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ABSTRACT

Indoor global localization is a critical aspect of autonomous robotic navigation. The in-

creasing demand for service consumer-grade robots that require self-localization calls for

research on methods that work with easy setup and low-cost sensors. In this work, we

propose a monocular camera-based localization of a motorized wheeled robot using a 2D

floor plan as a reference map. The innovation of our method lies in using depth maps esti-

mated from monocular images to compute the free space around the robot to be used as a

measurement model in a particle filter strategy. The estimated free space density is com-

pared to the free space density extracted from particles in the 2D floor plan. Due to the

inherent imperfections of estimated depth maps, we also propose a new particle weighting

approach to account for uncertainties in the depth estimation from the monocular camera.

Experiments performed using real-world scenario sequences of images comparing the

proposed method with RGB-D camera-based approaches demonstrate the effectiveness

of the method, even for imperfect depth maps obtained with the monocular depth estima-

tion model.

Keywords: Mobile Robots. Indoor Localization. Monocular Depth Estimation. Free

Space Density.



Monocular depth estimation applied to global localization over 2D floor plans

RESUMO

A localização global em ambientes internos é um aspecto crucial da navegação de robôs

autônomos. A crescente demanda por robôs de serviço, que exigem auto-localização,

impulsiona a pesquisa de métodos que sejam fáceis de configurar e que utilizem senso-

res de baixo custo. Neste trabalho, apresentamos uma proposta de localização baseada

em câmera monocular para um robô de rodas motorizadas, utilizando um mapa de planta

baixa 2D como referência. A inovação de nosso método reside na utilização de mapas

de profundidade estimados a partir de imagens monoculares para calcular o espaço livre

ao redor do robô, a ser usado como modelo de observação em uma estratégia de filtro de

partículas. A densidade de espaço livre estimada é comparada com a densidade de espaço

livre extraída das partículas no plano de planta baixa 2D. Devido às imperfeições ineren-

tes dos mapas de profundidade estimados, propomos também uma nova abordagem de

ponderação de partículas para considerar as incertezas na estimativa de profundidade da

câmera monocular. Experimentos realizados com sequências de imagens do mundo real,

comparando o método proposto com abordagens baseadas em câmera RGB-D, demons-

tram a eficácia do método, mesmo para mapas de profundidade imperfeitos obtidos com

o modelo de estimativa de profundidade monocular.

Palavras-chave: Robótica Móvel. Localização em Ambientes Internos. Estimação Mo-

nocular de Profundidade. Densidade de Espaço Livre.
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1 INTRODUCTION

Autonomous mobile robots have the potential to produce huge economic benefits

in laboratories, industry, warehousing and logistics, transportation, retail, entertainment,

and other fields (HUANG et al., 2023). They can replace humans in manual tasks such

as repetitive labor and dangerous operations. Localization is a prerequisite for enabling

autonomous robots to operate effectively in various environments. Particularly, service

robots require reliable localization because they operate in environments where human

interaction and safety are crucial.

Global localization in indoor environments using low-cost sensors is still an open

challenge for various applications requiring autonomous robots (HUANG et al., 2023).

The global localization problem consists of estimating the pose of a robot in a reference

map with no prior knowledge of the initial pose. Solutions to such problem have to

handle sensor uncertainties, accurately represent scenarios, and effectively differentiate

ambiguities in the environment. The ability to accurately and autonomously determine

one’s position is crucial for enabling intelligent machines to interact effectively with their

surroundings, make informed decisions, and navigate through complex environments.

Some of the keys to democratizing consumer-grade robotics applications are the

use of inexpensive sensors and ease of setup (BONIARDI et al., 2019b). Thus, the ap-

propriate choice of the sensor and representation of the map is very important to a broad

diffusion of consumer robots. Typically, SLAM techniques do not fit these requirements

due to their hard setup with the necessity of a previous collection of sensor measurements

to build a coherent representation of the environment. Also, it usually requires highly

accurate maps built with the same sensor method employed for robot localization (BO-

NIARDI et al., 2019b). An alternative is using already available map representations,

for instance, floor plans, which are generally available upfront for indoor structures and

consist of a robust representation of the environment (ITO et al., 2014).

Monocular cameras are widely available and commonly found in various con-

sumer devices such as smartphones, laptops, tablets, and even wearable devices. Hence,

they are a practical sensor option for addressing the challenge of global localization for

consumers. Moreover, monocular depth estimation has progressed considerably recently

due to advancements in deep learning techniques and the availability of larger datasets

(KHAN; SALAHUDDIN; JAVIDNIA, 2020). Although advancements were achieved,

limitations still exist in the depth maps obtained from monocular depth estimation, which
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include scale ambiguity and handling occlusions.

1.1 Goal and Contributions

Due to the limitations that still exist in monocular depth estimation, when using

depth maps produced with monocular cameras for robot localization, the representation

of the sensor measurements has to account for uncertainties. In (MAFFEI et al., 2015),

authors proposed using the Free Space Density (FSD) as the observation model, which

measures the free space around the robot. The FSD can be computed consistently across

different sensor types like 2D laser rangefinders (MAFFEI et al., 2015), omnidirectional

cameras (RIBACKI et al., 2018), or RGB-D cameras (MAFFEI et al., 2020). Its versatility

allows an efficient incorporation of the depth maps uncertainty in the observation model.

Given the consistent computation of FSD across various sensor types and advancements in

monocular depth estimation techniques, we conjecture that the integration of sufficiently

accurate monocular depth maps with FSD as an observation model can enable effective

robot localization in diverse environments.

In this work, we address the need for practical solutions utilizing low-cost sensors

in the challenge of global localization in indoor environments for autonomous robots. We

propose to use monocular depth maps to compute the observation model in a Monte Carlo

Localization (MCL) approach. Estimated depth maps obtained from monocular images

usually present high uncertainty influenced by multiple factors related to the algorithm,

scene complexity, camera properties, and environmental conditions. We selected Free-

Space Density (FSD) as the observation model (MAFFEI et al., 2020) due to its simplicity

and robustness against noisy sensor measurements. Figure 1.1 presents a visualization of

the method, where a monocular camera obtains the input image which is then used to

predict a depth map with a monocular depth estimation model. The depth map is used to

estimate the free space around the robot which is applied in an MCL approach for robot

localization.

We evaluate the monocular depth estimation model performance against RGB-

D ground truth data for the experiments dataset. Additionally, we evaluate how MCL

behaves for noisy FSD measurements to assess the observation model choice. We also

estimate the uncertainty in the FSD computation due to monocular depth maps scale am-

biguity. Given the preliminary results, we propose a new approach for particle weighting

using FSD to account for monocular depth estimation uncertainty. The main contributions
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Figure 1.1 – Monocular depth estimation used to compute the observation model in an MCL
approach. (a) Image obtained by the robot using the monocular camera (b) Monocular depth

estimation model prediction from image (c) Floor plan presenting robot trajectory and position in
blue, particles in red, and robot field of view in green.

of this work can be summarized as follows:

• A global localization method over 2D floor plans based on monocular depth es-

timation. This novel approach leverages the use of low-cost sensors and readily

available floor plans. This combination makes localization systems accessible and

affordable, offering a cost-effective solution for global localization tasks.

• New particle weighting strategy using FSD for noisy sensor measurements. By

incorporating sensor uncertainty into the particle weighting process, our method

achieves improved convergence towards the accurate robot position.

1.2 Organization

This work is organized as follows. In Section 2, we present a background of

mobile robotics focusing on global localization. We also present a detailed explanation of

FSD and its use to solve the global localization problem. Section 3 presents the challenges

and deep learning research in monocular depth estimation. The model used to compute

the depth maps is also presented. Concluding the background, Section 4 presents the

related work in global localization and FSD.

The proposed method using the monocular depth estimation model to compute

FSD is presented in Section 5. A detailed explanation of the new particle weighting

strategy is also presented. Section 6 presents the experiments performed to evaluate the

use of the monocular depth estimation model in solving the global localization problem.
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Initially, preliminary experiments evaluating the robustness of FSD against noisy mea-

surements are presented. Then, we present an evaluation of the proposed method against

methods proposed by other authors. Finally, our conclusions and future work are pre-

sented in Section 7.
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2 MOBILE ROBOTICS BACKGROUND

This section presents the global localization problem in the field of robotics and

explores some proposed solutions. Among these solutions, particle filters stand out as

a promising approach, leveraging probabilistic techniques to estimate a robot’s location

within its environment. Additionally, the role of map representation is presented, focusing

on how it contributes to enhancing a robot’s ability to navigate and comprehend complex

environments. Moreover, this section discusses the importance of observation models,

crucial in enhancing the robot’s understanding of its surroundings.

2.1 Global localization

Robot localization in real-world scenarios aims to accurately determine a robot’s

position and orientation within its operational environment based on the sequence of ob-

servations and robot motion. Most methods model the pose estimate as a probability dis-

tribution over the space of solutions (THRUN; BURGARD; FOX, 2005). The estimated

pose is computed through a Bayesian approach. The localization problem is described

in Equation (2.1) as a posterior probability bel(xt) over the state xt at time t, given all

previous measurements z1:t and all prior control inputs u1:t.

bel(xt) = p(xt|z1:t, u1:t) (2.1)

The Bayes Filter is the most general algorithm for calculating the belief bel(xt)

from measurement and control data (THRUN; BURGARD; FOX, 2005). The solution

is computed recursively, which means, the belief bel(xt) at time t is calculated from the

belief bel(xt−1) at time t − 1. It is computed in 2-steps: control update (prediction)

and measurement update. The control update step, also known as the prediction step, is

presented in Equation (2.2). It computes the prediction bel(xt) based on the prior belief

bel(xt−1) and the control ut utilizing the motion model p(xt|ut, xt−1), representing the

probability of the robot being at pose xt given the control input ut and the previous pose

xt−1.

bel(xt) =

∫
p(xt|ut, xt−1) · bel(xt−1) dx (2.2)

The measurement update, also known as the correction step, refines the predicted
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belief about the robot’s pose bel(xt) by incorporating sensor measurements zt. Equation

(2.3) presents the corrected belief computed utilizing the measurement model p(zt|xt),

representing the probability of observing sensor measurements zt given the robot’s pose

xt. The result is normalized with η to ensure that the result is a valid probability distribu-

tion (sum up to 1).

bel(xt) = η · p(zt|xt) · bel(xt) (2.3)

Combining the prediction step (to estimate the new belief without sensor measure-

ments) with the measurement update step (to refine the belief using sensor measurements)

forms the basis of the Bayesian filtering approach for robot localization in unknown envi-

ronments. The filter convergence success relies on an appropriate motion model and mea-

surement model for the given problem. However, achieving success in this convergence

faces hurdles due to the inherent uncertainties and variations encountered in real-world

environments. Consequently, selecting a suitable map representation, motion model, and

measurement model becomes critical for achieving accurate and reliable robot localiza-

tion.

A concrete implementation of the Bayes Filter for localization requires the def-

inition of three probability distributions: the initial belief p(x0), the motion model

p(xt|ut, xt−1) and the measurement model p(zt|xt). Different methods implement

Bayesian filtering among which Kalman Filter is the most popular one (LEONARD;

DURRANT-WHYTE, 1991a), which assumes Gaussian noise and linear motion model.

On the other hand, Monte Carlo Localization (MCL) (DELLAERT et al., 1999), also

known as particle filter, has emerged as a robust implementation for robot localization,

proving to be highly effective in various applications, given its simplicity, robustness, and

ability to model arbitrary distributions.

2.2 Monte Carlo localization

Particle filter maintains a collection of M samples known as particles to depict the

posterior distribution p(xt|z1:t, u1:t) as presented in Equation (2.4).

χt = {p[1]t , p
[2]
t , ..., p

[M ]
t } (2.4)

where each particle p[m]
t = ⟨x, ω⟩ has a pose x at time t and a weight ω associated
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to it.

The MCL algorithm is presented in Algorithm 1, which iteratively estimates the

particle set χt from the set χt−1 using a Sampling-Importance-Resampling (SIR) process.

In the first step (Sampling), each particle is propagated according to the control ut by

applying the motion model p(xt|ut, xt−1) over the previous particle pose, i.e. x(p[m]
t−1), as

presented in lines 3-4.

Algorithm 1 Monte Carlo Localization
Input: χt−1,ut, zt,m
Output: χt

1: χt = χt = ∅
2: for m in 1...M do
3: xt−1 = x(p[m]

t−1)
4: sample x ∼ p(xt|ut, xt−1)
5: ω = p(zt|x,m)

6: p[m]
t = ⟨x, ω⟩

7: χt = χt ∪ {p[m]
t }

8: end for
9: for m in 1...M do

10: draw p[
ti] from χt with probability ∝ ω

[i]
t

11: χt = χt ∪ {⟨x[i]
t , 1/M⟩}

12: end for

The second step of the algorithm (Importance weighting) consists of assigning

an individual weight ω to each particle. The weight is determined using the observation

model, comparing the actual sensor readings with the estimated sensor readings of the

particle. The idea is to compute a similarity between the target distribution p(xt|z1:t, u1:t)

and the proposal distribution p(xt|z1:t−1, u1:t), generated after the sampling process. The

new particles compose a temporary particles’ set χt with their corresponding pose and

weight as presented in lines 5-7.

The third and final stage of the MCL algorithm (Resampling) randomly selects,

with replacement, the same quantity M of particles from χt and incorporates them into

a new set χt as presented in lines 9-10. One common method for sample selection is the

wheel-roulette algorithm, which assigns the probability of selecting each particle p
[m]
t in

proportion to its weight ω(p[m]
t ). Resampling is a critical step in a particle filter as it plays

a vital role in aligning the distribution of particles with the true posterior. Typically, during

resampling, particles with higher weights are more likely to be duplicated than those with

lower weights. This approach enhances the representation of high-weight particles and

improves the approximation of the particle distribution to the actual posterior distribution.
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It is important to notice that Algorithm 1 presents only a single step of the MCL al-

gorithm. An illustration of multiple steps of the MCL algorithm is presented in Figure 2.1.

At the beginning of the process (a), the particles are distributed across all available space

since the robot’s initial position can be anywhere. In (b), as the robot initiates movement,

the level of uncertainty gradually decreases. However, even with a minor displacement,

as depicted in (b), the robot’s precise location remains unclear. The uncertainty of the

position is decreased in (c) when the robot performs a right turn, given the limited num-

ber of corners of the environment. Finally, when the robot executes another right turn,

the remaining ambiguities are resolved, leading to a clearer understanding of the robot’s

exact location.

Figure 2.1 – Particle filter convergence in Monte Carlo Localization, where particles are
displayed in pink, while the robot and its trajectory are depicted in green. The particles start to
converge as the robot undergoes sufficient movement, aiding in the resolution of ambiguities

within the environment. Figure adapted from (MAFFEI, 2017).

2.3 Map representation

The construction and representation of the map are some of the challenges

in global localization. Many approaches use simultaneous localization and mapping

(SLAM) to build the map based on previous sensor measurements. SLAM is often used in

conjunction with navigation systems to enable robots to move autonomously within their
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environment. For instance, (ALHMIEDAT et al., 2023) proposes a SLAM-based local-

ization and navigation system for service robots. However, since the mapping depends on

the robot, this process increases the cost and time of implementation and may also need

specialists to guarantee map consistency in complex environments (BONIARDI et al.,

2019a). Alternative methods involve leveraging a Wireless Sensor Network (WSN) for

robot localization using techniques like triangulation or fingerprinting based on Received

Signal Strength (RSS) (ALHMIEDAT, 2023). These approaches also require the setup of

the WSN which is a challenge for service robots used in domestic scenarios.

Some approaches use semantic information for localization (ALQOBALI et al.,

2024). Semantic information localization relies on recognizing specific objects or fea-

tures in the environment to determine the robot’s position. While this approach can pro-

vide rich contextual information, it may struggle in environments where recognizable

features are sparse or subject to change. On the other hand, indoor man-made structures

usually present a floor plan which may be used as a reference map. Although they do not

present objects, like furniture, floor plans describe well the environment structure (MAF-

FEI et al., 2020). Thus, they are a robust representation even when there are momentary

changes in the distribution of objects. Utilizing floor plans as a reference map simpli-

fies the mapping process and reduces the dependency on sensor measurements, making it

more cost-effective and less time-consuming.

A commonly used map representation is the occupancy grid map. Occupancy

maps are location-based, where a binary occupancy value is assigned to each x-y coor-

dinate specifying whether or not a given location is occupied with an object (THRUN;

BURGARD; FOX, 2005). Cells corresponding to pixels representing walls are set as

obstacles, whereas the remaining cells are designated as free space. They serve as an ef-

fective and flexible representation for floor plans, offering a balance between granularity

and computational efficiency.

Histogramic In-Motion Mapping (HIMM) is an effective mapping technique that

employs a two-dimensional Cartesian histogram grid to represent obstacles detected by

range finder sensors (BORENSTEIN; KOREN, 1991a). HIMM divides the occupancy

probability space into a limited set of integer values and updates the cells’ occupancy

value along the sensor’s acoustic axis through straightforward incrementation and decre-

mentation processes. They can be used to generate local occupancy grid maps from sensor

measurements for map representation.

Figure 2.2 presents the HIMM model. In the HIMM model, cells within a grid
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have occupancy values ranging from 0 (minimum) to 15 (maximum), totaling 16 possible

values. Initially, all cells are set to the minimum value (0) assuming an empty map, or to

an intermediate value (8) indicating the initial lack of knowledge about obstacles. During

robot navigation, the algorithm translates the current robot pose to the corresponding grid

cell. Then, it checks cells within the sensor’s perceptual field, considering a maximum

sensor range translated into a cell distance. For each cell, it calculates the angular dif-

ference with the robot’s orientation and identifies the sensor beam used for cell updates.

Comparisons are made between cell and sensor distances, determining whether a cell is

likely to be occupied or free. Occupied cells are incremented by 3, while free cells are

decremented by 1, ensuring values between 0 and 15.

An example of a HIMM-produced map is presented in Figure 2.3. We can observe

the algorithm’s capability to enhance certainty regarding free spaces and obstacles as the

robot moves in the environment. Areas barely observed, like the edges of the sensor’s

scan, exhibit lower certainty in the generated map.

2.4 Free space density

The selection of the measurement model in MCL is crucial as it directly influ-

ences the accuracy and reliability of the robot’s pose estimation. Choosing a suitable

measurement model in MCL involves considering the sensor characteristics, environmen-

Figure 2.2 – HIMM model: (a) Robot detects an obstacle at distance d. (b) Grid cell update
occurs solely along the sensor’s axis. In the free region (depicted as white), the occupation of

green cells is reduced, while in the occupied region (represented as dark gray), the occupation of
red cells is increased. Figure adapted from (MAFFEI, 2017).
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Figure 2.3 – Example of HIMM map generated for a robot moving in the environment. As the
robot moves, it collects more evidence about the free-space and obstacles. Figure adapted from

(MAFFEI, 2017).

tal conditions, and the specific requirements of the robot’s localization task. When using

cameras as the sensor, the chosen measurement model should be able to encode data at a

lower level concisely and effectively.

Previous works (MAFFEI et al., 2015; RIBACKI et al., 2018; MAFFEI et al.,

2020) have been using Free-Space Density (FSD) to represent the observation model to

solve the global localization problem in floor plans using MCL. The FSD of a given

position is computed for a circular region centered at the position and is defined as the

free-space inside such region multiplied by a circular kernel. Given a grid map, the FSD

(Ψ) for the region centered at the cell m0 is a value between 0 and 1 defined by Equation

2.5.

Ψ(m0) =
∑
mi

s(mi,mo)K(∥(mi −m0)∥) (2.5)

where K(.) is the circular kernel1, mi is a cell inside the kernel region and s(mi,m0) is

1In this work, a uniform kernel with radius of 1.5m is used to compute FSD.
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defined by Equation 2.6.

s(mi,mo) =

1, if mi is a free-space cell and visible from m0

0, otherwise
(2.6)

Since the FSD is determined by a scalar value, one of its advantages is the efficient

storage of the FSD field in the whole map, which allows a fast query in particle weighting

(MAFFEI et al., 2020). The faster the query, the more particles can be used, which covers

better the space of solutions and thus increases the probability of the filter converging to

the right pose. Figure 2.4 presents the FSD value computed for different robot positions

in a given map.

The process of particle weighting is performed by comparing the measured FSD

Ψrobot to the FSD value of each particle Ψparticle. In previous works (MAFFEI et al., 2015;

RIBACKI et al., 2018; MAFFEI et al., 2020), the weight assigned to a particle is given

by Equation 2.7, where ∆Ψ is the difference between the maximum and minimum FSD

found in the reference map.

Figure 2.4 – Free-space density computed over a grid map (a) The value of FSD computed for
visible cells in a circular kernel centered at the robot placed at different positions (b) The FSD
field computed for all cells of the grid map illustrated by different colors from dark red (Ψ=0)

and dark blue (Ψ=1). Figure adapted from (MAFFEI et al., 2020).
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fΨ(Ψrobot,Ψparticle) = 1.0− min(|Ψrobot −Ψparticle|,∆Ψ)

∆Ψ

(2.7)

One of the issues encountered in FSD computation for local maps was the cells

inside the kernel which had not been visited by the robot. In (MAFFEI et al., 2020),

they proposed to use an Interval FSD [Ψ(m0)] to account for unknown cells in particles’

weighting. The Interval FSD of a region centered at m0 proposed by Maffei et al. (MAF-

FEI et al., 2020) is presented in Equation 2.8.

[Ψ(m0)] = [Ψ(m0),Ψ(m0)] (2.8)

where the infimum Ψ(m0) of the interval corresponds to the definition of the FSD in

Equation 2.5 and the supremum Ψ(m0) of the interval is defined by Equation 2.9.

Ψ(m0) =
∑
mi

sunk(mi,mo)K(∥(mi −m0)∥) (2.9)

where sunk(mi,m0) is defined by Equation 2.10.

sunk(mi,mo) =


1, if mi is a free-space or unknown cell

and visible from m0

0, otherwise

(2.10)

When using Interval FSD, the weight ω of particle p, given the particle cell FSD

Ψ(mp) and the robot cell Interval FSD [Ψ(mr)], is defined in Equation 2.11.

ω(p) =


1, if Ψ(mp) ∈ [Ψ(mr)]

fΨ(Ψ(mp),Ψ(mr)), if Ψ(mp) > Ψ(mr)

fΨ(Ψ(mp),Ψ(mr)), if Ψ(mp) < Ψ(mr)

(2.11)

Considering the suitability of FSD for particle weighting and the possibility of

computing it with different sensor modalities, in this work, we propose computing FSD

using depth maps predicted from camera images with a pre-trained monocular depth esti-

mation model.
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3 MONOCULAR DEPTH ESTIMATION BACKGROUND

Depth estimation is a task in computer vision with many applications in the

robotics field, such as SLAM, navigation, object detection and semantic segmentation.

Traditional methods of depth estimation, such as, stereo vision and structure from motion

are mainly focused on multi-view geometry. These methods have various limitations,

including high computational complexity and energy requirements (KHAN; SALAHUD-

DIN; JAVIDNIA, 2020). Additionally, multi-view geometry methods suffer from the

challenge of capturing enough features in the image to match when the scene has less or

no texture (MING et al., 2021). Methods that use active sensors, such as RGB-D cameras

and LIDAR can get the depth map from a single image. However, RGB-D cameras have

limited measurement range and suffer from outdoor sunlight sensitivity, while LIDAR

presents high power consumption and high cost (ZHAO et al., 2020). On the other hand,

monocular cameras are vastly available to consumers and usually require lower computa-

tional and energy demands for depth estimation. Recently, following the advancements in

deep-learning techniques and publicly available datasets, the performance of monocular

depth estimation methods has improved significantly (KHAN; SALAHUDDIN; JAVID-

NIA, 2020).

One of the biggest challenges of applying deep learning to monocular depth esti-

mation is the lack of high-quality labeled data, which is expensive to acquire (ZHAO et

al., 2020). Methods that use ground truth depth maps can directly output depth informa-

tion and learn in a supervised manner, penalizing errors between predictions and ground

truth. Due to the challenges in obtaining labeled data, many methods have proposed us-

ing semi-supervised and unsupervised frameworks (MING et al., 2021). Semi-supervised

approaches require a smaller amount of labeled data combined with a large amount of

unlabeled data. Unsupervised methods use geometric constraints from multi-view images

obtained from stereo vision or frame sequences (KHAN; SALAHUDDIN; JAVIDNIA,

2020). Usually, supervised methods achieve better performance than unsupervised ones,

but since they are trained in a limited amount of data, they do not generalize well to other

datasets. Both supervised and unsupervised methods can suffer from scale ambiguity and

scale inconsistency, but these issues are particularly prevalent in unsupervised methods,

as they usually output disparity, which is only proportional to depth information (ZHAO

et al., 2020).

Recent works have tackled different aspects of monocular depth estimation, in-
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cluding model architecture, dataset creation, and scale ambiguity. A new model archi-

tecture was introduced in (KIM et al., 2018), which proposed a deep variational model

for single-image depth estimation by integrating predictions from global and local con-

volutional neural networks (CNNs), capturing complementary depth attributes. (HAJI-

ESMAEILI; MONTAZER, 2024) introduced a novel approach to monocular depth es-

timation by leveraging depth and surface normal datasets collected from video games,

addressing the challenge of acquiring large-scale depth datasets. Scale ambiguity was a

subject of study from (GUIZILINI et al., 2023), which introduced ZeroDepth, a novel

monocular depth estimation framework capable of predicting metric scale for arbitrary

test images across different domains and camera parameters.

To create a model that can capture the diversity of the visual world and work ro-

bustly in real scenarios, (RANFTL et al., 2020) have proposed mixing different datasets

for training. They have developed a loss function that is invariant to depth range and

scales, allowing them to combine data from different sources with diverse sense modali-

ties. In their work, they also evaluated the model in datasets never seen during training, in

a zero-shot cross-dataset transfer approach. The experiments confirmed the model per-

forms well in a variety of environments even when they were not seen during training.

However, since the model is trained in a scale and shift invariant loss, its output is the

relative depth information requiring additional steps to obtain metric depth (BHAT et al.,

2023).

Besides the datasets and loss functions, the design of dense prediction architec-

tures often follows a pattern that divides the network into an encoder and a decoder. The

encoder extracts high-level features from the input image and downsamples the feature

maps, while the decoder upsamples the feature maps and produces the final output, such

as a depth map. Additionally, to preserve the features of each scale effectively, the cor-

responding layers of the encoder and decoder are concatenated using skip-connections

(MING et al., 2021). Figure 3.1 presents the encoder-decoder pipeline of monocular

depth estimation models.

The architecture is usually based on convolutional networks, however, convolu-

tional layers reduce resolution and granularity in deeper feature maps. The loss of resolu-

tion is critical for dense prediction where features should be resolved at the input image

resolution level for high performance (RANFTL; BOCHKOVSKIY; KOLTUN, 2021).

Some authors have also introduced the use of Recurrent Neural Networks (RNNs) in

monocular depth estimation to learn temporal features from video sequences. Generative
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Figure 3.1 – The typical deep learning pipeline for monocular depth estimation involves two
main modules. On the left, the encoder network learns depth features layer-by-layer, while on the
right, the decoder network reconstructs the depth map. Figure adapted from (DONG et al., 2022).

Adversarial Networks (GANs) were also introduced to produce clearer and more realis-

tic depth maps, due to the challenges in acquiring ground truth depth maps in real-world

scenarios (MING et al., 2021).

(RANFTL; BOCHKOVSKIY; KOLTUN, 2021) have proposed the use of vision

transformers (ViT) in place of convolutional networks for dense prediction encoding. ViT

uses a self-attention mechanism that enables the network to process images at differ-

ent scales and resolutions. Moreover, they used a Multi-Head Self-Attention mechanism

that allows the model to capture complex relationships between different parts of the im-

age. Generally, ViT needs large-scale datasets for training. The combination of the large

dataset proposed in (RANFTL et al., 2020) with the architecture proposed in (RANFTL;

BOCHKOVSKIY; KOLTUN, 2021) achieved state-of-the-art performance in monocular

depth estimation for domestic indoor datasets. The proposed model architecture is pre-

sented in Figure 3.2.

Since the model proposed in (RANFTL; BOCHKOVSKIY; KOLTUN, 2021) uses

unlabeled data for training, it is unable to output depth metric information, it outputs

disparity instead. For a real scenario, its output has to be transformed to metric depth.

Ranftl et al. (RANFTL et al., 2020) proposed to align the predictions to the ground truth

depth based on a least-squares criterion. For a given predicted disparity d and ground

truth disparity d∗, they compute a scaled and shifted disparity d̂ = sd+ t, where the scale

s and shift t ensure s(d̂) ≈ s(d∗) and t(d̂) ≈ t(d∗). The least-squares criterion applied to

an image with M pixels is presented in Equation 3.1.

(s, t) = argmin
s,t

M∑
i=1

(sdi + t− d∗i )
2 (3.1)
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Figure 3.2 – The input image undergoes tokenization (depicted in orange) through the application
of a ResNet-50 feature extractor. The image embedding is then enriched with a positional

embedding, and a patch-independent readout token (in red) is introduced. These tokens traverse
multiple transformer stages. Subsequently, tokens from different stages are reconstituted into an
image-like representation at various resolutions (depicted in green). Fusion modules (shown in

purple) progressively blend and upsample the representations to generate a finely detailed
prediction. Figure adapted from (RANFTL; BOCHKOVSKIY; KOLTUN, 2021).

The possibility of estimating metric depth combined with the capacity of general-

ization and the state-of-the-art performance in indoor datasets, make DPT-Hybrid (RAN-

FTL; BOCHKOVSKIY; KOLTUN, 2021) a reasonable choice for monocular depth esti-

mation.
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4 RELATED WORK

This section presents the related work in robot localization using 2D floor plans

as a reference map. It also presents different observation models used in the literature to

translate sensor observations to map representation. Additionally, we present how previ-

ous researches used the observation models to compute the similarity between the robot

observations and observation hypotheses derived from a particular location within the

map of the environment.

Several works have proposed the use of RGB-D cameras (ITO et al., 2014; WIN-

TERHALTER et al., 2015; MAFFEI et al., 2020; WATANABE et al., 2020; BONIARDI

et al., 2017; BONIARDI et al., 2019a; WANG; MARCOTTE; OLSON, 2019; GAO;

KNEIP, 2022) to capture observations of the environment. Usually, these works use

measurement models based on distance information. (WINTERHALTER et al., 2015)

estimate the 6DoF pose of an RGB-D tablet in a 2D floor plan map using visual-inertial

odometry and sparse depth maps extracted from the device. (ITO et al., 2014) used WiFi

signal strength to estimate a coarse initial distribution and then applied an MCL strategy

using planes extracted from the point cloud projected onto the 2D floor plan. (BONIARDI

et al., 2017; BONIARDI et al., 2019a) used 2D LiDARs and a CAD floor plan prior to

support long-term localization based on pose graph optimization. (GAO; KNEIP, 2022)

also solves the long-term localization problem using LiDARs, but they differ in solving a

6DoF problem with 3D sensors. The main issue with approaches that use RGB-D cameras

in a consumer-grade solution is the additional cost and complexity they introduce.

The use of monocular cameras has also been proposed (RIBACKI et al., 2018;

BONIARDI et al., 2019b), where they rely mainly on the geometry of edges and bound-

aries acquired by the camera. (RIBACKI et al., 2018) used a camera pointed at the ceiling

to extract boundaries and compute the free space area, which is then used as a mea-

surement model in an MCL strategy. (BONIARDI et al., 2019b) used a convolutional

neural network to predict the room layout edges from monocular images and employed

an MCL with a sensor model that scores the overlap of the predicted layout edge mask

and the expected layout edges generated from a floor plan image. Figure 4.1 presents the

edge-extraction network proposed by (BONIARDI et al., 2019b). However, methods that

depend on edge and boundaries tend to suffer from occlusions (RIBACKI et al., 2018).

In our work, we propose the use of monocular cameras to estimate a depth map from the

images, combining the distance information for localization with the high availability of
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monocular cameras.

Figure 4.1 – Proposed approach by (BONIARDI et al., 2019b) that uses a network to extract the
room layout edges from an image (top) and compares it to a layout generated from a floor plan

(bottom) to localize the robot. Figure adapted from (BONIARDI et al., 2019b).

Previous works have proposed diverse approaches to interpreting sensor data and

estimating the robot’s position within its environment. Feature-based models extract

distinct geometric landmarks or keypoints from sensor data, providing robust reference

points for localization algorithms. For instance, (LEONARD; DURRANT-WHYTE,

1991b) worked on mobile robot localization by tracking geometric beacons from sonar

data. Range-based models leverage distance measurements from sensors like laser range

finders to estimate the robot’s position relative to surrounding objects (THRUN; BUR-

GARD; FOX, 2005). Correlation-based models compare sensor readings obtained at var-

ious robot poses to infer the robot’s location. (OLSON, 2009) relies on the likelihood

field model to propose efficient multi-level strategies for correlative scan-matching.

Single-valued models represent sensor data as singular values associated with dif-

ferent robot poses, offering a simplified yet effective means of estimating position proba-

bilities. (ZHANG; ZAPATA; LéPINAY, 2012) propose the Similar Energy Region (SER),

a single-valued observation model for robot localization. SER assigns a value to each po-

sition in free space, representing the sum of the ranges of all readings obtained by the
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robot at that position. This model is advantageous for robots capable of 360-degree read-

ings, as its measure of energy is independent of orientation. However, the simple sum

of measured ranges can lead to misleading values, i.e., similar results for very different

regions.

(MAFFEI et al., 2015) proposed the FSD, which is a similar concept to SER, but

addresses the issue of misleading values by confining the measurements to a local circular

region. Rather than obtaining an absolute measurement of the free space around the robot,

the FSD calculates a kernel density estimate (KDE) to determine the ratio of free space

relative to the maximum area within the local region. The FSD can be computed with dif-

ferent sensor modalities: (MAFFEI et al., 2015) used 2D lasers to estimate the free space

from walls distance; (RIBACKI et al., 2018) used a camera upward-facing to estimate free

space from ceiling boundaries; and (MAFFEI et al., 2020) used RGB-D cameras depth

maps to compute FSD from point clouds projected to the 2D plan. Previous works that

used depth sensors built a local map using the HIMM method (BORENSTEIN; KOREN,

1991b) to compute the FSD. In this work, we selected the FSD as the observation model

and propose to compute it using monocular cameras with the HIMM method.
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5 MONOCULAR INTERVAL EXTENDED FSD

This section presents the proposed method for robot localization in an indoor en-

vironment. The method can be divided into four parts: 1) estimation of a depth map from

a monocular camera image; 2) construction of a local grid map based on the estimated

depth map; and 3) computation of the FSD around the robot based on the local map; 4)

estimation of the robot position based on a particle filter strategy using the FSD com-

puted as observation model. The proposed method uses DPT-Hybrid model (RANFTL;

BOCHKOVSKIY; KOLTUN, 2021) predictions to estimate the depth map. The model

outputs disparity, which is converted to metric depth to build the local grid map. Then,

the local map is used to estimate the FSD in the robot’s surrounding area covered by the

kernel. This method can be implemented in a real scenario to localize a robot in an in-

door environment, considering the robot has enough processing power to run the depth

estimation model in real-time.

In order to compute metric depth from the output of DPT-Hybrid model, we pro-

pose to use a simplified version of the least-squares criterion presented in Equation 3.1,

where we set the shift t to zero. Thus, for a given dataset, only a scale s is computed for

each image in disparity space. Then, we invert each scale s to depth space and compute

their average to apply to all images of the dataset. Additionally, the standard deviation

σScale of the depth scale is computed and serves as an uncertainty measure in the depth es-

timation. The additional uncertainty presented in the depth estimation compared to using

a RGB-D camera is taken into account in particle weighting.

Figure 5.1 presents a diagram of the pipeline used to compute the local map. Ini-

tially, the input image (a) is used to compute the depth map (b) with the model. Then,

similarly to what (MAFFEI et al., 2020) proposed, we compute a point cloud (c) that is

horizontally downsampled by a factor of 30 as presented in (d). Next, the 3D point cloud

measurements are projected to 2D. As presented in (e), from the projected 2D points,

we select as the distance to the wall the maximum range - to handle partial occlusions

caused by furniture - for each orientation discretized in steps of 1º. Finally, a local grid is

updated using the HIMM method (BORENSTEIN; KOREN, 1991b). The diagram also

presents in (f) the measured distance to the wall for the average metric depth scale and

one standard deviation below and above the average.

The correctness of the local grid map updated with HIMM is highly dependent

on the accuracy of the estimated metric depth map. Considering the different scales to
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Figure 5.1 – Diagram of Monocular Interval Extended FSD. (a) Input image (b) Model prediction
inverted and scaled to obtain metric depth (c) Point cloud obtained from metric depth (d)
Decimated point cloud by a factor of 30 (e) 2D projection of decimated point cloud with

selection of maximum in each orientation (f) 2D projection using average scale and one standard
deviation below and above average scale.
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compute metric depth, we can estimate a different local map, which impacts in the FSD

computation. Figure 5.2 illustrates the differences in the FSD for different depth scales,

where in (b) we used one standard deviation below the average depth scale, in (c) we

used the average depth scale, and in (d) we used one standard deviation above the average

depth scale. For all different scales, the FSD is computed using a uniform circular kernel

with the same radius of 1.5m. We can see that with a smaller scale, the robot appears to

be closer to obstacles, such as the corner of the room shown in the example, than with a

larger scale.

Figure 5.2 – FSD for different monocular depth estimation scales. (a) Floor plan for pare-s1 map
(b) Local map for depth scale one standard deviation below average scale (c) Local map for depth
scale equal to average scale (d) Local map for depth scale one standard deviation above average

scale.

Since the depth scale influences the FSD computation, the particle weighting pro-

cess needs to account for its uncertainty. The idea is to increase the measured FSD interval

proportionally to the depth scale variation for different images. In the proposed method,

we define the Interval Extended FSD [Ψ(mr)
∗] modifying the infimum and supremum

interval presented in Interval FSD proportionally to the standard deviation of the depth

scale. Given the definition of Interval FSD in Equation 2.8, the uncertainty can be added

to the infimum interval and to the supremum interval as presented in Equation 5.1 and
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Equation 5.2, respectively.

Ψ(m0)
∗ = (1− ασScale)

2 ×Ψ(m0) (5.1)

Ψ(m0)∗ = max(Ψ(m0), (1 + ασScale)
2 ×Ψ(m0)) (5.2)

where Ψ(m0) is the measured FSD using the average depth scale, Ψ(m0) is the previous

definition of the supremum interval given in (MAFFEI et al., 2020) that only considers

the added uncertainty of unknown cells, σScale is the standard deviation of the depth scale

and α is the percentage of this standard deviation to be used in the interval. The added

uncertainty proportional to σScale is squared because σScale is the uncertainty of the free

space radius, which translates into a squared uncertainty for the free space area.

Finally, the particle weight w of a given particle p is kept at 1 if the particle FSD

value is inside the interval. For FSD values outside the interval, the weight w is computed

as the distance from the infimum interval or the supremum interval depending if the par-

ticle FSD is below or above the robot measured FSD. The particle weight w of a given

particle p for Interval Extended FSD is defined by Equation 5.3.

ω(p) =


1, if Ψ(mp) ∈ [Ψ(mr)

∗]

fΨ(Ψ(mp),Ψ(mr)∗), if Ψ(mp) > Ψ(mr)∗

fΨ(Ψ(mp),Ψ(mr)
∗), if Ψ(mp) < Ψ(mr)

∗

(5.3)

where we took the definition of the particle weight for Interval FSD presented in Equation

2.11 and replaced the infimum and supremum interval for their new definition in Equation

5.1 and Equation 5.2. Thus, the extended interval tends to keep particles with depth scales

close to the average scale, increasing the likelihood of the particle filter to converge to the

right solution.

We employ a particle filter to address the global localization problem. The use of

FSD as the observation model performs dimensionality reduction of the information. It is

essential to acknowledge that this reduction diminishes precision and effectiveness. Using

a small number of particles for robot localization will likely result in failure. Fortunately,

since the FSD is a scalar value and can be stored for all grid map positions, increasing the

number of particles significantly is feasible. It results in minimal impact on processing
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time, providing a solution to this challenge. Thus, a number of 20000 particles was chosen

for the proposed method.

Figure 5.3 presents four stages of the particle filter during a localization execution.

We can see the behavior of the particles caused by the use of FSD as the observation

model. Initially, all particles are uniformly distributed over the map. Once the robot starts

moving, the particles accumulate in similar positions close to corners for all rooms due to

the ambiguity of FSD. Following additional movement, only two ambiguous swarms of

particles are left. Finally, all ambiguities are solved and the filter converges to the right

position.

Figure 5.3 – Particle Filter stages for alma-s2 map. Particles are presented in red, the robot’s
position is presented in a blue square and its path is presented in a blue dotted line. (a) Uniformly
distributed particles; (b) Particles close to corners due to the ambiguity of the observation model;

(c) Only two ambiguous swarms of particles left; (d) Particles converge to the robot position.

The use of Extended Interval FSD introduces increased uncertainty in particle

weighting, consequently retaining a greater number of particles in ambiguous observation

model locations. While this positively influences the success of filter convergence, it
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is expected to extend the time required for the filter to converge. Moreover, following

convergence, we anticipate observing a higher dispersion of particles. Once the global

localization problem is solved, we suggest the use of a method for local localization for a

more precise robot position estimation.
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6 EXPERIMENTS

We conducted a set of experiments to evaluate the performance of FSD local-

ization based on monocular depth estimation. The experiments were performed using

Robot@home dataset (RUIZ-SARMIENTO; GALINDO; GONZáLEZ-JIMéNEZ, 2017),

which consists of sequences of observations collected with a mobile robot using four

RGB-D cameras and 2D laser scanners. The 2D laser was placed at the front part of the

robot base, at a height of 0.31 m. The cameras were mounted at a height of 0.92 m with

an angular orientation of -45º, 0º, 45º, 90º. Figure 6.1 presents the mobile robot used to

collect data for the experiments.

Figure 6.1 – Robotic platform employed to collect the dataset along with details of the sensors
mounted on it. Figure adapted from (RUIZ-SARMIENTO; GALINDO; GONZáLEZ-JIMéNEZ,

2017).
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For the depth estimation model evaluation and localization experiments per-

formed, we only used the forward-facing camera. We selected four sequences of obser-

vations of the datasets recorded in 4 different apartments to execute the experiments. For

these maps, a kernel size of 1.5m was chosen for the best performance given their average

room size. Figure 6.2 presents the maps and trajectories selected from the dataset.

Figure 6.2 – Maps and trajectories of the 4 tested scenarios from the Robot@home dataset. (a)
alma-s1: area 8.2× 6.6m2, path length 39.9m (b) anto-s1: area 8.7× 12.4m2, path length 43.7m

(c) pare-s1: area 10.2× 10.3m2, path length 43.2m (d) rx2-s1: area 5.7× 6.1m2, path length
15.7m

In Section 6.1, we present the first part of the experiments consisting in the eval-

uation of the monocular depth estimation model. The goal of the experiments was to

evaluate how accurate is the depth estimation compared to the RGB-D depth channel. We

used the model to estimate depth in the sequences of RGB images and calculated the error

against RGB-D images. Additionally, since the observation model is derived from the 2D

projected ranges, we also computed the error between the range measurements obtained

from the estimated depth and the ones obtained from the RGB-D camera.

The observation model using monocular depth estimation is expected to have more

uncertainty when compared to the one using the RGB-D camera. In order to verify how
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robust is the proposed method Interval Extended FSD to noisy measurements, we evalu-

ate the influence of α for different noisy scenarios in FSD estimation. The experiments

presented in Section 6.2 were performed comparing the performance of the global local-

ization when using ground truth FSD disturbed with different noise levels.

Finally, in Section 6.3, we evaluated the performance of the global localization

particle filter using the estimated depth combined with Interval Extended FSD compared

to using the RGB-D camera with Interval FSD. The idea is to compare our system to

another one that has demonstrated superior performance compared to recently developed

systems and uses a depth sensor as a baseline. The global localization experiments were

also performed using the true value of the FSD as the measurement model. Additionally,

experiments only using the movement model were performed. These experiments aimed

to evaluate the particle weighting methods against the theoretical best (perfect observation

model) and worst (no observation model) performance. A detailed explanation of the

experiments is presented in the following sections.

6.1 Monocular depth estimation

This section presents the experiments performed to evaluate the accuracy of the

monocular depth estimation model. The model used for the depth estimation task was

DPT-Hybrid (RANFTL; BOCHKOVSKIY; KOLTUN, 2021) trained on MIX 6 dataset

with about 1.4 million images and fine-tuned on NYUv2 dataset (SILBERMAN et al.,

2012). We selected this model because it was trained in a zero-shot cross-dataset transfer

approach, that is, the model is trained on certain datasets and its performance is tested in

datasets that were never seen during training (RANFTL et al., 2020). Also, the model was

fine-tuned in a dataset with domestic indoor scenarios. Thus, we expected the model to

generalize well and perform well in Robot@Home dataset. Examples of the model depth

predictions compared to RGB-D camera images and depth channel for all Robot@Home

dataset maps are presented in Figure 6.3.

6.1.1 Model depth scale estimation

The DPT-Hybrid network was trained with an affine-invariant loss, resulting in

predictions that are arbitrarily scaled and shifted. The network outputs disparity, a repre-
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sentation inversely proportional to depth (RANFTL; BOCHKOVSKIY; KOLTUN, 2021).

To compute absolute depth from these predictions, the disparity predictions have to be

aligned with the inverse depth ground truth of the Robot@Home dataset and then inverted

Figure 6.3 – Model predictions compared to ground truth for Robot@Home dataset maps
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to depth space. This alignment was performed by computing a disparity scale for each

Robot@Home dataset image prediction that minimizes a least square criterion in inverse

depth space described in Equation 3.1 with t set to zero.

In a real scenario, we need a single depth scale to be applied to all model predic-

tions. To compute this single depth scale, we perform the following steps:

• Alignment to Ground Truth: Each disparity prediction is aligned to the inverse

depth ground truth of the Robot@Home dataset by calculating a disparity scale that

minimizes the least squares error in inverse depth space.

• Conversion to Depth Space: Once aligned, these disparity scales are converted

back to depth space.

• Averaging Across the Dataset: The depth scales from all dataset examples are

averaged to compute a single depth scale.

Figure 6.4 presents a histogram of the computed depth scales for all dataset ex-

amples. The histogram shows a wide range of depth scales, varying from half to twice

the average scale depending on the scene. This wide range indicates that the average

depth scale is subject to uncertainty. We quantify this uncertainty by calculating the stan-

dard deviation of the depth scales obtained from the Robot@Home dataset examples. The

average depth scale is 2161, and its standard deviation is 29.7% relative to this average.

Figure 6.4 – Depth scale histogram over all Robot@Home dataset examples
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6.1.2 Model performance on images

We evaluated the network performance in the Robot@Home dataset four maps

with the metrics defined in (RANFTL et al., 2020). The root mean squared error (RMSE)

and mean absolute value of the relative error (AbsRel) were computed between the pre-

dicted depth pixels zi and ground truth depth pixels z∗i . Lower values for the pixel error

metrics RMSE and AbsRel indicate better performance. The percentage of pixels with

δ = max( zi
z∗i
,
z∗i
zi
) < 1.25 was also computed. For the pixel percentage δ metrics, higher

values indicate better performance. In order to compute the metrics, we inverted the

dataset predictions to depth space and applied the average depth scale to all of them. The

RGB-D camera depth channel was used as ground truth. Results are presented in Table

6.1.

Table 6.1 – Metrics computed for images

Map δ < 1.25 δ < 1.252 δ < 1.253 AbsRel RMSE

alma 0.390 0.718 0.909 0.371 0.611
anto 0.450 0.773 0.930 0.320 0.586
pare 0.391 0.727 0.907 0.344 0.647
rx2 0.416 0.717 0.899 0.384 0.594

The model has a similar performance for all Robot@Home dataset maps. Evalu-

ating the δ metrics, we can notice that less than 50% of the pixels have depth estimation

error relative to the ground truth lower than 25% (δ < 1.25). Considering relative dif-

ferences lower than 95% (δ < 1.253), more than 90% of the pixels meet this percentage

error. When we evaluate AbsRel metric, it is shown that the absolute difference between

depth estimation and ground truth is between 30% to 40% the ground truth value. This

performance is worse than the performance obtained in NYUv2 dataset for this model

(RANFTL; BOCHKOVSKIY; KOLTUN, 2021), which is expected since it was fine-tuned

for it. The monocular depth estimation AbsRel error is expected to be proportional to the

expected FSD computation error, since the latter is computed from the local map built

with the former.
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6.1.3 Model performance on range measurements

In order to obtain a better estimation of the expected error percentage in the FSD

estimation, we evaluated the monocular depth estimation performance in the computation

of range measurements, presented in Table 6.2. Range measurements are obtained from

the projections of 3D depth measurements in a 2D plane. Once they are projected, we

take the maximum projected range for a given orientation (discretized in steps of 1º) as

the range measurement. The idea here is to filter out dynamic objects and only keep those

that are static, like walls (MAFFEI et al., 2020).

Table 6.2 – Metrics computed for range mesurements

Map δ < 1.25 δ < 1.252 δ < 1.253 AbsRel RMSE

alma 0.302 0.523 0.612 0.179 0.544
anto 0.350 0.580 0.676 0.201 0.619
pare 0.277 0.526 0.660 0.279 0.775
rx2 0.379 0.579 0.667 0.224 0.554

Results obtained with image decimation (gap=30).

The performance for range measurements is even worse than the performance for

images when we evaluate the δ metrics. Less than 40% of the ranges have a difference

relative to ground truth lower than 25% (δ < 1.25). Also, less than 70% have this relative

error lower than 95% (δ < 1.253). On the other hand, the performance when evaluat-

ing AbsRel is better when comparing range measurements to image pixels. The ranges

absolute relative error is bounded from 10% to 30%. Since the range measurements are

computed as the maximum depth values for a given orientation and AbsRel is computed

relative to the ground truth depth, the AbsRel is expected to be lower for ranges than for

overall pixels.

The experiments presented the expected error in FSD estimation due to the monoc-

ular depth estimation errors. Given the results obtained, we expect to have 10% to 30%

error in the construction of the local map with HIMM. The free space cells surround-

ing the robot will be affected by how close to the robot are the walls in the local map,

which translates into a wrong estimation of the free space radius, and therefore, a wrong

estimation in the FSD around the robot.
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6.2 FSD localization robustness to noise

The results of the depth estimation model obtained in Section 6.1 indicate the es-

timated FSD using a monocular camera presents an error proportional to the square of the

estimated depth error - expected to be between 10% to 30%. We performed preliminary

experiments aiming to evaluate how FSD localization behaves when the estimated FSD

value is disturbed with noise. For these experiments, we took the Ground Truth FSD value

extracted from the floor plan and applied the disturbance. The noise disturbance consisted

of multiplying the Ground Truth FSD by a squared Gaussian noise with mean equals to 1

and standard deviation equals to 10%, 20% and 30%.

The idea was to evaluate the particle weighting using Interval Extended FSD with

different values of α. The experiments were performed in the four trajectories from

Robot@Home dataset maps. The ground truth of the robot pose and odometry were

obtained using SLAM and scan matching techniques, since they were not directly avail-

able (MAFFEI et al., 2020). We ran the experiments 30 times using 20000 particles for

α = [0, 1
3
, 1
2
, 1].

We obtained the particle error and heading difference for each particle compared

to the ground truth and computed their weighted mean over time for each experiment.

We consider an experiment converged if the mean particle error becomes smaller than 1m

and the angle difference becomes smaller than 20º and does not exceed 1.5m and 30º,

respectively, until the end of the trajectory. For experiments that converged, we computed

the metrics proposed in (MAFFEI et al., 2020), which consist of succeed distance - total

distance traveled by the robot until convergence; and the average mean particle error

after convergence.

Figure 6.5 presents the convergence percentage among all experiments. The con-

vergence for maps anto-s1 and pare-s1 is close to 100% for all levels of noise and values

of α. For alma-s1 with 30% noise level, almost half of the experiments did not converge

for all α values. In this scenario, the convergence is slightly better for α equals to 1/3.

Similarly, for rx2-s1, when noise levels are 20% and 30%, there are some experiments that

do not converge. For these experiments, when α is increased, the convergence percentage

increases, where the best scenario is 1/2 for 20% noise level and 1/3 for 30% noise level.

We observe failures in convergence when noise level is added for maps that have

shorter trajectories and simpler topologies. Specifically, alma-s1 and rx2-s1 have shorter

trajectories and fewer corridors and rooms compared to anto-s1 and pare-s1. More fail-
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Figure 6.5 – Convergence for Ground Truth FSD disturbed with noise for different noise levels
and α values.

ures in convergence are expected for these maps because the added uncertainty in the

measurements tends to increase the number of observations needed until the filter con-

verges. When the uncertainty is also added to the measurement model (α > 0), we see

slight improvements in convergence.

The average metrics computed among all experiments that converged are pre-

sented in Figure 6.6. Considering succeed distance, the greater the noise level, the longer

the experiments take to converge for the maps alma-s1, anto-s1 and pare-s1. The only

exception is for the map rx-2, which has the shortest trajectory and the increase in succeed

distance with noise level is not observed. Additionally, the increase of α also translates

into an increase in succeed distance. A similar result is observed for mean particle error

after convergence, where it is greater for greater noise levels and greater α.
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Figure 6.6 – Succeed Distance and Mean Particle Error after convergence for Ground Truth FSD
disturbed with noise for different noise levels and α values.

In summary, Figures 6.5 and 6.6 show that using α greater than 0 in the proposed

method Interval Extended FSD increases the convergence for some experiments. This
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occurs when the observation model contains a significant level of noise, so the increase

in the interval, i.e., increase of α, in the particle weighting accounts for the greater un-

certainty. On the other hand, since it adds more uncertainty to the observation model

of the particle filter, it also increases the succeed distance and mean particle error after

convergence.

6.3 FSD Localization

We evaluated different particle weighting strategies for the robot localization prob-

lem in the four trajectories from Robot@Home dataset maps. We performed the test using

only the forward-facing camera to simulate a scenario where only one monocular camera

is available. For each method, we ran the experiments 30 times using 20000 particles.

For all experiments, we computed the metrics described in Section 6.2 as well as the Fi-

nal Error for those that converged. Additionally, we computed the average of the mean

particle error over time among all experiments.

6.3.1 Monocular Interval Extended FSD

Initially, the monocular camera was used to compute FSD as the measurement

model for particle weighting. The performance was evaluated using Monocular Inter-

val Extended FSD strategy. We performed experiments using the standard deviation of

the depth scale σScale obtained in Section 6.1 as our uncertainty factor multiplied by α.

For larger values of α, we have a wider interval, which translates into more uncertainty

in the measurement model. In order to evaluate the influence of the interval width on

performance, the experiments were performed for α = [0, 1
3
, 1
2
, 1].

Table 6.3 presents the convergence percentage (Conv) of experiments and the av-

erage and standard deviation of succeed distance (SucD), mean particle error after con-

vergence (MeanParErrAC) and final error (FErr) computed for those that converged. For

a successful localization, the mean particle error and heading difference are expected to

decrease below a given level. Again, we consider convergence when the mean particle

error and heading difference become smaller than 1m and 20º and keep below 1.5m and

30º, respectively, until the end of the trajectory.

The results presented in Table 6.3 show that all Monocular Interval Extended FSD
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Table 6.3 – Localization metrics computed for Monocular Interval Extended FSD for different
values of α.

Dataset Method

SucD
[m]

MeanParErrAC
[m]

FErr
[m]

Conv
[%]

µ σ µ σ µ σ %

alma-s1

Mon Int Ext FSD (α=0) 11.43 0.10 0.36 0.03 0.46 0.04 100.0
Mon Int Ext FSD (α=1/3) 12.45 1.38 0.39 0.05 0.49 0.08 100.0
Mon Int Ext FSD (α=1/2) 12.76 0.98 0.39 0.03 0.44 0.04 100.0
Mon Int Ext FSD (α=1) 13.38 0.22 0.36 0.02 0.38 0.02 100.0

anto-s1

Mon Int Ext FSD (α=0) 9.77 0.85 0.45 0.03 0.41 0.12 100.0
Mon Int Ext FSD (α=1/3) 10.24 1.15 0.49 0.05 0.48 0.16 100.0
Mon Int Ext FSD (α=1/2) 10.35 1.08 0.47 0.03 0.48 0.12 100.0
Mon Int Ext FSD (α=1) 14.59 0.26 0.39 0.01 0.41 0.01 100.0

pare-s1

Mon Int Ext FSD (α=0) 23.14 9.13 0.55 0.10 0.69 0.13 23.0
Mon Int Ext FSD (α=1/3) 18.48 2.17 0.53 0.05 0.71 0.05 87.0
Mon Int Ext FSD (α=1/2) 18.26 0.59 0.52 0.06 0.69 0.06 100.0
Mon Int Ext FSD (α=1) 17.49 0.84 0.40 0.02 0.52 0.02 100.0

rx2-s1

Mon Int Ext FSD (α=0) 10.68 1.25 0.55 0.10 0.82 0.06 83.0
Mon Int Ext FSD (α=1/3) 10.78 1.13 0.58 0.11 0.80 0.07 73.0
Mon Int Ext FSD (α=1/2) 11.17 1.41 0.59 0.12 0.73 0.11 43.0
Mon Int Ext FSD (α=1) - - - - - - 0.0

experiments converge for all values of α in alma-s1 and anto-s1 maps. Considering the

map pare-s1, we only observe 100% convergence for α = 1/2 and α = 1. On the other

hand, we do not observe 100% convergence for rx2-s1 map for any value of α. In this

map, for α = 0 and α = 1/3 the majority of experiments converged, achieving 83% and

73% convergence, respectively; for α = 1/2 only 43% of the experiments converged; and

for α = 1 no experiment converged.

Figure 6.7 presents the average among all experiments of the weighted mean par-

ticle error over time for Monocular Interval Extended FSD with different values of α.

We can observe the error decreases for experiments that have a high rate of convergence.

In general, for lower values of α, the error decreases faster, which means a faster con-

vergence. The faster convergence for lower values of α can also be observed in succeed

distance in Table 6.3. The only exception is for the map pare-s1, which presents higher

succeed distance for small α values, but also presents low rates of convergence.

Considering the end of the experiment in Figure 6.7 for the map rx2-s1, we ob-

serve the mean particle error has an increase for smaller α values and has a drop for

α = 1. Although the error drops below 1m, we still do not observe convergence for α = 1
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because the particles’ heading has a high variance. Figure 6.8 shows the end of exper-

iments with α = 0 and α = 1 for the map rx2-s1, the red dots represent the particles’

positions and the blue arrows represent their heading. The image also shows the room

where the experiment ends, which is an open area that contains ambiguous FSD values

Figure 6.7 – Average among all experiments of the weighted mean particle error over time for
Monocular Interval Extended FSD for different values of α.
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in its center. This also explains why some experiments present an increase in their error

after convergence. Finally, the convergence criteria using both particle position error and

particle heading difference, combined with a relaxed criteria after the initial convergence

criteria is met, work great in identifying convergence for a variety of situations.

Figure 6.8 – Final particles distribution for the map rx2-s1, where the green circle and path are
the ground truth position and trajectory, respectively; the dark yellow circle is the estimated

position; and the red dots and blue arrows are the particles’ position and heading, respectively. (a)
Converged experiment (α = 0); (b) Not converged experiment (α = 1).

As presented in Table 6.3, the influence of α in convergence varies depending on

the map. Specifically, for pare-s1, the higher the α the higher the convergence. Con-

versely, for rx2-s1, the lower the alpha, the higher the convergence. The complexity of

the map and the trajectory size is considerably different for pare-s1 and rx2-s1. While

pare-s1 is a complex map with a longer trajectory (> 40m), rx2-s1 is a simple map with

a shorter trajectory (< 20m). The α parameter increases the uncertainty of the measure-

ment model, which translates into an increase in the diversity of the particles. For complex

maps, a greater diversity might be helpful for them to converge to the right position when

the trajectory is long enough. However, for simple maps with many symmetries in the

measurement model, a higher diversity might prevent the particles from converging in

shorter trajectories.

Complementing the analysis, Figure 6.9 presents the average of the position of the

particle standard deviation over time among all experiments for pare-s1 and rx2-s1 for

α = 0 and α = 1. In map pare-s1 for both values of α, the particles converge to a given

position, which is usually the correct one for higher α but the wrong one for lower α. On

the other hand, in rx2-s1, when α is lower, the experiments usually converge, while for

higher α the diversity of the particles keep high until the end of the experiment.
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Figure 6.9 – Average particles dispersion over time for pare-s1 and rx2-s1.

Videos of one experiment execution sample for each map were recorded to present

the method performance and are available online 1. The videos present the floor plan

with the MCL particles’ position in red and the heading in blue. The robot position

is presented in green and the estimated robot position is presented in brown. We also

present images seen by the robot and the point cloud obtained from the monocular depth

estimation prediction.

6.3.2 Comparison to other methods

Following the evaluation, we compared the proposed method with other particle

weighting strategies. We selected Monocular Interval Extended FSD (α = 1/3) as the

method for comparison since it yielded the highest average convergence among all maps.

It was compared with four strategies: RGB-D Interval FSD - obtained from RGB-D depth

channel, Monocular Interval FSD - obtained from monocular depth estimation without

considering scale uncertainty, Ground Truth FSD - obtained directly from the 2D floor

plan reference map considering known robot position (theoretical approach), and Mo-

tion - obtained only using odometry for particle weighting. The Ground Truth FSD sets

1<https://figshare.com/projects/Monocular_Interval_Extended_FSD/197902>

https://figshare.com/projects/Monocular_Interval_Extended_FSD/197902
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Table 6.4 – Localization metrics computed for different methods

Dataset Method

SucD
[m]

MeanParErrAC
[m]

FErr
[m]

Conv
[%]

µ σ µ σ µ σ %

alma-s1

Ground Truth FSD 10.34 0.84 0.23 0.02 0.23 0.01 100.0
RGB-D Interval FSD 11.62 0.17 0.39 0.03 0.45 0.07 100.0

Mon Interval FSD 11.43 0.10 0.36 0.03 0.46 0.04 100.0
Mon Int Ext FSD (α=1/3) 12.45 1.38 0.39 0.05 0.49 0.08 100.0

Motion 14.83 1.30 0.40 0.03 0.46 0.08 100.0

anto-s1

Ground Truth FSD 8.31 0.34 0.27 0.01 0.30 0.02 100.0
RGB-D Interval FSD 11.05 1.42 0.45 0.04 0.48 0.14 100.0

Mon Interval FSD 9.77 0.85 0.45 0.03 0.41 0.12 100.0
Mon Int Ext FSD (α=1/3) 10.24 1.15 0.49 0.05 0.48 0.16 100.0

Motion 17.82 2.45 0.44 0.04 0.54 0.10 100.0

pare-s1

Ground Truth FSD 8.77 0.46 0.25 0.01 0.30 0.02 100.0
RGB-D Interval FSD 17.68 0.79 0.44 0.02 0.76 0.05 100.0

Mon Interval FSD 23.14 9.13 0.55 0.10 0.69 0.13 23.0
Mon Int Ext FSD (α=1/3) 18.48 2.17 0.53 0.05 0.71 0.05 87.0

Motion 20.49 2.98 0.43 0.03 0.54 0.03 100.0

rx2-s1

Ground Truth FSD 9.81 0.11 0.35 0.01 0.30 0.01 100.0
RGB-D Interval FSD 10.15 0.61 0.49 0.06 0.56 0.07 100.0

Mon Interval FSD 10.68 1.25 0.55 0.10 0.82 0.06 83.0
Mon Int Ext FSD (α=1/3) 10.78 1.13 0.58 0.11 0.80 0.07 73.0

Motion - - - - - - 0.0

the theoretical upper bound performance while Motion sets the theoretical lower bound

performance. RGB-D Interval FSD, Monocular Interval FSD and Monocular Extended

Interval FSD (α = 1/3) performance is expected to lie inside these bounds. Moreover, the

performance of both monocular methods is expected to be lower or equal to the RGB-D

method, since the monocular estimation uses the RGB-D depth channel as ground truth.

The metrics computed for all particle weighting strategies are presented in Table

6.4. For the maps alma-s1 and anto-s1, all methods converge in 100% of the experiments.

For pare-s1, the experiments that use a monocular camera in the measurement model fail

to converge in some experiments. When Monocular Interval Extended FSD (α = 1/3)

is used, 87% of the experiments converge as opposed to 23% when Monocular Interval

FSD is used. On the other hand, for rx2-s1, no experiment converges when we only use

Motion. Additionally, when the monocular camera is used, we achieve 83% convergence

for Monocular Interval FSD and 73% for Monocular Interval Extended FSD (α = 1/3).

Results of the weighted mean particle position error computed for each experiment
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and averaged over time among all experiments are presented in Figure 6.10. As a baseline,

the error decreases more rapidly when using Ground Truth FSD for particle weighting.

Considering only the methods that are implementable in a real scenario, the ones that

use RGB-D or monocular camera usually converge faster than when only using Motion.

Figure 6.10 – Average among all experiments of the weighted mean particle error over time for
different particle weighting strategies.
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When we compare the performance from the RGB-D camera with the monocular camera,

we observe in Table 6.4 that the RGB-D camera converges faster in 3 out of 4 maps.

Moreover, the succeed distance of the monocular camera using Monocular Interval FSD

is usually shorter than Monocular Interval Extended FSD (α = 1/3).

Finally, the performance of using a low-cost and widely available monocular cam-

era is not as good as the performance of using a RGB-D camera. However, when the

monocular camera is used, we observe a better performance when compared to only us-

ing Motion in both convergence percentage and time to converge. Moreover, the use of

Monocular Interval Extended FSD as opposed to Monocular Interval FSD increases the

diversity of the particles and improves convergence percentage in some scenarios. An

example is for the map pare-s1, where its complexity is a challenge for noisy observation

models, so increasing the uncertainty enables convergence to the right position in longer

trajectories.
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7 CONCLUSION

In this work, we propose an indoor global localization method over a 2D floor plan

based on FSD computed from monocular depth estimation. Experimental results using a

dataset of image sequences collected in apartments demonstrate the feasibility of using

depth information extracted from monocular cameras to compute the measurement model

in an MCL strategy. Although monocular depth information is imperfect, we can still

obtain satisfactory results in the localization when we add the estimated depth uncertainty

to particle weighting.

We address the challenges of localization for consumer-grade robots using inex-

pensive sensors with a simple setup while considering the uncertainties introduced in such

scenario. Our main contributions are: 1) a global localization method over 2D floor plans

based on monocular depth estimation; 2) proposal of a new particle weighting strategy us-

ing FSD for noisy sensor measurements. The new proposal augments the diversity of the

particle filter and thus increases its convergence to the right solution for scenarios where

the trajectory is long enough. On the other hand, the increased uncertainty makes the filter

take more time to converge and present a higher mean particle error after convergence.

There are a few limitations in the proposed approach that might prevent the suc-

cess of robot localization. One limitation is relying on the performance of the monocular

depth estimation model to compute the FSD. The model performance may not generalize

well for new datasets and might be affected by unexpected obstacles and lighting condi-

tions variations. Nevertheless, it is important to notice that the model we used was not

trained with the dataset we used in the experiments, and the good results obtained demon-

strate our method’s resilience. Also, the correctness of depth maps might be affected by

camera tilts and drifts. However, the method consistently showcases resilience and we

believe it is capable of effectively handling drifts and camera tilts. Although the model

presented an acceptable performance for the experiments dataset, we cannot guarantee

similar performance for different datasets. More experiments with new datasets should be

performed in the future to validate the proposed method generalization.

In order to mitigate the limitation of the model performance, the proposed method

adds the depth estimation model uncertainty to the particle weighting strategy. This pro-

posal makes the method more robust against imperfect depth maps. Additionally, evaluat-

ing the sensitivity of error with respect to distance in future work could provide valuable

insights into further improving the method’s robustness. However, it is still essential to
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observe a portion of the environmental structure for a reliable localization. So, obstacles

caused by furniture are also considered a limitation and might affect matching the FSD

derived from observations with the reference FSD.

In the future, we plan to test different models for depth estimation. The main

idea is to test models that output metric depth, so there would be no need to compute a

metric scale (GUIZILINI et al., 2023). There is also the possibility to train a model with

images from the environment where the robot will perform the localization. This might

be necessary for larger maps where measurement model ambiguities are higher due to

multiple similar areas in the map. Although it demands more time for the setup, a model

trained specifically for a given environment tends to perform better and thus improve the

localization performance.
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