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ABSTRACT

Graphic Processing Units (GPUs) have emerged as powerful computational tools, en-
abling high-performance parallel processing and driving significant advancements in var-
ious domains. However, their integration into safety-critical applications raises con-
cerns regarding their reliability, particularly in the context of Single-Event Upsets (SEUs)
caused by radiation-induced faults. This Thesis aims to evaluate GPU reliability under
such conditions and develop SEU mitigation techniques. We employed low-level software
techniques and hardware experiments, including hybrid approaches combining software
flexibility with hardware efficiency, and focused on selectively hardening critical com-
ponents against radiation-induced faults. Our research began with commercial GPUs,
applying selective hardening combined with Approximate Computing to Nvidia’s Kepler
architecture to enhance fault tolerance. We then shifted to FlexGrip, a softcore GPU for
Field-Programmable Gate Arrays (FPGAs), where we explored software-based fault tol-
erance techniques for SEU detection in configurable architectures. This included novel
technique optimizations and comprehensive ISA extensions to improve resilience against
SDC and DUE effects. Our study also involved FGPU, another softcore GPU, assessing
reliability through comparisons of software-emulated and hardware-based Floating Point
implementations, and the effectiveness of selective Triple Modular Redundancy (TMR).
Finally, we explored the potential of Application-Specific Integrated Circuits (ASIC) de-
rived from softcore GPUs, utilizing GPUPlanner to facilitate the transition from RTL
designs to ASIC layouts. This research highlights the potential of softcore GPUs as ASIC
accelerators for high parallelism applications and marks a significant advancement in the
development of reliable, fault-tolerant GPU architectures. Our comprehensive evaluation
across commercial and softcore GPUs, and the transition to ASICs, sets the groundwork
for more robust GPU integration in safety-critical domains and contributes to the ad-
vancement of reliable, high-performance computing solutions for a wide range of critical
applications.

Keywords: GPU Reliability. Single Event Upsets. Fault-Tolerance Techniques. Safety-
critical Applications.



RESUMO

GPUs emergiram como poderosas ferramentas computacionais, possibilitando processa-
mento paralelo de alto desempenho e impulsionando avanços significativos em diversos
domínios. No entanto, sua integração em aplicações que requerem alto grau de confia-
bilidade suscita preocupações sobre a sua confiabilidade, particularmente no contexto de
SEUs causados por falhas induzidas por radiação. Esta tese visa avaliar a confiabilidade
das GPUs sob tais condições e desenvolver técnicas de mitigação de SEUs. Empregamos
técnicas de software de baixo nível e experimentos de hardware, incluindo abordagens
híbridas que combinam a flexibilidade do software com a eficiência do hardware, focando
na proteção seletiva de componentes críticos contra falhas induzidas por radiação. Nossa
pesquisa começou com GPUs comerciais, aplicando proteção seletiva combinada com
Computação Aproximada à arquitetura Kepler da Nvidia para aumentar a tolerância a fal-
has. Em seguida, mudamos para FlexGrip, uma GPU softcore desenvolvida para FPGAs,
onde exploramos técnicas de tolerância a falhas baseadas em software para detecção de
SEUs em arquiteturas configuráveis. Isso incluiu a implementação de otimizações de téc-
nicas do estado-da-arte e extensões de ISA para melhorar a resiliência contra efeitos SDC
e DUE. Nosso estudo também envolveu FGPU, outra GPU softcore, avaliando a confiabil-
idade por meio de comparações entre implementações de Ponto Flutuante emuladas por
software e baseadas em hardware, e a eficácia da técnica TMR implementada de forma se-
letiva. Por fim, exploramos o potencial de ASICs derivados de GPUs softcore, utilizando
GPUPlanner para facilitar a transição de designs RTL para layouts de ASIC. Esta pesquisa
destaca o potencial das GPUs softcore como aceleradores ASIC para aplicações de alto
paralelismo e marca um avanço significativo no desenvolvimento de arquiteturas de GPU
tolerantes a falhas. Nossa avaliação abrangente, desde GPUs comerciais até softcore, e
a transição para ASICs, estabelece as bases para uma integração mais robusta de GPUs
em domínios críticos à segurança e contribui para o avanço de soluções de computação
de alto desempenho e confiáveis para uma ampla gama de aplicações críticas.

Palavras-chave: Confiabilidade das GPUs. SEUs. Técnicas de Tolerância a Falhas.
Aplicações Críticas à Segurança.
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1 INTRODUCTION

Graphics Processing Units (GPUs), commonly referred to as General-Purpose
GPUs (GPGPUs) when adapted for tasks beyond graphics rendering, have transcended
their original design purpose as specialized Integrated Circuits (ICs) for graphics process-
ing. They have evolved into general-purpose accelerators pivotal in High-Performance
Computing (HPC). The traditional focus on computer graphics and image processing has
been overshadowed by expansive applications ranging from data analytics to artificial
intelligence frameworks like Artificial Neural Networks (ANNs) (ESSEN et al., 2015).
ANNs, crucial in pattern recognition, data mining, and robotics, have further propelled
the utility of GPUs in real-time object detection, a cornerstone in the functionality of
autonomous vehicles (REDMON et al., 2015; NVIDIA, 2020; BOJARSKI et al., 2016).
As GPUs have shifted their focus, they have become integral in various domains like
oil exploration, bioinformatics, cloud computing, radar systems, and more (HASSANI;
AIATULLAH; LUKSCH, 2014; HAKOBYAN; YANG, 2019). Notably, GPUs are also
present as accelerators in top500 supercomputers, reinforcing their significance in HPC
applications (DONGARRA; MEUER; STROHMAIER, 2015). However, as these de-
vices infiltrate safety-critical applications in aerospace, automotive, and medical sectors,
their reliability has increasingly been questioned. Reliability often becomes a secondary
consideration in maximizing performance through Thread-Level Parallelism (TLP) and
massive data-processing capabilities. While performance metrics are undeniably impor-
tant, it’s crucial to note that high-reliability mandates are non-negotiable in safety-critical
settings like automotive and medical applications.

1.1 Motivation and Problem Definition

In line with Moore’s law, the semiconductor industry has consistently miniatur-
ized the size of transistors, increasing the number of transistors per silicon area and thus
leading to more powerful GPUs (MOORE, 1965). However, this march toward smaller,
faster, and more efficient devices comes with a growing susceptibility to radiation-induced
faults (JEDEC, 2006; BAUMANN, 2005). As fabrication processes approach their physi-
cal limits, devices become more vulnerable to energized particles, whether they originate
from cosmic rays or from secondary interactions at the Earth’s surface, which can cause
both permanent and temporary effects on the system.

The probability of an energized particle causing an effect on an IC depends on a
few factors, such as transistor density (denser ICs have more transistors upset by a single
particle), operating frequency (higher operating frequencies lead to narrower latch win-
dows), and threshold voltage (smaller threshold voltages require less energy transferred
for an upset) (SLAYMAN, 2010; DIXIT; WOOD, 2011). Among the most observed
events caused by energized particles are Single-Event Upsets (SEUs). A SEU, also known
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as a bit-flip, is a temporary, non-destructive event that affects data storage elements, such
as memories and registers. On an instruction-processing IC such as a GPU or a micro-
processor, a SEU can cause mainly two effects: (i) a Silent Data Corruption (SDC) when
the program code is correctly executed, but the result is incorrect, or (ii) a Detected Unre-
coverable Error (DUE) when the program code is incorrectly stopped or enters an infinite
loop.

The newest GPUs are designed with cutting-edge technology that combines high
transistor density, high operating frequency, and low threshold voltages, making them
prone to experience radiation-induced transient effects up to the point where they can
experience radiation effects on applications running at ground level (OLIVEIRA et al.,
2014). The consequent SEU events on GPUs are critical to both HPC and safety-critical
applications. SDC effects directly affect the result correctness of safety-critical applica-
tions, and DUE effects directly affect the timing constraints of HPC applications. The
frequency of these faults in clustered HPC systems has increased to an order of minutes,
further emphasizing the urgency for reliable solutions (Tiwari et al., 2015). So, the use of
effective fault tolerance techniques is mandatory.

Fault tolerance techniques can be applied by means of software or hardware modi-
fications. Software-based techniques require program code transformation, while hardware-
based techniques require hardware modifications. Software-based approaches provide
high detection rates at the cost of performance degradation. They insert additional in-
structions that the processing system must execute, therefore increasing execution run-
time, and can be applied to any GPU architecture with an available program source
code (GONCALVES et al., 2017). Hardware-based approaches, on the other hand, can
be applied with low performance degradation, as replicated hardware can be deployed in
parallel with the original, and, as long as the critical path is not altered, the operating fre-
quency can be maintained, but requires access to GPU architecture description (Azambuja
et al., 2013).

Although hardware-based fault tolerance techniques can offer resilience, they of-
ten require invasive architectural changes and are only sometimes feasible for Commercial
off-the-shelf GPUs (COTS GPUs). This limitation brings software-based fault tolerance
into prominence (Mahmoud et al., 2018). While these techniques incur a performance
overhead due to additional instructions, they offer a viable and sometimes the only path-
way for fault tolerance in commercial GPUs. Recently, open-source softcore GPUs have
allowed developers to study the effects of radiation and design and evaluate fault tolerance
techniques (CONDIA et al., 2020; KADI et al., 2018).

1.2 Purpose of the Thesis

This Thesis is dedicated to an in-depth evaluation of low-level software and hard-
ware fault tolerance techniques alongside comprehensive hardware reliability assessments
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for GPUs, specifically focusing on enhancing their resilience in safety-critical environ-
ments. This work builds upon our previous research (GONCALVES et al., 2017), which
underscored the significance of selective fault tolerance methods in protecting critical
components and the need for a deeper exploration of hardware aspects in GPUs. Initially,
in the complex landscape of commercial GPUs, the constraints imposed by proprietary
Instruction Set Architecture (ISA) and undisclosed microarchitectural details prompted
us to explore alternative platforms for a more comprehensive and robust analysis. Con-
sequently, we turned to softcore GPUs designed for Field-Programmable Gate Arrays
(FPGAs). These platforms provide the architectural openness necessary for in-depth reli-
ability evaluation through emulation, simulation, and targeted radiation experiments. The
progression of our research then led us from FPGAs to Application-Specific Integrated
Circuits (ASICs), a move representing a strategic evolution. ASICs, with their tailored
design, offer significant advantages in terms of both performance and reliability com-
pared to FPGAs. Their hardwired circuitry accelerates processing speed and minimizes
vulnerability to SEUs. This transition to ASICs enables the creation of GPU architectures
that are more efficient and inherently more reliable, particularly suited for high-demand
environments where fault tolerance is a necessity.

1.3 Methodological Approach and Case-Studies

Our methodological approach commences with an empirical study of radiation
sensitivity in commercial GPUs, specifically focusing on NVIDIA’s Kepler architecture.
Despite the limitations inherent to proprietary ISAs, we implement low-level software-
based techniques performing a quasi-reverse engineering process, linking Specific As-
sembly (SASS) registers with Parallel Thread Execution (PTX) registers. We propose and
evaluate selective fault tolerance techniques for register files and enhance them through
Approximate Computing. Reliability is assessed through neutron beam experiments and
simulation.

Transitioning from this proprietary realm, we shift our focus to investigating soft-
core GPUs, starting with FlexGrip, a softcore GPU based on NVIDIA’s G80 architecture.
This stage of our study focused on analyzing pipeline and register file reliability within
FlexGrip, specifically under radiation-induced faults. Our approach included simulation-
based experiments for assessing the GPU’s vulnerability to SEUs. In this context, we
evaluated and optimized low-level software-based fault tolerance techniques, focusing on
protecting instruction sets and register files. These techniques were designed to enhance
error detection and increase resilience in configurable GPU architectures, enabling a tai-
lored approach to GPU reliability tailored to specific operational needs. Moreover, our
research in the FlexGrip environment led to developing hybrid (software and hardware)
techniques for error detection and correction within the GPU’s pipeline. These techniques
included the implementation of comprehensive ISA extensions designed to improve fault
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detection capabilities and facilitate error correction processes, significantly elevating the
fault resilience of the system. FlexGrip, however, presents challenges such as a lack of a
stable floating-point unit (FPU) and issues related to memory hierarchy, which limit us to
simulation scenarios.

Our research then shifts to FGPU, a more recent FPGA-oriented softcore GPU.
Unlike its predecessors, FGPU boasts a functional FPU, enabling hardware-level eval-
uations. We assess the reliability of applications running on FGPU embedded into an
SRAM-based FPGA using both hardware and software floating-point implementations.
We also explore the unhardened and hardened reliability curves of isolated components
within FGPU to guide decisions on the best candidates for selective hardening through
Hardware Selective Triple Modular Redundancy (TMR). Reliability evaluation is con-
ducted through hardware emulation. A pivotal element of our methodology was the inte-
gration of hardware emulation to emulate radiation-induced faults, providing an initial un-
derstanding of FGPU’s vulnerabilities and the effectiveness of our hardening techniques.
Notably, we complemented our emulation results with actual radiation tests. These ra-
diation experiments were crucial in confirming the accuracy of our emulation findings,
establishing a correlation between emulated conditions and real-world radiation effects.

Concluding our research, we explore the domain of ASICs, presenting a novel
solution for implementing GPU architectures in ASICs with various configurations. Our
trajectory through commercial and softcore GPUs has demonstrated that reliability is in-
tricately linked to the application in execution, leading us to the idea of designing dedi-
cated GPU accelerators optimized for resilience against radiation effects and tailored to
specific application needs. Thus, this exploration signifies a step in introducing the con-
cept of creating fault-tolerant GPU accelerators tailored to specific groups of applications.

Figure 1.1 illustrates the described methodological approach, providing a visual
summary of the research transitions from commercial GPUs to softcore GPUs and finally
to ASICs.

Figure 1.1: Visual summary of the research methodology.
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Source: The author.
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1.4 Research Contributions

1. Commercial GPUs:

• Analyzed radiation-induced faults in NVIDIA GPUs, assessing SEU impacts
on GPU’s registers.

• Developed selective fault tolerance strategies for GPU register files, enhancing
efficiency over non-selective approaches.

• Proposed acceptance accuracy relaxation methods to improve SEU fault tol-
erance with reduced overhead.

2. Softcore GPUs:

• Investigated low-level software-based fault tolerance in FlexGrip GPU, in-
cluding optimizations.

• Enhanced NVIDIA SASS 1.0 ISA for improved SDC and DUE effect mitiga-
tion.

• Implemented hybrid fault tolerance techniques for GPU pipeline error correc-
tion.

• Conducted reliability studies on FGPU, contrasting soft-FP and hard-FP im-
plementations and their impact on Mean Workload Between Failures (MWBF).

• Evaluated the effectiveness of selective Triple Modular Redundancy (TMR)
in enhancing GPU fault tolerance, particularly in safety-critical applications.

• Performed radiation experiments on FGPU and correlated findings with emu-
lation results.

3. Hardcore GPUs:

• Developed G-GPU, a domain-specific ASIC accelerator, and introduced GPU-
Planner for efficient transition from RTL to ASIC layouts.

• Demonstrated the suitability of G-GPU for high parallelism applications, ad-
vancing adaptable GPU architecture exploration.

4. Publications:

• Published 10 journal articles: IEEE Transactions on Nuclear Science, Mi-
croelectronics Reliability, Revista Júnior de Iniciação Científica em Ciências
Exatas e Engenharia, and The Journal of Supercomputing.

• Published 11 conferences proceedings: DATE, ICECS, ISVLSI, LASCAS,
LATS, and RADECS.

While this Thesis makes significant strides in evaluating and enhancing GPU fault
tolerance, it is important to acknowledge certain limitations. The research primarily re-
volves around specific GPU architectures like NVIDIA’s Kepler and softcore GPUs such
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as FlexGrip and FGPU, which might limit the extrapolation of our findings to other ar-
chitectures. Additionally, the results are contingent upon the specific experimental setups
used, particularly in radiation testing and fault injection scenarios, which may not fully
encapsulate the diverse conditions encountered in real-world applications. The complex-
ity and resource-intensive nature of these experiments also constrain the breadth and depth
of our analysis.

1.5 Thesis Organization

The remainder of this Thesis is organized as follows: Chapter 2 provides an
overview of GPU architectures for understanding the fundamental aspects of GPU de-
sign and functionality. Chapter 3 examines radiation-induced faults, their causes, and im-
plications for GPU reliability. Chapter 4 discusses fault tolerance techniques for GPUs.
Chapter 5 introduces the architectures used in our case-studies. Chapters 6, 7, and 8
present our case-studies on the Kepler architecture, FlexGrip, and FGPU, respectively.
Chapter 9 explores the transition to ASICs, discussing the development of GPU-based
ASIC accelerators and their potential for enhanced fault tolerance. The Thesis concludes
with Chapter 10, where we summarize our findings and discuss future work, including the
potential for practical implementation and further research in ASIC design for GPUs. The
last Chapter, Chapter 11, acknowledges our collaborators and lists the published works
that have derived from this research, demonstrating the academic contributions and col-
lective efforts supporting this study.
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2 GRAPHICS PROCESSING UNITS ARCHITECTURES

This Chapter aims to provide an understanding of the architecture of GPUs, ex-
tending from general-purpose computing frameworks like CUDA and OpenCL to spe-
cialized implementations in Field-Programmable Gate Arrays (FPGAs) and Application-
Specific Integrated Circuits (ASICs). In the first section, the architecture of GPUs is
explored, focusing on common programming frameworks such as CUDA and OpenCL.
The second section focuses on the context of FPGAs, examining the feasibility and bene-
fits of integrating GPU-like capabilities into FPGA architectures. The third section looks
closer at how GPU-inspired concepts can be integrated into ASICs for acceleration and
reliability purposes. This Chapter serves as a foundational overview of the architectures
and technologies that will be examined in detail in the subsequent Chapters.

2.1 Introduction to GPU Architecture

Originally designed for graphical processing, GPUs consist of a set of multiproces-
sors capable of running thousands of threads in parallel. Most of the silicon area of a GPU
is dedicated to data processing. At the same time, only a small portion is allocated to con-
trol units and cache. This architecture makes GPUs more efficient than General-Purpose
Processors (GPPs), or CPUs, for large-scale data processing. Figure 2.1 compares the
evolution of CPUs and GPUs in terms of floating-point operations per second (NVIDIA,
2015).

Figure 2.1: GPU vs. CPU: Evolution of floating-point operations per second

Source: (NVIDIA, 2015).
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CPUs are built for more generic, sequential algorithms. To optimize performance,
they implement intelligent cache mechanisms and control flow features, such as dynamic
branch prediction. Therefore, CPUs have robust control units and significant cache mem-
ories. In contrast, GPUs have multiple processing units with simpler control units that
instantiate and execute many instructions simultaneously. Figure 2.2 compares CPU and
GPU architectures.

Figure 2.2: Resource distribution for a CPU and a GPU.

Source: (NVIDIA, 2015).

The underlying computational model for most modern GPUs can best be described
as a fusion of Single Instruction Multiple Data (SIMD) and multithreading paradigms,
sometimes called Single Instruction Multiple Threads (SIMT). This hybrid model allows
for high-throughput, data-level parallelism.

GPUs comprise a hierarchical set of processing units, often called compute units or
multiprocessors. These can execute operations concurrently on different data sets. Each
compute unit contains multiple smaller processing elements, known as ALUs or cores,
responsible for executing individual program threads.

While different vendors have unique terminologies and specifications, the over-
arching architecture remains conceptually similar, emphasizing parallelism and through-
put. Within this landscape, CUDA (Compute Unified Device Architecture) and OpenCL
(Open Computing Language) have emerged as two popular frameworks for programming
GPUs. CUDA, developed by NVIDIA, is specifically tailored for their line of GPUs. At
the same time, OpenCL is an open standard that can run on various hardware platforms,
including CPUs, GPUs, and even FPGAs.

Both frameworks offer a rich set of programming constructs for data parallelism,
enabling software developers to harness the full computational power of modern GPUs.
They provide abstractions such as threads, blocks, and grids in CUDA, or work items,
work groups, and NDRange in OpenCL to help users design algorithms that can be broken
down into smaller tasks and executed concurrently.

These constructs make GPUs versatile tools, capable of boosting performance
across a wide range of applications, from scientific simulations to machine learning algo-
rithms.
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2.1.1 Compute Unified Device Architecture - CUDA

Compute Unified Device Architecture (CUDA) is a parallel computing platform
and programming model developed by NVIDIA. It enables high-performance computing
on GPUs (Graphics Processing Units), aiming for computational and power consump-
tion efficiency. The architecture consists of computational units known as Streaming
Multiprocessors (SMs), each capable of running thousands of threads simultaneously. It
predominantly employs data parallelism but also offers support for task parallelism.

CUDA’s smallest execution unit is a thread. These threads are grouped into blocks,
which in turn are assembled into a grid. Each thread within a block runs the same in-
struction but operates on different data points, achieving data-level parallelism. Multiple
blocks may execute in parallel, with the actual scheduling dependent on the number of
available Streaming Multiprocessors (SMs) in the GPU. It’s important to note that while
programmers define grid and block dimensions, the CUDA runtime schedules the blocks
on the SMs, a feature that can significantly impact performance.

CUDA incorporates a hierarchical memory model, including global, shared, local,
constant, and texture memory. Global memory is accessible by all threads but has the
highest latency. In contrast, shared memory is faster but restricted to threads within the
same block. Local memory is private to each thread. Understanding this memory hier-
archy is vital for optimizing data transfers and access patterns. In CUDA, parallelism is
predominantly achieved through data parallelism, with threads executing the same opera-
tion on different data.

Programmers specify grid and block dimensions when launching a CUDA ker-
nel, choosing them based on problem size and hardware specifications to maximize per-
formance. Threads within blocks are grouped to optimize shared memory usage within
hardware limits. Each thread has a unique ID derived from its block ID and relative thread
ID, which can be one-, two-, or three-dimensional vectors. These IDs facilitate mapping
to the problem space and allow threads to access specific global and shared memory in-
dexes, ensuring each thread operates on unique data.

The software flow in CUDA operates at three distinct levels: high-level, interme-
diate, and assembly level. At the high level, developers write kernel and host code in lan-
guages like C or C++, augmented with CUDA-specific extensions. The NVCC compiler
processes this code, segregating device and host instructions. Subsequently, a standard
host compiler like GCC compiles the host code. In contrast, the device code is compiled
into an intermediate form known as PTX (Parallel Thread Execution). PTX serves as a
low-level virtual machine and ISA (Instruction Set Architecture), offering a stable pro-
gramming model for parallel computing. Eventually, the device driver transforms PTX
into binary code, or SASS (Specific Assembly), during runtime. This binary code is the
device’s assembly language.
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2.1.2 Open Computing Language - OpenCL

Open Computing Language (OpenCL) serves as a versatile framework for pro-
gramming across heterogeneous platforms, encompassing CPUs, GPUs, DSPs (Digital
Signal Processors), and FPGAs (Field-Programmable Gate Arrays). Distinctively an open
standard, OpenCL is not restricted to any specific hardware vendor. The framework com-
prises a host machine and one or more compute devices, each with its distinct memory
hierarchy. These computing devices further house multiple computing units analogous to
CUDA’s Streaming Multiprocessors (SMs). OpenCL is engineered for flexibility, aiming
to be hardware-agnostic and adaptable to various computational scenarios.

OpenCL’s execution model boasts significant flexibility, adapting seamlessly to
various hardware platforms such as CPUs, GPUs, and even FPGAs. This model adopts
a hierarchical structure of computational units analogous to CUDA’s architecture. In
OpenCL, the primary execution unit is the work-item, which is comparable to a thread
in CUDA. These work items are organized into work groups, akin to CUDA’s blocks.
Multiple work groups form an NDRange, a multi-dimensional array of work items con-
figured with one, two, or three dimensions. This flexibility makes OpenCL inherently
adaptable to a wide array of computational challenges. Figure 2.3 delineates the differ-
ences between the two models. The CUDA architecture employs a hierarchical structure
of a grid composed of blocks with threads sharing local memory and access to global,
constant, and texture memory. At the same time, the OpenCL architecture showcases a
similar hierarchy with an NDRange consisting of work groups, where each work-item has
private memory and shared access to local and global memory. Both frameworks address
parallel computation but differ in memory hierarchy and programming abstractions.

Figure 2.3: Side-by-side comparison of GPGPU programming frameworks. (a) CUDA
architecture. (b) OpenCL architecture.

(a) CUDA Architecture (b) OpenCL Architecture

Source: Adapted from (SU et al., 2012).
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OpenCL features a complex, multi-tiered memory model that comprises global,
local, constant, and private memory types. Global memory is accessible to all work items
but has the highest latency. Local memory is shared within a work-group and is faster
than global memory. Constant memory is read-only and is optimized for broadcast oper-
ations, accessible by all work items. Private memory is specific to individual work items.
Understanding the nuances of these memory types is crucial for optimizing performance
and data access patterns. Like CUDA, OpenCL also centers on data parallelism as its
primary strategy for parallel execution. Each work-item processes the same instruction
but on different data, an approach highly efficient for data-parallel computations.

Like CUDA, OpenCL mandates that programmers specify the configuration of
work items within work groups and the arrangement of these work groups within the
NDRange grid. Optimal performance is achieved by aligning these configurations with
problem size and hardware capabilities. OpenCL’s support for a diverse range of hardware
types provides programmers with additional flexibility in configuration. Each work-item
is assigned a unique global ID and a local ID within its work-group. These IDs serve dual
purposes: data indexing and execution flow control. Work items within a single work-
group can synchronize and share local memory. In contrast, work groups are designed to
operate independently.

OpenCL’s software flow works across high, intermediate, and assembly levels. At
a high level, OpenCL code is written in a C-based language enriched with parallelism-
focused extensions. This code is then compiled into an intermediate form known as SPIR
(Standard Portable Intermediate Representation), serving a purpose analogous to CUDA’s
PTX. SPIR acts as a hardware-agnostic layer that makes the code portable across different
OpenCL-compatible devices. At runtime, SPIR code is further compiled into the device’s
native assembly language for execution.

2.2 Softcore GPUs

Softcore GPUs act as hardware descriptions of general-purpose GPUs that are im-
plementable in Field-Programmable Gate Arrays (FPGAs). Softcore GPUs allow rapid
prototyping and implementation thanks to their inherent flexibility. This characteristic
addresses some of the limitations associated with High-Level Synthesis (HLS), particu-
larly regarding architecture customization and development speed. Softcore GPUs offer
a more adaptive architecture, facilitating customization to align with the requirements of
specific applications. Moreover, they simplify the development process by supporting
widely-used GPGPU programming languages such as OpenCL and CUDA.

One key advantage of softcore GPUs is their ability to tailor computational re-
sources to application-specific needs. Unlike fixed hardware structures, softcore GPUs
can be scaled to optimize processing cores, memory hierarchy, and interconnects for
performance, power, or area. This flexibility can lead to more efficient use of FPGA
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resources, especially in systems where full-scale GPGPU integration is not feasible or
necessary. The adaptability of softcore GPUs also extends to their capability to incorpo-
rate domain-specific optimizations, such as selective hardening of computation units or
subsetting of instruction sets, which can yield significant power savings and performance
gains for targeted applications. Furthermore, they present an opportunity for system inte-
gration in environments lacking native GPGPU support, granting these systems access to
GPGPU-like parallelism and throughput.

Figure 2.4 visually positions softcore GPUs within the design space between tradi-
tional FPGAs and GPGPUs, illustrating the trade-off between ease of implementation and
design flexibility, which is central to the concept of softcore GPUs. This balance offers
both computational power and the capability to tailor to specific application requirements.

Figure 2.4: The trade-off between ease-of-implementation and design flexibility for soft-
core GPUs synthesized on FPGAs. This illustration encapsulates the design space where
softcore GPUs offer a balanced approach between the high performance of GPGPUs and
the flexibility of FPGAs.

Source: adapted from (MERCHANT, 2013).

2.2.1 Understanding the FPGA Architecture

FPGAs, or Field-Programmable Gate Arrays, are versatile and reconfigurable hard-
ware platforms that offer a middle ground between the flexibility of software and the per-
formance of dedicated hardware. Unlike Application-Specific Integrated Circuits (ASICs),
which are designed for a fixed function, FPGAs offer the flexibility to be programmed and
reprogrammed for a myriad of tasks, a feature depicted in the architecture shown in Fig-
ure 2.5. Their core architecture comprises a matrix of configurable logic blocks (CLBs)
interconnected by programmable routes, as illustrated on the left side of the Figure. These
logic blocks include fundamental building blocks like Look-Up Tables (LUTs), special-
ized components such as Digital Signal Processors (DSPs) for high-speed arithmetic op-
erations, and Block RAMs (BRAMs) for low-latency internal data storage. The right side
of the Figure zooms into the detail of the routing channel, showcasing the versatility of
connections through switch blocks (SB) that interlink the CLBs.



27

While the hardware serves as the architectural bedrock, the design and customiza-
tion are guided by specialized Computer-Aided Design (CAD) tools, most notably Xil-
inx’s Vivado Design Suite. Starting from High-Level Synthesis, Vivado can take code
written in high-level languages like C++ or domain-specific languages like CUDA and
OpenCL and translate it into hardware description languages like VHDL or Verilog. This
process is crucial, as it converts abstract computational concepts into concrete hardware
implementations, aligning with the configurable nature of FPGA architecture shown in
Figure 2.5. This synthesized high-level representation is then further processed into a
gate-level netlist, outlining the logical gates and their interconnections. The placement
and routing phase, as exemplified by the programmable routes in the Figure 2.5, is where
the logic is meticulously mapped onto the specific architecture of the FPGA.

Figure 2.5: Schematic representation of FPGA architecture highlighting the matrix of
CLBs and the detailed structure of a routing channel with SBs.

Source: Adapted from (QIN et al., 2018).

The final step in this process is the generation of a bitstream, a set of configuration
data that, when loaded onto the FPGA, programs its logic blocks and interconnects to
perform the desired digital function, effectively transforming the FPGA into a tailored
solution for a particular application.

The synergy between hardware and software, the fusion between physical re-
sources and logical design, elevates the compelling utility of FPGAs. They are a robust
platform capable of implementing everything from simple logic circuits to sophisticated
parallel algorithms, making them indispensable in modern digital design paradigms.
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2.2.2 Softcore GPUs and their Potential in Reliability Domain

In the domain of system reliability, softcore GPUs present a myriad of investiga-
tive possibilities. They are a versatile platform for assessing a broad spectrum of fault-
tolerance techniques, encompassing hardware-based methods like Triple Modular Redun-
dancy (TMR) and software-based strategies. One of the key advantages of softcore GPUs
is their adaptability, which allows for rigorous testing through both Register-Transfer
Level (RTL) simulation and hardware emulation. Specifically, RTL simulation enables
highly accurate assessments. At the same time, hardware emulation allows for imple-
menting additional hardware modules directly alongside the Design Under Test (DUT).
These modules can inject faults in real-time, directly from within the platform, as the de-
sign is running an application. Additionally, softcore GPUs are particularly well-suited
for radiation testing on platforms such as SRAM-based FPGAs, granting researchers in-
valuable data on the softcore GPUs’ resilience to radiation-induced faults.

2.3 Hardcore GPUs

While FPGA-based softcore GPUs provide a flexible and dynamic platform for
reliability testing, ASICs (Application-Specific Integrated Circuits) offer an alternative
that excels in hardware optimization and fault tolerance. In drawing a parallel to the
FPGA implementations discussed earlier, it becomes crucial to explore how the transition
to ASICs can offer specific advantages in the context of reliability.

ASICs present the capability to convert softcore GPUs from hardware description
languages into highly optimized, application-specific hardware. This capability enables
the introduction of hardware-level redundancies into the design. Unlike FPGAs, where
flexibility is a key strength, ASICs allow for micro-level optimizations that are particu-
larly desired for high-reliability applications. These redundancies can be tailored to fit
the requirements of a particular application domain, thereby improving fault tolerance
without compromising performance.

Despite the benefits of HLS in facilitating early-stage prototyping (CANIS et al.,
2011), it often falls short in providing the precision required for ASIC designs aiming for
peak performance and reliability (WENG et al., 2020). While the cost associated with
designing application-specific accelerators is typically high, thereby posing an economic
barrier to widespread adoption, the ability to convert softcore GPUs to ASICs mitigates
this challenge. It does so by marrying the efficiency of domain-specific accelerators with
the flexibility and programmability of general-purpose architectures (PEREZ et al., 2022).

In summary, transitioning softcore GPUs from FPGA-based implementations to
hardcore ASICs brings forth a considerable edge in system reliability. It opens doors to
fine-grained, application-specific hardware optimizations, significantly boosting system
fault tolerance and overall reliability.
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With a solid foundation in GPU architectures and the methodological approaches
for studying their reliability, we now turn our attention to a critical aspect of GPU perfor-
mance in adverse conditions: radiation-induced faults. Understanding how these faults
impact the reliability of GPU systems is essential for developing robust fault-tolerance
techniques. The following Chapter delves into the mechanisms of radiation-induced
faults, their effects on semiconductor circuits, and the methodologies employed to assess
and enhance the reliability of GPU architectures in radiation-prone environments.
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3 RADIATION-INDUCED FAULTS AND RELIABILITY ASSESSMENT

Cosmic rays are a celestial starting point for understanding radiation-induced faults
in semiconductor circuits. These rays are high-energy particles originating from outer
space and traveling across the universe. The Earth’s magnetic field plays a pivotal role in
shielding against these high-energy cosmic particles by deflecting or trapping them in ra-
diation belts. As these primary cosmic rays penetrate the Earth’s atmosphere, they collide
with atmospheric molecules, initiating a cascade of secondary particles process depicted
in Figure 3.1. This phenomenon, known as an ’air shower,’ modulates the energy spec-
trum of the incoming radiation, culminating in a variety of particles such as neutrons (n),
protons (p), alpha particles (α), electrons or positrons (e), gamma-ray photons (γ), pions
(π), and muons (µ). These interactions are more frequent at higher altitudes, leading to an
abundance of secondary particles that pose a greater risk of inducing faults in electronic
circuits.

Figure 3.1: Extensive Air Shower initiated by a high-energy cosmic ray particle entering
the Earth’s atmosphere.

Source: (MARTEN; SUTTON, 2002).

However, the radiation impacting electronic circuits is not solely from cosmic ori-
gins. Terrestrial radiation—emitted from the decay of radioactive elements such as ura-
nium, thorium, and radon found in the Earth’s crust—also significantly affects semicon-
ductor devices, especially at ground level, where we find applications like autonomous
vehicles and high-performance computing systems. Neutrons, byproducts of these ra-
dioactive decays, can indirectly ionize silicon when interacting with the material, possibly
leading to Single-Event Effects (SEEs) (AL-KHAWLANY; KHAN; PATHAN, 2018).
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Understanding the interactions between radiation and electronic circuits begins
with two key parameters: energy and flux. Energy characterizes the potential of radiation
particles to induce faults. At the same time, flux measures the rate at which these particles
encounter a target area, such as a semiconductor device. Higher energy levels and flux
rates increase the likelihood of faults within circuits, potentially causing errors that disrupt
normal operation. This relationship underscores the importance of assessing the energy
spectrum and the radiation flux to which electronic systems are exposed.

The observed effects of radiation on high-performance computing systems can be
quantitatively assessed by examining the comprehensive data from the Titan supercom-
puter, as reported in the study (Tiwari et al., 2015). Figure 3.2 depicts the neutron flux
spectrum across various energy levels from different radiation facilities, such as TRIUMF,
LANSCE, and ISIS, as well as the natural neutron flux at sea level multiplied by factors
of 107 and 108. These data highlight the spectrum of energy levels that electronic systems
may encounter, ranging from ground-level to aviation and space operation conditions.
Figure 3.3 provides a histogram of the time between failures for all GPUs within the Ti-
tan supercomputer, illustrating the distribution and frequency of failures over time. This
histogram provides valuable insights into operational reliability and the potential impact
of radiation-induced faults on system stability. This data highlights the essential need for
robust fault tolerance mechanisms to mitigate radiation-induced errors, including those
affecting applications at the ground level.

Figure 3.2: Neutron Flux Spectrum.

Source: Adapted from (VIOLANTE et al., 2007b).

In the following section, we delve deeper into the mechanisms of radiation-induced
faults and their effects on circuits. By understanding these interactions, we can develop
strategies to improve the resilience of electronic systems against the unpredictable nature
of radiation.
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Figure 3.3: Time Between GPU Failures.

Source: Adapted from (Tiwari et al., 2015).

3.1 Radiation-Induced Faults and their Effects on Circuits

Semiconductors, particularly Metal-Oxide-Semiconductor Field-Effect Transis-
tors (MOSFETs), are the cornerstone of modern electronics, found in everything from
microprocessors to memory devices. The fundamental operation of a MOSFET relies on
its ability to control the current flow via an electric field. When a voltage higher than the
threshold is applied to the gate, it creates a conductive channel between the source and
drain, allowing current to flow. Conversely, when the gate voltage is below the threshold,
the channel is non-conductive, and the current is inhibited.

Figure 3.4 shows the progressive stages of a MOSFET’s operation: (a) with no
applied gate voltage, the channel is in a state of depletion; (b) as the gate voltage surpasses
the threshold, a conductive channel forms; (c) with a further increase in voltage, the
channel reaches saturation; and (d) at even higher voltages, a ’pinch-off’ occurs, where
the channel near the drain narrows, restricting current flow (MKS Instruments, 2017).

Figure 3.4: Operational stages of a MOSFET.

Source: Adapted from (MKS Instruments, 2017).
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The interaction of radiation particles with these semiconductor devices is a criti-
cal concern in electronics. The vulnerability of MOSFETs to radiation-induced faults is
rooted in their operational sensitivity to charge accumulation. This sensitivity is amplified
due to the miniature scale of modern transistors, where the effects of ionizing particles can
have a more pronounced impact on the channel conductivity. As depicted in Figure 3.5,
when a high-energy particle, such as a neutron, strikes a silicon lattice, it can displace
silicon atoms from their positions, creating a track of electron-hole pairs along its path.
The graph traces the resulting current, marking (a) the onset of the event, (b) the prompt
charge collection, and (c) the diffusion charge collection over time, highlighting the tran-
sient nature of radiation-induced currents in semiconductor devices. This disturbance is
particularly significant for MOSFETs because their operation hinges on precisely con-
trolling these charge carriers. The immediate effect is the creation of a transient current
as these carriers are quickly collected (prompt charge collection), followed by a longer
period where the remaining carriers diffuse towards the electrodes (diffusion charge col-
lection) (BAUMANN, 2005).

Figure 3.5: Sequential stages of radiation interaction with a semiconductor. (a) ion track
as a charged particle penetrates the p-type silicon substrate. (b) drift of electron-hole pairs
generated by the ionizing event. (c) diffusion of carriers after the initial drift.

Source: Adapted from (BAUMANN, 2005).

This transient response in semiconductors is not merely a fleeting fluctuation; it is
the precursor to Single Event Effects (SEEs), which can temporarily alter the operational
states of a MOSFET, leading to soft errors in digital circuits. Permanent damages, or
’hard errors,’ occur when the energy transferred from the particle to the silicon lattice
is sufficient to cause lasting atomic displacements. These defects can disrupt the lattice
structure, leading to altered electrical properties, increased leakage currents, and potential
device failure. Transient effects can cause temporary malfunctions, particularly critical in
high-reliability applications such as aerospace and medical devices.
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3.1.1 Single-Event Effects

Radiation-induced faults within semiconductor circuits can lead to two primary
types of Single-Event Effects (SEEs): destructive ’hard errors’ and non-destructive ’soft
errors.’ Hard errors, such as Single Event Latchup (SEL), can cause permanent damage to
the device, necessitating a power cycle or system reset for recovery. SEL occurs when a
charged particle activates a parasitic structure within the device, resulting in a high current
state capable of causing thermal damage if not promptly addressed (BAUMANN, 2005).

In contrast, soft errors, which include Single Event Transients (SETs) and Sin-
gle Event Upsets (SEUs), disrupt the circuit’s operation without causing lasting physical
damage. SETs are fleeting voltage disturbances within the circuit’s logic, which, if cap-
tured by a latching mechanism, can result in incorrect logical operation or data corruption.
SEUs occur when radiation particles alter the data state within a memory element, such
as a bit in a register or a flip-flop. Although these events can corrupt data, they are con-
sidered ’soft’ because normal functionality can be restored by overwriting the corrupted
data with the correct values.

Figure 3.6 shows examples of the effects of an SEU and an SET on a circuit. On
the left, the effect of an SEU can be observed, where a particle impinges on a memory
element, represented as a register, and changes its value from ’00’ to ’10.’ This effect
impacts the rest of the circuit, changing the value of the register on the right from ’0’ to
’1.’ On the NOR gate of the circuit, the incidence of a particle causes a voltage pulse over
the combinational logic, which propagates through the circuit to the sequential logic on
the right, registering the incorrect value ’1’ instead of ’0.’

Figure 3.6: Illustration of SET and SEU effects in digital circuits: An SEU changing a
memory bit’s state and an SET generating a transient pulse in combinational logic.

Source: The Author.

In modern devices, the implications of SEEs are further compounded. The high
density of nanometric transistors within these circuits, along with their reduced operating
voltages and increased operating frequencies, escalates their susceptibility to radiation-
induced faults. This vulnerability is threefold:
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1. The reduced operating voltage of transistors, aimed at lowering power consumption,
makes the components more sensitive to charged particles. These particles could
be misinterpreted as internal circuit signals.

2. Elevating the circuit’s operating frequency makes it more likely for transient pulses,
introduced by charged particles, to align with clock edges.

3. The close proximity of densely packed transistors increases the risk of multiple
transistors being affected by a single charged particle incident on the silicon sub-
strate.

3.1.2 Definition of Fault, Error, and Failure

Undesired effects in circuits, such as a disturbance caused by a radiation particle,
can corrupt the system’s functioning and cause serious issues, depending on the ongo-
ing application. However, this is only sometimes the case, as these disturbances can
be masked by hardware or software (in microprocessor systems) or may result in errors
irrelevant to the running application. In this context, to classify the effects caused by
these disturbances, we will use the definitions of fault, error, and failure as presented
by (AVIZIENIS et al., 2004).

When a radiation particle strikes an integrated circuit and causes a disturbance,
like an SET, this event is defined as a fault. Faults can be masked by both hardware and
software. In hardware, a fault in the circuit might be masked due to combinational logic,
electrical factors, and the sampling window of the registers. In these cases, the fault may
not propagate to the system outputs. When a fault propagates to the information level,
altering an application’s variable, it can still be masked during software execution. For
instance, this happens when a fault changes the value of data stored in a register that the
program won’t use or will be overwritten.

However, when a fault is not masked by either hardware or software, altering the
system’s expected output in terms of data or control, it becomes an error. This error may,
in turn, lead to a failure. Failure is the undesirable behavior corresponding to system mal-
functioning, usually observable by the user. Nevertheless, not all errors become failures.
For example, a fault causing a calculation error in a single pixel of a television image
doesn’t constitute a failure. However, if a fault causes an error that freezes the image for
a long time, this phenomenon may be considered a failure. In applications requiring a
high degree of reliability or even those that are critical, where human lives are involved,
failures are unacceptable.
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3.1.3 Characterization of SDC and DUE Effects

Silent Data Corruption (SDC) occurs silently, without immediate detection, lead-
ing to erroneous outcomes despite the correct execution sequence of the program. For
instance, if a radiation particle induces a fault that is not caught by hardware or software
checks and alters the data being processed, the system continues its operation, producing
incorrect results unbeknownst to the user.

In contrast, Detected Unrecoverable Errors (DUEs) are system errors that are iden-
tified by the system but are beyond the capability of the system’s error-handling mech-
anisms to correct or recover autonomously. These errors often result in noted system
behavior such as crashes, halts, or infinite loops. For example, an exception—such as
division by zero caused by a corrupted data value—can lead to a DUE if the system’s
exception handling cannot resolve it and restore normal program flow.

It is worth noting that not all faults detected by the system result in error correction
or system recovery. In instances where fault tolerance techniques are specifically devel-
oped for detection, it’s accurate to say that these techniques may lead the system to signal
a DUE. Such detection-focused techniques alert to the presence of an error; however, their
lack of mechanisms for correction or recovery renders the detected faults unrecoverable
by the system’s own resources. The system’s capacity to identify an error is crucial; yet,
absent the ability to amend or maintain safe operation, this detection signals that standard
operations are jeopardized, necessitating external intervention.

Reflecting on the implications of SDC and DUE underscores their relevance to
prior discussions on faults, errors, and failures. SDCs, as a particular category of errors,
pose a uniquely critical threat in safety-critical systems where silent errors may lead to
catastrophic consequences without immediate detection or warning. The insidious nature
of SDCs means that they can undermine the integrity of a system’s outputs, potentially
causing severe outcomes before any issue is apparent. On the other hand, while DUEs
present a clear and detectable disruption, their primary challenge lies in high-performance
contexts, especially over extended operations. DUEs necessitate recovery or restart pro-
cedures, leading to significant downtime or performance degradation. This distinction is
pivotal in designing fault-tolerant systems for environments where reliability cannot be
compromised and the cost of error—whether silent or visible—is unacceptably high.

3.2 Reliability Assessment Methods

Considering the potential repercussions of radiation-induced disturbances on semi-
conductor circuits, it becomes imperative to rigorously assess the reliability of these cir-
cuits before subjecting them to harsh environments. Although the effects of faults exist
at sea level, the rate is still inadequate for comprehensive testing of fault tolerance tech-
niques. Moreover, these projects often require scaling in challenging environments like
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high altitudes and outer space. Therefore, fault emulation and testing are indispensable.
One approach to closely simulate real-world conditions is by utilizing particle ac-

celerators, such as Cyclotrons and Spallation Neutron Sources. Globally available fa-
cilities like the Alamos Neutron Science Center (LANSCE) in the United States, the
ISIS Neutron and Muon Source in the United Kingdom, and the TRIUMF facility in
Canada, employ a variety of energized particles, including heavy ions, protons, and neu-
trons. These facilities enable the simulation of cosmic radiation effects on semiconductor
circuits. However, operational costs and the challenge of precisely targeting specific hard-
ware components remain significant drawbacks (VIOLANTE et al., 2007a; LISOWSKI;
SCHOENBERG, 2006). The Thermal and Epi-thermal Neutron Irradiation Station (TE-
NIS) at the Institute Laue-Langevin (ILL) in Grenoble, France, specializes in applying
thermal and epithermal neutrons. TENIS provides a distinctive environment for assessing
the impact of low-energy neutrons, offering a complementary perspective to the high-
energy neutron and ion tests conducted at LANSCE, ISIS, and TRIUMF. This diverse
array of testing facilities ensures a comprehensive evaluation of semiconductor circuit
reliability under various radiation conditions, enhancing the understanding of potential
vulnerabilities and the effectiveness of mitigation strategies.

Simulation-based testing, on the other hand, can be conducted at both electrical
and logical levels. This approach’s main advantage is the precise control over fault injec-
tion, thus enabling in-depth analysis of fault effects on varying system structures (CAR-
REIRA; MADEIRA; SILVA, 1998). Reliable simulation tools like HSPICE by Synopsys
for electrical-level simulation and ModelSim by Mentor for logic-level are commonly
used (SYNOPSYS, 2022; MENTOR GRAPHICS, 2022).

For Field Programmable Gate Arrays (FPGAs), fault emulation is possible using
reconfiguration mechanisms (LEGAT; BIASIZZO; NOVAK, 2010). Hardware modules
can also be added to the circuit to emulate system faults explicitly. FPGAs offer the ad-
vantage of quicker fault emulation, albeit with an increase in implementation complexity.

In summary, simulation-based fault injection provides superior control over test-
ing, facilitating detailed analyses. Cyclotron-based methods offer a realistic test environ-
ment but at higher operational costs. FPGA-based testing serves as a balanced approach.

For a comprehensive reliability assessment, a multi-method approach may be con-
sidered. This method amalgamates the advantages of each technique to offer an exhaus-
tive view of the system’s resilience. This strategy ensures that the system meets functional
safety standards like IEC 61508 and ISO 26262 (BROWN, 2000; STANDARD, 2018)
while preparing for real-world operational challenges.

3.2.1 Metrics for Reliability Evaluation

Before diving into the metrics, it’s important to note that the term "Failure" used
in this section is employed in a specific, quantitative context to measure system reliability.
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This concept is different from the general definition of "Failure" discussed in the previ-
ous section, which refers to the observable malfunctioning of the system. In the metrics
discussed below, "Failure" is quantified and used to evaluate the system’s robustness and
longevity.

In the context of reliability in systems exposed to radiation-induced faults, various
metrics are used to evaluate susceptibility, longevity, and robustness. These metrics are
pivotal for comprehending how faults propagate through the system and manifest as errors
in both GPUs and FPGAs.

• FIT (Failure In Time): FIT is a metric used to quantify the reliability of hardware.
It represents the number of failures that can be expected in one billion (109) hours
of operation. It is useful for predicting the error rate over a large period.

• AVF (Architectural Vulnerability Factor): AVF measures the likelihood of a fault
causing an error within a system, providing a rate or probability of error due to
faults. It is used to identify system parts most susceptible to errors.

• MTBF (Mean Time Between Failures): MTBF is defined as the average time be-
tween two successive failures, indicating the reliability of a system. Higher MTBF
values signify a more reliable system and are used to compare different systems or
configurations.

• MWBF (Mean Workload Between Failures): MWBF takes into account the
workload processed between failures, considering error rates, AVF, and runtime
to provide a view of system reliability.

• MWTF (Mean Workload to Failure): MWTF accounts for AVF, performance,
and area, offering a dimension for reliability evaluation. It is the average workload
completed before the system fails, normalized over specific configurations to isolate
architectural and application-specific aspects.

• MFTF (Mean Faults to Failure): This metric quantifies the average number of
faults that occur before a failure is observed in a system. A higher MFTF value
indicates better fault tolerance or a lower likelihood of failure due to faults.

• MTTF (Mean Time to Failure): MTTF measures the average operational time
between system failures. It is an indicator of the system’s reliability and expected
lifetime. A longer MTTF suggests a more reliable and enduring system.

• MEBF (Mean Executions Between Failure): This metric represents the average
number of times a system can execute a task or operation between failures. It pro-
vides insight into operational reliability and can guide the frequency of maintenance
or system checks.

• MΦTF (Mean Fluence to Failure): MΦTF is defined as the average particle flu-
ence that a system can withstand before a failure occurs. It is particularly relevant
in environments with high radiation levels, as it helps assess the system’s resilience
to particle-induced faults.
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• SEU Cross-Section: This metric measures the susceptibility of hardware to radiation-
induced soft errors. It is characterized statically, based on hardware technology, and
dynamically influenced by the hardware’s operational state and the application ex-
ecuted, reflecting the system’s vulnerability to radiation under different scenarios.

3.3 Reliability of Softcore GPUs in SRAM-based FPGA

When deploying softcore GPUs on SRAM-based FPGAs, specific considerations
need to be addressed regarding reliability, particularly under conditions susceptible to
radiation-induced faults. These considerations are distinct from those of ASICs designed
to function as GPUs. This section elucidates the unique vulnerabilities and reliability
issues that manifest when a softcore GPU is implemented on an SRAM-based FPGA
compared to its ASIC counterpart.

3.3.1 Structural Vulnerabilities of SRAM-based FPGAs

SRAM-based FPGAs store their configuration in volatile SRAM cells prone to
SEUs. This vulnerability is critical because the configuration of the FPGA, including the
softcore GPU, is defined by the state of these cells. SEUs can lead to accumulative and
systemic issues, corrupting the FPGA’s configuration and potentially causing widespread
logic or functional failures. The FPGA’s layout, comprising configurable logic blocks and
routing lines, is particularly susceptible to such faults, leading to persistent corruption
until the configuration is reloaded.

Softcore GPUs on FPGAs inherit these vulnerabilities and introduce new ones
based on their architectural design. Particular attention must be paid to Register Transfer
Level (RTL) descriptions, as errors here can disrupt the execution flow and lead to accu-
mulative errors that compound over time, degrading performance and reliability. These
issues must be scrutinized alongside the standard concerns for any design on an SRAM-
based FPGA.

3.3.2 Comparison with ASIC Implementation

Figure 3.7 from the study (KASTENSMIDT; CARRO; REIS, 2006) contrasts the
impact of SEUs on SRAM-based FPGAs with the user’s design in ASICs. In FPGAs,
SEUs can cause permanent logic or memory alterations until the configuration is re-
freshed; these alterations can accumulate over time, potentially degrading system per-
formance or leading to failures if not addressed. Conversely, ASICs primarily experience
transient effects that do not alter the physical configuration. SEUs in FPGA LUTs can
result in persistent faults, analogous to stuck-at faults in combinational logic (upset type
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1). Routing upsets in FPGAs can disrupt connections, potentially leading to a cumulative
deterioration of the interconnect integrity, akin to creating open or short circuits (upset
type 3).

Figure 3.7: Comparative illustration of SEU impacts on FPGA vs. ASIC architecture.

Source: Adapted from (KASTENSMIDT; CARRO; REIS, 2006).

While SEUs in the sequential logic of an FPGA (upset type 2) are typically tran-
sient and corrected in the next clock cycle, those in embedded memory blocks like BRAMs
can lead to persistent data corruption (upset type 4). This corruption can accumulate, fur-
ther exacerbating the issue and necessitating robust fault-tolerance techniques beyond
simple reconfiguration. SRAM-based FPGAs are thus more vulnerable than ASICs,
which do not face bitstream corruption due to their immutable architecture.

By contrast, ASICs would be specifically tailored for GPU functions, which mini-
mizes the scope of faults. However, despite their lower susceptibility to radiation-induced
faults, ASICs lack the reconfigurability of FPGAs and require a higher initial investment,
making them less favorable for applications demanding adaptability and rapid prototyp-
ing.

3.4 Supporting Tools for Reliability Assessment

Deploying fault simulation and emulation tools is indispensable for rigorous re-
liability assessment across hardware platforms. For instance, simulation-based meth-
ods, represented by works like (LI; SASANKA, 2010) and (SHEAFFER; LUEBKE;
SKADRON, 2009), are essential for evaluating commercial GPUs. In contrast, the RTL
fault injection tool from Universidade Federal do Rio Grande do Sul (UFRGS) allows



41

for meticulous examination of hardware, giving crucial precise insights for developing
effective fault-tolerance strategies. Additionally, UFRGS contributes to the field with a
specialized tool for fault emulation in FPGAs, further broadening the scope and depth of
hardware reliability studies.

3.4.1 Fault Simulator for COTS GPUs

Among the various fault injection tools available, SASSIFI (SASSI Fault Injec-
tor) stands out due to its comprehensiveness and precision. SASSIFI was designed to
inject SEUs at different abstraction levels within CUDA kernels, categorizing injected
faults into classes such as register file faults, shared memory faults, and global mem-
ory faults to closely mimic the vulnerabilities that might arise from radiation-induced
faults (MENON et al., 2014). The SASSIFI framework operates at a low level, building
upon SASSI (STEPHENSON MARK SASTRY HARI et al., 2015), a Shader Assembly
Instrumentation tool that facilitates the instrumentation of instructions in the GPU assem-
bly language, SASS. This low-level operation allows for a detailed analysis of the fault
resilience of commercial GPUs, aiding researchers in understanding and mitigating the
vulnerabilities inherent in these systems.

SASSIFI operates in multiple modes, allowing researchers to tailor their experi-
ments. It can perform random injections, randomly selecting a thread and a clock cycle
before injecting a fault. Moreover, it offers advanced capabilities such as profile-guided
injections, which utilize profile data to optimize the fault injection process. This versatil-
ity makes SASSIFI highly suitable for evaluating commercial GPUs, providing a layered
approach to understanding the impact of faults at various abstraction levels.

Regarding fault injection, SASSIFI can manipulate instructions executed by the
GPU directly within the CUDA kernels. For instance, during an instruction-level fault
injection, SASSIFI might alter a specific SASS instruction by changing its opcode, effec-
tively modifying the operation being performed. This kind of manipulation can simulate
the potential impact of a fault, helping to analyze the repercussions of minor alterations
in the instruction stream on the overall computation.

Furthermore, register file faults are simulated by modifying the values stored in the
registers during runtime. For example, a bit-flip fault in a register could be simulated by
inverting a single bit, changing the value stored, and potentially altering the program’s be-
havior. This kind of fault can be introduced at various moments during execution to study
the temporal effects of these faults, providing insights into how a SEU might propagate
through the system.

In conclusion, SASSIFI’s detailed and comprehensive approach to fault simulation
at the instruction and register levels makes it a valuable tool for assessing the vulnerabili-
ties in Nvidia GPUs that may arise from radiation-induced faults in commercial GPUs.
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3.4.2 Fault Simulator for softcore GPUs

Fault injection tools at the RTL offer a distinct advantage in terms of precision and
control. Operating at this level allows for accurately modeling and assessing hardware
faults. They provide more realistic scenarios for fault injection, thus enabling detailed
analysis and more effective fault-tolerance strategies.

In our framework, the fault injection process is orchestrated by a host implemented
in Python. Initially, the host system initiates a clean simulation run to gather baseline data
about the application, including its execution time and output memory state (GOLDEN
results). Upon acquiring this information, the host randomly selects a signal bit from a
predefined list and also randomly determines a time window within the execution time of
the application. The simulation is then paused, and the selected bit’s state is toggled (0 to
1 or 1 to 0) through a command at the RTL level. This approach allows for high-precision
fault injection tailored to specific design aspects.

Simulations can be run using either ISIM or ModelSim, both of which are capable
of compiling and executing the design. The fault injection logic is implemented in TCL,
while the host logic is in Python. Inputs to the fault injection system include a list of
design signals to be upset, golden results for reference, and a flag signal indicating fault
detection, which can subsequently be used to implement fault-tolerance mechanisms. The
fault injection operates autonomously for a predetermined number of faults.

3.4.3 Fault Emulator for FPGAs

The emulation-based fault injection engine from the Universidade Federal do Rio
Grande do Sul (UFRGS) stands out for its comprehensive architecture and unique fea-
tures (BENEVENUTI; KASTENSMIDT, 2019). The engine for Fault Emulation in FP-
GAs is built around the Xilinx Internal Configuration Access Port (ICAP). The system
comprises five main modules:

• Design Under Test (DUT): The DUT interfaces with a test vector to represent the
evaluated FPGA design.

• Design Controller: Manages parameters, test vectors, and golden results for the
DUT.

• Reporting Module: Sends diagnostic information to a campaign coordinating com-
puter.

• Fault Injection Module: Interacts with the Xilinx ICAP interface to read and write
into the FPGA’s configuration memory frames, thereby injecting faults.

• System Controller: Coordinates the entire fault injection process, including fault
injection, DUT diagnosis, and reporting.
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To ensure the reliability of the fault injection process, floorplanning constraints
are applied to define the Area Under Test (AUT). All logical modules of the Circuit
Under Test (CUT) must be contained within this AUT. The tool injects single faults at
randomized locations within the AUT, achieved through an FPGA-based pseudo-random
number generator. The fault injection operates autonomously for a predetermined number
of faults. One key feature is that it does not accumulate the faults over time; instead, it
provides a snapshot of the design’s sensitivity to different faults.

The evaluation of radiation-induced faults and their effects on semiconductor cir-
cuits emphasizes the importance of assessing system reliability under varying radiation
conditions. By understanding these interactions, we can identify the vulnerabilities in
electronic systems and establish methodologies for reliability assessment. The methods,
including simulation, particle accelerator testing, and fault emulation, provide compre-
hensive insights into how faults propagate and affect system performance. These insights
are crucial for developing robust fault tolerance techniques.

As we transition to the next Chapter, it is evident that the knowledge gained from
reliability assessments lays a strong foundation for devising fault tolerance strategies.
These strategies are essential to ensure the continuous and reliable operation of systems,
especially in radiation-prone environments. In the following Chapter, we will explore
various fault tolerance techniques for GPUs, focusing on architectural transformations
in software, hardware, and hybrid solutions that can enhance system resilience against
radiation-induced errors.
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4 FAULT TOLERANCE TECHNIQUES FOR GPUS

Fault tolerance refers to the ability of a system to continue functioning correctly
even in the presence of hardware or software faults. It is crucial in various domains,
including scientific computing, autonomous vehicles, and data centers, where system re-
liability is paramount.

While numerous fault tolerance techniques span different levels of system design,
from technology changes to layout-level modifications, this Thesis focuses on architec-
tural transformations that can be applied in software, hardware, or a hybrid of both. Tech-
nological improvements in semiconductor materials and modifications in the layout of
transistors, such as the insertion of guard rings or the design of trench isolation, fall out-
side the scope of this work. Our discussion will not cover these structural changes but
will instead center on the strategies that enhance fault tolerance at the architectural level.

Fault tolerance techniques at the architectural levels are essentially implemented
through transformations in either software, hardware or a combination of both. Three
fundamental components often form the basis for these transformative approaches:

• Redundancy: In both hardware and software contexts, redundancy involves repli-
cating resources for fault tolerance. In hardware, this often means duplicated com-
ponents like processors or memory modules. In software, redundancy can be achieved
through replicated variables or memory locations. These replicated resources are
primarily used for error detection and correction.

• Checking: This step involves comparing the outputs or states of the redundant
resources to identify discrepancies. Any mismatch is a strong indicator of an error,
making this step crucial for error detection.

• Notification: The system initiates corrective measures or alerts the relevant par-
ties once an error is detected. Detection is especially important in contexts where
immediate correction may not be feasible, but knowing about the error is crucial.

Strategies like selective hardening and approximate computing are introduced to
enhance the effectiveness of these key components. Selective hardening is a strategy that
refines resource allocation for fault tolerance, often reducing performance overhead while
possibly compromising fault coverage. On the other hand, approximate computing serves
as a paradigm that allows for a certain level of acceptable error, thus potentially reducing
the need for strict checking procedures.

The following sections will delve into specialized approaches and tools designed
to implement these core components and strategies, alongside a review of related works.
These include Software-Based Techniques, Hardware-Based Techniques, ISA Extensions,
Approximate Computing and Criticality, Selective Hardening, and Supporting Tools For
Fault Tolerance.
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4.1 Software-Based Techniques

Software-based fault tolerance techniques for GPUs can be implemented across
various levels of abstraction, from high-level frameworks like CUDA for NVIDIA GPUs,
where threads and variables are replicated, to low-level approaches, such as assembly,
involving replicating instructions and registers. Additionally, Algorithm-Based Fault Tol-
erance (ABFT) techniques offer high detection rates with low execution time overheads
but cater to a specialized set of applications. Most of the existing literature has concen-
trated on high-level abstraction techniques for fault tolerance, with key contributions from
Oliveira et al. (OLIVEIRA et al., 2014), Wadden et al. (Wadden et al., 2014), and Gupta
et al. (GUPTA et al., 2017).

The work by (OLIVEIRA et al., 2014) serves as an insightful example of leverag-
ing the intrinsic parallelism of GPUs for fault tolerance through Duplication With Com-
parison (DWC). DWC is implemented at the application level by duplicating blocks or
threads and comparing the results. The study explores spatial and temporal DWC strate-
gies, highlighting their flexibility and adaptability in utilizing the parallel architecture of
GPUs. However, these benefits come with performance trade-offs, ranging from 90% to
151% degradation. Additionally, the authors emphasize that duplicated processes must be
carefully distributed to prevent errors in shared resources, such as cache memories or crit-
ical resources like the scheduler, from propagating to both copies, thereby compromising
the method’s detection capabilities.

Wadden et al. (Wadden et al., 2014) proposed a compiler-based approach that
converts GPU kernels into redundantly threaded versions. They observed high over-
heads for inter-thread communication and synchronization, with performance costs be-
ing application-dependent and exceeding 100% in some cases. Gupta et al. (GUPTA et
al., 2017) extended this work by introducing compiler optimizations to reduce synchro-
nization overhead. Software-based instruction-level duplication was found to incur lower
synchronization overheads, as both duplication and consistency checking are performed
within each thread (GONCALVES et al., 2017; Mahmoud et al., 2018).

Intermediate languages offered by vendors have also been explored for fault toler-
ance. Specifically, the work in (KALRA et al., 2020) employed heuristics to identify and
protect critical instructions at the PTX-level, achieving a significant reduction in DUEs
and SDCs, underscoring the potential of PTX-level interventions to bolster system relia-
bility without comprehensive code duplication.

More recently, low-level approaches have been explored for fault tolerance in
GPUs, which will be the focus of the next section.
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4.1.1 Low-Level Software-Based Techniques

Program code transformations at the low level for enhancing reliability must incor-
porate the three fundamental components of fault tolerance—Redundancy, Checking, and
Notification—initially proposed by Oh et al. (OH; SHIRVANI; MCCLUSKEY, 2002). In
the context of code transformations, these components are implemented as follows:

• Datapath Duplication: This transformation aligns with the concept of Redundancy.
It duplicates all datapath operations, requiring a duplication of the registers used.
By leveraging static code analysis, spare registers are identified for duplication.
This modification effectively doubles the number of datapath operations being exe-
cuted, thereby exploiting Instruction Level Parallelism (ILP) more effectively.

• Consistency Checking: This transformation corresponds to Checking. It verifies
the consistency between the original and duplicated datapath by using comparison
instructions followed by conditional branching to an error subroutine. This modifi-
cation introduces a data dependency, which affects the ILP gains.

• Host Notification: This transformation is related to Notification. In the event of
fault detection, it notifies the host machine. This modification could be either a trap
instruction or a memory write instruction to the global memory. The execution of
this transformation is conditional upon the outcome of the Consistency Checking.

Table 4.1: Code transformations example

Original Code Hardened Code Description (Code Transformation)

ADD R1, R2, R3 ADD R1, R2, R3 Original Datapath

ADD R1’, R2’, R3’ Datapath Duplication

CMP R1, R1’ Consistency Checking

TRAP Host Notification

As shown in Table 4.1, the original assembly instruction ‘ADD R1, R2, R3‘ un-
dergoes a series of transformations for fault tolerance. The instruction is first duplicated,
represented by ‘ADD R1’, R2’, R3", followed by a consistency check ‘CMP R1, R1", and
finally a host notification via a ‘TRAP‘ instruction.

Building on the foundational work of Oh et al., Gonçalves et al. (GONCALVES
et al., 2017) applied these transformations to the assembly code of a softcore GPU. They
focused on detecting faults in the GPU’s register files by intertwining replicated assembly
instructions. This approach led to a 99% reduction in errors at the cost of a 78% increase
in execution time.
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More recently, the work presented in (Mahmoud et al., 2018) introduces a set of
software-based fault tolerance techniques collectively known as SInRG. These code trans-
formations are implemented directly in NVIDIA’s production compiler and have been
evaluated on commercial GPUs. The naive approach of immediate duplication and veri-
fication resulted in a performance overhead of 69%. However, by deferring host notifica-
tion, the authors were able to reduce this overhead to 39%. Architectural fault injection
campaigns demonstrated an average SDC coverage exceeding 87%.

The authors also explored using a single register space to verify each instruction
result immediately. While this approach reduced register allocation, it increased the av-
erage runtime overhead to 49% and introduced a vulnerability, as the source registers for
the instructions were left unprotected. These results suggest that a selective hardening
strategy targeting critical registers or instructions could further optimize SInRG’s runtime
performance and resource utilization.

In this Thesis, we extend the work of Gonçalves et al. (GONCALVES et al., 2017)
by leveraging assembly code transformations for software-based fault tolerance, indepen-
dent of the compiler or high-level programming languages. Specifically, we introduce
three novel optimizations—Traceback, Move, and Delayed Notification—aimed at reduc-
ing performance overhead while improving fault detection capabilities.

4.2 Hardware-Based Techniques

Hardware-based fault-tolerance techniques offer reliability enhancements directly
at the hardware level. These methods are generally more transparent to the application
and often incur less performance overhead than their software-based counterparts. No-
table techniques include parity bits, Error-Correcting Code (ECC), and Triple Modular
Redundancy (TMR).

4.2.1 Parity Bits

Parity bits are a straightforward yet effective error detection method commonly
employed in commercial devices. By adding an extra bit to each data unit, this technique
ensures that the number of ’1’ bits in the data, including the parity bit, is either always
even or always odd. This simple check allows for detecting errors when data is read or
received. However, the utility of parity bits is limited in several ways.

Firstly, they can only detect an odd number of bit errors and cannot identify which
specific bit is incorrect. Unlike more advanced techniques like ECC, parity bits offer
no error correction capabilities. Additionally, while the overhead is generally minimal,
including parity bits does slightly increase the size of the data, which could be a concern in
scenarios where bandwidth or storage is limited. Calculating and verifying parity bits also
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Table 4.2: Graphical explanation of parity technique with error detection

Original Data Parity Bit (Even) Data with Parity Transmitted Data Error Detected

1101 1 11011 11011 No

1011 1 10111 10111 No

1001 0 10010 10010 No

1111 0 11110 11110 No

1101 1 11011 11010 Yes

introduces a small computational overhead, especially when dealing with large volumes
of data. Lastly, the technique lacks the flexibility for selective hardening, where only
critical data or operations are protected.

In summary, while parity bits provide a basic level of error detection, they are
often used in conjunction with other, more robust fault-tolerance techniques to enhance
system reliability.

4.2.2 Error-Correcting Codes - ECC

Error-Correcting Codes (ECC) is a prominent hardware-based fault tolerance tech-
nique commonly integrated into commercial devices. It is designed to identify and correct
errors at the hardware level automatically. ECC is particularly effective at detecting and
correcting single-bit errors, making it a reliable choice for many applications where data
integrity is crucial. These computations generate redundant check bits from the origi-
nal data bits through specific algorithms. When data is read, ECC algorithms compare the
stored check-bits with the current data state to detect and correct any discrepancies caused
by bit errors. This process is adept at correcting single-bit errors and detecting double-bit
errors, employing the Single Error Correct, Double Error Detect (SEC-DED) scheme to
ensure data integrity even with minor corruption.

However, ECC comes with its own set of drawbacks. One of the primary limita-
tions is the performance overhead incurred due to the extra computations needed for error
detection and correction. Additionally, ECC often requires extra hardware resources,
leading to increased area overhead on the chip. Another limitation is its inflexibility for
selective hardening, as ECC is generally applied uniformly across the hardware, making
it less adaptable to specific application needs.

Notably, the work by (OLIVEIRA et al., 2014) and (Tiwari et al., 2015) demon-
strated increased DUEs under radiation experiments when ECC was enabled. This in-
crease suggests that while ECC is effective under certain conditions, there may be more
reliable options in some scenarios, particularly in radiation-sensitive environments.
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4.2.3 Triple Modular Redundancy - TMR

Triple Modular Redundancy (TMR) enhances system reliability by triplicating
hardware modules and using a voting mechanism to produce a single output. This method
is highly effective for mitigating single and multiple fault scenarios, ensuring system func-
tionality as long as at least two of the three modules are correct.

TMR’s flexibility extends to hybrid implementations that combine hardware and
software modules, allowing for more efficient resource allocation in systems with limited
hardware. Variants like Selective TMR focus on triplicating only the critical portions of
the code or hardware, balancing resource overhead with fault tolerance. Adaptive TMR
takes this further by dynamically selecting hardware and software modules based on the
system’s current status and available resources.

However, TMR comes with its own set of challenges. The technique significantly
increases hardware resource requirements and power consumption, which can be prob-
lematic in energy-sensitive applications. The added complexity in implementing TMR,
especially in its hybrid or adaptive forms, complicates system design and verification.
While TMR is effective against single faults, its efficacy diminishes against correlated or
multiple faults affecting more than one module simultaneously.

In the context of GPUs, implementing TMR poses challenges due to the propri-
etary nature of COTS GPUs. Most studies in this area have relied on simulation for
verification and validation. Thus, our proposal takes a novel approach by implementing
TMR directly into a softcore GPU, allowing for empirical testing and providing a more
realistic evaluation of its effectiveness.

4.3 Software-Hardware Approaches: ISA Extension

Hybrid solutions that combine software and hardware approaches offer the best of
both worlds: hardware performance and software flexibility. However, the complexity of
implementing these solutions is a drawback, as they require both hardware and software
modifications. Instruction Set Architecture (ISA) extensions are a prime example of this
approach. They allow for the creation of new instructions by identifying available bits
in the instruction code, followed by hardware updates to execute these new instructions.
In the context of reliability, ISA extensions can handle key components like replication,
comparison, and notification while introducing atomic instructions to enhance specific
operations’ reliability.

Recent works on this topic have explored hybrid approaches to improve GPU re-
silience. For instance, a cooperative hardware-software mechanism leverages the reg-
ister file ECC hardware to detect pipeline errors, achieving low instruction-duplication
overhead (SULLIVAN et al., 2018). Another study introduces a new XOR instruction
for hardware-based host notification, thus eliminating the need for separate consistency
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checks and notification instructions. This work also proposes hardware-based hardening
steps, updating a signature register with each instruction’s execution. An extra metadata
bit in the instructions informs the hardware when to update this register. While promising,
these ISA extensions have yet to be empirically tested (Mahmoud et al., 2018).

However, it’s worth noting that the landscape for GPUs differs from that of mi-
croprocessors and FPGAs. Many studies, including those proposing ISA extensions for
commercial GPUs, have not been empirically tested on real hardware, relying solely on
simulation for verification.

4.4 Approximate Computing and Criticality

In certain applications, both safety-critical and otherwise, there exists a tolerance
for inaccuracy within a predefined range (MITTAL, 2016). For example, seismic wave
applications can tolerate misfits up to 4% (GUAN et al., 2015). This result flexibility
opens the possibility that a corrupt output may be correct if it falls within the acceptable
accuracy range. Recent studies have even advocated relaxing strict output correctness to
improve performance and efficiency (VENKATAGIRI et al., 2018).

One approach to leveraging approximate computing is applying approximate com-
puting techniques to the original program to minimize its execution time before harden-
ing (APONTE-MORENO; PEDRAZA; RESTREPO-CALLE, 2019). Subsequently, fault
tolerance techniques are applied to the resulting assembly code, where all registers are
protected. This method has shown up to a 53% reduction in overhead for an error ac-
ceptance rate of 10% while maintaining fault coverage. However, these studies often
overlook the potential for selective hardening strategies that could further optimize per-
formance and resource usage.

In the context of algorithms based on loop computations, the impact of transient
faults can be mitigated by simply increasing the number of iterations (RODRIGUES et
al., 2019). This inherent fault tolerance allows for small discrepancies in data values
to be managed and corrected over multiple iterations. While more iterations introduce
additional latency, they also make the system more resilient to faults.

Moreover, defining a threshold for error acceptance can enhance system reliabil-
ity against transient faults without requiring any modifications to the original applica-
tion (RODRIGUES et al., 2019; VENKATAGIRI et al., 2018). For example, fault in-
jection experiments have shown that most faults do not cause output errors larger than a
predefined percentage, thereby increasing system resilience.

Another direction to explore is using mixed-precision architectures in conjunction
with approximate computing (SANTOS et al., 2020). This approach has shown promis-
ing results in reducing runtime overhead while maintaining an acceptable level of fault
coverage, particularly in high-performance computing applications.
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4.5 Selective Hardening

Selective hardening focuses on the most critical components of a system to pro-
vide fault tolerance where it is most needed. This approach is universally applicable,
seamlessly integrating with all the fault tolerance techniques discussed in this Chapter
across various levels of abstraction. Selective hardening optimizes resource allocation
while maintaining system reliability, whether in hardware-based, software-based, or hy-
brid solutions.

Selective hardening techniques based on this topic have been developed to of-
fer a balanced trade-off between performance cost and fault coverage. By selectively
duplicating key structures — such as instructions, threads, and registers — these tech-
niques manage to significantly reduce performance overhead without compromising reli-
ability (SUNDARAM et al., 2008; KALRA et al., 2020).

In this Thesis, we suggest a strategy that employs selective hardening in conjunc-
tion with approximate computing to assess and optimize the protection of the most vulner-
able application registers in a commercial GPU. Separately, we also implement selective
TMR on a softcore GPU.

4.6 Supporting Tools for Fault Tolerance

While this Chapter primarily focuses on fault tolerance techniques for GPUs, it is
crucial to highlight the tools that support the implementation of these techniques (SWIFT;
REHMAN; SMITH, 2005; CRAFT; SMITH; JOHNSON, 2012). Among these, the Hard-
ening Post Compiling Translator (HPCT) stands out for its simplicity and versatility in en-
abling fault tolerance (AZAMBUJA et al., 2011). Developed at UFRGS, HPCT is crafted
in Java, benefiting from the language’s robustness and platform-independent nature, mak-
ing it an ideal choice for various development settings.

HPCT aids in converting original program codes into versions that are more re-
silient to faults. It operates independently of the programming language and compiler,
working directly with binary code to produce processor-specific, fault-tolerant binary
code. The operation of HPCT encompasses several essential steps:

• Analysis: It analyzes the binary code to identify branch instructions, the program
flow graph, and registers for potential hardening use.

• Transformation: HPCT modifies instructions and instruction blocks, including
replication for fault tolerance and updating addresses for branch instructions as
needed.

• Execution Flow Graph Extraction: Constructs the program’s execution flow graph
to pinpoint critical code sections for hardening.

• User Interface: Features a graphical user interface (GUI) allowing users to select
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fault tolerance techniques and specify processor architecture details.

• Output: Generates transformed binary code with integrated fault tolerance mecha-
nisms, ready for deployment on the target processor.

Figure 4.1: HPCT workflow diagram.

Source: The Author.

In summary, HPCT processes the program’s binary code, applying chosen hard-
ening techniques alongside ISA definitions and processor architecture details provided by
the user through a GUI. This workflow, detailed in Figure 4.1, showcases the adaptability
and comprehensive functionality of HPCT, rendering it an invaluable tool for improving
application reliability across different computing platforms.

4.7 Related Works Overview

This section summarizes the research contributions discussed throughout this Chap-
ter, laying the groundwork for fault tolerance techniques in GPUs. The presented works
span a range of approaches, including software-only methods, hardware enhancements,
hybrid techniques that integrate both software and hardware innovations, and optimization
strategies such as Selective Hardening (SH) and Approximate Computing (AC).

The Table 4.3 encapsulates the contributions of each cited work, categorized by
architectural approach and optimization strategies. Works without a checkmark were fo-
cused on evaluation only, without introducing software or hardware modifications for pro-
tection. This summary serves as a reference for the current state of the art in GPU fault
tolerance techniques and a precursor to our proposed advancements. The works listed in
italics are our core contributions, which will be detailed in the following Chapters.
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The fault tolerance techniques for GPUs discussed in this Chapter highlight the
importance of ensuring the reliable operation of GPUs in the presence of faults, partic-
ularly radiation-induced faults. The various strategies, from software-based methods to
hardware-based and hybrid approaches, provide a comprehensive toolkit for enhancing
system resilience.

With a solid understanding of these fault tolerance techniques, we can now explore
their practical application through case-study architectures. In the next Chapter, we will
delve into the GPU architectures utilized to evaluate the reliability of GPU models. The
focus will be on the specific GPU architectures chosen for these case studies, setting the
stage for the experimental evaluations presented in the subsequent chapters
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Table 4.3: Summary of research contributions in fault tolerance techniques for GPUs

Reference
Architectural Approaches Optimization Strategie

SW HW Hybrid SH AC

(OLIVEIRA et al., 2014) X

(Wadden et al., 2014) X

(GUPTA et al., 2017) X

(SUNDARAM et al., 2008) X

(GONCALVES et al., 2017) X

(Mahmoud et al., 2018) X X X

(KALRA et al., 2020) X X

(SULLIVAN et al., 2018) X X X

(MITTAL, 2016) X X

(GUAN et al., 2015) X X

(VENKATAGIRI et al., 2018) X X

(APONTE;PEDRAZA;RESTREPO,2019) X X

(RODRIGUES et al., 2019) X X

(SANTOS et al., 2020) X X

(Tiwari et al., 2015)

(GONCALVES et al., 2019) X X

(GONCALVES et al., 2020) X X X

(GONCALVES et al., 2020) X X X X

(GONCALVES et al., 2022) X X

(BRAGA; GONÇALVES; AZAMBUJA, 2023) X X X

(BRAGA; GONCALVES; AZAMBUJA, 2023) X X X

(GONCALVES et al., 2020)

(BRAGA et al., 2021) X X

(BENEVENUTI et al., 2022)

(PEREZ et al., 2022)

Note: References in italic indicate works that are further discussed in this Thesis. SW: Software-Based
Techniques, HW: Hardware-Based Techniques, Hybrid: Hybrid (ISA Extension) Approaches, SH:

Selective Hardening, AC: Approximate Computing.



55

5 CASE-STUDY ARCHITECTURES

This Chapter explores the architectures of NVIDIA’s Kepler, FlexGrip, and FGPU,
highlighting their contributions to computational efficiency and adaptability. Kepler GPUs
are celebrated for their advancements in HPC and graphics, laying the foundation for fu-
ture computational innovations. FlexGrip and FGPU, leveraging FPGA platforms’ flex-
ibility, offer tailored solutions for handling complex computations. This examination
details each architecture’s operational mechanisms and internal configurations.

5.1 NVIDIA Kepler Architecture

The NVIDIA Kepler architecture, exemplified by the K20 and K40 GPUs, is de-
signed to excel in scientific computing. The architecture is a paradigm of computational
efficiency and power.

The K20 GPU is foundational to the Kepler series, with 2,496 CUDA cores and up
to 5.6 GB of memory, engineered for demanding scientific tasks. Advancing this design,
the K40 GPU comprises 2,880 CUDA cores and doubles the memory to up to 12 GB,
catering to the most complex scientific computations.

Figure 5.1 shows the NVIDIA Kepler GPU architecture layout. It features a net-
work of interconnected SM units, each a hub of parallel processing capability. The dia-
gram also exhibits memory controllers that orchestrate the flow of data between the GPU
and its memory and a large L2 cache that serves as a buffer for frequently accessed data,
enhancing the overall speed and efficiency of the system.

Figure 5.1: NVIDIA Kepler GPU architecture, showcasing the interconnection of SM
units, L2 cache, and memory controllers.

Source: (NVIDIA Corporation, 2012).
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Figure 5.2 provides a detailed view of a Kepler architecture SM unit, illustrating
its key components and their interactions. CUDA cores are arrayed to perform parallel
processing effectively. Warp schedulers and dispatch units direct the instructions flow,
optimizing core utilization. Register files enable quick data retrieval, while shared mem-
ory facilitates thread communication and synchronization within a warp. The texture
units (Tex) are specialized for texture mapping and data sampling tasks. The diagram
also shows the L1 cache for fast access to data and instructions, reducing latency. Spe-
cial Function Units (SFU) handle complex mathematical functions, and Double Precision
(DP) units ensure precise calculations.

Figure 5.2: Internal structure of a Kepler SM unit, highlighting the CUDA cores and
control logic.

Source: (NVIDIA Corporation, 2012).

The CUDA programming model provides developers with the tools to harness
the Kepler GPUs’ capabilities. Programs are written in CUDA C/C++, which are then
translated into PTX language, allowing the GPU to perform complex computations with
high throughput.

The deployment of K20 and K40 GPUs within prominent supercomputers, such
as Titan and Stampede, demonstrates their substantial contributions to computational sci-
ence, managing large-scale, complex simulations with unparalleled efficiency.
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5.2 Flexible Graphics Processor - FlexGrip

Figure 5.3: General microarchitecture of an SM core in the FlexGrip model.

Source: (ANDRYC; MERCHANT; TESSIER, 2013).

Flexible Graphics Processor (FlexGrip) is an open-source, configurable softcore
general-purpose GPU model described in VHDL. It implements the NVIDIA G80 mi-
croarchitecture and supports the CUDA programming environment. The GPU model is
compatible with up to 52 assembly instructions (SASS) and follows the Single-Instruction
Multiple-Thread (SIMT) paradigm (ANDRYC; MERCHANT; TESSIER, 2013).

The FlexGrip architecture consists of an array of Streaming Multiprocessors (SMs)
that execute threads in parallel. Each SM is managed by a Block Scheduler Controller,
which distributes the workload to each available SM in the system. Internally, the SM is
divided into a five-stage pipeline: Fetch, Decode, Read, Execute, and Write. The pipeline
is managed by a Warp Scheduler Controller that oversees the concurrent execution of a
group of 32 parallel threads, also known as a warp.

The Block Scheduler Controller manages the SMs and distributes workloads to
each available SM. Warps are fetched, decoded, and distributed to be processed in the
Scalar Processors (SPs) at the Execute stage. The Read and Write stages handle the
loading and storing of data operands from and to various types of memory.

Pipeline Registers (PRs) are situated between the pipeline stages to store both data
path and control path signals. These registers are crucial for exploiting Instruction-Level
Parallelism (ILP) and ensuring high-performance parallel execution. The number of PRs
varies according to the number of SMs and SPs, affecting both data integrity and control
flow.
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The system memory in FlexGrip includes a General-Purpose Register File (GPRF),
an Address Register File (ARF), a Predicate Register File (PRF), local memory (L_mem),
constant memory (C_mem), shared memory, and global memory. The GPRF, ARF, and
PRF are located inside the SM and are organized in banks. The GPRF is the primary and
fastest memory resource, with a size that can vary depending on the configuration of the
SM.

FlexGrip can be configured to operate with 8, 16, or 32 cores inside each SM,
providing flexibility in modifying the data path length in the pipeline registers and the
register size per core in each bank of the GPRF. The number of registers per thread in the
GPRF is application-dependent and can reach up to 64 registers per thread on each bank.

As presented in section 2.1.1, in an NVIDIA GPU, the kernel is invoked by a host,
typically a CPU. This process involves dispatching the kernel code to the GPU’s System
Memory for execution. Before launching an application, the GPU must be configured by
defining the grid’s size and the number of blocks and threads. Moreover, the data to be
processed by the threads must be loaded into global memory. To execute an application on
FlexGrip, these configuration parameters and the initial states of shared and global mem-
ories are directly set within the GPGPU’s HDL. The kernel instructions, which represent
the algorithm to be executed, are also included within the HDL.

Figure 5.4: FlexGrip GPU with CUDA software during kernel execution.

Source: (ANDRYC; MERCHANT; TESSIER, 2013).
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Figure 5.4 illustrates the FlexGrip GPU microarchitecture and its interface with
CUDA software during kernel execution. The diagram shows a high-level overview of
the execution flow from the host to the device. The kernel, once invoked, is managed
within the FlexGrip hardware framework, which is depicted as a series of thread blocks
within a grid.

Figure 5.5: Software flow of an NVIDIA GPU

Source: The Author.

The process of compiling CUDA algorithms is shown in Figure 5.5. During com-
pile time, the compiler receives the CUDA kernel, converting it into PTX. During runtime,
the PTX code goes through the CUDA driver, which is responsible for generating the bi-
nary cubin code, which is then directed to the GPU for effective execution. During the
compilation process, the PTX code is converted to SASS; this format represents the na-
tive instructions that are interpreted by NVIDIA’s hardware. However, the SASS code is
generated at runtime and is not visible to the end user. Still, this code can be obtained
through the cuobjdump tool provided by NVIDIA’s CUDA toolkit. This tool generates
the SASS code from the previously described cubin code. Finally, to execute a kernel on
FlexGrip, the hexadecimal codes resulting from the SASS file must be copied to FlexGrip
before running an application.
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5.3 FPGA general purpose Graphical Processing Unit - FGPU

Figure 5.6: Softcore FGPU overview.

Source: The Author.

FPGA general purpose Graphical Processing Unit (FGPU) is a configurable, open-
source SIMT softcore processor optimized for FPGA platforms. Still, it can also be ported
to ASIC platforms with precise adaptations. It is designed to accelerate workloads that fit
within the SIMT paradigm and features an OpenCL compilation framework. The FGPU’s
architecture, as depicted in Figure 5.6, is modular, focusing on scalability and flexibil-
ity (KADI et al., 2018).

The core component of FGPU is the Compute Unit (CU), a Single-Instruction
Multiple Data (SIMD) machine consisting of eight identical Processing Elements (PEs)
labeled PE0 - PE7. These PEs come with dedicated Register Files (RFs), Arithmetic-
Logic Units (INT), and optional hardware-implemented Floating-Point Units. The CU
can be spatially replicated up to eight times, and a single CU can run up to 512 work
items, which are computational kernels in OpenCL.

FGPU features a Runtime Memory (RTM) and a dedicated Data Cache, a central,
direct-mapped, multi-port, and write-back system capable of simultaneously serving mul-
tiple read/write requests. It also integrates numerous data movers that can parallelize the
data traffic on up to four AXI Data interfaces.

FGPU supports full thread divergence, meaning each work item can take a dif-
ferent path in the Control Flow Graph (CFG). Work items are grouped into Wavefronts
(WFs) that execute concurrently within a CU. These WFs are further combined into Work
Groups (WGs), which share a Program Counter and are assigned to a specific CU. The
size of these parameters (work items, WFs, and WGs) is entirely configurable during im-
plementation.
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For execution to commence, a host processor, typically a hardcore Arm® micro-
processor, sends accelerator instructions and execution parameters via an AXI4-Lite inter-
face. This information is stored in Code RAM (CRAM) and Link RAM (LRAM) within
the FGPU. A start signal is also sent and stored in a control register, triggering the execu-
tion. The FGPU framework includes an LLVM-based OpenCL compiler with clang as the
front end. The backend maps instructions exclusively to the FGPU ISA, which consists
of 49 instructions. It supports soft- and hard-FP implementations for single-precision
floating-point instructions, including addition, subtraction, multiplication, division, and
comparisons. Hard-FP support is provided by Xilinx FP Operator (FPO) IPs, while soft-
FP is implemented through LLVM.

Figure 5.7: FGPU software stack integration.

Source: (KADI et al., 2018).

Figure 5.7 illustrates the software stack architecture for FGPU. At the top level, the
Host Program interacts with the FGPU through the standard OpenCL Function Library.
These OpenCL functions are translated into system calls, which are then directed to the
FGPU driver via a character device file in user space. This allows the Host Program to
communicate with the FGPU without requiring root privileges or compromising system
security. In the kernel space, the FGPU driver acts as a mediator, mapping the FGPU’s
control registers, CRAM, and LRAM into its address space. The driver manages mem-
ory allocations, including OpenCL buffers, and maintains cache coherency between the
FGPU hardware and applications running on the host processor. This approach negates
the need for traditional data transfers over a bus, thereby eliminating the typical bottleneck
associated with separate host-device memory transfers.

The FGPU API provides the necessary functionality to control the device from the
host, including downloading the executable code into CRAM and setting up the LRAM
and control registers according to the OpenCL-API specifications. Through this API,
developers can implement and run a wide range of GPGPU applications on the FGPU
platform, leveraging its full capabilities for parallel data processing.
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In the subsequent chapters, we will delve into specific case-studies, examining
the experimental evaluations performed on each GPU architecture. These case-studies
will provide detailed insights into the reliability and fault tolerance techniques applied to
NVIDIA’s Kepler, FlexGrip, and FGPU architectures, culminating in the exploration of
ASIC implementations for enhanced fault resilience.
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6 SELECTIVE FAULT TOLERANCE FOR REGISTERS IN NVIDIA KEPLER

GPU

Like most computing devices, modern GPUs are designed with a Reduced Instruc-
tion Set Computing (RISC) architecture. RISC simplifies the source code in a sequence
of basic instructions. One of the main differences between Complex Instruction Set Com-
puting (CISC) and Reduced Instruction Set Computing (RISC) architectures is that CISC
architectures allow instructions to read directly from the main memory, while RISC archi-
tectures require inputs to come from the register file only. Due to this, RISC is also known
as a load-store architecture: data in the main memory must be loaded to the register file to
be processed. Moreover, data in the register file is not accessible by the user in high-level
programming languages. In high-level programming, the content of the registers must be
stored in the main memory to make it accessible. From a reliability point of view, the
register file is a critical resource, as knowing the probability of an error in a register prop-
agating to the output may be sufficient to characterize the vulnerability of an application.
The GPU’s parallel architecture requires a wider register file than the traditional CPU, as
thousands of active threads must be fed data. Kepler GPUs, as the one used in our study,
have 64K registers.

As register files need to be extremely fast, they are built with the most advanced
technology and are among the most vulnerable resources in modern computing systems.
Moreover, as registers are integrated into the fabrication of computing cores, protect-
ing registers ECC is more expensive than caches or Dynamic Random Access Memory
(DRAM). GPU Register File is large (i.e., 65KB per streaming multiprocessor), and it is
the fastest type of memory on GPU; thus, it is very hard to protect without increasing the
circuit’s power consumption (WUNDERLICH; BRAUN; HALDER, 2013; TAN et al.,
2011). Even if ECC is present, it may be less effective than the ECC for caches or main
memory as register words are hard to interleave. As such, the probability for Multiple-Bit
Upsets (MBUs) in the register file is higher than in the caches or main memory, requiring
a more advanced ECC than the classical Single Error Correction Double Error Detection
(SECDED).

In the current study case, we aim to use selective hardening fault tolerance tech-
niques by means of hardware and software to protect the most vulnerable registers of a
state-of-the-art commercial GPU. To do so, we perform beam radiation experiments and
architectural-level fault injection to evaluate the sensitivity of the GPU register file to ra-
diation effects. We rank registers according to their vulnerability and apply selective fault
tolerance techniques based on collected data (GONCALVES et al., 2019).

This Chapter presents a reliability exploration of the Nvidia Kepler GPU architec-
ture. First, we delve into Selective Fault Tolerance for Register Files. Then, we explore
the integration of approximate computing techniques to enhance this selective fault toler-
ance even further.
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6.1 Methodology for Reliability Evaluation and Hardening

This section outlines the experimental framework employed to assess the reliabil-
ity and fault tolerance of NVIDIA Kepler GPUs. Our approach includes neutron radiation
tests, register file reliability assessments through simulation, and the automated applica-
tion of hardening techniques.

6.1.1 Reliability Assessment through Neutron Radiation

We performed a radiation experiment through a neutron beam to evaluate the
NVIDIA Kepler GPUs’ reliability. We evaluated SDC and DUE Failure In Time (FIT)
rates. The FIT rate provides a good metric, representing the number of SDCs and DUEs
that happen every billion (109) hours. However, it offers limited visibility as it is im-
possible to correlate the observed errors and the caused faults (their causes). We chose
three algorithms as case-study applications from Rodinia benchmark (CHE et al., 2009)
as identified as good codes for evaluating processors’ reliability (QUINN et al., 2015):
(1) Hotspot, which simulates the heat dissipation on a surface; (2) Needleman-Wunsch
(NW), used for DNA sequencing; and (3) Quicksort, an efficient sorting algorithm.

Radiation experiments were performed at the Los Alamos Neutron Science Center
(LANSCE) facility, exposing two K40 NVIDIA GPUs to a neutron flux between 1.0×
105n/(cm2/s) and 2.5×106n/(cm2/s) during 200 hours that, when scaled to the natural
environment, should cover around 46 thousand years.

Tests have been performed for all case-study applications, where the host com-
puter sent input vectors to both GPUs and compared results with a golden file to detect
SDC effects. A watchdog detects crashes and hangs (i.e., DUEs). We collected at least
100 SDCs and 100 DUEs for each benchmark, which is sufficient to apply a Poisson dis-
tribution and restrict the error bars to less than 15% of the reported values. To ensure
a realistic environment, we tuned the experiment to cause 10−3 faults/execution, ensur-
ing that the probability of more than one neutron generating an error in a single code
execution remains negligible.

6.1.2 Register File Reliability Assessment through SASSIFI

We performed a fault injection campaign to analyze better how SDC- and DUE-
induced faults affect the Kepler GPU. By doing so, we evaluated the AVF, which is the
probability of a low-level corruption in the register file propagating to the output vector
and causing an error. The fault injection campaign was performed by NVIDIA SASSIFI
(see Section 3.4.1). Based on the SASSI instrumentation tool, SASSIFI injects transient
faults in the GPU’s register file without disrupting the perceived final instructions sched-
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ule or register usage. Previous SASSIFI results have been successfully correlated with
radiation experiments (SANTOS; RECH, 2017) and shown to be faster than state-of-the-
art related GPU fault injectors (HARI et al., 2017).

The fault injection campaign was performed automatically on two K20 GPUs, tar-
geting registers used by the applications. Faults have been injected randomly in time and
location, one per program execution. At the end of each execution, results stored in mem-
ory were compared with a golden file in the same process as the radiation experiment. For
each application version, we injected 10,000 faults, distributed among application-used
registers, achieving ±1% statistical error considering a 95% confidence level (Leveugle et
al., 2009).

6.1.3 Automated Hardening through HPCT

When considering NVIDIA’s compilation flow, it is important to mention that it
involves four files: CU, PTX, SASS, and BIN. CU is the source code containing both
CPU and GPU code, PTX is the NVIDIA virtual machine pseudo-assembly, SASS is the
low-level assembly language, and BIN is the binary microcode, which executes natively
on the GPU. NVIDIA allows designers to generate the BIN from CU and PTX but does
not allow it from SASS because the assembler is proprietary and not available. Therefore,
to harden the closest-to-BIN file, we must harden the PTX, which still has to go through a
transformation phase instead of the SASS. The main drawback is that we must guarantee
that our hardening strategies remain after the transformation from the hardened PTX to the
BIN by forcing the compilation to no optimization (-O0), which incurs impracticable run-
time overheads (more than five times the original). Based on the software-implemented
techniques in the Literature, it is possible to make the overhead acceptable (less than two
times the original) by hardening the SASS.

The code transformations explored in this Chapter build upon the foundational
work by (OH; SHIRVANI; MCCLUSKEY, 2002), as introduced in Section 4.1.1. We use
the HPCT tool and follow the methodology flow presented in Figure 6.1 to automatically
apply the software-implemented technique to the case-study applications written in CU.
Initially, we input the CU source code to NVIDIA’s compiler NVCC, which generates the
PTX file. We then input the PTX file into SASSIFI to evaluate registers’ AVF to SDC and
DUE, as will be detailed in Section 6.3. Finally, we provide HPCT with the PTX file, the
registers’ AVF, and a configuration file. The result is a hardened PTX file.

6.2 Reliability Evaluation Results

This Section presents the empirical results of our reliability evaluation on NVIDIA
Kepler GPUs. We focus on two critical aspects.
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Figure 6.1: Software-implemented fault tolerance technique’s flow

Source: The Author.

6.2.1 Impact of Neutron Radiation on FIT Rates

Figure 6.2(b) shows the results of the neutron beam experiments as normalized
SDC and DUE Failure In Time (FIT) for Hotspot, NW, and Quicksort. Reported data
have been normalized by the smallest value of all FITs (i.e., Hotspot DUE rate) to pre-
vent the leakage of business-sensitive data. As shown in Figure 6.2(b), while the SDC
rate strongly depends on the executed code (about one order of magnitude of difference
between Quicksort and NW), the DUE rate is almost constant. This is explained by the
fact that the DUE rate has a component that is dependent on the underlying hardware
(scheduler, interfaces, etc.) and not only on the code. Quicksort and NW, respectively,
have 1.5 and 2 times higher DUE rates than Hotspot, as the former are control-flow-based
algorithms. Some data errors can lead to application crashes (as detailed in the following
subsection). Even though results are plotted in arbitrary units, these data show that using
fault tolerance techniques is mandatory for using such devices in safety-critical applica-
tions.

6.2.2 Architectural Vulnerability Assessment of GPU Registers

Figure 6.3 shows the AVF of each GPU register used to compute the selected
benchmarks. Figure 6.3(a) shows the SDC AVF and 6.3(b) the DUE AVF. Each K40
thread has 255 available registers on the register file, but most applications use only a few
of them. Hotspot uses more registers than the other tested benchmarks (52 registers per
thread for Hotspot, 20 for NW, and 46 for Quicksort). Comparing Figure 6.3 with Fig-
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Figure 6.2: Beam test setup at LANSCE and FIT for tested benchmarks.

(a) Part of our beam test setup at LANSCE. (b) FIT for all tested benchmarks normalized on a
Poisson distribution with a 95% confidence interval.

Source: The Author.

ure 6.2(b), it is clear that using more registers does not necessarily imply a higher FIT rate.
This result is to be expected, as AVF only provides information about fault propagation
without considering the probability of fault generation or faults in inaccessible resources.
It is possible to notice that SDCs are less probable than DUEs for all codes. This inter-
pretation is again in apparent contrast with Figure 6.2(b). On beam experiments, the GPU
hardware is fully exposed (including the big data Cache, arithmetic and logic units, etc.),
which increases the probability of data corruption. The higher AVF for DUE is also ex-
plained, considering that registers can store data, memory addresses, and index variables.

Faults in data mostly result in SDC, while faults in indexes or memory addresses
probably generate a DUE. However, while faults injected on data registers can be masked
by later operations (i.e., the corrupted result is multiplied by 0 or is filtered), faults injected
on addresses and indexes have a very high probability of generating wrong memory ac-
cesses or of changing the algorithm control-flow, resulting in a DUE. It is important to
notice that faults in data registers could also lead to a DUE (e.g., corrupted data is used to
update a control-flow variable), and faults in indexes could lead to an SDC as well (e.g.,
a loop is shortened, resulting in incomplete data), but these situations are less probable.

Fig. 6.3 also shows that the registers have very different AVFs to a given effect. For
example, when considering DUE effects for Quicksort, registers 36 and 37 show an AVF
lower than 0.1, while registers 37 and 38 show AVFs close to 1. These data confirm that
there is a huge variation in AVF in the register file for the same type of effect and also that
selective fault tolerance techniques should prioritize specific registers in order to increase
efficiency in terms of fault tolerance per area, execution time, and power consumption.

Another interesting aspect of Figure 6.3 is that a register AVF can also vary ac-
cording to each effect. An example can be seen in register 1 for NW, where SDC AFV
is close to 1, while DUE AVF is close to 0. In other words, it means that some registers
are more or less sensitive to causing SDC or DUE effects in the GPU. Such results are
very important since fault tolerance techniques may be either targeted at mitigating SDC
effects or DUE effects and because some applications are more concerned with one effect
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Figure 6.3: Individual register AVF for all applications. (a) shows register AVF to SDC
effects. (b) shows register AVF to DUE effects

(a) Register AVF to SDC

(b) Register AVF to DUE

than the other. Examples are safety-critical applications, which must avoid SDCs in order
to guarantee a correct result, and HPC applications, which must guarantee time-frames
and, therefore, avoid DUE effects that can slow down performance.

By using the data collected during these experiments and in the fault injection
campaign, we can propose efficient hardening strategies based on hardware and software
implementations that prioritize and protect only the most vulnerable registers to a given
effect. The following Sections describe in detail how these strategies can be applied and
their effectiveness in terms of fault coverage, area, execution time, and power consump-
tion overhead.

6.3 Hardware-Implemented Selective Hardening

Hardware-implemented fault tolerance techniques for GPUs must be efficient and
effective because their costs in the area, performance degradation, and power consumption
can be extreme. As detailed in Section 6.2.2, not all the registers, once corrupted, impact
the application output. Protecting the whole system would result in unnecessary overhead
in run time or area usage. In other words, protecting all registers would provide a good
but inefficient fault-tolerant solution.

We evaluate the benefit and overhead of a hardware selective hardening strategy
for GPU RFs. To do so, we first identify the design’s most sensitive and critical registers.
Then, to evaluate the efficacy and efficiency of selective hardening techniques, we mea-
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sure the overhead (either time or area) and the benefit (fault coverage) of protecting the
identified critical registers. The more registers we protect, the higher the fault coverage
and the higher the overhead.

Due to the impossibility of performing architectural modifications in modern GPUs
and to simplify our analysis, we assume that the protection of a register (1) detects all
faults in the register and (2) increases linearly the overhead. Overhead can be area over-
head (registers are duplicated) or time overhead (error correction code is applied). While
we are aware that (1) and (2) are simplifications, they are only used to evaluate the benefit
and overhead of the proposed technique.

According to data presented in Section 6.5.2, GPU registers have different AVFs
not only among each other but also for either SDC or DUE effects. A selective hardening
approach should then target either DUE or SDC effects, as the protection of a register
with high SDC AVF, for example, could hardly reduce DUEs. To prioritize and select the
registers to protect, we ranked registers according to their SDC and DUE AVF, from most
to least vulnerable.

Figures 6.4 show for Hotspot (Figure 6.4(a)), NW (Figure 6.4(b)), and Quicksort
(Figure 6.4(c)) applications, the fault coverage as a function of overhead, which is linearly
dependent on the number of hardened registers. We plot the achieved fault coverage as a
function of the number of protected registers. We propose two selective hardening, one
optimized for SDC effects and one for DUE effects. In Figure 6.4, dotted lines show the
efficiency of DUE-optimized selective hardening in reducing DUEs (red dotted line) and
SDCs (blue dotted line), while continuous lines show the efficiency of SDC-optimized
selective hardening (red for DUEs and blue for SDCs).

The Hotspot application, plotted in Figure 6.4(a), shows that both DUE and SDC
fault coverages, for both SDC-optimized selective hardenings (continuous blue line) and
DUE-optimized (dotted red line), saturate close to 39 hardened registers. Until then,
they both follow a super-linear function, where SDC-optimized takes little advantage over
DUE-optimized. Out of the 52 registers, for the SDC-optimized approach, 30% of fault
coverage can be achieved with the hardening of 6 registers (12%), while 60% with 13
(25%), and 90% with 28 (54%). For the DUE-optimized approach, 30% of fault coverage
can be achieved with the hardening of 8 registers (16%), while 60% with 17 (33%), and
90% with 29 (56%). This discrepancy happens because SDC and DUE effects are not
equally distributed among registers, where SDCs have a more concentrated distribution
than DUEs.

The NW application, plotted in Figure 6.4(b), shows a different trend than Hotspot.
The SDC-optimized (continuous blue line) selective hardening shows a steeper function
for the first hardened registers, presenting a super-linear function. In contrast, the DUE-
optimized (dotted red line) is almost linear up until 18 hardened registers, when it satu-
rates. Out of 20 registers, for the SDC-optimized approach, 30% of fault coverage can be
achieved with the hardening of 1 register (5%), while 60% with 4 (15%), and 90% with 10
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Figure 6.4: Hardware-implemented selective hardening efficiency. (a) Hotspot. (b) NW.
(c) Quicksort

(a) Hotspot application

(b) NW application

(c) Quicksort application
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(50%). For the DUE-optimized approach, 30% of fault coverage can be achieved with the
hardening of 5 registers (25%), while 60% with 10 (50%), and 90% with 16 (80%). This
discrepancy occurs mainly because only a few registers are responsible for most SDC
effects, while, excluding one register that presented no effects, DUEs are almost equally
distributed among used registers.

The Quicksort application, plotted in Figure 6.4(c), shows a similar trend to Hotspot
in terms of DUE-optimized (dotted red line), but with a slightly steeper curve for SDC-
optimized (continuous blue line) approach. Out of 46 registers, for the SDC-optimized
approach, 30% of fault coverage can be achieved with the hardening of 4 registers (9%),
while 60% with 11 (24%), and 90% with 22 (48%). For the DUE-optimized approach,
30% of fault coverage can be achieved with the hardening of 8 registers (17%), while
60% with 17 (37%), and 90% with 30 (65%). Such results are due to an SDC distribution
among registers close to the NW but a DUE distribution close to the Hotspot.

It is interesting to notice that because of the low AVF of some registers either to
SDC or DUE effects, all SDC-optimized and DUE-optimized show super-linear benefit-
overhead trends. In other words, our proposed approach always results in better efficiency
than fully protecting the register file (better fault coverage can always be achieved with
less overhead). On the other hand, when targeting one specific effect, the other mostly
shows worse efficiency. As one can see in Figures 6.4, fault coverage for DUE effects for
SDC-optimized fault tolerance (continuous red lines) and SDC effects for DUE-optimized
fault tolerance (dotted blue lines) show, along most of the x-axis, sub-linear functions.

6.4 Software-Implemented Selective Hardening

Software-implemented fault tolerance techniques are usually the only option when
dealing with COTS or protected parts, which is the case with modern GPUs. Nonethe-
less, software hardening strategies must be efficient and effective since every instruction
added to the original program code will eventually be processed by the GPU and in-
cur execution time overhead, which can be translated into performance degradation and
power consumption overhead. Fault tolerance by means of software implementation can
be applied to a given code in different abstraction levels, from a high-level C++ code to a
low-level assembly code. Either way, a selective software fault tolerance technique aims
to harden the most vulnerable parts of the code.

Software hardening could be more easily applied than hardware selective harden-
ing. In fact, hardware implementations may have to deal with issues such as irregular
layouts when partially hardening a register file (especially if implemented with RAM
modules), software and compiler modifications that may affect data distribution among
physical registers, varying register AVF among applications, applications that may use
different quantities of registers, among others. On the other hand, software-implemented
techniques do not have to deal with any of these issues.
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We follow the previous hardware-implemented approach to efficiently and effec-
tively harden the GPU until we identify the design’s most sensitive and critical registers.
Then, using data acquired and plotted in Figure 6.4, we set constraints to 30%, 60%, and
90% fault coverage and protect all case-study applications.

An example of the transformation performed by VAR can be seen in Figure 6.5.
As one can see, the left column shows the original program code, while the right one
shows the protected code. Instructions 3 and 7 are replicated through instructions 4 and
8, respectively, over replicated spare registers %r1’ and %r2’. The rest of the inserted
instructions are used to check data consistency between registers and replicated registers
data and to branch to the error subroutine.

Figure 6.5: Program code transformation

Source: The Author.

The fault coverage evaluation is done by a second fault injection campaign in
the same fashion as the one performed in Section 6.1. Figures 6.6 show for Hotspot
(Figure 6.6(a)), NW (Figure 6.6(b)), and Quicksort (Figure 6.6(c)) applications, the fault
coverage as a function of protected registers. The lines partially replicate the data from
Figures 6.4. At the same time, the dots represent the achieved fault tolerance for SDC
(blue dots) and DUE (red dots) fault coverage. It is important to note that hardware- and
software-implemented techniques are generic. Therefore, the X-axis should be adjusted
regarding power consumption to get a fair comparison. Nonetheless, the plotted data can
provide interesting insights into software-implemented efficiency regarding fault coverage
per replicated register.

The Hotspot application, plotted in Figure 6.6(a), shows interesting results for both
SDC and DUE software-implemented fault tolerance. When targeting 30%, 60%, and
90% fault coverage for SDC effects (continuous blue line), it achieved 32%, 63%, and
87% (blue dots), respectively. On the other hand, when targeting 30%, 60%, and 90%
fault tolerance for DUE effects (dotted red line), it achieved 31%, 37%, and 41% (red
dots). Results show that applied software-implemented techniques can efficiently detect
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Figure 6.6: Software-implemented selective hardening efficiency. (a) Hotspot application.
(b) NW application. (c) Quicksort application.

(a) Hotspot application

(b) NW application

(c) Quicksort application
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SDC effects at the same rates as hardware-implemented techniques but cannot follow
the same trend when considering DUE effects, where it saturates around 40% of fault
coverage.

The NW application, plotted in Figure 6.6(b), shows results close to Hotspot.
When targeting SDC effects, fault coverage was able to achieve results close to the
hardware-implementation ones: 33% for 30%, 70% for 60%, and 89% for 90%. When
targeting DUE effects, the NW hardening showed slightly better results than Hotspot but
still lower than the hardware-implementation ones: 33%, 44%, and 66% for 30%, 60%,
and 90%, respectively.

The Quicksort application, plotted in Figure 6.6(c), shows different results. For
SDC fault coverage, it was able to detect 65% for 30%, 88% for 60%, and 93% for 90%.
As one can notice, there is a much steeper curve than hardware-implemented approaches,
even though both reach 90% at the same register overhead. DUE fault coverage, on the
other hand, is much worse than previous applications. For 30%, 60%, and 90% hardware-
implemented fault coverage, it accomplishes 4%, 18%, and 23%, respectively, showing
worse results than hardware-implemented ones. The main reason is that Quicksort is the
most control-flow-oriented application, having many function calls and different thread
comparison instructions. Therefore, inserted instructions are more sensitive to DUE ef-
fects than previous applications, easily decreasing SDC effects but hardly decreasing DUE
effects.

It is interesting to notice that our proposed software-implemented fault tolerance
approach, even though implemented in the PTX file instead of the SASS, was able to
achieve SDC fault coverage equal to or better than hardware-implemented ones for the
same number of protected registers, showing that, with optimized application of software
redundancy, it could also offer better efficiency in terms of fault tolerance per power
consumption (power consumption by area for hardware-implemented and by run time for
software-implemented approaches). On the other hand, it presented worse results than
hardware implementation when targeting DUE effects. Results also show that, to fully
harden a GPU, a combination of hardware-implemented and software-implemented fault
tolerance techniques could be the best option for fault tolerance efficiency.

6.5 Improving Selective Fault Tolerance by Relaxing Application Accuracy

Some applications, safety-critical or not, have the attribute of tolerating inaccurate
results as long as they are in a predefined known range. In this sense, the approximate
computing paradigm exploits the gap between the level of accuracy required by the appli-
cation and the level of accuracy provided by the computing system to improve energy and
performance efficiency. By combining selective fault tolerance, which can target only the
most critical parts of the system, and approximate computing, which trades off computa-
tion accuracy with expended effort, we are able to relax individual register criticality and
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target only the most critical in an approximate computing perspective, thus reducing the
penalties imposed by software-based fault tolerance techniques.

Therefore, we propose to relax application accuracy to improve selective fault
tolerance techniques in GPU register files (GONCALVES et al., 2020). We first of-
fer a methodology to decrease application accuracy by introducing an error margin in
the results (Section 6.5.1). After that, an evaluation of Kepler GPU registers’ critical-
ity to SDC-induced faults (Sections 6.5.2 and 6.5.3). Then, we use the obtained data to
improve selective fault tolerance techniques regarding performance and resource usage
(Section 6.5.4).

The experiments follow the methodology presented in Section 6.1, with the ad-
dition of a new Case-study application, LavaMD. This application simulates interactions
among 192 particles in large 3D spaces. It’s important to note that we excluded DUE-
induced errors since our focus is on safety-critical applications. The analysis centers on
SDC-induced errors.

6.5.1 Proposed Methodology for Relaxing Application Accuracy

Our proposed methodology to relax application accuracy uses approximate com-
puting principles to exploit the gap between the level of accuracy required by the appli-
cation and the level of accuracy provided by the computing system. It inserts a margin of
error in which application results will be considered correct and, by doing so, can modify
and indirectly reduce individual register criticalities.

Since accuracy margins vary among different applications, our proposed method-
ology aims to perform two separate analyses. In the first one, we relax accuracy to cover
a wide range of error margins. By doing so, we intend to evaluate, in a broad spectrum,
how SDC-induced faults affect the outputs of the chosen case-study applications. Then,
we use the obtained data for the second analysis, limiting the relaxation accuracy range
to a narrower window and evaluating each register’s criticality individually. Combining
these two analyses, we intend to find out how small relaxations on application accuracy
impact individual register criticality. As applications vary in behavior and input data, we
relax result accuracy in two ways. For the Hotspot, NW, and LavaMD, we relax accu-
racy by introducing a percentage margin in which all results are considered correct once
a single incorrect result out of the accepted accuracy margin could lead the application
to failure. For the Quicksort, we relax accuracy by introducing a percentage margin of
total errors in the output vector. As a supporting algorithm for larger applications, Quick-
sort depends on its input vector values, especially because it mainly switches memory
positions. For example, if all vector values were the same, we would only see a reduced
number of SDCs, as the application would mask most of the faults. Still, if the vector
were composed of sparse values, a little accuracy relaxation would not be able to reduce
register criticality.
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In the following subsections, we present the analyses proposed by our method-
ology: subsection 6.5.2 discusses the broad analysis of register file reliability to SDCs,
and subsection 6.5.3 discusses the narrower analysis of individual register criticalities to
SDCs.

6.5.2 Analysis on Register File Reliability

In this first analysis, our methodology evaluates the impact of SDCs on the output
of the chosen case-study applications. We analyze the reliability increase to SDCs for all
applications, with a range of acceptance error margins varying from 10−9% to 100% on a
logarithmic scale. As one can see in Figure 6.7, the chosen range is able to cover a broad
spectrum in reliability increase. It is important to notice that, depending on the target
application, one might need to widen the accuracy relaxation range further to observe the
reliability increase better.

Figure 6.7 plots register file reliability increase for relaxed application accuracy
for all case-study applications: Hotspot (yellow circles), NW (brown crosses), LavaMD
(green squares), and Quicksort (blue triangles). The graph considers the sum of all in-
dividual registers’ AVF for each application shown in previous Figure 6.8. As the accu-
racy relaxation increases, more errors are considered correct, and the reliability of SDCs
also increases.

The Hotspot, plotted in yellow circles, shows a high increase rate in reliability for
accuracy relaxations between 10−5% and 1%, indicating a reliability increase of up to
90.8% for an accuracy relaxation of 1%. This improvement occurs because most faults
cause a small variation in the output when SDC-induced faults corrupt application regis-
ters.

Results for the NW application, plotted in brown crosses, show almost no increase
in reliability at less than 10−2% relaxation, reaching only 56.4% reliability increase at
100% accuracy relaxation. It shows the least reliability increase per accuracy relaxation
among all case-study applications. On the other hand, even though it presented the worst
results, one could still increase reliability by 29.9% when increasing accepted result accu-
racy to 1% and, if one could push acceptance to 10%, a 48.4% reliability increase could
be achieved.

Results for the LavaMD application, drawn in green squares, indicate a milder
slope when compared to other applications. The reliability increase grows almost linearly,
becoming steeper at 10−2%. It provides gains in reliability starting at the lower limit of
10−9% until the higher limit of 100%. For instance, one could increase reliability from
23.3% to 65.9% for a tolerance range from 10−9% to 1%, and up to 78.5% when accepting
a 10% error margin.

Lastly, the triangular blue line shows results for the Quicksort. This algorithm
shows similar behavior to the Hotspot, presenting a 99.8% reliability increase rate at 1%
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Figure 6.7: Register file reliability increase to SDC-induced errors for relaxed application
accuracy.

accuracy relaxation. Although only 0.2% errors are bigger than 1%, the biggest error
observed in Quicksort is 12.4%, indicating the accuracy relaxation required to make the
Quicksort fully tolerant to SDC-induced faults.

6.5.3 Analysis on Register Criticality

To better visualize how accuracy relaxation affects register criticality and based
on results plotted and discussed in previous subsection 6.5.2, this second analysis con-
siders reduced accuracy relaxation margins between 10−3% and 1%. Such margins are
conservative when compared to the state-of-the-art works and feasible for many real ap-
plications. The previous analysis showed that the register file reliability increased on all
case-study applications when relaxing result accuracy in these restricted margins. There-
fore, a fine-grained analysis of individual register criticality could provide a better un-
derstanding of overall register criticality. Figure 6.8 presents individual register’s AVF to
SDC-induced faults in our four case-study applications for all application-used registers.

The bars plotted in Figure 6.8 are composed of different application accuracies.
A blue bar represents a 0% accepted accuracy (used by state-of-the-art selective fault
tolerance techniques), and it changes color as application accuracy is relaxed up to a 1%
accepted accuracy in a logarithmic scale. A single-color bar represents a register that can
only be relaxed at a single pace, while a five-color bar represents a register that can be
relaxed at multiple paces. A nonexistent bar represents a register that is not susceptible to
SDC-induced faults. Interestingly, while relaxing application accuracy, register criticality
ordering also changes, influencing selective fault tolerance parameters.

Figure 6.8(a) presents the results for the Hotspot. They show that when relaxing
acceptance accuracy to the minimum 10−3%, most registers already drop criticality, and
registers 11, 33, 34, 44, and 47 become fully tolerant to SDC-induced faults. When
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Figure 6.8: Register AVF to SDC with relaxed criticality. (a) Hotspot application. (b)
NW application. (c) LavaMD application. (d) Quicksort application.

(a) Hotspot application

(b) NW application

(c) LavaMD application

(d) Quicksort application
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further relaxing application accuracy, register AVF drops further to the point where, at
1% accepted accuracy, only 25 registers remain sensitive to SDC-induced faults, all below
5% AVF, dropping from an average register AVF of 6.7% at 0% accuracy to 0.6% at 1%
accuracy.

Results for the NW application, plotted in Figure 6.8(b), show a different tendency.
Relaxing application accuracy between 10−3% and 10−2% accepted accuracy has almost
no effect on register AVF. Effects will only be seen at 10−1% and 1% steps, where a few
registers decrease AVF (0, 6, 8, 12, 14, 16, 21, and 22). From these registers, 0, 12,
and 22 were able to have their AVFs reduced to almost 0. Such results happen because
the number of errors caused by a single fault was much higher when compared to the
Hotspot (500+ errors against up to 10). Our methodology considers a single value out
of the margin as an error. Because of that, AVF drops have been mostly noticed when
relaxing accuracy over 500%.

Figure 6.8(c) presents the results for the LavaMD application. They show a com-
bination of Hotspot and NW. 12 registers were not susceptible to SDC-induced faults.
From the remaining 48, 13 became fault-tolerant to SDC-induced faults at 10−3% and a
total of 15 at 10−2%. On the other hand, relaxed criticality did not affect 6 registers up
to 1%. The LavaMD is a perfect application to show how ordering by register criticality
changes when relaxing accepted accuracy. For example, registers 34, 36, and 38 drop
from the most critical to the least critical with a 10−3% relaxation.

Results for the Quicksort application, plotted in Figure 6.8(d), present yet another
tendency. From its 55 used registers, only 24 (44%) are sensitive to SDC-induced faults.
The hardening of only 44% of resources yields 100% fault tolerance to SDC-induced
faults. When applying our approach to relax application accuracy, registers present a
behavior similar to the Hotspot, where individual register AVFs drop at different paces,
modifying register criticality ordering and thus further affecting selective fault tolerance
techniques.

6.5.4 Selective Hardening Combined with Approximate Computing

Figure 6.9 presents data from selective fault tolerance techniques. For all case-
study applications, it shows fault coverage as a function of hardened registers (either by
means of hardware or software). Each line represents a different acceptance accuracy, in-
cluding 0% (regular selective hardening) and a logarithmic scale from 10−3% to 1%. The
following results are compared to full hardening (replication of all registers) and regular
selective hardening (replication of the sensitive registers considering a 0% error margin)
techniques. Selective hardening techniques usually reduce full hardening overheads in
performance and resource usage, as they only protect a subset of all registers. Our ap-
proach further reduces overheads by reducing the subset of registers to be protected.

The Hotspot, plotted in Figure 6.9(a), has a total of 53 registers, of which 41 are
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Figure 6.9: Selective hardening efficiency for relaxed criticality. (a) Hotspot application.
(b) NW application. (c) LavaMD application. (d) Quicksort application.

(a) Hotspot application (b) NW application

(c) LavaMD application (d) Quicksort application
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sensitive to SDC-induced faults. At 100% fault coverage, selective techniques would
be able to reduce full hardening overhead by 22.6%. Our approach is able to further
reduce overhead at a pace of 4 registers per relaxation step down to 25 registers at 1%
acceptance accuracy, resulting in a 39% reduction in overhead when compared to selective
fault tolerance techniques (52.8% to full hardening).

The NW application, presented in Figure 6.9(b), has a total of 23 registers, and 21
are sensitive to induced faults. When relaxing criticality, hardening the same 21 registers
is required to achieve 100%

Figure 6.9(c) shows data for the LavaMD application. From its 61 registers, 49
are sensitive to SDC-induced faults, meaning that selective fault tolerance techniques
would be able to reduce overheads by 19.6% over full hardening while keeping 100%
fault coverage. Our approach at 10−3% acceptance accuracy can reduce this overhead to
36 registers and down to 34 registers at 1% accuracy. It represents a 44.2% decrease from
full hardening and a 30.6% decrease from selective hardening.

The Quicksort, shown in Figure 6.9(d), has 56 registers, of which 25 are sensitive
to SDC-induced faults. While maintaining 100% fault coverage, our approach is able to
reduce sensitive registers to 13 at 10−1% and to 1 at 1%, or 98.2% and 96% reduction
from full and selective hardening, respectively.

6.6 Case-study Summary

This study case provided guidelines for improving GPU register file reliability by
implementing and applying selective fault tolerance techniques implemented by means
of hardware and software. In the first moment, a radiation experiment performed using
a neutron beam was conducted to evaluate the FIT of a set of case-study applications
running on NVIDIA K40 GPUs. Then, a fault injection campaign was performed with
SASSIFI, an architectural-level fault injector, to evaluate individual register AVF to SDC
and DUE effects. While radiation experiments showed that GPU systems must be hard-
ened to perform safety-critical applications, fault injection results showed that AVF varies
widely among different registers, applications, and effects (SDC and DUE).

Based on collected data from the fault injection campaign, we proposed a fault
tolerance strategy to rank registers according to either SDC or DUE effects and selec-
tively harden them with known hardware-implemented fault tolerance techniques. Re-
sults showed that, for all applications, super-linear functions were found when targeting
a specific effect. In other words, the results presented always showed better efficiency re-
garding fault coverage per overhead than applying random or full register file hardening.
On the other hand, fault coverage for the not-targeted effect presented worse efficiency.

We then applied the same strategy to software-implemented fault tolerance tech-
niques by using the same register AVF ranking and applying software-implemented tech-
niques to all case-study applications. Results from a second fault injection campaign,
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compared to previous hardware-implemented ones, in terms of the number of protected
registers, showed equal or better efficiency for SDC fault coverage but worse efficiency
for DUE fault coverage. Such results should be adjusted according to area overhead
(hardware-implemented) and performance degradation (software-implemented). Still,
they provide interesting insights on selective fault tolerance for commercial state-of-the-
art GPUs as they are.

In addition, we proposed to decrease acceptance accuracy to improve fault toler-
ance techniques in GPU register files by either increasing SDC fault coverage or reducing
overheads. Then, we proposed a methodology to relax acceptance accuracy, reduce regis-
ter criticality, and evaluate individual register AVF to SDCs. Based on the collected data,
we reordered registers according to relaxed criticalities and combined them with selective
fault tolerance techniques.

Results showed that, by only relaxing application accuracy, it was possible to
improve the GPU register file’s reliability against SDC-induced faults in an average of
71.6% for 1% of application accuracy relaxation. Results also showed that our approach
is able to reduce overheads when compared to selective hardening by an average of 41.4%
while maintaining 100% fault coverage. When lowering fault coverage constraints below
100%, our approach presented even higher gains, up to the point where, at 10% over-
head (10% of the system registers are hardened), we were able to increase fault cover-
age by an average of 80.1%, when compared to selective fault tolerance technique. It
is also important to mention that our approach can be applied to hardware-implemented,
software-implemented, and hybrid techniques.

Building upon the previously discussed selective hardening techniques in Chap-
ter 4, this study case introduced an innovative approach that integrated the selective hard-
ening strategy with approximate computing techniques to optimize the protection of the
most vulnerable application registers in commercial GPUs. This approach is particularly
relevant when compared with existing techniques such as NVIDIA’s SInRG (Mahmoud
et al., 2018), which, while effective in offering substantial SDC coverage through instruc-
tion protection and general ECC implementation for register reliability, does not prioritize
selectiveness in register protection, thus potentially leading to significant performance
overheads and increasing DUE effects, as demonstrated by (OLIVEIRA et al., 2014).
Our methodology addressed this challenge by selectively targeting critical registers and
enhanced efficiency through a combination with approximated computing. Moreover, the
results demonstrated the potential of our approach to significantly reduce overheads com-
pared to selective hardening alone while maintaining or even improving fault coverage,
thus presenting a compelling advancement in the GPU register file reliability field.

The subsequent Chapter immerses in the domain of the FlexGrip architecture,
where we delve into the implementation of low-level software-based hardening tech-
niques and comprehensive ISA extensions for hybrid fault tolerance implementation.
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7 LOW-LEVEL SOFTWARE-BASED HARDENING IN FLEXGRIP

This chapter begins with the implementation of established low-level software-
based fault tolerance techniques for GPUs, showcasing how these can be applied through
assembly code transformations. Following this, we propose three specific software-only
optimizations: Traceback, Move, and Delayed Notification, and then embark on a compre-
hensive Design Space Exploration. This exploration assesses the impact of these newly
proposed optimizations on GPU reliability across multiple configurations. The optimiza-
tions are tailored to enhance performance and reliability trade-offs in GPU architectures
and are selectively applied to critical areas such as memory-access and predicate-setting
instructions (GONCALVES et al., 2022).

Subsequently, the discussion extends to the proposal and implementation of ISA
extensions, aiming to provide a more comprehensive solution for GPU reliability. These
extensions are developed to augment the fault detection and correction capabilities of
GPUs beyond the software-based methods (GONCALVES et al., 2020).

In the latter sections, the chapter transitions to address the detection and correction
of faults within the GPU pipeline. Here, we present a systematic approach to enhancing
pipeline reliability through a hybrid XOR technique and software-managed parity, assess-
ing their effectiveness in mitigating radiation-induced faults (BRAGA; GONÇALVES;
AZAMBUJA, 2023; BRAGA; GONCALVES; AZAMBUJA, 2023).

7.1 Methodology for Reliability Evaluation and Hardening

This section outlines the methods for assessing FlexGrip reliability through fault
injection and details the assembly code hardening techniques used to mitigate error prop-
agation within GPUs.

7.1.1 Reliability Assessment through RTL Simulation

Fault injection campaigns were performed through the Fault Injection Simulator
presented in Section 3.4.2 to measure the impact of software-based hardening techniques
on reliability. We measured reliability by evaluating the probability of low-level cor-
ruption, such as a bit-flip in the register files or the pipeline registers, propagating to the
output vector and causing an error quantified by the AVF. This probability was determined
by dividing the number of errors by the number of injected faults. We did not inject faults
in the memories, assuming they were protected by design (e.g., ECC). Still, we intend
to evaluate them in future studies. To evaluate the system’s reliability, we classified the
injected faults based on their potential impact on the system AVFs: Masked, DUE, SDC,
and Detected.
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7.1.2 Assembly Code Hardening through HPCT

The software-based hardening techniques are implemented through program code
transformations at the assembly level. Thus, they insert/remove assembly instructions
into/from the program code, access registers and memory addresses, and use the data-
path and the controlpath through assembly instructions. The main benefit of applying
software-based techniques at the assembly level is that they are compiler-independent.
Therefore, all compiler optimizations can be performed without removing the added re-
dundancies, and we have better control over the code transformation. Also, one can di-
rectly target specific registers instead of variables, directly protecting the register files.
The main drawback is that the pipeline is not directly accessible. Therefore, its hardening
becomes a byproduct of the register file hardening.

To protect NVIDIA GPU codes at a low level, it is necessary to modify the SASS
source, as outlined in Section 5.2. While alterations at the PTX level are possible, they
may lead to undesirable changes during the compilation process, affecting the optimiza-
tion of the final assembly.

We employed HPCT, which we upgraded to support the FlexGrip ISA and the
proposed techniques, to apply the software-implemented techniques to the case-study
applications automatically. This process involved inputting the SASS code into HPCT,
which automatically carried out the code transformations, resulting in a hardened SASS
file. The program code transformations discussed in this chapter are based on the original
work of Oh et al., introduced in Section 4.1.1.

7.2 Software-based Hardening Techniques

In the following, we discuss the program code transformations alongside the three
proposed optimizations to improve performance in reliability, fault effects, and fault noti-
fication time at different costs.

7.2.1 Program Code Transformations

In this section, we further detail the implementation of the three core transfor-
mations, as initially proposed by Oh et al. (OH; SHIRVANI; MCCLUSKEY, 2002) and
introduced in Section 4.1.1: (1) datapath duplication, (2) consistency checking, and (3)
host notification.

Datapath duplication (transformation 1 - T1) is responsible for duplicating all
datapath operations, a process that aligns with the concept of Redundancy discussed in the
previous section. This transformation forces the hardware to execute twice the datapath
operation in an intertwined fashion, thereby exploiting Instruction Level Parallelism (ILP)
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from the GPU architecture more effectively than running the code twice. The duplicated
instructions operate over copy registers, completely separating the original and duplicated
datapath operations. As we consider the memory hardened by other means (e.g., ECC),
we do not duplicate store instructions, thus not duplicating memory addresses.

Consistency checking (transformation 2 - T2) corresponds to the Checking compo-
nent discussed earlier. It is tasked with verifying the consistency between the original and
duplicated datapath using comparison instructions followed by conditional branching to
an error subroutine. This transformation introduces a data dependency that affects the ILP
gains. In this section, we explore the insertion of consistency checking after two classes
of instructions: memory access and predicate setting, which influence the program’s data
flow and control flow, respectively.

Host notification (transformation 3 - T3) aligns with the Notification component,
notifying the host in the event of a fault detection. This transformation could be either a
trap instruction or a memory write instruction to the global memory. These instructions
are not executed during correct application execution and are activated a single time when
a fault is detected. Their execution is conditional upon the outcome of the consistency
checking, necessitating a predicate register check each time a host notification is added to
the program code.

Figure 7.1 exemplifies the three transformations in column Non-optimized Hard-
ened Code. Datapath duplication (T1) is depicted in green, replicating lines 1, 3, and 5
with lines 2, 4, and 6. As one can notice, the instructions are the same, but they operate
over replicated registers (e.g., R3’ instead of R3). Note that the store instruction in line 15
is not duplicated. Consistency checking (T2) is highlighted in blue through instructions
7, 16, and 18, which check consistency for memory access instructions, and instructions
10 and 12, which perform consistency checks for predicate setting instructions. Finally,
host notification transformation (T3) is shown in red and inserted after each consistency
checking instruction in lines 8, 11, 13, 18, and 19.

7.2.2 Proposed Optimizations

The implemented code transformations take advantage of ILP but still duplicate
the whole datapath (except for store instructions) and insert consistency checks and host
notifications. Therefore, we expect them to incur high execution time overheads, even
considering ILP gains. To reduce performance degradation (i.e., increase the performance
of software-based hardening techniques), we propose three optimizations targeting the
program code transformations: Move optimization, Traceback optimization, and Delayed
Notification optimization. These optimizations aim to improve performance by trading
off reliability, detection of specific effects, and host notification delay.
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Figure 7.1: Software-based hardening technique transformation examples.

Source: The Author.

7.2.2.1 Move optimization

Memory access instructions (i.e., load and store) are the instructions that require
the most clock cycles to be executed in FlexGrip (e.g., a load instruction requires around
four times more clock cycles than a move instruction). In this sense, we propose the
Move optimization. This optimization replaces replicated load instructions with move
instructions that copy the loaded data to the copy register. Thus, instead of adding a
replicated load instruction, it adds a faster move instruction. Doing so directly affects the
datapath duplication (T1) by reducing the performance overhead and adding a point of
failure to the hardened code.

Figure 7.1 shows an example of this optimization in column Move opt. When
compared to the non-optimized hardened version (Hardened code), the only difference is
line 6, where Hardened code replicates the original load instruction in line 5 (LOAD R2,
[R1]) with a second load instruction (LOAD R2’, [R1’]), and the Move optimization uses
a move instruction instead (MOV R2’, R2).

While replicating a load instruction with a move instruction is able to reduce ex-
ecution time, it inserts a point of failure on the software-based hardening technique, thus
trading off on reliability. Suppose a fault affects the register written by the load instruction
before the move instruction can copy its value to the replicated registers. In that case, the
corrupted value will propagate to the replicated register, both the value and its replica will
be corrupted, and the consistency checking will not signal a fault. Even though the load
instruction takes an increased amount of clock cycles to execute, only a fault that hits the
instruction in its late write-to-register stage would actually upset the destination register.
Therefore, this point of failure is smaller than the fetch-to-fetch time.
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7.2.2.2 Traceback optimization

Datapath duplication and consistency checking are the leading causes of perfor-
mance degradation in software-based hardening techniques, even when considering ILP.
One alternative is to selectively apply selective hardening techniques by targeting only the
most critical parts of the program code. However, related works still cannot pinpoint the
most critical parts of a program code. Some related works target subroutines and func-
tions at the program level, while others target variables, registers, and memory addresses.
Instead, we propose the Traceback optimization to target instructions and their data in a
more fine-grained approach.

It targets specific instructions and all data used during their execution. To do so,
we choose a group of target instructions with a high probability of causing an error to the
application if affected by a fault (i.e., memory access instructions for data-flow errors and
predicate setting instructions for control-flow errors) and evaluate all previous instructions
that lead to the execution of these target instructions (i.e., all instructions that computed
the data read by a given target instruction).

To implement the Traceback optimization, we start by defining a group of instruc-
tions as target instructions (e.g., memory access or predicate setting instructions). Then,
we analyze the static program code and draw its control flow. Next, for each target in-
struction i, we evaluate which instructions have written their registers and add them to
the group of target instructions. We run this procedure recursively until there are no new
instructions to be added to the target instruction group. Finally, we selectively apply the
previously discussed program code transformations to this group of instructions.

The choice of which instructions to add to the target instruction group is a com-
plex task that depends on in-depth code analysis, fault injection campaigns, and design
space exploration. As this analysis is out of the scope of this work, we took a simplified
approach and selected two instruction groups: memory access instructions (Traceback
MEM) and predicate setting instructions (Traceback PRED). By doing so, we expect to
target data-flow and control-flow errors, respectively. Even though this simplifies the
problem, we expect it to provide good results for a proof-of-concept.

Figure 7.1 shows the Traceback optimization applied for memory access instruc-
tions on the Traceback MEM column and for predicate setting instructions on the Trace-
back PRED column. The original code has two memory access instructions in lines 5 and
15, which have their registers R1 written by instruction 3, and one predicate setting in-
struction in line 9, which has its register R3 written by instruction 1. Thus, the Traceback
optimization selectively hardens lines 3, 5, and 15 for the memory access instructions and
lines 1 and 9 for the predicate setting one.

The Traceback optimization selectively targets specific instructions to enhance the
effectiveness of program code transformation, leaving some code unhardened. It lets
designers focus on particular fault effects like data-flow or control-flow errors. This op-
timization is highly effective for applications with distinct logic for control flow and data
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flow, such as a constant loop computing a value. However, hardening may yield similar
code to non-optimized versions for applications with intertwined control and data flow
logic, such as computations determining loop iterations from inputs.

7.2.2.3 Delayed Notification optimization

The host notification program code transformation informs the user that a fault
has been detected in a previous consistency check. When applying the non-optimized
program hardening, the consistency check compares two values and overwrites a pred-
icate register with a flag indicating if a fault was detected. As every consistency check
overwrites the previous value of the flag, the host notification has to be done before the
next consistency check. The proposed Delayed Notification optimization changes how
consistency checks write predicate registers. It thus provides the designer with options to
perform host notifications less frequently. To do so, it employs conditional instructions
(usually implemented but not restricted to GPU ISAs, such as in CUDA) to replace the
comparison instruction with a conditional comparison instruction. By doing so, the predi-
cate register is only written once when changing state to "fault detected," thus never being
reset. Therefore, multiple consistency checks can be paired with a single host notification,
up to using a single host notification instruction for the complete program code.

Figure 7.1 shows the Delayed Notification optimization in the Delayed Notifica-
tion opt. column. Compared to the non-optimized program hardening, it replaces all
consistency checks (SETP.NE) in lines 7, 10, 12, 16, and 18 with conditional consistency
checks (@!PE SETP.NE). By doing so, it removes all host notification instructions in lines
8, 11, 13, 17, and 18 and inserts a new host notification instruction in line 20.

The Delayed Notification optimization allows designers to decrease host notifica-
tion frequency. Doing so improves performance at the cost of a larger fault notification
period. Therefore, it does not decrease reliability in terms of fault detection. However,
a latent fault in the system might increase the chance of a fault causing an error. Also,
the longer the system takes to inform the host of a fault, the longer the user will take to
correct the fault.

7.3 Application Hardening

The chosen case-study applications are simple but representative when consider-
ing resource usage and execution flow orientation: vector sum (VectorSum), matrix multi-
plication (Matrix), Fast Fourier Transform (FFT), and bitonic sort (Sort). The VectorSum
is the shortest application because it only sums two vectors in the memory; therefore, it
is a pure data flow-oriented application. The Matrix is mostly a data flow-oriented appli-
cation. Still, it has a small fixed loop that iterates over the matrices. The FFT is a mix
of control-flow and data-flow orientation. It has a more complex control than the Ma-
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trix but still performs heavy multiplications and additions. Finally, the Sort is mostly
control-flow oriented, as it moves data according to data comparisons. Even though
micro-benchmarks, these applications make the building blocks of major HPC and safety-
critical applications (HASSANI; AIATULLAH; LUKSCH, 2014).

Table 7.1 shows the resource usage for the four case-study applications running
on the 8-, 16-, and 32-core configurations.

Table 7.1: Program memory and runtime requirements for all FlexGripPlus configurations

Application Program Memory (bytes)
Runtime (µs)

8 cores 16 cores 32 cores

FFT 1,344 964 588 406
Matrix Multiplication 264 320 224 177
Sort 288 824 610 502
VectorSum 563 141 103 85

Average 615 562 381 292

Table 7.2 shows the percentage execution time overhead over Table 7.1, individu-
ally, for the datapath duplication (T1) - DD - and the consistency checking (T2) with host
notification (T3) - CC. Data have been calculated by measuring datapath duplication alone
(T1) and its difference to all transformations combined (T1, T2, and T3), thus considering
ILP and architectural characteristics of the GPU configuration. Therefore, to effectively
harden a program code (and assess execution time overhead), one must combine the dat-
apath duplication column with the consistency checking and host notification column,
adding their respective percentage overheads. The datapath duplication column considers
data for memory access and predicate setting instruction duplication (DD), Traceback op-
timization for memory access (DD [MEM]) and predicate setting (DD [PRED]), and the
Move optimization ([M]). The consistency checking and host notification column consid-
ers data for the Traceback optimization for memory access (CC [MEM]) and predicate
setting (CC [PRED]) and the Delayed Notification optimization ([D]). Data for check-
ing both memory access and host notification requires adding columns MEM and PRED
(optionally with [D]).

Figure 7.2 draws and discusses data from Table 7.2, considering the execution time
overhead for all transformations running on 8-, 16-, and 32-core GPU configurations. Fig-
ure 7.2(a) depicts isolated overheads for datapath duplication (DD). It shows the following
datapath duplication versions: DD, non-optimized; DD [M], optimized with Move; DD
[PRED], optimized with Traceback PRED; DD [PRED+M], optimized with Traceback
PRED and Move; DD [MEM], optimized with Traceback MEM; and DD [MEM+M],
optimized with Traceback MEM and Move. Figure 7.2(b) shows the same hardening ver-
sions for consistency checking and host notification (CC). Finally, Figs. 7.2(c) and 7.2(d)
show hardening versions for all transformations (DD+CC) without and with the Delayed
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Table 7.2: Execution time overhead for datapath duplication, consistency checking, and
host notification (%)

Datapath duplication (DD) Consistency checking and host notification (CC)

Application Cores Full Full [M] MEM MEM [M] PRED PRED [M] MEM MEM [D] PRED PRED [D]

FFT

8 79 67 71 60 24 24 29 14 20 10

16 76 59 70 53 21 21 26 13 18 9

32 72 49 67 43 17 17 22 11 14 7

Matrix

8 78 51 75 48 8 8 36 18 18 9

16 75 39 73 36 6 6 27 13 14 7

32 72 28 70 26 4 4 20 10 10 5

Sort

8 58 38 54 34 54 34 51 25 43 21

16 57 32 54 29 54 29 42 21 35 18

32 57 27 54 25 54 25 35 18 30 15

VectorSum

8 85 56 85 56 9 9 40 20 - -

16 77 40 77 40 7 7 29 15 - -

32 71 27 71 27 5 5 19 10 - -

Average

8 75 53 71 50 24 19 39 19 27 13

16 71 43 69 40 22 16 31 16 22 11

32 68 33 66 30 20 13 24 12 18 9

Notification optimization, respectively.

Figure 7.2: Transformations’ runtime overhead for 8-, 16-, and 32-core configurations.

(a) Datapath duplication (b) Consistency checking and host notification

(c) Transformations without Delayed Notification (d) Transformations with Delayed Notification

Figure 7.2(a) shows that the Move optimization significantly reduces the datapath
duplication overhead for all applications. This result was expected, as we designed this
optimization to reduce execution time at a cost in reliability, later evaluated in Section 7.4.
On the other hand, the Move optimization also produces an increased reduction for con-
figurations with more cores. This effect can be explained by the fact that an arrangement
with more parallel cores increases the number of concurrent global memory accesses.
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Thus, by replacing load instructions with move instructions, we could alleviate the global
memory pressure, which is then able to reduce performance degradation more efficiently
in configurations with more cores. These data indicate that the Move optimization can
perform even better in COTS GPUs due to their configuration with many cores.

Figure 7.2(a) also shows the Traceback optimization applied to the case-study ap-
plications. To evaluate this optimization, we must consider its application to the memory
access and predicate setting instructions individually.

The performance gain is minimal when the Traceback optimization is applied to
the memory access instructions. This result happens due to two main factors: most of
the program code instructions are used for accessing memory data (i.e., data-flow), thus
cannot be removed from the hardening; or the data-flow also uses most of the instruc-
tions used for calculating conditional branches, conditional executions, and loops (i.e.,
control-flow). With a small control flow, data-flow-oriented applications FFT, Matrix,
and VectorSum showed little performance improvement. The VectorSum presented no
improvement due to not having control-flow instructions. With a complex control flow,
the Sort application also showed little performance improvement because of its entangled
data and control flows. Unlike the Move optimization, the Traceback optimization is not
a trade-off between performance and reliability. Therefore, even with small performance
gains, applying it has no drawbacks.

When considering the Traceback optimization applied to the predicate setting in-
structions, the performance gain is much higher than when applied to the memory access
instructions. For the same reasons discussed previously, applications with a heavy data
flow can be more aggressively optimized as long as the data and control flow are not en-
tangled. Therefore, one can notice a significant performance gain for the FFT and Matrix
applications. Because the VectorSum has no control flow, its optimization would equal
the original unhardened application. On the other hand, the Sort application showed the
smallest performance gain because its instructions are mostly used for both control and
data flow. The optimizations in runtime observed when protecting the FFT and Matrix ap-
plications show that the Traceback optimization can harden instructions selectively with
significant performance gains.

Figure 7.2(b) shows that, for all applications, the Delayed Notification optimiza-
tion reduces the runtime overhead by half. This reduction happens because it uses a single
notification instruction for a group of checking instructions instead of one notification for
each checking instruction. The highest reduction is achieved with a single notification
instruction for the complete program code. The main drawback is that this optimization
increases the average delay between identifying a fault and notifying the host. However,
it should not decrease reliability. The selective protection improves performance signif-
icantly, especially when associated with the Delayed Notification. The number of cores
demonstrates an impact similar to that observed in the datapath replication with the Move
optimization (Figure 7.2(a)).
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The total costs for the proposed fault tolerance techniques are presented in Figs. 7.2(c)
and 7.2(d), without and with the Delayed Notification optimization, respectively. They
add the datapath duplication costs presented in Figure 7.2(a) with the consistency check-
ing and host notification costs presented in 7.2(b). Results without the optimization show
that the Move and Delay optimizations together reduce the average performance cost from
134%, 119%, and 105% to 83%, 66%, and 51% for 8, 16, and 32 cores, respectively.
When selective memory protection is implemented, the average cost drops to 69%, 55%,
and 42% for 8, 16, and 32 cores. When selective predicate instruction is implemented,
the average cost is 35%, 30%, and 24% for 8, 16, and 32 cores, respectively. Such results
indicate that when performance is essential, selective protection should be applied when-
ever possible. In addition, the results show that the amount of cores not only speeds up the
execution time of applications but also absorbs the cost of performance of fault tolerance
techniques.

7.4 Fault injection results

Faults were injected in the original and hardened case-study applications. For
each application, we considered three hardened versions: (1) SDC Hard, with consis-
tency checking for memory access instructions and the Traceback MEM optimization; (2)
DUE Hard, with consistency checking for predicate setting instructions and the Traceback
PRED optimization; and (3) Full Hard, with consistency checking for memory access
and predicate setting instructions. We considered the delayed branch optimization for all
versions because previous works showed statistically the same fault reduction for both
versions. Table 7.3 summarizes the final fault tolerance techniques’ names and shows
each tested version and optimizations applied.

Table 7.3: Implemented hardened versions

Label Application hardening Move Traceback MEM Traceback PRED Delayed Notification

Unhardened

SDC Hard X X X

SDC Hard [M] X X X X

DUE Hard X X X

DUE Hard [M] X X X X

Full Hard X X

Full Hard [M] X X X

We injected 10,000 faults for each combination of (1) case-study application (FFT,
Matrix, VectorSum, and Sort), (2) software version (original, SDC Hard, SDC Hard [M],
DUE Hard, DUE Hard [M], Full Hard, and Full Hard [M]), (3) GPU configuration (8-, 16-
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, 32-core), and (4) fault injection location (register file and pipeline registers), reaching
1,440,000 injected faults (VectorSum has only 3 software versions). Each of the 1.44
million faults was injected as a single fault per program execution, meaning that we ran
the case-study applications a total of 1.44 million times, each with a single upset.

In the following, we discuss the results for faults injected into the register files and
pipeline registers.

7.4.1 Register File

Figure 7.3 averages data for the 8-, 16-, and 32-core configurations for the fault
injection in the register files, as they presented similar results. It shows, for all four
case-study applications and all hardening versions (because the VectorSum does not have
control-flow instructions, it does not have a DUE Hard version, and the SDC Hard is the
same as the Full Hard), faults classified according to their effects (DUE, SDC, Detected,
and Masked).

Figure 7.3: Fault effects distribution for faults injected into the register files.

Source: The Author.

When considering SDC effects, SDC Hard and SDC Hard [M] techniques effec-
tively reduced DUE and SDC cases in all applications, showing an average error reduction
rate of 88% and 82%, respectively. SDC Hard was able to detect faults more effectively
for the data-flow-oriented applications (FFT, Matrix, and VectorSum), followed closely
by SDC Hard [M]. On the other hand, neither technique could detect all SDCs for the FFT
application because its control part is larger than in the other two applications. Also, when
considering the Sort application, the SDC Hard and SDC Hard [M] showed poor results,
being able to reduce SDCs by 61% and 55%, respectively. They could not effectively
detect SDCs mainly because the Sort’s control flow includes conditional instructions in
its main loop. Therefore, protecting the memory access instructions alone leaves most of
its dynamic instructions unprotected and prone to SDCs. An option to improve the SDC
Hard techniques would be not simply targeting memory access instructions. Instead, eval-
uate all instructions more aggressively, considering their impact on causing SDC effects.

Unlike the memory access techniques, the DUE Hard and DUE hard [M] tech-
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niques eliminated all DUEs. Note that DUE Hard and DUE Hard [M] are the same for
the data-flow applications because their control flows have no memory access instruc-
tions. They differ only for the Sort application. Still, for all applications, they detected all
DUE effects. Also, note that both techniques were also able to reduce SDC effects for the
FFT and the Sort application. Especially when considering the Sort, they achieved better
detection capabilities for SDC effects than the SDC Hard techniques. As mentioned pre-
viously, the Sort has a conditional comparison instruction that belongs to its control flow,
which can only be hardened by targeting predicate-setting instructions. For this applica-
tion, a predicate setting instruction is far more relevant for SDC effects than the remaining
memory access ones.

Finally, when targeting both SDC and DUE effects, one must use the Full Hard
technique, followed closely by the Full Hard [M] (with increased SDC effects). As seen
for the SDC and DUE Hard techniques, the SDC ones cannot detect DUE effects what-
soever, while the DUE ones cannot detect most SDC effects (except for the Sort, where it
reaches 86%). These results show that there are better options than solely targeting either
memory-access or predicate-setting instructions. One should more aggressively select,
for each application, which instructions to harden.

7.4.2 Pipeline Registers

Figure 7.4 averages data of the four case-study applications for the fault injection
in the pipeline registers, as they produced similar results. It presents faults classified
according to their effects (DUE, SDC, and Detected) for all hardening techniques and
configurations. Masked effects have been removed for clarity because they represent
over 98% of the effects. Although only a small percentage of errors is observed, we
can draw tendencies on the fault effects and the software-based hardening techniques
detection capabilities.

Figure 7.4: Fault effects distribution for faults injected into the pipeline registers.

Source: The Author.

Considering the original unprotected application, one can notice that SDC effects
happen more than DUE ones, up to 2.6 times for the 8-core configuration. As we increase
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the number of cores, the SDC rate decreases. At the same time, the DUE effects show
a small reduction when moving from the 16- to 32-core configuration. Still, the 32-core
configuration shows 1.6 SDCs for each DUE. This reduction happens because the 8- and
16-core configurations put increased pressure on the warp scheduler, resulting in more
DUE effects. When we apply the hardening techniques, we achieve a reduction in SDC
effects for all techniques, from a 28% reduction for the SDC Hard [M] (32-core) to a
77% reduction for the Full Hard [M] (32-core). Note that the DUE Hard techniques can
also detect SDC effects, showing that memory access instructions are not fully correlated
with SDC effects. On the other hand, the same cannot be achieved for DUE effects, to
the point that, on average, they increase DUEs by 34%. To better understand the cause
of this behavior, we classified the fault injection location as in the pipeline’s datapath or
controlpath.

Figure 7.5 distributes data from Figure 7.4 according to the fault injection location.
It shows that fault effects are more common in the controlpath than in the datapath. In the
datapath, faults are more easily masked due to a large percentage of unused bits during
instruction execution. On the other hand, the controlpath has control bits responsible for
the general GPU operation. When affected by a fault, they can more easily propagate it
while executing instructions. As assembly instructions do not make these registers visible
to the user, our proposed hardening techniques cannot directly target them. Also, by
inserting additional instructions, our proposed techniques increase the chance of a DUE
effect in the pipeline. To solve this issue, one should consider hardware-based techniques
to selectively target specific registers in the pipeline.

Figure 7.5: Fault effects distribution for faults injected into the pipeline registers.

Source: The Author.

All hardening techniques positively affect the reduction of SDCs in the datapath
and controlpath, especially those aimed at reducing SDCs and Full Hard. In the datapath,
SDCs occur when a fault propagates to data registers. In the controlpath, SDCs occur
mainly when a fault alters the instruction’s operation, producing an incorrect value that
propagates in the program code. In these cases, the faults are detected by our proposed
hardening techniques.
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7.5 Design Space Exploration

We used the AVF metric to measure and discuss the fault detection capabilities of
the proposed software-based hardening techniques in the registers from the pipeline and
the register files. The AVF is a useful metric for estimating the probability of failures
in the presence of faults for each GPU configuration and the impact of our proposed
techniques in reducing this value. On the other hand, the AVF metric fails to account
for other essential metrics, such as performance and the number of sensitive bits (i.e.,
area). Therefore, measuring the reliability impact of using different GPU configurations is
difficult since it directly affects the GPU’s performance and area. For example, a 32-core
configuration executes the generic application faster than an 8-core configuration, thus
increasing reliability and having more sensitive bits, thus reducing reliability. On top of
that, our proposed hardening techniques impact different core configuration performances
in different ways.

To account for AVF, performance, and area, we herein adopt a second reliability
metric called Mean Workload to Failure (MWTF) (Reis et al., 2005), defined in Eq. 1.
A larger MWTF means that more workload can be completed before the system fails.
MWTF considers the AVF to a given effect (SDC, DUE, or both), workload execution
time (i.e., application’s runtime), and the raw error rate (i.e., GPU configuration’s raw
number of sensitive bits). Because the raw error rate also depends on the circuit technol-
ogy and environmental conditions, we normalize MWTF over the 8-core configuration
running original applications. The normalization process is performed by dividing, for
each application, the MWTF of all implemented versions by the MWTF of the unhard-
ened original version running on the 8-core GPU configuration. By doing so, we consider
that all configurations are running on the same technology and environmental conditions.
Therefore, we remove these factors from the equation, reducing the raw error rate to the
number of available registers in each GPU configuration.

MWTF = (error rate×AVF× runtime)−1 (7.1)

Figure 7.6 shows the normalized MWTF, where Figs. 7.6(a), 7.6(b), and 7.6(c)
consider as AVF the SDC, DUE, and both effects, respectively. Note that the VectorSum
application does not have a Traceback optimization version because it has no control-flow
instructions. Thus, it only has the Full Hard and Full Hard [M] hardened versions, which
are equivalent to the SDC Hard and SDC Hard [M] versions, respectively.

The Mean Workload to SDC Failure results (Figure 7.6(a)) show that hardening
techniques improve MWTF in all applications, especially those optimized for reducing
SDCs. The main reason for this improvement is that techniques can reduce SDC effects
in both the register files and the pipeline, thus drastically reducing AVF and improving
the MWTF up to 348 times. In most cases, the increase in cores improves the MWTF,
indicating that the execution time is quite relevant. This trend can also be seen in the FFT
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Figure 7.6: MWTF normalized over original 8-core configuration. (a) Mean Work to SDC
Failure. (b) Mean Work to DUE Failure. (c) Mean Work to Failure.

(a) Mean Work to SDC Failure

(b) Mean Work to DUE Failure

(c) Mean Work to Failure

application running on the 32-core configuration, where the Full Hard [M] presented a
better MWTF than the Full Hard, even though it is less effective in reducing errors. In
other cases (Matrix with Full Hard and VectorSum with SDC Hard), reducing sensitive
bits by reducing cores is the best option.

The Mean Workload to DUE Failure results (Figure 7.6(b)) show that the proposed
techniques for reducing DUEs improve MWTF by 140 times, on average. On the other
hand, SDC Hard and SDC Hard [M] make the applications more sensitive to DUE errors.
This trend happens mainly because these hardening techniques do not target DUE effects.
Thus, their additional instructions increase execution time and sensitivity to DUE effects
without helping detect them. An increased execution time makes the pipeline more sen-
sitive to DUE effects due to the additional assembly instructions executed by the GPU.
When analyzing the impact of implemented techniques, we can see that the results vary
from application to application. For example, the DUE Hard with the 32-core configura-
tion for the FFT is the best option. In contrast, for the Matrix, the DUE Hard application
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running on the 8-core configuration improved MWTF. Note that, for all applications,
DUE Hard is even more efficient than the Full Hard. This result shows that increasing the
number of assembly instructions also increases DUE effects, indicating the high potential
advantages of selective protection.

The Mean Workload to Failure results (Figure 7.6(c)) show that software-based
hardening techniques improve MWTF, achieving up to 106 times improvement for the
8-core configuration on the Matrix application. As with selective protection of DUEs or
SDCs, the ideal core configuration setting depends on the application. These results show
that MWTF is an interesting metric, especially for applications that must calculate large
workloads and take a long time to complete their tasks. For these cases, the results show
that the best fault tolerance technique should consider an optimized balance between its
effectiveness in reducing errors, execution time, sensitive bits, and AVF. In this scenario,
configurable GPUs can be a good option.

7.6 Improving GPU register file reliability with ISA extension

To further improve software-based fault tolerance techniques, we also propose
a comprehensive ISA extension composed of three classes of resilient atomic instruc-
tions (GONCALVES et al., 2020). The first two classes, which include load and store
instructions, target specifically SDC effects for safety-critical applications. The third
class, which includes set predicate instructions, targets DUE effects for HPC applica-
tions. The extension is developed to be deployed in tandem with software-based fault
tolerance techniques, therefore taking advantage of both software- and hardware-based
techniques benefits.

We propose three additional instructions to the NVIDIA SASS 1.0 ISA as a com-
prehensive ISA extension. The new proposed instructions are resilient atomic ones, being
able to check the consistency of read registers, notify the host in case of mismatch, and
duplicate a register write to the original register’s replica in a single instruction. By do-
ing so, this extended ISA is able to absorb multiple instructions into a single instruction
execution and improve runtime overheads.

Memory access and set predicate instructions are the main sources of SDC and
DUE effects, respectively (GONCALVES et al., 2020). Our comprehensive ISA exten-
sion proposes two classes of resilient atomic instructions, tackling SDC effects with re-
silient atomic load and store instructions and DUE effects with resilient atomic set pred-
icate instructions. By doing so, we intend to remove additional instructions required by
software-based hardening techniques to (i) duplicate load, store, and set predicate instruc-
tions, (ii) perform regular consistency checks to compare original and replicated data, and
(iii) notify the host in case of fault detection.

When considering load and store instruction hardening by software-based tech-
niques, for duplicating the original instructions, two individual instructions must go through
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the GPU pipeline, requiring two fetches, two decodes, up to four register file accesses,
two executions, and two memory accesses. Additionally, the GPU must fully execute one
extra instruction per instruction-used register for consistency checking. Finally, a host
notification procedure is required, where a branch instruction and a subroutine for writing
predefined memory locations with a predefined value alerting the host of a fault. Our pro-
posed resilient atomic load and store, in a single instruction, can duplicate register access,
check the read and the written values for consistency, and notify the host, performing a
single fetch, decode, execution, and, most importantly, a single memory access.

When considering the set predicate hardening performed by software-based in-
structions, the procedure is basically the same: it duplicates the original instruction, in-
serts consistency checks, and optionally notifies the host. Even though our proposed
resilient atomic set predicate instructions do not spare memory access, they absorb the
original instruction’s replica, the consistency checks, and the eventual host notification,
decreasing execution time overhead compared to state-of-the-art software-based fault tol-
erance techniques.

The implementation of these instructions requires software and hardware support.
The software support has to be able to generate program code considering these new
instructions and insert them in a context where software-based hardening techniques can
duplicate portions of the code and effectively use the new instructions. The hardware must
be able to execute these new instructions and notify the host in case of fault detection. In
the following Sections, we discuss the existing software-based techniques, how our ISA
extension takes advantage of them, and the supporting hardware modifications required
to support the new instructions.

7.6.1 Software Support

Software-based fault tolerance techniques detect faults by performing code trans-
formations at different abstraction levels, from application code to assembly. The most
common code transformation is to replicate a portion of the program code, regularly check
it for consistency, and notify the user in case of a mismatch between the original code and
its replica.

When considering SDC faults, where the execution flow of the program is correct,
the best portion of the code to be replicated is the datapath, which includes memory access
instructions and all the logic that leads to writing its registers, leaving branch instructions
unprotected. For example, consider the store instruction "store R0, offset [R1]", where
R0 is written to the memory address pointed by R1. In this case, the store instruction must
be replicated and checked for consistency, while all instructions that form the logic cones
that calculate the values of R0 and R1 must be simply replicated.

The same idea applies to DUE faults but considers set predicate instructions that
write predicate registers used by conditional branch instructions. It is interesting to notice
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that, even though the controlpath and the datapath might share resources in the program
code, portions of the program code are usually exclusively used for either the datapath or
the controlpath. Therefore, as performed by previous works, full replication of used reg-
isters and their operation instructions can lead to unnecessary execution time overheads.

To support our proposed comprehensive ISA extension, two code transformations
must be supported: (1) replace load, store, and set predicate instructions by resilient
atomic ones and (2) duplicate instructions that belong to logic cones that lead to load,
store, and set predicate instructions. Their implementations are later discussed in Sec-
tion 7.6.3.3.

7.6.2 Hardware Support

As presented in Chapter 7, FlexGrip consists of arrays of Streaming Multiproces-
sors (SMs) used as Single-Instruction Multiple-Thread (SIMT) processors. Each SM has
an individual pipeline with fetch, decode, read, execute, memory access, and write-back
stages, besides a warp scheduler and a deep memory hierarchy, which contains General-
Purpose Register Files (GPRFs), Predicate Register Files (PRFs), shared memories, con-
stant memories, global memories, caches, among other storage elements.

The hardware support must be able to (i) decode new instructions, (ii) provide
access to the register files and the different memory elements of the memory hierarchy,
and (iii) effectively notify the host of fault detection. The first two items must be imple-
mented across the pipeline, influencing the GPU’s datapath and controlpath. The last item
should be included in the GPU’s exception circuitry. To maintain performance, hardware
modification cannot increase critical path delays.

Even though commercial GPUs have restricted descriptions of their IPs, FlexGrip
allows designers to implement the required hardware support.

7.6.3 Implementation

For these experiments, we chose five case-study applications: matrix multiplica-
tion, Fast Fourier Transform (FFT), vector sum, bitonic sort, and edge detection. All
case studies differ in their use of the GPU’s controlpath and datapath. In terms of data-
flow and control-flow characteristics, matrix multiplication and vector sum are mostly
data-flow-oriented, with few conditional deviations. The FFT, bitonic sort, and edge de-
tection applications are mostly control-flow-oriented, with many conditional deviations.
The matrix multiplication, FFT, vector sum, bitonic sort, and edge detection case-study
applications have 64, 64, 256, 32, and 64 threads each, respectively.

The following Sections discuss the implementation of the three classes of resilient
atomic instructions:raLoad (load instructions), raStore (store instructions), and raSetP
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(set predicate instructions). Discussions include ISA extension and instruction formats
modification, hardware modifications to the FlexGrip architecture, and software modifi-
cations to the compilation flow to most effectively employ our proposed instructions with
software-based hardening techniques.

7.6.3.1 ISA Implementation

The implementation of the resilient atomic instructions in the SASS 1.0 ISA poses
two challenges: (1) to differentiate the resilient atomic opcodes from the original ones and
(2) to allocate the addressing of the replicated register. As the new classes of instructions
must perform the same functionalities as the original ones, used bits cannot be removed
from the original instructions. Hence, we must use spare bits to improve the original
instructions to become resilient atomic ones.

We used a single extra bit to solve the first challenge instead of creating new
opcodes. We then defined it as ’0’ for the original instructions and ’1’ for their resilient
atomic versions. Even though this approach requires one extra bit, it is compatible with
legacy code, as unused bits are set to ’0’.

To address the second challenge, we must consider the GPU register file and how
instructions access it. FlexGrip can have up to 128 registers per thread, and load, store,
and set predicate instructions can address up to 2 registers in their instruction formats.
So, to directly access the extra registers, all resilient atomic instructions would require 14
spare bits. Unfortunately, they do not have as many spare bits: load and store have 12,
and the set predicate has 7. Hence, two options arise: (1) to encode a subset of registers
or (2) to encode an offset between registers and their replicas.

The first option limits the scope of replicated registers but allows programmers to
replicate instruction registers partially, as they are individually addressed. On the other
hand, the limited scope of replicated registers might force the software transformation to
reallocate registers accordingly. The second option is less costly bitwise, as all replicated
registers share the same address offset, but forces the hardware to calculate the effective
address and the software transformation to allocate replicated registers with the same
offset. Also, programmers must either harden all registers in an instruction or none.

Due to the number of available bits, our implementation used the first option for
the resilient atomic load and store instructions (1 for opcode, 5 for the first replica, and 6
for the second replica) and the second option for the resilient atomic set predicate instruc-
tions (1 for opcode and 6 for offset).

7.6.3.2 Hardware Implementation

Hardware modifications have been made to the Decode, Read, and Write pipeline
stages. We have also implemented an additional hardware exception for host notification.
The Decode stage has three source registers (src1, src2, and src3) and one destination reg-
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ister (dest1). The load and store instructions use a single source register (src1), and the set
predicate instructions use two source registers (src1 and src2). Thus, for the implemen-
tation of raLoad and raStore, we used src2 as the source register replica, and for raSetP
we used src3. Because the Decode stage did not originally support a second destination
register, we implemented it through dest2. We also implemented supporting control flags
for the correct execution of the proposed instructions.

The Read and Write stages were adapted to consider an additional source operand
for the new resilient instructions. For the raStore and raLoad, the additional source is
directly the register address, but for the raSetP, it is an offset that must be added to the
original register addresses to find their replicas. Global memory addresses from the mem-
ory access instructions are calculated by a specific module, which was adapted to read a
second value from the register file (src2) and check it for consistency. The raSetP was
adapted to calculate the replicated registers’ addresses and check them for consistency.
The raLoad was modified to copy the data loaded from memory to both dest1 and dest2
operands. Finally, we added an extra hardware exception for host notification.

To evaluate how the hardware modifications impact the FlexGrip architecture, we
synthesized the original design and three modified versions of the FlexGrip architecture:
(i) ISAset, with modifications for raSetP, (ii) ISAls, with modifications for raLoad and
raStore, and (iii) ISAsetls, with modifications for the complete ISA extension. We per-
formed the synthesis with 8 SP cores, a 15nm cell library (MARTINS et al., 2015), and a
500 MHz constraint. The evaluation considered circuit area, number of logic cells, power,
and critical path delay.

Table 7.4 shows the synthesis reports for all three modified architectures. When
considering the hardware implementation for the complete ISA extension, the circuit area
showed an overhead of 0.179%, while the number of logic cells increased by 0.369%. Re-
duced versions of architecture ISAset and ISAls showed lower overheads, with a higher
overhead caused by the raSetP due to a more expensive circuitry to calculate replicated
addresses. Power measurements showed an increase of 0.125%, being ISAset and ISAls
equally responsible for it. Finally, and most importantly, the critical path delay showed
negligible improvements in less than 0.01% for all architectures. The impacts of the hard-
ware modifications to support the proposed ISA extension in terms of circuit area, logic
cell number, power, and critical path delay show that the discussed hardware implemen-
tations can be done without imposing significant performance penalties.

7.6.3.3 Software Implementation

We generated six hardened versions for each case-study application, divided into
two classes: software-based hardening techniques and software-based hardening tech-
niques with ISA extension. Each class protects memory access instructions (Memory),
targeting SDC effects, set predicate instructions (Set Predicate), targeting DUE effects,
and both (All).
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Table 7.4: Hardware implementation overhead (%)

Original Design
Hardware overhead (%)

ISAsetp ISAls ISAsetls

Area (mm²) 196,338 0.047 0.030 0.179

Cells (#) 377,798 0.152 0.031 0.369

Power (mW) 95,074 0.053 0.056 0.125

Delay (ns) 1,99205 -0.002 -0.001 -0.008

Table 7.5 shows code transformation examples for each hardened version. The
original code (black) contains add, load, set predicate, conditional branch, and store in-
structions. For the software-based technique class, add and load instructions are replicated
(green) over original registers’ copies R1’ and R2’ to maintain consistency between reg-
ister duplications. The store instructions should only be duplicated in case of memory
replication. Set predicate instructions are inserted (blue) for consistency checking after
memory access instructions (Memory), after set predicate instructions (Set Predicate), or
after both (All). Finally, host notification is performed by a conditional branch instruc-
tion (yellow). For the ISA extension, the add instruction replication is maintained. The
remaining load, store, and set predicate registers and their respective consistency checks
are replaced (red) by raLoad and raStore (Memory), raSetP (Set Predicate), or both (All)
instructions. The ISA extension also absorbs the host notification.

Table 7.5: Program code transformation by software-based techniques and software-based
techniques with proposed ISA extension.

Software-based Software-based + ISA Extension

Original Code Memory Set Predicate All Memory Set Predicate All

1: ADD R1, R1, 1 ADD R1, R1, 1 ADD R1, R1, 1 ADD R1, R1, 1 ADD R1, R1, 1 ADD R1, R1, 1 ADD R1, R1, 1

2: ADD R1’, R1’, 1 ADD R1’, R1’, 1 ADD R1’, R1’, 1 ADD R1’, R1’, 1 ADD R1’, R1’, 1 ADD R1’, R1’, 1

3: LOAD R2, [R1] LOAD R2, [R1] LOAD R2, [R1] LOAD R2, [R1] raLOAD R2, R2’, [R1, R1’] LOAD R2, [R1] raLOAD R2, R2’, [R1, R1’]

4: LOAD R2’, [R1’] LOAD R2’, [R1’] LOAD R2’, [R1’] LOAD R2’, [R1’]

5: @!PE SETP.NE PE, R1, R1’ @!PE SETP.NE PE, R1, R1’

6: SETP.NE P0, R2, R3 SETP.NE P0, R2, R3 SETP.NE P0, R2, R3 SETP.NE P0, R2, R3 SETP.NE P0, R2, R3 raSETP.NE P0, R2, R3, offset raSETP.NE P0, R2, R3, offset

7: @!PE SETP.NE PE, R2, R2’ @!PE SETP.NE PE, R2, R2’

8: @!PE SETP.NE PE, R3, R3’ @!PE SETP.NE PE, R3, R3’

9: @P0 BRA 1 @P0 BRA 1 @P0 BRA 1 @P0 BRA 1 @P0 BRA 1 @P0 BRA 1 @P0 BRA 1

10: STORE [R4], R1 STORE [R4], R1 STORE [R4], R1 STORE [R4], R1 raSTORE [R4, R4’], R1, R1’ STORE [R4], R1 raSTORE [R4, R4’], R1, R1’

11: @!PE SETP.NE PE, R1, R1’ @!PE SETP.NE PE, R1, R1’

12: @!PE SETP.NE PE, R4, R4’ @!PE SETP.NE PE, R4, R4’

13: @PE BRA ERROR @PE BRA ERROR @PE BRA ERROR

Table 7.6 shows the execution time for the original applications and the overheads
for their hardened versions. The software-based overheads (SW) show average increases
of 94% for SDC detection (Memory), 85% for DUE detection (Set Predicate), and 104%
for both (All). When using our proposed ISA extensions, these same values drop to
45%, 41%, and 54%, respectively, showing a decrease in execution time overhead of
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around 50%. Data also show that dataflow-oriented applications, such as FFT and matrix
multiplication, presented lower overheads than control-flow-oriented ones when targeting
set predicate instructions for DUE effects. The vector sum application does not have
predicate registers. The edge detection application uses all predicate registers and thus
cannot be hardened purely by software-based techniques.

Table 7.6: Execution time overhead (%)

Application Original (us)
Hardening technique overhead (%)

Memory Set Predicate All

FFT 964
SW 93.1 88.7 103.2
ISA 56.3 24.5 65.6

Matrix Multiplication 320
SW 95.9 87.1 104.9
ISA 41.9 9.3 46.9

Vector Sum 141
SW 105.2 - -
ISA 45.3 - -

Bitonic Sort 824
SW 83.2 79.0 104.4
ISA 30.3 55.9 36.6

Edge Detection 1,096
SW - - -
ISA 49.5 75.1 66.1

7.6.4 Evaluation

Faults were injected into original and hardened versions of the case-study applica-
tions. For each application version, we injected 10,000 faults, one per program execution,
adding up to 280,000 simulations. Faults have been randomly distributed among origi-
nal application-used registers from the GPRF, as unused and replicated registers were not
sensitive to faults.

Tables 7.7 and 7.8 show the number of SDC and DUE effects in the original appli-
cations and the hardened version percentage reductions. For SDC effects, data show an
average error reduction of 88.6% and 95.4%, respectively, for software-based techniques
and ISA extension when the memory access instructions were protected (Memory). For
DUE effects, data show an average error reduction of 99.9% and 100%, respectively, for
software-based technique and ISA extension when set predicate instructions were hard-
ened (Set Predicate). When targeting both, both versions achieved 100% fault detection
for all applications but the FFT. Such results indicate that fault detection capabilities of
software-based hardening techniques can be improved with our proposed ISA extension.

The software-based hardening techniques with our proposed ISA could not detect
all errors for all applications. This happens mainly because our proposed ISA performs
consistency checks before accessing the memory. Therefore, there is a small window in
which a fault can affect the memory.
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Table 7.7: SDC reduction (%)

Application SDC Effects
Hardening technique

Memory Set Predicate All

FFT 1,452
SW 89.0 39.9 100.0
ISA 84.9 17.3 96.1

Matrix Multiplication 3,461
SW 99.9 -4.8 99.9
ISA 99.9 -5.7 99.9

Vector Sum 3,164
SW 100.0 - -
ISA 100.0 - -

Bitonic Sort 1,739
SW 61.1 87.5 100.0
ISA 92.5 71.1 99.8

Edge Detection 258
SW - - -
ISA 99.2 80.2 100.0

Table 7.8: DUE reduction (%)

Application DUE Effects
Hardening technique

Memory Set Predicate All

FFT 2,321
SW 30.1 100.0 99.9
ISA 32.3 100.0 100.0

Matrix Multiplication 1,755
SW 0.2 99.9 99.8
ISA 4.0 100.0 100.0

Vector Sum 1
SW 99.9 - -
ISA 99.9 - -

Bitonic Sort 1,368
SW 1.9 99.9 99.9
ISA 5.3 100.0 100.0

Edge Detection 1,952
SW - - -
ISA 12.7 99.9 99.9
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7.7 Hybrid Techniques for Error Mitigation in GPU Pipelines

In the preceding sections of this chapter, our focus was predominantly on the re-
liability of register files within GPUs, exploring the sensitivity of pipeline registers, and
assessing the impact of various fault tolerance techniques. Although these techniques
have shown effectiveness in detecting errors in register files, their efficiency in identi-
fying errors within pipeline registers has been limited. Moving forward, we shift our
attention to the pipeline itself, a critical yet vulnerable component of GPU architecture.

We introduce advanced techniques specifically tailored for pipeline error man-
agement, aiming to detect and correct faults. Our methods build on hybrid approaches
incorporating ISA extensions, as mentioned in key works like (Mahmoud et al., 2018;
SULLIVAN et al., 2018). These software-directed techniques are rooted in hardware
functionality, enhancing error detection and host notification capabilities.

Our strategies represent a comprehensive advancement in fault management: they
integrate the three critical steps of instruction replication, comparison for checking, and
host notification—all executed via hardware. Beginning with an XOR-based method
adapted from current literature, we refine it further to enable fault correction, particularly
within the datapath. Subsequently, we implemented a Parity mechanism focused on the
control-path, facilitating both detection and correction through software directives. This
dual-pronged approach enhances the GPU pipelines’ reliability and presents a significant
innovation in the realm of software-directed hardware-based fault tolerance.

7.7.1 Pipeline Evaluation Methodology

Pipeline Registers (PRs) play a crucial role in GPU architecture, serving a dual
function. They facilitate data transfer between pipeline stages and handle the control
execution of instructions. This includes managing program counters, active wire masks,
memory address offsets, and other critical elements. Our approach involves modifications
to the pipeline architecture and the introduction of new instructions in the ISA to support
this enhanced fault detection and correction mechanism.

Regarding reliability, it’s important to note that faults affecting the datapath PRs
often lead to data-flow errors (SDCs). In contrast, faults in the control-path PRs primarily
cause control-flow errors (DUEs). The quantity of PRs varies based on the SMs and SPs
configuration in a GPU architecture. Each SM has its control set, and each SP has its dat-
apath. Consequently, the count of PRs in the control path is linked to the number of SMs,
while the quantity in the datapath corresponds to the number of SPs. Our FlexGripPlus
configuration, which includes an SM with 32 SPs, resulted in a total of 1841 bits of PR in
the control path and 6144 bits of PR in the datapath.

For the XOR Technique, four case-study algorithms were used to exercise the
GPU during the fault injection: Matrix Multiplication, Fast Fourier Transform (FFT),
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Vector Sum, and Bitonic Sort. To further our analysis with the Parity technique, we added
M3 and Edge Detection algorithms, thus enhancing the diversity and robustness of our
case study pool.

We executed a comprehensive fault injection campaign across all case-study ap-
plications and their corresponding hardened variants, spanning the four defined hardening
classes: Operation instructions (Op), Memory instructions (Mem), Predicate instructions
(Pred), and All instructions (All). This campaign encompassed the injection of 20,000
faults for each application version. These faults were subsequently categorized according
to their impact on the FlexGrip GPU (Masked, DUE, or SDC faults).

7.7.2 Software Support

Our techniques divide responsibilities into software and hardware support. Soft-
ware support enhances application code by selectively duplicating critical ISA instruction
classes and modifying opcodes to indicate protected classes. This approach is uniformly
applied to both the XOR and Parity techniques, ensuring consistency in software-level
fault management. The hardware execution of these techniques, including the distinct
mechanisms for XOR and Parity, will be detailed in the following sections.

In more detail, software support modifies the program code and creates a new ap-
plication program by performing the following modifications: (i) selective hardening of
instruction classes, (ii) modification of opcodes to mark hardened instructions to the De-
code stage, and (iii) adjustment of binary codes to match the modifications. Meanwhile,
hardware support must do the following: (i) decode new instruction code generated by
software, (ii) integrate hardware modules for storing XOR information, (iii) execute the
XOR technique flow, and (iv) implement instruction correction for detected faults.

Enhancements to HPCT offer comprehensive protection for the entire FlexGrip
ISA, including selective techniques for specific instructions and registers. We categorized
protection into four variants: Operations (Op), Memory (Mem), Predicates (Pred), and
Full Coverage (All). Op applies XOR to specific instructions like MOV, MVI, IMUL,
IADD, and LOP. Pred protects predicate instructions, crucial for GPU flow control, in-
cluding ISET. Mem protects global memory access instructions like GLD and GST. All
combines these protections, excluding NOP, synchronization instructions, and certain
control-flow instructions (i.e., BRA, BAR, RET, SSY, and CAL).

Table 7.9 illustrates an example of assembly code and its respective hardened
versions for the four categories mentioned: Operation (Op), Memory (Mem), Predicate
(Pred), and Full Coverage (All). The first column presents the original application code,
while the subsequent columns display the corresponding enhanced versions. Unhardened
instructions can be seen in black, while instructions that have undergone modifications
are highlighted in green. Note that we do not replicate the instructions in lines 2, 6, and
7.
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Table 7.9: Software transformation example
Original Code Op Pred Mem All

1: ISET.C0 R1, R2, LE; ISET.C0 R1, R2, LE; ISET.RES.C0 R1, R2, LE; ISET.C0 R1, R2, LE; ISET.RES.C0 R1, R2, LE;

2: RET C0.NE; RET C0.NE; RET C0.NE; RET C0.NE; RET C0.NE;

3: IADD32 R3, g [0x6], R3; IADD32.RES R3, g [0x6], R3; IADD32 R3, g [0x6], R3; IADD32 R3, g [0x6], R3; IADD32.RES R3, g [0x6], R3;

4: MOV R1, g [0x7]; MOV.RES R1, g [0x7]; MOV R1, g [0x7]; MOV R1, g [0x7]; MOV.RES R1, g [0x7];

5: GST global14[R3], R8; GST global14[R3], R8; GST global14[R3], R8; GST.RES global14 [R3], R8; GST.RES global14 [R3], R8;

6: BRA C0.NE, 0x90; BRA C0.NE, 0x90; BRA C0.NE, 0x90; BRA C0.NE, 0x90; BRA C0.NE, 0x118;

7: NOP; NOP; NOP; NOP; NOP;

The modified instructions are differentiated from the original instructions by adding
a .RES to their terminology. For example, the MOV instruction becomes MOV.RES after
modification. To signal which instructions must be protected by the hardware modules,
HPCT changes the binary code of the original instruction by selecting an unused bit and
setting it accordingly. This change is made only in the replicated instruction classes, and
the other bits retain their original values.

The following subsections detail the hardware support that defines our XOR and
Parity approaches and the experimental results that validate our methods.

7.7.3 Software-Directed Hardware-Implemented XOR Approach

The FlexGrip hardware undergoes significant modifications in the Decode and
Write pipeline stages. In the Decode stage, the system checks whether an incoming in-
struction needs protection based on a software-enabled signal. If protection is required,
the Decode stage interrupts the previous pipeline stage (Fetch) and instructs subsequent
steps to apply XOR to that instruction. After, the same instruction is forwarded to the
next stage (Read), and the previous step (Fetch) is freed to receive a new instruction.

When the initial protected instruction reaches the Write pipeline stage, the regular
write operation to the destination register is saved in a temporary register. Consequently,
no data is written to the GPU’s output registers, stopping the instruction flow. Upon the
second instruction reaching the Read stage, an XOR operation is performed between its
outcome and the previous instruction’s outcome stored in the temporary register. If the
XOR result is not zero, an error notification triggers another re-execution of the current
instruction. Subsequently, a new correction instruction is executed to rectify the applica-
tion’s state.

This hardware-based approach offers advantages like simplified software devel-
opment, faster re-execution, and efficient handling of replication, verification, and notifi-
cation within the Decode and Write stages. However, it can’t detect faults affecting the
preceding Fetch stage and is susceptible to control path PRs errors, as the XOR operation
exclusively focuses on the instruction’s result in the output register.

Table 7.10 displays execution times for selected case-study applications, along
with execution time overhead for their hardened versions. The Mem version has an av-
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Table 7.10: Execution time and execution time overhead
Application Original (µs) Operation (Op) Predicate (Pred) Memory (Mem) All

FFT 406.3 1.42x 1.03x 1.28x 1.74x

Matrix Mult. 177.3 1.22x 1.02x 1.50x 1.74x

Bitonic Sort 501.5 1.10x 1.07x 1.35x 1.53x

Vector Sum 84.7 1.18x – 1.49x 1.66x

Average 292.5 1.23x 1.04x 1.41x 1.66x

erage overhead of 1.41x, the Op version averages 1.23x, and the Pred version averages
1.04x. Notably, the FFT application bucks this trend, showing lower execution time in the
Mem version compared to the Op version. This divergence stems from memory access
instructions, which typically require three times more clock cycles than standard instruc-
tions, as discussed in previous sections.

7.7.3.1 Experimental results

Figure 7.7 shows the percentage of errors for all case-study applications’ hardened
versions, colored according to the PR’s controlpath or datapath function. As previously
mentioned, controlpath PRs are responsible for executing the instruction, and datapath
PRs are responsible for moving data through the pipeline. Despite variations in execution
flow orientation across applications, some consistent trends are evident. The XOR hybrid
technique, while effective in detecting datapath PR faults (reducing them to 0% for all
applications), has a less significant impact on controlpath PR errors. For instance, in the
Vector Sum application, the All group only reduced errors from 16% down to 10%—a
modest 37% reduction. This trend is observed across other applications, where error
reduction is less pronounced.

Figure 7.7: Fault injection results
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Table 7.11 details the error reductions achieved by the XOR hybrid technique,
segregated into datapath and controlpath PR errors. For controlpath PR errors, the XOR
technique’s impact varies, with the All version only reducing these errors by 11%. Other
versions, such as Pred, even showed a 4% increase in errors. This variability can be
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Table 7.11: Datapath and controlpath PRs error reduction (%)

Application
Datapath PRs Controlpath PRs

Op Pred Mem All Op Pred Mem All

FFT 46 3 73 100 -8 -14 -4 5

Matrix 49 6 62 100 0 8 10 14

Sort 60 24 52 100 -1 -7 0 -1

VectorSum 3 – 95 100 1 – 17 26

Average 40 11 71 100 0 -4 9 11

attributed to the increased complexity in the GPU’s pipeline due to the XOR circuitry,
which paradoxically makes the controlpath more fault-prone.

In contrast, the XOR technique demonstrates high efficacy for datapath PR errors,
achieving a 100% error reduction across all applications, as illustrated in Figure 7.8. Con-
sidering its average execution time overhead of 1.66x, this technique emerges as a viable
alternative to conventional hardware methods like DWC, considerably increasing hard-
ware usage. Moreover, by adjusting the hardening approach with different versions like
Mem, Op, and Pred, one can achieve lower execution time overheads while still attaining
significant error reductions.

In summary, while the XOR hybrid technique excels in mitigating datapath PR
errors, it faces challenges in effectively addressing controlpath PR errors due to the in-
creased complexity in the GPU’s pipeline. This conclusion sets the stage for the sub-
sequent section, where we present the Parity approach as a potential solution for more
effectively handling controlpath PR errors, aiming to complement the XOR technique’s
strengths and address its limitations.

Figure 7.8: Results for execution time overhead and error reduction.
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7.7.4 Software-Directed Hardware-Implemented Pipeline Parity

The architectural modifications for the software-directed Pipeline Parity comprise
four steps: (i) enhance the Decode stage to discern reliability bits in the newly gener-
ated instructions from the originals, (ii) integrate parity check circuits into the FlexGrip
pipeline stages at each stage, focusing on control registers, (iii) centralize notifications
of parity check on a single exception signal, and (iv) add correction when a failure is
detected.

Identical to the hybrid XOR technique, the Decode stage has been adapted to take
into account the bit position allocated by the SASS compiler to store the reliability bit.
Upon detecting a hardened version, decoding initiates a control sequence to re-execute
the original instruction and activate the parity circuit for parity calculation and storage or
comparison. One limitation is its inability to detect control flow errors that precede the
Decode stage.

The first execution of the instruction calculates the parity of all the output registers
(except the data ones); that is, the parity verifies the number of bits that have the value 1
in the output. Any bit-flip fault injection into the parity registers will be different. Parity
checks are performed at each pipeline stage, ensuring control register integrity throughout
the pipeline. The consistency checking between the parities of the two executions is
performed. If an error is detected, the hardware performs a new execution of the control
logic of the instruction that identified the error, thus correcting the error and resuming
normal execution of the application.

Table 7.12 shows the performance overhead ranged from 1.01 to 1.23 times the
original application (1% to 23% runtime overhead), demonstrating that even with all in-
structions hardened against pipeline register control flow errors, the performance impact
remains manageable. Tailoring fault tolerance through software customization of harden-
ing strategies further enhances cost-effectiveness for specific applications.

Table 7.12: Execution time and execution time overhead

Application Unhardened (µs)
Hardened Time Overhead

Operation (Op) Memory (Mem) Predicate (Pred) All

FFT 406.3 1.18x 1.03x 1.02x 1.23x

Matrix Mult. 177.3 1.09x 1.03x 1.01x 1.14x

Vector Sum 84.7 1.07x 1.03x – 1.10x

Bitonic Sort 501.5 1.05x 1.03x 1.03x 1.11x

Edge Detection 3276.1 1.11x 1.02x 1.02x 1.15x

M3 316.7 1.16x 1.15x 1.00x 1.19x

Average 793.8 1.11x 1.05x 1.02x 1.15x
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7.7.4.1 Experimental Results

Table 7.13 shows error reduction for the proposed hardening variants, and Fig-
ure 7.9 combines its data with execution time overhead to evaluate the efficiency of
each hardening class. Our proposed fault tolerance technique failed to drastically reduce
pipeline errors as it only targets a portion of pipeline records. However, except for the
FFT application hardened with Pred, all versions presented error reduction and correction
for all of them, in addition to not causing a significant impact on execution time, showing
that we can effectively increase GPU reliability with our proposed approach.

The All hardening strategy achieved the most significant error reduction, reducing
pipeline failures by up to 57% with a cost in execution time reaching up to 11% for the
Bitonic Sort application. The Vector Sum app recorded the smallest decrease, with a 36%
reduction. When considering the impact on execution time, FFT stood out as the most
expensive, as its cost increase was more than double that observed in Sort and Vector
Sum. These data highlight that the benefit of our approach may vary depending on the
type of application.

The Mem implementation stood out as one of the most effective choices, causing a
small increase of approximately 3% in execution time in all applications except M3, with
a 15% increase. Additionally, it provided an average error reduction of 23%, with the
largest reduction reaching 33% in the Matrix Mult. application. This approach proved to
be the most effective in terms of reducing errors in relation to increasing execution time.

On the other hand, implementing the Op protection has had varying results de-
pending on the application. It presented better error reduction than the Mem for the FFT,
Bitonic Sort, Edge Detection, and M3 applications and worse for the Matrix Multi. and
Vector Sum. However, it also required more execution time. When considering the higher
overhead costs, Op proved less effective across all applications.

Lastly, the Pred protection category imposed the smallest execution time penalties
since it focuses on a narrower set of instructions to be hardened. However, it also showed
the smallest decrease in errors. Importantly, for all instruction classes, we were able to
correct all detected faults.

Table 7.13: Fault injection results and error reduction

Application Unhardened (%)
Error Reduction over Unhardened (%)

Operation (Op) Memory (Mem) Predicate (Pred) All

FFT 8.7 32 20 0 48
Matrix Mult. 8.1 21 33 9 44
Vector Sum 13.3 8 27 – 36
Bitonic Sort 4.6 22 17 13 57
Edge Detection 2.7 30 19 4 56
M3 6.5 20 20 2 40

Average 7.3 22 23 6 47
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Figure 7.9: Results for execution time overhead and error reduction.
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7.8 Case-study Summary

This case study evaluated low-level software-based fault tolerance techniques de-
signed to detect SEU effects in configurable GPU architectures. We adapted and im-
plemented state-of-the-art software-based fault tolerance techniques through low-level
assembly code transformations and proposed three optimizations to improve the perfor-
mance of a set of case-study applications. These optimizations were performed with
costs in reliability, fault detection for specific effects, and host notification time. These
novel technique optimizations, called Traceback, Move, and Delayed Notification, were
automatically applied to selectively protect three groups of instructions: memory access
instructions, predicate setting instructions, and all instructions. We ran four case-study
applications on three GPU configurations to measure the impact of the techniques and
optimizations on the configurable GPU. Moreover, we investigated the sensitivity of reg-
ister files and pipeline registers to radiation-induced faults. A fault injection campaign
was performed through simulation at RTL with over 1.4 million faults injected to evaluate
the GPU’s susceptibility to SEUs.

We measured error rate, AVF, and runtime for 216 scenarios, varying hardening
techniques, optimizations, core configurations, and case-study applications to explore the
design space for hardening the FlexGrip configurable GPU architecture. We then pre-
sented these data with the MWTF metric, which factors measured data and normalized
them over each original unhardened application running on the 8-core GPU configuration.
Our comprehensive design space exploration shows that the most reliable GPU architec-
ture configuration is not intuitive when equality factoring error rate, AVF, and runtime.
Instead, a balance between error reduction, execution time, raw error rate, and AVF must
be considered to optimize the GPU architecture for a given application, environment, or
device. Finally, we conclude that navigating the reliability design space is mandatory to
improve hardened application efficiency, as simply applying the most expensive software-
based technique to the largest available hardware does not guarantee the best reliability.
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The low-level software-based fault tolerance techniques we’ve developed promise
universal applicability, offering the potential to refine and augment state-of-the-art strate-
gies. These techniques, designed for the assembly-level application, could enhance meth-
ods like those presented in (OLIVEIRA et al., 2014) and (KALRA et al., 2020), which
are implemented at higher abstraction levels, to improve SDC and DUE detection across
various architectures. Notably, our findings suggest that leveraging more computing cores
results in reduced overhead, shedding light on the efficiency gains observed in NVIDIA’s
SINRG (Mahmoud et al., 2018) when applied to commercial GPUs with thousands of
CUDA cores, as opposed to the limited core counts in softcore GPU implementations.
This indicates that our techniques could yield even greater efficiencies if integrated into
the production compiler of a commercial GPU, thereby fully exploiting the computational
resources of these advanced architectures to bolster fault tolerance.

Moving forward, we extended this work by introducing a comprehensive ISA ex-
tension to the NVIDIA SASS 1.0 ISA. This extension added three additional resilient
atomic instructions targeting memory access and set predicate instructions to mitigate
SDC and DUE effects. These instructions were incorporated into the existing software-
based hardening techniques and automatically applied to five case-study applications.
Hardware synthesis results showed no performance degradation and less than 1% area
and power overheads. Execution runtime overheads showed a decrease compared to state-
of-the-art software-based techniques. A subsequent fault injection campaign involving
280,000 faults confirmed the efficacy of this ISA extension, indicating that it could im-
prove overall software-based fault detection, especially when factoring in DUE effects.
To the best of our knowledge, this is the first work in the literature that proposes and
implements atomic instructions specifically designed to mitigate SDC and DUE effects
independently.

Building upon the foundation laid by our ISA extensions, we shifted our focus
from the register files to the GPU pipeline. In our comprehensive evaluation of GPU
pipeline hardening techniques, conducted through a fault injection campaign involving
1.000.000 faults, we proposed XOR and Parity methods, each demonstrating unique
strengths and limitations. The hybrid XOR fault tolerance technique proved highly ef-
fective in detecting and correcting faults within the datapath, achieving 100% protection
against dataflow errors. However, its efficacy was not as pronounced in managing con-
trolpath errors, resulting in some instances of reduced GPU responsiveness for certain
protection settings. This trend was reflected in the modest error reduction rates and an
execution time increase ranging from 1.02x to 1.74x. However, these costs were deemed
reasonable compared to DWC-based methods.

On the other hand, the proposed Parity technique, aimed at protecting the GPU
pipeline against radiation-induced effects, showed promising results in both error reduc-
tion and performance overhead. This technique was implemented as a hybrid of soft-
ware and hardware modifications, allowing for targeted protection of specific instruction



115

groups. Error reductions of up to 59% were achieved with a runtime overhead of just 11%,
and subsequent improvements led to even more efficient error reductions, with perfor-
mance degradations ranging from 1% to 23%. Notably, all detected faults were corrected,
indicating potential for future detection and correction capabilities enhancements.

In comparing our XOR and Parity techniques with NVIDIA’s state-of-the-art Swap-
Codes and SInRG (SULLIVAN et al., 2018; Mahmoud et al., 2018) approaches, several
key distinctions emerge. NVIDIA works utilize software control for hardware-mediated
error mitigation. SInRG employs a unique XOR instruction comparison and host notifi-
cation. SwapCodes uses register file ECC for error detection and correction. While these
works primarily address datapath errors through instruction replication, our methods ex-
tend this concept by implementing instruction replication, error checking, and correction
entirely in hardware. Our XOR technique aligns with NVIDIA’s focus on datapath er-
rors. Still, it further introduces the Parity technique, specifically targeting controlpath
errors—a dimension not explicitly addressed in NVIDIA’s approaches. Furthermore, our
validation on a Softcore GPU, in contrast to NVIDIA’s partial hardware simulations, of-
fers a comprehensive and practical perspective on the effectiveness of these techniques.
This holistic approach underlines the potential of our strategies to enhance fault tolerance
in GPU architectures, paving the way for future innovations in the field.

Advancing our exploration, the next Chapter focuses on FGPU, a more recent soft-
core GPU, within the context of SRAM-based FPGAs. This segment aims to deepen our
understanding of GPU reliability challenges and solutions in this evolving technological
landscape.
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8 RELIABILITY EVALUATION OF FGPU IN SRAM-BASED FPGA

This Chapter focuses on evaluating the reliability of applications running on FGPU
embedded into an SRAM-based FPGA. The evaluation begins with a twofold approach:
first, it investigates the trade-offs between hard Floating Point (FP) implementations,
which utilize hardware accelerators, and soft-FP implementations, where FP instructions
are emulated by software. The aim is to assess whether the computational speed advan-
tage gained by hard FP justifies its increased resource utilization, especially in the context
of radiation-induced faults (GONCALVES et al., 2020). Second, the Chapter explores the
application and effectiveness of selective Triple Modular Redundancy (TMR) in enhanc-
ing the FGPU’s reliability (BRAGA et al., 2021).

To comprehensively understand these aspects, the Chapter conducts a bitstream
fault-injection campaign on various case-study applications, calculating their Mean Work-
load Between Failure (MWBF) to gauge reliability. Additionally, this Chapter investigates
the reliability impacts of neutron-induced soft errors, specifically on aerial image classifi-
cation CNNs executed on the FGPU. This investigation is achieved through both config-
uration bitstream fault injection and neutron irradiation experiments, providing insights
into the robustness of softcore GPUs under such conditions (BENEVENUTI et al., 2022).

Section 8.1 outlines the experimental setup and board used across reliability eval-
uations. Section 8.2 examines the robustness of different FP implementations. Section 8.3
delves into the selective TMR application and its impact on the FGPU’s reliability. The
exploration of neutron-induced soft errors and their effects on the FGPU, particularly
regarding aerial image classification CNNs, is detailed in Section 8.4. Specifics of the
irradiation experimental setup will be provided in this section. Finally, Section 8.5 sum-
marizes the key insights and their implications for advancing the reliability of softcore
GPUs within FPGA contexts.

8.1 Methodology for Reliability Evaluation and Hardware Emulation

8.1.1 Reliability Assessment by Hardware Emulation

Our fault injection experimental setup aims to evaluate the impact of radiation-
induced effects on the FGPU. We used the FPGA Fault Emulator presented in Sec-
tion 3.4.3, which performs an injection methodology that applies faults directly to the
FPGA’s bitstream. Since faults might be masked or affect parts of the bitstream where
no logic is implemented, we allow these faults to accumulate while running each of the
applications multiple times. We then collect a reliability profile, monitoring the average
number of faults required for an error to be observed.

An overview of our toolflow is depicted in Figure 8.1. Random bit-flips are in-
jected into the configuration memory using the Xilinx Internal Configuration Access Port
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Figure 8.1: Radiation-induced SEU emulation experimental setup.
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(ICAP) (A) while continuously running the host application on the Cortex-A9 processor
(B) and the OpenCL kernel on the FGPU (C). The control script monitors the processing
time and the outputs of the FGPU. When it detects a functional error due to a timeout (D)
or an output error (E), it power-cycles the FPGA board (F). The process is then repeated
until the desired number of failure events is collected (i.e., at least 300 for this work). We
classify events as SDC in case of a mismatch between the kernel’s resulting data and the
golden one. Otherwise, we classify the event as a Timeout, either because the processing
time exceeded the expected execution time by over 10% or the system crashed.

We uniformly chose a random bit address for fault injection over the whole region
of interest. The minimum interval between injected faults was selected to be larger than
twice each application’s execution time. According to the campaign planning, the con-
trol script (D) controls the bit-flip position in the FPGA’s configuration memory and the
fault injection timing. Each fault injection campaign is conducted separately, with a new
campaign initiated for each bitstream-kernel pair.

8.1.2 Experimental Board

Our experimental board is the commercial SoC FPGA board TE0715 from Trenz
Electronic, equipped with a Xilinx FPGA SoC Zynq-7000 XC7Z030, 32 MB Flash mem-
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ory for storing the FPGA bitstreams, and 512 MB DDR3 memory used for data exchange
between the embedded ARM Cortex-A9 processor and the FGPU. To fit the GPU into
this board, we implemented a single Compute Unit (CU) with eight Processing Elements
(PEs) in two configurations: (1) hard-FP, with hardware accelerators for FP operations,
and (2) soft-FP, where FP instructions are emulated by software. Thus, the FGPU configu-
rations with and without floating-point support are not implemented together at the FPGA,
and different FPGA designs and bitstream files were generated for each engine configu-
ration. The Zynq-7000 model used in these experiments includes an SRAM-based FPGA
equivalent to the Xilinx Artix®-7 family manufactured in 28 nm planar CMOS technol-
ogy.

8.2 Floating-Point Implementations Reliability

This section evaluates the trade-offs between hard-FP and soft-FP implementa-
tions in the FGPU embedded into an SRAM-based FPGA. We conducted a bitstream
fault-injection campaign on seven case-study applications and calculated their Mean Work-
load Between Failure (MWBF).

For our case-studies, we selected a benchmark comprising seven kernels, de-
scribed in Table 8.1. These kernels were compiled to FGPU’s ISA with either soft-FP
or hard-FP. Table 8.2 shows the execution times, highlighting that hard-FP can speed up
execution by factors ranging from 1.21 to 19.68, depending on the computation offload.

Table 8.3 presents implementation costs for soft-FP operations. Soft-FP requires
up to 354 static instructions and 16 basic blocks in software to emulate a single FP op-
eration. Unlike hard FP, which deterministically increases area resources, soft FP has
a varying execution time. Area resources in FPGAs are quantified by various metrics
such as Look-Up Table (LUT), Flip-Flop (FF), and others, collectively termed as essen-
tial bits. The implementation cost in area resources for both soft- and hard-FP operations
is detailed in Table 8.4.

Table 8.1: Case-study applications

App Description FP operations Workload

bitonic Bitonic sort < 32k
vec_add Sum two vectors + 512k
vec_mul Multiply two vectors ∗ 512k
fft Fast Fourier Transform +,−,∗ 128k
div Divide by a scalar / 256k
matrix_mult Multiply two matrices +,∗ 32k
cross_corr Slide dot product of two arrays +,∗ 1k
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Table 8.2: Execution time @50MHz (µs)

Application Soft-FP Implementation Hard-FP Implementation Speedup

bitonic 343,470 284,974 1.21×
vec_add 60,263 35,663 1.69×
vec_mul 77,160 35,671 2.16×
fft 691,189 350,791 1.97×
div 150,499 21,245 7.08×
matrix_mult 1,126,341 114,018 9.88×
cross_corr 868,513 44,134 19.68×

Table 8.3: Soft-FP implementation costs

FP Instruction Symbol Instruction count Software basic blocks

addition + 252 16
subtraction − 252 16
multiplication ∗ 250 15
division / 354 15
less than comparison < 28 1
greater than comparison > 27 1
float to int conversion f toi 41 4
int to float conversion ito f 76 4

Table 8.4: FGPU resources with Soft- and Hard-FP
Resource Soft-FP Implementation Hard-FP Implementation Variation

LUT 29,459 40,960 1.40×
LUTRAM 723 1,833 2.54×
FF 35,588 53,178 1.49×
BRAM 56 56 –
CARRY 913 2,929 3.21×
DSP MULT 32 64 2.00×

Essential bits 7,397,007 9,608,657 1.30×

8.2.1 Reliability Evaluation Results

Many metrics measure the reliability of an FPGA and its implemented system.
One usual metric to evaluate the susceptibility of a device under radiation is the SEU
cross-section, which can be static or dynamic (RECH et al., 2014). The static SEU cross
section in SRAM-based FPGAs shows the probability of an ionizing particle causing an
SEU in the FPGA’s configuration memory. This metric is particular to the technology used
in the FPGA’s integrated circuit and independent of the design running on the FPGA. The
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dynamic SEU cross-section shows the probability of an SEU in the FPGA’s configuration
memory causing an error in the design’s execution. It takes into account the number of
configuration bits used by the design and the logic-masking effect of the system. Usually,
the more configuration bits are used by a design implementation, the higher the dynamic
SEU cross-section. An option for estimating dynamic SEU cross section is to calculate
AVF, as they are proportional to each other (Velazco; Foucard; Peronnard, 2010).

The AVF is also known as the error rate or the probability of a fault causing an
error. On FPGAs, the AVF must be calculated considering fault accumulation, as we
are considering the configuration memory bits, which should be written a single time.
Therefore, we have used the experimental setup described in Section 8.1 to evaluate AVF
for all case-study applications.

Figure 8.2 shows the measured AVF for all applications. Data show that the aver-
age AVF for a single fault is 0.07, increasing to 1.0 with less than 100 accumulated faults.
One can also notice that the same application AVFs for soft-FP and hard-FP grow closely
together, with a difference of less than 0.09. This pattern can be explained by the fact
that the 29.9% increase in resource usage needed from the hard FP is not as sensitive to
radiation-induced faults as shared resources, such as control registers, dispatchers, global
memory controllers, and AXI buses.

The main issue with solely using cross-section as a metric is that it needs to con-
sider the application’s execution time. Therefore, two applications that process different
amounts of data in the same time window could present the same dynamic cross-section,
even though one can compute a more significant workload. To better compare different
implementations regarding reliability, we focus our results on the Mean Workload Be-
tween Failure (MWBF) metric, introduced in Section 3.2.1.

Figure 8.2: Application AVF for accumulated faults.
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The MWBF also considers the dynamic SEU cross-section by multiplying the
static SEU cross-section by the measured AVF. Still, it weighs in the application’s work-
load and execution time. Thus, MWBF is defined in (8.1), where the workload (bit) in one
execution is divided by the static cross-section σstatic (cm2/bit), the AVF (bitcritical/bitin jected),
the flux (particle/cm2/s), and execution time texec (s).

MWBF =
workload

σstatic ∗AV F ∗ f lux∗ texec
(8.1)

To calculate our case-study applications’ MWBF, we need to consider that our ap-
plications run at ground level and use a 28 nm Kintex-7 FPGA. It means that neutrons are
the main source of radiation-induced faults, with a flux of 13 neutrons/cm2/s (Normand,
1996) and that our static SEU cross section is 5.69×10−15 cm2/bit (XILINX, 2019). The
application’s workload can be seen in Table 8.1, execution time in Table 8.2, and AVF in
Figure 8.2 (CARMICHAEL, 2006).

Table 8.5 shows the calculated MWBF for all case-study applications running with
soft-FP and hard-FP implementations. Although data can be miss-leading when compar-
ing MWBF between different applications, the relative improvement in MWBF due to the
use of hard-FP for the same applications (also shown in Figure 8.3) is very interesting. It
shows a strong correlation between MWBF and the execution time speedup achieved by
the hard-FP implementation (Table 8.2). This correlation is mostly because the AVF for
soft-FP and hard-FP grew closely together with fault accumulation (Figure 8.2).

Table 8.5: Application MWBF (bit)

Application Soft-FP Implementation Hard-FP Implementation Variation

bitonic 1,83E+15 2,22E+15 1.21×
vec_add 1,81E+17 2,99E+17 1.65×
vec_mul 1,37E+17 2,93E+17 2.14×
fft 4,05E+15 8,91E+15 2.20×
div 3,64E+16 2,96E+17 8.13×
matrix_mult 5,66E+14 5,55E+15 9.81×
cross_corr 4,20E+13 7,82E+14 18.62×

8.3 Selective Triple Modular Redundancy

This section evaluates the impact of applying selective Triple Modular Redun-
dancy (TMR) to the FGPU when deployed on our experimental board under radiation-
induced faults. We employ specific floorplan constraints to focus fault injection on tar-
geted areas within the FGPU architecture. Multiple FGPU bitstreams are generated, each
assigning specific architectural modules to the designated floorplan area for fault injec-
tion. Subsequently, fault injection campaigns are conducted on the configuration memory,
targeting three case-study applications.
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Figure 8.3: Hard-FP/Soft-FP improvement in MWBF.
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TMR is then applied to each of these modules, and its impact on system reliability
is assessed. The individual TMR reliability curves are combined with resource usage data
to group modules into different sets of hardened modules. These sets are then compared
with the original, unhardened system to evaluate the effectiveness of the TMR strategy in
enhancing system reliability.

8.3.1 Methodology for Fault Injection in FGPU Modules

We selected three different microbenchmark applications—bitonic sort (bitonic),
Fast Fourier Transform (FFT), and cross-correlation (xcorr)—to evaluate the FGPU’s re-
liability. These applications have shown varying levels of program vulnerabilities in our
previous study. Bitonic is the most sensitive regarding reliability metrics, followed by
FFT and xcorr. These results are expected, as each microbenchmark utilizes different
combinations of the FGPU’s instruction set and modules. Table 8.6 summarizes these
applications, detailing the floating-point instructions used and execution time.

The input data size for all three applications was kept consistent at 2,048 single-
precision floating-point elements (IEEE 754™ binary32). The organization of these ele-
ments varies by application, as detailed in the text.

Those input data elements are organized differently for each application, being a
single vector of 2,048 elements in the bitonic, two vectors of 1,024 elements in the xcorr,
and two vectors of 512 complex elements (a+bi) in the FFT. For the bitonic and the FFT
kernels, the resulting output is stored inside the same vectors (memory address) of the
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Table 8.6: Case-study applications

Application Description FP Instr. Kernel Exec. (ms)

bitonic Bitonic sort < 7.9

FFT Fast Fourier transform +,−,× 1.7

xcorr Cross-correlation +,× 171.9

input data. In contrast, for the xcorr kernel, a third vector with the same size as the input
vectors is allocated to hold the output result. Each application uses a different OpenCL
NDRange dimensionality and size at the kernel.

As our objective goes beyond investigating the reliability of the entire FGPU, we
split its architectural modules into groups. We created five groups of architectural mod-
ules: (i) AXI, which includes data and control for the AMBA AXI4 interconnection used
to interface the FGPU with the Cortex-A9 and DDR memory, (ii) FGPU Control, which
consists of the control registers, WG dispatcher, and memory structures, (iii) CU Control,
which includes the CU WF scheduler, runtime memory, and memory controller, (iv) INT
Unit, which provides integer operations and register files, and (v) FP Unit, which consists
of the floating-point unit. Figure 8.5 shows each of these groups using different colors,
and Table 8.7 presents the resource usage by each group in terms of LUTs, FFs, BRAMs,
and DSPs.

Table 8.7: FGPU resources usage

Module Look-up Tables (LUTs) Flip-Flops (FFs) BRAMs DSPs

AXI 950 1,491 — —
FGPU Control 18,006 14,022 13 —
CU Control 5,146 8,123 27 —
INT Unit 5,823 12,314 16 32
FP Unit 10,948 17,292 — 32

To physically inject faults in each individual group of modules and identify which
are the ones more susceptible to provoke failures, we created two FPGA floorplans, con-
straining or not the area under test. The first floorplan, shown in Figure 8.4(a) and dis-
cussed in Section 8.3.1.1, uses the entire FPGA as the area under test. The second, shown
in Figure 8.4(b) and discussed in Section 8.3.1.2, uses an isolated area as an area under
test, keeping the rest of the FPGA fabric untouched by faults. Doing so allows us to
individually constrain modules to the area under test through floorplan placement.

8.3.1.1 Global Fault Injection Floorplanning

The global fault injection floorplan targets the whole FPGA except for small re-
gions used for the fault injection logic and its communication pins as the area under test.
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Figure 8.4: Floorplan setup for fault injection.
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In this floorplanning, faults can affect any region of the deployed FGPU, being the best
option to evaluate the impacts of radiation-induced faults in the complete running system.
Therefore, it gives us more realistic data when considering our applications running in
harsh environments. However, it comes at the cost of less observability of how each part
of the FGPU contributes to its reliability. Figure 8.6(a) shows an example of the entire
FGPU placed in this global fault injection floorplan with its modules colored according
to Figure 8.5.

Figure 8.5: Softcore FGPU colored block diagram.
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8.3.1.2 Isolated fault injection floorplanning

The isolated fault injection floor plan was designed to contain only a fraction of
FGPU in the area under test. It separates the area under test from the rest of the FGPU,
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Figure 8.6: Floorplans of entire FGPU and isolating individual modules for the bitstream
fault injection campaign.

(a) FGPU (b) AXI (c) FGPU Control

(d) CU Control (e) INT Unit (f) FP Unit

Source: The Author.

thus allowing us to inject faults precisely in individual groups of modules. This approach
shows us how each part of the FGPU contributes to its overall reliability. The floorplan
placement strategy, shown in Figure 8.4, consisted of partitioning the FPGA into safe and
fault injection regions. To do so, we reserved an area in the FPGA’s fabric that could hold
the largest of the chosen groups of modules, leaving the rest of the FPGA’s fabric in the
safe region. Knowing the mapping between these floorplan regions and the bit addresses
in configuration memory allowed us to restrict the bit-flip injection to these regions of
interest and emulate radiation effects only in the selected FGPU modules.

We synthesized FGPU five times to adapt it to our placement strategy, one for each
isolated group of modules in the area under test. Multiple placement constraints were used
for each group of modules to keep a similar fabric usage density. Figs. 8.6b–f show each
group of modules isolated according to the experimental floorplan on Figure 8.4(b), also
colored according to Figure 8.5, where we can compare the relative area occupancy of
each modules group in the FPGA’s fabric with the resources usage in Table 8.7.
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8.3.2 FGPU Reliability

This Section discusses FGPU’s reliability. We collected at least 300 failure events
for the entire FGPU (considering the global fault injection floorplan) and for each of the
five isolated groups of modules (considering the isolated fault injection floorplan) for all
case-study applications. We show the effects of radiation-induced faults on the entire un-
hardened FGPU and each unhardened module separately. We start by drawing the appli-
cation’s reliability as the probability of tolerating accumulated faults in the configuration
memory over time without experiencing a functional failure (SDC or Timeout).

The reliability curves can be seen in Figure 8.7. It shows, in black, the reliability
for the FGPU using the whole FPGA’s fabric (Figure 8.4(a)) and, in colors, the isolated
groups’ reliability (Figure 8.4(b)) - i.e., the probability of functional failures occurring
when a fault hits one of these groups. One can notice that the AXI is the most reliable
group. Even though the host constantly performs pooling requests on the AXI modules,
it takes over 100 accumulated faults for all applications to drop reliability below 90%. It
happens mainly due to its small resource usage and masking effects. The FP Unit is the
second most reliable group, on average. The FP Unit becomes less reliable for the FFT
and xcorr applications, closing in the INT Unit. It happens mainly because the bitonic
uses only relational less than FP instructions, which is the smallest module in the FP
Unit, while FFT and xcorr depend heavily on add/sub and multiplication instructions.
Overall, the remaining groups have similar behavior, with the FGPU Control being the
most sensitive group.

Figure 8.8 shows the Mean Faults to Failure (MFTF) in the FGPU to better com-
pare how the faults affect its different components when running different applications. In
other words, this figure shows the mean number of accumulated faults required to produce
a functional failure. As one can notice, there is no clear trend, showing that applications
used different groups of modules more heavily than others. For example, the xcorr is the
most reliable when considering the INT Unit but the less reliable when considering the FP
Unit. The FFT is the most reliable application when considering the CU Control but the
least reliable when considering the FGPU Control. These data show that engineers must
consider the application when designing hardening techniques for FGPU. Note that the
MFTF becomes less important when we apply TMR, as it worsens the curve with many
accumulated faults (CARMICHAEL, 2006).

8.3.3 Selective TMR FGPU Reliability

In our and many real-life scenarios, the unhardened FGPU occupies a huge amount
of our target device’s resources (70% of the configurable logic slices). Due to that, im-
plementing full-scale TMR hardening is not a feasible option for improving reliability.
Alternatively, selectively applying TMR to the most sensitive module groups becomes an
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Figure 8.7: Reliability of the case-study applications.
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Figure 8.8: MFTF for the FGPU and individual modules.
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interesting solution. Notice that this area constraint is always an issue for a configurable
scalable architecture because larger FPGA devices will have more Compute Units (CU).
In this Section, we use our FPGA board resources as our global constraint and discuss
the trade-offs in reliability, area, and power of applying selective TMR hardening on the
FGPU.

Considering the size and reliability of the AXI in the previous experiment, we re-
moved it from our analysis. For the remaining four modules (FGPU Control, CU Control,
INT Unit, and FP Unit), we implemented TMR versions and replaced them, one at a time,
in the FGPU architecture.

The overheads of hardening each individual module group can be seen in Fig-
ure 8.9. We analyze the overheads regarding bitstream essential bits, estimated power,
and resource usage. The number of essential bits reflects the configuration memory size
susceptible to bit flips for a given module. The fault rate decrease must be higher than the
sensitive area increase to improve reliability over time. Thus, the increase of the essential
bits has to be minimal. Estimated power is not directly related to reliability. Still, it is a
common constraint in aerospace applications and may limit design space. Resource usage
is a necessary metric for LUTs, FFs, BRAMs, and DSPs.

Resource usage obtained during TMR synthesis shows that modules differ in re-
source usage. While FGPU Control increases the system’s LUT usage by over 100%, it
requires a smaller amount of FFs and BRAM and does not require DSPs. On the other
hand, the FP Unit requires a small amount of LUTs and FFs but a considerable amount
of DSPs. Given our FPGA board resource constraints, the TMR version of the FGPU
Control cannot be combined with any other TMR module due to the lack of more LUTs.
However, the other modules can deploy their TMR versions in the same design.

In the following, we discuss the reliability impacts of applying TMR to a single
module and multiple modules. For both evaluations, we performed fault injection cam-
paigns following the same methodology used in Section 8.1 according to the experimental
setup shown in Figure 8.4(a), where we inject faults over the entire design.
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Figure 8.9: TMR hardening costs for individual modules.
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8.3.3.1 Single Module TMR

Single module TMR evaluates how effectively we can move FGPU’s unhardened
curve (Figure 8.7 in black) to the upper right corner so that more faults can affect the
bitstream without leading to failures (thus increasing the MFTF). To do so, we imple-
mented four FGPU versions, each with a single module (FGPU Control, CU Control,
INT Unit, and FP Unit) hardened with TMR. Figure 8.10 shows the reliability curves for
the FGPU unhardened, which serves as a baseline, and for each TMR hardened module
for all case-study applications.

The bitonic application showed the best improvement through the INT Unit. This
kernel uses only the relational less than floating-point operation, relying mostly on data
movement, control, and logical operations from the INT Unit. Hence, the INT Unit
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Figure 8.10: Single module TMR Reliability.
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showed a clear advantage compared to the other modules.
Despite having inherent floating-point processing that uses addition, subtraction,

and multiplication, the FFT kernel improved the most with the FGPU Control and INT
Unit mitigation. The FGPU Control provides better reliability until the reliability drops
down to 80%, then the INT Unit takes the lead. This trend happens due to the impact that
the TMR replication causes on larger modules, becoming ineffective with fault accumu-
lation.

The xcorr application showed small improvements for all hardened modules ex-
cept the FP Unit. This kernel spends the most execution time running addition and multi-
plication floating-point operations. Hence, the FP Unit hardening showed a clear advan-
tage over the others.

8.3.3.2 Multiple Module TMR

Multiple module TMR aims to improve single module FGPU’s reliability curve
by combining multiple TMR hardened modules. We took the best candidates from the
previous Section as a baseline and combined them with other modules. Figure 8.11 shows
the reliability curves for multiple module TMR against single module TMR.

The bitonic application uses the INT Unit as a baseline, which is then combined
with the FP Unit or CU Control. Combined with the CU Control, it shows improve-
ments up to around 40% reliability. However, reliability worsens the baseline curve when
combined with the FP Unit. According to the previous evaluation (Figure 8.10(a)), this
happens due to the FP Unit’s additional redundancy weight that adds little to FGPU’s
reliability.

The FFT kernel has two baselines, INT Unit and FGPU Control. Because the
FGPU Control cannot be grouped with other modules, we evaluated the INT Unit com-
bined with the FP Unit and combined with the FP Unit and the CU Control. The com-
binations improve both baselines down to 80% reliability. From then on, they presented
better results than FGPU Control but were close to the INT Unit. This is an interesting
example of setting a reliability level and varying hardening options in resource usage and
power.

The xcorr has the FP Unit as a baseline. Hence, we combined it with the INT Unit
and then added the CU Control. The results show a scenario that resembles the bitonic
application. Here, as for the bitonic kernel, we have a scenario where combinations hin-
dered FGPU’s reliability. The main reason for this trend is that, as shown in the previous
evaluation (Figure 8.10(c)), the FP Unit is the only TMR that improves FGPU’s reliability.
Thus, the replication costs outweigh its reliability benefits.
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Figure 8.11: Reliability of alternative TMR modules combinations.
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8.4 Reliability Impacts of Neutron-induced Soft Errors

This section investigates how fast and thermal neutron-induced SEUs affect the
reliability of aerial image classification CNNs running on a softcore GPU implemented in
an SRAM-based FPGA. We perform a configuration bitstream fault injection campaign
and two neutron irradiation experiments to evaluate reliability.

8.4.1 Aerial Image Classification Benchmark

CNNs are state-of-the-art machine learning algorithms with high accuracy in solv-
ing image classification problems. They are composed of many multiply-accumulate
(MACC) operations organized into different layers. CNNs contain convolutional, pool-
ing, and, occasionally, fully connected layers. Weights and bias coefficients at the CNN
are trained repetitiously from a large dataset, learning information directly from image,
audio, and text without prior processing or feature extraction. In this case, the neural
network learns to extract low-level features from the input data. We chose the SAT-6
dataset (BASU et al., 2015) as a study case. It consists of RGB and NIR band images
representing 1 meter per pixel of continental United States from the U.S. National Agri-
culture Imagery Program. The SAT-6 dataset was labeled for the land cover in six classes,
as exemplified in Figure 8.12.

Figure 8.12: Sample RGB (top) and NIR (bottom) images from SAT-6 dataset

building barren land trees grassland road water

Source: (BASU et al., 2015).

Our CNNs were designed by automatically generating a sub-optimal shallow CNN
architecture using genetic algorithms (BENEVENUTI et al., 2021) to explore its geom-
etry’s design space. The design space exploration included the number and dimension
layers and the resulting kernel size, all constrained by the feasibility rules of the target
inference engines and the size of the target FPGA device. We then designed two CNNs,
a floating- and a fixed-point one.
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As depicted in Figure 8.13, the floating-point CNN design resulted in two convo-
lutional layers with a set of 908 weights and bias coefficients. We applied a fractional
fixed-point numeric representation (Qm.n) for the fixed-point CNN implementation of
input images, feature maps, weights, and bias coefficients. To simplify the fixed-point
multiplication, input images and feature maps were modified to have only the signal and
integer parts (Q7.0). In addition, weights and bias coefficients were modified to have
the signal and fractional parts (Q0.7). The multiplication and accumulator results in the
convolution were implemented with integer and fractional parts (Q7.8), discarding the
fractional part by rounding. Consequently, the inputs and outputs of each convolutional
layer fit into an eight-bit signed integer (INT8). The final candidates reached 97.3% ac-
curacy requiring 2.3×105 MACC operations for inference (floating-point) and 98.2%
accuracy requiring 3.7×105 MACC operations for inference with 4,072 weights and bias
coefficients (fixed-point).

Figure 8.13: Case-study all-convolutional CNNs for SAT-6 classification.
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8.4.2 CNN Implementation

The FGPU configurations, both with and without floating-point support, were not
implemented concurrently on the FPGA. Separate FPGA designs and bitstream files were
created for each specific engine configuration. The FPGA design encompasses the soft-
core FGPU along with its associated AMBA™ AXI™ interconnection to the DDR mem-
ory, as well as the Arm® Cortex®-A9 microprocessor provided by the Xilinx Zynq-7000
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(detailed previously in Section 8.1.2).
The set of test images and the CNN coefficients are stored in the DDR memory

and are the same for both engines. The Arm Cortex-A9 is the host processor, coordinating
the sequential processing of each CNN layer for every test image. Still, it is not involved
in any relevant mathematical processing for the CNN. Triplication, voting, and checksum
are used on test images and CNN data stored on DDR to avoid interference of SEUs on
DDR with the test of the engines in FPGA.

Regarding resource usage, performance, and power, the FGPU configured without
supporting hardware for floating-point operations required half the number of dedicated
DSPs and a slightly lower amount of resources. In contrast, the processing time is 20×
longer when computing in fixed-point arithmetics. The Xilinx Vivado synthesis tool pro-
vides rough estimates for power consumption that are very similar for both configurations
of the FGPU.

8.4.3 Evaluation

Our random-accumulated fault injection methodology described in Section 8.1.1
consists of reading the FPGA’s configuration memory at a random position, flipping a bit,
and writing it back. This process is asynchronous to the CNN application running at the
FPGA. Therefore, we can inject a fault randomly during any step of the CNN processing.

Results from emulated fault injection are used in this work in two ways. Firstly,
it helps in screening candidate solutions. Different CNNs and the same inference engine
with different parameters can have different FPGA footprints, processing times, and, ul-
timately, different reliabilities. Secondly, it is used for planning the irradiation campaign.
Fault injection preliminary estimates of reliability metrics are used to prepare the radiation
facility’s time to test each candidate solution.

From fault injection, one can build an empirical probability distribution function
for the reliability of each candidate solution, as seen in Figure 8.14(a), and estimate relia-
bility metrics such as mean faults to failure (MFTF), mean time to failure (MTTF), mean
executions between failure (MEBF) and mission time (MT). Some of these metrics are
presented in Table 8.8.

Table 8.8: Results and reliability metrics from fault injection

Metrics Floating-point Fixed-point

Faults injected 7,868 5,448

Failure events 569 401

Mean Faults to Failure (MFTF) 13.8 13.6

Normalized Mean Executions Between Failure (MEBF) 21.7× 1.0×
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Figure 8.14: Empirical reliability curves obtained from fault injection and neutron irradi-
ation.
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Results from fault injection (Figure8.14(a)) are consistent with previous experi-
ments, with MFTF being lower than observed on other benchmarks due to reduced area.
Given the towering increase in the CNN processing against marginal improvement in
terms of power and resources usage, and the similar profile of reliability observed in the
FGPU without floating-point support (Figure 8.14(a)), we excluded the CNN running in
fixed-point over FGPU from the radiation tests.

The FGPU implementation operating in floating-point was tested under radiation
using a deuterium-tritium (D-T) 14.1 MeV neutron generator (Figure 8.15(a)) at the fa-
cilities of the Institute for Advanced Studies (IEAv), São José dos Campos, Brazil, a
research unit under the Aeronautics Science and Technology Department of the Brazilian
Air Force. During the experiments, the FPGA board was protected with 0.5 mm cadmium
sheet to avoid the influence of thermal neutrons.

The FPGA configuration memory static cross section for 14.1 MeV neutron was
measured previously at this same facility with the same setup, being in the order of
1.8×10−15 cm2bit−1 for single-bit upsets (SBU) and 0.6×10−15 cm2bit−1 for multiple-
bit upsets (MBU) at frontal irradiation (0◦). The static cross section was measured as
1.3×10−15 cm2bit−1 and 0.3×10−15 cm2bit−1 for SBU and MBU, respectively, at back-
side irradiation (180◦).

The FPGA board was irradiated with 14.1 MeV neutrons at frontside (0◦) for
53.6 h with an average flux of 2.79 ± 0.08 × 104 s−1cm−2 at the experimental board
distance of 20 cm and 5.50± 0.18 × 104 s−1cm−2 at the distance of 15 cm. Irradiation
time, total fluence, number of failure events, and mean fluence to failure (MΦT F) ob-
served are summarized in Table 8.9. Figure 8.14(b) presents reliability curves for 14.1
MeV neutrons.

Figure 8.15: Experimental setup for neutron irradiation.

Device
under test

(a) Radiation facility 14.1 MeV neutron generator. (b) Board shielding for thermal neu-
trons experiments.

Source: The Author.

The FGPU configured for floating-point was also tested under thermal and ep-
ithermal neutrons at the Thermal and Epi-thermal Neutron irradiation Station (TENIS)
of the Institute Laue–Langevin (ILL), Grenoble, France. At the operating conditions for
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Table 8.9: Results and reliability metrics from irradiation

Metrics 14.1 Mev Neutron Thermal Neutron

Irradiation time [h] 53.6 0.3

Fluence (Φ) [cm−2] 9.5×109 1.7×1012

Failure events 48 29

Mean Fluence to Failure - MΦTF [cm−2] 2.0×108 6.0×1010 (1×)

these experiments, the maximum flux, centered at the beam, was 1.9×109 cm−2s−1. The
FPGA board was positioned off the beam center for a lower flux adequate for testing the
CNN. To minimize radiation interference on other electronic components, the board was
covered with a B4C shielding with a hole over the Xilinx Zynq-7000 SoC FPGA device
(Figure 8.15(b)).

The FPGA board was irradiated for a total of 0.3 h while testing the CNN. Failure
events not directly associated with the CNN processing were discarded, the remaining 29
CNN failure events accounting for a total fluence of 1.7×1012 cm−2s. Reliability curves
for thermal neutron are presented in Figure 8.14(c), and reliability metrics are summa-
rized in Table 8.9. As one can notice, the three curves show the same reliability curve
pattern. Figure 8.16 presents the proportion of each type of functional failure observed
in the inference. The prevalence of system hangs, detected by communication timeout
(Figure 8.16), suggests that mitigation techniques may focus more on control structures
instead of arithmetic operations.

Figure 8.16: Occurrences of types of functional failure
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8.5 Case-study Summary

This Chapter presented an exploration of the reliability of FGPU, an open-source
softcore GPU embedded within SRAM-based FPGAs. This study case was conducted
through various methodologies, including fault injection campaigns, neutron irradiation
experiments, and the assessment of different floating-point operation implementations.

Initially, the investigation analyzed the trade-offs between software-emulated floating-
point (soft-FP) and hardware-accelerated floating-point (hard-FP) implementations within
the FGPU. The fault injection campaigns revealed that hard-FP implementations increased
the MWBF significantly across different applications, with improvements ranging from
1.2 to 18.6 times over soft-FP implementations. This substantial increase underscored the
benefit of hard-FP in terms of reliability despite its higher resource utilization.

Following this, the research focused on the application of selective TMR to spe-
cific modules of the FGPU. Individual modules’ reliability curves and associated resource
usage directed the particular hardening approach. The results indicated that the strategic
selection of modules for TMR could lead to a more efficient increase in overall system re-
liability compared to indiscriminate replication. This nuanced approach provided a more
resource-effective way of enhancing reliability, tailor-made for the specific needs and lim-
itations of the FGPU architecture.

Finally, the study addressed the resilience of aerial image classification neural
networks running on the FGPU against neutron-induced soft errors. Two methods were
employed: emulated fault injection and neutron irradiation experiments. These methods
provided consistent results, revealing the susceptibility of the FGPU to soft errors and the
need for robust hardening techniques.

In synthesizing the findings from our FGPU experiments within SRAM-based FP-
GAs, we observed a notable distinction in reliability variation compared to commercial
GPUs and prior experiments. Unlike scenarios where the GPU’s reliability is application-
dependent, our FGPU’s reliability in FPGA environments is more consistent, seemingly
less influenced by applications and more by the FPGA technology itself, particularly the
essential bits and runtime. Software-based fault tolerance techniques may be less effec-
tive than anticipated, potentially reducing reliability due to longer run times. This trend
aligns with HLS implementations’ outcomes (BENEVENUTI et al., 2021), indicating a
fundamental aspect of FPGA-based GPU reliability. Though FPGAs offer versatility, they
often trail ASICs in performance, suggesting that transitioning FGPU implementations to
ASICs could enhance speed and improve reliability. This transition will be the focus of
our upcoming Chapter.



140

9 DESIGNING ASICS WITH GPUPLANNER

In the previous Chapters, we explored the reliability of softcore GPUs within
FPGA platforms, delving into their fault tolerance against radiation-induced effects and
implementing selective mitigation techniques. As we transition from SRAM-based FP-
GAs to the realm of ASICs, this Chapter focuses on unveiling the potential of ASICs in
achieving high performance and energy efficiency for specialized tasks. We introduce
GPUPlanner, an innovative framework for automating the generation of GPU-like ac-
celerators as IP, such as softcore GPUs, from RTL to Graphic Data System II (GDSII),
facilitating the design of domain-specific accelerators (PEREZ et al., 2022). We will term
these general-purpose accelerators G-GPUs.

This Chapter begins by outlining the GPUPlanner framework, detailing the cus-
tomization and physical implementation processes that enable the generation of scalable
and efficient GPU-like accelerators. We then present an extensive design space explo-
ration, analyzing the performance, power, and area (PPA) trade-offs encountered during
the synthesis of various G-GPU configurations. By contrasting these configurations with
the widely known RISC-V architecture, we highlight the superior performance benefits
for highly parallel applications.

While the primary objective of GPUPlanner is not centered on reliability, the
framework sets the stage for future work where fault tolerance can be a focal point.
Given the consistent reliability observed in our FPGA experiments, transitioning to ASICs
promises performance gains and the potential for improved reliability, especially for ap-
plications that leverage the parallelism of GPU architectures.

The Chapter is structured as follows: Section 9.1 introduces the GPUPlanner
framework. Section 9.2 provides a detailed discussion of the results obtained from imple-
menting G-GPUs, including performance comparisons with RISC-V. Lastly, Section 9.3
concludes the Chapter with a summary of our contributions and insights into the future of
ASIC accelerators in high-performance computing.

9.1 GPUPlanner Framework

Our experimental investigation started by migrating the FGPU, originally designed
for FGPA, to ASIC. To this end, a few changes in the architecture were necessary. As com-
pilers for FGPA have a feature to infer memory from RTL automatically, all the memory
blocks in the FGPU code were described as regular FFs. In ASIC, memory IPs are hand-
instantiated instead of inferred. Thus, the first task was to clearly define the intended
behavior from the code and instantiate memory modules. In our experiments, we utilized
a 65nm commercial technology. Its memory compiler offers single and dual-port low-
power SRAM, with parameters ranging from 16-65536 for addresses and 2-144 bits for
word size.
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One of our main goals is to achieve the best performance, power, and area (PPA)
ratio possible from the G-GPU, exercising the maximum possible design space. The re-
sult of this was a selection of versions for different scenarios. The first aspect analyzed
was the performance. This is done by finding the maximum operating frequency, which
does not violate timing. For the logical synthesis, the value found for the standard ver-
sion (without any of the optimizations done in this work) is 500MHz. The G-GPU has
a similar performance across versions with different numbers of CUs because the CU
itself is the bottleneck for performance in this architecture, not the logic for controlling
the communication between the modules. As expected, the critical path for the version
without any optimization has its starting point at a memory block. Also, the critical path
was found inside the CU partition.

Larger memories, either in number of words or word size, display a higher delay
for accessing the stored data when compared with smaller memories. This observation
guides our design space exploration: dividing the memory blocks in the critical path is a
valid strategy for increasing the performance of a design (SUMBUL et al., 2015). Mem-
ory division can be applied by dividing the number of words, the size of the word, or both,
the latter depending on the performance of the memories available in the given technol-
ogy. This strategy requires a few alterations in the RTL code. First, the new modules must
be instantiated properly, substituting the target memories for the optimization. Second,
the address or the input/output data must be concatenated accordingly. To attain faster
results, this task was fully automated in our framework. Thus, we only need to point out
which memories we want to divide and the number of divisions for applying this strategy.

Following our plan to achieve the best PPA ratio possible, we continually applied
the memory division strategy when the critical path contained a memory block. However,
the area of the memory blocks is not linear with respect to their size. In fact, two blocks
of size M ×N are larger and more power-hungry than a single block of size 2M ×N or
M×2N. Therefore, we are increasing the area and power from the division alone. Also,
a small extra logic is necessary to accommodate the addressing control of the new blocks
(i.e., MUXes to switch between block memories if the number of words is split according
to the MSBs of the address). When exercising the memory division to enhance the design
performance, we found cases where the critical path was not in memory blocks. To solve
such timing issues, pipelines were introduced in those paths. In total, we created twelve
different G-GPU solutions, varying the operating frequency and number of CUs.

As a result, we created a tool to generate G-GPU IPs automatically from RTL to
GDSII. The flow of GPUPlanner is highlighted in Figure 9.1. For starters, the designer
has to define the specifications required from the G-GPU. Our architecture can be config-
ured for different numbers of CUs, ranging from 1 to 8. Increasing the number of CUs
enhances the computation capacity of the G-GPU. Also, the designer has to specify the
operating frequency of the G-GPU.
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Figure 9.1: GPUPlanner’s G-GPU generation flow.

Source: The Author.

After surveying the possible versions of the G-GPU for desired application scenar-
ios, the designer can generate a specification for each scenario. Then, these specifications
are contrasted with the characteristics of the technology intended to be used to create a
first-order estimation of the G-GPU PPA. In this phase, there is a possibility of finding
several versions suitable for the given specification. Still, it also might happen that a con-
figuration that suits the designer’s requirements does not exist. However, our framework
is not a static input generator. Instead, we provide a map of how to achieve a realistic PPA
that might be close enough to the designer’s requirements. This map is a dynamic spread-
sheet where the user inputs the delay of the memory blocks required for the non-optimized
version of the G-GPU. Our map gives the maximum performance, which memory has to
be divided, and where to introduce pipelines to enhance the performance. This is an iter-
ative process and can be repeated until the designer finds the desired performance. Thus,
using our map, the designer can rapidly adapt his specifications or create new versions
of G-GPU by splitting more memory blocks to increase performance or by introducing
on-demand pipelines. Even though applying this strategy is complicated, our framework
can handle any memory and technology with little effort. The designer only has to give
the basic information of the memory blocks (i.e., name, number of ports, port names, and
minimum delay for data access). The only hard constraint is that many G-GPU memories
must be dual-port. Further development for single-port memories is scheduled as future
work.
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After settling the specifications, one or more designs can be feasible, generating a
list of G-GPU versions. From a single push of a button, our framework can perform logic
and physical synthesis of the list of designs. After the logic and physical synthesis, the
resulting PPA is checked to guarantee it is under the initial specification. If the resulting
G-GPU is not up to specifications, the designer should modify it and restart the process. In
any case, the resulting layouts are ready to be integrated into a system as a tapeout-ready
IP.

9.2 Results and Discussion

During the exercise of the GPUPlanner in finding the best trade-offs for a range
of operating frequencies, we were able to draw a map of parameters to be adapted to
create the versions demonstrated in this work. This map is agnostic of the technology
used because our main optimization strategy deals with the intrinsic delay of the memory
blocks and the characteristics of the G-GPU architecture. Employing our strategy for
other technologies would result in different PPA ratios, depending on the given technology
performance. The results depend mainly on the memory performance and the standard
cells. However, the points of optimization would be somewhat the same. Users who
follow our map will rapidly find the best versions for the given technology.

From the exercise of the GPUPlanner, we found 12 versions worth the PPA trade-
off in a general manner. These versions have 1, 2, 4, and 8 CUs. Their variants run
at 500MHz, 590MHz, and 667MHz. The characteristics of each version are shown in
Table 9.1. In terms of area, the G-GPU size grows linearly with the number of CUs.
The optimizations done to augment the performance increased the area by an average of
10%, from 500MHz to 590MHz, and 2%, from 590MHz to 667MHz. Thus, if the power
consumption is not a priority, the 667MHz is a good fit for having a negligible increase
in area in a trade-off for better performance. These results demonstrate the potential
scalability of the G-GPU architecture.

After the logical synthesis, we chose four versions to perform the physical synthe-
sis. Those are the 1CU@500MHz, 1CU@667MHz, 8CU@500MHz, and 8CU@677MHz.
A reader can appreciate that these are the extreme cases identified by GPUPlanner. Dur-
ing this phase, the G-GPU is broken into three partitions during implementation: the CU,
the general memory controller, and the top. The density of the CU and the general mem-
ory controller was set to 70%. Because of our floorplan strategy of breaking the design
into partitions, the top has a low density of 30%. Nevertheless, breaking the design into
partitions allows the designer to scale G-GPU without any extra effort. Once a CU parti-
tion is fully placed and routed, it can be implemented in versions with more than 1 CU by
cloning the partition in the final floorplan of the design. Moreover, the user can create a
collection of different CU layout blocks and scale the floorplan according to the number
of CUs for different application scenarios easily.
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Table 9.1: Characteristics of 12 different G-GPU solutions generated by our tool after
logic synthesis in Cadence Genus.

#CU & Freq. Total Area (mm2) Memory Area (mm2) #FF #Comb. #Memory Leakage
(mW)

Dynamic
(W)

Total (W)

1@500MHz 4.19 2.68 119778 127826 51 4.62 1.97 2.055

2@500MHz 7.45 4.64 229171 214243 93 8.54 3.63 3.77

4@500MHz 13.84 8.56 437318 387246 177 16.07 6.88 7.14

8@500MHz 26.51 16.39 852094 714256 345 30.79 13.33 13.86

1@590MHz 4.66 3.15 120035 128894 68 4.73 2.57 2.66

2@590MHz 8.16 5.34 229172 221946 120 8.73 4.63 4.81

4@590MHz 15.03 9.72 436807 397995 224 16.41 8.70 9.02

8@590MHz 28.65 18.49 850559 737232 432 31.25 16.81 17.40

1@667MHz 4.77 3.26 120035 130802 71 4.65 2.62 2.72

2@667MHz 8.27 5.45 229172 222028 123 8.72 4.69 4.87

4@667MHz 15.15 9.83 436807 398124 227 16.43 8.75 9.07

8@667MHz 28.69 18.60 848511 730506 435 30.21 19.10 19.76

The layouts for the versions with 1 CU and 8 CUs are contrasted in Figure 9.2 and
Figure 9.3, respectively. The block memories divided for augmenting the performance
are highlighted in green for the CU partition, yellow and pink for the general memory
controller, and blue for the top. Note how different the floorplan is between the version
with optimizations running at 667MHz (600MHz in the 8 CUs version) and without op-
timizations running at 500MHz. Block memories must be strategically placed to extract
the maximum performance, hence the differences in the floorplan. The layout of the ver-
sions 1CU@500MHz, 1CU@667MHz, and 8CU@500MHz have the same performance
expected from the logical synthesis (i.e., they can run at the specified clock frequency
without any timing violation). However, the layout of version 8CU@667MHz can only
run at 600MHz. This finding is explained by analyzing the floorplan of its layout (see
Figure 9.3).

The connecting routing wires introduce a significant capacitance because of the
long distance between the peripheral CUs and the general memory controller. In turn, this
capacitance increases path delay up to a point where it violates the 1.5ns target period.
To better explain the difference in wire length routing between 1 and 8 CUs, Table 9.2
shows the total amount of wire length per metal layer1. In an attempt to solve this issue,
pipelines were introduced between the connections with high delay. Still, this strategy
was ineffective in solving the timing violations. To maintain the balanced PPA ratio, the
best performance for 8 CUs was 600MHz.

To fully evaluate the usage of G-GPU as an ASIC accelerator, we compared its
performance with an implementation of the popular RISC-V architecture. We synthe-
sized both architectures using the same technology utilized during the G-GPU implemen-
tation with an operating frequency of 667MHz, the RISC-V having 32kb memory, and
the G-GPU with its largest configuration for 1/2/4/8 CUs. As case-study applications,

1The metal stack contains nine layers for the technology utilized. The metal layers M1, M8, and M9 are
reserved for power routing only and have not been drawn in Table 9.2. This is a representative metal stack.



145

Figure 9.2: Layout comparison between 1CU@500MHz and 1CU@667MHz variants.
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Figure 9.3: Layout comparison between minimum and maximum performance of a G-
GPU with 8 CUs.
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Table 9.2: Routing length per metal layer for different G-GPU versions and variants.
Metal Layer Wirelength (µm)

............................................. 1CU@500MHz 1CU@667MHz 8CU@500MHz 8CU@600MHz

M2 3185110 15340072 20314957 25637608

M3 5132356 21219705 27928578 34890963

M4 2987163 9866798 19209669 22387405

M5 2713788 11293663 21953276 26355211

M6 1430594 8801517 14074944 11111664

M7 616666 2915533 6316321 5315697

we chose seven micro-benchmarks from the AMD OpenCL SDK and increased their in-
puts until RISC-V and its compiler crashed. We further increased the input size of the
G-GPU applications to make its computing units fully utilized. To compare the perfor-
mance of the different-input size applications, we took a pessimistic approach for G-GPU
and considered that one could increase RISC-V application input sizes by multiplying its
cycle count by the G-GPU/RISC-V input size ratio (which in practice is unfeasible but
favors RISC-V). Table 9.3 shows input sizes and measured cycle counts for all case-study
applications.

Our first evaluation compares raw performance between G-GPU and RISC-V for
the same input sizes. Figure 9.4(a) shows in a bar chart that G-GPU with 8 CUs is up to
223 times faster than RISC-V. However, only applications that enjoy high parallelism are
orders of magnitude faster when running G-GPU. G-GPU can be as low as only 1.2 times
faster than RISC-V for applications with low to no parallelism. As G-GPU is a domain-
specific ASIC accelerator, such results are expected once it is no longer the best option
for general-purpose applications. Therefore, a user interested in implementing a G-GPU
as an accelerator can utilize these provided data to ponder if this type of architecture is a
good fit for his system when considering only the raw speed-up.

Our second evaluation factors previously measured area into performance speed-
up. As designers might be interested in extracting the most from a given available area,
we derated the previously measured speed-up by dividing it by the G-GPU/RISC-V area

Table 9.3: Benchmark’s input size and cycle count

Kernel
Input size Cycle Count (k-cycles)

RISC-V G-GPU RISC-V 1CU 2CU 4CU 8CU

mat_multiplication 128 2048 202 48 28 18 14

copy 512 32768 71 73 36 24 22

vec_multiplication 1024 65536 78 100 49 31 26

fir 128 4096 542 694 358 185 169

div_int 512 4096 32 209 105 57 62

xcorr 256 4096 542 5343 2802 1467 2079

paralle_sel 128 2048 765 5979 3157 1656 1660
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ratio for each G-GPU CU configuration. This metric is useful to evaluate trade-offs in
computation speed-up and area when replacing a RISV-C with a G-GPU. These results
are shown in Figure 9.4(b) as a bar chart. G-GPU with 1 CU has an area that is 6.5
times larger than the RISC-V, and it achieves the best increase in performance per area
of 10.2 times the RISC-V’s. On the other hand, G-GPU with 8 CUs has an area that is
41 times bigger than RISC-V’s, thus achieving the best increase in performance per area
of 5.7 times faster than RISC-V’s. Note that, when factoring area in, the 8-CU G-GPU
shows the worst results. This trend happens mainly because data dependency and global
memory communication limit parallelism. Thus, it provided increased processing power
of a G-GPU configuration with more CUs.

Figure 9.4: Comparative performance analysis of G-GPU against RISC-V.
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For future work, we plan to update the GPUPlanner to be able to implement the
8-CU G-GPU with performance compared with the versions with fewer CUs. The per-
formance problem of the layouts with 8 CUs can possibly be solved by replicating the
general memory controller, shortening the distance between the peripheral CUs, and re-
ducing the delay introduced by the routing wires. Also, we intend to scale FGPU beyond
8 CUs, including a supporting memory hierarchy, and incorporate single-port memories
into GPUPlanner.

9.3 Case-study Summary

In this study case, we introduced GPUPlanner, a framework for generating domain-
specific ASIC accelerators. This tool automated the transition from RTL to a tape-out-
ready layout, underscoring the feasibility of softcore GPUs as high-performance domain-
specific ASIC accelerators. When benchmarked against the RISC-V architecture, these
GPU-like architectures demonstrated significant advantages for highly parallel applica-
tions, offering a promising avenue for the reliability field to deploy robust and efficient
softcore GPUs. GPUPlanner enables the broader community to engage in design space
exploration of GPU-like accelerators, furthering the potential for tailored, reliable com-
puting solutions. Our findings suggest that these accelerators could significantly advance
reliable computing architectures, potentially surpassing current HLS approaches in both
performance and reliability, as indicated by comparisons with HLS implementations (CA-
NIS et al., 2011; BENEVENUTI et al., 2021). As we extend GPUPlanner’s capabilities
to various GPU architectures and technologies, we pave the way for innovative, reliable,
high-performance computing platforms.
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10 CONCLUSION AND FUTURE DIRECTIONS

This Thesis conducted a thorough investigation into the reliability of GPUs under
radiation-induced faults, focusing on SEUs. Our first study case focused on commercial
GPUs, particularly Nvidia’s Kepler architecture. We analyzed the impact of radiation-
induced faults on GPU registers and developed selective fault tolerance strategies, en-
hancing efficiency over non-selective methods. We further improved SEU fault tolerance
by implementing acceptance accuracy relaxation methods while reducing overhead.

Transitioning to FlexGrip, a softcore GPU, we investigated low-level software-
based fault tolerance techniques, including novel optimizations. Here, we emphasized
the protection of instruction sets and register files against SEUs. We also enhanced the
NVIDIA SASS 1.0 ISA for improved mitigation of SDC and DUE effects and imple-
mented hybrid fault tolerance techniques for error correction in the GPU pipeline.

Our research then moved to FGPU, another softcore GPU oriented towards FPGA
implementations. We assessed its reliability using hardware and software floating-point
implementations, exploring isolated components’ unhardened and hardened reliability
curves. The effectiveness of selective TMR in enhancing GPU fault tolerance was eval-
uated. Additionally, we performed radiation experiments and correlated these findings
with emulation results to establish a deeper understanding of FGPU’s vulnerabilities.

Finally, we explored the domain of ASICs, developing the G-GPU, a domain-
specific ASIC accelerator. The introduction of GPUPlanner facilitated the efficient tran-
sition from RTL designs to ASIC layouts. Our findings demonstrated the suitability of
GPU-like accelerators for high parallelism applications, marking a significant advance-
ment in the exploration of adaptable GPU architectures.

To encapsulate our research across various GPU architectures, Table 10.1 summa-
rizes the case-studies, highlighting the techniques implemented, evaluation methods, and
metrics investigated.

In conclusion, this Thesis contributes to GPU reliability in radiation-sensitive envi-
ronments. We have laid the groundwork for more robust GPU integration in safety-critical
domains through our comprehensive evaluation across different GPU architectures and
the transition from FPGAs to ASICs. Our approach, combining both software and hard-
ware strategies, offers a pathway toward developing resilient GPUs for various critical
applications.

As our study deepened, it became evident that GPU sensitivity is closely linked
to the application being executed. This observation leads us to a promising direction for
future research: the development of fault-tolerant GPUs designed specifically for targeted
sets of applications. Our extensive work in enhancing fault tolerance, underscored by the
effective methods we proposed and tested, provides a solid foundation for this exploration.
Furthermore, with our established tool for creating ASICs, we envision a path forward in
applying these fault tolerance techniques to design robust and resilient ASICs, particularly
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Table 10.1: Summary of case-studies
Study Case Implemented Tech-

niques
Evaluation Methods Metrics Investi-

gated
Kepler Selective fault tol-

erance, approximate
computing

Radiation experi-
ments, fault injection

Resources, AVF, FIT

FlexGrip Low-level software-
based fault tolerance,
ISA extension, hy-
brid techniques

Simulation, fault in-
jection

Resources, execution
time, AVF, MWTF

FGPU (FPGA) Selective TMR, Soft-
FP and Hard-FP im-
plementations

Hardware emu-
lation, radiation
experiments

Resources, execution
time, MWBF, MFTF,
MEBF, MΦT F

FGPU (ASIC) GPUPlanner frame-
work, ASIC design

Performance evalua-
tion

Resources, parallel
processing effi-
ciency, ASIC design
adaptability

tailored for these specific application groups. This approach not only aligns with the initial
discussions and objectives of our research but also opens a significant field for innovation
in GPU technology. By focusing on custom ASICs for specific application clusters, we
can manage the costs of ASIC development, making this a viable and groundbreaking
direction in the realm of fault-tolerant computing solutions.
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11 FINAL CONSIDERATIONS

This Thesis aims to serve as a roadmap in the domain of GPU technologies. The
scope of this investigation is substantiated by a wide range of experiments conducted
across three distinct GPU platforms. Our research methodologies encompass a spectrum
of approaches, from low-level software-based fault tolerance techniques to hardware- and
hybrid software-hardware approaches. These methodologies have been tested through
various means, including simulations, hardware emulations, and neutron beam experi-
ments.
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