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ABSTRACT

Feature selection is a fundamental step in machine learning, serving to reduce dataset

redundancy, accelerate training speed, and improve model quality. This is particularly

crucial in high-dimensional datasets, where the excess of features presents challenges for

pattern recognition and data analysis. Recent methods proposed for high-dimensional

data are often tailored for specific domains, leaving a lack of consensus on a universally

recommended solution for general use cases. This paper proposes a hybrid feature selec-

tion approach using a multi-objective genetic algorithm to enhance classification perfor-

mance and reduce dimensionality across diverse classification tasks. The proposed ap-

proach narrows the search space of possible relevant features by exploring the combined

outputs of classical feature selection methods with novel genetic algorithm operators.

This enables the evolution of combined solutions potentially not explored by the origi-

nal methods, generating optimized feature sets in a process that adapts to different data

conditions. Experimental results demonstrate the effectiveness of the proposed method in

high-dimensional use cases, offering improved classification performance with reduced

feature sets. In summary, our hybrid method offers a promising solution for addressing

the challenges of high-dimensional datasets by enhancing classification performance in

varying domains and data conditions.

Keywords: Feature selection. dimensionality reduction. genetic algorithm. high-dimensional.

multi-objective. optimization. classification. machine learning.



Aprimorando a Classificação com Seleção Híbrida de Variáveis: um Algoritmo

Genético Multi-Objetivo para Dados de Alta Dimensionalidade

RESUMO

A seleção de variáveis é um passo fundamental no aprendizado de máquina, servindo

para reduzir a redundância do conjunto de dados, acelerar a velocidade de treinamento

e melhorar a qualidade de modelos. Isto é particularmente crucial em conjuntos de da-

dos de alta dimensionalidade, onde o excesso de variáveis representa desafios para tarefas

de reconhecimento de padrões e análise de dados. Os métodos recentes propostos para

dados de alta dimensionalidade são frequentemente desenvolvidos para domínios espe-

cíficos, gerando uma falta de consenso sobre uma solução universalmente recomendada

para casos de uso gerais. Este artigo propõe uma abordagem híbrida de seleção de variá-

veis usando um algoritmo genético multiobjetivo para melhorar o desempenho da classi-

ficação e reduzir a dimensionalidade em diversas tarefas de classificação. A abordagem

proposta restringe o espaço de busca de possíveis variáveis relevantes através da explo-

ração dos resultados combinados de métodos clássicos de seleção de variáveis através de

novos operadores de algoritmo genético. Isto permite a evolução de soluções combinadas

potencialmente não exploradas pelos métodos originais, gerando conjuntos de variáveis

otimizados em um processo que se adapta a diferentes condições de dados. Os resultados

experimentais demonstram a eficácia do método proposto em casos de uso de alta dimen-

sionalidade, oferecendo melhor desempenho de classificação com conjuntos de variáveis

reduzidos. Em resumo, o método híbrido proposto oferece uma solução promissora para

lidar com os desafios de conjuntos de dados de alta dimensionalidade, melhorando o de-

sempenho da classificação em diversos domínios e condições de dados.

Palavras-chave: redução de dimensionalidade, seleção de atributos, seleção de variá-

veis, algoritmo genético, multi-objetivo, alta dimensionalidade, otimização, classificação,

aprendizado de máquina.
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1 INTRODUCTION

In the age of big data, datasets frequently suffer from the "curse of dimensional-

ity", wherein data comprises so many dimensions that it becomes extremely noisy and

difficult to analyze with traditional statistical methods. Advances in technology enable

better collection and storage of data from more and more sources every day, with increas-

ingly detailed descriptions. This tends to make high dimensionality a permanent issue in

data analytics (ZHAI; ONG; TSANG, 2014). In such scenarios, where human abstrac-

tions from noisy or voluminous data become limited or impractical to achieve, machine

learning techniques represent a solid alternative to enable the extraction of information.

Still, even with their typical capability of exploring non-obvious patterns in large datasets,

machine learning, and pattern recognition techniques are often negatively affected by high

dimensionality (GAO et al., 2017).

Dimensionality reduction is discussed in high-dimensional and voluminous data

cases, where feature selection or feature extraction are typically proposed to simplify data

representations while avoiding loss of information. Both techniques "have the advan-

tages of improving learning performance, increasing computational efficiency, decreasing

memory usage, and building better generalization models" (LI et al., 2017). While fea-

ture extraction achieves this by transforming the original feature set into a new, abstracted,

and reduced set of features, feature selection preserves the original state of features. In-

stead, it selects the important ones and removes the unimportant or detractor ones. When

dimensionality reduction is performed with interpretability and explainability in mind,

feature selection naturally becomes the recommended option (LI et al., 2017). Examples

of applications with particular emphasis on identifying essential features include studies

of cancer and other diseases (HAMBALI; OLADELE; ADEWOLE, 2020; ALHENAWI

et al., 2022; SINGH; SIVABALAKRISHNAN, 2015; GRISCI; FELTES; DORN, 2019),

genome-wide association studies (TADIST et al., 2019; HEINRICH et al., 2023; PUDJI-

HARTONO et al., 2022), and multiple other bioinformatics and medical fields (SAEYS;

INZA; LARRANAGA, 2007; REMESEIRO; BOLON-CANEDO, 2019).

In feature selection, many methods have been proposed to provide ideal selections

of features (or dimensions) for data originating from different domains and having dif-

ferent characteristics. Nevertheless, no single solution performs better than the others in

all use cases. Various methods are available under different specializations, with well-

established categories in the literature from both a methodology perspective and a data
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perspective (LI et al., 2017).

This lack of consensus is especially evident in challenging combinatorial prob-

lems, such as cancer and disease research and genome-wide studies. In these fields, mea-

suring the importance of features — such as biomarkers, DNA sequences, characteristics

of images, and other diverse measurements — is crucial for understanding biological or

medical problems. However, the data often consists of small numbers of samples contain-

ing up to thousands or millions of features. For this type of application, research has been

conducted to propose new feature selection methods or to evaluate widespread strategies.

Results naturally tend to show different recommendations for different scenarios over the

years, with no firm consensus on methods, even in recent years (AKAY, 2009; ABEEL et

al., 2010; NGUYEN; WANG; NGUYEN, 2013; SINGH; SIVABALAKRISHNAN, 2015;

HAMBALI; OLADELE; ADEWOLE, 2020; ALHENAWI et al., 2022). This issue is not

limited to the life sciences domain, as similar feature selection applications aim to under-

stand the importance of features in varied problems in engineering domains and others

(PIRI et al., 2023; FADAEE; RADZI, 2012).

Feature selection in high-dimensional data poses a significant combinatorial search

challenge, as evaluating the impact of every possible combination of features is exceed-

ingly complex (FERRI et al., 1994). Genetic algorithms (GAs), a popular branch of meth-

ods for solving combinatorial problems, offer a solution. GA is a metaheuristic capable

of approximating the optimal solution within a reasonable execution time. They belong to

a broader group of biology-inspired algorithms known as evolutionary algorithms, which

share three main characteristics (YU; GEN, 2010): they are population-based, mean-

ing they improve a population of solutions over time, referred to as individuals; they

are fitness-oriented, evaluating solutions based on fitness criteria and favoring the fittest

individuals; and they are variation-driven, exploring the solution search space through

operations that modify individuals, akin to genetic alterations.

For feature selection problems, GAs offer strategies that can be used to explore

and optimize subsets of features in ways that do not require evaluating every single sce-

nario but instead generate random or semi-random solutions and iteratively adapt and

re-use well-performing solutions to improve fitness. Handling high-dimensional data is a

common theme of research for evolutionary solutions (PIRI et al., 2023).

Many variations of GAs have been proposed over the last decades with success-

ful applications in multiple fields (KATOCH; CHAUHAN; KUMAR, 2021). This work

will focus on using a multi-objective genetic algorithm (ZHOU et al., 2011), a predomi-
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nant class among GAs, for the feature selection problem. This class of genetic algorithms

works by optimizing the solutions for a variable number of conflicting objectives, whereas

the traditional GA would have a single-objective fitness function. Given the multiple fit-

ness objectives, multi-objective GAs tend to present not one individual as the best solution

for a problem but instead provide a Pareto set of dominant individuals that best optimize

the multiple fitness objectives in different degrees, usually following the concept of Pareto

domination established by the notorious NSGA-II (DEB et al., 2002).

NSGA-II is easily one of the most popular multi-objective genetic algorithms in

the literature, having inspired multiple other approaches and remaining a solid option

in multi-objective GAs. The structure of NSGA-II and some of its core characteristics

— such as the Pareto domination and crowding distance mechanisms — and other classic

GA operators are adapted within the proposed method of this work to solve the conflicting

problems of performing dimensionality reduction while maintaining features that enable

effective data separation.

1.1 Motivation

Given the challenge of selecting important features in high-dimensional data sce-

narios, either for improving machine learning classification performance or for analysis,

research or interpretability purposes, feature selection methods are capable of providing

reliable results even with little domain knowledge. Still, different methods tend to have

very different performances according to the characteristics of the data, and no consensus

exists on a recommended generalist approach for data of different domains, especially in

real-life datasets. This work proposes a versatile method to yield robust feature selections

from high-dimensional datasets. It employs a multi-objective genetic algorithm that eval-

uates and combines the individual strengths of various existing feature selection methods,

adapting the feature selection process to diverse data types. The heuristic search strategy

leverages the knowledge gained from applying these methods to the data to narrow the

search space of solutions and to consolidate subsets of features that consistently outper-

form the original methods based on classification metrics while ensuring dimensionality

reduction. Beyond merely enhancing metrics in specific scenarios, the proposed heuristic

aims to harness the unique advantages of different methods to deliver reliable ensemble

solutions to feature selection challenges across various domains and data patterns. More-

over, it ensures the exploration of intermediate solutions that combine those proposed by
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the initial methods. The following chapters will elucidate how the method optimizes and

stabilizes feature selections by leveraging feature importance information and employing

modified operators within a multi-objective genetic algorithm based on NSGA-II.

1.2 Objectives

The objective of this work is to propose, describe, and implement a feature selec-

tion method based on a multi-objective genetic algorithm, adapted to combine the outputs

of different feature selection methods to provide robust selections of features in different

settings of high-dimensional data, based on the objectives of classification performance

improvement and dimensionality reduction. To do so, this work aims to:

1. Describe the literature background related to feature selection in high-dimensional

data, as well as the necessary background of machine learning literature to describe

the usage of classification models and their metrics;

2. Describe the main characteristics of genetic algorithms and especially multi-objective

genetic algorithms, explaining their usage for feature selection and exploring recent

related work in the literature;

3. Describe the proposed method, the usage of information acquired from the exe-

cution of other feature selection methods, and the custom operators developed to

process this information in the proposed multi-objective GA, as well as the fitness

function used to evaluate feature sets;

4. Describe the experiments designed to evaluate the method, generating compara-

ble experiments with other methods and applying them to multiple classification

datasets, exploring applications of the methods in different data settings;

5. Describe and discuss the results obtained in comparison to other existing methods,

raising the benefits and disadvantages of the proposed method.

With this, the expectation is that the method proves itself capable of outperforming

the original feature selection methods in the proposed settings, reinforcing that genetic

algorithms are a viable and flexible option to optimize the identification and selection

process of important features in high-dimensional data. Given the fact that most feature

selection methods proposed in the literature are developed and evaluated for specific sce-

narios, and not as generalist solutions for the feature selection problem, the method should

be evaluated in use cases with different data characteristics for the classification problem.
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1.3 Dissertation Structure

The next chapters of this dissertation are divided into the following structure:

• Chapter 2: Theoretical background. A review of the theoretical background

for feature selection, feature set evaluation, and genetic algorithms is presented.

Existing methods used either as a base for the proposed solution or as part of the

experimentation process are described in this chapter.

• Chapter 3: Related work. A review of the literature surrounding the combina-

tion of feature selection and genetic algorithms is presented, with an exploration

of similar works produced in recent years, comparing the types of feature selection

approaches, fields of application, and target datasets. Additionally, the usage of

single or multiple objectives in the proposed genetic algorithms is also analyzed,

and an overview of possible improvements is highlighted.

• Chapter 4: Proposed method and implementation. The proposition and de-

tails of the implementation are provided in this chapter, highlighting the different

operators created as part of a multi-objective genetic algorithm solution for the op-

timization of feature sets.

• Chapter 5: Experiments. A description of the experiments designed to evaluate

the proposed method are described in this chapter, mentioning the feature selection

methods used as a base for optimization, the datasets chosen to undergo feature

selection, and the parameters used during the multi-objective genetic algorithm op-

timization process, as well as the methods and metrics used to evaluate the quality

of the selected feature sets.

• Chapter 6: Results and discussion. The results from experimentation are sum-

marized in this chapter, providing metrics to illustrate the gains in classification

performance in comparison to the base methods applied before in the optimization,

along with a discussion of such results and a summary of execution times observed

in the process.

• Chapter 7: Conclusion. In this chapter, the final considerations for this work

are presented, reflecting on the work objectives, proposed solution and the results

achieved, as well as opportunities for future work.
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2 THEORETICAL BACKGROUND

In this chapter, the theoretical background for the proposed work is presented in

three sections, providing the basis of knowledge required in the topics of feature selection,

the usage of machine learning metrics in the evaluation of feature sets resulting from

feature selection, and genetic algorithms, which are the basis of the proposed method.

The sections also explore the relationship between the three topics and explain some of

the methods and metrics used in the implementation and evaluation of results in the next

chapters.

2.1 Feature Selection

When data has a considerably large number of dimensions, handling it becomes

more and more complex due to increases in the required computational processing time,

memory consumption, and general interpretability impairments generated by the excess

of noisy information. This set of difficulties is known as the “curse of dimensionality”

(VERLEYSEN; FRANÇOIS, 2005). Additionally, when high-dimensional datasets pos-

sess a small number of samples in comparison to their large number of features, they are

affected by the “large p, small n” problem, leading to more trouble in efficiently extract-

ing useful information from this data, either via human analysis or learning algorithms.

In this sense, dimensionality reduction surges as a necessary pre-processing task when

dealing with such data conditions.

Dimensionality reduction is the process of lowering the number of features of the

data. This is not only important from the computational and the classification perspec-

tive, but also from the point of view of extracting useful information, necessary in fields

such as biological or medical research. The main group of algorithms for dimensional-

ity reduction is feature extraction, a set of methods that transforms the original feature

space into a different space with a new set of axes by combining its features and finding

the ones that most preserve the original information (VARSHAVSKY et al., 2006). This

new feature space often has better discriminatory power, but the extracted features lack

real-world meaning for better interpretation (ALELYANI; TANG; LIU, 2013; KRIZEK,

2008; ANG et al., 2016).

While feature extraction can be useful from the computational view, its lack of

interpretability leaves it with little use for the discovery of informative features. However,
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a subgroup of dimensionality reduction techniques, called feature selection (FS), solves

this problem by choosing small subsets of features instead of combining them, usually

through the removal of irrelevant, redundant, or noisy features. This is better suited for

biological data as it leads to better performance and model interpretability (MIAO; NIU,

2016).

The most basic categorization of feature selection approaches refers to the pres-

ence or absence of values that can be used as a reference for the supervision of data

separation tasks. In other words, the presence of classes, numerical values or other mark-

ers in the target data that specify a definitive distinction of data points into subgroups or

quantitative values. In this sense, methods are typically categorized into supervised, un-

supervised, and semi-supervised, as in the classical division of machine learning tasks (LI

et al., 2017).

Supervised problems refer to data that contain one or more labels or targets ca-

pable of indicating distinct classes or measurements for each sample. Classification and

regression are examples of supervised tasks, and in these cases, feature selection algo-

rithms leverage previously known information to identify subsets of relevant features by

employing different strategies such as removing noise or redundancy from the data or

optimizing model metrics. Unsupervised problems refer to data that lacks such objective

labels or targets, relying entirely on the features to arbitrarily separate the data. Clustering

is the most common application for unsupervised problems, utilizing various metrics and

approaches to evaluate the similarity or distance of samples and grouping them into infor-

mative clusters. Finally, semi-supervised problems mix the two scenarios, with portions

of labeled and unlabeled data.

The focus of this work is feature selection for supervised tasks, especially classi-

fication. Under this category, the methods can be further divided according to the type

of strategy used for feature selection. Filter methods, wrapper methods, and embedded

methods are the most common classifications in the literature (LI et al., 2017), but recent

specialized categories such as hybrid methods and ensemble methods (ANG et al., 2015)

bring important distinctions to represent methods that combine different approaches.

2.1.1 Categorization of Supervised Feature Selection methods

According to the classification proposed by ANG et al. (ANG et al., 2015), feature

selection methods for supervised learning tasks can be separated into 5 distinct types:
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• Filter methods are most remarkable for being independent of a learning algorithm,

and thus usually represent the fastest and most scalable methods among all feature

selection categories. They benefit from less overfitting problems than methods that

rely on learning algorithms, but may fail to identify important interactions between

features that learning models are exceptional at uncovering.

• Wrapper methods use the performance of a learning algorithm to estimate the qual-

ity of the selected features during the iterations of its selection process. Because

of this dependency, they typically require more resources than other methods, and

may overfit the feature selection to the specific model used to evaluate the feature

sets. Still, they represent a multivariate approach to feature selection, remarkably

capable of identifying interactions between features.

• Embedded methods embed feature selection into the learning phase of a learning

algorithm, turning it into a part of the classification model itself. This usually favors

the computational resources required in the joined process of feature selection and

learning phase of a model, because the interaction is optimized to reduce redundant

evaluations of features that may occur when using wrapper methods. The downside

is that feature selection, in this case, is also tied to the performance of a model,

thus overfitting can happen. Still, similarly to wrapper methods, they possess the

capability of easily uncovering hidden relationships between features.

• Ensemble methods aim to create feature sets from the aggregation of different sub-

sets of features, usually generated from independent executions of a feature selector

on different subsets of data. The aggregation generally brings higher stability to the

final feature set, which increases its reliability for analysis and learning perfor-

mance.

• Hybrid methods originate from the combination of two or more methods of the

same, or different categories, usually aiming to combine the strengths of one cate-

gory to avoid the problems in another.

Notoriously, most of the related work covered in chapter 3 is classified either as

Wrapper, with one or more models being used to guide feature selection or the evolution

of genetic algorithm populations, or as Hybrid approaches, using combinations of differ-

ent categories of feature selection methods to achieve the end result of selection, as is the

case for this work.
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2.1.2 Feature Selection methods used in this work

Many classic feature selection methods could be mentioned as the reference for

modern feature selection approaches, since different methods were historically developed

for different applications and considering different computational limitations. Still, meth-

ods usually share fundamental similarities, such as mechanisms to rank or assign individ-

ual importance weights for features of a dataset (XU et al., 2019).

In this work, a list of feature selection methods is used to generate importances

for features of a target dataset (as described in detail in the methodology in chapter 4),

which is used as input for the optimization process of a genetic algorithm. The list of

feature selection methods used by the proposed MOGA is a flexible choice, but the default

selection of 8 methods used in the experiments for this work is elaborated in this section

and referenced in section 5.2.

The list of methods is composed of 5 filter methods and 4 embedded methods, all

selected for their fast performance and predominance in the fields of statistics and feature

selection.

2.1.2.1 ANOVA F-Test

Analysis of variance, also known as ANOVA, is one of the most well-known sta-

tistical methods for hypothesis testing in statistics, that has multiple variations and a large

history of applications in multiple fields of science (ST; WOLD et al., 1989) since its first

proposition by Ronald Fisher (FISHER, 1928).

In feature selection, the original parametric method (also called one-way ANOVA)

is classified as an extremely lightweight univariate filter method and considered most

adequate for numerical variables with normal distributions. It provides, for each feature,

a numerical F-value based on the evaluation of the relationship between each individual

dimension and, in supervised problems, the classes existent in the target output variable.

In summary, a feature with a high F-value is estimated to have a high impact on the

prediction of the target output. The F-value can be calculated for a feature following

equation 2.1, sourced from Kim et al. (KIM, 2017).

F =
Intergroup variance

Intragroup variance
=

∑K
i=1 ni(Ȳi − Ȳ )2/(K − 1)∑n
i,j=1 (Yij − Ȳi)2/(N −K)

(2.1)

The F value for a variable is calculated as the ratio between intergroup variance
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and intragroup variance, or, in classification terms, the ratio between the variance between

classes and variance within a specific class. In the equation, K is the total number of

groups, ni is the number of observations in group i, Ȳi is the mean of group i, Ȳ is the

overall mean among all groups, Yij is the jth observation of group i and N is the total

number of all observations available in all groups. When calculating this equation for

each variable in a dataset, it is possible to differentiate between the estimated importance

of each of them in the class prediction task.

2.1.2.2 Kruskal-Wallis Test

The Kruskal-Wallis Test, similar to ANOVA, is also a well-known statistical method

for hypothesis testing. It differs from ANOVA essentially in its application: whereas

ANOVA is applied mostly to normally distributed data, the Kruskal-Wallis test is mostly

recommended for non-normal distributions and data with diverging variances among

groups. Kruskal-Wallis is also known as the non-parametric version of one-way ANOVA

(MCKIGHT; NAJAB, 2010).

In feature selection, the Kruskal-Wallis method is classified as a univariate filter

method with very lightweight execution, most adequate to non-normal distributions, and

therefore typically more effective in handling outlier values than other methods such as

ANOVA. The assumption being that the variable may follow a non-normal distribution,

the method bases itself on comparing group rankings instead of group means, as ANOVA

would (MCKIGHT; NAJAB, 2010). The test statistic H can be calculated for each vari-

able following equation 2.2, sourced from Hecke et al. (HECKE, 2012).

H =
12

N(N + 1)

k∑
i=1

R2
i

ni

− 3(N + 1), N =
k∑

i=1

ni. (2.2)

The H value represents the variance of ranks among groups for the analyzed vari-

able in relation to the groups represented by the target output variable. Ranks are assigned

to each data point according to the values in the dataset, with the smallest value receiving

the smallest rank (rank 1), the second smallest receiving the second smallest rank (rank

2), and so on. In the case of ties, the rank of all tied elements is defined as the average of

all ranks that would be assigned if elements were assigned in order (for example, tied ele-

ments in positions 5, 6, 7, and 8, would receive an average rank of 6.5.) (HECKE, 2012).

Ri, then, represents the sum of the ranks in each group i, which contains ni elements,

out of the k groups being represented. Finally, N is used as a regularization parameter
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calculated according to the number of elements in all groups.

2.1.2.3 Mutual Information

Mutual information is a statistical method that emerged from the field of informa-

tion theory that employs the concepts of entropy and divergence to measure the statistical

dependency between two variables. It has the advantage of measuring both linear and

non-linear relationships between variables and is the basis of many methods derived from

its initial definition (VERGARA; ESTÉVEZ, 2014).

For feature selection, the approach proposed by Ross et al. (ROSS, 2014) and used

in this work is considered a univariate filter method, which uses a lightweight nearest-

neighbors approach to estimate the mutual information (MI) value for a pair of variables.

Higher MI values indicate a higher dependency between the two variables, which indi-

cates, for supervised learning problems, a higher influence in the prediction of a target

variable output. Equations 2.3 and 2.4 represent the calculation of the mutual information

I between variables X and Y defined by Ross et al. (ROSS, 2014).

Ii = ψ(N)− ψ(Nxi
) + ψ(k) + ψ(mi) (2.3)

In equation 2.3, Ii is calculated for each data point i based on the nearest k neigh-

bors (a user parameter choice, usually a small integer) among the Nxi
data points of the

same y group (or class) as data point i. In this case, d is defined as the distance to this

kth neighbor, and is used to calculate the number of mi neighbors contained within this

distance, from all groups. With these parameters, the digamma function ψ (ROSS, 2014)

is used to compute Ii.

I(X, Y ) = ⟨Ii⟩ = ψ(N)− ⟨ψ(Nxi
)⟩+ ψ(k) + ⟨ψ(mi)⟩ (2.4)

Considering the individual mutual information Ii for each data point in X and Y ,

the estimated resulting mutual information I for X and Y is calculated in equation 2.4 by

averaging Ii over all data points.

2.1.2.4 mRMR

Minimal-redundancy-maximal-relevance (mRMR) is a remarkable method devel-

oped by Peng et al. (PENG; LONG; DING, 2005) specifically for the task of supervised
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feature selection and is proposed as a much simpler equivalent to the maximal statistical

dependency criterion based on mutual information.

In the original work (PENG; LONG; DING, 2005), the method used for feature

selection (or feature ranking) in mRMR is classified as a multivariate filter approach, and

consists of a greedy search for features that results in the incremental inclusion of new

features instead of providing an importance (or equivalent) value to all features as other

previously mentioned filter methods like ANOVA, Kruskal-Wallis or mutual information

do. This results in short execution times for small selections of features, while performing

a multivariate analysis of variables, but can result in long execution times if large selec-

tions of features are expected. Equations 2.5, 2.6 and 2.7 represent the relations defined

by Peng et al. (PENG; LONG; DING, 2005).

maxD(S, c), D =
1

|S|
∑
xi∈S

I(xi; c). (2.5)

The process starts with equation 2.5, which represents the maximization ofD(S, c),

the relevance estimation for a set of features S, and a target label c. D represents the in-

dividual relevance estimation for each feature xi from S in relation to a target class c,

measuring how important the feature is in predicting the target label via I(xi; c), the value

of mutual information (ROSS, 2014).

minR(S), R =
1

|S|2
∑

xi,xj∈S

I(xi;xj). (2.6)

After one first candidate feature is identified via maximizing equation 2.5, simply

adding new features via the same criteria could likely add redundancy to the feature set in

the form of similar features. Thus, equation 2.6 takes place to avoid redundancy against

the set of already selected features. In this equation, R represents the redundancy esti-

mation for a pair of features xi and xj , where xi is a candidate for selection, and xj is

an already selected feature. The condition effectively measures which features have their

information already represented by other similar selected features, thus indicating a lesser

relevance for the supervised learning task than other features that add unseen information.

Therefore, minR(S) represents the minimization of redundancy for features within S.

maxΦ(D,R), Φ = D −R. (2.7)

To conciliate the two criteria in a final relation, equation 2.7 defines a Φ operator
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that should be maximized to achieve the "minimal-redundancy-maximal-relevance" cri-

terion for selecting a feature. The operator can be evaluated as many times as necessary

until the number of desired features is achieved. This results in greedily adding a new fea-

ture to a selection of features, and reiterating the operator for the remaining set of features

to identify the next candidate until the final set is selected.

2.1.2.5 Relief-F

Relief-F is an efficient and popular multivariate filter algorithm for feature selec-

tion proposed by Kononenko (KONONENKO, 1994), extending the original definition of

the Relief algorithm proposed by Kira and Rendell (KIRA; RENDELL, 1992). The origi-

nal Relief was designed for supervised feature selection of binary classification problems,

with robust performance in both discrete and continuous variables, and focused on iden-

tifying relations between variables. The contribution provided by Relief-F extends the

method to properly deal with multi-class classification problems, and also to better adapt

the method to datasets containing noisy or incomplete data.

The original process defined in Relief (KIRA; RENDELL, 1992) is described in

Algorithm 1. In the algorithm, the first step is to randomly select a reference instance (or

sample) R from the dataset (line 4), and identifying the nearest instance from the same

class (a hit) named H , and the nearest instance from another class (a miss) named M

(line 5). Then, for each attribute in the dataset, calculate the score or weight associated

with the feature in relation to the difference between R and H , and between R and M

(line 7), also described in equation 2.8. Finally, the values are normalized with m, which

represents the number of samples picked as reference points (and the number of iterations

of the algorithm) for calculating the weights W [A] of each feature A.

Algorithm 1: Relief main loop algorithm. Source: (KIRA; RENDELL,
1992)

1 begin
2 set all weights W [A] := 0;
3 for i := 1 to m do
4 randomly select an instance R;
5 find nearest hit H and nearest miss M ;
6 for A in all_attributes do
7 W [A] := W [A]− diff(A,R,H)/m+ diff(A,R,M)/m;
8 end
9 end

10 end
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W [A] := W [A]− diff(A,R,H)

m
+
diff(A,R,M)

m
(2.8)

In general, the idea behind equation 2.8 is that if feature values for same-class

samples (R and H) are very similar, the feature is important to distinguish the class.

Otherwise, if they are too different, the feature is irrelevant. For feature values in samples

from different classes (R andM ), divergent values indicate an important feature. Alterna-

tively, if features in this scenario are too similar, they are not important. This calculation

W [A] for a feature A is accumulated for all m sampled reference values R and represents

the final feature score, which can be used to rank the most important features.

W [A] := W [A]− diff(A,R,H)

m
+

∑
C != class(R)

P (C)× diff(A,R,M(C))

m
(2.9)

Relief-F extends the original algorithm by proposing a replacement for equation

2.8 as defined in equation 2.9. In the new equation, the calculation now considers multiple

classes by selecting one nearest miss sample M(C) for every class C that is not the class

of R. The contribution of each individual class is averaged with weight of the probability

of each class P (C). The objective is to estimate the ability of features to separate each

pair of classes regardless of which two classes are closest to each other (KONONENKO,

1994).

2.1.2.6 Decision Tree

Decision trees are yet another classic approach used in data mining and feature

selection for their simple functionality and effective outputs in multiple fields, present-

ing a good performance in the analysis of discrete and continuous variables, and also in

datasets with missing data (SONG; YING, 2015). Decision trees can be interpreted as

an embedded feature selection method since feature selection is part of the learning pro-

cess of a decision tree method (LAL et al., 2006). In this sense, decision trees typically

evaluate the importance of a feature simply by removing it from the training subset and

evaluating the variation in the performance of the final model.

A decision tree model is usually composed of nodes and branches, and built via a

series of operations including splitting, stopping, and pruning. Figure 2.1 illustrates an ex-

ample of a decision tree built for a binary target variable Y and receiving two continuous
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Figure 2.1: A simple decision tree based on binary target variable Y.

Source: (SONG; YING, 2015)

variables as input, X1 and X2.

The basic concepts required to build a decision tree model are summarized by

Song and Ying (SONG; YING, 2015) as:

• Nodes: nodes are usually divided into root nodes, internal nodes, or leaf nodes.

Root nodes are also known as decision nodes, and represent a condition or choice

that divides the outputs into two or more subsets. Internal nodes are connected to

parent nodes and child nodes and also represent a choice or condition that further

divides the options into smaller subsets. Leaf nodes are the result of the set of

choices defined by their ancestor nodes.

• Branches: branches represent the outcomes of a choice from root or internal nodes,

usually representing the decision of a classification rule.

• Splitting: splitting is the process of refining the classification decision by creat-

ing new child nodes and branches, starting from the route node, based on an input

variable that best splits records according to the target variable and specific data

characteristics. These characteristics vary according to implementation and can in-

clude metrics such as entropy, Gini index, classification error, information gain, etc.

The splitting process usually continues until certain stopping criteria are achieved.

• Stopping: stopping criteria is necessary to avoid overly complex models. Typical

stopping criteria include limiting the minimum number of records in a leaf, limiting

the number of records in a node before splitting, or limiting the depth of nodes the
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tree can accept from root to leaf nodes.

• Pruning: sometimes trees may end up too large and complex, and it may be nec-

essary to prune some nodes to achieve more robust results. This is a common

approach to simplify models after the initial tree is generated, and the process is

performed by selecting sub-trees and excluding nodes, and evaluating the resulting

performance of the model according to the desired criteria, such as error rates.

After the iterative process of splitting, multiple logical rules based on features are

derived from the tree. These rules fundamentally indicate the important features for the

classification process, and therefore provide a ranking of important features after a final

model is selected.

2.1.2.7 Lasso

Lasso (Least Absolute Shrinkage and Selection Operator) is a linear model first

designed with the goal of producing interpretable models for regression use cases and sig-

nal processing by providing relevant subsets of features in a final model (TIBSHIRANI,

1996). Lasso combines the concepts of subset selection and ridge regression, removing

features altogether or simply shrinking their weight in the model decision process. One

notable benefit of the Lasso method is its inherent good performance in subsets of data

with high dimensionality and low sample sizes. Since feature selection is part of the learn-

ing process of the model, Lasso can be considered an embedded feature selection method

(LAL et al., 2006).

The main principle behind the Lasso is its regularization variable selection per-

formed via minimization of a sum of squared errors, as defined in equation 2.10 (FONTI;

BELITSER, 2017). In the equation, Y is the vector representation of the output or target

variable, while X is the vector representation of the input variables and β represents the

vector of coefficients of the model. Parameter t represents the upper bound of the sum

of coefficients of the model, used in the regularization process, and n and k represent the

number of samples in the dataset.

minimize
(
∥Y −Xβ∥22

n

)
, subject to

k∑
j=1

∥β∥1 < t (2.10)

The optimization process for equation 2.10 is equivalent to the parameter estima-

tion represented in equation 2.11.
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β̂(λ) =
argmin
β

(
∥Y −Xβ∥22

n
+ λ∥β∥1

)
, where λ ≥ 0 (2.11)

In equations 2.10 and 2.11, t and λ have a reverse relationship in that as t increases

to infinity, λ decreases 0, turning the problem into an ordinary least squares. As t becomes

0, regularization coefficients shrink to 0 and λ increases to infinity (FONTI; BELITSER,

2017). During the regularization process of such equations, it is expected that some of the

coefficients are reduced to zero, indicating that the respective features are discarded from

the model, while relevant features have their coefficient increased. The coefficients of the

final model can, therefore, be used to infer feature importance from the feature subset.

2.1.2.8 Linear SVM

Linear support vector machines (Linear SVMs) are a variation of traditional SVMs

that use a linear kernel function. SVMs are classification models designed to estimate

boundaries between data points to separate samples of different classes (BOSER; GUYON;

VAPNIK, 1992). The concept starts with the definition of support vectors, a selection of

samples closest to the decision boundary, which are then used as part of a decision func-

tion that estimates the boundary between classes. Given this process of using a small

selection of samples for the boundary estimation, SVMs are typically efficient models

with good comparable performance, especially in high-dimensional datasets (GUYON et

al., 2002).

For feature selection, Linear SVMs can be used as an embedded method, as indi-

vidual weights are assigned to different features in the training process and can be used

for ranking and elimination. Equation 2.12, as defined Guyon et al. (GUYON et al., 2002)

describes the optimization process performed in typical Linear SVMs.



Minimize over αk :

J = (1/2)
∑

hk yhykαhαk(xh.xk + λδhk)−
∑

k αk

subject to :

0 ≤ αk ≤ C and
∑

k αkyk = 0

(2.12)

In equation 2.12, training samples xk are n dimensional feature vectors, and yk

represents the encoded class labels. Parameters C and λ are positive constants called

soft margin parameters, and δhk is the Kronecker symbol with δhk = 1 if h = k and 0
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otherwise (GUYON et al., 2002). Finally, parameters αk are the parameters or weights to

be adjusted in order to minimize the equation.

D(x) = w.x+ b (2.13)

with w =
∑
k

αkykxk and b = ⟨yk −w.xk⟩

After the weight optimization, the decision function for an input vector x is de-

fined in equation 2.13. In the equation, the weight vector w is a linear combination of αk,

yk, and xk, where most weights αk are zero. All training values with non-zero weights

are defined as support vectors. The bias value b is calculated as an average over marginal

support vectors, defined after the inequality condition 0 < αk < C.

Once the weight adjustment process is finished and the model is generated, weights

w can be used to infer the ranking of features, where wi can be used as the ranking criteria

for each feature i.

2.1.2.9 Random Forest

Random forests is a popular machine learning method designed for classification

and regression tasks, based on the ensemble of multiple tree models combined with in-

dependent random vectors sample from the input data for each predictor to generate a

combined solution for an output variable (BREIMAN, 2001). Because it uses an ensem-

ble of tree models (such as decision trees) as its core strategy, random forests are inherent

variable selectors and can be considered embedded feature selection approaches when

used for this purpose, since the variable selection process is part of the learning process

when generating tree models (SPEISER et al., 2019).

From the original definition by Breiman (BREIMAN, 2001), random forests con-

sist of a collection of tree-based models h(x,Θk, k = 1, ...), which generates a class

prediction for an input x using k independent random vectors Θk, all based on the same

distribution. For each vector Θk and input x, a number of k different tree estimators

h1(x), h2(x), ..., hk(x) are generated.

h(x,Θk) = {h1(x), h2(x), ..., hk(x)} (2.14)

The tree estimator depth, the number of variables selected by each tree, and the

set of features selected depend on the parametrization of the underlying tree algorithm
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used. The original random forests method recommends the usage of linear combinations

of the input variables of constant size M , and trees with no depth limit, without pruning

(BREIMAN, 2001). Typically, the selection of variables inside the tree from each subset

Θk is random as traditional decision tree algorithms are based on random variable sam-

pling (SONG; YING, 2015). The final vote of the ensemble model for input (x) is defined

as the majority vote between all estimators hk(x).

After the generation of the ensemble model, feature selection can be performed

in a number of ways, either as an aggregation of the individual feature weights extracted

from the base tree models, or based on the exclusion of trees (and respective variable

subset exclusion) and the resulting impact on predictive performance, usually following a

feature ranking strategy (SPEISER et al., 2019).

2.2 Feature set evaluation

After performing feature selection in a dataset, it is crucial to evaluate the quality

of the selected subset of features, and measure the potential losses of information that

may happen due to removing unknowingly relevant features. In this section, we address

the evaluation of feature selection tasks for supervised problems. First, we introduce the

reasoning behind the usage of traditional machine learning metrics, such as classification

metrics, for the evaluation of subsets of selected features in terms of preserving or im-

proving the separation of data. After that, we describe the classification metrics that will

be used across this work.

2.2.1 Machine learning and feature selection

When speaking of feature selection, it is perhaps essential to elaborate on the basis

of machine learning theory and its high correlation with feature selection in literature,

even if both fields exist and can be used separately and for different purposes. Both fields

historically branch from data mining into individual research fields, but feature selection

was naturally adopted as an important tool for the optimization of machine learning tasks

in several aspects, notably model classification performance, resource utilization, data

interpretability, and readability of results (LI et al., 2017). Nonetheless, machine learning

techniques are also used as part of the mechanisms that compose several feature selection
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methods. During this work, several concepts and metrics of machine learning techniques

will be used to evaluate the effectiveness of feature selection methods.

Computer science fundamentally originates from the constant need to automate

human tasks via machines, yet we frequently fail to be able to fully articulate through

programs or instructions the criteria humans use to perform such tasks. From this, ma-

chine learning arises as a concept based on "learning through exposition", idealized as an

approach closer to that which humans and other animals use. On the other hand, it also

comes from the need to perform increasingly complex tasks required by technological ad-

vancements, where humans fail to provide reliable abstractions of large and complex data

— such as extracting information from medical data, analyzing genomic and astrological

data, predicting the weather, etc (SHALEV-SHWARTZ; BEN-DAVID, 2014).

In many ways, the objectives behind the applications of feature selection for hu-

man analysis are the same as using it for machine learning: the intention is to narrow

down data sources to relevant and ideally non-redundant features, to effectively differen-

tiate between data points while requiring fewer resources. Thus, machine learning models

and metrics are great indicators of the quality of a selection of features provided by a fea-

ture selection algorithm — a concept that originated whole branches of feature selection

algorithms, classified as wrapper methods. Even so, machine learning metrics and models

can be used to evaluate other classes of feature selection algorithms, further explored in

section 2.2.2.

Fundamentally, machine learning follows the same major division previously men-

tioned for feature selection methods in section 2.1, being mostly divided into supervised

and unsupervised learning, and sometimes semi-supervised. The supervised and unsuper-

vised machine learning fields have evolved over time into multiple branches of algorithms

designed for different types of inference goals. In this work, the focus will be centered

around supervised learning tasks, specifically classification tasks, where labels are defined

as two or more distinct known categorical classes.

The next subsections will explain the fundamental concepts of classification met-

rics and models used in this work to evaluate the results of the proposed feature selection

solution.
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2.2.2 Classification metrics

When evaluating a classification task, a set of predictions performed by a classifier

is typically summarized in hits and errors using a confusion matrix, also known as a

coincidence matrix or classification matrix (OLSON; DELEN, 2008).

Figure 2.2: A confusion matrix used for summarizing classifications.

Source: (OLSON; DELEN, 2008)

Figure 2.2 exemplifies the disposition of predicted labels for a two-classes prob-

lem. In the diagonal, the correctly predicted labels are divided into true positives and true

negatives, and the incorrectly predicted labels are divided into the sides, as false positives

and false negatives. These categorizations are defined as follows:

• True Positives (TP): labels correctly predicted as belonging to the target class.

• True Negatives (TN): labels correctly predicted as not belonging to the target class.

• False Positives (FP): labels incorrectly predicted as belonging to the target class.

• False Negatives (FN): labels incorrectly predicted as not belonging to the target

class.

From these counts, several metrics can be calculated to evaluate different aspects

of a classification performance, and the most common are described in the following

equations:

A (Accuracy) =
TP + TN

TP + TN + FP + FN
(2.15)
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P (Precision) =
TP

TP + FP
(2.16)

R (Recall) =
TP

TP + FN
(2.17)

F1 (F1-Score) =
2

1
P
+ 1

R

(2.18)

Accuracy (2.15) describes the sum of correctly classified positives and negatives

divided by the total number of classifications performed, providing a proportion of cor-

rectly labeled samples, but ignoring the individual class performance in multi-class prob-

lems. Precision (2.16) describes the sum of correctly classified positives divided by the

sum of correctly and incorrectly classified positives, essentially rating the effectiveness

of the classifier when assigning positive labels and decreasing in value as incorrect pos-

itive labels are assigned. Recall (2.17), on the other hand, evaluates the effectiveness of

the classifier in correctly recognizing positive labels from the evaluated samples, penal-

izing the metric as incorrect negative labels are assigned. Finally, F1-Score (2.18), also

known as F1-metric, utilizes precision and recall in a harmonic mean as an aggregated

metric, largely penalizing its value if at least one of the original metrics underperforms

significantly.

Out of the mentioned metrics, Accuracy (2.15) is the only one that measures the

performance across all classes directly, while the others serve the purpose of measur-

ing the performance of individual classes in a classification problem. To simplify the

summarization of such metrics in multi-class problems, which may be misleading as the

number of classes increases or if the number of samples of each class becomes unbal-

anced, macro-averaging and micro-averaging are the predominant approaches applied in

machine learning problems (TAKAHASHI et al., 2022).

Macro-averaging (2.19, 2.20, 2.21) consists of calculating the arithmetic mean of

a chosen metric over the classes of a multi-class problem, with each class having the same

weight despite the number of samples it contains. Micro-averaging (2.22, 2.23, 2.24), on

the other hand, consists of calculating the average value of a chosen metric by considering

all the samples of all classes at once, resulting in a metric that is more influenced by

larger classes and therefore more representative of them. The two approaches can be

described by the following equations, considering the metrics presented previously, where

i represents each class in an r-classes classification problem (TAKAHASHI et al., 2022):
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Pma (Macro-Averaged Precision) =
1

r

r∑
i=1

Pi (2.19)

Rma (Macro-Averaged Recall) =
1

r

r∑
i=1

Ri (2.20)

F1ma (Macro-Averaged F1-Score) =
1

r

r∑
i=1

F1i (2.21)

Pmi (Micro-Averaged Precision) =
∑r

i=1 TPi∑r
i=1 (TPi + FPi)

(2.22)

Rmi (Micro-Averaged Recall) =
∑r

i=1 TPi∑r
i=1 (TPi + FNi)

(2.23)

F1mi (Micro-Averaged F1-Score) = 2
Pmi ×Rmi

Pmi +Rmi

(2.24)

In this work, macro-averaging will be preferred over micro-averaging, since many

real-life classification problems tend to contain considerable class imbalance problems

(ALI; SHAMSUDDIN; RALESCU, 2013).

2.3 Genetic Algorithms

Genetic algorithms (GAs) are a type of metaheuristic often used for solving large

combinatorial problems with adaptable execution times, which makes them exceptional

candidates for improving solutions in feature selection. They are part of a larger group

of biology-inspired algorithms named evolutionary algorithms, which share three main

characteristics (YU; GEN, 2010): they are population-based, improving a population of

solutions over time, called individuals; they are fitness-oriented, meaning solutions are

evaluated according to fitness criteria, giving preference to the fittest individuals; they are

variation-driven, inducing exploration of the solution search space through operations

that perform changes in individuals, mimicking genetic alterations.

The first definition of Genetic algorithms (GAs) to gain notoriety was the work by

J.H. Holland (HOLLAND, 1992), which described GAs as computational methods based

on the principle of evolving candidate solutions over iterations based on evolutionary the-

ories from biology. The inspiration comes from the behavior observed in populations of
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biological organisms, which compete amongst themselves for resources over generations

of individuals. Ever since its initial proposal, GAs have been adapted to multiple appli-

cations in numerous fields, tackling computationally demanding problems with heuristics

that simplify the exploration of large spaces of possible solutions.

Beasley et al. (BEASLEY; BULL; MARTIN, 1993) describe GAs as a direct

analogy of natural behavior, where individuals in a population compete with their pairs

for food, water, shelter, and other resources, as well as candidate mates for reproduc-

tion. Individuals who are most successful in surviving will likely have more chances to

mate and therefore produce more offspring. Individuals who perform badly in surviving

will likely have fewer chances and therefore produce little to no offspring. In this sense,

genes from the most "fit" individuals, who are best adapted to the environment, will likely

spread to other individuals in future generations, as their offspring is also likely to have

better chances of succeeding in survival, eventually surpassing the potential of their par-

ents and becoming more and more specialized in the tasks required for surviving in the

environment.

2.3.1 The basic genetic algorithm

Translating this description into a generalist problem-solving method, standard

GAs manipulate populations of "individuals" that represent solutions to a given problem

(BEASLEY; BULL; MARTIN, 1993). Over a number of generations, these individuals

are evaluated by a fitness function and receive numeric scores of their performance. The

scores naturally indicate which individuals are more fit to solve the problem and therefore

should have more chances at reproduction (producing new individuals that inherit some

of their characteristics), or simply survival (being passed on to the next generation of indi-

viduals to be evaluated and compared again). In reproduction, the characteristics of each

individual are passed on to the offspring through their "genotype", which is composed of

a representation of parameters often called genes, or sometimes referred to as chromo-

somes. Individuals with low fitness scores are considered bad candidates for reproduction

and are often discarded in favor of new individuals generated by strategies such as recom-

binations through operations called crossovers, and randomizations of initially successful

genotypes through mutations.

Both the concept of elitism, designed to preserve the best solutions, and the other

mechanisms related to passing on or sharing genes present in good-performing individ-
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uals, namely mutation and crossover, result in the spread of characteristics of successful

solutions in the population of individuals as generations pass (PURSHOUSE; FLEMING,

2002). This makes GAs converge into progressively better solutions for the problem being

solved, but some attention is required to concerns such as maintaining a decent diversity of

solutions in the population, avoiding convergence limited to local optima, and controlling

the amount of randomization in new candidates, which can end up producing repetitive

and ineffective solutions. Beyond elitism strategies, such challenges are usually tackled

directly by the mutation and crossover operators, whose main function is to explore new

gene combinations while preserving likely successful genes from the current solutions

(LIM et al., 2017).

A pseudo-code representing a standard procedure for GAs based on the original

description by Holland (HOLLAND, 1992) can be seen in Algorithm 2, employing fitness

evaluation, elitism, crossovers, and mutations to individuals over generations. In the algo-

rithm, the initial population is created and assigned a initial fitness score (lines 2 to 5), and

for a defined number of generations, the population is updated using the 3 mechanisms

mentioned previously: the elitism strategy decides whichE∗S solutions to preserve to the

next generation and the remaining are discarded (line 7); the crossover operator creates a

number C ∗S of offspring individuals by combining genes of the most fit individuals (line

8); and the mutation operator creates M ∗ S by altering the genes of random individuals,

usually from the offspring set (line 9). After this, fitness scores are calculated once again

(lines 10 to 12) and the procedure repeats for the remaining generations (lines 6 to 13).

In this scenario, the number of preserved individuals (E ∗ S), the number of offspring

generated via crossover (C ∗ S), and the number of mutated individuals (M ∗ S) should

equal the number of S individuals.

2.3.2 Multi-objective genetic algorithms

Genetic algorithms branched over time into multiple approaches applied to dif-

ferent types of problems (KATOCH; CHAUHAN; KUMAR, 2021). Many aspects have

been improved by different techniques, mostly related to the maintenance of diversity

and elitism, improved crossover and mutation operators, more complex representations

of genotypes, or most notably the reinterpretation of the evaluation of the fitness of can-

didate solutions for complex problems.

The limiting factor of the originally proposed fitness function is that its output
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Algorithm 2: Basic genetic algorithm structure
Data: N : number of generations, S: population size, E: elitism rate, C:

crossover rate, M : mutation rate
Result: evolved candidate solutions

1 begin
2 initialize population with S individuals;
3 for individual in population do
4 evaluate fitness;
5 end
6 for generation in N do
7 apply elitism to E ∗ S most fit individuals;
8 apply crossover to C ∗ S most fit individuals;
9 apply mutations to M ∗ S random individuals;

10 for individual in population do
11 evaluate fitness;
12 end
13 end
14 end

numeric value is considered the only real objective in survival, no matter how complex

the function is or how many parameters are used to describe it. This is an issue for prob-

lems where the impact of distinct, usually contradictory objectives cannot be precisely

measured into a single numeric objective. An example of this is feature selection, where

the number of features should ideally be the smallest possible, but higher numbers of

features usually mean more representative feature sets when it comes to data separation,

thus acting as opposite objectives that need to be optimized with no clear balance between

them.

To overcome the issue of having a single objective value to evaluate often contra-

dicting evolutionary objectives, multi-objective genetic algorithms (MOGAs) were even-

tually proposed by Fonseca et al. (FONSECA; FLEMING, 1993), where the concept

of Pareto dominance was introduced to handle the optimization of multiple objectives

by preserving non-dominated solutions in separate Pareto fronts for each objective, thus

evaluating each objective independently. This concept originated a series of MOGAs

denominated Pareto-based MOGAs (KATOCH; CHAUHAN; KUMAR, 2021). A simi-

lar proposal of MOGA was made in Horn et al. (HORN; NAFPLIOTIS; GOLDBERG,

1994), where the concept of Pareto dominance was used in a solution named niched Pareto

genetic algorithm (NPGA). After that, Deb et al. (DEB et al., 2000) developed the non-

dominated sorting genetic algorithm (NSGA), which was further improved in its highly

successful successor, the NSGA-II (DEB et al., 2002), representing a landmark in the
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field of MOGAs.

Another relevant class of MOGAs worth of mention is the decomposition-based

genetic algorithms (KATOCH; CHAUHAN; KUMAR, 2021), but these will not be ex-

plored in this section given the focus on (and higher notoriety of) Pareto-dominated GAs.

In the next subsection, we analyze the inner workings of the NSGA-II, which is used as a

basis for the proposed method in this work.

2.3.3 NSGA-II: the non-dominated sorting genetic algorithm

NSGA-II, proposed initially by Deb et al. (DEB et al., 2002), is one of the most

relevant GAs in literature. Multiple small improvements have been proposed to the orig-

inal algorithm since its initial publication, but the core of what differentiates NSGA-II

from other multi-objective approaches still ties back to its initial proposal and the concepts

of non-dominated sorting and crowding-distance (VERMA; PANT; SNASEL, 2021).

2.3.3.1 Non-dominated sorting

The NSGA-II algorithm centers itself on the concept of Pareto domination, where

solutions that are not surpassed under the objective metric by any other solution form the

optimal "front" of solutions to the objective at hand. In this case, NSGA-II defines the

"fast non-dominated sorting approach" as its strategy to sort the population into different

domination levels (DEB et al., 2002).

Algorithm 3 describes the sorting approach. For each individual p in population

P , the first step is to calculate the number of solutions that dominate the current solution,

the domination count np, and the set of solutions that are dominated by it, Sp (lines 6 to

12). The solutions with a domination count of zero will be denominated as the first front,

F1 (lines 13 to 16). The dominated sets Sp for each of these solutions in the first front

are then iterated over (lines 21 to 27), and each dominated solution has its domination

count decreased by one (line 22). At the end of the iteration, all solutions that reach a

domination count of zero are denominated as the second domination front, F2 (line 30).

The process then repeats (from lines 18 to 31) for the dominated sets of this second front,

and a third domination front F3 is formed, and so on until all fronts are identified, resulting

in a complexity of O(MN2), where M is the number of objectives and N is the size of

the population of solutions.
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Algorithm 3: Fast non-dominated sorting approach. Source: (DEB et al.,
2002)

Data: P : population of solutions
Result: F : domination fronts

1 begin
2 for p in P do
3 Sp = ∅;
4 np = 0;
5 for q in P do
6 if p dominates q then
7 Sp = Sp ∪ {q};
8 else
9 if q dominates p then

10 np = np + 1;
11 end
12 end
13 if np == 0 then
14 prank = 1;
15 F1 = F1 ∪ {p};
16 end
17 i = 1;
18 while Fi ̸= ∅ do
19 for p in Fi do
20 Q = ∅;
21 for q in Sp do
22 nq = nq − 1;
23 if nq == 0 then
24 qrank = i+ 1;
25 Q = Q ∪ {q};
26 end
27 end
28 end
29 i = i+ 1;
30 Fi = Q;
31 end
32 end
33 end
34 end
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2.3.3.2 Crowding-distance

The crowding-distance approach is a strategy used to preserve the diversity of

solutions in a population, prioritizing individuals who occupy different spots in the di-

mensional space of possible solutions. It differentiates from previous diversity preserva-

tion techniques such as the one proposed in the first iteration of NSGA by not requiring

user-defined parameters to achieve a good performance — thus reducing the need for

problem-specific fine-tuning — and having a comparably smaller computational com-

plexity of O(MN logN ), where M is the number of objectives and N is the size of the

population of solutions. The crowding-distance requires the calculation of a density esti-

mation metric and a crowded-comparison operator.

Figure 2.3 displays a visual representation of the density estimation used in the

crowding-distance calculation process. To achieve the distance calculation, solutions are

sorted according to the objective metrics in each dimension. In the image, dimensions are

represented by f1 and f2, but the calculation can be made for more than two objectives.

The definition of density states that for each individual solution i, the distance idistance

is the average side length of the cuboid (or normalized distance) between the nearest

solutions on either side of the initial solution i, namely i−1 and i+1. Solutions on the

boundaries of the search space, e.g. solutions 0 and 1, receive an infinite idistance value.

Figure 2.3: A representation of the crowding-distance calculation. Points marked in filled
circles are solutions of the same non-dominated front.

Source: (DEB et al., 2002)

Once the density calculation is finished, the crowding-distance operator takes

place to ensure uniformity in the spread of solutions in the Pareto front. The operator

defines a sorting ≺n of the solutions based on two factors, the non-domination rank irank,
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and the crowding-distance idistance, as described in expression 2.25.

i ≺n j if (irank < jrank) or (irank = jrank) and (idistance > jdistance) (2.25)

The sorting considers first the lowest non-domination rank irank, and for solutions

with equal non-domination ranks, the higher crowding-distances idistance are prioritized,

resulting in the prioritization of solutions in less dense regions of the Pareto front.

2.3.3.3 Main loop

With the definitions of the fast non-dominated sorting and the crowding-distance

calculation, we can now describe the main loop of NSGA-II. In the first generation, a

clean population of solutions P0 is generated, sorted according to domination as a fitness

measure, and goes through the usual process of binary tournament selection, recombina-

tion, and mutation operators to create N offspring solutions named Q0.

After the first generation, the process in Algorithm 4 takes place, for every gen-

eration t, to apply both the non-dominated sorting and the crowding-distance strategies.

First, a population Rt is formed with the combination of population Pt and the offspring

population Qt, resulting in a combined size of 2N (line 2). This population is then sorted

according to domination (line 3), the crowding distance assignment takes place (line 7),

and a new population Pt+1 is created by including the newly formed domination fronts

F , from the first front (i = 1) to the subsequent fronts (i = i + 1), until the number of

individuals N is reached (lines 6 to 10), since the solutions in the first fronts are the best

in the population. The last front to be included in the population may be smaller than

the remaining amount of individuals needed to reach N solutions, thus a last sorting is

performed to pick the solutions in regions with lesser density using the operator ≺n (line

11). Figure 2.4 shows a depiction of the same process with all the mentioned steps.

After that, the new population is formed (lines 12 to 13) and ready to be used in

the next generation t + 1, where the procedure in Algorithm 4 is repeated after the usual

operators of the genetic algorithm (the selection, crossover, and mutation). The overall

complexity of the process is considered O(MN2), where M is the number of objectives

and N is the size of the population of solutions. This is mostly due to the non-dominated

sorting, which has the same complexity.
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Algorithm 4: NSGA-II main loop algorithm. Source: (DEB et al., 2002)
Data: t: generation identifier, Pt: population of solutions for t, Q: population

of offspring for t, Fi: domination front i, ≺n: crowding-distance
operator, N : number of individuals in populations

Result: Pt+1: new population for t+ 1
1 begin
2 Rt = Pt ∪Qt;
3 F = fast-non-dominated-sort(Rt);
4 Pt+1 = ∅;
5 i = 1;
6 while |Pt+1|+ |Fi| ≤ N do
7 crowding-distance-assignment(Fi);
8 Pt+1 = Pt+1 ∪ Fi;
9 i = i+ 1;

10 end
11 sort(Fi, ≺n);
12 Pt+1 = Pt+1 ∪ Fi[1 : (N − |Pt+1|)];
13 Pt+1 = make-new-pop(Pt+1);
14 t = t+ 1;
15 end

Figure 2.4: A representation of the NSGA-II algorithm.

Source: (DEB et al., 2002)
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2.4 Chapter summary

In this chapter, section 2.1 presented an introduction to the theoretical background

of feature selection, exploring the reasoning behind its applications and its usage focused

on classification tasks for supervised learning problems. In the same section, a review of

the feature selection methods used in this work is presented.

A description of the general sense of the relationship between machine learning

and feature selection is provided in section 2.2, describing the usage of machine learn-

ing metrics in the evaluation of the quality of feature sets provided by feature selection

methods.

Lastly, a bridge was also made to genetic algorithms in section 2.3, and the multi-

objective non-dominated sorting genetic algorithm (NSGA-II) is explained in detail to

serve as a foundation for the implementation proposed in chapter 4.
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3 RELATED WORK

In feature selection for high-dimensional data, often also characterized by a scarcity

of samples, recent literature has seen a surge in efforts to develop generalist methods

capable of addressing diverse domain-specific challenges. Real-world domains are fre-

quent sources of high-dimensional data, with areas like cancer and disease research and

genome-wide studies as common focal points for benchmarking and evaluating newly

introduced methodologies (ALHENAWI et al., 2022).

The study by Hambali et al. (HAMBALI; OLADELE; ADEWOLE, 2020) high-

lights that recent contributions using feature selection in the field of cancer research tend

to employ filter methods more frequently than other categories, given their more deter-

ministic and efficient nature when compared to wrapper and embedded approaches, which

may scale badly as the number of dimensions grows. The authors also mention the in-

creasing amount of research directed towards hybrid methods combining the different

characteristics of the classic feature selection categories. Still, even with recent advances,

Alhenawi et al. (ALHENAWI et al., 2022) reinforce the need for further research in order

to achieve more efficient feature selection methods for high-dimensional data such as in

the case of microarray data processing (especially used in cancer research) in terms of

both computation time and accuracy of the classification tasks.

The work by Piri et al. (PIRI et al., 2023) addresses a similar concern and of-

fers a comprehensive review of hybrid methodologies recently introduced for the fea-

ture selection problem, spanning various domains, including biomedical research. These

methodologies explore the fusion of evolutionary algorithms with other techniques to re-

duce high-dimensional datasets into smaller, more manageable ones. Such combinations

typically enhance the efficacy of the initial solutions, yielding results that are notably

more dependable than those obtained from non-hybrid methods, especially pure filter and

wrapper methods. Furthermore, the review identifies crucial aspects often overlooked by

most methods in their original formulations, such as:

1. Failing to assess the quality of the solution using real-world applications (such as

the biomedical domain), often relying on a small number of datasets and occasion-

ally neglecting the evaluation of high-dimensional datasets with substantial feature

counts.

2. Not considering multiple objectives, typically concentrating fitness evaluations solely

on error rates while overlooking the dimensionality reduction criteria.
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3. Increasing execution times compared to more straightforward methods and lacking

comparative analyses with other established approaches.

Considering evolutionary solutions similar to the approach proposed in this work,

several notable examples from recent years validate their performance with real-world

data, particularly in cancer-related and other biomedical applications. These examples

combine genetic algorithms (GAs) with other methods for feature selection and the iden-

tification of relevant biomarkers in datasets, which typically consist of a limited number

of samples but can include thousands of features. In all these studies, combining tech-

niques leads to enhanced classification performance compared to baseline methods that

do not utilize GAs. These works are listed in Table 3.1 and discussed in this section.

Table 3.1: Summary of notable related works using genetic algorithms

for feature selection.

Publication GA

category

FS

category

Dataset

domains

N.

Data

sets

Max.

Features1

Samples1 Evaluation

metrics2

Aličković and

Subasi (2017)

Single-

objective

Ensemble Breast

Cancer

2 32 569 Accuracy,

Area un-

der curve

(ROC),

F-Score

Aalaei et al.

(2016)

Single-

objective

Wrapper Breast

Cancer

3 34 198 Accuracy,

Specificity,

Recall

Ahmad et al.

(2015)

Single-

objective

Wrapper Breast

Cancer

1 9 699 Accuracy,

Specificity,

Recall

Liu et al. (2018) Single-

objective

Hybrid Multiple

domains

5 240 7399 Accuracy,

Specificity,

Recall

Sayed et al.

(2019)

Single-

objective

Ensemble Cancer

domains

3 27578 276 Accuracy

Maleki, Zeinali

and Niaki

(2021)

Single-

objective

Hybrid Lung Can-

cer

1 23 1000 Accuracy,

Specificity,

Recall

Continue on the next page

1Dimensions of the dataset under evaluation with the highest number of features.
2Metrics used to evaluate the quality of the final feature subset after the feature selection process.
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Table 3.1: Summary of notable related works using genetic algorithms

for feature selection (cont.).

Publication GA

category

FS

category

Dataset

domains

N.

Data

sets

Max.

Features1

Samples1 Evaluation

metrics2

Deng et al.

(2022)

Multi-

objective

Hybrid Cancer

domains

14 60483 123 Accuracy, F-

Score, Preci-

sion, Recall

Hasnat and

Molla (2016)

Multi-

objective

Hybrid Multiple

domains

3 7129 72 Accuracy

Tan, Lim and

Cheah (2014)

Multi-

objective

Hybrid Multiple

domains

3 32 569 Accuracy,

Precision,

Recall

Xue et al.

(2021)

Multi-

objective

Hybrid Multiple

domains

10 649 1000 Inverted

generational

distance

(IGD), hy-

pervolume

(HV)

Wang, Li and Li

(2015)

Multi-

objective

Hybrid Multiple

domains

10 180 3186 Area under

curve (ROC)

Bouraoui, Ja-

moussi and

BenAyed

(2018)

Multi-

objective

Hybrid Multiple

domains

8 60 208 Accuracy

Kundu and

Mallipeddi

(2022)

Multi-

objective

Hybrid Multiple

domains

18 512 5856 Accuracy,

McNemar’s

test

Each work in Table 3.1 is categorized according to the number of objectives opti-

mized by the genetic algorithm (single-objective vs. multi-objective) and the categoriza-

tion of the feature selection (FS) method, either as proposed by the authors or according

to the definition by Ang et al. (ANG et al., 2015). Additionally, the table summarizes the

characteristics of the datasets used to evaluate each method, highlighting the diversity of

dataset domains, the number of datasets evaluated, and the dimensions and sample sizes

of the dataset with the highest number of features. Finally, the metrics used to evaluate

the final results of each method are also presented.

Aličković et al. (ALIČKOVIĆ; SUBASI, 2017) employ an ensemble approach
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that combines a genetic algorithm for the first stage of feature selection with a rotation

forest classifier for the subsequent stage in the task of breast cancer classification using

two Wisconsin Breast Cancer datasets. This method improves the performance of simple

classifiers such as Random Forests (RFs) and Support Vector Machines (SVMs), show-

ing that simple models when paired with effective feature selection, can outperform more

complex models and offer valuable insights for medical research. Similarly, Aalaei et al.

(AALAEI et al., 2016) and Ahmad et al. (AHMAD et al., 2015) use wrapper approaches

that integrate genetic algorithm-based feature selection with various classifiers to ana-

lyze datasets from the same Wisconsin Breast Cancer database, further demonstrating the

enhancements provided by feature selection in this context.

Liu et al. (LIU et al., 2018) utilize a hybrid genetic algorithm for feature selection

and classification optimization for gene selection and cancer diagnosis. This method was

evaluated using five microarray datasets. The results were validated based on classifica-

tion performance and the biological significance of the findings. The study demonstrated

that the genetic algorithm could identify genes not detected by other evaluated approaches

while surpassing them in terms of classification performance and dimensionality reduc-

tion.

Sayed et al. (SAYED et al., 2019) employ a nested Genetic Algorithm approach,

where two GAs are used to evaluate different types of microarray data, thereby exploring

their inherent interconnections. This method achieves exceptionally high performance in

colon cancer classification and the report highlights the selected biomarkers’ biological

relevance. The validation extends to lung cancer datasets, where the approach again out-

performs more straightforward methods in terms of classification performance. Maleki et

al. (MALEKI; ZEINALI; NIAKI, 2021) use a single-objective hybrid approach that com-

bines a nearest neighbors model to evaluate feature sets generated by a genetic algorithm

performing feature selection for lung cancer classification. The study briefly discusses the

implied correlation between the solution’s performance in the classification task and its

ability to uncover interesting data patterns relevant to early-stage lung cancer diagnosis.

While the mentioned works utilize GAs in their process and provide significant

insights into the general usage of GAs in complex fields, none of them directly explore

a multi-objective genetic algorithm (MOGA) structure such as the one proposed by Deb

et al. (DEB et al., 2002), or other similar Pareto domination approaches. They deal with

the dimensionality of the feature sets as either a parameter to be specified (such as the

user deciding the number of features to be kept or removed), a secondary factor that is
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improved as a result of the optimization of performance, or a metric that is combined

along with classification performance into a single mixed objective, instead of evaluating

it separately from the classification metrics as a unique goal that requires specialized

optimization.

In this sense, Deng et al. (DENG et al., 2022) propose a hybrid solution that

utilizes a multi-objective genetic algorithm to optimize feature sets initially selected by

an XGBoost model (CHEN; GUESTRIN, 2016). This approach is employed for gene

selection across 14 cancer datasets, evaluating the results using simple models such as

Support Vector Machines (SVM) and Naïve Bayes. The study demonstrates improved

performance, reduced dimensionality, and decreased execution time, even for datasets

with up to 60,483 features. A similar study was previously conducted by Hasnat et al.

(HASNAT; MOLLA, 2016) on a smaller scale, applying a multi-objective GA to optimize

an initial feature selection performed by a correlation filter layer. This approach was

evaluated against three cancer datasets containing up to 7,129 features, yielding promising

results. An earlier example is the work of Tan et al. (TAN; LIM; CHEAH, 2014), where a

multi-objective GA was applied to datasets with up to 32 features. This study included two

disease classification problems and a human motion detection and classification problem,

showing improved results compared to the initial model performance and providing a

detailed analysis of the Pareto-domination behavior of the generated solutions. In all

three cases, the primary objectives are dimensionality reduction and enhancing one or

more classification metrics.

Xue et al. (XUE et al., 2021) propose multi-objective genetic algorithms for op-

timizing classification, specifically focusing on crossover operators to enhance the ex-

ploration of the solution search space. Their solution is tested on 10 datasets, includ-

ing those in cancer research and other fields, yielding promising results. However, these

datasets contain fewer features (up to 649) and samples than most other experiments men-

tioned. A similar situation was observed in other related works evaluated on datasets with

limited dimensions. For instance, Wang et al. (WANG; LI; LI, 2015) tested a multi-

objective GA emphasizing redundancy reduction on datasets with up to 180 features.

Similarly, Bouraqui et al. (BOURAOUI; JAMOUSSI; BENAYED, 2018) employed a

multi-objective GA for feature selection and model optimization on datasets with up to

60 features.

Recently, Kundu et al. (KUNDU; MALLIPEDDI, 2022) proposed a multi-objective

GA that leverages prior knowledge obtained from various classic feature selection meth-
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ods within a MOGA framework to optimize feature sets across multiple domains, similar

to the approach proposed in this work. Their method utilizes this information during the

initial population generation process by using the top features to form a small portion of

the initial population of feature subsets. In contrast, the remaining feature subsets are

created using random features. The underlying hypothesis is that the standard genetic

algorithm process will be enough to replicate and preserve the genes representing im-

portant features as generations progress. Although the results presented are promising,

the evaluations were conducted on datasets with relatively low dimensionality (up to 512

features). Moreover, the study does not elaborate on how previous knowledge could be

utilized in other crucial genetic algorithm operations beyond samplings, such as mutations

and crossovers.

From the works mentioned in Table 3.1, it is notable that not all methods are evalu-

ated on datasets with a substantial number of features (more than a thousand), even though

all of them are evaluated using real-life data. These datasets typically have small sample

sizes, and most evaluations are performed using traditional classification metrics such as

accuracy, precision, recall, and F-score. Among these, accuracy is the most frequently

used metric despite being potentially problematic. This is because many real-life datasets

have imbalanced class distributions, and accuracy can be a misleading performance indi-

cator for minority classes in these scenarios (ALI; SHAMSUDDIN; RALESCU, 2013).

Additionally, while all the mentioned methods utilize GAs for various purposes, not all

employ multi-objective approaches. Those that do, however, tend to present better results

and provide more in-depth analysis across a wider variety of datasets compared to meth-

ods developed with a single objective in mind. From the works discussed, three key areas

stand out as opportunities for exploration in a new combined solution:

1. Multi-objective approaches can separately evaluate two or more conflicting objec-

tives, such as dimensionality reduction and classification performance improve-

ment. This allows for greater flexibility in identifying the optimal compromise

solution that yields the best results based on the relative importance assigned to

each objective;

2. Applying an initial round of feature selection before optimizing feature sets with

a GA can enhance classification performance and execution time by eliminating

noisy features. Various methods can be employed in this initial round to enrich GA

populations and offer different insights about the evaluated datasets. This infor-

mation can be combined into mixed solutions using customized genetic algorithm
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operators (sampling, mutation, crossover).

3. Ideally, the datasets utilized for evaluations should consist of real-world data, and

the algorithm should demonstrate the ability to handle genuinely high-dimensional

data comparable to other datasets used in similar studies. Evaluation should be

conducted using classification metrics.

The approach outlined in this work capitalizes on these opportunities to shape the

solution’s foundation. Based on item 1, NSGA-II is used as a multi-objective heuristic

to address two concurrent objectives: generating reduced feature sets for dimensionality

reduction and enhancing classification performance by simplifying the data separation

task. Based on item 2, the approach leverages prior knowledge provided by an initial

round of feature selection, conducted using traditional methods, to reduce the exploration

space of the proposed multi-objective GA through customized sampling, crossover, and

mutation operators. This strategy ensures the utilization of relevant features while mini-

mizing the computational burden of assessing potentially irrelevant ones. Lastly, based on

item 3, the method is evaluated across a diverse array of real-world classification datasets,

particularly within the life sciences domain. These datasets encompass challenging sce-

narios for classification and analysis, each tailored to specific research objectives, thereby

demonstrating the versatility and effectiveness of the approach.

3.1 Chapter summary

In this chapter, a review of recent contributions in the literature surrounding single-

objective and multi-objective genetic algorithms designed for feature selection was pre-

sented. Major faults in the current proposed methods were raised based on reviews of

such literature and three items were proposed as opportunities to be explored in a new

solution: employing multi-objective approaches to conciliate dimensionality reduction

and classification performance, using classical feature selection methods as a source of

knowledge for these approaches, and using real-world data to evaluate the performance

of the proposed solution.
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4 PROPOSED METHOD AND IMPLEMENTATION

In this chapter, a description of the proposed method is provided and each of the

mechanisms and operators is explained in detail. The proposed method employs a multi-

objective genetic algorithm based on NSGA-II, optimizing two measurable objectives: i)

maximizing classification metrics for the given classification problem and ii) minimiz-

ing the number of features in the feature sets. Custom internal operators are designed

to create and modify feature subsets across generations, leveraging initial knowledge ob-

tained from other feature selection methods as a starting point for exploration within the

multi-objective search space of possible solutions. The final result is a set of solutions

that form a Pareto front, representing the best-performing feature subsets across a range

of minimum to maximum feature counts. Figure 4.1 illustrates a simplified version of this

process.

Figure 4.1: A simplified visual depiction of the multi-objective algorithm.

The following sections explain how the multi-objective genetic algorithm (NSGA-

II) is employed in this context. They describe the generation and utilization of prior

feature selection knowledge by the algorithm’s customized internal operators and, finally,

the evaluation of the feature sets.

4.1 Genetic algorithm structure

In the classic genetic algorithm structure, populations consist of individuals (can-

didate solutions to a problem) represented by a list of chromosomes (or genotypes). These
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individuals are evolved and optimized through generations to maximize a fitness function.

In the context of feature selection, individuals represent lists of features, with the geno-

type composed of a series of 0s and 1s indicating whether a chromosome (feature) is

included (1) or excluded (0) in the feature subset represented by the individual. Figure

4.2 illustrates examples of individuals configured in this manner. During the recombina-

tion and mutation of individuals across generations, the genetic algorithm mixes, alters,

and enhances candidate sets of features over time, guided by the fitness function.

Figure 4.2: A population of solutions in the proposed genetic algorithm.

NSGA-II serves as the foundational framework for this purpose, incorporating

classic components from the original method while introducing specialized operators for

the following processes: 1) Solution Sampling: Custom operators generate the initial

solutions in the population, ensuring a diverse starting point; 2) Mutation: Directed mu-

tations in genotypes enforce diversity within the population, promoting exploration of the

solution space; and 3) Fitness Function: Adapted specifically for classification problems,

the fitness function evaluates the effectiveness of feature subsets in enhancing classifica-

tion performance. These tailored operators enhance the algorithm’s capability to address

feature selection and classification optimization challenges.

The described multi-objective process optimizes the two previously defined objec-

tives: maximizing classification metrics and minimizing the size of feature subsets. The

operators manipulate portions of already reduced feature sets obtained from other feature

selection methods, combining them in compositions of feature subsets potentially not

fully explored by those methods. A more detailed depiction of the custom components,

along with a representation of the initial knowledge input into the genetic algorithm, is

shown in Figure 4.3.

Given NSGA-II’s effectiveness in exploring and expanding Pareto fronts in large
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Figure 4.3: A visual depiction of the multi-objective algorithm. In the image, a pool
of feature sets containing different ranked lists of features sorted by feature impor-
tance values provides the candidate chromosomes for new individuals in the GA popula-
tions, through the sampling operator, and for mutation operations in existing individuals,
through the mutation operator.
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multidimensional search spaces (DEB et al., 2002), the algorithm has excellent potential

for generating new and optimized feature subsets within the bi-dimensional search space

consisting of the dual objectives of minimizing the number of features and maximizing

classification potential.

The following sections first explain the role of feature importances provided by

feature selection methods in the optimization process and how these importances are

leveraged by the customized operators using a pool of feature sets. Subsequently, the

implementation of these operators and their expected influence over the search space are

described in detail.

4.2 Feature importances

For each evaluated dataset, the method requires a list of feature importances that

can represent a priority order of all features in the dataset, as illustrated in the example

table in Figure 4.3. These importances serve as the primary reference for deciding which

features should be retained or discarded in feature sets when constraining their size. The

feature importances can be obtained from traditional feature selection methods, extracted

from classifiers, or sourced from equivalent methods.

Feature selection methods in the literature adopt diverse approaches with varying

priorities for deciding which features to retain during dimensionality reduction. In our ap-

proach, we utilize a variety of feature selection methods to provide different perspectives

on which features should be prioritized and retained during the feature-discarding process.

A list of the default feature selection methods used to generate the feature importances

for the multi-objective genetic algorithm is described in section 5.2.1.

4.3 Pool of Feature Subsets

When multiple feature selection methods are used to generate ordered feature sets

based on feature importances, these individual ordered feature sets need to be stored

somewhere to be used in the further steps of the process. This conceptual storage is

referred to as a pool of feature sets, as depicted in Figure 4.3.

The concept of a pool of feature sets is utilized by the sampling and mutation

operators implemented for the solution. The goal of this pool is to provide the algorithm
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with multiple options of prioritized feature subsets, each selected by different methods.

Within each feature set, features are sorted by the importance values assigned to them

by the respective methods. This pool serves as a source of prior knowledge for both

operators, guiding the genetic algorithm to explore solutions within a reduced and already

optimized search space.

As a default, the implementation uses a pre-selected list of feature selection meth-

ods that explore different approaches to feature selection, each with different priorities

that, as a result, generate diverse feature sets. The default methods used are listed in sec-

tion 5.2.1 and described in further detail in section 2.1.2. This choice of feature selection

methods used to generate the pool of feature sets is ultimately flexible and works with any

feature selection method capable of providing a ranking or list of feature importances for

a set of features.

4.4 Sampling operator

The sampling operator is used in the genetic algorithm to generate the entire initial

population and new samples as needed. The sampling method consists of generating ns

distinct samples from the pool of feature sets, resulting in, by default, an equal proportion

of individuals for each of the sets available in the pool. Each sample is generated by se-

lecting a limited number nf of features according to their importance value in the feature

set. To enable variable solutions and to avoid excessive repetition of the selected genes, a

randomness factor is applied to control the probability of selecting a feature based on its

importance. This ensures that even though high-ranked features are prioritized in the sam-

pling process, they are less likely to always be chosen for new samples if the probability

factor is high enough.

The chance of a feature f being picked directly relates to its feature importance if ,

generated according to the feature selection method used, to the probability factor p, de-

fined as a parameter, and to the maximum feature importance in the feature set max(i)fs,

as defined in equation 4.1,

selection_chancef =
if

(1 + p) ∗max(i)fs
(4.1)

where p values greater than zero ensure that even top-ranked features don’t get selected

every time.
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To properly explore the size constraint of the problem at hand — reducing the

sizes of feature sets —, feature sets are created with limited nf features, a random value

between a minimum minf value and a maximum maxf value. The complete sampling

process is described in Algorithm 5.

In the algorithm, for each feature set F in the pool of feature sets F_pool, a pro-

portion propF of individuals is sampled (lines 1 to 7), resulting in ns*propF individuals

for each feature set F . Thus, ns*propF iterations j are performed (lines 2 to 6), where a

random integer value nf is picked between minf and maxf (line 3), and used to generate

a new individual indvj representing a subset of nf features from the original feature set

F (line 4), where each feature f can be selected with probability selection_chancef . Fi-

nally, the individual is added to the new set of individuals (line 5) and the process repeats

for the remaining individuals.

Algorithm 5: The sampling process. A total of ns samples or individuals
are generated, each representing a set of nf features between minf and
maxf features. Features are selected from the pool of feature sets accord-
ing to probability selection_chancef , described in equation 4.1.

Data: F_pool, proportions, ns, maxf , minf , p
Result: individuals

1 for F , propF in (F_pool, proportions) do
2 for j in ns*propF do
3 pick random integer nf between minf and maxf ;
4 generate indvj by selecting nf features f from F with chance

selection_chancef ;
5 add indvj to individuals list;
6 end
7 end
8 return individuals;

The resulting initial population is expected to have a high diversity of feature sets,

since it is built by combining a proportional number of samples derived from each of the

different initial feature importance sets in the feature pool, further diversified by random

set sizes.

4.5 Mutation operator

The mutation operator is used in the genetic algorithm to modify existing solutions

by inserting variations in their composition in an attempt to increase fitness.
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The proposed mutation operator acts by including and removing features from the

target individuals representing feature subsets. The mutation process begins by picking,

during each iteration of mutations, a random ordered feature set from the pool of feature

sets to serve as a source of chromosomes (in this case, features) for the mutation in tar-

get individuals. Once chosen, random features are selected from the best-ranked maxf

features of the selected ordered set to be activated in each target individual selected for

mutation. The mutation process ensures that the activated chromosome is not already

enabled in the target individual and, in turn, turns off another random chromosome to

preserve the size constraint of the solution. The complete mutation process is translated

to Algorithm 6.

In Algorithm 6, first a random feature set F is selected from F_pool (line 1), and a

chromosome_pool is created (line 2) from the top maxf features according to previously

ranked feature importances if . Then, for each individual indv from the list of individuals

mutation_candidates, a random inactive feature f1 and a random active feature f2 are

selected to be activated, and deactivated, respectively (lines 4 to 7). After that, mutated

individual indv is added to the list of mutated_individuals and the process is repeated

for each of the remaining target individuals.

Algorithm 6: The mutation process. A group of mutation_candidates is
mutated by activating previously inactive features and disabling previously
enabled features. The features chosen for activation are sourced from the
pool of feature sets.

Data: F_pool, mutation_candidates, maxf
Result: mutated_individuals

1 pick random F from F_pool;
2 generate chromosome_pool from top maxf features of F ;
3 for indv in mutation_candidates do
4 pick random feature f1 from chromosome_pool not active in indv;
5 pick random feature f2 active in indv;
6 mutate indv by activating f1;
7 mutate indv by deactivating f2;
8 add indv to mutated_individuals;
9 end

10 return mutated_individuals;

The result of using this limited set of chromosomes for exploration is that mu-

tations are not entirely random but instead directed to exploring features with measured

importance in the classification task while maintaining a degree of freedom for possibly

unexplored feature combinations to be explored.
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4.6 Fitness function

The fitness function in a genetic algorithm is used to objectively evaluate an indi-

vidual or solution within the context of the problem being solved, returning a fitness score

that helps compare solutions and prioritize the most fit for survival. For a classification

problem, the fitness function must measure the effectiveness of a subset of features against

the classification dataset. Given that numerous individual solutions are created and eval-

uated across the generations of the genetic algorithm, the fitness function needs to be

efficient. Traditional classification metrics such as precision, recall, accuracy, F1-Score,

or use-case-specific metrics can be employed for this purpose.

Any classifier can generate these metrics, but when aiming for efficiency and eval-

uation speed, generic, simple classifiers such as support vector machines, k-nearest neigh-

bors, and others are the typical choices for evaluation in feature selection for classification

(PIRI et al., 2023). They can be trained against a dataset containing the subset of features

specified by each individual and evaluated with traditional classification metrics. One or

more of these metrics can then be used as outputs of the fitness function, providing the

necessary information to decide whether solutions are fit for the problem or not in terms

of classification effectiveness.

The other important goal to consider in the multi-objective approach is dimension-

ality reduction, so a parallel objective in the fitness evaluation process should be to mini-

mize individual feature subset size. Thus, the fitness function employed for the proposed

method evaluates the two objectives: i) maximizing classification metrics (for example,

F1-Score) and ii) minimizing the number of features in the feature sets. The classification

metric and the classifier used in the experimentation process are defined in chapter 5 and

could be changed to better suit any target classification problem.

Considering that NSGA-II expands the solution fitness of dominating individuals

through its crowding distance mechanism on both dimensions of optimization, the result

is a group of solutions evenly distributed across the different possible feature set sizes

on one dimension, while maximizing the classification metric on another dimension by

keeping only the best solutions for each feature set size.
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4.7 Chapter summary

This chapter provided a detailed explanation of the proposed method, which lever-

ages a multi-objective genetic algorithm structure to optimize feature sets of independent

feature selection methods for classification problems.

The multiple sections explain the individual parts that compose the algorithm,

highlighting differences from the original NSGA-II structure used as a basis, and detailing

the logic and reasoning behind the proposed operators for the sampling process (section

4.4), the mutation process (section 4.5), and the fitness function (section 4.6).
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5 EXPERIMENTS

In this chapter, the effectiveness of the proposed method is validated using differ-

ent high-dimensional datasets. The datasets are described in section 5.1, and the experi-

ments are described in section 5.2. These experiments aim to demonstrate the improve-

ment in classification performance achieved by the optimized feature sets created by the

multi-objective GA, compared to traditional feature selection methods. The results for

each dataset are discussed individually in chapter 6.

5.1 Datasets

The datasets considered for evaluating the proposed method contain a large num-

ber of features, each with varying degrees of relevance to the classification task. Each

dataset comes from applications in the field of life sciences and benefits from feature se-

lection from a classification and an analytical perspective, revealing interesting patterns

that are not always obvious to researchers. Thus, in these experiments, we consider the

classification performance of the selected features in each dataset as a direct indicator of

their analytical relevance in the real-world problem at hand. In this sense, feature selec-

tion highlights relevant features in the dataset, which can be candidates for more in-depth

analysis.

Table 5.1 and the following subsections summarize the datasets used for experi-

mentation, explaining the context they are used in and how they benefit from the proposed

method compared to other feature selection methods.

5.1.1 CuMiDa - Leukemia and Breast Cancer datasets

Gene expression data was utilized to assess the effectiveness of the proposed

method. We employed two datasets sourced from the CuMiDa database (FELTES et al.,

2019): Leukemia (GSE28497) and Breast Cancer (GSE70947) (refer to Table 5.1). These

datasets represent high-quality curated microarray data sets tailored specifically for eval-

uating machine learning solutions in cancer research. Notably, they offer the advantage

of employing more contemporary techniques than other commonly used cancer datasets

(GRISCI et al., 2024). Prior to analysis, the dataset underwent thorough preprocessing
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Table 5.1: Dataset details and label distributions

Dataset
N.

Features
N.

Samples
N.

Classes Label Count Proportion

CuMiDa Leukemia
(GSE28497) 22284 281 7

B-CELL_ALL 74 26.3 %
B-CELL_ALL_ETV6-RUNX1 53 18.9 %

B-CELL_ALL_HYPERDIP 51 18.1 %
B-CELL_ALL_T-ALL 46 16.4 %

B-CELL_ALL_TCF3-PBX1 22 7.8 %
B-CELL_ALL_HYPO 18 6.4 %
B-CELL_ALL_MLL 17 6.0 %

CuMiDa Breast
Cancer (GSE70947) 35982 289 2 normal 146 50.5 %

breast_adenocarcinoma 143 49.5 %

Eye Color SNPs 126018 500 3
2V-M-CC 201 40.2 %
3CE-PR 190 38.0 %

1AZC-AZE 109 21.8 %

Arrhythmia (UCI
repository) 279 438 9

Normal 245 55.9 %
Right bundle branch block 50 11.4 %

Ischemic changes 44 10.0 %
Sinus bradycardy 25 5.7 %

Others 22 5.0 %
Old Anterior Myocardial Infarction 15 3.4 %
Old Inferior Myocardial Infarction 15 3.4 %

Sinus tachycardy 13 3.0 %
Left bundle branch block 9 2.1 %

p53 Mutants (UCI
repository) 5409 16772 2 inactive 16449 99.1 %

active 144 0.9 %

steps, including background correction, normalization, and quality assessment of sam-

ples. Furthermore, manual editing was conducted to eliminate erroneous probes. Baseline

performances of fundamental classifiers are provided as reference points (FELTES et al.,

2019).

Feature selection can be applied to these use cases to reduce the considerable

amount of features available in the datasets (22284, and 35982 features, respectively) and

increase classification performance, as well as identify highly relevant features for cancer

research. It is noteworthy that despite the abundance of features, both datasets exhibit

small sample sizes, a common issue across diverse domains of life sciences research.

Furthermore, while the Breast Cancer dataset contains only two classes evenly distributed

in the data, the Leukemia dataset contains seven different classes with uneven distribu-

tion, with the majority class representing 26.3% of the samples, and the minority class

only 6.0%. This imbalance in label distributions, coupled with small sample sizes, poses

significant challenges for learning algorithms (HE; GARCIA, 2009).
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5.1.2 Eye Color SNPs dataset

The proposed method was also evaluated using a SNP (single nucleotide polymor-

phisms) dataset. This dataset, which is not publicly available, was utilized to investigate

SNPs associated with phenotypes such as eye color in humans (KAYSER, 2015), with a

focus on Brazilian populations. Identifying informative SNPs is crucial for understanding

the human genome and uncovering correlations between SNPs and various phenotypes,

conditions, and diseases. Feature selection plays an essential role in this identification

process. The dataset comprises 126,018 features, each representing one of the two alleles

of a selection of SNPs from specific genes across 500 samples, as detailed in Table 5.1.

The Eye Color SNPs dataset presents a formidable challenge for learning algo-

rithms, primarily due to its exceptionally high feature count coupled with a limited sam-

ple size. The abundance of features often leads learning models to prioritize noisy data

during the training process, resulting in prolonged training times for common classifica-

tion models and degraded performance (HE; GARCIA, 2009). Additionally, the dataset

exhibits some class imbalance, with the majority class comprising 40.2% of the samples

and the minority class only 21.8%.

5.1.3 UCI Database datasets

The proposed method was additionally evaluated using two publicly available life

sciences datasets sourced from the UCI machine learning repository (KELLY; LONGJOHN;

NOTTINGHAM, 2021): the Arrhythmia dataset (GUVENIR et al., 1998) and the P53

mutants dataset (LATHROP, 2010), as outlined in Table 5.1.

The first dataset, the Arrhythmia dataset (GUVENIR et al., 1998), is employed to

discern the presence and subtypes of cardiac arrhythmia across 16 different labels. This

relatively small dataset comprises 452 samples and 279 features (GUVENIR et al., 1998).

However, due to the scarcity of samples (less than 5) for certain classes, the dataset was

condensed to focus on the 9 most significant classes for this experiment, resulting in 438

samples and 279 features. In the second dataset, features derived from biophysical models

of mutant p53 proteins are leveraged to predict p53 transcriptional activity, with all class

labels determined through in vivo assays (LATHROP, 2010). All samples and features are

included in the experimentation process for this particular use case, with 16772 samples

and 5409 features.
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The Arrhythmia dataset stands out among the datasets examined in these exper-

iments due to its comparably small feature count and the most pronounced class imbal-

ance issue in terms of sample counts. The majority class constitutes 55.9% of the utilized

samples, while the minority class comprises only 2.1%, totaling merely 9 samples. In this

scenario, it is likely that the performance on minority classes will be significantly affected

by the small sample size.

In contrast, the p53 Mutants dataset boasts the largest sample size among all

datasets, accompanied by a substantial number of features. Despite this, the dataset also

has severe class imbalance issues, although it contains a greater number of samples for the

minority class compared to the other highly imbalanced datasets analyzed in the experi-

ments. In this case, higher execution times can be expected compared to other datasets

due to its larger sample sizes, a factor that often increases the training time required by

classifiers used in the fitness evaluation process of the proposed method.

5.2 Experiment design

The experiments are divided into two phases. The first phase represents the base-

line experiments, and it generates ranked feature importances for the pool of feature sets

using a set of feature selection methods. Additionally, classification metrics are generated

for these ranked features using a classifier in a cross-validation process, a data resampling

method used to evaluate models with less over-fitting impact than simple training and test

data splits (BERRAR, 2019). Moving to the optimization phase, the ranked feature im-

portances obtained from the baseline phase serve as input for the multi-objective genetic

algorithm. Subsequently, the resulting optimized feature sets undergo evaluation using

the same cross-validation procedure employed in the baseline phase. The metric chosen

for the evaluation is the macro-averaged F1-Score, a metric adequate for datasets with im-

balanced or balanced distributions of classes and derived from recall and precision (ALI;

SHAMSUDDIN; RALESCU, 2013). Figure 5.1 provides a simplified representation of

the process employed in each experiment phase, with further elaboration provided in the

subsequent subsections.
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Figure 5.1: A depiction of the experiment plan for the proposed method, divided in two
phases.

5.2.1 Baseline experiments

The first phase of the experiment process (illustrated in Figure 5.1) involves cre-

ating the pool of feature sets. This is accomplished by applying a list of feature selection

methods to a given dataset, generating importance values for all of its features. Once gen-

erated, the feature importances are used to decide which features to retain or to remove

when reducing the dimensionality of the feature sets for the classification evaluations.

The list of feature selection methods to be used by the implementation is flexible

as long as they can provide feature importance. The more methods we use, the more va-

riety of initial knowledge we provide to the GA. Eight feature selection methods are used

for the experiments, all of which are summarized in Table 5.2. ANOVA F-Test (KIM,

2017) and Kruskal Wallis Test (MCKIGHT; NAJAB, 2010) are filter methods used for ef-

ficient univariate analysis of features. Decision Tree (SONG; YING, 2015), Lasso (TIB-

SHIRANI, 1996), Linear SVM (GUYON et al., 2002), and Random Forest (SPEISER

et al., 2019) are classic learning models that can provide importance weights obtained

during the learning process, thus serving as an embedded approach capable of uncover-

ing multivariate relations and requiring negligible computational time in most use cases.

mRMR (PENG; LONG; DING, 2005), Mutual information (ROSS, 2014), and Relief-F

(KONONENKO, 1994) are also filter methods but perform much more complex, some-

times multivariate analyses, with a particular focus on feature interactions and reduction

of redundancy in the feature sets. Method implementations used in the experiments were

sourced from the works of Pedregosa et al. (PEDREGOSA et al., 2011), Urbanowicz et
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al. (URBANOWICZ et al., 2017) and Mazzanti (MAZZANTI, 2023).

Table 5.2: List of feature selection methods used in the baseline experiments

Method Method Type Variable Analysis Type

ANOVA F-Test Filter Univariate
Kruskal Wallis Test Filter Univariate
Decision Tree Embedded Multivariate
Lasso Embedded Multivariate
Linear SVM Embedded Multivariate
Random Forest Embedded Multivariate
mRMR Filter Multivariate
Mutual information Filter Univariate
Relief-F Filter Multivariate

Each feature selection method is then evaluated for each dataset and all feature

subsets within a minimum and maximum number of features based on the ranking of

features provided by the feature selection method. The values that specify the numbers of

features to be evaluated are defined, in these experiments, as a range of integers starting

from a minimum number of features to a maximum number of features, as described

in the parameters in Table 5.3. In other words, with the parameter values in the Table

5.3, ranked subsets of features are evaluated using a minimum of 2 to 50 features from

the list of ordered features. These respective parameters could be changed to increase

or reduce computation time since evaluating more sets of different numbers of features

will require additional processing. The parameters were empirically set to a standard

pair of the minimum and maximum number of features across all datasets for an easier

comparison. However, they could be adapted to each use case for more efficient results.

A stratified k-fold cross-validation approach (STONE, 1974) was used during the

experiments to stabilize classification metrics by aggregating evaluations of different folds

of data. For additional stability of the metrics, each execution, starting at the importance

generation step and ending with the cross-validation step, is repeated 10 times. The met-

rics provided as a result are the averaged values across all runs. Table 5.3 specifies the

number of folds and runs utilized for the datasets and also describes the target classifi-

cation metric and evaluator used in the experiment to evaluate metrics for the resulting

feature sets — in this case, an SVM, which provides the F1-Score values to the fitness

evaluation. For the case of the Arrhythmia dataset, a smaller number of folds was chosen

due to the limited amount of samples available (5) for its minority class.
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Table 5.3: Baseline experiments parameters

Dataset Parameter Value

All datasets Min. Features 2

(common) Max. Features 50

Target Metric F1-Score (Macro)

Evaluator Linear SVM

Runs 10

CuMiDa Leukemia (GSE28497) CV folds (K-Fold) 15

CuMiDa Breast Cancer (GSE70947) CV folds (K-Fold) 15

Eye Color SNPs CV folds (K-Fold) 15

Arrhythmia (UCI repository) CV folds (K-Fold) 5

p53 Mutants (UCI repository) CV folds (K-Fold) 15

5.2.2 Multi-objective genetic algorithm optimization experiments

In the second phase of the experiment process (depicted in Figure 5.1), the focus

is on optimizing feature sets using the MOGA and evaluating its outcomes. This phase

begins by utilizing the feature importance values acquired during the baseline experiments

in Phase 1. These values are stored in the corresponding pool of feature sets created for

each dataset and serve as a resource in the genetic algorithm. The GA is executed for each

dataset 10 times, repeated to ensure result stability and the resulting metrics represent

average values across all runs.

This step replicates most of the parameters from the baseline experiments (Table

5.3) in Table 5.4: the ranges of numbers of features, the evaluators used for classification,

the number of folds in cross-validation, and the target metric. Additionally, other param-

eters specific to the execution of the genetic algorithm are included in the new table. The

final results are presented in the next chapter.
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Table 5.4: Multi-objective genetic algorithm optimization

experiments parameters.

Dataset Parameter Value

All datasets Min. Features 2

(common) Max. Features 50

Target Metric F1-Score (Macro)

Evaluator Linear SVM

Runs 10

CuMiDa Leukemia CV folds (K-Fold) 15

(GSE28497) Generations 200

Population size 200

Prob. Factor 1.25

CuMiDa Breast Cancer CV folds (K-Fold) 15

(GSE70947) Generations 200

Population size 200

Prob. Factor 1.25

Eye Color SNPs CV folds (K-Fold) 15

Generations 400

Population size 200

Prob. Factor 1.25

Arrhythmia CV folds (K-Fold) 5

(UCI repository) Generations 200

Population size 200

Prob. Factor 1.25

p53 Mutants CV folds (K-Fold) 15

(UCI repository) Generations 400

Population size 210

Prob. Factor 1.25
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5.3 Chapter summary

In this chapter, section 5.1 describes the datasets selected for the process of eval-

uation of the method previously proposed in chapter 4, in the context of classification

problems. The selected datasets represent high-dimensional data from real-life applica-

tions of medical and biology research fields and are mostly available for online access.

Section 5.2 describes the experiments designed to evaluate the application of the

method in each of the datasets, separating the comparison into two phases: evaluating the

performance before the optimization provided by the MOGA, and after the optimization.
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6 RESULTS AND DISCUSSION

In this chapter, results are presented for the experiments performed for each dataset.

After completing all experiments, the outcomes obtained from the initial baseline feature

selection methods employed are compared with the results derived from the optimization

conducted through the multi-objective genetic algorithm in the subsequent phase for each

specific use case. Additionally, the final section delves into the discussion of runtime

performances.

6.1 Classification performances

Tables 6.1, 6.2, 6.3, 6.4, and 6.5 display the aggregated statistics across multiple

runs conducted for each dataset. All tables present, for each method, the average perfor-

mance of macro-averaged F1-Score over the test set during cross-validations for the range

of numbers of features explored within the minimum and maximum boundaries defined

in parameter tables 5.3 and 5.4, for the number of runs specified in the same tables. As a

complement, Figures 6.1, 6.2, 6.3, 6.4, and 6.5 present aggregated statistics for the same

executions across each dataset. These figures showcase the Pareto fronts of dominant

solutions generated during the multi-objective process, depicted in blue. Additionally,

they illustrate the individual performances of the initial feature selection methods, along

with a box plot summary of their averaged scores. For reference, the performance of the

classifier considering all available features is represented as a horizontal dashed line.

The results for the CuMiDa Leukemia and CuMiDa Breast cancer datasets are

summarized in Tables 6.1 and 6.2, respectively. Across the evaluations, the Genetic Algo-

rithm (GA) executions consistently enhanced the performance of the target metric during

the cross-validation process. Notably, for the Leukemia dataset, the average performance

surpassed that of the best baseline method by approximately 10.01 points (or 13.22%),

with similar improvements observed in both the maximum (by 5.37 points) and minimum

results (by 8.79 points) across all feature numbers, while maintaining a relatively low

standard deviation. Regarding the Breast cancer dataset, the GA performance exceeded

that of the best baseline method by approximately 1.93 points (or 2.05%), with improve-

ments seen in both the maximum (by 2.02 points) and minimum results (by 1.73 points)

across all feature numbers, accompanied by the lowest standard deviation.

An alternative visual representation of the results presented in Tables 6.1 and 6.2



70

is provided in Figures 6.1 and 6.2. In these figures, the performance of the dominant

feature sets generated by GA is highlighted in blue across the range of evaluated feature

numbers. The dominant GA solutions consistently outperform the initial feature selec-

tion results utilized in the GA optimization process across nearly all evaluated feature

numbers. Moreover, they surpass the performance of the baseline classifier, which incor-

porates all features, with fewer features than the initial feature selection methods.

For the Eye Color SNPs dataset, Table 6.3 exhibits a similar trend of enhancements

across all metrics of the target metric. There is an improved average performance by

approximately 6.15 points (or 8.55%), alongside significantly improved minimum (by 5.4

points) and maximum (by 8.22 points) performances across varying numbers of features,

all while maintaining a comparably low standard deviation.

Figure 6.3 displays the same results presented in table 6.3 but highlights an inter-

esting behavior. In this particular dataset, the performances of the dominant GA-generated

solutions are closer to the performance of the initial feature selection methods when eval-

uating smaller feature set sizes. This is expected since the evaluated dataset contains a

small subset of highly representative features and a wide majority of less representative,

complementary features. Still, the GA manages to fine-tune the feature sets better as the

number of features increases. In contrast, most of the initial methods fail to identify the

less representative but still important secondary features.

The performance of the methods on the last two datasets, the UCI p53 Mutants

dataset, and the UCI Arrhythmia dataset, are presented in tables 6.4 and 6.5, respectively.

In both use cases, the dominant GA performances highly surpass the average, minimum,

and maximum performances. For the first dataset, p53 Mutants, the average performance

is improved by approximately 7.33 points (or 11.45%), while the minimum performance

is improved by 2.5 points and maximum performance is improved by 8.13 points. For

the second dataset, Arrhythmia, the average performance is improved by approximately

9.76 points (or 21.12%), while the minimum performance is improved by 8.78 points and

maximum performance is improved by 4.12 points.

Figures 6.4 and 6.5 further detail the performances on these two datasets, high-

lighting that not only was the GA performance better on average, minimum, and max-

imum performances, but also across all feature numbers evaluated by the experiments,

for both use cases. While for p53 Mutants no method achieves the same performance as

obtained by the original set of 5409 features, the GA approach nearly reaches the same

result with 50 features, and the remaining methods fall largely behind. For Arrhythmia,



71

Table 6.1: CuMiDa Leukemia dataset results. Aggregations over Test F1-Score (macro-
averaged) across 10 executions. The best results are in bold.

Method Avg. (± Std. Dev.) Max. Min.

ANOVA F-Test 0.6414 (± 0.0067) 0.7759 0.2037
Decision Tree 0.7574 (± 0.0073) 0.7863 0.3364
Kruskal Wallis 0.7177 (± 0.0070) 0.8230 0.3421
Lasso 0.7295 (± 0.0080) 0.8796 0.2712
Linear SVM 0.7439 (± 0.0122) 0.8720 0.2253
Mutual Information 0.7401 (± 0.0075) 0.8027 0.3604
NSGA-II Optimization 0.8575 (± 0.0099) 0.9333 0.4685
Random Forest 0.6758 (± 0.0411) 0.7807 0.2992
Relief-F 0.7309 (± 0.0063) 0.7766 0.3806
mRMR 0.7109 (± 0.0047) 0.7825 0.3211

Figure 6.1: Average macro F1-Score performance with varying numbers of features for
CuMiDa Leukemia dataset.
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Table 6.2: CuMiDa Breast Cancer dataset results. Aggregations over Test F1-Score
(macro-averaged) across 10 executions. The best results are in bold.

Method Avg. (± Std. Dev.) Max. Min.

ANOVA F-Test 0.8873 (± 0.0046) 0.9009 0.8657
Decision Tree 0.8763 (± 0.0080) 0.8853 0.8698
Kruskal Wallis 0.8892 (± 0.0041) 0.9096 0.8595
Lasso 0.9423 (± 0.0030) 0.9591 0.8379
Linear SVM 0.8909 (± 0.0066) 0.9373 0.7941
Mutual Information 0.8765 (± 0.0044) 0.8953 0.8338
NSGA-II Optimization 0.9616 (± 0.0029) 0.9793 0.8871
Random Forest 0.8626 (± 0.0149) 0.8805 0.8358
Relief-F 0.8364 (± 0.0055) 0.8458 0.8177
mRMR 0.8933 (± 0.0041) 0.9081 0.8228

Figure 6.2: Average macro F1-Score performance with varying numbers of features for
CuMiDa Breast Cancer dataset.
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Table 6.3: Eye Color SNPs dataset results. Aggregations over Test F1-Score (macro-
averaged) across 10 executions. The best results are in bold.

Method Avg. (± Std. Dev.) Max. Min.

ANOVA F-Test 0.6375 (± 0.0064) 0.6602 0.4672
Decision Tree 0.7195 (± 0.0109) 0.7354 0.5784
Kruskal Wallis 0.6360 (± 0.0067) 0.6599 0.4681
Lasso 0.7140 (± 0.0074) 0.7479 0.6310
Linear SVM 0.6330 (± 0.0072) 0.6607 0.4669
Mutual Information 0.6500 (± 0.0177) 0.6714 0.5188
NSGA-II Optimization 0.7810 (± 0.0072) 0.8301 0.6324
Random Forest 0.6468 (± 0.0210) 0.6747 0.5385
Relief-F 0.6087 (± 0.0067) 0.6444 0.4671
mRMR 0.6722 (± 0.0068) 0.7020 0.5119

Figure 6.3: Average macro F1-Score performance with varying numbers of features for
Eye Color SNPs dataset.
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Table 6.4: p53 Mutants dataset results. Aggregations over Test F1-Score (macro-
averaged) across 10 executions. The best results are in bold.

Method Avg. (± Std. Dev.) Max. Min.

ANOVA F-Test 0.5798 (± 0.0036) 0.6318 0.4977
Decision Tree 0.5483 (± 0.0121) 0.5995 0.4978
Kruskal Wallis 0.5117 (± 0.0041) 0.5626 0.4977
Lasso 0.6400 (± 0.0062) 0.6952 0.5526
Linear SVM 0.5076 (± 0.0026) 0.5503 0.4977
Mutual Information 0.5299 (± 0.0080) 0.6026 0.4977
NSGA-II Optimization 0.7133 (± 0.0126) 0.7765 0.5776
Random Forest 0.5848 (± 0.0203) 0.6643 0.4977
Relief-F 0.5108 (± 0.0020) 0.5687 0.4977
mRMR 0.6080 (± 0.0051) 0.6684 0.5009

Figure 6.4: Average macro F1-Score performance with varying numbers of features for
p53 Mutants dataset.
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Table 6.5: Arrhythmia dataset results. Aggregations over Test F1-Score (macro-averaged)
across 10 executions. The best results are in bold.

Method Avg. (± Std. Dev.) Max. Min.

ANOVA F-Test 0.4109 (± 0.0086) 0.5217 0.1795
Decision Tree 0.4184 (± 0.0232) 0.4831 0.1527
Kruskal Wallis 0.4136 (± 0.0116) 0.4716 0.1799
Lasso 0.4093 (± 0.0132) 0.4970 0.1618
Linear SVM 0.4597 (± 0.0128) 0.5690 0.1519
Mutual Information 0.4082 (± 0.0235) 0.4792 0.1727
NSGA-II Optimization 0.5598 (± 0.0078) 0.6102 0.2846
Random Forest 0.4082 (± 0.0194) 0.5057 0.1481
Relief-F 0.3746 (± 0.0138) 0.4780 0.1968
mRMR 0.4622 (± 0.0114) 0.5275 0.1944

the only method to surpass the performance of the original feature set is the GA approach.

The results presented for the 5 distinct use cases reveal the efficacy of the multi-

objective genetic algorithm in optimizing the results from the initial feature selection

performed by classic methods by combining and refining them. The datasets utilized

represent challenging use cases for feature selection and classification, containing high

numbers of features and significantly low sample sizes — which requires feature selection

to be precise and stable in order to avoid negative effects on the classification performance

and to improve the potential for analysis of the datasets.

6.2 Execution times

The average run times for the MOGA for each of the datasets across the different

executions are reported in table 6.6, along with the average combined time required to run

all baseline methods.

Sample sizes can largely affect execution time, as seen in the p53 Mutants use

case. In this scenario, the execution time is larger even in comparison to other use cases

with considerably wider feature sets, such as the Eye Color SNPs dataset, as evaluating

more samples requires longer training times of classifiers for the evaluation of each feature

subset generated by the GA.

Wider datasets also naturally require longer run times since there is a larger quan-

tity of possible combinations of features to be evaluated. This becomes evident in the

case of the Arrhythmia dataset, where its small set of features is quickly optimized by the
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Figure 6.5: Average macro F1-Score performance with varying numbers of features for
Arrhythmia dataset.
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GA in comparison to other wider datasets with similar sample sizes. Nevertheless, while

feature counts do influence total execution time, the sample sizes influence more heavily

the duration in the evaluated datasets, noticeably in the p53 Mutants use case. This is

expected, as the algorithm mitigates the impact of feature counts on execution time by

limiting the size of the feature sets evaluated, as outlined in the parameterization details

provided in Table 5.4.

Table 6.6: Average execution times across 10 executions for each dataset.

Dataset N. Features N. Samples Baseline FS
Avg. Exec. Time (hours)

MOGA
Avg. Exec. Time (hours)

CuMiDa
Leukemia

22284 281 1:25:38.171 1:30:55.614

CuMiDa
Breast Cancer

35982 289 0:44:09.730 0:49:31.859

Eye Color
SNPs

126018 500 3:12:59.683 3:25:14.767

Arrhythmia 279 452 0:00:38.144 0:40:40.854

p53 Mutants 5409 16772 6:40:31.863 6:41:14.786

The reported execution times for the proposed MOGA are, in most use cases,

comparable to the total time required by all evaluated baseline methods combined, except

the Arrhythmia use case. Given the repeated evaluations performed over generations in

the GA, this increased run time is expected. It is likely acceptable in such use cases,

where the main goal is achieving higher classification performance with smaller sets of

features and not necessarily shorter execution times. Still, experiment parameters could

be altered to shorten execution times, such as reducing the feature numbers evaluated,

either by reducing the distance between minimum and maximum feature numbers or by

reducing the number of steps evaluated in between these limits (e.g., incrementing feature

numbers by 2 or more features at a time). Another option would be to reduce GA-specific

parameters, such as the number of generations or population sizes, or to use models with

faster training times for evaluation.

The execution time of each feature selection method used in the baseline experi-

ments is not included in this section since comparing run times is not necessarily the goal

of this work, and methods were not individually optimized for the use cases for a fair

comparison.
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6.3 Chapter summary

This chapter presented the results of the experiments described in chapter 5, per-

formed to evaluate the optimization of feature sets generated via the proposed multi-

objective genetic algorithm for 5 different high-dimensional classification use cases.

The results explored both visually (in images 6.1, 6.2, 6.3, 6.4, 6.5) and statis-

tically (in tables 6.1, 6.2, 6.3, 6.4, 6.5) show consistent and considerable performance

improvements obtained through optimization for all use cases when compared to the fea-

ture sets initially generated by traditional feature selection methods, providing dominant

solutions in a search space that defines a range of possible numbers of features.

The execution time is also provided for each use case in section 6.2, displaying

an acceptable processing time for even the most complicated dataset in the context of

exploratory analysis, which could potentially be further optimized with proper parameter

tuning.
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7 CONCLUSION

In this work, we propose a hybrid feature selection method that utilizes a multi-

objective genetic algorithm to generate feature sets by combining and optimizing pre-

viously selected feature sets generated by other conventional feature selection methods.

Based on NSGA-II, the genetic algorithm provides stable, high-performing, and reduced

feature subsets for optimizing classification problems and simplifying data analysis tasks.

The method works by maximizing a target metric, such as classification metrics, and ex-

ploring diverse combinations of feature sets in a constrained search space of a determined

range of possible numbers of features. This results in a frontier of Pareto-dominant can-

didate solutions considering the two objectives: improving the classification performance

and reducing the dimensionality of the feature sets.

The method consistently outperforms the baseline feature selection methods in

the experiments conducted, surpassing their results by combining and altering the feature

sets they initially proposed. The evaluations encompass expressively high-dimensional

datasets with diverse sample sizes drawn from real-world life sciences domains. The

classification performance of the selected feature sets is presumed to reflect their analyti-

cal relevance to the respective problem each dataset represents. The method consistently

yields significantly improved classification performance with smaller feature sets across

all of the use case scenarios and within the constraints of feature set sizes.

A critical aspect of feature selection is that different methods typically perform

better or worse depending on the characteristics of the evaluated datasets, and no con-

sensus exists on which method is the best. Thus, adopting a heuristic that integrates

multiple methods in search of a combined solution enables the discovery of optimal and

diverse feature sets in the experimented situations and ensures adaptability to varying

dataset characteristics. Additionally, the resulting combined feature sets seem to provide

a unique view of the data that the other evaluated methods fail to achieve individually,

possibly enabling the identification of relations between features not directly explored by

the initial methods and potentially providing valuable information for research in domains

that deal with high-dimensional data.

The biggest limitation of the proposed method is the execution time since it re-

quires the execution of all initial methods and the evaluation of new combined feature

sets as the GA creates them. This can lead to escalating execution times, especially with

datasets containing a high volume of samples. To address cases with execution time con-
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straints, the method can be parameterized to reduce execution time at the expense of also

reducing the number of feature sets evaluated. Still, high-dimensional data analysis will

likely opt for longer execution times if that means achieving more representative feature

sets capable of effectively differentiating the data samples. Another limitation stems from

the dependency of the GA on the initial knowledge provided by the chosen feature selec-

tion methods. In cases where the knowledge provided by these methods is ineffective, the

GA may struggle to produce optimal feature sets.

In future iterations of this work, several improvements could be explored. Firstly,

expanding the evaluation to encompass high-dimensional datasets across other domains

would offer more insights into its adaptability to other data characteristics and challenges,

including larger feature sets, sample sizes, or differing label distributions. Additionally,

the proposed customized genetic algorithm operators could be easily adapted to other

multi-objective approaches, including newer variations of MOGAs like NSGA-III or al-

ternative non-pareto-dominated methodologies. Moreover, optimizing our implementa-

tion for high-performance frameworks or platforms could reduce the execution time with-

out compromising result quality. Lastly, conducting an in-depth comparison with existing

multi-objective feature selection frameworks would provide valuable insights into the ef-

ficacy of our solution and its potential limitations.

Furthermore, the method is provided as an open-source Python library available

at GitHub: <https://github.com/sbcblab/MOO-HFS>.

https://github.com/sbcblab/MOO-HFS
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8 PUBLICATIONS

This chapter lists the publications that originated from this work.

8.1 Publications in Journals

• BOHRER, J.; DORN, M.. Enhancing classification with hybrid feature selection:

A multi-objective genetic algorithm for high-dimensional data. Expert Systems

with Applications, p.124518. Qualis: A1.
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APPENDIX A — RESUMO ESTENDIDO EM PORTUGUÊS

Dados de alta dimensionalidade são um problema conhecido em diversas áreas

do conhecimento — dados com números grandes de variáveis são difíceis de interpre-

tar, tanto por seres humanos quanto por algoritmos de aprendizagem. Este tipo de dado

é comum em áreas do conhecimento como biologia, medicina, engenharias e outras,

onde grandes números de marcadores ou variáveis são utilizados para o entendimento

e predição de determinados eventos ou medições. Exemplos de utilização deste tipo de

dados são estudos de câncer e outras doenças, análises de DNA e características genéticas,

estudos de fenômenos físicos e naturais, projeções de engenharia, e outros. Nestes casos,

o excesso de informações dificulta a associação de determinadas variáveis ou suas combi-

nações aos resultados observados, e atrasa o processo de estudo, pesquisa e identificação

de causas envolvido. Para lidar com tais cenários de dados de alta dimensionalidade,

surge dentro da área de pesquisa de redução de dimensionalidade o conceito de seleção

de variáveis.

No processo de seleção de variáveis são preservadas as variáveis originais, um

aspecto importante para a posterior interpretação do problema associado aos dados. A

literatura atual oferece muitas opções de métodos de seleção de variáveis, com difer-

entes categorias baseadas na metodologia adotada e nas características dos dados ou do

problema sendo resolvido pelos mesmos. Ainda assim, não existe uma recomendação

de método genérico o suficiente para todos os casos de uso, e frequentemente métodos

bem-sucedidos em algumas áreas tem más performances em outras. Assim, surge a ne-

cessidade de estudos e propostas de métodos focados em generalizar o processo de seleção

de variáveis para domínios e aplicações variados.

Neste trabalho, propomos um método híbrido de seleção de variáveis que utiliza

um algoritmo genético multi-objetivo para selecionar conjuntos de variáveis em dados de

alta dimensionalidade. O método combina e otimiza conjuntos de variáveis previamente

selecionados por outros métodos clássicos de seleção de variáveis através de uma estru-

tura de algoritmo genético. Baseado no NSGA-II, o algoritmo genético fornece subcon-

juntos de variáveis estáveis, de alto desempenho e reduzidos para otimizar problemas de

classificação e simplificar tarefas de análise de dados. O método funciona maximizando

uma métrica alvo, como métricas de classificação, e explorando diversas combinações

de variáveis em um espaço de busca de soluções restrito a um determinado intervalo de

quantidades possíveis de variáveis. Isso resulta em uma fronteira de Pareto de soluções
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candidatas dominantes em termos de dois objetivos mensuráveis específicos: melhorar o

desempenho de métricas de classificação e reduzir a dimensionalidade dos conjuntos de

variáveis.

O método proposto baseia-se na proposição de novos operadores de algoritmo

genético compatíveis com a estrutura do NSGA-II. São propostos três operadores: um

operador de amostragem, um operador de mutação e um operador de avaliação de ad-

equação. Os novos operadores são responsáveis, respectivamente, por: i) a geração de

novas soluções (ou subconjuntos de variáveis); ii) a modificação de soluções existentes

(alterando partes de subconjuntos em busca de melhorias); e iii) a avaliação de soluções

ao longo do processo de acordo com os objetivos estabelecidos, através de métricas de

classificação e do tamanho dos conjuntos avaliados. Estes novos operadores utilizam a

informação prévia fornecida pela rodada inicial de métodos clássicos para gerar e alterar

seleções de variáveis que combinam as contribuições de cada método inicial utilizado,

limitando o espaço de busca de soluções às variáveis selecionadas por eles antecipada-

mente. Com os novos operadores, o processo de algoritmo genético acontece ao longo

de várias gerações, onde os mesmos são utilizados para gerar soluções progressivamente

mais adaptadas a resolver o problema de classificação representado pelos dados.

O método supera consistentemente os métodos de seleção de variáveis utiliza-

dos como base de comparação nos experimentos conduzidos, melhorando seus resulta-

dos ao combinar e alterar os conjuntos de variáveis propostos inicialmente. As avali-

ações abrangem conjuntos de dados de alta dimensionalidade, com diversos tamanhos de

amostra e extraídos de aplicações de mundo real de domínios das ciências biológicas e

médicas. Presume-se que o desempenho da classificação dos conjuntos de recursos sele-

cionados reflita sua relevância analítica para o respectivo problema que cada conjunto de

dados representa. O método produz consistentemente um desempenho de classificação

significativamente melhorado com conjuntos de variáveis menores em todos os cenários

de experimentação e dentro das restrições de tamanho estabelecidas para os conjuntos de

variáveis.

Um aspecto crítico da seleção de variáveis é que diferentes métodos normalmente

apresentam desempenho melhor ou pior, dependendo das características dos conjuntos

de dados avaliados, e não existe consenso sobre qual método é o melhor em todos os

cenários. Assim, a adoção de uma heurística que integra múltiplos métodos em busca

de uma solução combinada permite a descoberta de conjuntos de variáveis diversificados

e adaptados às diversas características dos conjuntos de dados vistos. Além disso, os
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conjuntos de variáveis resultantes de combinações de outros métodos parecem fornecer

uma visão única dos dados que os outros métodos avaliados não conseguem alcançar

individualmente, possivelmente permitindo a identificação de relações entre variáveis não

exploradas diretamente pelos métodos iniciais. Essas novas conexões têm o potencial de

fornecer informações valiosas para domínios de pesquisa que utilizam tais tipos de dados

de alta dimensionalidade.

A maior limitação observada no método proposto é o tempo de execução, pois

requer a execução de todos os métodos base de seleção de variáveis e a avaliação de

novos conjuntos de variáveis à medida que o algoritmo genético os cria. Isto pode levar a

tempos de execução cada vez maiores, especialmente com conjuntos de dados que contêm

um grande volume de amostras. Para atender aplicações com restrições de tempo de

execução, o método pode ser parametrizado para reduzir o tempo de execução às custas

de reduzir também o número de conjuntos de variáveis avaliados durante o processo.

Ainda assim, para estudos e análises envolvendo dados de alta dimensionalidade, tempos

de execução mais longos podem representar um problema aceitável caso isso signifique

alcançar conjuntos de variáveis mais representativos, capazes de eficazmente representar

as diferenças das amostras de dados. Outra limitação observada decorre do fato de o

algoritmo genético depender do conhecimento inicial fornecido pelos métodos de seleção

de variáveis escolhidos. Nos casos em que o conhecimento fornecido por esses métodos

é ineficaz, o GA pode ter dificuldades para produzir conjuntos de variáveis ideais.

Em futuras iterações deste trabalho, diversas melhorias poderão ser exploradas.

Em primeiro lugar, expandir a avaliação para abranger conjuntos de dados de alta di-

mensão em outros domínios de dados ofereceria mais esclarecimentos sobre a sua adapt-

abilidade a dados com outras características e desafios, incluindo dados com conjuntos

maiores de variáveis, mais amostras ou comportamentos diferentes. Além disso, os oper-

adores de algoritmo genético propostos neste trabalho poderiam ser facilmente adaptados

a outras abordagens multiobjetivo, incluindo variações mais recentes de MOGAs como

NSGA-III ou metodologias alternativas que não envolvam o conceito de dominação de

Pareto. Além disso, otimizar a implementação para estruturas ou plataformas de alto

desempenho poderia reduzir o tempo de execução sem comprometer a qualidade dos re-

sultados. Por último, a realização de uma comparação aprofundada com outras técnicas

de seleção de variáveis multiobjetivo existentes forneceria informações valiosas sobre a

eficácia da nossa solução e suas potenciais limitações.
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