
earlier than using the replicas in a server, which may affect the JCT of large jobs.

4.6.3 Handling failures

To assess the availability of an INC system in the event of switch failures,
we compare the performance of NetGVT with and without RESIST instrumented
code for fault tolerance. We configured an experiment where clients send requests
to the switch to perform virtual time computation, and we monitored the number of
requests per second (RPS) being processed. We simulated a failure at the 10-second
mark by dropping packets in the switch and manually restarting the switch after
around 25 seconds.
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Figure 4.12 – RPS during failures

Figure 4.12 illustrates the RPS during the experiment, highlighting the dif-
ferences between the two scenarios. We observed that in the scenario without fault
tolerance mechanisms, requests triggered during the switch failure were delayed in
the server queue for the entire period that the switch was down. However, after
the restart, the switch resumed processing packets. In contrast, when using RE-
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SIST fault tolerance, we observed that the system could resume request processing
earlier. Consequently, a lower amount of requests are impacted by the switch failure.

The results in Figure 4.13 show that the system requires, on average, 0.16
seconds to recover from a failure. The standard deviation is 0.03 sec. These results
indicate that RESIST can rapidly recover from failures while maintaining a strong
notion of consistency.

Replay overhead. To understand the replay overhead, we ran a mi-
crobenchmark configuring shim layers to trigger replays with a variable number
of packets operating with different consistency models. We vary the number of re-
played packets from 10 to 1K, where each server sends half of the packets (ranging
from 5 to 500 each). To ensure that we assess the overhead of reordering with SR,
we randomly distribute the rounds between the packets in each shim layer. We
configure a merge function for the SER that selects only the last packet intercepted
by the shim layer using the LastWriteWin policy.

Figure 4.14 presents the time to complete the replay according to different
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replay modes. We observe that replaying 1k packets in SR and ER substantially
increases the latency for replaying. SR imposes significant delay because the number
of out-of-order packets in the new master increases. At the same time, the ER is also
required to send and acknowledge all the packets, which leads to overhead. Out-
of-order packets lead to reordering and increased latency as the number of packets
needed to replay increases. Instead, the delay is around one second when using
SER because only a single merged packet per process has to be replayed without
requiring any specific ordering between different servers.

4.6.4 Functional evaluation

To better understand the scalability of RESIST, we run experiments in our
emulated setup, varying the number of servers and using different configuration
scenarios to define the recovery strategy:

• Scenario 1 : For the replication, the main INC periodically exchanges snap-
shots with its replicas in a 4-second interval, and uses server replaying of lost
packets to achieve total order (strong consistency).

• Scenario 2 : For the replication, the main INC sends all packets to repli-
cas, and uses server replaying of lost packets to achieve total order (strong
consistency).

• Scenario 3 : For the replication, the main INC sends all packets to replicas,
but relies on a merge function and CRDTs during recovery. The merge function
solves conflicts locally at each server before the server retransmits, outputting
only the last packet retransmitted before failure (strong eventual consistency).

During the experiment, we intentionally dropped packets from the main
switch to the replica but delivered the original packet to the host destination. After
a fixed interval of 4 seconds, we injected a crash in the main switch. This situation
creates dependency violations that need to be corrected by the recovery procedure.

Recovery latency. Figure 4.15 presents how long the system takes to re-
cover for each scenario. We observe that the recovery is slower as the number of
servers increases. Achieving total order with eight servers requires about 7 seconds
in Scenario 1 and approximately 4 seconds in Scenario 2. This latency increase is
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attributed to the higher number of dependencies that need correction. However,
the latency does not exhibit the same growth in Scenario 3, which employs a merge
function to resolve conflicts and uses Conflict-Free Replicated Data Types (CRDTs).
Conflicts are resolved by consistently selecting each server’s highest NetGVT clock
value, eliminating the need to retransmit all packets. Operations performed on re-
sulting packets are commutative, allowing them to be processed in any order in the
replicas. This significantly reduces the number of packets requiring retransmission
and avoids the need for reordering, resulting in recovery times of less than 2 seconds
for any number of servers in our evaluation.

Retransmissions and dependencies. Figure 4.16 presents the number of
packet retransmissions due to dependency violations we observed per server in ex-
periments with scenarios 1 and 2. We omit Scenario 3 since the merge function solves
dependency violations in this recovery strategy. We observe that as the number of
servers increases, there is a corresponding increase in the number of retransmissions
for Scenario 1. This explains the higher overhead to recover. In contrast, Scenario
2 displays a lower number of retransmissions (3 packets on average) because the
failure in the INC (and the subsequent loss of packets) has a lower impact than los-
ing entire snapshots (Scenario 1). Although reducing the number of retransmissions
can improve the time to recovery compared to Scenario 1, it still requires reordering
packets from multiple servers.

4.6.5 Resource Consumption

Switch. The amount of switch resources that are consumed by RESIST is
presented in Table 4.3.

RESIST is not consuming more than 10% of each computational resource
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available. Specifically, a relatively small percentage of available arithmetic logic
unit (ALU) operations, approximately 5.2%, are used for comparing round numbers
and detecting out-of-order packets. Additionally, identifying the types of packets
being sent for the different building blocks (see Section 4.5), including replay, collec-
tion, linearization, requires 9.4% of table IDs and 5.2% of Gateway resources. Fur-
thermore, the memory consumption of the switch is negligibly low, with only 1.1%
of static random-access memory (SRAM) being utilized for storing round numbers
and flags that indicate the end of the recovery process. Finally, switch resources are
spread across only four pipeline stages.

Table 4.3 – RESIST switch resource consumption

Computational resources Memory
Meter ALU Table IDs Gateway SRAM TCAM

5.2% 9.4% 5.2% 1.1% 0.0%

Shim layer memory. We conducted multiple iterations within the testbed
setup while running in-network aggregation and recorded the memory consumption
using RESIST shim layers. We configured the frequency for garbage collection to 5s.
Figure 4.17 illustrates the amount of memory utilized with active garbage collection
in RESIST compared to the baseline without it. Without garbage collection, the
mechanism would be impractical due to the high memory consumption of storing
packets with gradients. Nonetheless, by implementing packet garbage collection in
the shim layers, the memory utilization in the output logs is negligible for almost
the entire training.
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4.7 Related work

As related work, we consider several research efforts with the goal of tolerating
failures in programmable switches.

Fault tolerance for INC. FRANCIS (HAN et al., 2022) designs a sys-
tem to recover from switch and link failures for source-routed multicast and clock
synchronization. In contrast, LIBRA (PAN et al., 2022) provides switch fault toler-
ance for synchronous machine learning systems. NetChain (JIN et al., 2018b) stores
and manipulates key-value items in switch memory and implements Vertical Paxos
(LAMPORT; MALKHI; ZHOU, 2009) using Chain-Replication to tolerate switch
failures, achieving strong consistency. Finally, HyperSFP (HUANG; WU, 2022) im-
plements fault-tolerant service-function chaining in the programmable data plane.
RESIST is different because it provides fault tolerance by decoupling consistency
from replication and employing a log-replay approach.

RedPlane (KIM et al., 2021) and Swish (ZENO et al., 2022) are the most
aligned works to RESIST. RedPlane provides fault tolerance for applications running
on switches using replicated data storage on servers. The system provides both
strong and eventual consistency. However, because the system uses coordination to
achieve strong consistency, the system delays every packet. This overhead increases
when a server-based storage is used to run the replicas. RESIST reduces these
overheads by placing a replica in the data plane and performing replication at line
rate. Furthermore, instead of coordinating the replication, RESIST decouples the
consistency guarantees to be ensured using log-replay techniques. This decoupling
allows RESIST to reduce the overheads of non-failure scenarios while providing
efficient recovery and strong convergence guarantees.

Swish (ZENO et al., 2022) provides abstractions that can enable distributed
network functions on programmable switches by replicating the state and operations
between multiple devices. While Swish could offer consistency guarantees to the
INCs we are working with, they rely on a mechanism to coordinate replicas and
recover from packet losses using the control plane to log and send packets again in
case of failures. This is different from RESIST. Once a packet arrives at the Swish
switch, it is forwarded to the control plane, where it is logged and waits until the
replicas acknowledge the previous packet. These techniques add overhead for non-
failure scenarios because Swish coordination ensures a packet is only retrieved from
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the log and forwarded to replicas once the replicas processed the previous packet.
INC for fault tolerance. Previously, we discussed the works that aim to

provide fault tolerance for INC systems. Now we briefly present research that uses
the data plane of switches to enhance traditional fault tolerance mechanisms. Recent
work leverages programmable switches for optimizing fault tolerance for applications
running on servers (SUN et al., 2023; CHOI et al., 2023; LI et al., 2016; PORTS
et al., 2015; LIU et al., 2023; KIM; LEE, 2022). These solutions use switches to
intercept and attach a sequence number on requests, ensuring different servers will
process the same request in the same order. By ordering requests in the network,
it is possible to provide total order without the overhead of coordination between
servers. RESIST is orthogonal to these works as it protects the switch functionality
from failures. Our system also orders requests in the network, but by doing so, it
protects the switch functionality from failures. Thus, besides ordering, we need to
handle the replication and recovery of switches.

Although these papers are orthogonal to ours, we highlight NeoBFT (SUN et
al., 2023), which, beyond using the network to order requests, employs asynchronous
replication using speculation in a way similar to ours. Once a server receives a re-
quest, it processes it in the correct order without waiting for a majority to complete.
If a packet is lost, a server sends a request to another server that will send the lost
packet. RESIST is different because it keeps a copy of the packet header in the
switch, avoiding asking for another server.

Asynchronous replication and commutativity. Asynchronous replica-
tion is widely used to avoid coordination overhead while employing state-machine
replication for fault tolerance (BIRMAN; JOSEPH, 1987). Recently, commutativity
operations started gaining attention because of their strong convergence, especially
in conflict-free replicated data types (CRDT) (SHAPIRO et al., 2011). CURP
(PARK; OUSTERHOUT, 2019) is a protocol that explores the commutativity of
operations for fault tolerance. Clients actively replicate requests asynchronously,
executing requests in 1 RTT and relying on replay in case of failures. Replayed
packets do not need to be ordered as long as their operations are commutative. In
RESIST, SER explores commutativity to enhance the recovery of INC failures. In
addition, RESIST also enables the customization of a merge function, reducing the
amount of replayed packets and, consequently, the recovery overhead.

Table 4.4 summarizes the most representative related work, the consistency
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Table 4.4 – Related work comparison

System Consistency
Model Mechanism Scope

Swish

Strong
Consistency

Chain
Replication

Read-intensive workloads
(NAT, load balancer)

Eventual
Consistency

Periodic
Synchronization

Arbitrary inconsistency
(e.g., rate limiter)

Strong
consistency

Window
Synchronization

Sketches
(e.g., DDoS detection)

RedPlane
Strong

Consistency
Synchronous

replication
NFs

(e.g, NAT)
Bounded

inconsistency
Periodic
snapshot

Bloom Filter,
Sketches

Resist
Strong

consistency

Asynchronous
replication

Log (model-based)
replay

Strict Ordering
(e.g., event synchronization)

Eventual
Consistency

Asynchronous
replication

Associative Operations
(e.g, aggregation)

model employed, the kind of mechanisms, and the scope. We have chosen the most
representative work by selecting ones that focus on INC systems (as opposed to NFs,
for example) and propose different notions of consistency instead of a single notion
specific to one application.

4.8 Discussions

This chapter investigated how to mitigate crashes in programmable data
plane devices when offloading computation from a distributed system to switches.
We study systems from the literature and show that these systems may apply dif-
ferent consistency models and mechanisms to preserve correctness.

• Concurrency control: Various approaches exist for concurrency control
(e.g., timestamp ordering, optimistic CC, transaction commit), all being in-
vestigated in the context of data plane programmability. Regardless of the
mechanism, it is necessary to operate in a strict notion of consistency.

• Distributed training: This process can perform aggregation synchronously
or asynchronously, allowing workers to keep a distance from each other. The
synchronous approach ensures all the workers are in the same iteration. How-
ever, because aggregation is commutative, more relaxed approaches can also
converge. This means that a mechanism that provides strong consistency or
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offers a weaker notion of consistency can satisfy the accuracy needs because
gradients from different workers do not conflict, thus also fitting the defini-
tions of SER. Asynchronous aggregation permits workers to be in different
iterations while achieving similar convergence guarantees, therefore remaining
correct in most cases. This is observed in Serene (NUNES et al., 2023), one
of the systems investigated in this chapter.

• Distributed simulation: Similar to distributed training, distributed sim-
ulation relies on comparable principles for synchronization, employing either
synchronous or asynchronous methods. However, like concurrency control,
correctness is maintained only with a strong consistency model.

To answer our second research question, we proposed RESIST, a system that
enables INC systems to be fault tolerant. The system employs asynchronous packet
replication between data plane devices and allows replicas to operate at different
consistency notions when a failure occurs. These multiple consistency notions can
be employed in RESIST to preserve consistency from each application. In particu-
lar, we proposed mechanisms that can preserve the consistency of both in-network
aggregation and also virtual time synchronization with a small overhead.
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5 EXPRESSING FAULT TOLERANCE REQUIREMENTS FOR INC

USING INTENTS

Until now, we have focused on understanding how to map INC functional-
ity subject to the data plane constraints and studying the impact of failures and
techniques that can keep INC fault tolerant with a small overhead. This chap-
ter addresses the third and final research problem presented in Chapter 1, Section
§1.2. In Section §5.1, we discuss the research problem, intent-based network con-
cepts, and the challenges we will face in investigating the research problem. Section
§5.2 presents the Araucaria system design that addresses the INC configurations
challenges, including our specification and refinement methodology. Section §5.3
presents the results from experimental evaluations. Section §5.4 presents the related
work, including literature that studies intent-based networks and research that tries
to raise the abstraction level of data plane programming. Section §5.5 presents our
discussions about the content from this chapter.

5.1 Understanding the complexity of INC fault tolerance

Offloading functionality to the network has several advantages, e.g., reducing
latency and improving bandwidth by intercepting and processing network packets
at the switch, thus avoiding the need to forward them to servers. However, these
advantages come at the cost of data plane configuration complexity due to the neces-
sity of writing low-level P4-based operations (e.g., table entries, action parameters,
and register values). Configuring such functions in the data plane is tedious and
requires substantial training. Moreover, data plane programmability must deal with
failures in forwarding devices and their applications, adding an additional layer of
complexity. For example, existing fault tolerant systems (KIM et al., 2021; ZENO
et al., 2022) employing replication techniques on data plane devices introduce other
complexities. In particular, they require configuring an INC and its replicas while
offering consistency besides fault tolerance.

One way to mitigate the above complexities is to develop a DevOps-friendly
automated policy- or intent-based data plane configuration. This approach could
enable INC operators to express fault tolerance requirements at a higher abstraction
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Table 5.1 – Intent frameworks in the literature.

Examples Purpose Target
Nile (JACOBS et al., 2018),
InsPire (SCHEID et al., 2017),
PGA (PRAKASH et al., 2015),
Arkham (MACHADO et al., 2017)

QoS, Control Access SDN, NFV

Janus (ABHASHKUMAR et al., 2017) Bandwidth QoS,
Temporal Policies SDN, NFV

JingJing (TIAN et al., 2019a) ACL rules WAN
Gherkin (ESPOSITO et al., 2018) Firewall, SFC SDN
P4-iO (RIFTADI; KUIPERS, 2019),
(LEWIS et al., 2018) Routing, HH Detection P4

level (PANG et al., 2020). Subsequently, the underlying software would automati-
cally translate these specifications into detailed low-level data plane code and con-
figurations. Although early research efforts in policy management facilitated some
configuration capabilities, particularly in the domain of security and quality of ser-
vice (QoS) (DAMIANOU et al., 2001), they can not enable the specification of poli-
cies for programmable data planes. Recent developments in intent-based networking
(IBN) allow the deployment of high-level intents directly into more fine-grain net-
work configurations, such as OpenFlow match+action rules, middleboxes (JACOBS
et al., 2018; ESPOSITO et al., 2018; HEORHIADI et al., 2018; ALALMAEI et al.,
2020), or P4 (ANGI et al., 2022; LEWIS et al., 2018; RIFTADI; KUIPERS, 2019)
- an in-depth list is presented in Table 5.1. However, existing works in this domain
do not support fault tolerance requirements and abstractions. Consequently, adding
fault tolerance to INC still requires handling low-level switch code without a clear
and organized methodology.

5.1.1 Intent-based networking

An intention (or intent) is an abstract declaration of an application or user
desires from the network (TSUZAKI; OKABE, 2017). Intent-based systems are
made to be easy to manage and require little or no intervention from external entities
(CLEMM et al., 2022). An intent-based system comprises several components:
profiling, translation, resolution, activation, and assurance.

The first component, named profiling, is where the users specify the intent.
The intent specification is declarative, using a high-level representation, such as
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natural language or GUIs. After establishing the intent, a translation component
refines the high-level specification. During the translation, an intent goes through
different abstraction levels: Policies and Configuration.

• Policy. First, the intent is translated into policies (CRAVEN et al., 2010)
(ELKHATIB; COULSON; TYSON, 2017). A policy composes a set of rules
used to control, change, or maintain a set of state objects. The policy is
an abstract representation that coops with the heterogeneity of the network-
ing devices. Thus, a policy does not represent a device-specific rule, control
loop, or action but an abstraction that can be reused across different domains
(CRAVEN et al., 2010).

• Configuration. After obtaining the policy, the intent is translated to device-
specific configurations. The configuration is the lowest level of abstraction
achieved in the translation and represents the concrete, device-specific com-
mands.

Given that multiple configurations may contradict, an intent resolution com-
ponent solves these conflicts and disambiguates them if necessary. Once there are
no conflicts with other intents, the system activates the intent configuration, orches-
trating the configuration deployment into network devices. Although the translation
and conflict resolution mechanisms ensure the deployed intent aligns with the spec-
ified intent, deviations may occur over time. The dynamic nature of the network
can lead to behavior changes that contradict the intents orchestrated earlier. To ad-
dress this problem, an intent assurance component monitors the network to gather
the network behavior. Subsequently, the assurance employs mechanisms that iden-
tify the discrepancies and generate new configurations to preserve the user intents
(LEIVADEAS; FALKNER, 2022).

5.2 Araucaria design

In this section, we present the design of Araucaria1, a system that relies on
intents to enhance the fault tolerance of INCs. The design of Araucaria is based on
the following insights.

1Araucaria is named after the Araucaria angustifolia, which are large and resilient trees that can
be found in the south of Brazil. The Araucaria is a symbol of resistance in the fight for biodiversity
conservation.
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Figure 5.1 – The high-level architecture of Araucaria.

Fault tolerance specification. To simplify INC fault-tolerance, the speci-
fication of intents should abstract the implementation details. Intents must also be
expressive enough to fulfill different fault tolerance requirements. To solve these is-
sues, Araucaria defines a constrained natural language with primitive fault tolerance
constructs, simplifying the specification of fault tolerance requirements.

Systematic instrumentation. Instrumenting fault tolerance into INC is
difficult because of the limited composability of the P4 language – i.e., simply im-
porting the fault tolerance functionality is impossible. To solve this challenge, Arau-
caria provides a refinement methodology that deduces the rules to provide fault tol-
erance from the input intent. The system also defines an instrumentation strategy
capable of systematically instantiating fault tolerance building blocks into the INC
source code.

5.2.1 Overview and workflow

Figure 5.1 illustrates the overview and workflow of Araucaria. Initially, the
operator defines INC fault tolerance requirements (e.g., in terms of consistency no-
tion and number of replicas) in a declarative manner ( 1 ). The specification, made
using a high-level language, goes through a translation process that analyzes the in-
tent structure and semantics ( 2 ). If the translation occurs without errors, Araucaria
generates an intermediary representation, identifying pre-defined building blocks
that implement the fault tolerance logic. For example, these building blocks include
code fragments for enforcing failure detection or enabling packet replaying mecha-
nisms. Araucaria then instruments the INC code by merging parsers and control
flows from the fault tolerance building blocks into a single data plane program ( 3 ).
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This data plane program is instantiated into multiple switch replicas based on the re-
quired availability ( 4 ), and an assurance module is instantiated in the control plane
to coordinate fault recovery. Dynamically, Araucaria replicates the INC state across
devices and provides periodic feedback to the assurance module about the status of
the replicas ( 5 ). In the event of an INC failure, the assurance module identifies the
failure and adjusts the data plane configurations ( 6 ). The new configuration ensures
the system forwards subsequent application packets to a different replica INC.

5.2.2 Declarative intent specification

An intent is an abstract declaration of what an application or user desires
from the network (TSUZAKI; OKABE, 2017). In Araucaria, each intent is as-
sociated with a predicate, including functionality and requirements. These predi-
cates state a property of an intent. Inspired by (ELKHATIB; COULSON; TYSON,
2017; JACOBS et al., 2018), we formulate a constrained natural language to specify
fault tolerance intents, where intents are structured as a tuple of primitive elements
⟨operations, functionalities, requirements⟩. Grammar 5.1 presents the language spec-
ification.

⟨intent⟩ ::= ⟨op⟩ intent_name ‘{’ ⟨pred⟩ ‘}’
⟨op⟩ ::= ‘Create’ | ‘Delete’ | ‘Update’ | ‘Read’
⟨pred⟩ ::= ⟨req⟩ ‘,’ ⟨func⟩
⟨func⟩ ::= functionality ‘fname’ ‘[’ ⟨input⟩ ‘]’ ‘,’
⟨reqs⟩ ::= ⟨reqs⟩ ’,’ ⟨req⟩ | ⟨req⟩
⟨req⟩ ::= ⟨avail⟩ | ⟨cons⟩ | ⟨cons⟩ ‘[’ ⟨merge⟩ ‘]’
⟨inputs⟩ ::= ⟨inputs⟩ ‘,’ ⟨input⟩ | ⟨input⟩ | ⟨empty⟩
⟨input⟩ ::= name ‘:’ value

⟨avail⟩ ::= tolerates ⟨int⟩ ‘failures’
⟨cons⟩ :: = ‘strong’ | ‘eventual’
⟨merge⟩ ::= max[hdr.value)] | ‘add’

Grammar 5.1 – The Araucaria grammar in BNF.

The language constructs are:

• Operations define actions (Create, Read, Update, and Delete) being applied
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to instances of functionalities.

• Functionalities identify the specific INC that the intent aims to configure.
Functionalities may be instantiated with customized inputs, used during the
refinement to identify the necessary INC building blocks for deployment.

• Requirements is the core element in the Araucaria intent structure. A
requirement aims to provide additional information about the intent:

– Availability lets programmers ensure that specific INCs are available
even if f failures occur (CHEUNG et al., 2021). Equivalent to the last
chapter, we assume failures can occur by crashing, but switches do not
experience an arbitrary behavior (i.e., no Byzantine cases).

– Consistency allows programmers to specify replica correctness properties.
The properties can vary between a strong or weaker notion that does not
preserve ordering constraints. In addition, consistency may be followed
by an optional merge function that provides ways to reduce conflicts
between requests.

Listing 5.1 presents an example of an intent that can be built using the
Araucaria intent language. In this example, an intent called ‘syncIntent’ is created
to manage an instance of NetGVT. The NetGVT functionality expects an optional
parameter representing the number of processes interacting with the switches. The
intent is for this instantiation of NetGVT to tolerate a failure while preserving the
strong consistency semantics the system requires.

1 Create intent sync Intent {
2 f u n c t i o n a l i t y : NetGVT [
3 s i z e : 3
4 ]
5 a v a i l a b i l i t y : t o l e r a t e s 1 f a i l u r e ,
6 con s i s t ency : strong ,
7 }

Listing 5.1 – Intent for synchronization functionality.

We implemented a compiler to translate Araucaria intents, including a lexer
(to identify the tokens from the intent) and a parser (to analyze the syntactic struc-
ture of the intent and generate an abstract syntax tree (AST)). Also, the semantic
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Figure 5.2 – Structure of an INC instrumented with the RESIST building blocks.

analysis ensures correct input formatting and examines potential conflicts, such as
assessing whether the expressed merge function can achieve the desired consistency
mode. The output of the intent compilation process is either an error or a valid
intent represented at a lower level. This representation contains the fault tolerance
functionality decomposed into smaller building blocks, which are discussed next.

5.2.3 Fault tolerance building blocks

Araucaria employs the fault tolerance protocol implemented by RESIST for
recovering INCs from failures. As explained in Chapter 4, client traffic is processed
by the main INC and replicated to a set of switch replicas in this protocol. If
the main INC crashes, a control plane program (SDN Controller) identifies the
failure using timeouts and collects the necessary state information from the replicas
and the clients. The SDN controller can aggregate their information and identify
the subset of packets that need to be retransmitted to a replica. The aggregated
information may trigger a client replay, which recovers the replicas to a consistent
state (PARK; OUSTERHOUT, 2019). The refinement process implemented by
Araucaria merges the source code from RESIST within the INC source code. To
allow the instrumentation, we first decomposed the RESIST into building blocks.
Dynamically, the network operator can select one of the recovery strategies and
Araucaria instruments the templates into the INC according to an application’s
consistency requirement, i.e., strong or weak.

Figure 5.2 provides a comprehensive overview of the underlying structure of
a P4 program that has been instrumented by Araucaria to support fault tolerance
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Table 5.2 – Summary of preparation actions according to the protocol packet types

Building
Block Packet Type Action Process

on INC
Failure

Detector PKT_PING Answers with pong No

State
Collection

PKT_COLLECT_ROUND Collects current round and
sends to the origin. No

PKT_NEW_SWITCH_ROUND
Updates the round to the
new provided value
and answers with ack.

No

Replication

PKT_BUFFERED Mark to specific output port. No
PKT_UNORDERED Mark to send it back to origin. No

PKT_ACK_MAIN_SWITCH Updates packet state and
drop packet. No

PKT_FROM_MASTER_TO_REPLICA Mark as unordered in case it is. Yes

Recovery

PKT_UNORDERED_REPLAY Send it back. No

PKT_LAST_REPLAY_ROUND Controller updates the last
replay round register. No

PKT_REPLAY_STRONG_EVENTUAL Checks if the amount of packets
reaches the cluster size. Yes

PKT_REPLAY_FROM_SHIM
Mark it as unordered if it is.
Otherwise, check if it is the
last packet from the replay.

Yes

using a set of four reusable building blocks that resulted from our decomposition:
Failure Detector, to identify if the main INC has failed; Replication, to synchronize
state with other switches; State Collection, to determine how up to date a replica
state is; and Recovery, to handle the recovery ensuring replicas follow a specific
consistency notion after a failure. These building blocks are implemented as a set
of P4 templates separated into different files. There are three types of templates:
initialization, preparation, and completion.

Initialization. The initialization template includes per-packet variables,
such as RESIST custom metadata, a new header and struct, and a parser state to
extract this header. The header has information to identify servers and message
types (e.g., recovery, collection) and to ensure linearizability through monotonically
increasing round numbers. The message types are strictly important for ensuring
consistency under failure. The parser state initializes these variables upon the arrival
of a packet.

Preparation. This template includes a set of variables and actions to im-
plement the logic building blocks discussed earlier. These variables are instantiated
in the ingress pipeline. Additionally, the preparation template contains a set of
commands for the apply block. These commands are arranged so that the template
code precedes the INC functionality in the pipeline and prepares the packet for INC



101

Table 5.3 – Example of completion functionalities

Building
Block Packet Type Action

Replication
PKT_FROM_SHIM_LAYER Packet will be replicated and forwarded to servers
PKT_FROM_MASTER_TO_REPLICA Packet will acknowledge the main switch
PKT_BUFFERED Retransmit packet if the threshold is crossed

Recovery PKT_REPLAY_FROM_SHIM Mark to specific output port

LAST_PACKET_RECEIVED Updates the round to the new provided value
and answers with acknowledgment

processing or filtering. The packet type triggers the P4 commands executed in the
preparation phase, where each separated command is part of a logic building block.
Table 5.2 outlines the operations performed in the preparation template based on
the packet type and the corresponding building block. Examples of these operations
include handling unordered and replay packets, detecting the last replayed packet,
responding to ping requests, replicating packets, and acknowledging packets. The
table also indicates the types of packets processed by the INC. The only packet
types the INC should process are packets from the shim layer, replicated packets,
and correctly ordered replayed packets. Filtering is crucial in certain cases, such as
when the packet being handled is an acknowledgment for replication or a message
for failure detection. In these instances, the INC should not process the packets.

Completion. Table 5.3 presents the packet types and actions implemented
in the completion template. This template includes packet management mecha-
nisms capable of applying multicast tables, keeping storage for packet losses, and
changing header arguments. The template is included after the INC functionality
to preserve headers and packet metadata for correct INC processing. The switch
defines the packet destination in this block based on the header type. In addition,
the completion template adds code to the egress, cloning packets to replicate and
acknowledge shim layers on servers.

5.2.4 INC source code instrumentation

To instrument the templates discussed in the previous section into an INC,
Araucaria systematically traverses the INC code and writes include pre-processors
strategically to instantiate the building blocks in distinct parts of the INC source
code. We require INC variables to follow a specific naming convention to avoid
conflicts with variable names used by Araucaria. This requires that INC variable
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names do not start with Araucaria reserved words, thereby establishing a contract
between INC developers and DevOps.

Step #1: Metadata and header definitions. The first phase of the
instrumentation includes the definitions of headers and structs at the beginning
of the INC source code. Araucaria variables include a new header definition for
ensuring linearizability during replication and specific metadata used in the control
flow for making per-packet decisions. After merging the INC headers, structs, and
metadata definitions, we start instrumenting the parser.

Step #2: Parser instrumentation. Our parser instrumentation leverages
a modular design that decouples the Araucaria parser state from traditional proto-
col states, such as Ethernet and IPv4. This decoupling allows us to incrementally
include the Araucaria protocol into the INC parser, avoiding ambiguities. This is
achieved in two steps: first, placing the Araucaria state between the INC header
extraction and the transitions, with the INC state working as the ‘parent’ node of
the Araucaria state. Additionally, the Araucaria state incorporates previous INC
state transitions. By ensuring that the extraction of an INC state is consistently
followed by the extraction of the Araucaria header, we effectively mitigate the risk
of introducing loops and non-determinism in the parser structure.

Figure 5.3 presents the parser of Araucaria, ignoring the states for standard
protocols. Figure 5.4 presents a general INC parser, including the INC state. During
the instrumentation, Araucaria includes the transitions from the INC in a transition
of the Parse_Araucaria. The INC state transitions are also removed, adding a
single transition to the Araucaria state. The resulting parser is presented in Figure
5.5.

Step #3: Control flow composition. After instrumenting the INC
parser, we start instrumenting the control blocks. Control blocks in P4 can contain
several constructs, such as tables, actions, registers, and apply blocks. To compose
the INC source code with the fault tolerance logic, Araucaria extends the definition
of tables, actions, and registers in the INC code to offer consistency. These include
variables for serializing requests between replicas, keeping consistency, and actions
to handle packets from the replica and coordinator. Next, Araucaria proceeds to
instrument the source code within the apply block. Our approach includes the entire
INC apply block between the preparation and completion templates. This will allow,
for example, to identify unordered packets in the preparation template to avoid
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Figure 5.3 – Fault tolerance parser.
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Figure 5.5 – Instrumented parser.

processing them in the INC code. Another example is to ensure that multicasts in
the completion template do not process packets within the same switch.

5.2.5 Configuration

Beyond instrumenting the source code of the INC for a specific intent, Arau-
caria generates the configuration to the network devices. The configuration Arau-
caria creates is responsible for different tasks: (1) setting up the switch ports for
replicating packets; (2) configuring the switches and servers to operate accordingly
to a specific consistency model; and (3) setting up the communication with all the
servers running applications using the INC.

• Replication for availability. The availability requirement is mapped to a
set of replicas. Topology information containing the input/output ports of
the devices is used to create multicast groups. These groups ensure the INC
forwards packets to all replicas, thereby synchronizing the state of the replicas.

• Defining consistency. The consistency model to be used is configured in
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the servers, establishing how they should replay packets (whenever necessary
for recovery). In addition, the configuration of merge functions is created by
mapping commands that solve conflicts during the recovery.

• Recovery. Finally, Araucaria creates rules to determine the need for retrans-
missions in case of a failure. These rules comprise a list of servers and their
corresponding IPs. This list enables orchestrating the recovery by triggering
route and interface changes after a failure.

5.3 Evaluation

In this section, we present experimental results to show that (i) the refinement
components of Araucaria effectively provide fault tolerance; (ii) the system provides
abstractions for reducing the overhead of recovery scenarios; (iii) the system scales
for increasing amounts of intents.

5.3.1 Experimental settings

Implementation. Araucaria decomposes and reuses the source code from
RESIST. The controller is implemented as a multithread application (∼250 LoC),
capable of sniffing the network to collect devices’ status information and computing
the necessary information to maintain consistency using Scapy. We built refined
building blocks using P4-16 for both V1Model (∼350 LoC) and a proof-of-concept
for the TNA model (∼610 LoC). We employ a specific multicast for replication,
combining cloning and recirculation to buffer packets and recovery from packet loss
in the BMv2. Our hardware PoC still does not implement the mechanism to recover
from packet losses, but implements the other building blocks. The intent compiler
is a new contribution and is implemented using PLY (Python Lex-Yacc) to build
the Araucaria language (∼120 LoC).

Testbed Setup. Our prototype for the V1Model is evaluated in a Linux
virtual machine with an Intel® i5-10210U CPU @ 1.60GHz using two dedicated
cores, 2 GB of memory, and Ubuntu 20.04 LTS. To assess the functionality of the
system, we use BMv2, a behavior model for P4 programs. The network is emulated
using mininet. The topology includes three hosts connected to 2 switches. All the
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hosts run the application instantiated by the intents. One switch acts as a replica
and the other as the main.

We evaluate our TNA PoC of Araucaria in a Tofino testbed. The experiments
were conducted with two Wedge 100BF-32X 32-port programmable switches with a
3.2 Tbps Tofino ASIC using SDE 9.9.1.

Methodology and metrics. We run experiments to check the feasibility
of achieving fault tolerance with Araucaria and measure the number of requests
processed per second (RPS), a methodology similar to what we did for RESIST. To
understand the tradeoffs and scalability of the system, we investigate the latency
to deploy an instrumented code and the time to translate intents using multiple
intent configurations. Finally, we measure the system overhead regarding rules and
primitives used in the switches.

5.3.2 A running example

To understand the end-to-end intent specification and refinement process, we
provide a use case in our emulated setup. In this use case, we examine the intent
specified in Section §5.2.2, Listing 5.1, and check the refinement process and the
effectiveness of fault tolerance. Our use case deploys NetGVT, an INC proposed
in Chapter 3. Next, we demonstrate the step-by-step process of instrumenting this
INC using Araucaria.

1

2 // mu l t i ca s t r u l e s c r ea ted f o r r e p l i c a t i o n
3 " mult icast_group_entr ies " : [ { " multicast_group_id " : 1 , "

r e p l i c a s " : [ { " egress_port " : 1 , " i n s t ance " : 1} ]
4

5 // c lone port f o r b u f f e r i n g
6 mirroring_add 500 3
7

8 // Writing s p e c i f i c c on s i s t ency model
9 r e g i s t e r _ w r i t e consistency_model 0 1

Listing 5.2 – Fragment of commands and configurations created

Refinement. Listing 5.2 presents a fragment of configurations and com-
mands created by the Araucaria refinement process. The ‘syncnIntent’ (Listing
5.1) is refined into rules in JSON that instantiate two replicas and create a multi-
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Figure 5.6 – Analysing the behavior after failure.

cast group. A mirroring port is used by Araucaria switches to clone packets and keep
a copy internally in the switch. The refinement also translates the strong consis-
tency notion to CLI commands for the switches by writing the consistency_model

register value to 1 (corresponding to the strong consistency behavior).
Fault tolerance analysis. To analyze the ability of Araucaria to provide

fault tolerance for existing INCs, we deployed the intent and injected a failure in
the switch running the INC. We then analyzed the number of requests sent and
acknowledged by each one of the servers.

Figure 5.6 presents the number of requests per second processed by each
server. After injecting a failure at the switch, the controller identifies the crash
after a timeout. The failure leads all servers to stop transmitting packets. After
the controller collects the status of devices to achieve consistency, the servers are
notified about the failure and start the recovery by switching their communication to
a different replica (∼ 16s). Next, each server replays packets (that were lost during
the switch failure) to the new main replica. After the replica finishes processing all
the packets, the application returns to regular operation (∼ 18s). This indicates
that the Araucaria translation and refinement process does not corrupt the fault
tolerance mechanism.

5.3.3 Deployment micro-benchmarks

Compilation time. We also evaluate the compilation time of our hardware
PoC to understand the impact of NetGVT on deployment. We compare the results
using an instrumented program by Araucaria and the baseline (with no instrumen-
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Figure 5.8 – Time to translate intents.

Table 5.4 – Rules and primitives used by Araucaria.

Primitives/Rules Usage
Register Actions 8

Registers 3
Tables 4

Table Entries 15
Multicast Groups 1

tation). Figure 5.7 presents the results for the compilation time. We observe that
Araucaria delays the compilation by nearly 8 seconds. Although this affects the
deployment, we consider this an acceptable tradeoff.

Scalability. To show the scalability of the compiler, we generated a variable
amount of intents in the Araucaria language. In Figure 5.8, we show the time it takes
to complete translation for varying intents using batches of multiple sizes. These
experiments were executed in a Linux virtual machine with an Intel® i5-10210U CPU
@ 1.60GHz using two dedicated cores and 2 GB of memory. We observe that the
time to translate intents increases linearly with the amount of intents. Translating
a single intent takes less than 0.05 seconds while translating 800 intents takes only
0.20 seconds. Overall, this result indicates that the system can translate intents
rapidly.

Program Primitives. To understand the impact on resource usage, Ta-
ble 5.4 presents the number of P4 primitives generated by the refinement process.
We focus on these primitives in our evaluation because they can be generalized to
multiple targets. The Araucaria hardware PoC employs four match+action tables
that match the protocol type field, defining the action to be taken. The actions
of these tables can use eight register actions over three different registers. These
results indicate that only a small amount of P4 primitives are used by Araucaria.

Code Volume. We also measured the number of lines of code (LoC) nec-
essary to build INC fault tolerance. Table 5.5 summarizes the lines of code to
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Table 5.5 – Line of codes of Araucaria modular templates.

Building
Block

Lines of Code (LoC)
Initialization Preparation Completion Total

Collection 2 23 0 25
Failure

Detection 1 5 0 6

Replication 7 24 9 40
Replay 9 51 9 69

Common 37 57 12 106
Total 56 160 30 492

implement each building block. These results characterize the amount of P4 code
Araucaria release developers to write by allowing simple requirements to be specified
in our high-level language. Araucaria instruments the INC with reusable modules,
allowing developers to focus only on INC-specific logic, thus reducing the code vol-
ume.

5.4 Related Work

Intents. Intents have been explored in the context of various platforms, in-
cluding network function virtualization (SCHEID et al., 2017), software-defined net-
working (JACOBS et al., 2018; ESPOSITO et al., 2018; HEORHIADI et al., 2018;
ALALMAEI et al., 2020), and industrial networks (SAHA et al., 2018). Researchers
have been investigating techniques for managing Access Control Lists (ACL) (TIAN
et al., 2019b; LI et al., 2021) and Quality of Service (QoS) using intents, along with
exploring diverse abstractions to express intents. These abstractions include policy
graphs (PRAKASH et al., 2015), natural language (JACOBS et al., 2018), graphi-
cal user interfaces (FEMMINELLA; PERGOLESI; REALI, 2020), and constrained
natural language grammars (SCHEID et al., 2020). Recent works also used high-
level intents to create match+action entries for P4 programs (ANGI et al., 2022;
LEWIS et al., 2018). P4I/O (RIFTADI; KUIPERS, 2019) facilitates P4 adoption by
using a language to express policies for switches and merges different source files us-
ing reusable templates to upgrade the switch configuration dynamically. However,
the authors only demonstrated the concept of deploying heavy hitter detection.
Araucaria focuses on other domains by extending INC functionality with specific
abstractions for fault tolerance.

High-level data structures. An orthogonal research field focuses on
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Table 5.6 – Tradeoffs between fault tolerance techniques

Technique Synchronization Recovery Complexity
Synchronous

Packet
Replication

Slow Sync.,
Small Amount of Memory,

Large bandwidth
Fast Recovery Low

Asynchronous
Packet

Replication

Fast Sync.,
Large bandwidth.

Fast Recovery only with CRDTs,
otherwise slow,

Increased amount of memory.
from servers

High

Asynchronous
Snapshot

Replication

Fast Sync.,
Small bandwidth,

Double memory on switches

Fast Recovery only with CRDTs,
Increased amount of memory High

bringing higher-level abstractions to P4. Examples of high-level abstractions
include data structure elasticity (HOGAN et al., 2022), loops (ALCOZ et al.,
2022), modularity (FATTAHOLMANAN et al., 2021) composability (SONI et al.,
2020), and heterogeneity (GAO et al., 2020). Although these efforts can simplify
programming, they do not support functionalities to express intents.

5.5 Discussions

In this chapter, we presented Araucaria, a system to provide fault tolerance
requirements for INC expressed as intents. The system enables the specification to
be made in an intent language close to natural language. Subsequently, a refinement
mechanism instruments the INC code to ensure fault tolerance. The instrumentation
includes code for a fault tolerance protocol that generalized the techniques from
RESIST.

This generalization enabled us to analyze tradeoffs for fault tolerance regard-
ing different configuration setups, and it sheds light on possible priorities we can
consider during the refinement. Table 5.6 summarizes these considerations. We
can observe that approaches using asynchronous replication can lead to more neg-
ligible overhead for replication, but the complexity for recovery is higher and can
only scale with CRDTs. In addition, recovery may require log-replay techniques to
ensure strong consistency, which can consume memory from servers. More specifi-
cally, asynchronously replicating snapshots leads to smaller bandwidth consumption
because of the lower rate for replication but consumes more switch resources. On
the other hand, synchronous replication adds overhead for non-failure scenarios but
ensures fault recovery is always fast.
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By employing techniques from intent-based networks, we observed that mak-
ing an INC fault tolerant was simpler than manually employing the process described
in Chapter 4. In addition, devising a refinement approach required us to explore the
design space from a top-down perspective. This exploration enabled us to identify
missing pieces in the implementation of RESIST. More importantly, the instrumen-
tation with NetGVT became easier to reproduce and more precise because the source
code became modular to fit Araucaria’s needs.
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6 CONCLUSIONS

This chapter provides a summary of the contributions made through this
thesis. We outline the future work that results from the contributions presented in
the previous chapters. Finally, we present our concluding remarks.

6.1 Summary of contributions

In-network computing trades the rich set of functionalities from traditional
distributed systems by the performance benefits from switches already in the net-
work. The functionalities are often limited because of the hardware constraints,
which require a customized design to circumvent the switch constraints. However,
devising a customized design usually brings uncommon challenges for non-specialized
programmers. These challenges include handling mechanisms that are unnecessary
to worry about in the server-based implementation. In addition, reasoning about
the functionality configuration often requires reasoning about low-level protocols and
networking, which are also hidden by more traditional network management tools.
This thesis is divided into three main challenges for INC: handling constraints of the
data plane, supporting tolerance to failures, and providing simple ways to manage
the offloaded functionality.

First, we presented a categorization of design considerations developers can
take to customize their INCs when they face hardware constraints. We distinguish
these design considerations according to computational aspects (e.g., ALU opera-
tions) and memory aspects (e.g., RAM, TCAM). These can be complemented by
the type of tasks to map to the data plane, and for each of them, we propose de-
sign considerations that can be instantiated to transform the INC and overcome
a constraint. We devised an in-network computing system called NetGVT that
offloads virtual time computation to the data plane. NetGVT instantiates these
design considerations to enable the scale of the system to multiple processes and
keep a low memory footprint. Our evaluation demonstrates that our design can be
used efficiently in a state-of-the-art platform.

Secondly, we studied the impact that switch crashes make on the entire dis-
tributed system. We analyzed the design and functionality of existing systems and
identified inconsistencies that can occur in their behavior once a crash occurs. We
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also identified what consistency models are needed to recover the state of the stud-
ied systems into a non-faulty consistent state. We then designed a system called
RESIST that can make INC systems fault-tolerant. RESIST adapts fault-tolerance
techniques, such as log replay and replication, to provide fault tolerance without
introducing significant overhead for the INC. Our evaluation with benchmarks of
RESIST main building blocks in the hardware platform demonstrates its viability.
In addition, we evaluate the entire RESIST functionality with emulations, demon-
strating the performance of our system at scale.

Thirdly, we investigated the complexity that INC brings to system manage-
ment. We analyzed the particular case of INCs studied in the previous chapters and
the configuration necessary to make them fault-tolerant. We then design Araucaria,
a system to specify and refine fault tolerance requirements for INC using high-level
intents. Our evaluation demonstrates that translating the high-level specification is
a lightweight process. We also present a comprehensive functionality evaluation on
a behavior model of P4, along with experiments on hardware.

6.2 Future work

In this section, we discuss the main limitations identified in the previous
chapter, which we aim to address in future work.

The design considerations discussed in Chapter 3 still need to be formally
described and cataloged, and the discussed techniques can be expanded by including
other design insights. Although we focused on the most popular devices for data
plane programmability, investigating and systematizing the methodology to employ
the considerations and expanding to the different architectures of forwarding de-
vices (e.g., dRMT, Linux TC, smart NICs) is necessary for generality. A promising
research direction is investigating other use-cases for the proposed techniques, e.g.,
algorithms with predictions, also being able to reason about the consistency/robust-
ness trade-off (MITZENMACHER; VASSILVITSKII, 2022) automatically. These
will rely on considerations such as decomposition and memoization and adding real
application semantics.

In the future, we aim to combine RESIST with reconfiguration mechanisms,
e.g., employing the reconfiguration phases of the Viewstamp Replication Protocol
(LISKOV; COWLING, 2012). In addition, merging the content from the replicas
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to the updated switch may be necessary for live reconfiguration. This requirement
is because the new switch may not support or require changing the rules from the
previous switch configuration.

From the fault tolerance perspective, we plan to use these logs for reasoning
about the cause of events in the network by replaying the logs in a controlled envi-
ronment (BABAEI; BAGHERZADEH; DINGEL, 2020; WANG; HAO; CUI, 2022;
BESCHASTNIKH et al., 2016). In future research, we plan to investigate more so-
phisticated instrumentation and study how to interoperate with varied applications
written for other technologies, e.g., eBPF, DPDK, or even hosted in accelerators,
e.g., GPUs, SmartNICs. This can allow the collection of these logs to be efficiently
and subsequently used for different ends.

Placing replicas in optimal locations based on available resources is also in
perspective. In the future, we plan to address other kinds of failures, including the
system’s resilience against threats (such as (LIU et al., 2023)) and the capacity of
INCs to perform transitions into invalid states because of bugs or malfunctioning
(STERBENZ et al., 2010).

We plan to generalize the high-level intent refinement to other distributed
system functionalities running in different platforms, such as the Cloud or Edge. To
that end, investigating techniques to extract intents from developer-centric function-
alities and provide modular and automatic extensions for intent-based languages is
an interesting future direction. Different scheduling techniques can be used to de-
fine updates. In addition, studying natural language usage to specify intents for the
intent grammar is in perspective.

6.3 Closing remarks

In this thesis, we (I) presented a set of design considerations that we employed
to build a new in-network system that can efficiently synchronize virtual time within
switches; (II) we designed a fault tolerance mechanism for INC that can quickly react
to failures without impacting on non-fault behavior; and (III) developed a system
to configure fault tolerance for INCs using intents.

At a high level, this thesis focused on designing robust in-network computing
systems, aiming to make INCs easier to build and manage. This problem is complex
because the data plane imposes several constraints and demands handling faults with
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customized designs, requiring the configuration of low-level commands from multiple
devices. We leveraged the state-of-the-art programmable switches using P4 to create
solutions to these problems, including design considerations for efficient algorithms,
INC fault tolerance mechanisms, and intent refinement methodologies. In-network
computing is a promising field, and circumventing constraints, failures, and config-
uration challenges is essential for making the INC paradigm viable. We are excited
about designing the next generation of INCs that can rely on SmartNICs, eBPF,
and DPUs, and, why not, new open packet processing architectures for switches.
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APPENDIX B — RESUMO EXPANDIDO

Switches programáveis são dispositivos de encaminhamento de rede que per-
mitem a execução de funcionalidades personalizadas que funcionam na taxa de linha.
Ao contrário de switches com funcionalidade fixa, switches programáveis oferecem
maior versatilidade e potencial de inovação. As vantagens dos switches programáveis
levaram os pesquisadores a transferir funcionalidades anteriormente realizadas em
servidores para a própria rede, resultando no conceito de In-Network Computing
(INC). Esse conceito permite diversas melhorias no desempenho de sistemas em
rede. Ao mover funcionalidade para os dispositivos da rede, é possível reduzir a
latência ao processar requisições sem a necessidade de chegar até um servidor, e, ao
processar requisições em taxa de linha, aumenta a vazão. No entanto, a transfer-
ência de funcionalidades para o plano de dados está sujeita a várias distinções em
comparação com como a computação é tradicionalmente realizada em servidores. Os
switches submetem os desenvolvedores a restrições do hardware, como uma quanti-
dade pequena de operações lógicas e aritméticas por estágios do pipeline, pequena
quantidade de memória e limitações de quantidade de leituras e escritas em uma
única variável de estado.

Esta tese investiga o paradigma de computação em rede sob três aspectos
diferentes que o diferenciam da computação tradicional. Em primeiro lugar, estu-
damos as restrições impostas pelo plano de dados, que podem impactar a transfer-
ência de uma funcionalidade de aplicação para o hardware do switch. Propomos
uma terminologia e uma taxonomia de considerações de projeto a serem utilizadas
ao transferir uma funcionalidade para o plano de dados dos dispositivos de rede.
Apresentamos então um sistema chamado NetGVT, que utiliza as considerações
para construir um design personalizado para transferir a sincronização de tempo
virtual para switches. As personalizações realizadas no NetGVT incluem técnicas
de compressão para armazenar relógios lógicos, e utilizam decomposições, divisão
de trabalho e recirculações para computar o GVT reduzindo a utilização de prim-
itivas custosas. Além disso, mostramos que o NetGVT pode acelerar simulações
distribuídas e superar uma solução tradicional que utiliza apenas servidores. Os re-
sultados obtidos usando uma carga de trabalho sintética de simulação demonstram
melhorias de aproximadamente 40% em relação à versão em servidores em termos de
tempo para completar a simulação. Além disso, as adaptações realizadas suportam
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simulações com mais de 128 servidores, o que é suficiente para os simuladores da
literatura.

No entanto, uma vez que movemos a computação para o plano de dados,
falhas na INC podem interromper o sistema e torná-lo indisponível. Portanto, o
segundo aspecto que investigamos é o impacto das falhas e os requisitos de con-
sistência necessários para sistemas INC existentes permanecerem corretos após uma
falha. Observamos que diferentes sistemas INC podem permanecer corretos depois
de uma falha sob diferentes noções de consistência. Em resposta, propomos o RE-
SIST, um sistema que aplica técnicas eficientes e blocos de construção para fornecer
tolerância a falhas para a computação em rede que permite customizar os requisitos
de consistência. De maneira adicional, advogamos por uma abordagem para tolerân-
cia a falhas que opera de maneira assíncrona, complementada por um mecanismo de
log-replay. Este mecanismo de replay pode ser configurado de diferentes maneiras,
atendendo tanto um nível de consistência mais forte, assim também como níveis de
consistência mais fracos e menores onerosos. Nós demonstramos que RESIST pode
superar falhas de maneira consistente e com um custo baixo para a aplicação. Além
disso, mostramos que é possível reduzir os custos durante operações regulares do
sistema em comparação com outras abordagens do estado da arte.

Embora observemos que a tolerância a falhas pode ser alcançada sem compro-
meter os ganhos de desempenho obtidos com a INC, gerenciar a funcionalidade em
dispositivos de encaminhamento revela um processo complexo e demorado em com-
paração com a execução em servidores tradicionais. Configurar uma INC tolerante
a falhas exige configurar não somente o dispositivo que hospeda a funcionalidade
da INC, mas um conjunto de réplicas e servidores. Ao considerar este cenário dis-
tribuído, não somente configurar a INC é suficiente, mas também os elementos que
tornam a INC tolerante a falhas. Para entender esse desafio de configuração, in-
vestigamos métodos para simplificar o gerenciamento de tolerância a falhas na INC
usando intenções de alto nível. Propomos um sistema chamado Araucaria, que fa-
cilita a especificação de intenções em uma linguagem semelhante à natural, e um
processo para refinamento de intenções para instrumentar INCs com a habilidade
de tolerância a falhas. Para realizar a instrumentação da INC nós decompomos
o RESIST em templates modulares reutilizados para instrumentar as INCs. Após
a instrumentação, utilizamos as primitivas obtidas através da tradução da intenção
para gerar a configuração de tabelas e registradores conforme o modelo de consistên-
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cia exigido e a disponibilidade do sistema. Nós também mostramos que o custo para
permitir o refinamento é muito baixo em tempos de tradução e configuração, além
de diminuir a complexidade do código da INC, em que o desenvolvedor não precisa
incluir manualmente.

Nós demonstramos um exemplo prático das técnicas propostas usando o Net-
GVT, mostrando a viabilidade e escalabilidade das abordagens propostas nesta tese,
tanto em um testbed com hardware de switches programáveis reais quanto em um
emulador de modelo de comportamento. Também mostramos analises de consumo
de recursos, mostrando que as técnicas propostas podem ser implementadas imple-
mentadas com baixo custo em dispositivos do estado da arte.
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