
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

JÚLIA PEIXOTO VIOLATO

Real-Time Computer Game Recoloring for
Dichromats

Work presented in partial fulfillment of the
requirements for the degree of Bachelor in
Computer Science

Advisor: Prof. Dr. Manuel Menezes de Oliveira
Neto

Porto Alegre
October 2022

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Helena Lucas Pranke
Pró-Reitora de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Marcelo Walter
Bibliotecário-Chefe do Instituto de Informática: Alexsander Borges Ribeiro

ABSTRACT

The ability to correctly perceive and differentiate colors is crucial for a wide variety of

day-to-day activities. In video games, colors are often used to communicate important

information to the players. For instance, green and red often indicate a character’s health,

and can become essential to the construction of the game’s narrative and to ensure coher-

ent playability. Thus, individuals with color vision deficiency are typically constrained

in their ability to interact with games in the way intended by the developers. In games

with competitive or online aspects, this can introduce unfair disadvantages, as such play-

ers might lack precious information, requiring them more time to determine a course of

action. The impact of this information loss might even discourage these players entirely

from interacting with a game. In this work, we provide a contrast-enhancing, temporal-

coherent recoloring plugin for video games to assist dichromat players. For this, we use

ReShade, a post-processing injector that exposes color and depth information to enable

customized shaders and filters on games. Our solution is applicable to any game based

on OpenGL, Vulkan, or DirectX, running on Windows platforms. By reducing color am-

biguity for dichromat players, it is expected that our work will improve the experience of

individuals with color vision deficiency when playing video games on these platforms.

Keywords: Dichromat. color vision deficiency. recoloring. computer graphics. video

games.

Recoloração em Tempo Real de Jogos para Computador para Dicromatas

RESUMO

A capacidade de perceber e diferenciar cores é essencial em uma grande variedade de ati-

vidades do dia-a-dia. Em video games, cores são muito utilizadas para comunicar infor-

mações importantes ao jogador. Por exemplo, verde e vermelho frequentemente indicam

a saúde de um personagem, e podem se tornar essenciais para a construção da narrativa do

jogo e para garantir uma jogabilidade coerente. Por isso, indivíduos com daltonismo tipi-

camente sofrem limitações em sua habilidade de interagir com jogos da forma imaginada

pelos desenvolvedores. Em jogos com aspectos competitivos ou online, isso pode intro-

duzir desvantagens, já que informações valiosas podem faltar a esses jogadores, exigindo

que eles usem mais tempo para determinar uma ação a ser tomada. O impacto dessa

perda de informação pode até mesmo desencorajar esses jogadores de sequer interagir

com um jogo. Nesse trabalho, nós providenciamos um plugin de recoloração para video

games, que aumenta o contraste e preserva coerência temporal, para auxiliar jogadores

dicromatas. Para isso, nós utilizamos o ReShade, um injetor de pós-processamento que

expõe informações de cor e profundidade que permitem o desenvolvimento de shaders e

filtros personalizados para jogos. Nossa solução é aplicável a qualquer jogo baseado em

OpenGL, Vulkan ou DirectX, que seja executado em plataformas Windows. Ao reduzir a

ambiguidade de cores para jogadores dicromatas, é esperado que nosso trabalho melhore

a experiência de indivíduos daltônicos ao jogar jogos nessas plataformas.

Palavras-chave: dicromata, dicromatopsia, recoloração, computação gráfica, jogos ele-

trônicos.

LIST OF FIGURES

Figure 1.1 Protanopia filtering in Final Fantasy XIV: A Realm Reborn.........................11
Figure 1.2 Deuteranopia filtering in Final Fantasy XIV: A Realm Reborn.12
Figure 1.3 Protanopia filtering in Final Fantasy XIV: A Realm Reborn.........................12

Figure 2.1 Colorblind mode as seen in games in the Call of Duty series. Source:
(HARDIN, 2016). ...20

Figure 2.2 Deuteranopia colorblind mode in Overwatch (2016).21
Figure 2.3 Tritanopia colorblind mode in Overwatch (2016). Source: (HARDIN,

2016). ..22

Figure 3.1 Planar approximation for the color gamut of dichromats in the CIE
L*a*b* color space. (a) Protanope. (b) Deuteranope. (c) Tritanope. Source:
(MACHADO; OLIVEIRA, 2010). ...24

Figure 3.2 Steps of the recoloring algorithm. Source: (MACHADO; OLIVEIRA,
2010). ..26

Figure 4.1 ReShade’s user interface overlay in Supergiant’s Hades (2018), with no
plugins enabled. ..28

Figure 4.2 ReShade’s user interface overlay in Supergiant’s Hades (2018), with our
plugin enabled...29

Figure 4.3 Dropdown menu to select dichromacy type in our plugin.............................29
Figure 4.4 Projection of pi onto a plane defined by point o = (0, 0, 0) and the

normal vector b∗′...33
Figure 4.5 Custom portrait selection feature in Pathfinder: Kingmaker (2018) with

example image from the original article. ..36
Figure 4.6 Example image recolored with our plugin in Pathfinder: Kingmaker

(2018). The area outside the custom portrait display is manually set to white
by our shader before the recoloring process. ..36

Figure 4.7 Medical visualization image of a skull (a) and its recoloring done with
the original Real-Time Temporal-Coherent Color Contrast Enhancement for
Dichromats technique (b). Source: (MACHADO; OLIVEIRA, 2010)..................36

Figure 5.1 Original colors, protanopia simulation, and recoloring of the menu in
Hades (2020)...38

Figure 5.1 Original colors, protanopia simulation, and recoloring of the menu in
Hades (2020)...39

Figure 5.2 Original colors, deuteranopia simulation, and recoloring of an arena in
Hades (2020)...39

Figure 5.2 Original colors, deuteranopia simulation, and recoloring of an arena in
Hades (2020)...40

Figure 5.3 Original colors, tritanopia simulation, and recoloring of scenery in Hades
(2020)..40

Figure 5.3 Original colors, tritanopia simulation, and recoloring of scenery in Hades
(2020)..41

Figure 5.4 Original colors, deuteranopia simulation, and recoloring of the map in
Shadow of the Tomb Raider (2018). ...42

Figure 5.5 Original colors, protanopia simulation, and recoloring of an example of
the hunting mechanic in Shadow of the Tomb Raider (2018).43

Figure 5.6 Original colors, tritanopia simulation, and recoloring in Tell Me Why
(2020)..44

Figure 5.6 Original colors, tritanopia simulation, and recoloring in Tell Me Why
(2020)..45

Figure 5.7 Original colors, protanopia simulation, and recoloring of UI elements
in Final Fantasy XIV: A Realm Reborn (2013). ...45

Figure 5.8 Original colors, protanopia simulation, and recoloring of ground mark-
ers in a Final Fantasy XIV: A Realm Reborn (2013) boss fight arena....................46

Figure 5.9 Original colors, protanopia simulation, and recoloring of a boss fight
arena in Final Fantasy XIV: A Realm Reborn (2013). ...46

Figure 5.10 Original colors, deuteranopia simulation, and recoloring of ground
markers in a Final Fantasy XIV: A Realm Reborn (2013) boss fight arena.47

Figure 5.11 Original colors, tritanopia simulation, and recoloring of a ground marker
in a Final Fantasy XIV: A Realm Reborn (2013) boss fight arena.47

Figure 5.12 Original colors, deuteranopia simulation, and recoloring of UI ele-
ments in Final Fantasy XIV: A Realm Reborn (2013)..48

Figure 5.13 Original colors, protanopia simulation, and recoloring of the player’s
home in Stardew Valley (2016)...48

Figure 5.13 Original colors, protanopia simulation, and recoloring of the player’s
home in Stardew Valley (2016)...49

Figure 5.14 Original colors, deuteranopia simulation, and recoloring of a cave in
Stardew Valley (2016)...49

Figure 5.14 Original colors, deuteranopia simulation, and recoloring of a cave in
Stardew Valley (2016)...50

Figure 5.15 Original colors, tritanopia simulation, and recoloring of a town in
Stardew Valley (2016)...50

Figure 5.15 Original colors, tritanopia simulation, and recoloring of a town in
Stardew Valley (2016)...51

LIST OF TABLES

Table 5.1 Average frames per second measured. ..52
Table 5.2 Average per-frame plugin execution time. ..52

LIST OF ABBREVIATIONS AND ACRONYMS

CVD Color Vision Deficiency

PCA Principal Component Analysis

UI User Interface

CONTENTS

1 INTRODUCTION...10
2 RELATED WORK ...14
2.1 Recoloring Web Pages ..14
2.1.1 ColorBlind Filter Service...14
2.1.2 Wakita and Shimamura ..14
2.1.3 Ichikawa et al. (2003) ..15
2.2 Recoloring Images...15
2.2.1 Ichikawa et al. (2004) ..15
2.2.2 Daltonize ..16
2.2.3 Rasche et al. ...16
2.2.4 Kuhn et al. ..17
2.2.5 Jefferson and Harvey..17
2.3 Contrast-Preserving Grayscale Mapping ...18
2.3.1 Color2Gray ..18
2.3.2 Decolorize ..19
2.4 Accessibility ...20
2.5 Summary..21
3 BACKGROUND..23
3.1 Real-Time Temporal-Coherent Color Contrast Enhancement for Dichromats23
3.1.1 Maximum contrast loss in the CIE L*a*b* color space ..23
3.1.2 Principal Component Analysis ..24
3.1.3 Computing results ..25
3.1.4 Ensuring temporal coherence...26
3.2 Summary..27
4 IMPLEMENTATION ...28
4.1 ReShade ...28
4.2 ReShade FX ...29
4.3 Recoloring Plugin..30
4.3.1 RGB to CIE L*a*b* convertion...30
4.3.2 Generating random noise ...31
4.3.3 Principal Component Analysis ..32
4.3.4 Computing final colors...33
4.3.5 Temporal Coherence ..35
4.4 Difficulties ..35
4.5 Summary..37
5 RESULTS...38
5.1 Recoloring..38
5.2 Performance Analysis ...51
5.3 Summary..53
6 CONCLUSION AND FUTURE WORK ..54
REFERENCES...56

10

1 INTRODUCTION

Color vision deficiency is a group of conditions that affect an individual’s ability

to perceive color. Human color vision is possible due to three types of photoreceptors,

called cones, present in the retina. The photopigments in the human cones are sensitive to

long, medium or short wavelengths. When these cones are lacking in the light-sensitive

pigments that make this color perception possible, the individual is unable to perceive dif-

ferent shades of these colors regularly (MACHADO; OLIVEIRA, 2010; NEITZ; NEITZ,

2000; GORDON, 1998). While some illnesses (such as diabetes, glaucoma, and macular

degeneration) might lead to color vision deficiency later in life (SAMPLE; WEINREB;

BOYNTON, 1986; SCOTT; FEUER; JACKO, 2002; JUDD, 1949), the cause of CVD is

essentially genetic. No clinical or surgical treatment is known for CVD.

The most common form of CVD, observed in around 8% of men and 0.5% of

women, is a difficulty distinguishing between shades of red and green, which character-

izes two of the three types of dichromacy, protanopia and deuteranopia. The third type,

tritanopia, affects the individual’s ability to differentiate shades of blue and yellow, but is

considerably less common, with an incidence of about 0.01% on both men and women

(SHARPE et al., 1999). Other types of color vision deficiency observed are anomalous

trichromacy, a condition in which no photoreceptor is lacking in the eye, but one type of

cone perceives light slightly out of alignment, and monochromacy, or achromatopsia. In-

dividuals with achromatopsia are unable to perceive any colors, and see instead different

shades of gray.

CVD has a negative impact on certain aspects of life, from children having issues

with color-based learning methods, to identifying whether food is unsafe to eat based on

its appearance. For most people, it is natural to use color perception to gather information

that is not only essential, such as reading warning signs, but also to make daily life more

comfortable, like easily finding a car in a parking lot.

In this work, we focus on the experience that dichromats have when interacting

with electronic games, particularly those that rely on color elements to present relevant

information to the player. While video games have been a popular form of entertainment

ever since their creation, the most recent years have seen a global record rise in that

popularity, as is reflected in the growth of the video-game industry: Unity Technologies,

for example, reports a 46% growth in their daily active users during the spring of 2020 as

compared to that same period in 2019 (IRPAN et al., 2020).

11

As of 2022, market research and consulting firm DFC Intelligence reports that

over 3 billion people worldwide are regular video game users (DFC INTELLIGENCE,

2022). Since this number contemplates around 40% of the world’s population, it follows

that a significant part of this group can be expected to display some form of color vision

deficiency.

With its popularity as a form of entertainment and the economic impact of the

video games industry worldwide, electronic games should strive to be accessible to any-

one who wants to play them, with as little disadvantages as possible when compared to

players with normal color vision.

Nowadays, many games offer at least some form of minimizing the effects of

color vision deficiency through accessibility settings. However, this cannot be said of all

games, nor is the quality of these accessibility settings standard across the games that do

offer them.

Very often, color blind filtering options provided by games do not offer reliable

results. In the 2013 game Final Fantasy XIV: A Realm Reborn, for instance, the color

changes perceived by color deficient players are hardly noticeable. This is an online

game who’s latest update was released in December of 2021, and yet no updates to its

color blind accessibility options have been made in the years since the initial release.

Figure 1.1 – Protanopia filtering in Final Fantasy XIV: A Realm Reborn.

(a) Normal color vision. (b) Protanopia simulation.

(c) Game’s protanopia filtering, as seen by players
with normal color vision.

(d) Protanopia filtering in Final Fantasy XIV: A
Realm Reborn, as seen by protanopes.

12

To exemplify some core elements of this game, as they are seen by players with

full color vision and dichromats, Figure 1.1 shows one of the game’s arenas where a boss

fight takes place, with ground markers frequently used by players to coordinate movement

around the area. Figures 1.2 and 1.3 show a player’s health and magic gauges, which

provide essential information in the context of the game, in different colored backgrounds.

In all cases, the image shown above displays a portion of the game’s screen with no

filtering, and the image below displays that same portion with the game’s color blind

filters turned on. To simulate the vision of a dichromat, we projected the colors onto the

plane representing the gamut of colors the dichromat can see in the CIE L∗a∗b∗ color

space.

Figure 1.2 – Deuteranopia filtering in Final Fantasy XIV: A Realm Reborn.

(a) Normal color vision. (b) Deuteranopia simulation.

(c) Deuteranopia filtering in Final Fantasy XIV: A
Realm Reborn, as seen by players with normal

color vision.

(d) Deuteranopia filtering in Final Fantasy XIV: A
Realm Reborn, as seen by deuteranopes.

Figure 1.3 – Protanopia filtering in Final Fantasy XIV: A Realm Reborn.

(a) Normal color vision. (b) Protanopia simulation.

(c) Protanopia filtering in Final Fantasy XIV: A
Realm Reborn, as seen by players with normal

color vision.

(d) Protanopia filtering in Final Fantasy XIV: A
Realm Reborn, as seen by protanopes.

While it might be safe to say that the cases in which these effects can make a game

seem unplayable to a player with CVD are a minority, having a character in the game die

because their health bar was not clearly visible in the background, for example, can cer-

tainly make the player’s experience more uncomfortable. In online games where players

13

have to compete with each other, this increased difficulty in perceiving information puts

players with CVD at disadvantage.

The main goal of this undergraduate thesis is to implement a simple to use, generic

recoloring filter for electronic games for Windows platforms, applying an existing algo-

rithm to offer dichromat players a method to satisfyingly minimize the visual information

loss caused by color vision deficiency.

The remaining of this thesis is organized as follows: Chapter 2 describes related

work on the topic of image recoloring for dichromats. Chapter 3 presents in detail the

algorithm used in the development of our plugin. Chapter 4 details the implementation of

our plugin. Chapter 5 presents results obtained. Finally, Chapter 6 presents our conclu-

sions and discusses possibilities for future work.

14

2 RELATED WORK

This chapter presents the techniques that have inspired of influenced the work

discussed in this thesis. The article that serves as basis for this thesis is covered in detail in

Chapter 3. The variety of algorithms described here have been developed in an effort to aid

individuals with color vision deficiency when interacting with digital images and videos.

The existing techniques for image and video recoloring presented have a few different

goals: recoloring Web pages, recoloring images and multiframe sequences, or both. In

addition, we also present contrast-preserving color to grayscale mapping techniques, and

the accessibility options CVD players can find in games.

2.1 Recoloring Web Pages

2.1.1 ColorBlind Filter Service

In 2006, Iaccarino et al. (IACCARINO et al., 2006) proposed a tool for Web

applications to improve accessibility for dichromats by modifying the colors in HTML

pages and embedded images. Its focus was on protanopes and deuteranopes, as its goal

was to enhance the contrast for shades of red and green. This algorithm, however, was

designed to be customizable. It operates on the HSL color space and allows users to

manually pick the proportions by which the color coordinates are changed. To do so, it

relies on the parameters provided to perform the recoloring.

2.1.2 Wakita and Shimamura

Wakita and Shimamura proposed in 2005 the SmartColor (WAKITA; SHIMA-

MURA, 2005), an algorithm that aims to infer the author’s intentions behind the colors

used in a Web document, such as emphasizing a text passage. The recoloring process then

has the goal of most effectively conveying these intentions to the color blind user.

These "intentions" of the author are described by three desirability functions, all

of which take into account the author of the document’s desire to keep an element’s color

unchanged. SmartColor condenses them into a single desirability function, and recolors

the image by finding the colors that maximize this function. The search space of this

15

algorithm, however, grows exponentially with the number of colors in the document, and

so it is computationally expensive. Although most Web documents have a limited number

of colors, it is not possible to use SmartColor in an interactive manner for an amount as

small as 10 colors.

2.1.3 Ichikawa et al. (2003)

Ichikawa et al. (ICHIKAWA et al., 2003) presented a method to recolor Web

pages for anomalous trichromats using an improved genetic algorithm to generate optimal

values for each original color in order to make the HTML page more readable for those

users. The algorithm operates on the Luv color space (where L represents the luminance

and u and v represent chromaticity values for each color) to evaluate each individual

during the optimization process.

Ichikawa et al. define an abstracted image model, where color images are divided

in color regions that can be either "even" with each other, or "included" in a parent region.

Then, they apply this model to Web pages by considering, for example, the background of

the page a parent region in which the other elements are "included", and different colored

text to have an "even" relation among them. By doing this, their work doesn’t analyze

each pixel on a screen, but rather each element in the HTML document that has a color

associated with it.

2.2 Recoloring Images

2.2.1 Ichikawa et al. (2004)

In 2004, the authors expanded on their abstract image model (ICHIKAWA et al.,

2003) from Web pages to still images (ICHIKAWA et al., 2004). In this case, to apply

this model to a given image, first it has to be decomposed. All colors in the image are

quantized to obtain n representative colors, then each pixel is assigned a region Gk. This

is done by finding the representative color Ck with the smallest distance to the pixel color.

After this process, the abstract image model can be applied to describe the relationship

between these n regions.

This time, instead of using their genetic algorithm, the authors use a random bit-

16

climber to obtain the optimal colors C ′
k for each region represented by Ck. Then, the n

differences between each C ′
k and its corresponding Ck are calculated and used to adjust

the color of the individual pixels.

2.2.2 Daltonize

Daltonize (DOUGHERTY; WADE, 2002) combines two image processing tech-

niques to preserve image information for people with CVD, also with focus on protanopes

and deuteranopes. The first of these techniques consists of increasing the red and green

contrast in the image, since anomalous trichromats can have partial color perception in-

stead of a complete loss. The second technique involves converting red-green variations

into blues and yellows, and changes in brightness.

To guide these steps, Daltonize accepts three input parameters. They define how

much the red and green contrast should be increased, how those colors should be projected

onto the luminance channel, and how they should be projected onto blues and yellows.

A game recoloring filter provided by ReShade (CROSIRE, 2015) implements the LMS

Daltonization algorithm (DALTONIZE.ORG, 2010). This algorithm is based on the Dal-

tonize process, after which the filter is named, but does not require the user to provide any

parameters and encompasses all three types of dichromacy. Instead, the LMS Daltoniza-

tion technique, as implemented by this filter, consists of first converting the RGB colors in

the image into the LMS color space. Then, color blindness is simulated by bringing the

corresponding channel values down to zero (the L channel for protanopes, M for deutera-

nopes, and S for tritanopes), and this loss is partially compensated by adding to the other

channels. The resulting image is then obtained by converting the adjusted LMS values

back into RGB.

2.2.3 Rasche et al.

Rasche et al. present a recoloring technique based on preserving the perceptual

distances (RASCHE; GEIST; WESTALL, 2005a), but for all pairs of colors present in

an image. This method is based on contrast-preserving grayscale mappings, and its op-

timization step consists of minimizing an affine transformation. However, the results of

this process do not guarantee that all of the colors used belong to the gamut perceived by

17

the dichromat, and does not take into account color variations in more than one direction.

These limitations were then addressed by the author in a following work (RASCHE;

GEIST; WESTALL, 2005b), where the colors are first quantized into a smaller set, and

then a constrained, multi-variate optimization process is applied to them. The recolored

set is then used to recolor the full image. The results obtained, however, while improved,

are still prone to local minima, and the algorithm does not scale well for larger sets of

quantized colors.

2.2.4 Kuhn et al.

Kuhn et al. presented a recoloring algorithm based on enhancing color contrast

(KUHN; FERNANDES; OLIVEIRA, 2008) using a mass-spring optimization process,

with the goal of preserving the naturalness of the image. In the same manner as other

algorithms described, this technique is applied on a quantized set of colors, and uses

the resulting set to optimize the entire image. To do this, in the CIE L∗a∗b∗ space, this

algorithm associates each quantized color with a particle initialized with the coordinates

of the color perceived by the dichromat. Each pair of particles is then connected by a

spring with elasticity coefficient 1 and rest length equal to the Euclidean distance between

their colors. To preserve the naturalness in the image, each particle is assigned a mass

reciprocal to the perceptual distance between its color and the color perceived by the

dichromat. Although this approach is considerably faster than previous ones, it is still not

fast enough to be applied in real-time, such as in electronic games. Its use of a subset

of the original colors also does not guarantee temporal-coherence for use in interactive

environments.

2.2.5 Jefferson and Harvey

Jefferson and Harvey present another algorithm designed both for the recoloring

of Web documents and images (JEFFERSON; HARVEY, 2006), based on preserving

the perceptual distance between the colors that an individual with normal color vision

observes, for the colors that a person with CVD observes. This process is based on mini-

mizing the combination of a set of objective functions to preserve brightness and contrast,

use colors present in the dichromat’s color gamut, and preserve naturalness in the recol-

18

ored image or document.

Due to the optimization cost, this is done for a subset of the original colors, and

the results are interpolated for the rest of the colors using inverse-distance weighting

interpolation (SHEPARD, 1968). The weight associated with a color is the sum of the

inverse squares of its distances from the key colors in the subset used. However, the

authors still reported the times required for execution as several minutes for any subset

larger than 25 colors.

2.3 Contrast-Preserving Grayscale Mapping

In our work, we aim to minimize the information loss experienced by players

with CVD. Our recoloring process does this by preserving that information, as much

as possible, through contrast. Although we still have the advantage of working with a

reduced range of colors, rather than a monochromatic scale, this is a goal shared with

contrast-preserving color-to-grayscale algorithms.

The standard grayscale techniques most often used in commercial applications,

like Photoshop, simply map each color to its luminance value in a given color space.

This keeps achromatic colors unchanged, but maps different colors that have the same

luminance to the same shade of gray.

2.3.1 Color2Gray

A technique to work around mapping different colors to the same shade of gray,

proposed in 2005 by Gooch et al. (GOOCH et al., 2005), uses a least-squares optimiza-

tion process to modulate the differences in luminance and chromaticity values. These

differences are calculated between each pixel and its given neighborhood, in a perceptu-

ally uniform color space, and the changes in luminance and chromaticity in this space are

then reflected onto the original image’s chrominance.

The Color2Gray algorithm admits three customizable parameters to guide this pro-

cess: one to control whether chromatic differences are mapped to increases or decreases

in luminance, one to determine how much the chromatic variation influences the changes

in luminance values, and one to determine the size of the neighborhood used.

The algorithm produces good results, but as shifts luminance values to enhance

19

contrast between regions without checking for pixels that were originally gray, it does not

preserve achromatic shades like the traditional techniques do. Additionally, it has a com-

putational cost quadratic in the number of pixels in the image. This makes it unsuitable

for use with interactive applications.

According to the authors, they have attempted to use principal component anal-

ysis to estimate an ellipsoid that best approximates the image’s color distribution. The

grayscale image could then be obtained by projecting the colors onto the axis of the

ellipsoid with the largest variance. However, they point out, along with Rasche et al.

(RASCHE; GEIST; WESTALL, 2005b), that for this method to work for images with

variations in multiple directions, it would require an optimization step to combine these

components, therefore keeping the high computational cost.

2.3.2 Decolorize

To compensate for the contrast loss, Grundland and Dodgson (GRUNDLAND;

DODGSON, 2007) add an amount Ki to the original luminance of each pixel pi. However,

to avoid having a quadratic cost when calculating the Ki values, this technique uses a local

sampling method called Gaussian pairing.

This Gaussian pairing strategy consists of randomly selecting, for each pixel pi, a

pixel pj from a circular neighborhood around it. The neighborhood size is computed from

the dimensions of the original image, and pj is selected based on a normal probability

distribution function.

All the colors in the image are converted to a non-perceptually uniform color

space, Y QP , created by the authors, where Y represents the luminance channel, and Q

and P represent opponent-color chromatic channels. The contrast loss for each pixel pi is

then calculated by comparing the differences in luminance (Y), and in the original RGB

colors, between pi and its selected neighbor pj .

Loss(pi,pj) =
Yi − Yj

||RGBi −RGBj||
(2.1)

To estimate the direction of maximum contrast loss in the Y QP space, the au-

thors use a technique called predominant component analysis. This technique uses a sum

of weighted vectors, where Loss(pi,pj) is the weight assigned to the pi − pj vector, to

approximate this direction in the PQ chromaticity plane. The values for Ki are then

20

calculated by projecting the colors onto this vector.

2.4 Accessibility

As previously mentioned, more and more games being released or updated in

recent years now offer its player base with a range of different options to improve the

experience of players with disabilities. Among those, recoloring filters for players with

CVD are very often present.

Figure 2.1 – Colorblind mode as seen in games in the Call of Duty series. Source: (HARDIN,
2016).

(a) Colorblind mode in Call of Duty: Ghosts (2013). Left: original image.
Right: recolored image.

(b) Colorblind mode in Call of Duty: Advanced Warfare (2014). Left: original
image. Right: recolored image.

However, these settings have a tendency to simply add an overlay filter to the

game’s screen, to apply a different hue to or oversaturate the entire color palette used.

Figure 2.1 displays an usage of a reddish tint over the image in the Activision game series

Call of Duty, in an attempt to make the colors more discernible to a player with CVD. In

Figure 2.1b, especially, the effect is just barely perceptible.

In some cases, this can even have the opposite of the intended effect. Figures

2.2 and 2.3 illustrate the results of the tritanopia accessibility option provided by the

Blizzard Entertainment game Overwatch (2016) as they are perceived by a player with

normal color vision, compared to what deuteranopes and tritanopes see. In Figure 2.2,

21

the deuteranopia mode makes the "group" and "alert" colors more different, but makes

the "enemy" and "friendly" colors more similar. For tritanopes (Figure 2.3), the contrast

between the "enemy" and "alert" labels, and the "friendly" and "party" labels, are less

perceptible with the tritanope filter than without. As of the last update to Overwatch, in

September of 2022, these accessibility options received no improvements or changes.

Figure 2.2 – Deuteranopia colorblind mode in Overwatch (2016).

(a) Deuteranopia mode as seen by people with normal color vision.

(b) Deuteranopia mode as seen by deuteranopes.

2.5 Summary

This chapter has reviewed the basics of other works that have addressed similar

problems to ours, and that have served as inspiration or basis for the development of both

the recoloring method we have chosen to work with, and our plugin itself.

22

Figure 2.3 – Tritanopia colorblind mode in Overwatch (2016). Source: (HARDIN, 2016).

(a) Tritanopia mode as seen by people with normal color vision.

(b) Tritanopia mode as seen by tritanopes.

23

3 BACKGROUND

This chapter presents the details of the temporal-coherent color-contrast enhance-

ment algorithm for dichromats by Machado and Oliveira (MACHADO; OLIVEIRA, 2010),

which was used for the development of our plugin. Since the focus of our work is

on how players with color vision deficiency glean color-based information from video

games, which are more often than not time-sensitive in regards to the player’s reaction,

the contrast-enhancing and time-coherent aspects of this technique, applied in real-time,

suit our needs adequately.

3.1 Real-Time Temporal-Coherent Color Contrast Enhancement for Dichromats

This technique uses the perceptually uniform CIE L∗a∗b∗ color space to recover

most of the color contrast loss experienced by dichromats. To do this, they must find the

direction vab in the a∗b∗ chromaticity plane that maximizes this contrast loss, in a least

squares sense, and then project the original colors onto the plane aligned with vab. At the

same time, they must check and correct for any sudden changes in the direction of vab to

ensure color consistency in interactive environments and multiframe sequences.

3.1.1 Maximum contrast loss in the CIE L*a*b* color space

According to Brettel et al. (BRETTEL; VIéNOT; MOLLON, 1997), the range of

colors that a dichromat can see can be represented by two half-planes in the LMS color

space, each of them anchored to one point representing a hue that stays invariant for the

given dichromacy type. These two half-planes can then be satisfactorily approximated by

a single plane (VIéNOT; BRETTEL; MOLLON, 1999).

The planes that approximate the color gamuts perceived by each type of dichromat

can then be mapped to the CIE L∗a∗b∗ color space. In this space, according to Kuhn

et al. (KUHN; FERNANDES; OLIVEIRA, 2008), the angles between the protanope,

deuteranope and tritanope gamuts and the L∗b∗ plane are θp = −11.48◦, θd = −8.11◦ and

θt = 46.37◦, respectively. Figure 3.1 illustrates these gamuts, along with the color ranges

they represent.

24

Figure 3.1 – Planar approximation for the color gamut of dichromats in the CIE L*a*b* color
space. (a) Protanope. (b) Deuteranope. (c) Tritanope. Source: (MACHADO; OLIVEIRA, 2010).

3.1.2 Principal Component Analysis

Finding the direction vab of maximum color contrast loss experienced by a dichro-

mat when observing a given image, in the least squares sense, can be a computationally

expensive process. It would require computing, for each pixel pi in the image, the con-

trast loss between pi and every other pixel pj in a neighborhood of size Ni around pi.

However, they can exploit spatial coherence, and the observation that neighboring pixels

tend to have similar colors between each other, to simplify this step. To do this, they use

the Gaussian pairing technique described by Grundland and Dodgson (GRUNDLAND;

DODGSON, 2007). Thus, they pick a single neighbor pj for each pixel pi in the image,

and use the contrast loss between this pair as the estimate for the contribution of pi to

the loss experienced by the dichromat. The distances from pi to pj are randomly de-

fined by a univariate Gaussian distribution, with zero mean and variance (2/π)σ2, where

σ2 =
√

2min(width, height). Here, width and height are the image dimensions. For

better performance with animated or video sequences, all neighbor coordinates are pre-

computed and stored in a separate texture, and the same (pi, pj) pairs are used for the

entire sequence.

To obtain the estimated value of the relative contrast loss for a pair of pixels

(pi, pj), they compare the contrast between the two colors perceived by an individual

with normal color vision, with the contrast perceived by the dichromat, which can be

done by projecting pi and pj onto the dichromat’s color gamut. Because the CIE L∗a∗b∗

color space is approximately perceptually uniform, they can calculate the estimated loss

as

25

l(pi,pj) =
||pi − pj|| − ||p′i − p′j||

||pi − pj||
(3.1)

where p′i and p′j are the projected values of pi and pj , and ||v|| represents the vector length

operation for a given vector v. This contrast loss happens in the direction of the 3D

vector vij = pi − pj , but, because they must preserve the L∗ luminance coordinates of

the original colors to avoid reversing the polarities between each pair of colors (KUHN;

FERNANDES; OLIVEIRA, 2008), they can discard the L∗ coordinate from each vij and

work with the chromaticity plane a∗b∗. This allows us to find the direction that maximizes

the loss of local contrast by computing the eigenvectors of a 2×2 matrix instead of a 3×3

one.

Then, they let wi = l(pi,pj)vij be the contrast loss associated to pixel pi, and define

M as a matrix of dimensions n× 2, where n is the number of pixels in the image, whose

rows contain the coordinates of the wi vectors associated with each pixel.

M =


wa∗

1 wb∗
1

wa∗
2 wb∗

2

... ...

wa∗
n wb∗

n

 (3.2)

The vab vector representing the direction that maximizes contrast loss can then be

computed as the eigenvector of the MTM matrix, for the corresponding eigenvalue with

largest absolute value. For this step, the value of the b∗ coordinate of vab is arbitrarily set

to 1, and the characteristic equation solved for a∗. This is a simple, efficient way to avoid

obtaining the trivial solution vab = 0 as a result.

3.1.3 Computing results

To obtain the resulting colors, they first project the original colors onto the plane

defined by the L∗ vector and vab, and then rotate these projected colors around the L∗

axis to align with the dichromat’s color gamut. Figure 3.2 illustrates this process done for

protanopes, for two colors c1 and c3, whose neighbors are, respectively, c2 and c4.

Here, colors c′1 to c′4 are the projections of c1 to c4, respectively, on the dichromat’s

color gamut, and represent how the dichromat perceives c1 to c4. Colors c′′1 to c′′4 are the

projection of the original colors onto the plane aligned with the direction of maximum

26

Figure 3.2 – Steps of the recoloring algorithm. Source: (MACHADO; OLIVEIRA, 2010).

contrast loss, and cr1 to cr4 are the resulting colors obtained after rotating the projection to

align with the dichromat’s gamut.

The colors obtained through this process tend to be more spread out than the the

projection of the original colors onto the dichromat’s gamut, and the final image obtained

after converting the colors back to RGB from the CIE L∗a∗b∗ space will use only colors

that the dichromat can see, and have improved color contrast for the dichromat if com-

pared with the original.

It is possible to further exaggerate the contrast in the final image by rescaling

all chromaticity coordinates to have a maximum value of 148, as the maximum length

of chromaticity vectors in the CIE L∗a∗b∗ color space is 148.47. The authors, however,

point out that this is not the intended use for this technique, due to the higher perceptual

distortions caused by this exaggeration.

3.1.4 Ensuring temporal coherence

In this technique, if vab is close to being aligned with the a∗ axis, as is the case

in Figure 3.2, then minor changes in the original colors of the image might shift the b∗

coordinate of vab from positive to negative, or vice versa. However, as described in Section

3.1.2, they set the value of b∗ to 1 when solving the characteristic equation associated with

vab, and have the value of a∗ adjust its sign to accommodate any changes in vab’s direction.

This means that b∗ will always be positive, and any changes in the input colors that would

shift it to a negative value instead cause the vab vector to reverse directions entirely (i.e.,

for protanopes and deuteranopes, blues would become yellows, and vice versa).

This is a problem because, for interactive applications, animated sequences, and

videos, it is important to keep the recoloring consistent and avoid abrupt changes in the

colors of the objects between one frame and another. As a simple but effective solution to

avoid the occurrence of such artifacts, they can store the value of vab, and compare it to the

27

new computed vab in the next frame. If the angle between the previous and current vectors

approaches 180◦, they invert the current values of vab to enforce temporal coherence in

the recoloring process.

3.2 Summary

This chapter has detailed the temporal-coherent color-contrast enhancing algo-

rithm we used for the implementation of our plugin, and the theoretical concepts behind

its development.

28

4 IMPLEMENTATION

In this chapter, we describe the tools and environment used to apply the algorithm

reviewed in Chapter 3 to electronic games running on Windows platforms, and detail the

development of the resulting plugin.

4.1 ReShade

To implement the chosen recoloring technique, this work uses the open-source

C++ post-processing injector ReShade (CROSIRE, 2015). ReShade was designed to be

run with games and videos, but it is popularly used in many video game communities

to apply different filters to a game’s screen, commonly for purely aesthetic reasons. Re-

Shade enables the development of said filters by exposing the color and depth information

output from the game itself, after the game’s own rendering process is done, and applying

ReShade’s shaders to the frame before displaying the resulting image on the user’s screen.

To use ReShade with any given game, the user first has to run the installer and se-

lect the desired game’s executable, from which ReShade attempts to identify the graphics

API the game runs on. In case it is unable to correctly perform this identification, the user

has to select the API the application should be installed for. After this, ReShade will start

up automatically along with the game’s executable.

Figure 4.1 – ReShade’s user interface overlay in Supergiant’s Hades (2018), with no plugins
enabled.

Figures 4.1 and 4.2 show ReShade’s game overlay from where the user can ac-

tivate and deactivate the available filters. The bottom panel of the overlay displays the

29

enabled filters’ settings to the user (Figure 4.3). A short video showing how this interface

is used is available by clicking here.

Figure 4.2 – ReShade’s user interface overlay in Supergiant’s Hades (2018), with our plugin
enabled.

Figure 4.3 – Dropdown menu to select dichromacy type in our plugin.

ReShade was designed to work with computer games, specifically those running

on Windows systems; as of the writing of this work, ReShade supports Windows 7 SP1,

8.1, 10 and 11, and requires .NET Framework 4.6.2 or higher to run.

4.2 ReShade FX

In order to support its application on games who run on a greater range of ren-

dering APIs (namely, DirectX, OpenGL and Vulkan), ReShade provides its own shading

language, ReShade FX, and compiles its shaders according to the API used by the game,

every time the game application is opened. ReShade FX allows for the creation of multi-

ple techniques, which, in the context of the language, are a series of user-defined vertex

https://youtu.be/qj8pBrSnm1E

30

shaders, pixel shaders and/or compute shaders. Every pass, each technique and shader is

applied to the processed frame in the order specified in the shader code.

One of the biggest advantages that ReShade offers is the ability to output each

shader’s result to up to eight different textures at the same time, provided all chosen

textures have the same dimensions, and to sample from any declared texture from within

any shader without aditional steps. The language also supports most of the HLSL intrinsic

functions, plus a few additional methods to access and store values in the textures the

shader is working with, and to perform interlocked operations (which in ReShade FX are

called atomic operations). When using these interlocked operations, other threads are not

allowed to access the variables that are in use (i.e. the operation is indivisible).

ReShade filters can expose variables to the user of the shader through the use of

uniform variables, which, unless explicitly set to hidden, will be displayed in ReShade’s

user interface (UI), where their values can be manually changed. Alternatively, because

to the shader code itself uniform variables work as constant variables, the only way to

change a uniform variable’s value as the shader is being executed is through the UI.

Uniform variables allow the use of annotations that can be used to customize their

UI appearances, such as ui_label, that defines a display name to replace the variable

name in the UI, and hidden, a flag that lets the variable be hidden from the interface.

Additionally, the source annotation is used to request special runtime values such as cursor

position and movement information, the system date and random values.

4.3 Recoloring Plugin

The ReShade shader implemented uses the UI to provide the user with a drop-

down menu from where to select the type of dichromacy the recoloring should be done

for. This determines the angle used for most of the rotation matrices applied later. For

the technique itself, this work divides each step in the algorithm implemented in different

shaders, executed in sequence, which are described in Subsections 4.3.1 to 4.3.5.

4.3.1 RGB to CIE L*a*b* convertion

First we use a pixel shader to convert the RGB values from the back buffer, from

where the frame output by the game’s shaders is retrieved, to the CIE L∗a∗b∗ color space,

31

and store the resulting colors in a new texture, called texLab, that will be kept unchanged

as these values will be used for future calculations.

4.3.2 Generating random noise

Second, we randomly generate the coordinates for one neighbor for each pixel in

the frame using a Gaussian probability distribution, and store these coordinates in another

new texture, texRandomNoise. This was originally done in a compute shader with n

threads (where n is the number of pixels in the frame), however, since the texture access

methods that a compute shader can use are very costly, this decreased the performance of

the game significantly and caused the screen to display ripple effects whenever a scene

moved. We then changed this process to a pixel shader instead, successfully avoiding this

distortion.

With the resources offered by ReShade FX, the only method to retrieve a ran-

dom number is through the random annotation in an uniform variable, which returns an

uniformly distributed integer in a chosen range. Therefore, to approximate the desired dis-

tribution as best as possible, we instead use the Box-Muller transform (BOX; MULLER,

1958) for mean µ = 0 and standard deviation σ =
√

2
π
scale, as these are the values

specified by Grundland and Dodgson (GRUNDLAND; DODGSON, 2007). Here, scale

is the spatial scale based on the frame’s dimensions that determines the neighborhood size

(Equation 4.1). This value is constant for all pixels as it is dependent only on the frame

dimensions.

scale =

√
2 ∗ min(buffer_width, buffer_height)

π
(4.1)

Let xi and yi be the coordinates of pixel pi, and r1 and r2 two pseudorandom

values that will be used as seeds. ReShade offers a timer floating point uniform variable

that returns the time in milliseconds since the game was started. We retrieve this value

twice and use their fractional parts as the values of r1 and r2 as a better alternative to the

random uniform variable, which would have the same value for every pixel. Equations 4.2

to 4.4 represent our use of the Box-Muller transform to generate x′
i and y′i as the Gaussian

noise coordinates for the given pixel pi.

mag = σ
√
−2 · log(r1) (4.2)

32

x′
i = xi +mag · cos(2πr2) (4.3)

y′i = yi +mag · sin(2πr2) (4.4)

The resulting noise coordinates that will be stored are clamped between 0 and

the dimensions of the frame, then normalized. It is important to note that, unlike in the

original algorithm (MACHADO; OLIVEIRA, 2010), our noise texture is generated again

with every pass, as there is no way to restrict this at technique level through ReShade.

4.3.3 Principal Component Analysis

For the Principal Component Analysis step of this algorithm, using a pixel shader

and the textures with the CIE L∗a∗b∗ color values and the random neighbor coordinates,

texLab and texRandomNoise we project each pixel and its neighbor onto the dichromat’s

color gamut. The gamut itself is computed using the b∗ vector, and a rotation matrix cal-

culated using the appropriate angle according to the user’s selection between protanopia,

deuteranopia and tritanopia. Thus, the rotated b∗ vector and the unaltered L∗ vector define

the gamut plane. From this, the projection is obtained through the operation

p′i = pi − (pi · b∗′)b∗′ (4.5)

where pi is the pixel being projected and b∗′ is the rotated b* vector. The · operator

describes the dot product operation between two vectors. Figure 4.1 exemplifies this

process.

Then, the contrast loss experienced by the dichromat is calculated by comparing

the distance between each pixel and its neighbor in their original CIE L∗a∗b∗ values, and

the distance between those pixels after being projected to the gamut. If we consider p and

n as the original values of the pixel and its neighbor, and p′ and n′ their values after being

projected, then

Lossi = 1− ||p′i − n′
i||

||pi − ni||
(4.6)

defines the relative contrast loss observed for that pair of pixels, which happens in the

direction of θi = pi − ni.

33

Figure 4.4 – Projection of pi onto a plane defined by point o = (0, 0, 0) and the normal vector b∗′.

To simplify the next steps, instead of storing Lossi·θi in the output texPCA texture,

we discard the L∗ coordinates of the contrast loss here, and instead store the values of a∗2i ,

a∗i b
∗
i , and b∗2i for each pixel pi.

4.3.4 Computing final colors

As described, we can obtain the direction of maximum contrast loss experienced

by the dichromat through a matrix M whose rows store the coordinates a∗ and b∗ of each

vector calculated in the PCA step. This involves finding the eigenvalue with the largest

absolute value for the 2 × 2 matrix MTM , whose format will be, for n as the number of

pixels in the frame: ∑n
i a

∗2
i

∑n
i a

∗
i b

∗
i∑n

i a
∗
i b

∗
i

∑n
i b

∗2
i

 . (4.7)

When declaring a texture in ReShade, we can define how many MIP levels it

should have, and each mipmap will be automatically generated. For this work, we set this

value to 12, the minimum number of MIP levels required to reduce a texture of dimensions

2160× 3840, which is the maximum resolution supported by the vast majority of current

computer games, to one single texel. Then, since the texPCA texture already contains the

values of a∗2, a∗b∗, and b∗2 for each pixel, we need only use the ReShade method tex2Dlod

to retrieve the last MIP level, which will contain an average of all values, and multiply it

by the number of pixels to obtain their sums.

34

We find the eigenvalues of this matrix through solving a standard quadratic equa-

tion ax2 + bx+ c = 0, for a = 1, b = −(
∑n

i a
∗2
i +

∑n
i b

∗2
i), and c =

∑n
i a

∗2
i ·

∑n
i b

∗2
i −

(
∑n

i a
∗
i b

∗
i)

2. From the eigenvalue λ with largest absolute value, the coordinates of the

eigenvector that represents the direction on the a∗b∗ plane in which maximum contrast

loss is experience by the dichromat are

a∗ = (
n∑
i

a∗2i)2 − λ (4.8)

and

b∗ = −
n∑
i

a∗i b
∗
i . (4.9)

These coordinates describe the θab = (a∗, b∗) vector that, along with the L∗ vector,

define a plane in the direction of maximum contrast loss, onto which every color stored in

the texPCA texture will be projected. The projection of these colors is done in the same

manner described in Equation 4.6, but replacing b∗′ with NLθab as the new plane’s normal:

NLθab =
θab × L

||θab × L||
(4.10)

and

p′i = pi − ||pi ·NLθab ||NLθab (4.11)

where × described the cross product between two vectors. The projected values are output

to a new texture called texProjectedColors. Next, in another pixel shader, we find the

angle between the L∗θab plane and the dichromat’s gamut, and rotate the colors projected

onto this maximum contrast loss plane to align with the gamut. We calculate this rotation

angle through

α = arccos(
θab · b∗

||θab|| · ||b∗||
) (4.12)

and then compare the cross product of θab and b∗, which produces a vector parallel to L∗,

with the L∗ vector itself through a dot product. If this dot product is 0, meaning θab × b∗

and L∗ have opposite directions, we must flip the sign of the angle α found.

These projected and rotated values are output to a texture called texResultColors

and, lastly, in a final pixel shader, these results are converted back from the CIE L∗a∗b∗

color space to their RGB values, and returned to the back buffer to be displayed to the

35

user on the game’s screen.

4.3.5 Temporal Coherence

To check and correct for abrupt changes in the direction of vab, we store its value

in a 1×1 texture named texPreviousDirection. For each frame, we compare the current vab

to the one stored in the previous frame. If the angle between them is higher than 175◦, we

reverse the direction of the current vab. We use ReShade’s framecount uniform variable

to check if we’re rendering the first frame and skip this step for the first pass.

The original algorithm also takes steps to smooth the transition between angles

even in cases when the colors are not being flipped. However, in video games we must

account for the possibility of the player being able to leave one region for another, with a

different color palette, which may cause wide angles between the contrast loss direction

of one frame and the next. Therefore, our implementation cannot interfere with this.

4.4 Difficulties

One of the major difficulties of working with ReShade is the fact that the ReShade

FX language is limited to shaders only. Thus, any step of the algorithm has to be adapted

to be coded in a vertex, pixel or compute shader, and making efficient use of texture

coordinates and thread work groups was crucial to avoid game performance loss.

Working exclusively with shaders also meant a lack of debug tools to validate each

step of the algorithm as the plugin was being developed. Because of the lack of access

to a custom library used, some operations were also difficult to validade with the original

code.

Another minor difficulty we faced was the validation of the obtained results. Be-

cause ReShade is primarily designed to be used with games, in order to recolor the exam-

ple images provided by the authors, it was necessary to find a game that allows the player

to upload and display custom images, and then limit the plugin’s area of operation to the

image only, as to make sure the game’s other UI elements didn’t interfere with the recol-

oring. We managed to achieve this with the game Pathfinder: Kingmaker (2018), which

allows the player to upload custom portraits to their game profile (Figure 4.5). Then, in

the first shader, we manually set every pixel outside of the custom portrait’s area to white

36

Figure 4.5 – Custom portrait selection feature in Pathfinder: Kingmaker
(2018) with example image from the original article.

Figure 4.6 – Example image recolored with our plugin in Pathfinder:
Kingmaker (2018). The area outside the custom portrait display is manually

set to white by our shader before the recoloring process.

(a) (b)
Figure 4.7 – Medical visualization image of a skull (a) and its recoloring done with the original

Real-Time Temporal-Coherent Color Contrast Enhancement for Dichromats technique (b).
Source: (MACHADO; OLIVEIRA, 2010)

37

(Figure 4.6). We were then able to verify that our implementation produced correct re-

sults, by comparing these resulting images with the original examples provided by the

authors of the algorithm (Figure 4.7).

4.5 Summary

In this chapter, we have discussed in detail the development of our plugin. This

includes how we used the tools available through ReShade to implement the temporal-

coherent color-contrast enhancing algorithm for games, as well as the steps taken to work

around the limitations of ReShade to reach our goals.

38

5 RESULTS

This chapter presents the results we obtained with our finished plugin across dif-

ferent games, by comparing the game as it is seen by a player with normal color vision and

by a dichromat with and without the recoloring filter we developed. In cases where the

game itself offers accessibility options for color blind players, the effects of these options

are also presented for comparison. Like the examples provided previously in Section 1,

to simulate color blind deficiency, we project the colors onto the dichromat’s gamut plane

in the CIE L∗a∗b∗ color space. We also present performance metrics for our plugin and

its impact on game performance.

5.1 Recoloring

Figures 5.1 to 5.3 show the effects of our plugin on Supergiant’s Hades (2020)

for the three types of dichromacy. This is a game that makes heavy use of red and green

shades, and so color contrast loss impacts protanopes and deuteranopes the most. In Fig-

ure 5.2 in particular, we can note how important UI elements, such as the character’s

health bar and the time remaining to complete the level, become much more distinguish-

able for the dichromat with the use of our plugin.

Figure 5.1 – Original colors, protanopia simulation, and recoloring of the menu in Hades (2020).

(a) Normal color vision.

39

Figure 5.1 – Original colors, protanopia simulation, and recoloring of the menu in Hades (2020).

(b) Protanopia simulation.

(c) Our recoloring for protanopia.

Figure 5.2 – Original colors, deuteranopia simulation, and recoloring of an arena in Hades (2020).

(a) Normal color vision.

40

Figure 5.2 – Original colors, deuteranopia simulation, and recoloring of an arena in Hades (2020).

(b) Deuteranopia simulation.

(c) Our recoloring for deuteranopia.

Figure 5.3 – Original colors, tritanopia simulation, and recoloring of scenery in Hades (2020).

(a) Normal color vision.

41

Figure 5.3 – Original colors, tritanopia simulation, and recoloring of scenery in Hades (2020).

(b) Tritanopia simulation.

(c) Our recoloring for tritanopia.

In Figure 5.4, we see how our plugin enhances the contrast of inventory icons in

Eidos-Montréal’s Shadow of the Tomb Raider (2018), which represent important infor-

mation that should be easily visible to the player, but in the process sacrifices part of the

naturalness of the map by changing the color of the river to yellow, and the gold pieces to

blue. This is a side effect of being restricted to the range of colors the dichromat can see,

which is significantly smaller than the one perceived by a normal trichromat. This is an

action-adventure game with many survival aspects, like hunting in wooded environments.

For a player with CVD, identifying targets in this situation can be much more difficult,

as their colors might make them blend with the background. Figure 5.5 shows that our

recoloring can alleviate this.

42

Figure 5.4 – Original colors, deuteranopia simulation, and recoloring of the map in Shadow of
the Tomb Raider (2018).

(a) Normal color vision.

(b) Deuteranopia simulation.

(c) Our recoloring for deuteranopia.

43

Figure 5.5 – Original colors, protanopia simulation, and recoloring of an example of the hunting
mechanic in Shadow of the Tomb Raider (2018).

(a) Normal color vision.

(b) Protanopia simulation.

(c) Our recoloring for protanopia.

44

Similarly to the loss of naturalness seen in Figure 5.4, this process might some-

times shift colors in ways that are less than ideal. In Figure 5.6, for example, we see

for Dontnod Entertainment’s Tell Me Why (2020) that our plugin spreads the colors in a

way that does recover contrast in the background image, but as a consequence makes the

selected option in the menu much lighter, and harder to distinguish from the others. This

is at the moment not avoidable without changes to the algorithm itself, as it happens in

the recovery of contrast between the text and the background it is shown on. This is due

to our usage of the Gaussian pairing technique to select a neighbor for each pixel, with a

neighborhood of fixed size in relation to the game’s resolution. Therefore, if any element,

such as the other menu items, falls completely outside of a pixel’s neighborhood, it will

not be taken into consideration when computing that pixel’s new color.

Figure 5.6 – Original colors, tritanopia simulation, and recoloring in Tell Me Why (2020).

(a) Normal color vision.

(b) Tritanopia simulation.

45

Figure 5.6 – Original colors, tritanopia simulation, and recoloring in Tell Me Why (2020).

(c) Our recoloring for tritanopia.

To maintain the contrast between two separate UI elements, we would require a

way to separate them from the rest of the image during the recoloring process, either

through the user’s input, or with a method to identify in code which pixels belong to

them. Without these changes, at its current state our solution might not be beneficial in

situations where the user wishes to keep elements placed further apart on the screen easily

distinguishable from one another.

When applying our plugin to Square Enix’s Final Fantasy XIV: A Realm Reborn

(2013), we can notice a significant improvement in the color contrast of essential UI

elements (Figures 5.7 to 5.12), especially when compared to the native filtering for players

with CVD that the game offers. Figures 5.7, 5.8 and 5.12 show the results of applying our

plugin to the examples outlined in Chapter 1.

Figure 5.7 – Original colors, protanopia simulation, and recoloring of UI elements in Final
Fantasy XIV: A Realm Reborn (2013).

(a) Normal color vision. (b) Protanopia simulation.

(c) Game’s recoloring for protanopia, as seen by a
protanope. (d) Our recoloring for protanopia.

46

Figure 5.8 – Original colors, protanopia simulation, and recoloring of ground markers in a Final
Fantasy XIV: A Realm Reborn (2013) boss fight arena.

(a) Normal color vision. (b) Protanopia simulation.

(c) Game’s recoloring for protanopia, as seen by a
protanope. (d) Our recoloring for protanopia.

Figure 5.9 – Original colors, protanopia simulation, and recoloring of a boss fight arena in Final
Fantasy XIV: A Realm Reborn (2013).

(a) Normal color vision. (b) Protanopia simulation.

(c) Game’s recoloring for protanopia, as seen by a
protanope. (d) Our recoloring for protanopia.

47

Figure 5.10 – Original colors, deuteranopia simulation, and recoloring of ground markers in a
Final Fantasy XIV: A Realm Reborn (2013) boss fight arena.

(a) Normal color vision. (b) Deuteranopia simulation.

(c) Game’s recoloring for deuteranopia, as seen by
a deuteranope. (d) Our recoloring for deuteranopia.

Figure 5.11 – Original colors, tritanopia simulation, and recoloring of a ground marker in a Final
Fantasy XIV: A Realm Reborn (2013) boss fight arena.

(a) Normal color vision. (b) Tritanopia simulation.

(c) Game’s recoloring for tritanopia, as seen by a
tritanope. (d) Our recoloring for tritanopia.

48

Figure 5.12 – Original colors, deuteranopia simulation, and recoloring of UI elements in Final
Fantasy XIV: A Realm Reborn (2013).

(a) Normal color vision. (b) Deuteranopia simulation.

(c) Game’s recoloring for deuteranopia, as seen by
a deuteranope. (d) Our recoloring for deuteranopia.

Figures 5.13 to 5.15 show examples of our recoloring that still recover much of

the visual effects of the bright color choices for different sceneries in ConcernedApe’s

Stardew Valley (2016).

Figure 5.13 – Original colors, protanopia simulation, and recoloring of the player’s home in
Stardew Valley (2016).

(a) Normal color vision.

(b) Protanopia simulation.

49

Figure 5.13 – Original colors, protanopia simulation, and recoloring of the player’s home in
Stardew Valley (2016).

(c) Our recoloring for protanopia.

Figure 5.14 – Original colors, deuteranopia simulation, and recoloring of a cave in Stardew
Valley (2016).

(a) Normal color vision.

(b) Deuteranopia simulation.

50

Figure 5.14 – Original colors, deuteranopia simulation, and recoloring of a cave in Stardew
Valley (2016).

(c) Our recoloring for deuteranopia.

Figure 5.15 – Original colors, tritanopia simulation, and recoloring of a town in Stardew Valley
(2016).

(a) Normal color vision.

(b) Tritanopia simulation.

51

Figure 5.15 – Original colors, tritanopia simulation, and recoloring of a town in Stardew Valley
(2016).

(c) Our recoloring for tritanopia.

To show the recoloring effects of our plugin in real time we have provided, in

hyperlinks on the titles, recordings of Hades (2020), Final Fantasy XIV: A Realm Reborn

(2013), Shadow of the Tomb Raider (2018), and Stardew Valley (2016), comparing the

game’s original colors, with a simulation of how a dichromat perceives them, and with

our recoloring.

5.2 Performance Analysis

All of the results shown in this undergraduate thesis were obtained using an AMD

Ryzen 7 1700 Eight-Core 3.00 GHz processor with 16GB of RAM and an NVIDIA

GeForce GTX 1070 GPU, on a monitor with a 3840 × 2160 resolution. All games were

executed at the highest resolution supported by each game: 1920×1080 for Tell Me Why

(2020), 2560 × 1440 for Final Fantasy XIV: A Realm Reborn (2013), and 3840 × 2160

for the others. We used ReShade’s frame counter and timer statistic settings to measure

the average frametime of each game with and without our plugin. Measures were taken

while the game was actively being played from about two to five minutes. During this

time, roughly the same interactions with the game with and without the plugin were per-

formed to maintain the inputs as similar as possible. For example, walking the same path

in Shadow of the Tomb Raider (2018) with and without our plugin, and fighting the same

group of enemies in Final Fantasy XIV: A Realm Reborn (2013). Table 5.1 shows these

measures for the games used in our examples.

ReShade’s statistics feature also provides, for each active shader, the time required

https://youtu.be/M2URu8yYQeo
https://youtu.be/2_H5DYqgCkk
https://youtu.be/2_H5DYqgCkk
https://youtu.be/-6HXqjONP3A
https://youtube.com/shorts/Hy3wBDZsiEk

52

Table 5.1 – Average frames per second measured.

Game API
Avg.

Frametime with
Plugin

Avg.
Frametime

without Plugin
Hades Vulkan 16.69ms 16.88ms

Shadow of the Tomb
Raider

DirectX 11 33.05ms 30.78ms

Tell Me Why DirectX 11 16.66ms 16.66ms
Final Fantasy XIV: A

Realm Reborn
DirectX 11 16.69ms 16.69ms

Stardew Valley OpenGL 16.98ms 16.79ms
Pathfinder: Kingmaker DirectX 11 10.98ms 10.89ms

in the CPU and GPU to execute it for every frame. Table 5.2 shows these times for each

game previously mentioned. To obtain these values, we measured the average execution

time for thirty random frames. For the current version of ReShade, there is a bug that

prevents this information from being displayed correctly for games based on Vulkan.

Because of this, we cannot provide this information for the game Hades (2020). As

expected, the running times of our shaders increase with the game’s resolution, and this

is the only factor that affects the time required to execute them.

Table 5.2 – Average per-frame plugin execution time.

Game Resolution
Avg. CPU

Time
Avg. GPU

Time
Shadow of the Tomb

Raider
3840× 2160 0.164ms 2.898ms

Tell Me Why 1920× 1080 0.052ms 3.722ms
Final Fantasy XIV: A

Realm Reborn
2560× 1440 0.046ms 0.913ms

Stardew Valley 3840× 2160 0.205ms 1.898ms
Pathfinder: Kingmaker 3840× 2160 0.078ms 6.708ms

For games without heavy graphic requirements, no significant performance loss

was noticed in this environment. In earlier stages of development, Stardew Valley (2016)

kept displaying a small but noticeable ripple effect whenever the scene moved when us-

ing our plugin, even after noise generation improvement described in Section 4.3.2. At

the time, our plugin had an average GPU execution time of 16.091ms for this game.

With ReShade’s latest update on September 16th of 2022, however, improvements for the

OpenGL API were made, and this is no longer observed. Shadow of the Tomb Raider

(2018) showed an average loss of approximately 2 frames per second, from around 32

frames per second to around 30, while using our plugin, but as this is a much more com-

53

putationally demanding game, this was not an unexpected result. Even then, the game’s

performance remains above 30 frames per second, a framerate still considered acceptable.

5.3 Summary

This chapter has presented various results obtained from applying our plugin to

various games. We have outlined the situations in which its usage might be more ben-

eficial to players with CVD, and where our plugin can still be improved. Lastly, we

presented some performance metrics extracted from ReShade about the execution time

required by our plugin, and how it affects the performance of the games.

54

6 CONCLUSION AND FUTURE WORK

We have presented a real-time method to recover color contrast information in

electronic games, porting an efficient recoloring algorithm to an application that allows us

to easily apply it to various games in only a few steps. Our solution provides a consistent,

reliable way to make a game’s visual elements more distinguishable for dichromat players,

without significantly impacting its performance.

While accessibility in the world of video games has been a highly discussed topic

in more recent years, the vast majority of developers still do not offer effective methods

to adapt their games for those with impaired color vision. Our results show that said

methods can be easily implemented, and their presence could come to be the norm.

In future steps, the experience of players with CVD with our plugin should be

taken into consideration, and their feedback used as basis for any necessary improve-

ments. We would like to analyze how the use of our plugin can reduce the time it takes

for a dichromat to discern color information in games, especially in time sensitive situ-

ations. While the measures taken by us indicate that, in most cases, our plugin does not

significantly impact a game’s performance, much more insight will be gained from ob-

taining these measures in different machines, on a wider variety of games with different

system requirements.

At its current state, our solution is capable of reliably and efficiently enhancing

contrast for dichromats between adjacent elements in an image, such as distinguishing

ground markers from the ground itself in our examples provided for Final Fantasy XIV:

A Realm Reborn. As seen for the game Tell Me Why, however, it might not be the best

choice where it is important to maintain the contrast between screen elements that are far

apart from each other. Thus, if the player wanted to enhance the contrast between two

different ground markers that are not adjacent, for example, there would be no guarantee

that our technique would produce the desired results. In the future, it would be beneficial

to offer the option to keep distant UI elements easily distinguishable from each other, if

it is what the user would prefer. Additionally, further steps can be taken to preserve the

naturalness in the images to maintain a visually pleasing experience.

The use of the ReShade application to develop our plugin limits its usage to com-

puter games running on a Windows system. However, despite being a popular one, com-

puters aren’t the most used platform for games. Even players who favor computers over

mobile devices and consoles might choose to use these other platforms from time to time.

55

Once polished, our work can be expanded to be compatible with a wider range of systems.

It is also important to note that this plugin was developed with dichromats in

mind. A method to control the intensity of the recoloring might be an interesting feature

for anomalous trichromats who retain a reduced ability to differentiate certain colors, and

have a less limited range of available colors to work with.

56

REFERENCES

BOX, G. E. P.; MULLER, M. E. A note on the generation of random normal deviates.
Annals of Mathematical Statistics, 1958.

BRETTEL, H.; VIéNOT, F.; MOLLON, J. D. Computerized simulation of color appear-
ance for dichromats. J. Opt. Soc. Am. A, Optica Publishing Group, v. 14, n. 10, p. 2647–
2655, Oct 1997.

CROSIRE. ReShade. [S.l.], 2015. Available from Internet: <https://reshade.me/>.

DALTONIZE.ORG. LMS Daltonization. [S.l.], 2010. Available from Internet: <http:
//www.daltonize.org/2010/05/lms-daltonization-algorithm.html>.

DFC INTELLIGENCE. Global Video Game Consumer Segmentation.
[S.l.], 2022. Available from Internet: <https://www.dfcint.com/product/
video-game-consumer-segmentation-2/>.

DOUGHERTY, B.; WADE, A. Daltonize. [S.l.], 2002. Available from Internet: <http:
//www.vischeck.com/daltonize/>.

GOOCH, A. et al. Color2gray: Salience-preserving color removal. ACM Trans. Graph.,
v. 24, p. 634–639, 07 2005.

GORDON, N. Colour blindness. Public Health, v. 112, n. 2, p. 81–84, mar. 1998.

GRUNDLAND, M.; DODGSON, N. A. Decolorize: Fast, contrast enhancing, color to
grayscale conversion. Pattern Recognition, v. 40, n. 11, p. 2891–2896, 2007. ISSN 0031-
3203.

HARDIN, B. Colorblind accessibility in video games. [S.l.],
2016. Available from Internet: <https://www.gamersexperience.com/
colorblind-accessibility-in-video-games-is-the-industry-heading-in-the-right-direction/
>.

IACCARINO, G. et al. Efficient edge-services for colorblind users. In: Proceedings of
the 15th international conference on World Wide Web. [S.l.: s.n.], 2006. p. 919–920.

ICHIKAWA, M. et al. Web-page color modification for barrier-free color vision with ge-
netic algorithm. In: LNCS. [S.l.: s.n.], 2003. v. 2724, p. 2134–2146. ISBN 978-3-540-
40603-7.

ICHIKAWA, M. et al. Preliminary study on color modification for still images to realize
barrier-free color vision. In: 2004 IEEE International Conference on Systems, Man
and Cybernetics (IEEE Cat. No.04CH37583). [S.l.: s.n.], 2004. v. 1, p. 36–41 vol.1.

IRPAN, E. et al. COVID-19’s Impact on the Gaming Industry: 19
Takeaways. [S.l.], 2020. Available from Internet: <https://create.unity.com/
COVID-19s-impact-on-the-gaming-industry>.

JEFFERSON, L.; HARVEY, R. Accommodating color blind computer users. In: Pro-
ceedings of ASSETS 2006. Portland, USA. [S.l.: s.n.], 2006. v. 2006, p. 40–47.

https://reshade.me/
http://www.daltonize.org/2010/05/lms-daltonization-algorithm.html
http://www.daltonize.org/2010/05/lms-daltonization-algorithm.html
https://www.dfcint.com/product/video-game-consumer-segmentation-2/
https://www.dfcint.com/product/video-game-consumer-segmentation-2/
http://www.vischeck.com/daltonize/
http://www.vischeck.com/daltonize/
https://www.gamersexperience.com/colorblind-accessibility-in-video-games-is-the-industry-heading-in-the-right-direction/
https://www.gamersexperience.com/colorblind-accessibility-in-video-games-is-the-industry-heading-in-the-right-direction/
https://www.gamersexperience.com/colorblind-accessibility-in-video-games-is-the-industry-heading-in-the-right-direction/
https://create.unity.com/COVID-19s-impact-on-the-gaming-industry
https://create.unity.com/COVID-19s-impact-on-the-gaming-industry

57

JUDD, D. B. The color perceptions of deuteranopic and protanopic observers. J. Opt.
Soc. Am., Optica Publishing Group, v. 39, n. 3, p. 252–256, Mar 1949. Available from
Internet: <https://opg.optica.org/abstract.cfm?URI=josa-39-3-252>.

KUHN, G. R.; FERNANDES, L. F.; OLIVEIRA, M. M. An efficient naturalness-
preserving image-recoloring method for dichromats. IEEE Transactions on Visualiza-
tion & Computer Graphics, IEEE Computer Society, Los Alamitos, CA, USA, v. 14,
n. 06, p. 1747–1754, nov 2008. ISSN 1941-0506.

MACHADO, G. M.; OLIVEIRA, M. M. Real-time temporal-coherent color contrast en-
hancement for dichromats. Computer Graphics Forum, v. 29, n. 3, p. 933–942, 2010.

NEITZ, M.; NEITZ, J. Molecular Genetics of Color Vision and Color Vision Defects.
Archives of Ophthalmology, v. 118, n. 5, p. 691–700, 05 2000. ISSN 0003-9950.

RASCHE, K.; GEIST, R.; WESTALL, J. Detail preserving reproduction of color images
for monochromats and dichromats. IEEE computer graphics and applications, v. 25,
p. 22–30, 05 2005.

RASCHE, K.; GEIST, R.; WESTALL, J. Re-coloring images for gamuts of lower dimen-
sion. Computer Graphics Forum, v. 24, p. 423–432, 09 2005.

SAMPLE, P. A.; WEINREB, R. N.; BOYNTON, R. M. Acquired dyschromatopsia in
glaucoma. Survey of ophthalmology, v. 31 1, p. 54–64, 1986.

SCOTT, I.; FEUER, W.; JACKO, J. Impact of visual function on computer task accuracy
and reaction time in a cohort of patients with age-related macular degeneration. American
Journal of Ophthalmology, v. 133, p. 350–7, 03 2002.

SHARPE, L. T. et al. Opsin genes, cone photopigments, color vision, and color blindness.
In: Color Vision: From Genes to Perception. Cambridge, UK: Cambridge University
Press, 1999. p. 3–51.

SHEPARD, D. A two-dimensional interpolation function for irregularly-spaced data. In:
Proceedings of the 1968 23rd ACM National Conference. New York, NY, USA: Asso-
ciation for Computing Machinery, 1968. (ACM ’68), p. 517–524. ISBN 9781450374866.

VIéNOT, F.; BRETTEL, H.; MOLLON, J. D. Digital video colourmaps for checking the
legibility of displays by dichromats. Color Research and Application, v. 24, p. 243–252,
1999.

WAKITA, K.; SHIMAMURA, K. Smartcolor: Disambiguation framework for the color-
blind. In: ASSETS 2005 - The Seventh International ACM SIGACCESS Conference
on Computers and Accessibility. [S.l.: s.n.], 2005. p. 158–165.

https://opg.optica.org/abstract.cfm?URI=josa-39-3-252

	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Related work
	2.1 Recoloring Web Pages
	2.1.1 ColorBlind Filter Service
	2.1.2 Wakita and Shimamura
	2.1.3 Ichikawa et al. (2003)

	2.2 Recoloring Images
	2.2.1 Ichikawa et al. (2004)
	2.2.2 Daltonize
	2.2.3 Rasche et al.
	2.2.4 Kuhn et al.
	2.2.5 Jefferson and Harvey

	2.3 Contrast-Preserving Grayscale Mapping
	2.3.1 Color2Gray
	2.3.2 Decolorize

	2.4 Accessibility
	2.5 Summary

	3 Background
	3.1 Real-Time Temporal-Coherent Color Contrast Enhancement for Dichromats
	3.1.1 Maximum contrast loss in the CIE L*a*b* color space
	3.1.2 Principal Component Analysis
	3.1.3 Computing results
	3.1.4 Ensuring temporal coherence

	3.2 Summary

	4 Implementation
	4.1 ReShade
	4.2 ReShade FX
	4.3 Recoloring Plugin
	4.3.1 RGB to CIE L*a*b* convertion
	4.3.2 Generating random noise
	4.3.3 Principal Component Analysis
	4.3.4 Computing final colors
	4.3.5 Temporal Coherence

	4.4 Difficulties
	4.5 Summary

	5 Results
	5.1 Recoloring
	5.2 Performance Analysis
	5.3 Summary

	6 Conclusion and Future Work
	References

